Marlin_main.cpp 228 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M114 - Output current position to serial port
  130. // M115 - Capabilities string
  131. // M117 - display message
  132. // M119 - Output Endstop status to serial port
  133. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M140 - Set bed target temp
  138. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  142. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  146. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. // M206 - set additional homing offset
  148. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. // M220 S<factor in percent>- set speed factor override percentage
  153. // M221 S<factor in percent>- set extrude factor override percentage
  154. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  155. // M240 - Trigger a camera to take a photograph
  156. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  158. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. // M301 - Set PID parameters P I and D
  160. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. // M304 - Set bed PID parameters P I and D
  163. // M400 - Finish all moves
  164. // M401 - Lower z-probe if present
  165. // M402 - Raise z-probe if present
  166. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  167. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  168. // M406 - Turn off Filament Sensor extrusion control
  169. // M407 - Displays measured filament diameter
  170. // M500 - stores parameters in EEPROM
  171. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  172. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  173. // M503 - print the current settings (from memory not from EEPROM)
  174. // M509 - force language selection on next restart
  175. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  178. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. unsigned long PingTime = millis();
  198. unsigned long NcTime;
  199. union Data
  200. {
  201. byte b[2];
  202. int value;
  203. };
  204. float homing_feedrate[] = HOMING_FEEDRATE;
  205. // Currently only the extruder axis may be switched to a relative mode.
  206. // Other axes are always absolute or relative based on the common relative_mode flag.
  207. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  208. int feedmultiply=100; //100->1 200->2
  209. int saved_feedmultiply;
  210. int extrudemultiply=100; //100->1 200->2
  211. int extruder_multiply[EXTRUDERS] = {100
  212. #if EXTRUDERS > 1
  213. , 100
  214. #if EXTRUDERS > 2
  215. , 100
  216. #endif
  217. #endif
  218. };
  219. int bowden_length[4];
  220. bool is_usb_printing = false;
  221. bool homing_flag = false;
  222. bool temp_cal_active = false;
  223. unsigned long kicktime = millis()+100000;
  224. unsigned int usb_printing_counter;
  225. int lcd_change_fil_state = 0;
  226. int feedmultiplyBckp = 100;
  227. float HotendTempBckp = 0;
  228. int fanSpeedBckp = 0;
  229. float pause_lastpos[4];
  230. unsigned long pause_time = 0;
  231. unsigned long start_pause_print = millis();
  232. unsigned long load_filament_time;
  233. bool mesh_bed_leveling_flag = false;
  234. bool mesh_bed_run_from_menu = false;
  235. unsigned char lang_selected = 0;
  236. int8_t FarmMode = 0;
  237. bool prusa_sd_card_upload = false;
  238. unsigned int status_number = 0;
  239. unsigned long total_filament_used;
  240. unsigned int heating_status;
  241. unsigned int heating_status_counter;
  242. bool custom_message;
  243. bool loading_flag = false;
  244. unsigned int custom_message_type;
  245. unsigned int custom_message_state;
  246. char snmm_filaments_used = 0;
  247. int selectedSerialPort;
  248. float distance_from_min[3];
  249. bool sortAlpha = false;
  250. bool volumetric_enabled = false;
  251. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  252. #if EXTRUDERS > 1
  253. , DEFAULT_NOMINAL_FILAMENT_DIA
  254. #if EXTRUDERS > 2
  255. , DEFAULT_NOMINAL_FILAMENT_DIA
  256. #endif
  257. #endif
  258. };
  259. float volumetric_multiplier[EXTRUDERS] = {1.0
  260. #if EXTRUDERS > 1
  261. , 1.0
  262. #if EXTRUDERS > 2
  263. , 1.0
  264. #endif
  265. #endif
  266. };
  267. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  268. float add_homing[3]={0,0,0};
  269. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  270. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  271. bool axis_known_position[3] = {false, false, false};
  272. float zprobe_zoffset;
  273. // Extruder offset
  274. #if EXTRUDERS > 1
  275. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  276. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  277. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  278. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  279. #endif
  280. };
  281. #endif
  282. uint8_t active_extruder = 0;
  283. int fanSpeed=0;
  284. #ifdef FWRETRACT
  285. bool autoretract_enabled=false;
  286. bool retracted[EXTRUDERS]={false
  287. #if EXTRUDERS > 1
  288. , false
  289. #if EXTRUDERS > 2
  290. , false
  291. #endif
  292. #endif
  293. };
  294. bool retracted_swap[EXTRUDERS]={false
  295. #if EXTRUDERS > 1
  296. , false
  297. #if EXTRUDERS > 2
  298. , false
  299. #endif
  300. #endif
  301. };
  302. float retract_length = RETRACT_LENGTH;
  303. float retract_length_swap = RETRACT_LENGTH_SWAP;
  304. float retract_feedrate = RETRACT_FEEDRATE;
  305. float retract_zlift = RETRACT_ZLIFT;
  306. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  307. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  308. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  309. #endif
  310. #ifdef ULTIPANEL
  311. #ifdef PS_DEFAULT_OFF
  312. bool powersupply = false;
  313. #else
  314. bool powersupply = true;
  315. #endif
  316. #endif
  317. bool cancel_heatup = false ;
  318. #ifdef FILAMENT_SENSOR
  319. //Variables for Filament Sensor input
  320. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  321. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  322. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  323. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  324. int delay_index1=0; //index into ring buffer
  325. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  326. float delay_dist=0; //delay distance counter
  327. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  328. #endif
  329. const char errormagic[] PROGMEM = "Error:";
  330. const char echomagic[] PROGMEM = "echo:";
  331. bool no_response = false;
  332. uint8_t important_status;
  333. uint8_t saved_filament_type;
  334. //===========================================================================
  335. //=============================Private Variables=============================
  336. //===========================================================================
  337. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  338. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  339. static float delta[3] = {0.0, 0.0, 0.0};
  340. // For tracing an arc
  341. static float offset[3] = {0.0, 0.0, 0.0};
  342. static bool home_all_axis = true;
  343. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  344. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  345. // Determines Absolute or Relative Coordinates.
  346. // Also there is bool axis_relative_modes[] per axis flag.
  347. static bool relative_mode = false;
  348. // String circular buffer. Commands may be pushed to the buffer from both sides:
  349. // Chained commands will be pushed to the front, interactive (from LCD menu)
  350. // and printing commands (from serial line or from SD card) are pushed to the tail.
  351. // First character of each entry indicates the type of the entry:
  352. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  353. // Command in cmdbuffer was sent over USB.
  354. #define CMDBUFFER_CURRENT_TYPE_USB 1
  355. // Command in cmdbuffer was read from SDCARD.
  356. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  357. // Command in cmdbuffer was generated by the UI.
  358. #define CMDBUFFER_CURRENT_TYPE_UI 3
  359. // Command in cmdbuffer was generated by another G-code.
  360. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  361. // How much space to reserve for the chained commands
  362. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  363. // which are pushed to the front of the queue?
  364. // Maximum 5 commands of max length 20 + null terminator.
  365. #define CMDBUFFER_RESERVE_FRONT (5*21)
  366. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  367. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  368. // Head of the circular buffer, where to read.
  369. static int bufindr = 0;
  370. // Tail of the buffer, where to write.
  371. static int bufindw = 0;
  372. // Number of lines in cmdbuffer.
  373. static int buflen = 0;
  374. // Flag for processing the current command inside the main Arduino loop().
  375. // If a new command was pushed to the front of a command buffer while
  376. // processing another command, this replaces the command on the top.
  377. // Therefore don't remove the command from the queue in the loop() function.
  378. static bool cmdbuffer_front_already_processed = false;
  379. // Type of a command, which is to be executed right now.
  380. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  381. // String of a command, which is to be executed right now.
  382. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  383. // Enable debugging of the command buffer.
  384. // Debugging information will be sent to serial line.
  385. // #define CMDBUFFER_DEBUG
  386. static int serial_count = 0; //index of character read from serial line
  387. static boolean comment_mode = false;
  388. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  389. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  390. //static float tt = 0;
  391. //static float bt = 0;
  392. //Inactivity shutdown variables
  393. static unsigned long previous_millis_cmd = 0;
  394. unsigned long max_inactive_time = 0;
  395. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  396. unsigned long starttime=0;
  397. unsigned long stoptime=0;
  398. unsigned long _usb_timer = 0;
  399. static uint8_t tmp_extruder;
  400. bool Stopped=false;
  401. #if NUM_SERVOS > 0
  402. Servo servos[NUM_SERVOS];
  403. #endif
  404. bool CooldownNoWait = true;
  405. bool target_direction;
  406. //Insert variables if CHDK is defined
  407. #ifdef CHDK
  408. unsigned long chdkHigh = 0;
  409. boolean chdkActive = false;
  410. #endif
  411. //===========================================================================
  412. //=============================Routines======================================
  413. //===========================================================================
  414. void get_arc_coordinates();
  415. bool setTargetedHotend(int code);
  416. void serial_echopair_P(const char *s_P, float v)
  417. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  418. void serial_echopair_P(const char *s_P, double v)
  419. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char *s_P, unsigned long v)
  421. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. #ifdef SDSUPPORT
  423. #include "SdFatUtil.h"
  424. int freeMemory() { return SdFatUtil::FreeRam(); }
  425. #else
  426. extern "C" {
  427. extern unsigned int __bss_end;
  428. extern unsigned int __heap_start;
  429. extern void *__brkval;
  430. int freeMemory() {
  431. int free_memory;
  432. if ((int)__brkval == 0)
  433. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  434. else
  435. free_memory = ((int)&free_memory) - ((int)__brkval);
  436. return free_memory;
  437. }
  438. }
  439. #endif //!SDSUPPORT
  440. // Pop the currently processed command from the queue.
  441. // It is expected, that there is at least one command in the queue.
  442. bool cmdqueue_pop_front()
  443. {
  444. if (buflen > 0) {
  445. #ifdef CMDBUFFER_DEBUG
  446. SERIAL_ECHOPGM("Dequeing ");
  447. SERIAL_ECHO(cmdbuffer+bufindr+1);
  448. SERIAL_ECHOLNPGM("");
  449. SERIAL_ECHOPGM("Old indices: buflen ");
  450. SERIAL_ECHO(buflen);
  451. SERIAL_ECHOPGM(", bufindr ");
  452. SERIAL_ECHO(bufindr);
  453. SERIAL_ECHOPGM(", bufindw ");
  454. SERIAL_ECHO(bufindw);
  455. SERIAL_ECHOPGM(", serial_count ");
  456. SERIAL_ECHO(serial_count);
  457. SERIAL_ECHOPGM(", bufsize ");
  458. SERIAL_ECHO(sizeof(cmdbuffer));
  459. SERIAL_ECHOLNPGM("");
  460. #endif /* CMDBUFFER_DEBUG */
  461. if (-- buflen == 0) {
  462. // Empty buffer.
  463. if (serial_count == 0)
  464. // No serial communication is pending. Reset both pointers to zero.
  465. bufindw = 0;
  466. bufindr = bufindw;
  467. } else {
  468. // There is at least one ready line in the buffer.
  469. // First skip the current command ID and iterate up to the end of the string.
  470. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  471. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  472. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  473. // If the end of the buffer was empty,
  474. if (bufindr == sizeof(cmdbuffer)) {
  475. // skip to the start and find the nonzero command.
  476. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  477. }
  478. #ifdef CMDBUFFER_DEBUG
  479. SERIAL_ECHOPGM("New indices: buflen ");
  480. SERIAL_ECHO(buflen);
  481. SERIAL_ECHOPGM(", bufindr ");
  482. SERIAL_ECHO(bufindr);
  483. SERIAL_ECHOPGM(", bufindw ");
  484. SERIAL_ECHO(bufindw);
  485. SERIAL_ECHOPGM(", serial_count ");
  486. SERIAL_ECHO(serial_count);
  487. SERIAL_ECHOPGM(" new command on the top: ");
  488. SERIAL_ECHO(cmdbuffer+bufindr+1);
  489. SERIAL_ECHOLNPGM("");
  490. #endif /* CMDBUFFER_DEBUG */
  491. }
  492. return true;
  493. }
  494. return false;
  495. }
  496. void cmdqueue_reset()
  497. {
  498. while (cmdqueue_pop_front()) ;
  499. }
  500. // How long a string could be pushed to the front of the command queue?
  501. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  502. // len_asked does not contain the zero terminator size.
  503. bool cmdqueue_could_enqueue_front(int len_asked)
  504. {
  505. // MAX_CMD_SIZE has to accommodate the zero terminator.
  506. if (len_asked >= MAX_CMD_SIZE)
  507. return false;
  508. // Remove the currently processed command from the queue.
  509. if (! cmdbuffer_front_already_processed) {
  510. cmdqueue_pop_front();
  511. cmdbuffer_front_already_processed = true;
  512. }
  513. if (bufindr == bufindw && buflen > 0)
  514. // Full buffer.
  515. return false;
  516. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  517. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  518. if (bufindw < bufindr) {
  519. int bufindr_new = bufindr - len_asked - 2;
  520. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  521. if (endw <= bufindr_new) {
  522. bufindr = bufindr_new;
  523. return true;
  524. }
  525. } else {
  526. // Otherwise the free space is split between the start and end.
  527. if (len_asked + 2 <= bufindr) {
  528. // Could fit at the start.
  529. bufindr -= len_asked + 2;
  530. return true;
  531. }
  532. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  533. if (endw <= bufindr_new) {
  534. memset(cmdbuffer, 0, bufindr);
  535. bufindr = bufindr_new;
  536. return true;
  537. }
  538. }
  539. return false;
  540. }
  541. // Could one enqueue a command of lenthg len_asked into the buffer,
  542. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  543. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  544. // len_asked does not contain the zero terminator size.
  545. bool cmdqueue_could_enqueue_back(int len_asked)
  546. {
  547. // MAX_CMD_SIZE has to accommodate the zero terminator.
  548. if (len_asked >= MAX_CMD_SIZE)
  549. return false;
  550. if (bufindr == bufindw && buflen > 0)
  551. // Full buffer.
  552. return false;
  553. if (serial_count > 0) {
  554. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  555. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  556. // serial data.
  557. // How much memory to reserve for the commands pushed to the front?
  558. // End of the queue, when pushing to the end.
  559. int endw = bufindw + len_asked + 2;
  560. if (bufindw < bufindr)
  561. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  562. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  563. // Otherwise the free space is split between the start and end.
  564. if (// Could one fit to the end, including the reserve?
  565. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  566. // Could one fit to the end, and the reserve to the start?
  567. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  568. return true;
  569. // Could one fit both to the start?
  570. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  571. // Mark the rest of the buffer as used.
  572. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  573. // and point to the start.
  574. bufindw = 0;
  575. return true;
  576. }
  577. } else {
  578. // How much memory to reserve for the commands pushed to the front?
  579. // End of the queue, when pushing to the end.
  580. int endw = bufindw + len_asked + 2;
  581. if (bufindw < bufindr)
  582. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  583. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  584. // Otherwise the free space is split between the start and end.
  585. if (// Could one fit to the end, including the reserve?
  586. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  587. // Could one fit to the end, and the reserve to the start?
  588. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  589. return true;
  590. // Could one fit both to the start?
  591. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  592. // Mark the rest of the buffer as used.
  593. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  594. // and point to the start.
  595. bufindw = 0;
  596. return true;
  597. }
  598. }
  599. return false;
  600. }
  601. #ifdef CMDBUFFER_DEBUG
  602. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  603. {
  604. SERIAL_ECHOPGM("Entry nr: ");
  605. SERIAL_ECHO(nr);
  606. SERIAL_ECHOPGM(", type: ");
  607. SERIAL_ECHO(int(*p));
  608. SERIAL_ECHOPGM(", cmd: ");
  609. SERIAL_ECHO(p+1);
  610. SERIAL_ECHOLNPGM("");
  611. }
  612. static void cmdqueue_dump_to_serial()
  613. {
  614. if (buflen == 0) {
  615. SERIAL_ECHOLNPGM("The command buffer is empty.");
  616. } else {
  617. SERIAL_ECHOPGM("Content of the buffer: entries ");
  618. SERIAL_ECHO(buflen);
  619. SERIAL_ECHOPGM(", indr ");
  620. SERIAL_ECHO(bufindr);
  621. SERIAL_ECHOPGM(", indw ");
  622. SERIAL_ECHO(bufindw);
  623. SERIAL_ECHOLNPGM("");
  624. int nr = 0;
  625. if (bufindr < bufindw) {
  626. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  627. cmdqueue_dump_to_serial_single_line(nr, p);
  628. // Skip the command.
  629. for (++p; *p != 0; ++ p);
  630. // Skip the gaps.
  631. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  632. }
  633. } else {
  634. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  640. }
  641. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  642. cmdqueue_dump_to_serial_single_line(nr, p);
  643. // Skip the command.
  644. for (++p; *p != 0; ++ p);
  645. // Skip the gaps.
  646. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  647. }
  648. }
  649. SERIAL_ECHOLNPGM("End of the buffer.");
  650. }
  651. }
  652. #endif /* CMDBUFFER_DEBUG */
  653. //adds an command to the main command buffer
  654. //thats really done in a non-safe way.
  655. //needs overworking someday
  656. // Currently the maximum length of a command piped through this function is around 20 characters
  657. void enquecommand(const char *cmd, bool from_progmem)
  658. {
  659. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  660. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  661. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  662. if (cmdqueue_could_enqueue_back(len)) {
  663. // This is dangerous if a mixing of serial and this happens
  664. // This may easily be tested: If serial_count > 0, we have a problem.
  665. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  666. if (from_progmem)
  667. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  668. else
  669. strcpy(cmdbuffer + bufindw + 1, cmd);
  670. SERIAL_ECHO_START;
  671. SERIAL_ECHORPGM(MSG_Enqueing);
  672. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  673. SERIAL_ECHOLNPGM("\"");
  674. bufindw += len + 2;
  675. if (bufindw == sizeof(cmdbuffer))
  676. bufindw = 0;
  677. ++ buflen;
  678. #ifdef CMDBUFFER_DEBUG
  679. cmdqueue_dump_to_serial();
  680. #endif /* CMDBUFFER_DEBUG */
  681. } else {
  682. SERIAL_ERROR_START;
  683. SERIAL_ECHORPGM(MSG_Enqueing);
  684. if (from_progmem)
  685. SERIAL_PROTOCOLRPGM(cmd);
  686. else
  687. SERIAL_ECHO(cmd);
  688. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  689. #ifdef CMDBUFFER_DEBUG
  690. cmdqueue_dump_to_serial();
  691. #endif /* CMDBUFFER_DEBUG */
  692. }
  693. }
  694. void enquecommand_front(const char *cmd, bool from_progmem)
  695. {
  696. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  697. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  698. if (cmdqueue_could_enqueue_front(len)) {
  699. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  700. if (from_progmem)
  701. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  702. else
  703. strcpy(cmdbuffer + bufindr + 1, cmd);
  704. ++ buflen;
  705. SERIAL_ECHO_START;
  706. SERIAL_ECHOPGM("Enqueing to the front: \"");
  707. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  708. SERIAL_ECHOLNPGM("\"");
  709. #ifdef CMDBUFFER_DEBUG
  710. cmdqueue_dump_to_serial();
  711. #endif /* CMDBUFFER_DEBUG */
  712. } else {
  713. SERIAL_ERROR_START;
  714. SERIAL_ECHOPGM("Enqueing to the front: \"");
  715. if (from_progmem)
  716. SERIAL_PROTOCOLRPGM(cmd);
  717. else
  718. SERIAL_ECHO(cmd);
  719. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  720. #ifdef CMDBUFFER_DEBUG
  721. cmdqueue_dump_to_serial();
  722. #endif /* CMDBUFFER_DEBUG */
  723. }
  724. }
  725. // Mark the command at the top of the command queue as new.
  726. // Therefore it will not be removed from the queue.
  727. void repeatcommand_front()
  728. {
  729. cmdbuffer_front_already_processed = true;
  730. }
  731. bool is_buffer_empty()
  732. {
  733. if (buflen == 0) return true;
  734. else return false;
  735. }
  736. void setup_killpin()
  737. {
  738. #if defined(KILL_PIN) && KILL_PIN > -1
  739. SET_INPUT(KILL_PIN);
  740. WRITE(KILL_PIN,HIGH);
  741. #endif
  742. }
  743. // Set home pin
  744. void setup_homepin(void)
  745. {
  746. #if defined(HOME_PIN) && HOME_PIN > -1
  747. SET_INPUT(HOME_PIN);
  748. WRITE(HOME_PIN,HIGH);
  749. #endif
  750. }
  751. void setup_photpin()
  752. {
  753. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  754. SET_OUTPUT(PHOTOGRAPH_PIN);
  755. WRITE(PHOTOGRAPH_PIN, LOW);
  756. #endif
  757. }
  758. void setup_powerhold()
  759. {
  760. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  761. SET_OUTPUT(SUICIDE_PIN);
  762. WRITE(SUICIDE_PIN, HIGH);
  763. #endif
  764. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  765. SET_OUTPUT(PS_ON_PIN);
  766. #if defined(PS_DEFAULT_OFF)
  767. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  768. #else
  769. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  770. #endif
  771. #endif
  772. }
  773. void suicide()
  774. {
  775. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  776. SET_OUTPUT(SUICIDE_PIN);
  777. WRITE(SUICIDE_PIN, LOW);
  778. #endif
  779. }
  780. void servo_init()
  781. {
  782. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  783. servos[0].attach(SERVO0_PIN);
  784. #endif
  785. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  786. servos[1].attach(SERVO1_PIN);
  787. #endif
  788. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  789. servos[2].attach(SERVO2_PIN);
  790. #endif
  791. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  792. servos[3].attach(SERVO3_PIN);
  793. #endif
  794. #if (NUM_SERVOS >= 5)
  795. #error "TODO: enter initalisation code for more servos"
  796. #endif
  797. }
  798. static void lcd_language_menu();
  799. #ifdef MESH_BED_LEVELING
  800. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  801. #endif
  802. // Factory reset function
  803. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  804. // Level input parameter sets depth of reset
  805. // Quiet parameter masks all waitings for user interact.
  806. int er_progress = 0;
  807. void factory_reset(char level, bool quiet)
  808. {
  809. lcd_implementation_clear();
  810. int cursor_pos = 0;
  811. switch (level) {
  812. // Level 0: Language reset
  813. case 0:
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. lcd_force_language_selection();
  818. break;
  819. //Level 1: Reset statistics
  820. case 1:
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  825. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  826. lcd_menu_statistics();
  827. break;
  828. // Level 2: Prepare for shipping
  829. case 2:
  830. //lcd_printPGM(PSTR("Factory RESET"));
  831. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  832. // Force language selection at the next boot up.
