planner.cpp 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #include "speed_lookuptable.h"
  44. #ifdef MESH_BED_LEVELING
  45. #include "mesh_bed_leveling.h"
  46. #include "mesh_bed_calibration.h"
  47. #endif
  48. #ifdef TMC2130
  49. #include "tmc2130.h"
  50. #endif //TMC2130
  51. //===========================================================================
  52. //=============================public variables ============================
  53. //===========================================================================
  54. // Use M203 to override by software
  55. float* max_feedrate = cs.max_feedrate_normal;
  56. // Use M201 to override by software
  57. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  58. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  59. #ifdef ENABLE_AUTO_BED_LEVELING
  60. // this holds the required transform to compensate for bed level
  61. matrix_3x3 plan_bed_level_matrix = {
  62. 1.0, 0.0, 0.0,
  63. 0.0, 1.0, 0.0,
  64. 0.0, 0.0, 1.0,
  65. };
  66. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  67. // The current position of the tool in absolute steps
  68. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  69. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  70. static float previous_nominal_speed; // Nominal speed of previous path line segment
  71. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  72. uint8_t maxlimit_status;
  73. #ifdef AUTOTEMP
  74. float autotemp_max=250;
  75. float autotemp_min=210;
  76. float autotemp_factor=0.1;
  77. bool autotemp_enabled=false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  85. volatile unsigned char block_buffer_tail; // Index of the block to process now
  86. #ifdef PLANNER_DIAGNOSTICS
  87. // Diagnostic function: Minimum number of planned moves since the last
  88. static uint8_t g_cntr_planner_queue_min = 0;
  89. #endif /* PLANNER_DIAGNOSTICS */
  90. //===========================================================================
  91. //=============================private variables ============================
  92. //===========================================================================
  93. #ifdef PREVENT_DANGEROUS_EXTRUDE
  94. float extrude_min_temp=EXTRUDE_MINTEMP;
  95. #endif
  96. #ifdef LIN_ADVANCE
  97. float extruder_advance_K = LIN_ADVANCE_K;
  98. float position_float[NUM_AXIS] = { 0, 0, 0, 0 };
  99. #endif
  100. // Returns the index of the next block in the ring buffer
  101. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  102. static inline int8_t next_block_index(int8_t block_index) {
  103. if (++ block_index == BLOCK_BUFFER_SIZE)
  104. block_index = 0;
  105. return block_index;
  106. }
  107. // Returns the index of the previous block in the ring buffer
  108. static inline int8_t prev_block_index(int8_t block_index) {
  109. if (block_index == 0)
  110. block_index = BLOCK_BUFFER_SIZE;
  111. -- block_index;
  112. return block_index;
  113. }
  114. //===========================================================================
  115. //=============================functions ============================
  116. //===========================================================================
  117. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  118. // given acceleration:
  119. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  120. {
  121. if (acceleration!=0) {
  122. return((target_rate*target_rate-initial_rate*initial_rate)/
  123. (2.0*acceleration));
  124. }
  125. else {
  126. return 0.0; // acceleration was 0, set acceleration distance to 0
  127. }
  128. }
  129. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  130. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  131. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  132. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  133. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  134. {
  135. if (acceleration!=0) {
  136. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  137. (4.0*acceleration) );
  138. }
  139. else {
  140. return 0.0; // acceleration was 0, set intersection distance to 0
  141. }
  142. }
  143. // Minimum stepper rate 120Hz.
  144. #define MINIMAL_STEP_RATE 120
  145. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  146. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  147. {
  148. // These two lines are the only floating point calculations performed in this routine.
  149. // initial_rate, final_rate in Hz.
  150. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  151. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  152. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  153. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  154. // Limit minimal step rate (Otherwise the timer will overflow.)
  155. if (initial_rate < MINIMAL_STEP_RATE)
  156. initial_rate = MINIMAL_STEP_RATE;
  157. if (initial_rate > block->nominal_rate)
  158. initial_rate = block->nominal_rate;
  159. if (final_rate < MINIMAL_STEP_RATE)
  160. final_rate = MINIMAL_STEP_RATE;
  161. if (final_rate > block->nominal_rate)
  162. final_rate = block->nominal_rate;
  163. uint32_t acceleration = block->acceleration_st;
  164. if (acceleration == 0)
  165. // Don't allow zero acceleration.
  166. acceleration = 1;
  167. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  168. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  169. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  170. //FIXME assert that this result fits a 64bit unsigned int.
  171. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  172. uint32_t final_rate_sqr = final_rate*final_rate;
  173. uint32_t acceleration_x2 = acceleration << 1;
  174. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  175. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  176. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  177. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  178. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  179. // Size of Plateau of Nominal Rate.
  180. uint32_t plateau_steps = 0;
  181. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  182. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  183. // in order to reach the final_rate exactly at the end of this block.
  184. if (accel_decel_steps < block->step_event_count.wide) {
  185. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  186. } else {
  187. uint32_t acceleration_x4 = acceleration << 2;
  188. // Avoid negative numbers
  189. if (final_rate_sqr >= initial_rate_sqr) {
  190. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  191. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  192. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  193. #if 0
  194. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  195. #else
  196. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  197. if (block->step_event_count.wide & 1)
  198. accelerate_steps += acceleration_x2;
  199. accelerate_steps /= acceleration_x4;
  200. accelerate_steps += (block->step_event_count.wide >> 1);
  201. #endif
  202. if (accelerate_steps > block->step_event_count.wide)
  203. accelerate_steps = block->step_event_count.wide;
  204. } else {
  205. #if 0
  206. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  207. #else
  208. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  209. if (block->step_event_count.wide & 1)
  210. decelerate_steps += acceleration_x2;
  211. decelerate_steps /= acceleration_x4;
  212. decelerate_steps += (block->step_event_count.wide >> 1);
  213. #endif
  214. if (decelerate_steps > block->step_event_count.wide)
  215. decelerate_steps = block->step_event_count.wide;
  216. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  217. }
  218. }
  219. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  220. // This block locks the interrupts globally for 4.38 us,
  221. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  222. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  223. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  224. if (! block->busy) { // Don't update variables if block is busy.
  225. block->accelerate_until = accelerate_steps;
  226. block->decelerate_after = accelerate_steps+plateau_steps;
  227. block->initial_rate = initial_rate;
  228. block->final_rate = final_rate;
  229. }
  230. CRITICAL_SECTION_END;
  231. }
  232. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  233. // decceleration within the allotted distance.
  234. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  235. {
  236. // assert(decceleration < 0);
  237. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  238. }
  239. // Recalculates the motion plan according to the following algorithm:
  240. //
  241. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  242. // so that:
  243. // a. The junction jerk is within the set limit
  244. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  245. // acceleration.
  246. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  247. // a. The speed increase within one block would require faster accelleration than the one, true
  248. // constant acceleration.
  249. //
  250. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  251. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  252. // the set limit. Finally it will:
  253. //
  254. // 3. Recalculate trapezoids for all blocks.
  255. //
  256. //FIXME This routine is called 15x every time a new line is added to the planner,
  257. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  258. // if the CPU is found lacking computational power.
  259. //
  260. // Following sources may be used to optimize the 8-bit AVR code:
  261. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  262. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  263. //
  264. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  265. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  266. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  267. //
  268. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  269. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  270. // https://github.com/rekka/avrmultiplication
  271. //
  272. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  273. // https://courses.cit.cornell.edu/ee476/Math/
  274. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  275. //
  276. void planner_recalculate(const float &safe_final_speed)
  277. {
  278. // Reverse pass
  279. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  280. // by consuming the blocks, therefore shortening the queue.
  281. unsigned char tail = block_buffer_tail;
  282. uint8_t block_index;
  283. block_t *prev, *current, *next;
  284. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  285. // At least three blocks are in the queue?
  286. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  287. if (n_blocks >= 3) {
  288. // Initialize the last tripple of blocks.
  289. block_index = prev_block_index(block_buffer_head);
  290. next = block_buffer + block_index;
  291. current = block_buffer + (block_index = prev_block_index(block_index));
  292. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  293. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  294. // 1) it may already be running at the stepper interrupt,
  295. // 2) there is no way to limit it when going in the forward direction.
  296. while (block_index != tail) {
  297. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  298. // Don't modify the entry velocity of the starting block.
  299. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  300. // for the stepper interrupt routine to use them.
  301. tail = block_index;
  302. // Update the number of blocks to process.
  303. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  304. // SERIAL_ECHOLNPGM("START");
  305. break;
  306. }
  307. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  308. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  309. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  310. if (current->entry_speed != current->max_entry_speed) {
  311. // assert(current->entry_speed < current->max_entry_speed);
  312. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  313. // segment and the maximum acceleration allowed for this segment.