  833. lcd_force_language_selection();
  834. // Force the "Follow calibration flow" message at the next boot up.
  835. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  836. farm_no = 0;
  837. farm_mode == false;
  838. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  839. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  840. WRITE(BEEPER, HIGH);
  841. _delay_ms(100);
  842. WRITE(BEEPER, LOW);
  843. //_delay_ms(2000);
  844. break;
  845. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  846. case 3:
  847. lcd_printPGM(PSTR("Factory RESET"));
  848. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  849. WRITE(BEEPER, HIGH);
  850. _delay_ms(100);
  851. WRITE(BEEPER, LOW);
  852. er_progress = 0;
  853. lcd_print_at_PGM(3, 3, PSTR(" "));
  854. lcd_implementation_print_at(3, 3, er_progress);
  855. // Erase EEPROM
  856. for (int i = 0; i < 4096; i++) {
  857. eeprom_write_byte((uint8_t*)i, 0xFF);
  858. if (i % 41 == 0) {
  859. er_progress++;
  860. lcd_print_at_PGM(3, 3, PSTR(" "));
  861. lcd_implementation_print_at(3, 3, er_progress);
  862. lcd_printPGM(PSTR("%"));
  863. }
  864. }
  865. break;
  866. case 4:
  867. bowden_menu();
  868. break;
  869. default:
  870. break;
  871. }
  872. }
  873. // "Setup" function is called by the Arduino framework on startup.
  874. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  875. // are initialized by the main() routine provided by the Arduino framework.
  876. void setup()
  877. {
  878. lcd_init();
  879. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  880. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  881. setup_killpin();
  882. setup_powerhold();
  883. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  884. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  885. //if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  886. if (farm_no == 0xFFFF) farm_no = 0;
  887. if (farm_mode)
  888. {
  889. prusa_statistics(8);
  890. no_response = true; //we need confirmation by recieving PRUSA thx
  891. important_status = 8;
  892. selectedSerialPort = 1;
  893. } else {
  894. selectedSerialPort = 0;
  895. }
  896. MYSERIAL.begin(BAUDRATE);
  897. SERIAL_PROTOCOLLNPGM("start");
  898. SERIAL_ECHO_START;
  899. #if 0
  900. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  901. for (int i = 0; i < 4096; ++i) {
  902. int b = eeprom_read_byte((unsigned char*)i);
  903. if (b != 255) {
  904. SERIAL_ECHO(i);
  905. SERIAL_ECHO(":");
  906. SERIAL_ECHO(b);
  907. SERIAL_ECHOLN("");
  908. }
  909. }
  910. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  911. #endif
  912. // Check startup - does nothing if bootloader sets MCUSR to 0
  913. byte mcu = MCUSR;
  914. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  915. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  916. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  917. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  918. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  919. MCUSR = 0;
  920. //SERIAL_ECHORPGM(MSG_MARLIN);
  921. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  922. #ifdef STRING_VERSION_CONFIG_H
  923. #ifdef STRING_CONFIG_H_AUTHOR
  924. SERIAL_ECHO_START;
  925. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  926. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  927. SERIAL_ECHORPGM(MSG_AUTHOR);
  928. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  929. SERIAL_ECHOPGM("Compiled: ");
  930. SERIAL_ECHOLNPGM(__DATE__);
  931. #endif
  932. #endif
  933. SERIAL_ECHO_START;
  934. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  935. SERIAL_ECHO(freeMemory());
  936. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  937. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  938. lcd_update_enable(false);
  939. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  940. bool previous_settings_retrieved = Config_RetrieveSettings();
  941. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  942. tp_init(); // Initialize temperature loop
  943. plan_init(); // Initialize planner;
  944. watchdog_init();
  945. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  946. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  947. st_init(); // Initialize stepper, this enables interrupts!
  948. setup_photpin();
  949. servo_init();
  950. // Reset the machine correction matrix.
  951. // It does not make sense to load the correction matrix until the machine is homed.
  952. world2machine_reset();
  953. lcd_init();
  954. if (!READ(BTN_ENC))
  955. {
  956. _delay_ms(1000);
  957. if (!READ(BTN_ENC))
  958. {
  959. lcd_implementation_clear();
  960. lcd_printPGM(PSTR("Factory RESET"));
  961. SET_OUTPUT(BEEPER);
  962. WRITE(BEEPER, HIGH);
  963. while (!READ(BTN_ENC));
  964. WRITE(BEEPER, LOW);
  965. _delay_ms(2000);
  966. char level = reset_menu();
  967. factory_reset(level, false);
  968. switch (level) {
  969. case 0: _delay_ms(0); break;
  970. case 1: _delay_ms(0); break;
  971. case 2: _delay_ms(0); break;
  972. case 3: _delay_ms(0); break;
  973. }
  974. // _delay_ms(100);
  975. /*
  976. #ifdef MESH_BED_LEVELING
  977. _delay_ms(2000);
  978. if (!READ(BTN_ENC))
  979. {
  980. WRITE(BEEPER, HIGH);
  981. _delay_ms(100);
  982. WRITE(BEEPER, LOW);
  983. _delay_ms(200);
  984. WRITE(BEEPER, HIGH);
  985. _delay_ms(100);
  986. WRITE(BEEPER, LOW);
  987. int _z = 0;
  988. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  989. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  990. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  991. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  992. }
  993. else
  994. {
  995. WRITE(BEEPER, HIGH);
  996. _delay_ms(100);
  997. WRITE(BEEPER, LOW);
  998. }
  999. #endif // mesh */
  1000. }
  1001. }
  1002. else
  1003. {
  1004. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1005. }
  1006. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1007. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1008. #endif
  1009. #ifdef DIGIPOT_I2C
  1010. digipot_i2c_init();
  1011. #endif
  1012. setup_homepin();
  1013. #if defined(Z_AXIS_ALWAYS_ON)
  1014. enable_z();
  1015. #endif
  1016. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1017. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1018. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1019. if (farm_no == 0xFFFF) farm_no = 0;
  1020. if (farm_mode)
  1021. {
  1022. prusa_statistics(8);
  1023. no_response = true; //we need confirmation by recieving PRUSA thx
  1024. important_status = 8;
  1025. }
  1026. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1027. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1028. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1029. // but this times out if a blocking dialog is shown in setup().
  1030. card.initsd();
  1031. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1032. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1033. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1034. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1035. // where all the EEPROM entries are set to 0x0ff.
  1036. // Once a firmware boots up, it forces at least a language selection, which changes
  1037. // EEPROM_LANG to number lower than 0x0ff.
  1038. // 1) Set a high power mode.
  1039. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1040. }
  1041. #ifdef SNMM
  1042. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1043. int _z = BOWDEN_LENGTH;
  1044. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1045. }
  1046. #endif
  1047. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1048. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1049. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1050. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1051. if (lang_selected >= LANG_NUM){
  1052. lcd_mylang();
  1053. }
  1054. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1055. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1056. temp_cal_active = false;
  1057. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1059. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1060. }
  1061. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1062. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1063. }
  1064. #ifndef DEBUG_DISABLE_STARTMSGS
  1065. check_babystep(); //checking if Z babystep is in allowed range
  1066. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1067. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1068. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1069. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1070. // Show the message.
  1071. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1072. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1073. // Show the message.
  1074. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1075. lcd_update_enable(true);
  1076. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1077. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1078. lcd_update_enable(true);
  1079. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1080. // Show the message.
  1081. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1082. }
  1083. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1084. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1085. if (!previous_settings_retrieved) {
  1086. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1087. }
  1088. #endif //DEBUG_DISABLE_STARTMSGS
  1089. lcd_update_enable(true);
  1090. // Store the currently running firmware into an eeprom,
  1091. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1092. update_current_firmware_version_to_eeprom();
  1093. }
  1094. void trace();
  1095. #define CHUNK_SIZE 64 // bytes
  1096. #define SAFETY_MARGIN 1
  1097. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1098. int chunkHead = 0;
  1099. int serial_read_stream() {
  1100. setTargetHotend(0, 0);
  1101. setTargetBed(0);
  1102. lcd_implementation_clear();
  1103. lcd_printPGM(PSTR(" Upload in progress"));
  1104. // first wait for how many bytes we will receive
  1105. uint32_t bytesToReceive;
  1106. // receive the four bytes
  1107. char bytesToReceiveBuffer[4];
  1108. for (int i=0; i<4; i++) {
  1109. int data;
  1110. while ((data = MYSERIAL.read()) == -1) {};
  1111. bytesToReceiveBuffer[i] = data;
  1112. }
  1113. // make it a uint32
  1114. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1115. // we're ready, notify the sender
  1116. MYSERIAL.write('+');
  1117. // lock in the routine
  1118. uint32_t receivedBytes = 0;
  1119. while (prusa_sd_card_upload) {
  1120. int i;
  1121. for (i=0; i<CHUNK_SIZE; i++) {
  1122. int data;
  1123. // check if we're not done
  1124. if (receivedBytes == bytesToReceive) {
  1125. break;
  1126. }
  1127. // read the next byte
  1128. while ((data = MYSERIAL.read()) == -1) {};
  1129. receivedBytes++;
  1130. // save it to the chunk
  1131. chunk[i] = data;
  1132. }
  1133. // write the chunk to SD
  1134. card.write_command_no_newline(&chunk[0]);
  1135. // notify the sender we're ready for more data
  1136. MYSERIAL.write('+');
  1137. // for safety
  1138. manage_heater();
  1139. // check if we're done
  1140. if(receivedBytes == bytesToReceive) {
  1141. trace(); // beep
  1142. card.closefile();
  1143. prusa_sd_card_upload = false;
  1144. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1145. return 0;
  1146. }
  1147. }
  1148. }
  1149. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1150. // Before loop(), the setup() function is called by the main() routine.
  1151. void loop()
  1152. {
  1153. bool stack_integrity = true;
  1154. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1155. {
  1156. is_usb_printing = true;
  1157. usb_printing_counter--;
  1158. _usb_timer = millis();
  1159. }
  1160. if (usb_printing_counter == 0)
  1161. {
  1162. is_usb_printing = false;
  1163. }
  1164. if (prusa_sd_card_upload)
  1165. {
  1166. //we read byte-by byte
  1167. serial_read_stream();
  1168. } else
  1169. {
  1170. get_command();
  1171. #ifdef SDSUPPORT
  1172. card.checkautostart(false);
  1173. #endif
  1174. if(buflen)
  1175. {
  1176. #ifdef SDSUPPORT
  1177. if(card.saving)
  1178. {
  1179. // Saving a G-code file onto an SD-card is in progress.
  1180. // Saving starts with M28, saving until M29 is seen.
  1181. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1182. card.write_command(CMDBUFFER_CURRENT_STRING);
  1183. if(card.logging)
  1184. process_commands();
  1185. else
  1186. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1187. } else {
  1188. card.closefile();
  1189. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1190. }
  1191. } else {
  1192. process_commands();
  1193. }
  1194. #else
  1195. process_commands();
  1196. #endif //SDSUPPORT
  1197. if (! cmdbuffer_front_already_processed)
  1198. cmdqueue_pop_front();
  1199. cmdbuffer_front_already_processed = false;
  1200. }
  1201. }
  1202. //check heater every n milliseconds
  1203. manage_heater();
  1204. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1205. checkHitEndstops();
  1206. lcd_update();
  1207. }
  1208. void proc_commands() {
  1209. if (buflen)
  1210. {
  1211. process_commands();
  1212. if (!cmdbuffer_front_already_processed)
  1213. cmdqueue_pop_front();
  1214. cmdbuffer_front_already_processed = false;
  1215. }
  1216. }
  1217. void get_command()
  1218. {
  1219. // Test and reserve space for the new command string.
  1220. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1221. return;
  1222. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1223. while (MYSERIAL.available() > 0) {
  1224. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1225. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1226. rx_buffer_full = true; //sets flag that buffer was full
  1227. }
  1228. char serial_char = MYSERIAL.read();
  1229. if (selectedSerialPort == 1) {
  1230. selectedSerialPort = 0;
  1231. MYSERIAL.write(serial_char);
  1232. selectedSerialPort = 1;
  1233. }
  1234. TimeSent = millis();
  1235. TimeNow = millis();
  1236. if (serial_char < 0)
  1237. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1238. // and Marlin does not support such file names anyway.
  1239. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1240. // to a hang-up of the print process from an SD card.
  1241. continue;
  1242. if(serial_char == '\n' ||
  1243. serial_char == '\r' ||
  1244. (serial_char == ':' && comment_mode == false) ||
  1245. serial_count >= (MAX_CMD_SIZE - 1) )
  1246. {
  1247. if(!serial_count) { //if empty line
  1248. comment_mode = false; //for new command
  1249. return;
  1250. }
  1251. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1252. if(!comment_mode){
  1253. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1254. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1255. {
  1256. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1257. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1258. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1259. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1260. // M110 - set current line number.
  1261. // Line numbers not sent in succession.
  1262. SERIAL_ERROR_START;
  1263. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1264. SERIAL_ERRORLN(gcode_LastN);
  1265. //Serial.println(gcode_N);
  1266. FlushSerialRequestResend();
  1267. serial_count = 0;
  1268. return;
  1269. }
  1270. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1271. {
  1272. byte checksum = 0;
  1273. char *p = cmdbuffer+bufindw+1;
  1274. while (p != strchr_pointer)
  1275. checksum = checksum^(*p++);
  1276. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1277. SERIAL_ERROR_START;
  1278. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1279. SERIAL_ERRORLN(gcode_LastN);
  1280. FlushSerialRequestResend();
  1281. serial_count = 0;
  1282. return;
  1283. }
  1284. // If no errors, remove the checksum and continue parsing.
  1285. *strchr_pointer = 0;
  1286. }
  1287. else
  1288. {
  1289. SERIAL_ERROR_START;
  1290. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1291. SERIAL_ERRORLN(gcode_LastN);
  1292. FlushSerialRequestResend();
  1293. serial_count = 0;
  1294. return;
  1295. }
  1296. gcode_LastN = gcode_N;
  1297. //if no errors, continue parsing
  1298. } // end of 'N' command
  1299. }
  1300. else // if we don't receive 'N' but still see '*'
  1301. {
  1302. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1303. {
  1304. SERIAL_ERROR_START;
  1305. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1306. SERIAL_ERRORLN(gcode_LastN);
  1307. serial_count = 0;
  1308. return;
  1309. }
  1310. } // end of '*' command
  1311. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1312. if (! IS_SD_PRINTING) {
  1313. usb_printing_counter = 10;
  1314. is_usb_printing = true;
  1315. }
  1316. if (Stopped == true) {
  1317. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1318. if (gcode >= 0 && gcode <= 3) {
  1319. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1320. LCD_MESSAGERPGM(MSG_STOPPED);
  1321. }
  1322. }
  1323. } // end of 'G' command
  1324. //If command was e-stop process now
  1325. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1326. kill();
  1327. // Store the current line into buffer, move to the next line.
  1328. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1329. #ifdef CMDBUFFER_DEBUG
  1330. SERIAL_ECHO_START;
  1331. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1332. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1333. SERIAL_ECHOLNPGM("");
  1334. #endif /* CMDBUFFER_DEBUG */
  1335. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1336. if (bufindw == sizeof(cmdbuffer))
  1337. bufindw = 0;
  1338. ++ buflen;
  1339. #ifdef CMDBUFFER_DEBUG
  1340. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1341. SERIAL_ECHO(buflen);
  1342. SERIAL_ECHOLNPGM("");
  1343. #endif /* CMDBUFFER_DEBUG */
  1344. } // end of 'not comment mode'
  1345. serial_count = 0; //clear buffer
  1346. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1347. // in the queue, as this function will reserve the memory.
  1348. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1349. return;
  1350. } // end of "end of line" processing
  1351. else {
  1352. // Not an "end of line" symbol. Store the new character into a buffer.
  1353. if(serial_char == ';') comment_mode = true;
  1354. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1355. }
  1356. } // end of serial line processing loop
  1357. if(farm_mode){
  1358. TimeNow = millis();
  1359. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1360. cmdbuffer[bufindw+serial_count+1] = 0;
  1361. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1362. if (bufindw == sizeof(cmdbuffer))
  1363. bufindw = 0;
  1364. ++ buflen;
  1365. serial_count = 0;
  1366. SERIAL_ECHOPGM("TIMEOUT:");
  1367. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1368. return;
  1369. }
  1370. }
  1371. //add comment
  1372. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1373. rx_buffer_full = false;
  1374. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1375. serial_count = 0;
  1376. }
  1377. #ifdef SDSUPPORT
  1378. if(!card.sdprinting || serial_count!=0){
  1379. // If there is a half filled buffer from serial line, wait until return before
  1380. // continuing with the serial line.
  1381. return;
  1382. }
  1383. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1384. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1385. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1386. static bool stop_buffering=false;
  1387. if(buflen==0) stop_buffering=false;
  1388. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1389. while( !card.eof() && !stop_buffering) {
  1390. int16_t n=card.get();
  1391. char serial_char = (char)n;
  1392. if(serial_char == '\n' ||
  1393. serial_char == '\r' ||
  1394. (serial_char == '#' && comment_mode == false) ||
  1395. (serial_char == ':' && comment_mode == false) ||
  1396. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1397. {
  1398. if(card.eof()){
  1399. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1400. stoptime=millis();
  1401. char time[30];
  1402. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1403. pause_time = 0;
  1404. int hours, minutes;
  1405. minutes=(t/60)%60;
  1406. hours=t/60/60;
  1407. save_statistics(total_filament_used, t);
  1408. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1409. SERIAL_ECHO_START;
  1410. SERIAL_ECHOLN(time);
  1411. lcd_setstatus(time);
  1412. card.printingHasFinished();
  1413. card.checkautostart(true);
  1414. if (farm_mode)
  1415. {
  1416. prusa_statistics(6);
  1417. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1418. }
  1419. }
  1420. if(serial_char=='#')
  1421. stop_buffering=true;
  1422. if(!serial_count)
  1423. {
  1424. comment_mode = false; //for new command
  1425. return; //if empty line
  1426. }
  1427. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1428. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1429. ++ buflen;
  1430. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1431. if (bufindw == sizeof(cmdbuffer))
  1432. bufindw = 0;
  1433. comment_mode = false; //for new command
  1434. serial_count = 0; //clear buffer
  1435. // The following line will reserve buffer space if available.
  1436. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1437. return;
  1438. }
  1439. else
  1440. {
  1441. if(serial_char == ';') comment_mode = true;
  1442. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1443. }
  1444. }
  1445. #endif //SDSUPPORT
  1446. }
  1447. // Return True if a character was found
  1448. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1449. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1450. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1451. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1452. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1453. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1454. static inline float code_value_float() {
  1455. char* e = strchr(strchr_pointer, 'E');
  1456. if (!e) return strtod(strchr_pointer + 1, NULL);
  1457. *e = 0;
  1458. float ret = strtod(strchr_pointer + 1, NULL);
  1459. *e = 'E';
  1460. return ret;
  1461. }
  1462. #define DEFINE_PGM_READ_ANY(type, reader) \
  1463. static inline type pgm_read_any(const type *p) \
  1464. { return pgm_read_##reader##_near(p); }
  1465. DEFINE_PGM_READ_ANY(float, float);
  1466. DEFINE_PGM_READ_ANY(signed char, byte);
  1467. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1468. static const PROGMEM type array##_P[3] = \
  1469. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1470. static inline type array(int axis) \
  1471. { return pgm_read_any(&array##_P[axis]); } \
  1472. type array##_ext(int axis) \
  1473. { return pgm_read_any(&array##_P[axis]); }
  1474. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1475. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1476. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1477. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1478. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1479. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1480. static void axis_is_at_home(int axis) {
  1481. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1482. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1483. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1484. }
  1485. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1486. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1487. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1488. saved_feedrate = feedrate;
  1489. saved_feedmultiply = feedmultiply;
  1490. feedmultiply = 100;
  1491. previous_millis_cmd = millis();
  1492. enable_endstops(enable_endstops_now);
  1493. }
  1494. static void clean_up_after_endstop_move() {
  1495. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1496. enable_endstops(false);
  1497. #endif
  1498. feedrate = saved_feedrate;
  1499. feedmultiply = saved_feedmultiply;
  1500. previous_millis_cmd = millis();
  1501. }
  1502. #ifdef ENABLE_AUTO_BED_LEVELING
  1503. #ifdef AUTO_BED_LEVELING_GRID
  1504. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1505. {
  1506. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1507. planeNormal.debug("planeNormal");
  1508. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1509. //bedLevel.debug("bedLevel");
  1510. //plan_bed_level_matrix.debug("bed level before");
  1511. //vector_3 uncorrected_position = plan_get_position_mm();
  1512. //uncorrected_position.debug("position before");
  1513. vector_3 corrected_position = plan_get_position();
  1514. // corrected_position.debug("position after");
  1515. current_position[X_AXIS] = corrected_position.x;
  1516. current_position[Y_AXIS] = corrected_position.y;
  1517. current_position[Z_AXIS] = corrected_position.z;
  1518. // put the bed at 0 so we don't go below it.
  1519. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1520. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1521. }
  1522. #else // not AUTO_BED_LEVELING_GRID
  1523. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1524. plan_bed_level_matrix.set_to_identity();
  1525. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1526. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1527. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1528. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1529. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1530. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1531. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1532. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1533. vector_3 corrected_position = plan_get_position();
  1534. current_position[X_AXIS] = corrected_position.x;
  1535. current_position[Y_AXIS] = corrected_position.y;
  1536. current_position[Z_AXIS] = corrected_position.z;
  1537. // put the bed at 0 so we don't go below it.
  1538. current_position[Z_AXIS] = zprobe_zoffset;
  1539. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1540. }
  1541. #endif // AUTO_BED_LEVELING_GRID
  1542. static void run_z_probe() {
  1543. plan_bed_level_matrix.set_to_identity();
  1544. feedrate = homing_feedrate[Z_AXIS];
  1545. // move down until you find the bed
  1546. float zPosition = -10;
  1547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1548. st_synchronize();
  1549. // we have to let the planner know where we are right now as it is not where we said to go.
  1550. zPosition = st_get_position_mm(Z_AXIS);
  1551. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1552. // move up the retract distance
  1553. zPosition += home_retract_mm(Z_AXIS);
  1554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1555. st_synchronize();
  1556. // move back down slowly to find bed
  1557. feedrate = homing_feedrate[Z_AXIS]/4;
  1558. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1560. st_synchronize();
  1561. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1562. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1564. }
  1565. static void do_blocking_move_to(float x, float y, float z) {
  1566. float oldFeedRate = feedrate;
  1567. feedrate = homing_feedrate[Z_AXIS];
  1568. current_position[Z_AXIS] = z;
  1569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1570. st_synchronize();
  1571. feedrate = XY_TRAVEL_SPEED;
  1572. current_position[X_AXIS] = x;
  1573. current_position[Y_AXIS] = y;
  1574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1575. st_synchronize();
  1576. feedrate = oldFeedRate;
  1577. }
  1578. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1579. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1580. }
  1581. /// Probe bed height at position (x,y), returns the measured z value
  1582. static float probe_pt(float x, float y, float z_before) {
  1583. // move to right place
  1584. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1585. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1586. run_z_probe();
  1587. float measured_z = current_position[Z_AXIS];
  1588. SERIAL_PROTOCOLRPGM(MSG_BED);
  1589. SERIAL_PROTOCOLPGM(" x: ");
  1590. SERIAL_PROTOCOL(x);
  1591. SERIAL_PROTOCOLPGM(" y: ");
  1592. SERIAL_PROTOCOL(y);
  1593. SERIAL_PROTOCOLPGM(" z: ");
  1594. SERIAL_PROTOCOL(measured_z);
  1595. SERIAL_PROTOCOLPGM("\n");
  1596. return measured_z;
  1597. }
  1598. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1599. #ifdef LIN_ADVANCE
  1600. /**
  1601. * M900: Set and/or Get advance K factor and WH/D ratio
  1602. *
  1603. * K<factor> Set advance K factor
  1604. * R<ratio> Set ratio directly (overrides WH/D)
  1605. * W<width> H<height> D<diam> Set ratio from WH/D
  1606. */
  1607. inline void gcode_M900() {
  1608. st_synchronize();
  1609. const float newK = code_seen('K') ? code_value_float() : -1;
  1610. if (newK >= 0) extruder_advance_k = newK;
  1611. float newR = code_seen('R') ? code_value_float() : -1;
  1612. if (newR < 0) {
  1613. const float newD = code_seen('D') ? code_value_float() : -1,
  1614. newW = code_seen('W') ? code_value_float() : -1,
  1615. newH = code_seen('H') ? code_value_float() : -1;
  1616. if (newD >= 0 && newW >= 0 && newH >= 0)
  1617. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1618. }
  1619. if (newR >= 0) advance_ed_ratio = newR;
  1620. SERIAL_ECHO_START;
  1621. SERIAL_ECHOPGM("Advance K=");
  1622. SERIAL_ECHOLN(extruder_advance_k);
  1623. SERIAL_ECHOPGM(" E/D=");
  1624. const float ratio = advance_ed_ratio;
  1625. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1626. }
  1627. #endif // LIN_ADVANCE
  1628. void homeaxis(int axis) {
  1629. #define HOMEAXIS_DO(LETTER) \
  1630. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1631. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1632. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1633. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1634. 0) {
  1635. int axis_home_dir = home_dir(axis);
  1636. current_position[axis] = 0;
  1637. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1638. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1639. feedrate = homing_feedrate[axis];
  1640. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1641. st_synchronize();
  1642. current_position[axis] = 0;
  1643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1644. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1645. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1646. st_synchronize();
  1647. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1648. feedrate = homing_feedrate[axis]/2 ;
  1649. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1650. st_synchronize();
  1651. axis_is_at_home(axis);
  1652. destination[axis] = current_position[axis];
  1653. feedrate = 0.0;
  1654. endstops_hit_on_purpose();
  1655. axis_known_position[axis] = true;
  1656. }
  1657. }
  1658. void home_xy()
  1659. {
  1660. set_destination_to_current();
  1661. homeaxis(X_AXIS);
  1662. homeaxis(Y_AXIS);
  1663. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1664. endstops_hit_on_purpose();
  1665. }
  1666. void refresh_cmd_timeout(void)
  1667. {
  1668. previous_millis_cmd = millis();
  1669. }
  1670. #ifdef FWRETRACT
  1671. void retract(bool retracting, bool swapretract = false) {
  1672. if(retracting && !retracted[active_extruder]) {
  1673. destination[X_AXIS]=current_position[X_AXIS];
  1674. destination[Y_AXIS]=current_position[Y_AXIS];
  1675. destination[Z_AXIS]=current_position[Z_AXIS];
  1676. destination[E_AXIS]=current_position[E_AXIS];
  1677. if (swapretract) {
  1678. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1679. } else {
  1680. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1681. }
  1682. plan_set_e_position(current_position[E_AXIS]);
  1683. float oldFeedrate = feedrate;
  1684. feedrate=retract_feedrate*60;
  1685. retracted[active_extruder]=true;
  1686. prepare_move();
  1687. current_position[Z_AXIS]-=retract_zlift;
  1688. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1689. prepare_move();
  1690. feedrate = oldFeedrate;
  1691. } else if(!retracting && retracted[active_extruder]) {
  1692. destination[X_AXIS]=current_position[X_AXIS];
  1693. destination[Y_AXIS]=current_position[Y_AXIS];
  1694. destination[Z_AXIS]=current_position[Z_AXIS];
  1695. destination[E_AXIS]=current_position[E_AXIS];
  1696. current_position[Z_AXIS]+=retract_zlift;
  1697. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1698. //prepare_move();
  1699. if (swapretract) {
  1700. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1701. } else {
  1702. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1703. }
  1704. plan_set_e_position(current_position[E_AXIS]);
  1705. float oldFeedrate = feedrate;
  1706. feedrate=retract_recover_feedrate*60;
  1707. retracted[active_extruder]=false;
  1708. prepare_move();
  1709. feedrate = oldFeedrate;
  1710. }
  1711. } //retract
  1712. #endif //FWRETRACT
  1713. void trace() {
  1714. tone(BEEPER, 440);
  1715. delay(25);
  1716. noTone(BEEPER);
  1717. delay(20);
  1718. }
  1719. /*
  1720. void ramming() {
  1721. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1722. if (current_temperature[0] < 230) {
  1723. //PLA
  1724. max_feedrate[E_AXIS] = 50;
  1725. //current_position[E_AXIS] -= 8;
  1726. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1727. //current_position[E_AXIS] += 8;
  1728. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1729. current_position[E_AXIS] += 5.4;
  1730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1731. current_position[E_AXIS] += 3.2;
  1732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1733. current_position[E_AXIS] += 3;
  1734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1735. st_synchronize();
  1736. max_feedrate[E_AXIS] = 80;
  1737. current_position[E_AXIS] -= 82;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1739. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1740. current_position[E_AXIS] -= 20;
  1741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1742. current_position[E_AXIS] += 5;
  1743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1744. current_position[E_AXIS] += 5;
  1745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1746. current_position[E_AXIS] -= 10;
  1747. st_synchronize();
  1748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1749. current_position[E_AXIS] += 10;
  1750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1751. current_position[E_AXIS] -= 10;
  1752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1753. current_position[E_AXIS] += 10;
  1754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1755. current_position[E_AXIS] -= 10;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1757. st_synchronize();
  1758. }
  1759. else {
  1760. //ABS
  1761. max_feedrate[E_AXIS] = 50;
  1762. //current_position[E_AXIS] -= 8;
  1763. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1764. //current_position[E_AXIS] += 8;
  1765. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1766. current_position[E_AXIS] += 3.1;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1768. current_position[E_AXIS] += 3.1;
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1770. current_position[E_AXIS] += 4;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1772. st_synchronize();
  1773. //current_position[X_AXIS] += 23; //delay
  1774. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1775. //current_position[X_AXIS] -= 23; //delay
  1776. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1777. delay(4700);
  1778. max_feedrate[E_AXIS] = 80;
  1779. current_position[E_AXIS] -= 92;
  1780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1781. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1782. current_position[E_AXIS] -= 5;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1784. current_position[E_AXIS] += 5;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1786. current_position[E_AXIS] -= 5;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1788. st_synchronize();
  1789. current_position[E_AXIS] += 5;
  1790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1791. current_position[E_AXIS] -= 5;
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1793. current_position[E_AXIS] += 5;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1795. current_position[E_AXIS] -= 5;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1797. st_synchronize();
  1798. }
  1799. }
  1800. */
  1801. void process_commands()
  1802. {
  1803. #ifdef FILAMENT_RUNOUT_SUPPORT
  1804. SET_INPUT(FR_SENS);
  1805. #endif
  1806. #ifdef CMDBUFFER_DEBUG
  1807. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1808. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1809. SERIAL_ECHOLNPGM("");
  1810. SERIAL_ECHOPGM("In cmdqueue: ");
  1811. SERIAL_ECHO(buflen);
  1812. SERIAL_ECHOLNPGM("");
  1813. #endif /* CMDBUFFER_DEBUG */
  1814. unsigned long codenum; //throw away variable
  1815. char *starpos = NULL;
  1816. #ifdef ENABLE_AUTO_BED_LEVELING
  1817. float x_tmp, y_tmp, z_tmp, real_z;
  1818. #endif
  1819. // PRUSA GCODES
  1820. #ifdef SNMM
  1821. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1822. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1823. int8_t SilentMode;
  1824. #endif
  1825. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1826. starpos = (strchr(strchr_pointer + 5, '*'));
  1827. if (starpos != NULL)
  1828. *(starpos) = '\0';
  1829. lcd_setstatus(strchr_pointer + 5);
  1830. }
  1831. else if(code_seen("PRUSA")){
  1832. if (code_seen("Ping")) { //PRUSA Ping
  1833. if (farm_mode) {
  1834. PingTime = millis();
  1835. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1836. }
  1837. } else if (code_seen("PRN")) {
  1838. MYSERIAL.println(status_number);
  1839. } else if (code_seen("RESET")) {
  1840. // careful!
  1841. if (farm_mode) {
  1842. asm volatile(" jmp 0x3E000");
  1843. }
  1844. else {
  1845. MYSERIAL.println("Not in farm mode.");
  1846. }
  1847. } else if (code_seen("fn")) {
  1848. if (farm_mode) {
  1849. MYSERIAL.println(farm_no);
  1850. }
  1851. else {
  1852. MYSERIAL.println("Not in farm mode.");
  1853. }
  1854. }
  1855. else if (code_seen("thx")) {
  1856. no_response = false;
  1857. }else if (code_seen("fv")) {
  1858. // get file version
  1859. #ifdef SDSUPPORT
  1860. card.openFile(strchr_pointer + 3,true);
  1861. while (true) {
  1862. uint16_t readByte = card.get();
  1863. MYSERIAL.write(readByte);
  1864. if (readByte=='\n') {
  1865. break;
  1866. }
  1867. }
  1868. card.closefile();
  1869. #endif // SDSUPPORT
  1870. } else if (code_seen("M28")) {
  1871. trace();
  1872. prusa_sd_card_upload = true;
  1873. card.openFile(strchr_pointer+4,false);
  1874. } else if (code_seen("SN")) {
  1875. if (farm_mode) {
  1876. selectedSerialPort = 0;
  1877. MSerial.write(";S");
  1878. // S/N is:CZPX0917X003XC13518
  1879. int numbersRead = 0;
  1880. while (numbersRead < 19) {
  1881. while (MSerial.available() > 0) {
  1882. uint8_t serial_char = MSerial.read();
  1883. selectedSerialPort = 1;
  1884. MSerial.write(serial_char);
  1885. numbersRead++;
  1886. selectedSerialPort = 0;
  1887. }
  1888. }
  1889. selectedSerialPort = 1;
  1890. MSerial.write('\n');
  1891. /*for (int b = 0; b < 3; b++) {
  1892. tone(BEEPER, 110);
  1893. delay(50);
  1894. noTone(BEEPER);
  1895. delay(50);
  1896. }*/
  1897. } else {
  1898. MYSERIAL.println("Not in farm mode.");
  1899. }
  1900. } else if(code_seen("Fir")){
  1901. SERIAL_PROTOCOLLN(FW_version);
  1902. } else if(code_seen("Rev")){
  1903. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1904. } else if(code_seen("Lang")) {
  1905. lcd_force_language_selection();
  1906. } else if(code_seen("Lz")) {
  1907. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1908. } else if (code_seen("SERIAL LOW")) {
  1909. MYSERIAL.println("SERIAL LOW");
  1910. MYSERIAL.begin(BAUDRATE);
  1911. return;
  1912. } else if (code_seen("SERIAL HIGH")) {
  1913. MYSERIAL.println("SERIAL HIGH");
  1914. MYSERIAL.begin(1152000);
  1915. return;
  1916. } else if(code_seen("Beat")) {
  1917. // Kick farm link timer
  1918. kicktime = millis();
  1919. } else if(code_seen("FR")) {
  1920. // Factory full reset
  1921. factory_reset(0,true);
  1922. }
  1923. //else if (code_seen('Cal')) {
  1924. // lcd_calibration();
  1925. // }
  1926. }
  1927. else if (code_seen('^')) {
  1928. // nothing, this is a version line
  1929. } else if(code_seen('G'))
  1930. {
  1931. switch((int)code_value())
  1932. {
  1933. case 0: // G0 -> G1
  1934. case 1: // G1
  1935. if(Stopped == false) {
  1936. #ifdef FILAMENT_RUNOUT_SUPPORT
  1937. if(READ(FR_SENS)){
  1938. feedmultiplyBckp=feedmultiply;
  1939. float target[4];
  1940. float lastpos[4];
  1941. target[X_AXIS]=current_position[X_AXIS];
  1942. target[Y_AXIS]=current_position[Y_AXIS];
  1943. target[Z_AXIS]=current_position[Z_AXIS];
  1944. target[E_AXIS]=current_position[E_AXIS];
  1945. lastpos[X_AXIS]=current_position[X_AXIS];
  1946. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1947. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1948. lastpos[E_AXIS]=current_position[E_AXIS];
  1949. //retract by E
  1950. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1951. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1952. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1953. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1954. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1955. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1956. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1957. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1958. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1959. //finish moves
  1960. st_synchronize();
  1961. //disable extruder steppers so filament can be removed
  1962. disable_e0();
  1963. disable_e1();
  1964. disable_e2();
  1965. delay(100);
  1966. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1967. uint8_t cnt=0;
  1968. int counterBeep = 0;
  1969. lcd_wait_interact();
  1970. while(!lcd_clicked()){
  1971. cnt++;
  1972. manage_heater();
  1973. manage_inactivity(true);
  1974. //lcd_update();
  1975. if(cnt==0)
  1976. {
  1977. #if BEEPER > 0
  1978. if (counterBeep== 500){
  1979. counterBeep = 0;
  1980. }
  1981. SET_OUTPUT(BEEPER);
  1982. if (counterBeep== 0){
  1983. WRITE(BEEPER,HIGH);
  1984. }
  1985. if (counterBeep== 20){
  1986. WRITE(BEEPER,LOW);
  1987. }
  1988. counterBeep++;
  1989. #else
  1990. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1991. lcd_buzz(1000/6,100);
  1992. #else
  1993. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1994. #endif
  1995. #endif
  1996. }
  1997. }
  1998. WRITE(BEEPER,LOW);
  1999. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2000. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2001. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2002. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2003. lcd_change_fil_state = 0;
  2004. lcd_loading_filament();
  2005. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2006. lcd_change_fil_state = 0;
  2007. lcd_alright();
  2008. switch(lcd_change_fil_state){
  2009. case 2:
  2010. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2011. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2012. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2013. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2014. lcd_loading_filament();
  2015. break;
  2016. case 3:
  2017. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2018. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2019. lcd_loading_color();
  2020. break;
  2021. default:
  2022. lcd_change_success();
  2023. break;
  2024. }
  2025. }
  2026. target[E_AXIS]+= 5;
  2027. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2028. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2029. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2030. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2031. //plan_set_e_position(current_position[E_AXIS]);
  2032. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2033. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2034. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2035. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2036. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2037. plan_set_e_position(lastpos[E_AXIS]);
  2038. feedmultiply=feedmultiplyBckp;
  2039. char cmd[9];
  2040. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2041. enquecommand(cmd);
  2042. }
  2043. #endif
  2044. get_coordinates(); // For X Y Z E F
  2045. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2046. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2047. }
  2048. #ifdef FWRETRACT
  2049. if(autoretract_enabled)
  2050. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2051. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2052. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2053. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2054. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2055. retract(!retracted);
  2056. return;
  2057. }
  2058. }
  2059. #endif //FWRETRACT
  2060. prepare_move();
  2061. //ClearToSend();
  2062. }
  2063. break;
  2064. case 2: // G2 - CW ARC
  2065. if(Stopped == false) {
  2066. get_arc_coordinates();
  2067. prepare_arc_move(true);
  2068. }
  2069. break;
  2070. case 3: // G3 - CCW ARC
  2071. if(Stopped == false) {
  2072. get_arc_coordinates();
  2073. prepare_arc_move(false);
  2074. }
  2075. break;
  2076. case 4: // G4 dwell
  2077. codenum = 0;
  2078. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2079. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2080. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2081. st_synchronize();
  2082. codenum += millis(); // keep track of when we started waiting
  2083. previous_millis_cmd = millis();
  2084. while(millis() < codenum) {
  2085. manage_heater();
  2086. manage_inactivity();
  2087. lcd_update();
  2088. }
  2089. break;
  2090. #ifdef FWRETRACT
  2091. case 10: // G10 retract
  2092. #if EXTRUDERS > 1
  2093. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2094. retract(true,retracted_swap[active_extruder]);
  2095. #else
  2096. retract(true);
  2097. #endif
  2098. break;
  2099. case 11: // G11 retract_recover
  2100. #if EXTRUDERS > 1
  2101. retract(false,retracted_swap[active_extruder]);
  2102. #else
  2103. retract(false);
  2104. #endif
  2105. break;
  2106. #endif //FWRETRACT
  2107. case 28: //G28 Home all Axis one at a time
  2108. homing_flag = true;
  2109. #ifdef ENABLE_AUTO_BED_LEVELING
  2110. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2111. #endif //ENABLE_AUTO_BED_LEVELING
  2112. // For mesh bed leveling deactivate the matrix temporarily
  2113. #ifdef MESH_BED_LEVELING
  2114. mbl.active = 0;
  2115. #endif
  2116. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2117. // the planner will not perform any adjustments in the XY plane.
  2118. // Wait for the motors to stop and update the current position with the absolute values.
  2119. world2machine_revert_to_uncorrected();
  2120. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2121. // consumed during the first movements following this statement.
  2122. babystep_undo();
  2123. saved_feedrate = feedrate;
  2124. saved_feedmultiply = feedmultiply;
  2125. feedmultiply = 100;
  2126. previous_millis_cmd = millis();
  2127. enable_endstops(true);
  2128. for(int8_t i=0; i < NUM_AXIS; i++)
  2129. destination[i] = current_position[i];
  2130. feedrate = 0.0;
  2131. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2132. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2133. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2134. homeaxis(Z_AXIS);
  2135. }
  2136. #endif
  2137. #ifdef QUICK_HOME
  2138. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2139. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2140. {
  2141. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2142. int x_axis_home_dir = home_dir(X_AXIS);
  2143. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2144. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2145. feedrate = homing_feedrate[X_AXIS];
  2146. if(homing_feedrate[Y_AXIS]<feedrate)
  2147. feedrate = homing_feedrate[Y_AXIS];
  2148. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2149. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2150. } else {
  2151. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2152. }
  2153. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2154. st_synchronize();
  2155. axis_is_at_home(X_AXIS);
  2156. axis_is_at_home(Y_AXIS);
  2157. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2158. destination[X_AXIS] = current_position[X_AXIS];
  2159. destination[Y_AXIS] = current_position[Y_AXIS];
  2160. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2161. feedrate = 0.0;
  2162. st_synchronize();
  2163. endstops_hit_on_purpose();
  2164. current_position[X_AXIS] = destination[X_AXIS];
  2165. current_position[Y_AXIS] = destination[Y_AXIS];
  2166. current_position[Z_AXIS] = destination[Z_AXIS];
  2167. }
  2168. #endif /* QUICK_HOME */
  2169. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2170. homeaxis(X_AXIS);
  2171. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2172. homeaxis(Y_AXIS);
  2173. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2174. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2175. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2176. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2177. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2178. #ifndef Z_SAFE_HOMING
  2179. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2180. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2181. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2182. feedrate = max_feedrate[Z_AXIS];
  2183. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2184. st_synchronize();
  2185. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2186. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2187. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2188. {
  2189. homeaxis(X_AXIS);
  2190. homeaxis(Y_AXIS);
  2191. }
  2192. // 1st mesh bed leveling measurement point, corrected.
  2193. world2machine_initialize();
  2194. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2195. world2machine_reset();
  2196. if (destination[Y_AXIS] < Y_MIN_POS)
  2197. destination[Y_AXIS] = Y_MIN_POS;
  2198. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2199. feedrate = homing_feedrate[Z_AXIS]/10;
  2200. current_position[Z_AXIS] = 0;
  2201. enable_endstops(false);
  2202. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2203. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2204. st_synchronize();
  2205. current_position[X_AXIS] = destination[X_AXIS];
  2206. current_position[Y_AXIS] = destination[Y_AXIS];
  2207. enable_endstops(true);
  2208. endstops_hit_on_purpose();
  2209. homeaxis(Z_AXIS);
  2210. #else // MESH_BED_LEVELING
  2211. homeaxis(Z_AXIS);
  2212. #endif // MESH_BED_LEVELING
  2213. }
  2214. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2215. if(home_all_axis) {
  2216. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2217. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2218. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2219. feedrate = XY_TRAVEL_SPEED/60;
  2220. current_position[Z_AXIS] = 0;
  2221. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2222. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2223. st_synchronize();
  2224. current_position[X_AXIS] = destination[X_AXIS];
  2225. current_position[Y_AXIS] = destination[Y_AXIS];
  2226. homeaxis(Z_AXIS);
  2227. }
  2228. // Let's see if X and Y are homed and probe is inside bed area.
  2229. if(code_seen(axis_codes[Z_AXIS])) {
  2230. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2231. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2232. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2233. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2234. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2235. current_position[Z_AXIS] = 0;
  2236. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2237. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2238. feedrate = max_feedrate[Z_AXIS];
  2239. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2240. st_synchronize();
  2241. homeaxis(Z_AXIS);
  2242. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2243. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2244. SERIAL_ECHO_START;
  2245. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2246. } else {
  2247. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2248. SERIAL_ECHO_START;
  2249. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2250. }
  2251. }
  2252. #endif // Z_SAFE_HOMING
  2253. #endif // Z_HOME_DIR < 0
  2254. if(code_seen(axis_codes[Z_AXIS])) {
  2255. if(code_value_long() != 0) {
  2256. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2257. }
  2258. }
  2259. #ifdef ENABLE_AUTO_BED_LEVELING
  2260. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2261. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2262. }
  2263. #endif
  2264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2265. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2266. enable_endstops(false);
  2267. #endif
  2268. feedrate = saved_feedrate;
  2269. feedmultiply = saved_feedmultiply;
  2270. previous_millis_cmd = millis();
  2271. endstops_hit_on_purpose();
  2272. #ifndef MESH_BED_LEVELING
  2273. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2274. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2275. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2276. lcd_adjust_z();
  2277. #endif
  2278. // Load the machine correction matrix
  2279. world2machine_initialize();
  2280. // and correct the current_position to match the transformed coordinate system.