  314. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  315. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  316. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  317. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  318. // together with an assembly 32bit->16bit sqrt function.
  319. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  320. current->max_entry_speed :
  321. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  322. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  323. current->flag |= BLOCK_FLAG_RECALCULATE;
  324. }
  325. next = current;
  326. current = block_buffer + (block_index = prev_block_index(block_index));
  327. }
  328. }
  329. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  330. // Forward pass and recalculate the trapezoids.
  331. if (n_blocks >= 2) {
  332. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  333. block_index = tail;
  334. prev = block_buffer + block_index;
  335. current = block_buffer + (block_index = next_block_index(block_index));
  336. do {
  337. // If the previous block is an acceleration block, but it is not long enough to complete the
  338. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  339. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  340. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  341. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  342. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  343. // Check for junction speed change
  344. if (current->entry_speed != entry_speed) {
  345. current->entry_speed = entry_speed;
  346. current->flag |= BLOCK_FLAG_RECALCULATE;
  347. }
  348. }
  349. // Recalculate if current block entry or exit junction speed has changed.
  350. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  351. // @wavexx: FIXME: the following check is not really enough. calculate_trapezoid does block
  352. // the isr to update the rates, but we don't. we should update atomically
  353. if (!prev->busy) {
  354. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  355. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  356. #ifdef LIN_ADVANCE
  357. if (prev->use_advance_lead) {
  358. const float comp = prev->e_D_ratio * extruder_advance_K * cs.axis_steps_per_unit[E_AXIS];
  359. prev->final_adv_steps = current->entry_speed * comp;
  360. }
  361. #endif
  362. }
  363. // Reset current only to ensure next trapezoid is computed.
  364. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  365. }
  366. prev = current;
  367. current = block_buffer + (block_index = next_block_index(block_index));
  368. } while (block_index != block_buffer_head);
  369. }
  370. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  371. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  372. current = block_buffer + prev_block_index(block_buffer_head);
  373. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  374. #ifdef LIN_ADVANCE
  375. if (current->use_advance_lead) {
  376. const float comp = current->e_D_ratio * extruder_advance_K * cs.axis_steps_per_unit[E_AXIS];
  377. current->max_adv_steps = current->nominal_speed * comp;
  378. current->final_adv_steps = safe_final_speed * comp;
  379. }
  380. #endif
  381. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  382. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  383. }
  384. void plan_init() {
  385. block_buffer_head = 0;
  386. block_buffer_tail = 0;
  387. memset(position, 0, sizeof(position)); // clear position
  388. #ifdef LIN_ADVANCE
  389. memset(position_float, 0, sizeof(position)); // clear position
  390. #endif
  391. previous_speed[0] = 0.0;
  392. previous_speed[1] = 0.0;
  393. previous_speed[2] = 0.0;
  394. previous_speed[3] = 0.0;
  395. previous_nominal_speed = 0.0;
  396. }
  397. #ifdef AUTOTEMP
  398. void getHighESpeed()
  399. {
  400. static float oldt=0;
  401. if(!autotemp_enabled){
  402. return;
  403. }
  404. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  405. return; //do nothing
  406. }
  407. float high=0.0;
  408. uint8_t block_index = block_buffer_tail;
  409. while(block_index != block_buffer_head) {
  410. if((block_buffer[block_index].steps_x.wide != 0) ||
  411. (block_buffer[block_index].steps_y.wide != 0) ||
  412. (block_buffer[block_index].steps_z.wide != 0)) {
  413. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  414. //se; mm/sec;
  415. if(se>high)
  416. {
  417. high=se;
  418. }
  419. }