  2281. world2machine_update_current();
  2282. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2283. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2284. {
  2285. }
  2286. else
  2287. {
  2288. st_synchronize();
  2289. homing_flag = false;
  2290. // Push the commands to the front of the message queue in the reverse order!
  2291. // There shall be always enough space reserved for these commands.
  2292. // enquecommand_front_P((PSTR("G80")));
  2293. goto case_G80;
  2294. }
  2295. #endif
  2296. if (farm_mode) { prusa_statistics(20); };
  2297. homing_flag = false;
  2298. break;
  2299. #ifdef ENABLE_AUTO_BED_LEVELING
  2300. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2301. {
  2302. #if Z_MIN_PIN == -1
  2303. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2304. #endif
  2305. // Prevent user from running a G29 without first homing in X and Y
  2306. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2307. {
  2308. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2309. SERIAL_ECHO_START;
  2310. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2311. break; // abort G29, since we don't know where we are
  2312. }
  2313. st_synchronize();
  2314. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2315. //vector_3 corrected_position = plan_get_position_mm();
  2316. //corrected_position.debug("position before G29");
  2317. plan_bed_level_matrix.set_to_identity();
  2318. vector_3 uncorrected_position = plan_get_position();
  2319. //uncorrected_position.debug("position durring G29");
  2320. current_position[X_AXIS] = uncorrected_position.x;
  2321. current_position[Y_AXIS] = uncorrected_position.y;
  2322. current_position[Z_AXIS] = uncorrected_position.z;
  2323. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2324. setup_for_endstop_move();
  2325. feedrate = homing_feedrate[Z_AXIS];
  2326. #ifdef AUTO_BED_LEVELING_GRID
  2327. // probe at the points of a lattice grid
  2328. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2329. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2330. // solve the plane equation ax + by + d = z
  2331. // A is the matrix with rows [x y 1] for all the probed points
  2332. // B is the vector of the Z positions
  2333. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2334. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2335. // "A" matrix of the linear system of equations
  2336. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2337. // "B" vector of Z points
  2338. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2339. int probePointCounter = 0;
  2340. bool zig = true;
  2341. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2342. {
  2343. int xProbe, xInc;
  2344. if (zig)
  2345. {
  2346. xProbe = LEFT_PROBE_BED_POSITION;
  2347. //xEnd = RIGHT_PROBE_BED_POSITION;
  2348. xInc = xGridSpacing;
  2349. zig = false;
  2350. } else // zag
  2351. {
  2352. xProbe = RIGHT_PROBE_BED_POSITION;
  2353. //xEnd = LEFT_PROBE_BED_POSITION;
  2354. xInc = -xGridSpacing;
  2355. zig = true;
  2356. }
  2357. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2358. {
  2359. float z_before;
  2360. if (probePointCounter == 0)
  2361. {
  2362. // raise before probing
  2363. z_before = Z_RAISE_BEFORE_PROBING;
  2364. } else
  2365. {
  2366. // raise extruder
  2367. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2368. }
  2369. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2370. eqnBVector[probePointCounter] = measured_z;
  2371. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2372. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2373. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2374. probePointCounter++;
  2375. xProbe += xInc;
  2376. }
  2377. }
  2378. clean_up_after_endstop_move();
  2379. // solve lsq problem
  2380. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2381. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2382. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2383. SERIAL_PROTOCOLPGM(" b: ");
  2384. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2385. SERIAL_PROTOCOLPGM(" d: ");
  2386. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2387. set_bed_level_equation_lsq(plane_equation_coefficients);
  2388. free(plane_equation_coefficients);
  2389. #else // AUTO_BED_LEVELING_GRID not defined
  2390. // Probe at 3 arbitrary points
  2391. // probe 1
  2392. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2393. // probe 2
  2394. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2395. // probe 3
  2396. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2397. clean_up_after_endstop_move();
  2398. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2399. #endif // AUTO_BED_LEVELING_GRID
  2400. st_synchronize();
  2401. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2402. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2403. // When the bed is uneven, this height must be corrected.
  2404. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2405. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2406. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2407. z_tmp = current_position[Z_AXIS];
  2408. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2409. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2410. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2411. }
  2412. break;
  2413. #ifndef Z_PROBE_SLED
  2414. case 30: // G30 Single Z Probe
  2415. {
  2416. st_synchronize();
  2417. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2418. setup_for_endstop_move();
  2419. feedrate = homing_feedrate[Z_AXIS];
  2420. run_z_probe();
  2421. SERIAL_PROTOCOLPGM(MSG_BED);
  2422. SERIAL_PROTOCOLPGM(" X: ");
  2423. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2424. SERIAL_PROTOCOLPGM(" Y: ");
  2425. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2426. SERIAL_PROTOCOLPGM(" Z: ");
  2427. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2428. SERIAL_PROTOCOLPGM("\n");
  2429. clean_up_after_endstop_move();
  2430. }
  2431. break;
  2432. #else
  2433. case 31: // dock the sled
  2434. dock_sled(true);
  2435. break;
  2436. case 32: // undock the sled
  2437. dock_sled(false);
  2438. break;
  2439. #endif // Z_PROBE_SLED
  2440. #endif // ENABLE_AUTO_BED_LEVELING
  2441. #ifdef MESH_BED_LEVELING
  2442. case 30: // G30 Single Z Probe
  2443. {
  2444. st_synchronize();
  2445. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2446. setup_for_endstop_move();
  2447. feedrate = homing_feedrate[Z_AXIS];
  2448. find_bed_induction_sensor_point_z(-10.f, 3);
  2449. SERIAL_PROTOCOLRPGM(MSG_BED);
  2450. SERIAL_PROTOCOLPGM(" X: ");
  2451. MYSERIAL.print(current_position[X_AXIS], 5);
  2452. SERIAL_PROTOCOLPGM(" Y: ");
  2453. MYSERIAL.print(current_position[Y_AXIS], 5);
  2454. SERIAL_PROTOCOLPGM(" Z: ");
  2455. MYSERIAL.print(current_position[Z_AXIS], 5);
  2456. SERIAL_PROTOCOLPGM("\n");
  2457. clean_up_after_endstop_move();
  2458. }
  2459. break;
  2460. case 75:
  2461. {
  2462. for (int i = 40; i <= 110; i++) {
  2463. MYSERIAL.print(i);
  2464. MYSERIAL.print(" ");
  2465. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2466. }
  2467. }
  2468. break;
  2469. case 76: //PINDA probe temperature calibration
  2470. {
  2471. setTargetBed(PINDA_MIN_T);
  2472. float zero_z;
  2473. int z_shift = 0; //unit: steps
  2474. int t_c; // temperature
  2475. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2476. // We don't know where we are! HOME!
  2477. // Push the commands to the front of the message queue in the reverse order!
  2478. // There shall be always enough space reserved for these commands.
  2479. repeatcommand_front(); // repeat G76 with all its parameters
  2480. enquecommand_front_P((PSTR("G28 W0")));
  2481. break;
  2482. }
  2483. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2484. custom_message = true;
  2485. custom_message_type = 4;
  2486. custom_message_state = 1;
  2487. custom_message = MSG_TEMP_CALIBRATION;
  2488. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2489. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2490. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2491. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2492. st_synchronize();
  2493. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2494. delay_keep_alive(1000);
  2495. serialecho_temperatures();
  2496. }
  2497. //enquecommand_P(PSTR("M190 S50"));
  2498. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2499. delay_keep_alive(1000);
  2500. serialecho_temperatures();
  2501. }
  2502. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2503. current_position[Z_AXIS] = 5;
  2504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2505. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2506. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2508. st_synchronize();
  2509. find_bed_induction_sensor_point_z(-1.f);
  2510. zero_z = current_position[Z_AXIS];
  2511. //current_position[Z_AXIS]
  2512. SERIAL_ECHOLNPGM("");
  2513. SERIAL_ECHOPGM("ZERO: ");
  2514. MYSERIAL.print(current_position[Z_AXIS]);
  2515. SERIAL_ECHOLNPGM("");
  2516. for (int i = 0; i<5; i++) {
  2517. SERIAL_ECHOPGM("Step: ");
  2518. MYSERIAL.print(i+2);
  2519. SERIAL_ECHOLNPGM("/6");
  2520. custom_message_state = i + 2;
  2521. t_c = 60 + i * 10;
  2522. setTargetBed(t_c);
  2523. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2524. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2525. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2527. st_synchronize();
  2528. while (degBed() < t_c) {
  2529. delay_keep_alive(1000);
  2530. serialecho_temperatures();
  2531. }
  2532. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2533. delay_keep_alive(1000);
  2534. serialecho_temperatures();
  2535. }
  2536. current_position[Z_AXIS] = 5;
  2537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2538. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2539. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2541. st_synchronize();
  2542. find_bed_induction_sensor_point_z(-1.f);
  2543. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2544. SERIAL_ECHOLNPGM("");
  2545. SERIAL_ECHOPGM("Temperature: ");
  2546. MYSERIAL.print(t_c);
  2547. SERIAL_ECHOPGM(" Z shift (mm):");
  2548. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2549. SERIAL_ECHOLNPGM("");
  2550. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2551. }
  2552. custom_message_type = 0;
  2553. custom_message = false;
  2554. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2555. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2556. disable_x();
  2557. disable_y();
  2558. disable_z();
  2559. disable_e0();
  2560. disable_e1();
  2561. disable_e2();
  2562. setTargetBed(0); //set bed target temperature back to 0
  2563. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2564. lcd_update_enable(true);
  2565. lcd_update(2);
  2566. }
  2567. break;
  2568. #ifdef DIS
  2569. case 77:
  2570. {
  2571. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2572. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2573. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2574. float dimension_x = 40;
  2575. float dimension_y = 40;
  2576. int points_x = 40;
  2577. int points_y = 40;
  2578. float offset_x = 74;
  2579. float offset_y = 33;
  2580. if (code_seen('X')) dimension_x = code_value();
  2581. if (code_seen('Y')) dimension_y = code_value();
  2582. if (code_seen('XP')) points_x = code_value();
  2583. if (code_seen('YP')) points_y = code_value();
  2584. if (code_seen('XO')) offset_x = code_value();
  2585. if (code_seen('YO')) offset_y = code_value();
  2586. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2587. } break;
  2588. #endif
  2589. /**
  2590. * G80: Mesh-based Z probe, probes a grid and produces a
  2591. * mesh to compensate for variable bed height
  2592. *
  2593. * The S0 report the points as below
  2594. *
  2595. * +----> X-axis
  2596. * |
  2597. * |
  2598. * v Y-axis
  2599. *
  2600. */
  2601. case 80:
  2602. #ifdef MK1BP
  2603. break;
  2604. #endif //MK1BP
  2605. case_G80:
  2606. {
  2607. mesh_bed_leveling_flag = true;
  2608. int8_t verbosity_level = 0;
  2609. static bool run = false;
  2610. if (code_seen('V')) {
  2611. // Just 'V' without a number counts as V1.
  2612. char c = strchr_pointer[1];
  2613. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2614. }
  2615. // Firstly check if we know where we are
  2616. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2617. // We don't know where we are! HOME!
  2618. // Push the commands to the front of the message queue in the reverse order!
  2619. // There shall be always enough space reserved for these commands.
  2620. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2621. repeatcommand_front(); // repeat G80 with all its parameters
  2622. enquecommand_front_P((PSTR("G28 W0")));
  2623. }
  2624. else {
  2625. mesh_bed_leveling_flag = false;
  2626. }
  2627. break;
  2628. }
  2629. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2630. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2631. temp_compensation_start();
  2632. run = true;
  2633. repeatcommand_front(); // repeat G80 with all its parameters
  2634. enquecommand_front_P((PSTR("G28 W0")));
  2635. }
  2636. else {
  2637. mesh_bed_leveling_flag = false;
  2638. }
  2639. break;
  2640. }
  2641. run = false;
  2642. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2643. mesh_bed_leveling_flag = false;
  2644. break;
  2645. }
  2646. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2647. bool custom_message_old = custom_message;
  2648. unsigned int custom_message_type_old = custom_message_type;
  2649. unsigned int custom_message_state_old = custom_message_state;
  2650. custom_message = true;
  2651. custom_message_type = 1;
  2652. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2653. lcd_update(1);
  2654. mbl.reset(); //reset mesh bed leveling
  2655. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2656. // consumed during the first movements following this statement.
  2657. babystep_undo();
  2658. // Cycle through all points and probe them
  2659. // First move up. During this first movement, the babystepping will be reverted.
  2660. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2662. // The move to the first calibration point.
  2663. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2664. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2665. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2666. if (verbosity_level >= 1) {
  2667. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2668. }
  2669. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2671. // Wait until the move is finished.
  2672. st_synchronize();
  2673. int mesh_point = 0; //index number of calibration point
  2674. int ix = 0;
  2675. int iy = 0;
  2676. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2677. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2678. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2679. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2680. if (verbosity_level >= 1) {
  2681. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2682. }
  2683. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2684. const char *kill_message = NULL;
  2685. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2686. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2687. // Get coords of a measuring point.
  2688. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2689. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2690. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2691. float z0 = 0.f;
  2692. if (has_z && mesh_point > 0) {
  2693. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2694. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2695. //#if 0
  2696. if (verbosity_level >= 1) {
  2697. SERIAL_ECHOPGM("Bed leveling, point: ");
  2698. MYSERIAL.print(mesh_point);
  2699. SERIAL_ECHOPGM(", calibration z: ");
  2700. MYSERIAL.print(z0, 5);
  2701. SERIAL_ECHOLNPGM("");
  2702. }
  2703. //#endif
  2704. }
  2705. // Move Z up to MESH_HOME_Z_SEARCH.
  2706. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2708. st_synchronize();
  2709. // Move to XY position of the sensor point.
  2710. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2711. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2712. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2713. if (verbosity_level >= 1) {
  2714. SERIAL_PROTOCOL(mesh_point);
  2715. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2716. }
  2717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2718. st_synchronize();
  2719. // Go down until endstop is hit
  2720. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2721. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2722. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2723. break;
  2724. }
  2725. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2726. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2727. break;
  2728. }
  2729. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2730. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2731. break;
  2732. }
  2733. if (verbosity_level >= 10) {
  2734. SERIAL_ECHOPGM("X: ");
  2735. MYSERIAL.print(current_position[X_AXIS], 5);
  2736. SERIAL_ECHOLNPGM("");
  2737. SERIAL_ECHOPGM("Y: ");
  2738. MYSERIAL.print(current_position[Y_AXIS], 5);
  2739. SERIAL_PROTOCOLPGM("\n");
  2740. }
  2741. if (verbosity_level >= 1) {
  2742. SERIAL_ECHOPGM("mesh bed leveling: ");
  2743. MYSERIAL.print(current_position[Z_AXIS], 5);
  2744. SERIAL_ECHOLNPGM("");
  2745. }
  2746. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2747. custom_message_state--;
  2748. mesh_point++;
  2749. lcd_update(1);
  2750. }
  2751. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2752. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2753. if (verbosity_level >= 20) {
  2754. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2755. MYSERIAL.print(current_position[Z_AXIS], 5);
  2756. }
  2757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2758. st_synchronize();
  2759. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2760. kill(kill_message);
  2761. SERIAL_ECHOLNPGM("killed");
  2762. }
  2763. clean_up_after_endstop_move();
  2764. SERIAL_ECHOLNPGM("clean up finished ");
  2765. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2766. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2767. SERIAL_ECHOLNPGM("babystep applied");
  2768. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2769. if (verbosity_level >= 1) {
  2770. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2771. }
  2772. for (uint8_t i = 0; i < 4; ++i) {
  2773. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2774. long correction = 0;
  2775. if (code_seen(codes[i]))
  2776. correction = code_value_long();
  2777. else if (eeprom_bed_correction_valid) {
  2778. unsigned char *addr = (i < 2) ?
  2779. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2780. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2781. correction = eeprom_read_int8(addr);
  2782. }
  2783. if (correction == 0)
  2784. continue;
  2785. float offset = float(correction) * 0.001f;
  2786. if (fabs(offset) > 0.101f) {
  2787. SERIAL_ERROR_START;
  2788. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2789. SERIAL_ECHO(offset);
  2790. SERIAL_ECHOLNPGM(" microns");
  2791. }
  2792. else {
  2793. switch (i) {
  2794. case 0:
  2795. for (uint8_t row = 0; row < 3; ++row) {
  2796. mbl.z_values[row][1] += 0.5f * offset;
  2797. mbl.z_values[row][0] += offset;
  2798. }
  2799. break;
  2800. case 1:
  2801. for (uint8_t row = 0; row < 3; ++row) {
  2802. mbl.z_values[row][1] += 0.5f * offset;
  2803. mbl.z_values[row][2] += offset;
  2804. }
  2805. break;
  2806. case 2:
  2807. for (uint8_t col = 0; col < 3; ++col) {
  2808. mbl.z_values[1][col] += 0.5f * offset;
  2809. mbl.z_values[0][col] += offset;
  2810. }
  2811. break;
  2812. case 3:
  2813. for (uint8_t col = 0; col < 3; ++col) {
  2814. mbl.z_values[1][col] += 0.5f * offset;
  2815. mbl.z_values[2][col] += offset;
  2816. }
  2817. break;
  2818. }
  2819. }
  2820. }
  2821. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2822. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2823. SERIAL_ECHOLNPGM("Upsample finished");
  2824. mbl.active = 1; //activate mesh bed leveling
  2825. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2826. go_home_with_z_lift();
  2827. SERIAL_ECHOLNPGM("Go home finished");
  2828. //unretract (after PINDA preheat retraction)
  2829. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2830. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2832. }
  2833. // Restore custom message state
  2834. custom_message = custom_message_old;
  2835. custom_message_type = custom_message_type_old;
  2836. custom_message_state = custom_message_state_old;
  2837. mesh_bed_leveling_flag = false;
  2838. mesh_bed_run_from_menu = false;
  2839. lcd_update(2);
  2840. }
  2841. break;
  2842. /**
  2843. * G81: Print mesh bed leveling status and bed profile if activated
  2844. */
  2845. case 81:
  2846. if (mbl.active) {
  2847. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2848. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2849. SERIAL_PROTOCOLPGM(",");
  2850. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2851. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2852. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2853. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2854. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2855. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2856. SERIAL_PROTOCOLPGM(" ");
  2857. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2858. }
  2859. SERIAL_PROTOCOLPGM("\n");
  2860. }
  2861. }
  2862. else
  2863. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2864. break;
  2865. #if 0
  2866. /**
  2867. * G82: Single Z probe at current location
  2868. *
  2869. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2870. *
  2871. */
  2872. case 82:
  2873. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2874. setup_for_endstop_move();
  2875. find_bed_induction_sensor_point_z();
  2876. clean_up_after_endstop_move();
  2877. SERIAL_PROTOCOLPGM("Bed found at: ");
  2878. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2879. SERIAL_PROTOCOLPGM("\n");
  2880. break;
  2881. /**
  2882. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2883. */
  2884. case 83:
  2885. {
  2886. int babystepz = code_seen('S') ? code_value() : 0;
  2887. int BabyPosition = code_seen('P') ? code_value() : 0;
  2888. if (babystepz != 0) {
  2889. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2890. // Is the axis indexed starting with zero or one?
  2891. if (BabyPosition > 4) {
  2892. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2893. }else{
  2894. // Save it to the eeprom
  2895. babystepLoadZ = babystepz;
  2896. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2897. // adjust the Z
  2898. babystepsTodoZadd(babystepLoadZ);
  2899. }
  2900. }
  2901. }
  2902. break;
  2903. /**
  2904. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2905. */
  2906. case 84:
  2907. babystepsTodoZsubtract(babystepLoadZ);
  2908. // babystepLoadZ = 0;
  2909. break;
  2910. /**
  2911. * G85: Prusa3D specific: Pick best babystep
  2912. */
  2913. case 85:
  2914. lcd_pick_babystep();
  2915. break;
  2916. #endif
  2917. /**
  2918. * G86: Prusa3D specific: Disable babystep correction after home.
  2919. * This G-code will be performed at the start of a calibration script.
  2920. */
  2921. case 86:
  2922. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2923. break;
  2924. /**
  2925. * G87: Prusa3D specific: Enable babystep correction after home
  2926. * This G-code will be performed at the end of a calibration script.
  2927. */
  2928. case 87:
  2929. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2930. break;
  2931. /**
  2932. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2933. */
  2934. case 88:
  2935. break;
  2936. #endif // ENABLE_MESH_BED_LEVELING
  2937. case 90: // G90
  2938. relative_mode = false;
  2939. break;
  2940. case 91: // G91
  2941. relative_mode = true;
  2942. break;
  2943. case 92: // G92
  2944. if(!code_seen(axis_codes[E_AXIS]))
  2945. st_synchronize();
  2946. for(int8_t i=0; i < NUM_AXIS; i++) {
  2947. if(code_seen(axis_codes[i])) {
  2948. if(i == E_AXIS) {
  2949. current_position[i] = code_value();
  2950. plan_set_e_position(current_position[E_AXIS]);
  2951. }
  2952. else {
  2953. current_position[i] = code_value()+add_homing[i];
  2954. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2955. }
  2956. }
  2957. }
  2958. break;
  2959. case 98: //activate farm mode
  2960. farm_mode = 1;
  2961. PingTime = millis();
  2962. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2963. break;
  2964. case 99: //deactivate farm mode
  2965. farm_mode = 0;
  2966. lcd_printer_connected();
  2967. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2968. lcd_update(2);
  2969. break;
  2970. }
  2971. } // end if(code_seen('G'))
  2972. else if(code_seen('M'))
  2973. {
  2974. int index;
  2975. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2976. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2977. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2978. SERIAL_ECHOLNPGM("Invalid M code");
  2979. } else
  2980. switch((int)code_value())
  2981. {
  2982. #ifdef ULTIPANEL
  2983. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2984. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2985. {
  2986. char *src = strchr_pointer + 2;
  2987. codenum = 0;
  2988. bool hasP = false, hasS = false;
  2989. if (code_seen('P')) {
  2990. codenum = code_value(); // milliseconds to wait
  2991. hasP = codenum > 0;
  2992. }
  2993. if (code_seen('S')) {
  2994. codenum = code_value() * 1000; // seconds to wait
  2995. hasS = codenum > 0;
  2996. }
  2997. starpos = strchr(src, '*');
  2998. if (starpos != NULL) *(starpos) = '\0';
  2999. while (*src == ' ') ++src;
  3000. if (!hasP && !hasS && *src != '\0') {
  3001. lcd_setstatus(src);
  3002. } else {
  3003. LCD_MESSAGERPGM(MSG_USERWAIT);
  3004. }
  3005. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3006. st_synchronize();
  3007. previous_millis_cmd = millis();
  3008. if (codenum > 0){
  3009. codenum += millis(); // keep track of when we started waiting
  3010. while(millis() < codenum && !lcd_clicked()){
  3011. manage_heater();
  3012. manage_inactivity(true);
  3013. lcd_update();
  3014. }
  3015. lcd_ignore_click(false);
  3016. }else{
  3017. if (!lcd_detected())
  3018. break;
  3019. while(!lcd_clicked()){
  3020. manage_heater();
  3021. manage_inactivity(true);
  3022. lcd_update();
  3023. }
  3024. }
  3025. if (IS_SD_PRINTING)
  3026. LCD_MESSAGERPGM(MSG_RESUMING);
  3027. else
  3028. LCD_MESSAGERPGM(WELCOME_MSG);
  3029. }
  3030. break;
  3031. #endif
  3032. case 17:
  3033. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3034. enable_x();
  3035. enable_y();
  3036. enable_z();
  3037. enable_e0();
  3038. enable_e1();
  3039. enable_e2();
  3040. break;
  3041. #ifdef SDSUPPORT
  3042. case 20: // M20 - list SD card
  3043. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3044. card.ls();
  3045. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3046. break;
  3047. case 21: // M21 - init SD card
  3048. card.initsd();
  3049. break;
  3050. case 22: //M22 - release SD card
  3051. card.release();
  3052. break;
  3053. case 23: //M23 - Select file
  3054. starpos = (strchr(strchr_pointer + 4,'*'));
  3055. if(starpos!=NULL)
  3056. *(starpos)='\0';
  3057. card.openFile(strchr_pointer + 4,true);
  3058. break;
  3059. case 24: //M24 - Start SD print
  3060. card.startFileprint();
  3061. starttime=millis();
  3062. break;
  3063. case 25: //M25 - Pause SD print
  3064. card.pauseSDPrint();
  3065. break;
  3066. case 26: //M26 - Set SD index
  3067. if(card.cardOK && code_seen('S')) {
  3068. card.setIndex(code_value_long());
  3069. }
  3070. break;
  3071. case 27: //M27 - Get SD status
  3072. card.getStatus();
  3073. break;
  3074. case 28: //M28 - Start SD write
  3075. starpos = (strchr(strchr_pointer + 4,'*'));
  3076. if(starpos != NULL){
  3077. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3078. strchr_pointer = strchr(npos,' ') + 1;
  3079. *(starpos) = '\0';
  3080. }
  3081. card.openFile(strchr_pointer+4,false);
  3082. break;
  3083. case 29: //M29 - Stop SD write
  3084. //processed in write to file routine above
  3085. //card,saving = false;
  3086. break;
  3087. case 30: //M30 <filename> Delete File
  3088. if (card.cardOK){
  3089. card.closefile();
  3090. starpos = (strchr(strchr_pointer + 4,'*'));
  3091. if(starpos != NULL){
  3092. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3093. strchr_pointer = strchr(npos,' ') + 1;
  3094. *(starpos) = '\0';
  3095. }
  3096. card.removeFile(strchr_pointer + 4);
  3097. }
  3098. break;
  3099. case 32: //M32 - Select file and start SD print
  3100. {
  3101. if(card.sdprinting) {
  3102. st_synchronize();
  3103. }
  3104. starpos = (strchr(strchr_pointer + 4,'*'));
  3105. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3106. if(namestartpos==NULL)
  3107. {
  3108. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3109. }
  3110. else
  3111. namestartpos++; //to skip the '!'
  3112. if(starpos!=NULL)
  3113. *(starpos)='\0';
  3114. bool call_procedure=(code_seen('P'));
  3115. if(strchr_pointer>namestartpos)
  3116. call_procedure=false; //false alert, 'P' found within filename
  3117. if( card.cardOK )
  3118. {
  3119. card.openFile(namestartpos,true,!call_procedure);
  3120. if(code_seen('S'))
  3121. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3122. card.setIndex(code_value_long());
  3123. card.startFileprint();
  3124. if(!call_procedure)
  3125. starttime=millis(); //procedure calls count as normal print time.
  3126. }
  3127. } break;
  3128. case 928: //M928 - Start SD write
  3129. starpos = (strchr(strchr_pointer + 5,'*'));
  3130. if(starpos != NULL){
  3131. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3132. strchr_pointer = strchr(npos,' ') + 1;
  3133. *(starpos) = '\0';
  3134. }
  3135. card.openLogFile(strchr_pointer+5);
  3136. break;
  3137. #endif //SDSUPPORT
  3138. case 31: //M31 take time since the start of the SD print or an M109 command
  3139. {
  3140. stoptime=millis();
  3141. char time[30];
  3142. unsigned long t=(stoptime-starttime)/1000;
  3143. int sec,min;
  3144. min=t/60;
  3145. sec=t%60;
  3146. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3147. SERIAL_ECHO_START;
  3148. SERIAL_ECHOLN(time);
  3149. lcd_setstatus(time);
  3150. autotempShutdown();
  3151. }
  3152. break;
  3153. case 42: //M42 -Change pin status via gcode
  3154. if (code_seen('S'))
  3155. {
  3156. int pin_status = code_value();
  3157. int pin_number = LED_PIN;
  3158. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3159. pin_number = code_value();
  3160. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3161. {
  3162. if (sensitive_pins[i] == pin_number)
  3163. {
  3164. pin_number = -1;
  3165. break;
  3166. }
  3167. }
  3168. #if defined(FAN_PIN) && FAN_PIN > -1
  3169. if (pin_number == FAN_PIN)
  3170. fanSpeed = pin_status;
  3171. #endif
  3172. if (pin_number > -1)
  3173. {
  3174. pinMode(pin_number, OUTPUT);
  3175. digitalWrite(pin_number, pin_status);
  3176. analogWrite(pin_number, pin_status);
  3177. }
  3178. }
  3179. break;
  3180. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3181. // Reset the baby step value and the baby step applied flag.
  3182. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3183. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3184. // Reset the skew and offset in both RAM and EEPROM.
  3185. reset_bed_offset_and_skew();
  3186. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3187. // the planner will not perform any adjustments in the XY plane.
  3188. // Wait for the motors to stop and update the current position with the absolute values.
  3189. world2machine_revert_to_uncorrected();
  3190. break;
  3191. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3192. {
  3193. // Only Z calibration?
  3194. bool onlyZ = code_seen('Z');
  3195. if (!onlyZ) {
  3196. setTargetBed(0);
  3197. setTargetHotend(0, 0);
  3198. setTargetHotend(0, 1);
  3199. setTargetHotend(0, 2);
  3200. adjust_bed_reset(); //reset bed level correction
  3201. }
  3202. // Disable the default update procedure of the display. We will do a modal dialog.
  3203. lcd_update_enable(false);
  3204. // Let the planner use the uncorrected coordinates.
  3205. mbl.reset();
  3206. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3207. // the planner will not perform any adjustments in the XY plane.
  3208. // Wait for the motors to stop and update the current position with the absolute values.
  3209. world2machine_revert_to_uncorrected();
  3210. // Reset the baby step value applied without moving the axes.
  3211. babystep_reset();
  3212. // Mark all axes as in a need for homing.
  3213. memset(axis_known_position, 0, sizeof(axis_known_position));
  3214. // Let the user move the Z axes up to the end stoppers.
  3215. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3216. refresh_cmd_timeout();
  3217. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3218. lcd_wait_for_cool_down();
  3219. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3220. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3221. lcd_implementation_print_at(0, 2, 1);
  3222. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3223. }
  3224. // Move the print head close to the bed.
  3225. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3227. st_synchronize();
  3228. // Home in the XY plane.
  3229. set_destination_to_current();
  3230. setup_for_endstop_move();
  3231. home_xy();
  3232. int8_t verbosity_level = 0;
  3233. if (code_seen('V')) {
  3234. // Just 'V' without a number counts as V1.
  3235. char c = strchr_pointer[1];
  3236. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3237. }
  3238. if (onlyZ) {
  3239. clean_up_after_endstop_move();
  3240. // Z only calibration.
  3241. // Load the machine correction matrix
  3242. world2machine_initialize();
  3243. // and correct the current_position to match the transformed coordinate system.
  3244. world2machine_update_current();
  3245. //FIXME
  3246. bool result = sample_mesh_and_store_reference();
  3247. if (result) {
  3248. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3249. // Shipped, the nozzle height has been set already. The user can start printing now.
  3250. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3251. // babystep_apply();
  3252. }
  3253. } else {
  3254. // Reset the baby step value and the baby step applied flag.
  3255. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3256. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3257. // Complete XYZ calibration.
  3258. uint8_t point_too_far_mask = 0;
  3259. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3260. clean_up_after_endstop_move();
  3261. // Print head up.
  3262. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3263. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3264. st_synchronize();
  3265. if (result >= 0) {
  3266. point_too_far_mask = 0;
  3267. // Second half: The fine adjustment.
  3268. // Let the planner use the uncorrected coordinates.
  3269. mbl.reset();
  3270. world2machine_reset();
  3271. // Home in the XY plane.
  3272. setup_for_endstop_move();
  3273. home_xy();
  3274. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3275. clean_up_after_endstop_move();
  3276. // Print head up.
  3277. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3278. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3279. st_synchronize();
  3280. // if (result >= 0) babystep_apply();
  3281. }
  3282. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3283. if (result >= 0) {
  3284. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3285. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3286. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3287. }
  3288. }
  3289. } else {
  3290. // Timeouted.
  3291. }
  3292. lcd_update_enable(true);
  3293. break;
  3294. }
  3295. /*
  3296. case 46:
  3297. {
  3298. // M46: Prusa3D: Show the assigned IP address.
  3299. uint8_t ip[4];
  3300. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3301. if (hasIP) {
  3302. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3303. SERIAL_ECHO(int(ip[0]));
  3304. SERIAL_ECHOPGM(".");
  3305. SERIAL_ECHO(int(ip[1]));
  3306. SERIAL_ECHOPGM(".");
  3307. SERIAL_ECHO(int(ip[2]));
  3308. SERIAL_ECHOPGM(".");
  3309. SERIAL_ECHO(int(ip[3]));
  3310. SERIAL_ECHOLNPGM("");
  3311. } else {
  3312. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3313. }
  3314. break;
  3315. }
  3316. */
  3317. case 47:
  3318. // M47: Prusa3D: Show end stops dialog on the display.
  3319. lcd_diag_show_end_stops();
  3320. break;
  3321. #if 0
  3322. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3323. {
  3324. // Disable the default update procedure of the display. We will do a modal dialog.
  3325. lcd_update_enable(false);
  3326. // Let the planner use the uncorrected coordinates.
  3327. mbl.reset();
  3328. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3329. // the planner will not perform any adjustments in the XY plane.
  3330. // Wait for the motors to stop and update the current position with the absolute values.
  3331. world2machine_revert_to_uncorrected();
  3332. // Move the print head close to the bed.
  3333. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3335. st_synchronize();
  3336. // Home in the XY plane.
  3337. set_destination_to_current();
  3338. setup_for_endstop_move();
  3339. home_xy();
  3340. int8_t verbosity_level = 0;
  3341. if (code_seen('V')) {
  3342. // Just 'V' without a number counts as V1.
  3343. char c = strchr_pointer[1];
  3344. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3345. }
  3346. bool success = scan_bed_induction_points(verbosity_level);
  3347. clean_up_after_endstop_move();
  3348. // Print head up.
  3349. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3351. st_synchronize();
  3352. lcd_update_enable(true);
  3353. break;
  3354. }
  3355. #endif
  3356. // M48 Z-Probe repeatability measurement function.
  3357. //
  3358. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3359. //
  3360. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3361. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3362. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3363. // regenerated.
  3364. //
  3365. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3366. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3367. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3368. //
  3369. #ifdef ENABLE_AUTO_BED_LEVELING
  3370. #ifdef Z_PROBE_REPEATABILITY_TEST
  3371. case 48: // M48 Z-Probe repeatability
  3372. {
  3373. #if Z_MIN_PIN == -1
  3374. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3375. #endif
  3376. double sum=0.0;
  3377. double mean=0.0;
  3378. double sigma=0.0;
  3379. double sample_set[50];
  3380. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3381. double X_current, Y_current, Z_current;
  3382. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3383. if (code_seen('V') || code_seen('v')) {
  3384. verbose_level = code_value();
  3385. if (verbose_level<0 || verbose_level>4 ) {
  3386. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3387. goto Sigma_Exit;
  3388. }
  3389. }
  3390. if (verbose_level > 0) {
  3391. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3392. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3393. }
  3394. if (code_seen('n')) {
  3395. n_samples = code_value();
  3396. if (n_samples<4 || n_samples>50 ) {
  3397. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3398. goto Sigma_Exit;
  3399. }
  3400. }
  3401. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3402. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3403. Z_current = st_get_position_mm(Z_AXIS);
  3404. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3405. ext_position = st_get_position_mm(E_AXIS);
  3406. if (code_seen('X') || code_seen('x') ) {
  3407. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3408. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3409. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3410. goto Sigma_Exit;
  3411. }
  3412. }
  3413. if (code_seen('Y') || code_seen('y') ) {
  3414. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3415. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3416. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3417. goto Sigma_Exit;
  3418. }
  3419. }
  3420. if (code_seen('L') || code_seen('l') ) {
  3421. n_legs = code_value();
  3422. if ( n_legs==1 )
  3423. n_legs = 2;
  3424. if ( n_legs<0 || n_legs>15 ) {
  3425. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3426. goto Sigma_Exit;
  3427. }
  3428. }
  3429. //
  3430. // Do all the preliminary setup work. First raise the probe.
  3431. //
  3432. st_synchronize();
  3433. plan_bed_level_matrix.set_to_identity();
  3434. plan_buffer_line( X_current, Y_current, Z_start_location,
  3435. ext_position,
  3436. homing_feedrate[Z_AXIS]/60,
  3437. active_extruder);
  3438. st_synchronize();
  3439. //
  3440. // Now get everything to the specified probe point So we can safely do a probe to
  3441. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3442. // use that as a starting point for each probe.
  3443. //
  3444. if (verbose_level > 2)
  3445. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3446. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3447. ext_position,
  3448. homing_feedrate[X_AXIS]/60,
  3449. active_extruder);
  3450. st_synchronize();
  3451. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3452. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3453. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3454. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3455. //
  3456. // OK, do the inital probe to get us close to the bed.
  3457. // Then retrace the right amount and use that in subsequent probes
  3458. //
  3459. setup_for_endstop_move();
  3460. run_z_probe();
  3461. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3462. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3463. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3464. ext_position,
  3465. homing_feedrate[X_AXIS]/60,
  3466. active_extruder);
  3467. st_synchronize();
  3468. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3469. for( n=0; n<n_samples; n++) {
  3470. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3471. if ( n_legs) {
  3472. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3473. int rotational_direction, l;
  3474. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3475. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3476. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3477. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3478. //SERIAL_ECHOPAIR(" theta: ",theta);
  3479. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3480. //SERIAL_PROTOCOLLNPGM("");
  3481. for( l=0; l<n_legs-1; l++) {
  3482. if (rotational_direction==1)
  3483. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3484. else
  3485. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3486. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3487. if ( radius<0.0 )
  3488. radius = -radius;
  3489. X_current = X_probe_location + cos(theta) * radius;
  3490. Y_current = Y_probe_location + sin(theta) * radius;
  3491. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3492. X_current = X_MIN_POS;
  3493. if ( X_current>X_MAX_POS)
  3494. X_current = X_MAX_POS;
  3495. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3496. Y_current = Y_MIN_POS;
  3497. if ( Y_current>Y_MAX_POS)
  3498. Y_current = Y_MAX_POS;
  3499. if (verbose_level>3 ) {
  3500. SERIAL_ECHOPAIR("x: ", X_current);
  3501. SERIAL_ECHOPAIR("y: ", Y_current);
  3502. SERIAL_PROTOCOLLNPGM("");
  3503. }
  3504. do_blocking_move_to( X_current, Y_current, Z_current );
  3505. }
  3506. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3507. }
  3508. setup_for_endstop_move();
  3509. run_z_probe();
  3510. sample_set[n] = current_position[Z_AXIS];
  3511. //
  3512. // Get the current mean for the data points we have so far
  3513. //
  3514. sum=0.0;
  3515. for( j=0; j<=n; j++) {
  3516. sum = sum + sample_set[j];
  3517. }
  3518. mean = sum / (double (n+1));
  3519. //
  3520. // Now, use that mean to calculate the standard deviation for the
  3521. // data points we have so far
  3522. //
  3523. sum=0.0;
  3524. for( j=0; j<=n; j++) {
  3525. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3526. }
  3527. sigma = sqrt( sum / (double (n+1)) );
  3528. if (verbose_level > 1) {
  3529. SERIAL_PROTOCOL(n+1);
  3530. SERIAL_PROTOCOL(" of ");
  3531. SERIAL_PROTOCOL(n_samples);
  3532. SERIAL_PROTOCOLPGM(" z: ");
  3533. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3534. }
  3535. if (verbose_level > 2) {
  3536. SERIAL_PROTOCOL(" mean: ");
  3537. SERIAL_PROTOCOL_F(mean,6);
  3538. SERIAL_PROTOCOL(" sigma: ");
  3539. SERIAL_PROTOCOL_F(sigma,6);
  3540. }
  3541. if (verbose_level > 0)
  3542. SERIAL_PROTOCOLPGM("\n");
  3543. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3544. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3545. st_synchronize();
  3546. }
  3547. delay(1000);
  3548. clean_up_after_endstop_move();
  3549. // enable_endstops(true);
  3550. if (verbose_level > 0) {
  3551. SERIAL_PROTOCOLPGM("Mean: ");
  3552. SERIAL_PROTOCOL_F(mean, 6);
  3553. SERIAL_PROTOCOLPGM("\n");
  3554. }
  3555. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3556. SERIAL_PROTOCOL_F(sigma, 6);
  3557. SERIAL_PROTOCOLPGM("\n\n");
  3558. Sigma_Exit:
  3559. break;
  3560. }
  3561. #endif // Z_PROBE_REPEATABILITY_TEST
  3562. #endif // ENABLE_AUTO_BED_LEVELING
  3563. case 104: // M104
  3564. if(setTargetedHotend(104)){
  3565. break;
  3566. }
  3567. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3568. setWatch();
  3569. break;
  3570. case 112: // M112 -Emergency Stop
  3571. kill();
  3572. break;
  3573. case 140: // M140 set bed temp
  3574. if (code_seen('S')) setTargetBed(code_value());
  3575. break;
  3576. case 105 : // M105
  3577. if(setTargetedHotend(105)){
  3578. break;
  3579. }
  3580. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3581. SERIAL_PROTOCOLPGM("ok T:");
  3582. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3583. SERIAL_PROTOCOLPGM(" /");
  3584. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3585. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3586. SERIAL_PROTOCOLPGM(" B:");
  3587. SERIAL_PROTOCOL_F(degBed(),1);
  3588. SERIAL_PROTOCOLPGM(" /");
  3589. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3590. #endif //TEMP_BED_PIN
  3591. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3592. SERIAL_PROTOCOLPGM(" T");
  3593. SERIAL_PROTOCOL(cur_extruder);
  3594. SERIAL_PROTOCOLPGM(":");
  3595. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3596. SERIAL_PROTOCOLPGM(" /");
  3597. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3598. }
  3599. #else
  3600. SERIAL_ERROR_START;
  3601. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3602. #endif
  3603. SERIAL_PROTOCOLPGM(" @:");
  3604. #ifdef EXTRUDER_WATTS
  3605. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3606. SERIAL_PROTOCOLPGM("W");
  3607. #else
  3608. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3609. #endif
  3610. SERIAL_PROTOCOLPGM(" B@:");
  3611. #ifdef BED_WATTS
  3612. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3613. SERIAL_PROTOCOLPGM("W");
  3614. #else
  3615. SERIAL_PROTOCOL(getHeaterPower(-1));
  3616. #endif
  3617. #ifdef SHOW_TEMP_ADC_VALUES
  3618. {float raw = 0.0;
  3619. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3620. SERIAL_PROTOCOLPGM(" ADC B:");
  3621. SERIAL_PROTOCOL_F(degBed(),1);
  3622. SERIAL_PROTOCOLPGM("C->");
  3623. raw = rawBedTemp();
  3624. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3625. SERIAL_PROTOCOLPGM(" Rb->");
  3626. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3627. SERIAL_PROTOCOLPGM(" Rxb->");
  3628. SERIAL_PROTOCOL_F(raw, 5);
  3629. #endif
  3630. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3631. SERIAL_PROTOCOLPGM(" T");
  3632. SERIAL_PROTOCOL(cur_extruder);
  3633. SERIAL_PROTOCOLPGM(":");
  3634. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3635. SERIAL_PROTOCOLPGM("C->");
  3636. raw = rawHotendTemp(cur_extruder);
  3637. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3638. SERIAL_PROTOCOLPGM(" Rt");
  3639. SERIAL_PROTOCOL(cur_extruder);
  3640. SERIAL_PROTOCOLPGM("->");
  3641. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3642. SERIAL_PROTOCOLPGM(" Rx");
  3643. SERIAL_PROTOCOL(cur_extruder);
  3644. SERIAL_PROTOCOLPGM("->");
  3645. SERIAL_PROTOCOL_F(raw, 5);
  3646. }}
  3647. #endif
  3648. SERIAL_PROTOCOLLN("");
  3649. return;
  3650. break;
  3651. case 109:
  3652. {// M109 - Wait for extruder heater to reach target.
  3653. if(setTargetedHotend(109)){
  3654. break;
  3655. }
  3656. LCD_MESSAGERPGM(MSG_HEATING);
  3657. heating_status = 1;
  3658. if (farm_mode) { prusa_statistics(1); };
  3659. #ifdef AUTOTEMP
  3660. autotemp_enabled=false;
  3661. #endif
  3662. if (code_seen('S')) {
  3663. setTargetHotend(code_value(), tmp_extruder);
  3664. CooldownNoWait = true;
  3665. } else if (code_seen('R')) {
  3666. setTargetHotend(code_value(), tmp_extruder);
  3667. CooldownNoWait = false;
  3668. }
  3669. #ifdef AUTOTEMP
  3670. if (code_seen('S')) autotemp_min=code_value();
  3671. if (code_seen('B')) autotemp_max=code_value();
  3672. if (code_seen('F'))
  3673. {
  3674. autotemp_factor=code_value();
  3675. autotemp_enabled=true;
  3676. }
  3677. #endif
  3678. setWatch();
  3679. codenum = millis();
  3680. /* See if we are heating up or cooling down */
  3681. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3682. cancel_heatup = false;
  3683. wait_for_heater(codenum); //loops until target temperature is reached
  3684. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3685. heating_status = 2;
  3686. if (farm_mode) { prusa_statistics(2); };
  3687. //starttime=millis();
  3688. previous_millis_cmd = millis();
  3689. }
  3690. break;
  3691. case 190: // M190 - Wait for bed heater to reach target.