  420. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  421. }
  422. float g=autotemp_min+high*autotemp_factor;
  423. float t=g;
  424. if(t<autotemp_min)
  425. t=autotemp_min;
  426. if(t>autotemp_max)
  427. t=autotemp_max;
  428. if(oldt>t)
  429. {
  430. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  431. }
  432. oldt=t;
  433. setTargetHotend0(t);
  434. }
  435. #endif
  436. bool e_active()
  437. {
  438. unsigned char e_active = 0;
  439. block_t *block;
  440. if(block_buffer_tail != block_buffer_head)
  441. {
  442. uint8_t block_index = block_buffer_tail;
  443. while(block_index != block_buffer_head)
  444. {
  445. block = &block_buffer[block_index];
  446. if(block->steps_e.wide != 0) e_active++;
  447. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  448. }
  449. }
  450. return (e_active > 0) ? true : false ;
  451. }
  452. void check_axes_activity()
  453. {
  454. unsigned char x_active = 0;
  455. unsigned char y_active = 0;
  456. unsigned char z_active = 0;
  457. unsigned char e_active = 0;
  458. unsigned char tail_fan_speed = fanSpeed;
  459. block_t *block;
  460. if(block_buffer_tail != block_buffer_head)
  461. {
  462. uint8_t block_index = block_buffer_tail;
  463. tail_fan_speed = block_buffer[block_index].fan_speed;
  464. while(block_index != block_buffer_head)
  465. {
  466. block = &block_buffer[block_index];
  467. if(block->steps_x.wide != 0) x_active++;
  468. if(block->steps_y.wide != 0) y_active++;
  469. if(block->steps_z.wide != 0) z_active++;
  470. if(block->steps_e.wide != 0) e_active++;
  471. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  472. }
  473. }
  474. if((DISABLE_X) && (x_active == 0)) disable_x();
  475. if((DISABLE_Y) && (y_active == 0)) disable_y();
  476. if((DISABLE_Z) && (z_active == 0)) disable_z();
  477. if((DISABLE_E) && (e_active == 0))
  478. {
  479. disable_e0();
  480. disable_e1();
  481. disable_e2();
  482. }
  483. #if defined(FAN_PIN) && FAN_PIN > -1
  484. #ifdef FAN_KICKSTART_TIME
  485. static unsigned long fan_kick_end;
  486. if (tail_fan_speed) {
  487. if (fan_kick_end == 0) {
  488. // Just starting up fan - run at full power.
  489. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  490. tail_fan_speed = 255;
  491. } else if (fan_kick_end > _millis())
  492. // Fan still spinning up.
  493. tail_fan_speed = 255;
  494. } else {
  495. fan_kick_end = 0;
  496. }
  497. #endif//FAN_KICKSTART_TIME
  498. #ifdef FAN_SOFT_PWM
  499. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  500. fanSpeedBckp = tail_fan_speed;
  501. }
  502. else {
  503. fanSpeedSoftPwm = tail_fan_speed;
  504. }
  505. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  506. #else
  507. analogWrite(FAN_PIN,tail_fan_speed);
  508. #endif//!FAN_SOFT_PWM
  509. #endif//FAN_PIN > -1
  510. #ifdef AUTOTEMP
  511. getHighESpeed();
  512. #endif
  513. }
  514. bool waiting_inside_plan_buffer_line_print_aborted = false;
  515. /*
  516. void planner_abort_soft()
  517. {
  518. // Empty the queue.
  519. while (blocks_queued()) plan_discard_current_block();
  520. // Relay to planner wait routine, that the current line shall be canceled.
  521. waiting_inside_plan_buffer_line_print_aborted = true;
  522. //current_position[i]
  523. }
  524. */
  525. #ifdef PLANNER_DIAGNOSTICS
  526. static inline void planner_update_queue_min_counter()
  527. {
  528. uint8_t new_counter = moves_planned();
  529. if (new_counter < g_cntr_planner_queue_min)
  530. g_cntr_planner_queue_min = new_counter;
  531. }
  532. #endif /* PLANNER_DIAGNOSTICS */
  533. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  534. void planner_abort_hard()
  535. {
  536. // Abort the stepper routine and flush the planner queue.
  537. DISABLE_STEPPER_DRIVER_INTERRUPT();
  538. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  539. // First update the planner's current position in the physical motor steps.
  540. position[X_AXIS] = st_get_position(X_AXIS);
  541. position[Y_AXIS] = st_get_position(Y_AXIS);
  542. position[Z_AXIS] = st_get_position(Z_AXIS);
  543. position[E_AXIS] = st_get_position(E_AXIS);
  544. // Second update the current position of the front end.
  545. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  546. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  547. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  548. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  549. // Apply the mesh bed leveling correction to the Z axis.