  3692. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3693. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3694. heating_status = 3;
  3695. if (farm_mode) { prusa_statistics(1); };
  3696. if (code_seen('S'))
  3697. {
  3698. setTargetBed(code_value());
  3699. CooldownNoWait = true;
  3700. }
  3701. else if (code_seen('R'))
  3702. {
  3703. setTargetBed(code_value());
  3704. CooldownNoWait = false;
  3705. }
  3706. codenum = millis();
  3707. cancel_heatup = false;
  3708. target_direction = isHeatingBed(); // true if heating, false if cooling
  3709. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3710. {
  3711. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3712. {
  3713. if (!farm_mode) {
  3714. float tt = degHotend(active_extruder);
  3715. SERIAL_PROTOCOLPGM("T:");
  3716. SERIAL_PROTOCOL(tt);
  3717. SERIAL_PROTOCOLPGM(" E:");
  3718. SERIAL_PROTOCOL((int)active_extruder);
  3719. SERIAL_PROTOCOLPGM(" B:");
  3720. SERIAL_PROTOCOL_F(degBed(), 1);
  3721. SERIAL_PROTOCOLLN("");
  3722. }
  3723. codenum = millis();
  3724. }
  3725. manage_heater();
  3726. manage_inactivity();
  3727. lcd_update();
  3728. }
  3729. LCD_MESSAGERPGM(MSG_BED_DONE);
  3730. heating_status = 4;
  3731. previous_millis_cmd = millis();
  3732. #endif
  3733. break;
  3734. #if defined(FAN_PIN) && FAN_PIN > -1
  3735. case 106: //M106 Fan On
  3736. if (code_seen('S')){
  3737. fanSpeed=constrain(code_value(),0,255);
  3738. }
  3739. else {
  3740. fanSpeed=255;
  3741. }
  3742. break;
  3743. case 107: //M107 Fan Off
  3744. fanSpeed = 0;
  3745. break;
  3746. #endif //FAN_PIN
  3747. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3748. case 80: // M80 - Turn on Power Supply
  3749. SET_OUTPUT(PS_ON_PIN); //GND
  3750. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3751. // If you have a switch on suicide pin, this is useful
  3752. // if you want to start another print with suicide feature after
  3753. // a print without suicide...
  3754. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3755. SET_OUTPUT(SUICIDE_PIN);
  3756. WRITE(SUICIDE_PIN, HIGH);
  3757. #endif
  3758. #ifdef ULTIPANEL
  3759. powersupply = true;
  3760. LCD_MESSAGERPGM(WELCOME_MSG);
  3761. lcd_update();
  3762. #endif
  3763. break;
  3764. #endif
  3765. case 81: // M81 - Turn off Power Supply
  3766. disable_heater();
  3767. st_synchronize();
  3768. disable_e0();
  3769. disable_e1();
  3770. disable_e2();
  3771. finishAndDisableSteppers();
  3772. fanSpeed = 0;
  3773. delay(1000); // Wait a little before to switch off
  3774. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3775. st_synchronize();
  3776. suicide();
  3777. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3778. SET_OUTPUT(PS_ON_PIN);
  3779. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3780. #endif
  3781. #ifdef ULTIPANEL
  3782. powersupply = false;
  3783. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3784. /*
  3785. MACHNAME = "Prusa i3"
  3786. MSGOFF = "Vypnuto"
  3787. "Prusai3"" ""vypnuto""."
  3788. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3789. */
  3790. lcd_update();
  3791. #endif
  3792. break;
  3793. case 82:
  3794. axis_relative_modes[3] = false;
  3795. break;
  3796. case 83:
  3797. axis_relative_modes[3] = true;
  3798. break;
  3799. case 18: //compatibility
  3800. case 84: // M84
  3801. if(code_seen('S')){
  3802. stepper_inactive_time = code_value() * 1000;
  3803. }
  3804. else
  3805. {
  3806. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3807. if(all_axis)
  3808. {
  3809. st_synchronize();
  3810. disable_e0();
  3811. disable_e1();
  3812. disable_e2();
  3813. finishAndDisableSteppers();
  3814. }
  3815. else
  3816. {
  3817. st_synchronize();
  3818. if (code_seen('X')) disable_x();
  3819. if (code_seen('Y')) disable_y();
  3820. if (code_seen('Z')) disable_z();
  3821. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3822. if (code_seen('E')) {
  3823. disable_e0();
  3824. disable_e1();
  3825. disable_e2();
  3826. }
  3827. #endif
  3828. }
  3829. }
  3830. snmm_filaments_used = 0;
  3831. break;
  3832. case 85: // M85
  3833. if(code_seen('S')) {
  3834. max_inactive_time = code_value() * 1000;
  3835. }
  3836. break;
  3837. case 92: // M92
  3838. for(int8_t i=0; i < NUM_AXIS; i++)
  3839. {
  3840. if(code_seen(axis_codes[i]))
  3841. {
  3842. if(i == 3) { // E
  3843. float value = code_value();
  3844. if(value < 20.0) {
  3845. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3846. max_jerk[E_AXIS] *= factor;
  3847. max_feedrate[i] *= factor;
  3848. axis_steps_per_sqr_second[i] *= factor;
  3849. }
  3850. axis_steps_per_unit[i] = value;
  3851. }
  3852. else {
  3853. axis_steps_per_unit[i] = code_value();
  3854. }
  3855. }
  3856. }
  3857. break;
  3858. case 110: // M110 - reset line pos
  3859. if (code_seen('N'))
  3860. gcode_LastN = code_value_long();
  3861. else
  3862. gcode_LastN = 0;
  3863. break;
  3864. case 115: // M115
  3865. if (code_seen('V')) {
  3866. // Report the Prusa version number.
  3867. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3868. } else if (code_seen('U')) {
  3869. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3870. // pause the print and ask the user to upgrade the firmware.
  3871. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3872. } else {
  3873. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3874. }
  3875. break;
  3876. /* case 117: // M117 display message
  3877. starpos = (strchr(strchr_pointer + 5,'*'));
  3878. if(starpos!=NULL)
  3879. *(starpos)='\0';
  3880. lcd_setstatus(strchr_pointer + 5);
  3881. break;*/
  3882. case 114: // M114
  3883. SERIAL_PROTOCOLPGM("X:");
  3884. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3885. SERIAL_PROTOCOLPGM(" Y:");
  3886. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3887. SERIAL_PROTOCOLPGM(" Z:");
  3888. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3889. SERIAL_PROTOCOLPGM(" E:");
  3890. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3891. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3892. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3893. SERIAL_PROTOCOLPGM(" Y:");
  3894. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3895. SERIAL_PROTOCOLPGM(" Z:");
  3896. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3897. SERIAL_PROTOCOLLN("");
  3898. break;
  3899. case 120: // M120
  3900. enable_endstops(false) ;
  3901. break;
  3902. case 121: // M121
  3903. enable_endstops(true) ;
  3904. break;
  3905. case 119: // M119
  3906. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3907. SERIAL_PROTOCOLLN("");
  3908. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3909. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3910. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3911. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3912. }else{
  3913. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3914. }
  3915. SERIAL_PROTOCOLLN("");
  3916. #endif
  3917. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3918. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3919. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3920. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3921. }else{
  3922. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3923. }
  3924. SERIAL_PROTOCOLLN("");
  3925. #endif
  3926. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3927. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3928. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3929. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3930. }else{
  3931. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3932. }
  3933. SERIAL_PROTOCOLLN("");
  3934. #endif
  3935. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3936. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3937. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3938. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3939. }else{
  3940. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3941. }
  3942. SERIAL_PROTOCOLLN("");
  3943. #endif
  3944. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3945. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3946. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3947. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3948. }else{
  3949. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3950. }
  3951. SERIAL_PROTOCOLLN("");
  3952. #endif
  3953. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3954. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3955. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3956. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3957. }else{
  3958. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3959. }
  3960. SERIAL_PROTOCOLLN("");
  3961. #endif
  3962. break;
  3963. //TODO: update for all axis, use for loop
  3964. #ifdef BLINKM
  3965. case 150: // M150
  3966. {
  3967. byte red;
  3968. byte grn;
  3969. byte blu;
  3970. if(code_seen('R')) red = code_value();
  3971. if(code_seen('U')) grn = code_value();
  3972. if(code_seen('B')) blu = code_value();
  3973. SendColors(red,grn,blu);
  3974. }
  3975. break;
  3976. #endif //BLINKM
  3977. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3978. {
  3979. tmp_extruder = active_extruder;
  3980. if(code_seen('T')) {
  3981. tmp_extruder = code_value();
  3982. if(tmp_extruder >= EXTRUDERS) {
  3983. SERIAL_ECHO_START;
  3984. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3985. break;
  3986. }
  3987. }
  3988. float area = .0;
  3989. if(code_seen('D')) {
  3990. float diameter = (float)code_value();
  3991. if (diameter == 0.0) {
  3992. // setting any extruder filament size disables volumetric on the assumption that
  3993. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3994. // for all extruders
  3995. volumetric_enabled = false;
  3996. } else {
  3997. filament_size[tmp_extruder] = (float)code_value();
  3998. // make sure all extruders have some sane value for the filament size
  3999. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4000. #if EXTRUDERS > 1
  4001. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4002. #if EXTRUDERS > 2
  4003. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4004. #endif
  4005. #endif
  4006. volumetric_enabled = true;
  4007. }
  4008. } else {
  4009. //reserved for setting filament diameter via UFID or filament measuring device
  4010. break;
  4011. }
  4012. calculate_volumetric_multipliers();
  4013. }
  4014. break;
  4015. case 201: // M201
  4016. for(int8_t i=0; i < NUM_AXIS; i++)
  4017. {
  4018. if(code_seen(axis_codes[i]))
  4019. {
  4020. max_acceleration_units_per_sq_second[i] = code_value();
  4021. }
  4022. }
  4023. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4024. reset_acceleration_rates();
  4025. break;
  4026. #if 0 // Not used for Sprinter/grbl gen6
  4027. case 202: // M202
  4028. for(int8_t i=0; i < NUM_AXIS; i++) {
  4029. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4030. }
  4031. break;
  4032. #endif
  4033. case 203: // M203 max feedrate mm/sec
  4034. for(int8_t i=0; i < NUM_AXIS; i++) {
  4035. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4036. }
  4037. break;
  4038. case 204: // M204 acclereration S normal moves T filmanent only moves
  4039. {
  4040. if(code_seen('S')) acceleration = code_value() ;
  4041. if(code_seen('T')) retract_acceleration = code_value() ;
  4042. }
  4043. break;
  4044. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4045. {
  4046. if(code_seen('S')) minimumfeedrate = code_value();
  4047. if(code_seen('T')) mintravelfeedrate = code_value();
  4048. if(code_seen('B')) minsegmenttime = code_value() ;
  4049. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4050. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4051. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4052. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4053. }
  4054. break;
  4055. case 206: // M206 additional homing offset
  4056. for(int8_t i=0; i < 3; i++)
  4057. {
  4058. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4059. }
  4060. break;
  4061. #ifdef FWRETRACT
  4062. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4063. {
  4064. if(code_seen('S'))
  4065. {
  4066. retract_length = code_value() ;
  4067. }
  4068. if(code_seen('F'))
  4069. {
  4070. retract_feedrate = code_value()/60 ;
  4071. }
  4072. if(code_seen('Z'))
  4073. {
  4074. retract_zlift = code_value() ;
  4075. }
  4076. }break;
  4077. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4078. {
  4079. if(code_seen('S'))
  4080. {
  4081. retract_recover_length = code_value() ;
  4082. }
  4083. if(code_seen('F'))
  4084. {
  4085. retract_recover_feedrate = code_value()/60 ;
  4086. }
  4087. }break;
  4088. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4089. {
  4090. if(code_seen('S'))
  4091. {
  4092. int t= code_value() ;
  4093. switch(t)
  4094. {
  4095. case 0:
  4096. {
  4097. autoretract_enabled=false;
  4098. retracted[0]=false;
  4099. #if EXTRUDERS > 1
  4100. retracted[1]=false;
  4101. #endif
  4102. #if EXTRUDERS > 2
  4103. retracted[2]=false;
  4104. #endif
  4105. }break;
  4106. case 1:
  4107. {
  4108. autoretract_enabled=true;
  4109. retracted[0]=false;
  4110. #if EXTRUDERS > 1
  4111. retracted[1]=false;
  4112. #endif
  4113. #if EXTRUDERS > 2
  4114. retracted[2]=false;
  4115. #endif
  4116. }break;
  4117. default:
  4118. SERIAL_ECHO_START;
  4119. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4120. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4121. SERIAL_ECHOLNPGM("\"");
  4122. }
  4123. }
  4124. }break;
  4125. #endif // FWRETRACT
  4126. #if EXTRUDERS > 1
  4127. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4128. {
  4129. if(setTargetedHotend(218)){
  4130. break;
  4131. }
  4132. if(code_seen('X'))
  4133. {
  4134. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4135. }
  4136. if(code_seen('Y'))
  4137. {
  4138. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4139. }
  4140. SERIAL_ECHO_START;
  4141. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4142. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4143. {
  4144. SERIAL_ECHO(" ");
  4145. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4146. SERIAL_ECHO(",");
  4147. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4148. }
  4149. SERIAL_ECHOLN("");
  4150. }break;
  4151. #endif
  4152. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4153. {
  4154. if(code_seen('S'))
  4155. {
  4156. feedmultiply = code_value() ;
  4157. }
  4158. }
  4159. break;
  4160. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4161. {
  4162. if(code_seen('S'))
  4163. {
  4164. int tmp_code = code_value();
  4165. if (code_seen('T'))
  4166. {
  4167. if(setTargetedHotend(221)){
  4168. break;
  4169. }
  4170. extruder_multiply[tmp_extruder] = tmp_code;
  4171. }
  4172. else
  4173. {
  4174. extrudemultiply = tmp_code ;
  4175. }
  4176. }
  4177. }
  4178. break;
  4179. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4180. {
  4181. if(code_seen('P')){
  4182. int pin_number = code_value(); // pin number
  4183. int pin_state = -1; // required pin state - default is inverted
  4184. if(code_seen('S')) pin_state = code_value(); // required pin state
  4185. if(pin_state >= -1 && pin_state <= 1){
  4186. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4187. {
  4188. if (sensitive_pins[i] == pin_number)
  4189. {
  4190. pin_number = -1;
  4191. break;
  4192. }
  4193. }
  4194. if (pin_number > -1)
  4195. {
  4196. int target = LOW;
  4197. st_synchronize();
  4198. pinMode(pin_number, INPUT);
  4199. switch(pin_state){
  4200. case 1:
  4201. target = HIGH;
  4202. break;
  4203. case 0:
  4204. target = LOW;
  4205. break;
  4206. case -1:
  4207. target = !digitalRead(pin_number);
  4208. break;
  4209. }
  4210. while(digitalRead(pin_number) != target){
  4211. manage_heater();
  4212. manage_inactivity();
  4213. lcd_update();
  4214. }
  4215. }
  4216. }
  4217. }
  4218. }
  4219. break;
  4220. #if NUM_SERVOS > 0
  4221. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4222. {
  4223. int servo_index = -1;
  4224. int servo_position = 0;
  4225. if (code_seen('P'))
  4226. servo_index = code_value();
  4227. if (code_seen('S')) {
  4228. servo_position = code_value();
  4229. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4230. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4231. servos[servo_index].attach(0);
  4232. #endif
  4233. servos[servo_index].write(servo_position);
  4234. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4235. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4236. servos[servo_index].detach();
  4237. #endif
  4238. }
  4239. else {
  4240. SERIAL_ECHO_START;
  4241. SERIAL_ECHO("Servo ");
  4242. SERIAL_ECHO(servo_index);
  4243. SERIAL_ECHOLN(" out of range");
  4244. }
  4245. }
  4246. else if (servo_index >= 0) {
  4247. SERIAL_PROTOCOL(MSG_OK);
  4248. SERIAL_PROTOCOL(" Servo ");
  4249. SERIAL_PROTOCOL(servo_index);
  4250. SERIAL_PROTOCOL(": ");
  4251. SERIAL_PROTOCOL(servos[servo_index].read());
  4252. SERIAL_PROTOCOLLN("");
  4253. }
  4254. }
  4255. break;
  4256. #endif // NUM_SERVOS > 0
  4257. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4258. case 300: // M300
  4259. {
  4260. int beepS = code_seen('S') ? code_value() : 110;
  4261. int beepP = code_seen('P') ? code_value() : 1000;
  4262. if (beepS > 0)
  4263. {
  4264. #if BEEPER > 0
  4265. tone(BEEPER, beepS);
  4266. delay(beepP);
  4267. noTone(BEEPER);
  4268. #elif defined(ULTRALCD)
  4269. lcd_buzz(beepS, beepP);
  4270. #elif defined(LCD_USE_I2C_BUZZER)
  4271. lcd_buzz(beepP, beepS);
  4272. #endif
  4273. }
  4274. else
  4275. {
  4276. delay(beepP);
  4277. }
  4278. }
  4279. break;
  4280. #endif // M300
  4281. #ifdef PIDTEMP
  4282. case 301: // M301
  4283. {
  4284. if(code_seen('P')) Kp = code_value();
  4285. if(code_seen('I')) Ki = scalePID_i(code_value());
  4286. if(code_seen('D')) Kd = scalePID_d(code_value());
  4287. #ifdef PID_ADD_EXTRUSION_RATE
  4288. if(code_seen('C')) Kc = code_value();
  4289. #endif
  4290. updatePID();
  4291. SERIAL_PROTOCOLRPGM(MSG_OK);
  4292. SERIAL_PROTOCOL(" p:");
  4293. SERIAL_PROTOCOL(Kp);
  4294. SERIAL_PROTOCOL(" i:");
  4295. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4296. SERIAL_PROTOCOL(" d:");
  4297. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4298. #ifdef PID_ADD_EXTRUSION_RATE
  4299. SERIAL_PROTOCOL(" c:");
  4300. //Kc does not have scaling applied above, or in resetting defaults
  4301. SERIAL_PROTOCOL(Kc);
  4302. #endif
  4303. SERIAL_PROTOCOLLN("");
  4304. }
  4305. break;
  4306. #endif //PIDTEMP
  4307. #ifdef PIDTEMPBED
  4308. case 304: // M304
  4309. {
  4310. if(code_seen('P')) bedKp = code_value();
  4311. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4312. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4313. updatePID();
  4314. SERIAL_PROTOCOLRPGM(MSG_OK);
  4315. SERIAL_PROTOCOL(" p:");
  4316. SERIAL_PROTOCOL(bedKp);
  4317. SERIAL_PROTOCOL(" i:");
  4318. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4319. SERIAL_PROTOCOL(" d:");
  4320. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4321. SERIAL_PROTOCOLLN("");
  4322. }
  4323. break;
  4324. #endif //PIDTEMP
  4325. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4326. {
  4327. #ifdef CHDK
  4328. SET_OUTPUT(CHDK);
  4329. WRITE(CHDK, HIGH);
  4330. chdkHigh = millis();
  4331. chdkActive = true;
  4332. #else
  4333. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4334. const uint8_t NUM_PULSES=16;
  4335. const float PULSE_LENGTH=0.01524;
  4336. for(int i=0; i < NUM_PULSES; i++) {
  4337. WRITE(PHOTOGRAPH_PIN, HIGH);
  4338. _delay_ms(PULSE_LENGTH);
  4339. WRITE(PHOTOGRAPH_PIN, LOW);
  4340. _delay_ms(PULSE_LENGTH);
  4341. }
  4342. delay(7.33);
  4343. for(int i=0; i < NUM_PULSES; i++) {
  4344. WRITE(PHOTOGRAPH_PIN, HIGH);
  4345. _delay_ms(PULSE_LENGTH);
  4346. WRITE(PHOTOGRAPH_PIN, LOW);
  4347. _delay_ms(PULSE_LENGTH);
  4348. }
  4349. #endif
  4350. #endif //chdk end if
  4351. }
  4352. break;
  4353. #ifdef DOGLCD
  4354. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4355. {
  4356. if (code_seen('C')) {
  4357. lcd_setcontrast( ((int)code_value())&63 );
  4358. }
  4359. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4360. SERIAL_PROTOCOL(lcd_contrast);
  4361. SERIAL_PROTOCOLLN("");
  4362. }
  4363. break;
  4364. #endif
  4365. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4366. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4367. {
  4368. float temp = .0;
  4369. if (code_seen('S')) temp=code_value();
  4370. set_extrude_min_temp(temp);
  4371. }
  4372. break;
  4373. #endif
  4374. case 303: // M303 PID autotune
  4375. {
  4376. float temp = 150.0;
  4377. int e=0;
  4378. int c=5;
  4379. if (code_seen('E')) e=code_value();
  4380. if (e<0)
  4381. temp=70;
  4382. if (code_seen('S')) temp=code_value();
  4383. if (code_seen('C')) c=code_value();
  4384. PID_autotune(temp, e, c);
  4385. }
  4386. break;
  4387. case 400: // M400 finish all moves
  4388. {
  4389. st_synchronize();
  4390. }
  4391. break;
  4392. #ifdef FILAMENT_SENSOR
  4393. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4394. {
  4395. #if (FILWIDTH_PIN > -1)
  4396. if(code_seen('N')) filament_width_nominal=code_value();
  4397. else{
  4398. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4399. SERIAL_PROTOCOLLN(filament_width_nominal);
  4400. }
  4401. #endif
  4402. }
  4403. break;
  4404. case 405: //M405 Turn on filament sensor for control
  4405. {
  4406. if(code_seen('D')) meas_delay_cm=code_value();
  4407. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4408. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4409. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4410. {
  4411. int temp_ratio = widthFil_to_size_ratio();
  4412. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4413. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4414. }
  4415. delay_index1=0;
  4416. delay_index2=0;
  4417. }
  4418. filament_sensor = true ;
  4419. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4420. //SERIAL_PROTOCOL(filament_width_meas);
  4421. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4422. //SERIAL_PROTOCOL(extrudemultiply);
  4423. }
  4424. break;
  4425. case 406: //M406 Turn off filament sensor for control
  4426. {
  4427. filament_sensor = false ;
  4428. }
  4429. break;
  4430. case 407: //M407 Display measured filament diameter
  4431. {
  4432. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4433. SERIAL_PROTOCOLLN(filament_width_meas);
  4434. }
  4435. break;
  4436. #endif
  4437. case 500: // M500 Store settings in EEPROM
  4438. {
  4439. Config_StoreSettings();
  4440. }
  4441. break;
  4442. case 501: // M501 Read settings from EEPROM
  4443. {
  4444. Config_RetrieveSettings();
  4445. }
  4446. break;
  4447. case 502: // M502 Revert to default settings
  4448. {
  4449. Config_ResetDefault();
  4450. }
  4451. break;
  4452. case 503: // M503 print settings currently in memory
  4453. {
  4454. Config_PrintSettings();
  4455. }
  4456. break;
  4457. case 509: //M509 Force language selection
  4458. {
  4459. lcd_force_language_selection();
  4460. SERIAL_ECHO_START;
  4461. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4462. }
  4463. break;
  4464. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4465. case 540:
  4466. {
  4467. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4468. }
  4469. break;
  4470. #endif
  4471. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4472. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4473. {
  4474. float value;
  4475. if (code_seen('Z'))
  4476. {
  4477. value = code_value();
  4478. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4479. {
  4480. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4481. SERIAL_ECHO_START;
  4482. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4483. SERIAL_PROTOCOLLN("");
  4484. }
  4485. else
  4486. {
  4487. SERIAL_ECHO_START;
  4488. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4489. SERIAL_ECHORPGM(MSG_Z_MIN);
  4490. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4491. SERIAL_ECHORPGM(MSG_Z_MAX);
  4492. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4493. SERIAL_PROTOCOLLN("");
  4494. }
  4495. }
  4496. else
  4497. {
  4498. SERIAL_ECHO_START;
  4499. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4500. SERIAL_ECHO(-zprobe_zoffset);
  4501. SERIAL_PROTOCOLLN("");
  4502. }
  4503. break;
  4504. }
  4505. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4506. #ifdef FILAMENTCHANGEENABLE
  4507. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4508. {
  4509. st_synchronize();
  4510. float target[4];
  4511. float lastpos[4];
  4512. if (farm_mode)
  4513. {
  4514. prusa_statistics(22);
  4515. }
  4516. feedmultiplyBckp=feedmultiply;
  4517. int8_t TooLowZ = 0;
  4518. target[X_AXIS]=current_position[X_AXIS];
  4519. target[Y_AXIS]=current_position[Y_AXIS];
  4520. target[Z_AXIS]=current_position[Z_AXIS];
  4521. target[E_AXIS]=current_position[E_AXIS];
  4522. lastpos[X_AXIS]=current_position[X_AXIS];
  4523. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4524. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4525. lastpos[E_AXIS]=current_position[E_AXIS];
  4526. //Retract extruder
  4527. if(code_seen('E'))
  4528. {
  4529. target[E_AXIS]+= code_value();
  4530. }
  4531. else
  4532. {
  4533. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4534. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4535. #endif
  4536. }
  4537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4538. //Lift Z
  4539. if(code_seen('Z'))
  4540. {
  4541. target[Z_AXIS]+= code_value();
  4542. }
  4543. else
  4544. {
  4545. #ifdef FILAMENTCHANGE_ZADD
  4546. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4547. if(target[Z_AXIS] < 10){
  4548. target[Z_AXIS]+= 10 ;
  4549. TooLowZ = 1;
  4550. }else{
  4551. TooLowZ = 0;
  4552. }
  4553. #endif
  4554. }
  4555. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4556. //Move XY to side
  4557. if(code_seen('X'))
  4558. {
  4559. target[X_AXIS]+= code_value();
  4560. }
  4561. else
  4562. {
  4563. #ifdef FILAMENTCHANGE_XPOS
  4564. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4565. #endif
  4566. }
  4567. if(code_seen('Y'))
  4568. {
  4569. target[Y_AXIS]= code_value();
  4570. }
  4571. else
  4572. {
  4573. #ifdef FILAMENTCHANGE_YPOS
  4574. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4575. #endif
  4576. }
  4577. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4578. st_synchronize();
  4579. custom_message = true;
  4580. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4581. // Unload filament
  4582. if(code_seen('L'))
  4583. {
  4584. target[E_AXIS]+= code_value();
  4585. }
  4586. else
  4587. {
  4588. #ifdef SNMM
  4589. #else
  4590. #ifdef FILAMENTCHANGE_FINALRETRACT
  4591. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4592. #endif
  4593. #endif // SNMM
  4594. }
  4595. #ifdef SNMM
  4596. target[E_AXIS] += 12;
  4597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4598. target[E_AXIS] += 6;
  4599. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4600. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4601. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4602. st_synchronize();
  4603. target[E_AXIS] += (FIL_COOLING);
  4604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4605. target[E_AXIS] += (FIL_COOLING*-1);
  4606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4607. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4609. st_synchronize();
  4610. #else
  4611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4612. #endif // SNMM
  4613. //finish moves
  4614. st_synchronize();
  4615. //disable extruder steppers so filament can be removed
  4616. disable_e0();
  4617. disable_e1();
  4618. disable_e2();
  4619. delay(100);
  4620. //Wait for user to insert filament
  4621. uint8_t cnt=0;
  4622. int counterBeep = 0;
  4623. lcd_wait_interact();
  4624. load_filament_time = millis();
  4625. while(!lcd_clicked()){
  4626. cnt++;
  4627. manage_heater();
  4628. manage_inactivity(true);
  4629. /*#ifdef SNMM
  4630. target[E_AXIS] += 0.002;
  4631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4632. #endif // SNMM*/
  4633. if(cnt==0)
  4634. {
  4635. #if BEEPER > 0
  4636. if (counterBeep== 500){
  4637. counterBeep = 0;
  4638. }
  4639. SET_OUTPUT(BEEPER);
  4640. if (counterBeep== 0){
  4641. WRITE(BEEPER,HIGH);
  4642. }
  4643. if (counterBeep== 20){
  4644. WRITE(BEEPER,LOW);
  4645. }
  4646. counterBeep++;
  4647. #else
  4648. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4649. lcd_buzz(1000/6,100);
  4650. #else
  4651. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4652. #endif
  4653. #endif
  4654. }
  4655. }
  4656. WRITE(BEEPER, LOW);
  4657. #ifdef SNMM
  4658. display_loading();
  4659. do {
  4660. target[E_AXIS] += 0.002;
  4661. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4662. delay_keep_alive(2);
  4663. } while (!lcd_clicked());
  4664. /*if (millis() - load_filament_time > 2) {
  4665. load_filament_time = millis();
  4666. target[E_AXIS] += 0.001;
  4667. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4668. }*/
  4669. #endif
  4670. //Filament inserted
  4671. //Feed the filament to the end of nozzle quickly
  4672. #ifdef SNMM
  4673. st_synchronize();
  4674. target[E_AXIS] += bowden_length[snmm_extruder];
  4675. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4676. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4677. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4678. target[E_AXIS] += 40;
  4679. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4680. target[E_AXIS] += 10;
  4681. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4682. #else
  4683. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4684. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4685. #endif // SNMM
  4686. //Extrude some filament
  4687. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4688. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4689. //Wait for user to check the state
  4690. lcd_change_fil_state = 0;
  4691. lcd_loading_filament();
  4692. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4693. lcd_change_fil_state = 0;
  4694. lcd_alright();
  4695. switch(lcd_change_fil_state){
  4696. // Filament failed to load so load it again
  4697. case 2:
  4698. #ifdef SNMM
  4699. display_loading();
  4700. do {
  4701. target[E_AXIS] += 0.002;
  4702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4703. delay_keep_alive(2);
  4704. } while (!lcd_clicked());
  4705. st_synchronize();
  4706. target[E_AXIS] += bowden_length[snmm_extruder];
  4707. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4708. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4709. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4710. target[E_AXIS] += 40;
  4711. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4712. target[E_AXIS] += 10;
  4713. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4714. #else
  4715. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4716. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4717. #endif
  4718. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4719. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4720. lcd_loading_filament();
  4721. break;
  4722. // Filament loaded properly but color is not clear
  4723. case 3:
  4724. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4725. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4726. lcd_loading_color();
  4727. break;
  4728. // Everything good
  4729. default:
  4730. lcd_change_success();
  4731. lcd_update_enable(true);
  4732. break;
  4733. }
  4734. }
  4735. //Not let's go back to print
  4736. //Feed a little of filament to stabilize pressure
  4737. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4738. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4739. //Retract
  4740. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4741. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4742. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4743. //Move XY back
  4744. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4745. //Move Z back
  4746. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4747. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4748. //Unretract
  4749. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4750. //Set E position to original
  4751. plan_set_e_position(lastpos[E_AXIS]);
  4752. //Recover feed rate
  4753. feedmultiply=feedmultiplyBckp;
  4754. char cmd[9];
  4755. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4756. enquecommand(cmd);
  4757. lcd_setstatuspgm(WELCOME_MSG);
  4758. custom_message = false;
  4759. custom_message_type = 0;
  4760. }
  4761. break;
  4762. #endif //FILAMENTCHANGEENABLE
  4763. case 601: {
  4764. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4765. }
  4766. break;
  4767. case 602: {
  4768. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4769. }
  4770. break;
  4771. #ifdef LIN_ADVANCE
  4772. case 900: // M900: Set LIN_ADVANCE options.
  4773. gcode_M900();
  4774. break;
  4775. #endif
  4776. case 907: // M907 Set digital trimpot motor current using axis codes.
  4777. {
  4778. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4779. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4780. if(code_seen('B')) digipot_current(4,code_value());
  4781. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4782. #endif
  4783. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4784. if(code_seen('X')) digipot_current(0, code_value());
  4785. #endif
  4786. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4787. if(code_seen('Z')) digipot_current(1, code_value());
  4788. #endif
  4789. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4790. if(code_seen('E')) digipot_current(2, code_value());
  4791. #endif
  4792. #ifdef DIGIPOT_I2C
  4793. // this one uses actual amps in floating point
  4794. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4795. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4796. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4797. #endif
  4798. }
  4799. break;
  4800. case 908: // M908 Control digital trimpot directly.
  4801. {
  4802. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4803. uint8_t channel,current;
  4804. if(code_seen('P')) channel=code_value();
  4805. if(code_seen('S')) current=code_value();
  4806. digitalPotWrite(channel, current);
  4807. #endif
  4808. }
  4809. break;
  4810. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4811. {
  4812. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4813. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4814. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4815. if(code_seen('B')) microstep_mode(4,code_value());
  4816. microstep_readings();
  4817. #endif
  4818. }
  4819. break;
  4820. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4821. {
  4822. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4823. if(code_seen('S')) switch((int)code_value())
  4824. {
  4825. case 1:
  4826. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4827. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4828. break;
  4829. case 2:
  4830. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4831. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4832. break;
  4833. }
  4834. microstep_readings();
  4835. #endif
  4836. }
  4837. break;
  4838. case 701: //M701: load filament
  4839. {
  4840. enable_z();
  4841. custom_message = true;
  4842. custom_message_type = 2;
  4843. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4844. current_position[E_AXIS] += 70;
  4845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4846. current_position[E_AXIS] += 25;
  4847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4848. st_synchronize();
  4849. if (!farm_mode && loading_flag) {
  4850. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4851. while (!clean) {
  4852. lcd_update_enable(true);
  4853. lcd_update(2);
  4854. current_position[E_AXIS] += 25;
  4855. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4856. st_synchronize();
  4857. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4858. }
  4859. }
  4860. lcd_update_enable(true);
  4861. lcd_update(2);
  4862. lcd_setstatuspgm(WELCOME_MSG);
  4863. disable_z();
  4864. loading_flag = false;
  4865. custom_message = false;
  4866. custom_message_type = 0;
  4867. }
  4868. break;
  4869. case 702:
  4870. {
  4871. #ifdef SNMM
  4872. if (code_seen('U')) {
  4873. extr_unload_used(); //unload all filaments which were used in current print
  4874. }
  4875. else if (code_seen('C')) {
  4876. extr_unload(); //unload just current filament
  4877. }
  4878. else {
  4879. extr_unload_all(); //unload all filaments
  4880. }
  4881. #else
  4882. custom_message = true;
  4883. custom_message_type = 2;
  4884. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4885. current_position[E_AXIS] -= 80;
  4886. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4887. st_synchronize();
  4888. lcd_setstatuspgm(WELCOME_MSG);
  4889. custom_message = false;
  4890. custom_message_type = 0;
  4891. #endif
  4892. }
  4893. break;
  4894. case 999: // M999: Restart after being stopped
  4895. Stopped = false;
  4896. lcd_reset_alert_level();
  4897. gcode_LastN = Stopped_gcode_LastN;
  4898. FlushSerialRequestResend();
  4899. break;
  4900. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4901. }
  4902. } // end if(code_seen('M')) (end of M codes)
  4903. else if(code_seen('T'))
  4904. {
  4905. int index;
  4906. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4907. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4908. SERIAL_ECHOLNPGM("Invalid T code.");
  4909. }
  4910. else {
  4911. if (*(strchr_pointer + index) == '?') {
  4912. tmp_extruder = choose_extruder_menu();
  4913. }
  4914. else {
  4915. tmp_extruder = code_value();
  4916. }
  4917. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4918. #ifdef SNMM
  4919. #ifdef LIN_ADVANCE
  4920. if (snmm_extruder != tmp_extruder)
  4921. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4922. #endif
  4923. snmm_extruder = tmp_extruder;
  4924. st_synchronize();
  4925. delay(100);
  4926. disable_e0();
  4927. disable_e1();
  4928. disable_e2();
  4929. pinMode(E_MUX0_PIN, OUTPUT);
  4930. pinMode(E_MUX1_PIN, OUTPUT);
  4931. delay(100);
  4932. SERIAL_ECHO_START;
  4933. SERIAL_ECHO("T:");
  4934. SERIAL_ECHOLN((int)tmp_extruder);
  4935. switch (tmp_extruder) {
  4936. case 1:
  4937. WRITE(E_MUX0_PIN, HIGH);
  4938. WRITE(E_MUX1_PIN, LOW);
  4939. break;
  4940. case 2:
  4941. WRITE(E_MUX0_PIN, LOW);
  4942. WRITE(E_MUX1_PIN, HIGH);
  4943. break;
  4944. case 3:
  4945. WRITE(E_MUX0_PIN, HIGH);
  4946. WRITE(E_MUX1_PIN, HIGH);
  4947. break;
  4948. default:
  4949. WRITE(E_MUX0_PIN, LOW);
  4950. WRITE(E_MUX1_PIN, LOW);
  4951. break;
  4952. }
  4953. delay(100);
  4954. #else
  4955. if (tmp_extruder >= EXTRUDERS) {
  4956. SERIAL_ECHO_START;
  4957. SERIAL_ECHOPGM("T");
  4958. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4959. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4960. }
  4961. else {
  4962. boolean make_move = false;
  4963. if (code_seen('F')) {
  4964. make_move = true;
  4965. next_feedrate = code_value();
  4966. if (next_feedrate > 0.0) {
  4967. feedrate = next_feedrate;
  4968. }
  4969. }
  4970. #if EXTRUDERS > 1
  4971. if (tmp_extruder != active_extruder) {
  4972. // Save current position to return to after applying extruder offset
  4973. memcpy(destination, current_position, sizeof(destination));
  4974. // Offset extruder (only by XY)
  4975. int i;
  4976. for (i = 0; i < 2; i++) {
  4977. current_position[i] = current_position[i] -
  4978. extruder_offset[i][active_extruder] +
  4979. extruder_offset[i][tmp_extruder];
  4980. }
  4981. // Set the new active extruder and position
  4982. active_extruder = tmp_extruder;
  4983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4984. // Move to the old position if 'F' was in the parameters
  4985. if (make_move && Stopped == false) {
  4986. prepare_move();
  4987. }
  4988. }
  4989. #endif
  4990. SERIAL_ECHO_START;
  4991. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4992. SERIAL_PROTOCOLLN((int)active_extruder);
  4993. }
  4994. #endif
  4995. }
  4996. } // end if(code_seen('T')) (end of T codes)
  4997. #ifdef DEBUG_DCODES
  4998. else if (code_seen('D')) // D codes (debug)
  4999. {
  5000. switch((int)code_value_uint8())
  5001. {
  5002. case 0: // D0 - Reset
  5003. if (*(strchr_pointer + 1) == 0) break;
  5004. MYSERIAL.println("D0 - Reset");
  5005. asm volatile("jmp 0x00000");
  5006. break;
  5007. case 1: // D1 - Clear EEPROM
  5008. {
  5009. MYSERIAL.println("D1 - Clear EEPROM");
  5010. cli();
  5011. for (int i = 0; i < 4096; i++)
  5012. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5013. sei();
  5014. }
  5015. break;
  5016. case 2: // D2 - Read/Write PIN
  5017. {
  5018. if (code_seen('P')) // Pin (0-255)
  5019. {
  5020. int pin = (int)code_value();
  5021. if ((pin >= 0) && (pin <= 255))
  5022. {
  5023. if (code_seen('F')) // Function in/out (0/1)
  5024. {
  5025. int fnc = (int)code_value();
  5026. if (fnc == 0) pinMode(pin, INPUT);
  5027. else if (fnc == 1) pinMode(pin, OUTPUT);
  5028. }
  5029. if (code_seen('V')) // Value (0/1)
  5030. {
  5031. int val = (int)code_value();
  5032. if (val == 0) digitalWrite(pin, LOW);
  5033. else if (val == 1) digitalWrite(pin, HIGH);
  5034. }
  5035. else
  5036. {
  5037. int val = (digitalRead(pin) != LOW)?1:0;
  5038. MYSERIAL.print("PIN");
  5039. MYSERIAL.print(pin);
  5040. MYSERIAL.print("=");
  5041. MYSERIAL.println(val);
  5042. }
  5043. }
  5044. }
  5045. }
  5046. break;
  5047. }
  5048. }
  5049. #endif //DEBUG_DCODES
  5050. else
  5051. {
  5052. SERIAL_ECHO_START;
  5053. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5054. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5055. SERIAL_ECHOLNPGM("\"");
  5056. }
  5057. ClearToSend();
  5058. }
  5059. void FlushSerialRequestResend()
  5060. {
  5061. //char cmdbuffer[bufindr][100]="Resend:";
  5062. MYSERIAL.flush();
  5063. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5064. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5065. ClearToSend();
  5066. }
  5067. // Confirm the execution of a command, if sent from a serial line.
  5068. // Execution of a command from a SD card will not be confirmed.
  5069. void ClearToSend()
  5070. {
  5071. previous_millis_cmd = millis();
  5072. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5073. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5074. }
  5075. void get_coordinates()
  5076. {
  5077. bool seen[4]={false,false,false,false};
  5078. for(int8_t i=0; i < NUM_AXIS; i++) {
  5079. if(code_seen(axis_codes[i]))
  5080. {
  5081. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5082. seen[i]=true;
  5083. }
  5084. else destination[i] = current_position[i]; //Are these else lines really needed?
  5085. }
  5086. if(code_seen('F')) {
  5087. next_feedrate = code_value();
  5088. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5089. }
  5090. }
  5091. void get_arc_coordinates()
  5092. {
  5093. #ifdef SF_ARC_FIX
  5094. bool relative_mode_backup = relative_mode;
  5095. relative_mode = true;
  5096. #endif
  5097. get_coordinates();
  5098. #ifdef SF_ARC_FIX
  5099. relative_mode=relative_mode_backup;
  5100. #endif
  5101. if(code_seen('I')) {
  5102. offset[0] = code_value();
  5103. }
  5104. else {
  5105. offset[0] = 0.0;
  5106. }
  5107. if(code_seen('J')) {
  5108. offset[1] = code_value();
  5109. }
  5110. else {
  5111. offset[1] = 0.0;
  5112. }
  5113. }
  5114. void clamp_to_software_endstops(float target[3])
  5115. {
  5116. #ifdef DEBUG_DISABLE_SWLIMITS
  5117. return;
  5118. #endif //DEBUG_DISABLE_SWLIMITS
  5119. world2machine_clamp(target[0], target[1]);
  5120. // Clamp the Z coordinate.
  5121. if (min_software_endstops) {
  5122. float negative_z_offset = 0;
  5123. #ifdef ENABLE_AUTO_BED_LEVELING
  5124. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5125. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5126. #endif
  5127. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5128. }
  5129. if (max_software_endstops) {
  5130. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5131. }
  5132. }
  5133. #ifdef MESH_BED_LEVELING
  5134. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5135. float dx = x - current_position[X_AXIS];
  5136. float dy = y - current_position[Y_AXIS];
  5137. float dz = z - current_position[Z_AXIS];
  5138. int n_segments = 0;
  5139. if (mbl.active) {
  5140. float len = abs(dx) + abs(dy);
  5141. if (len > 0)
  5142. // Split to 3cm segments or shorter.
  5143. n_segments = int(ceil(len / 30.f));
  5144. }
  5145. if (n_segments > 1) {
  5146. float de = e - current_position[E_AXIS];
  5147. for (int i = 1; i < n_segments; ++ i) {
  5148. float t = float(i) / float(n_segments);
  5149. plan_buffer_line(
  5150. current_position[X_AXIS] + t * dx,
  5151. current_position[Y_AXIS] + t * dy,
  5152. current_position[Z_AXIS] + t * dz,
  5153. current_position[E_AXIS] + t * de,
  5154. feed_rate, extruder);
  5155. }
  5156. }
  5157. // The rest of the path.
  5158. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5159. current_position[X_AXIS] = x;
  5160. current_position[Y_AXIS] = y;
  5161. current_position[Z_AXIS] = z;
  5162. current_position[E_AXIS] = e;
  5163. }
  5164. #endif // MESH_BED_LEVELING
  5165. void prepare_move()
  5166. {
  5167. clamp_to_software_endstops(destination);
  5168. previous_millis_cmd = millis();
  5169. // Do not use feedmultiply for E or Z only moves
  5170. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5171. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5172. }
  5173. else {
  5174. #ifdef MESH_BED_LEVELING
  5175. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5176. #else
  5177. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5178. #endif
  5179. }
  5180. for(int8_t i=0; i < NUM_AXIS; i++) {
  5181. current_position[i] = destination[i];
  5182. }
  5183. }
  5184. void prepare_arc_move(char isclockwise) {
  5185. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5186. // Trace the arc
  5187. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5188. // As far as the parser is concerned, the position is now == target. In reality the
  5189. // motion control system might still be processing the action and the real tool position
  5190. // in any intermediate location.