  550. #ifdef MESH_BED_LEVELING
  551. if (mbl.active) {
  552. #if 1
  553. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  554. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  555. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  556. #else
  557. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  558. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  559. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  560. else {
  561. float t = float(step_events_completed) / float(current_block->step_event_count);
  562. float vec[3] = {
  563. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  564. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  565. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  566. };
  567. float pos1[3], pos2[3];
  568. for (int8_t i = 0; i < 3; ++ i) {
  569. if (current_block->direction_bits & (1<<i))
  570. vec[i] = - vec[i];
  571. pos1[i] = current_position[i] - vec[i] * t;
  572. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  573. }
  574. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  575. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  576. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  577. }
  578. #endif
  579. }
  580. #endif
  581. // Clear the planner queue, reset and re-enable the stepper timer.
  582. quickStop();
  583. // Apply inverse world correction matrix.
  584. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  585. memcpy(destination, current_position, sizeof(destination));
  586. // Resets planner junction speeds. Assumes start from rest.
  587. previous_nominal_speed = 0.0;
  588. previous_speed[0] = 0.0;
  589. previous_speed[1] = 0.0;
  590. previous_speed[2] = 0.0;
  591. previous_speed[3] = 0.0;
  592. // Relay to planner wait routine, that the current line shall be canceled.
  593. waiting_inside_plan_buffer_line_print_aborted = true;
  594. }
  595. float junction_deviation = 0.1;
  596. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  597. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  598. // calculation the caller must also provide the physical length of the line in millimeters.
  599. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  600. {
  601. // Calculate the buffer head after we push this byte
  602. int next_buffer_head = next_block_index(block_buffer_head);
  603. // If the buffer is full: good! That means we are well ahead of the robot.
  604. // Rest here until there is room in the buffer.
  605. if (block_buffer_tail == next_buffer_head) {
  606. waiting_inside_plan_buffer_line_print_aborted = false;
  607. do {
  608. manage_heater();
  609. // Vojtech: Don't disable motors inside the planner!
  610. manage_inactivity(false);
  611. lcd_update(0);
  612. } while (block_buffer_tail == next_buffer_head);
  613. if (waiting_inside_plan_buffer_line_print_aborted) {
  614. // Inside the lcd_update(0) routine the print has been aborted.
  615. // Cancel the print, do not plan the current line this routine is waiting on.
  616. #ifdef PLANNER_DIAGNOSTICS
  617. planner_update_queue_min_counter();
  618. #endif /* PLANNER_DIAGNOSTICS */
  619. return;
  620. }
  621. }
  622. #ifdef PLANNER_DIAGNOSTICS
  623. planner_update_queue_min_counter();
  624. #endif /* PLANNER_DIAGNOSTICS */
  625. #ifdef ENABLE_AUTO_BED_LEVELING
  626. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  627. #endif // ENABLE_AUTO_BED_LEVELING
  628. // Apply the machine correction matrix.
  629. {
  630. #if 0
  631. SERIAL_ECHOPGM("Planner, current position - servos: ");
  632. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  633. SERIAL_ECHOPGM(", ");
  634. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  635. SERIAL_ECHOPGM(", ");
  636. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  637. SERIAL_ECHOLNPGM("");
  638. SERIAL_ECHOPGM("Planner, target position, initial: ");
  639. MYSERIAL.print(x, 5);
  640. SERIAL_ECHOPGM(", ");
  641. MYSERIAL.print(y, 5);
  642. SERIAL_ECHOLNPGM("");
  643. SERIAL_ECHOPGM("Planner, world2machine: ");
  644. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  645. SERIAL_ECHOPGM(", ");
  646. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  647. SERIAL_ECHOPGM(", ");
  648. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  649. SERIAL_ECHOPGM(", ");
  650. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  651. SERIAL_ECHOLNPGM("");
  652. SERIAL_ECHOPGM("Planner, offset: ");
  653. MYSERIAL.print(world2machine_shift[0], 5);
  654. SERIAL_ECHOPGM(", ");
  655. MYSERIAL.print(world2machine_shift[1], 5);
  656. SERIAL_ECHOLNPGM("");
  657. #endif
  658. world2machine(x, y);
  659. #if 0
  660. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  661. MYSERIAL.print(x, 5);
  662. SERIAL_ECHOPGM(", ");
  663. MYSERIAL.print(y, 5);
  664. SERIAL_ECHOLNPGM("");
  665. #endif
  666. }
  667. // The target position of the tool in absolute steps
  668. // Calculate target position in absolute steps
  669. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  670. long target[4];
  671. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  672. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  673. #ifdef MESH_BED_LEVELING
  674. if (mbl.active){
  675. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  676. }else{
  677. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  678. }
  679. #else
  680. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  681. #endif // ENABLE_MESH_BED_LEVELING
  682. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  683. #ifdef PREVENT_DANGEROUS_EXTRUDE
  684. if(target[E_AXIS]!=position[E_AXIS])
  685. {
  686. if(degHotend(active_extruder)<extrude_min_temp)
  687. {
  688. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  689. #ifdef LIN_ADVANCE
  690. position_float[E_AXIS] = e;
  691. #endif
  692. SERIAL_ECHO_START;
  693. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  694. }
  695. #ifdef PREVENT_LENGTHY_EXTRUDE
  696. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  697. {
  698. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  699. #ifdef LIN_ADVANCE
  700. position_float[E_AXIS] = e;
  701. #endif
  702. SERIAL_ECHO_START;
  703. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  704. }
  705. #endif
  706. }
  707. #endif
  708. // Prepare to set up new block
  709. block_t *block = &block_buffer[block_buffer_head];
  710. // Set sdlen for calculating sd position
  711. block->sdlen = 0;
  712. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  713. block->busy = false;
  714. // Number of steps for each axis
  715. #ifndef COREXY
  716. // default non-h-bot planning
  717. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  718. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  719. #else
  720. // corexy planning
  721. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  722. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  723. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  724. #endif
  725. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  726. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  727. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  728. // Bail if this is a zero-length block
  729. if (block->step_event_count.wide <= dropsegments)
  730. {
  731. #ifdef PLANNER_DIAGNOSTICS
  732. planner_update_queue_min_counter();
  733. #endif /* PLANNER_DIAGNOSTICS */
  734. return;
  735. }
  736. block->fan_speed = fanSpeed;
  737. // Compute direction bits for this block
  738. block->direction_bits = 0;
  739. #ifndef COREXY
  740. if (target[X_AXIS] < position[X_AXIS])
  741. {
  742. block->direction_bits |= (1<<X_AXIS);
  743. }
  744. if (target[Y_AXIS] < position[Y_AXIS])
  745. {
  746. block->direction_bits |= (1<<Y_AXIS);
  747. }
  748. #else
  749. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  750. {
  751. block->direction_bits |= (1<<X_AXIS);
  752. }
  753. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  754. {
  755. block->direction_bits |= (1<<Y_AXIS);
  756. }
  757. #endif
  758. if (target[Z_AXIS] < position[Z_AXIS])
  759. {
  760. block->direction_bits |= (1<<Z_AXIS);
  761. }
  762. if (target[E_AXIS] < position[E_AXIS])
  763. {
  764. block->direction_bits |= (1<<E_AXIS);
  765. }
  766. block->active_extruder = extruder;
  767. //enable active axes
  768. #ifdef COREXY
  769. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  770. {
  771. enable_x();
  772. enable_y();
  773. }
  774. #else
  775. if(block->steps_x.wide != 0) enable_x();
  776. if(block->steps_y.wide != 0) enable_y();
  777. #endif
  778. if(block->steps_z.wide != 0) enable_z();
  779. // Enable extruder(s)
  780. if(block->steps_e.wide != 0)
  781. {
  782. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  783. {
  784. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  785. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  786. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  787. switch(extruder)
  788. {
  789. case 0:
  790. enable_e0();
  791. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  792. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  793. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  794. break;
  795. case 1:
  796. enable_e1();
  797. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  798. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  799. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  800. break;
  801. case 2:
  802. enable_e2();
  803. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  804. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  805. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  806. break;
  807. }
  808. }
  809. else //enable all
  810. {
  811. enable_e0();
  812. enable_e1();
  813. enable_e2();
  814. }
  815. }
  816. if (block->steps_e.wide == 0)
  817. {
  818. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  819. }
  820. else
  821. {
  822. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  823. }
  824. /* This part of the code calculates the total length of the movement.