  5191. for(int8_t i=0; i < NUM_AXIS; i++) {
  5192. current_position[i] = destination[i];
  5193. }
  5194. previous_millis_cmd = millis();
  5195. }
  5196. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5197. #if defined(FAN_PIN)
  5198. #if CONTROLLERFAN_PIN == FAN_PIN
  5199. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5200. #endif
  5201. #endif
  5202. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5203. unsigned long lastMotorCheck = 0;
  5204. void controllerFan()
  5205. {
  5206. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5207. {
  5208. lastMotorCheck = millis();
  5209. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5210. #if EXTRUDERS > 2
  5211. || !READ(E2_ENABLE_PIN)
  5212. #endif
  5213. #if EXTRUDER > 1
  5214. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5215. || !READ(X2_ENABLE_PIN)
  5216. #endif
  5217. || !READ(E1_ENABLE_PIN)
  5218. #endif
  5219. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5220. {
  5221. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5222. }
  5223. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5224. {
  5225. digitalWrite(CONTROLLERFAN_PIN, 0);
  5226. analogWrite(CONTROLLERFAN_PIN, 0);
  5227. }
  5228. else
  5229. {
  5230. // allows digital or PWM fan output to be used (see M42 handling)
  5231. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5232. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5233. }
  5234. }
  5235. }
  5236. #endif
  5237. #ifdef TEMP_STAT_LEDS
  5238. static bool blue_led = false;
  5239. static bool red_led = false;
  5240. static uint32_t stat_update = 0;
  5241. void handle_status_leds(void) {
  5242. float max_temp = 0.0;
  5243. if(millis() > stat_update) {
  5244. stat_update += 500; // Update every 0.5s
  5245. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5246. max_temp = max(max_temp, degHotend(cur_extruder));
  5247. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5248. }
  5249. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5250. max_temp = max(max_temp, degTargetBed());
  5251. max_temp = max(max_temp, degBed());
  5252. #endif
  5253. if((max_temp > 55.0) && (red_led == false)) {
  5254. digitalWrite(STAT_LED_RED, 1);
  5255. digitalWrite(STAT_LED_BLUE, 0);
  5256. red_led = true;
  5257. blue_led = false;
  5258. }
  5259. if((max_temp < 54.0) && (blue_led == false)) {
  5260. digitalWrite(STAT_LED_RED, 0);
  5261. digitalWrite(STAT_LED_BLUE, 1);
  5262. red_led = false;
  5263. blue_led = true;
  5264. }
  5265. }
  5266. }
  5267. #endif
  5268. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5269. {
  5270. #if defined(KILL_PIN) && KILL_PIN > -1
  5271. static int killCount = 0; // make the inactivity button a bit less responsive
  5272. const int KILL_DELAY = 10000;
  5273. #endif
  5274. if(buflen < (BUFSIZE-1)){
  5275. get_command();
  5276. }
  5277. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5278. if(max_inactive_time)
  5279. kill();
  5280. if(stepper_inactive_time) {
  5281. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5282. {
  5283. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5284. disable_x();
  5285. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5286. disable_y();
  5287. disable_z();
  5288. disable_e0();
  5289. disable_e1();
  5290. disable_e2();
  5291. }
  5292. }
  5293. }
  5294. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5295. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5296. {
  5297. chdkActive = false;
  5298. WRITE(CHDK, LOW);
  5299. }
  5300. #endif
  5301. #if defined(KILL_PIN) && KILL_PIN > -1
  5302. // Check if the kill button was pressed and wait just in case it was an accidental
  5303. // key kill key press
  5304. // -------------------------------------------------------------------------------
  5305. if( 0 == READ(KILL_PIN) )
  5306. {
  5307. killCount++;
  5308. }
  5309. else if (killCount > 0)
  5310. {
  5311. killCount--;
  5312. }
  5313. // Exceeded threshold and we can confirm that it was not accidental
  5314. // KILL the machine
  5315. // ----------------------------------------------------------------
  5316. if ( killCount >= KILL_DELAY)
  5317. {
  5318. kill();
  5319. }
  5320. #endif
  5321. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5322. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5323. #endif
  5324. #ifdef EXTRUDER_RUNOUT_PREVENT
  5325. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5326. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5327. {
  5328. bool oldstatus=READ(E0_ENABLE_PIN);
  5329. enable_e0();
  5330. float oldepos=current_position[E_AXIS];
  5331. float oldedes=destination[E_AXIS];
  5332. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5333. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5334. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5335. current_position[E_AXIS]=oldepos;
  5336. destination[E_AXIS]=oldedes;
  5337. plan_set_e_position(oldepos);
  5338. previous_millis_cmd=millis();
  5339. st_synchronize();
  5340. WRITE(E0_ENABLE_PIN,oldstatus);
  5341. }
  5342. #endif
  5343. #ifdef TEMP_STAT_LEDS
  5344. handle_status_leds();
  5345. #endif
  5346. check_axes_activity();
  5347. }
  5348. void kill(const char *full_screen_message)
  5349. {
  5350. cli(); // Stop interrupts
  5351. disable_heater();
  5352. disable_x();
  5353. // SERIAL_ECHOLNPGM("kill - disable Y");
  5354. disable_y();
  5355. disable_z();
  5356. disable_e0();
  5357. disable_e1();
  5358. disable_e2();
  5359. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5360. pinMode(PS_ON_PIN,INPUT);
  5361. #endif
  5362. SERIAL_ERROR_START;
  5363. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5364. if (full_screen_message != NULL) {
  5365. SERIAL_ERRORLNRPGM(full_screen_message);
  5366. lcd_display_message_fullscreen_P(full_screen_message);
  5367. } else {
  5368. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5369. }
  5370. // FMC small patch to update the LCD before ending
  5371. sei(); // enable interrupts
  5372. for ( int i=5; i--; lcd_update())
  5373. {
  5374. delay(200);
  5375. }
  5376. cli(); // disable interrupts
  5377. suicide();
  5378. while(1) { /* Intentionally left empty */ } // Wait for reset
  5379. }
  5380. void Stop()
  5381. {
  5382. disable_heater();
  5383. if(Stopped == false) {
  5384. Stopped = true;
  5385. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5386. SERIAL_ERROR_START;
  5387. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5388. LCD_MESSAGERPGM(MSG_STOPPED);
  5389. }
  5390. }
  5391. bool IsStopped() { return Stopped; };
  5392. #ifdef FAST_PWM_FAN
  5393. void setPwmFrequency(uint8_t pin, int val)
  5394. {
  5395. val &= 0x07;
  5396. switch(digitalPinToTimer(pin))
  5397. {
  5398. #if defined(TCCR0A)
  5399. case TIMER0A:
  5400. case TIMER0B:
  5401. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5402. // TCCR0B |= val;
  5403. break;
  5404. #endif
  5405. #if defined(TCCR1A)
  5406. case TIMER1A:
  5407. case TIMER1B:
  5408. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5409. // TCCR1B |= val;
  5410. break;
  5411. #endif
  5412. #if defined(TCCR2)
  5413. case TIMER2:
  5414. case TIMER2:
  5415. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5416. TCCR2 |= val;
  5417. break;
  5418. #endif
  5419. #if defined(TCCR2A)
  5420. case TIMER2A:
  5421. case TIMER2B:
  5422. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5423. TCCR2B |= val;
  5424. break;
  5425. #endif
  5426. #if defined(TCCR3A)
  5427. case TIMER3A:
  5428. case TIMER3B:
  5429. case TIMER3C:
  5430. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5431. TCCR3B |= val;
  5432. break;
  5433. #endif
  5434. #if defined(TCCR4A)
  5435. case TIMER4A:
  5436. case TIMER4B:
  5437. case TIMER4C:
  5438. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5439. TCCR4B |= val;
  5440. break;
  5441. #endif
  5442. #if defined(TCCR5A)
  5443. case TIMER5A:
  5444. case TIMER5B:
  5445. case TIMER5C:
  5446. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5447. TCCR5B |= val;
  5448. break;
  5449. #endif
  5450. }
  5451. }
  5452. #endif //FAST_PWM_FAN
  5453. bool setTargetedHotend(int code){
  5454. tmp_extruder = active_extruder;
  5455. if(code_seen('T')) {
  5456. tmp_extruder = code_value();
  5457. if(tmp_extruder >= EXTRUDERS) {
  5458. SERIAL_ECHO_START;
  5459. switch(code){
  5460. case 104:
  5461. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5462. break;
  5463. case 105:
  5464. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5465. break;
  5466. case 109:
  5467. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5468. break;
  5469. case 218:
  5470. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5471. break;
  5472. case 221:
  5473. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5474. break;
  5475. }
  5476. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5477. return true;
  5478. }
  5479. }
  5480. return false;
  5481. }
  5482. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5483. {
  5484. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5485. {
  5486. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5487. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5488. }
  5489. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5490. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5491. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5492. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5493. total_filament_used = 0;
  5494. }
  5495. float calculate_volumetric_multiplier(float diameter) {
  5496. float area = .0;
  5497. float radius = .0;
  5498. radius = diameter * .5;
  5499. if (! volumetric_enabled || radius == 0) {
  5500. area = 1;
  5501. }
  5502. else {
  5503. area = M_PI * pow(radius, 2);
  5504. }
  5505. return 1.0 / area;
  5506. }
  5507. void calculate_volumetric_multipliers() {
  5508. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5509. #if EXTRUDERS > 1
  5510. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5511. #if EXTRUDERS > 2
  5512. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5513. #endif
  5514. #endif
  5515. }
  5516. void delay_keep_alive(unsigned int ms)
  5517. {
  5518. for (;;) {
  5519. manage_heater();
  5520. // Manage inactivity, but don't disable steppers on timeout.
  5521. manage_inactivity(true);
  5522. lcd_update();
  5523. if (ms == 0)
  5524. break;
  5525. else if (ms >= 50) {
  5526. delay(50);
  5527. ms -= 50;
  5528. } else {
  5529. delay(ms);
  5530. ms = 0;
  5531. }
  5532. }
  5533. }
  5534. void wait_for_heater(long codenum) {
  5535. #ifdef TEMP_RESIDENCY_TIME
  5536. long residencyStart;
  5537. residencyStart = -1;
  5538. /* continue to loop until we have reached the target temp
  5539. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5540. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5541. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5542. #else
  5543. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5544. #endif //TEMP_RESIDENCY_TIME
  5545. if ((millis() - codenum) > 1000UL)
  5546. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5547. if (!farm_mode) {
  5548. SERIAL_PROTOCOLPGM("T:");
  5549. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5550. SERIAL_PROTOCOLPGM(" E:");
  5551. SERIAL_PROTOCOL((int)tmp_extruder);
  5552. #ifdef TEMP_RESIDENCY_TIME
  5553. SERIAL_PROTOCOLPGM(" W:");
  5554. if (residencyStart > -1)
  5555. {
  5556. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5557. SERIAL_PROTOCOLLN(codenum);
  5558. }
  5559. else
  5560. {
  5561. SERIAL_PROTOCOLLN("?");
  5562. }
  5563. }
  5564. #else
  5565. SERIAL_PROTOCOLLN("");
  5566. #endif
  5567. codenum = millis();
  5568. }
  5569. manage_heater();
  5570. manage_inactivity();
  5571. lcd_update();
  5572. #ifdef TEMP_RESIDENCY_TIME
  5573. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5574. or when current temp falls outside the hysteresis after target temp was reached */
  5575. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5576. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5577. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5578. {
  5579. residencyStart = millis();
  5580. }
  5581. #endif //TEMP_RESIDENCY_TIME
  5582. }
  5583. }
  5584. void check_babystep() {
  5585. int babystep_z;
  5586. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5587. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5588. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5589. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5590. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5591. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5592. lcd_update_enable(true);
  5593. }
  5594. }
  5595. #ifdef DIS
  5596. void d_setup()
  5597. {
  5598. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5599. pinMode(D_DATA, INPUT_PULLUP);
  5600. pinMode(D_REQUIRE, OUTPUT);
  5601. digitalWrite(D_REQUIRE, HIGH);
  5602. }
  5603. float d_ReadData()
  5604. {
  5605. int digit[13];
  5606. String mergeOutput;
  5607. float output;
  5608. digitalWrite(D_REQUIRE, HIGH);
  5609. for (int i = 0; i<13; i++)
  5610. {
  5611. for (int j = 0; j < 4; j++)
  5612. {
  5613. while (digitalRead(D_DATACLOCK) == LOW) {}
  5614. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5615. bitWrite(digit[i], j, digitalRead(D_DATA));
  5616. }
  5617. }
  5618. digitalWrite(D_REQUIRE, LOW);
  5619. mergeOutput = "";
  5620. output = 0;
  5621. for (int r = 5; r <= 10; r++) //Merge digits
  5622. {
  5623. mergeOutput += digit[r];
  5624. }
  5625. output = mergeOutput.toFloat();
  5626. if (digit[4] == 8) //Handle sign
  5627. {
  5628. output *= -1;
  5629. }
  5630. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5631. {
  5632. output /= 10;
  5633. }
  5634. return output;
  5635. }
  5636. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5637. int t1 = 0;
  5638. int t_delay = 0;
  5639. int digit[13];
  5640. int m;
  5641. char str[3];
  5642. //String mergeOutput;
  5643. char mergeOutput[15];
  5644. float output;
  5645. int mesh_point = 0; //index number of calibration point
  5646. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5647. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5648. float mesh_home_z_search = 4;
  5649. float row[x_points_num];
  5650. int ix = 0;
  5651. int iy = 0;
  5652. char* filename_wldsd = "wldsd.txt";
  5653. char data_wldsd[70];
  5654. char numb_wldsd[10];
  5655. d_setup();
  5656. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5657. // We don't know where we are! HOME!
  5658. // Push the commands to the front of the message queue in the reverse order!
  5659. // There shall be always enough space reserved for these commands.
  5660. repeatcommand_front(); // repeat G80 with all its parameters
  5661. enquecommand_front_P((PSTR("G28 W0")));
  5662. enquecommand_front_P((PSTR("G1 Z5")));
  5663. return;
  5664. }
  5665. bool custom_message_old = custom_message;
  5666. unsigned int custom_message_type_old = custom_message_type;
  5667. unsigned int custom_message_state_old = custom_message_state;
  5668. custom_message = true;
  5669. custom_message_type = 1;
  5670. custom_message_state = (x_points_num * y_points_num) + 10;
  5671. lcd_update(1);
  5672. mbl.reset();
  5673. babystep_undo();
  5674. card.openFile(filename_wldsd, false);
  5675. current_position[Z_AXIS] = mesh_home_z_search;
  5676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5677. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5678. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5679. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5680. setup_for_endstop_move(false);
  5681. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5682. SERIAL_PROTOCOL(x_points_num);
  5683. SERIAL_PROTOCOLPGM(",");
  5684. SERIAL_PROTOCOL(y_points_num);
  5685. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5686. SERIAL_PROTOCOL(mesh_home_z_search);
  5687. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5688. SERIAL_PROTOCOL(x_dimension);
  5689. SERIAL_PROTOCOLPGM(",");
  5690. SERIAL_PROTOCOL(y_dimension);
  5691. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5692. while (mesh_point != x_points_num * y_points_num) {
  5693. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5694. iy = mesh_point / x_points_num;
  5695. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5696. float z0 = 0.f;
  5697. current_position[Z_AXIS] = mesh_home_z_search;
  5698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5699. st_synchronize();
  5700. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5701. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5703. st_synchronize();
  5704. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5705. break;
  5706. card.closefile();
  5707. }
  5708. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5709. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5710. //strcat(data_wldsd, numb_wldsd);
  5711. //MYSERIAL.println(data_wldsd);
  5712. //delay(1000);
  5713. //delay(3000);
  5714. //t1 = millis();
  5715. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5716. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5717. memset(digit, 0, sizeof(digit));
  5718. //cli();
  5719. digitalWrite(D_REQUIRE, LOW);
  5720. for (int i = 0; i<13; i++)
  5721. {
  5722. //t1 = millis();
  5723. for (int j = 0; j < 4; j++)
  5724. {
  5725. while (digitalRead(D_DATACLOCK) == LOW) {}
  5726. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5727. bitWrite(digit[i], j, digitalRead(D_DATA));
  5728. }
  5729. //t_delay = (millis() - t1);
  5730. //SERIAL_PROTOCOLPGM(" ");
  5731. //SERIAL_PROTOCOL_F(t_delay, 5);
  5732. //SERIAL_PROTOCOLPGM(" ");
  5733. }
  5734. //sei();
  5735. digitalWrite(D_REQUIRE, HIGH);
  5736. mergeOutput[0] = '\0';
  5737. output = 0;
  5738. for (int r = 5; r <= 10; r++) //Merge digits
  5739. {
  5740. sprintf(str, "%d", digit[r]);
  5741. strcat(mergeOutput, str);
  5742. }
  5743. output = atof(mergeOutput);
  5744. if (digit[4] == 8) //Handle sign
  5745. {
  5746. output *= -1;
  5747. }
  5748. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5749. {
  5750. output *= 0.1;
  5751. }
  5752. //output = d_ReadData();
  5753. //row[ix] = current_position[Z_AXIS];
  5754. memset(data_wldsd, 0, sizeof(data_wldsd));
  5755. for (int i = 0; i <3; i++) {
  5756. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5757. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5758. strcat(data_wldsd, numb_wldsd);
  5759. strcat(data_wldsd, ";");
  5760. }
  5761. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5762. dtostrf(output, 8, 5, numb_wldsd);
  5763. strcat(data_wldsd, numb_wldsd);
  5764. //strcat(data_wldsd, ";");
  5765. card.write_command(data_wldsd);
  5766. //row[ix] = d_ReadData();
  5767. row[ix] = output; // current_position[Z_AXIS];
  5768. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5769. for (int i = 0; i < x_points_num; i++) {
  5770. SERIAL_PROTOCOLPGM(" ");
  5771. SERIAL_PROTOCOL_F(row[i], 5);
  5772. }
  5773. SERIAL_PROTOCOLPGM("\n");
  5774. }
  5775. custom_message_state--;
  5776. mesh_point++;
  5777. lcd_update(1);
  5778. }
  5779. card.closefile();
  5780. }
  5781. #endif
  5782. void temp_compensation_start() {
  5783. custom_message = true;
  5784. custom_message_type = 5;
  5785. custom_message_state = PINDA_HEAT_T + 1;
  5786. lcd_update(2);
  5787. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5788. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5789. }
  5790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5791. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5792. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5793. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5795. st_synchronize();
  5796. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5797. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5798. delay_keep_alive(1000);
  5799. custom_message_state = PINDA_HEAT_T - i;
  5800. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5801. else lcd_update(1);
  5802. }
  5803. custom_message_type = 0;
  5804. custom_message_state = 0;
  5805. custom_message = false;
  5806. }
  5807. void temp_compensation_apply() {
  5808. int i_add;
  5809. int compensation_value;
  5810. int z_shift = 0;
  5811. float z_shift_mm;
  5812. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5813. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5814. i_add = (target_temperature_bed - 60) / 10;
  5815. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5816. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5817. }else {
  5818. //interpolation
  5819. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5820. }
  5821. SERIAL_PROTOCOLPGM("\n");
  5822. SERIAL_PROTOCOLPGM("Z shift applied:");
  5823. MYSERIAL.print(z_shift_mm);
  5824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5825. st_synchronize();
  5826. plan_set_z_position(current_position[Z_AXIS]);
  5827. }
  5828. else {
  5829. //we have no temp compensation data
  5830. }
  5831. }
  5832. float temp_comp_interpolation(float inp_temperature) {
  5833. //cubic spline interpolation
  5834. int n, i, j, k;
  5835. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5836. int shift[10];
  5837. int temp_C[10];
  5838. n = 6; //number of measured points
  5839. shift[0] = 0;
  5840. for (i = 0; i < n; i++) {
  5841. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5842. temp_C[i] = 50 + i * 10; //temperature in C
  5843. x[i] = (float)temp_C[i];
  5844. f[i] = (float)shift[i];
  5845. }
  5846. if (inp_temperature < x[0]) return 0;
  5847. for (i = n - 1; i>0; i--) {
  5848. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5849. h[i - 1] = x[i] - x[i - 1];
  5850. }
  5851. //*********** formation of h, s , f matrix **************
  5852. for (i = 1; i<n - 1; i++) {
  5853. m[i][i] = 2 * (h[i - 1] + h[i]);
  5854. if (i != 1) {
  5855. m[i][i - 1] = h[i - 1];
  5856. m[i - 1][i] = h[i - 1];
  5857. }
  5858. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5859. }
  5860. //*********** forward elimination **************
  5861. for (i = 1; i<n - 2; i++) {
  5862. temp = (m[i + 1][i] / m[i][i]);
  5863. for (j = 1; j <= n - 1; j++)
  5864. m[i + 1][j] -= temp*m[i][j];
  5865. }
  5866. //*********** backward substitution *********
  5867. for (i = n - 2; i>0; i--) {
  5868. sum = 0;
  5869. for (j = i; j <= n - 2; j++)
  5870. sum += m[i][j] * s[j];
  5871. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5872. }
  5873. for (i = 0; i<n - 1; i++)
  5874. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5875. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5876. b = s[i] / 2;
  5877. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5878. d = f[i];
  5879. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5880. }
  5881. return sum;
  5882. }
  5883. void long_pause() //long pause print
  5884. {
  5885. st_synchronize();
  5886. //save currently set parameters to global variables
  5887. saved_feedmultiply = feedmultiply;
  5888. HotendTempBckp = degTargetHotend(active_extruder);
  5889. fanSpeedBckp = fanSpeed;
  5890. start_pause_print = millis();
  5891. //save position
  5892. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5893. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5894. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5895. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5896. //retract
  5897. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5899. //lift z
  5900. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5901. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5903. //set nozzle target temperature to 0
  5904. setTargetHotend(0, 0);
  5905. setTargetHotend(0, 1);
  5906. setTargetHotend(0, 2);
  5907. //Move XY to side
  5908. current_position[X_AXIS] = X_PAUSE_POS;
  5909. current_position[Y_AXIS] = Y_PAUSE_POS;
  5910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5911. // Turn off the print fan
  5912. fanSpeed = 0;
  5913. st_synchronize();
  5914. }
  5915. void serialecho_temperatures() {
  5916. float tt = degHotend(active_extruder);
  5917. SERIAL_PROTOCOLPGM("T:");
  5918. SERIAL_PROTOCOL(tt);
  5919. SERIAL_PROTOCOLPGM(" E:");
  5920. SERIAL_PROTOCOL((int)active_extruder);
  5921. SERIAL_PROTOCOLPGM(" B:");
  5922. SERIAL_PROTOCOL_F(degBed(), 1);
  5923. SERIAL_PROTOCOLLN("");
  5924. }