  825. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  826. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  827. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  828. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  829. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  830. */
  831. #ifndef COREXY
  832. float delta_mm[4];
  833. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  834. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  835. #else
  836. float delta_mm[6];
  837. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  838. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  839. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  840. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  841. #endif
  842. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  843. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  844. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  845. {
  846. block->millimeters = fabs(delta_mm[E_AXIS]);
  847. }
  848. else
  849. {
  850. #ifndef COREXY
  851. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  852. #else
  853. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  854. #endif
  855. }
  856. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  857. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  858. float inverse_second = feed_rate * inverse_millimeters;
  859. int moves_queued = moves_planned();
  860. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  861. #ifdef SLOWDOWN
  862. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  863. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  864. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  865. // segment time in micro seconds
  866. unsigned long segment_time = lround(1000000.0/inverse_second);
  867. if (segment_time < cs.minsegmenttime)
  868. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  869. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  870. }
  871. #endif // SLOWDOWN
  872. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  873. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  874. // Calculate and limit speed in mm/sec for each axis
  875. float current_speed[4];
  876. float speed_factor = 1.0; //factor <=1 do decrease speed
  877. // maxlimit_status &= ~0xf;
  878. for(int i=0; i < 4; i++)
  879. {
  880. current_speed[i] = delta_mm[i] * inverse_second;
  881. if(fabs(current_speed[i]) > max_feedrate[i])
  882. {
  883. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  884. maxlimit_status |= (1 << i);
  885. }
  886. }
  887. // Correct the speed
  888. if( speed_factor < 1.0)
  889. {
  890. for(unsigned char i=0; i < 4; i++)
  891. {
  892. current_speed[i] *= speed_factor;
  893. }
  894. block->nominal_speed *= speed_factor;
  895. block->nominal_rate *= speed_factor;
  896. }
  897. // Compute and limit the acceleration rate for the trapezoid generator.
  898. // block->step_event_count ... event count of the fastest axis
  899. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  900. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  901. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  902. {
  903. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  904. #ifdef LIN_ADVANCE
  905. block->use_advance_lead = false;
  906. #endif
  907. }
  908. else
  909. {
  910. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  911. #ifdef LIN_ADVANCE
  912. /**
  913. * Use LIN_ADVANCE for blocks if all these are true:
  914. *
  915. * block->steps_e : This is a print move, because we checked for X, Y, Z steps before.
  916. * extruder_advance_K : There is an advance factor set.
  917. * delta_mm[E_AXIS] > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  918. */
  919. block->use_advance_lead = block->steps_e.wide
  920. && extruder_advance_K
  921. && delta_mm[E_AXIS] > 0;
  922. if (block->use_advance_lead) {
  923. block->e_D_ratio = (e - position_float[E_AXIS]) /
  924. sqrt(sq(x - position_float[X_AXIS])
  925. + sq(y - position_float[Y_AXIS])
  926. + sq(z - position_float[Z_AXIS]));
  927. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  928. // print move due to min. steps per segment. Never execute this with advance! This assumes
  929. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  930. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  931. if (block->e_D_ratio > 3.0)
  932. block->use_advance_lead = false;
  933. else {
  934. const uint32_t max_accel_steps_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
  935. if (block->acceleration_st > max_accel_steps_per_s2) {
  936. block->acceleration_st = max_accel_steps_per_s2;
  937. #ifdef LA_DEBUG
  938. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  939. #endif
  940. }
  941. }
  942. }
  943. #endif
  944. // Limit acceleration per axis
  945. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  946. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  947. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  948. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  949. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  950. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  951. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  952. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  953. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  954. }
  955. // Acceleration of the segment, in mm/sec^2
  956. block->acceleration = block->acceleration_st / steps_per_mm;
  957. #if 0
  958. // Oversample diagonal movements by a power of 2 up to 8x
  959. // to achieve more accurate diagonal movements.
  960. uint8_t bresenham_oversample = 1;
  961. for (uint8_t i = 0; i < 3; ++ i) {
  962. if (block->nominal_rate >= 5000) // 5kHz
  963. break;
  964. block->nominal_rate << 1;
  965. bresenham_oversample << 1;
  966. block->step_event_count << 1;
  967. }
  968. if (bresenham_oversample > 1)
  969. // Lower the acceleration steps/sec^2 to account for the oversampling.
  970. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  971. #endif
  972. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  973. #ifdef LIN_ADVANCE
  974. if (block->use_advance_lead) {
  975. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  976. // still need to replicate the *exact* same step grouping policy (see below)
  977. float advance_speed = (extruder_advance_K * block->e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  978. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  979. block->advance_rate = (F_CPU / 8.0) / advance_speed;
  980. if (block->advance_rate > 20000)
  981. block->advance_step_loops = 4;
  982. else if (block->advance_rate > 10000)
  983. block->advance_step_loops = 2;
  984. else
  985. block->advance_step_loops = 1;
  986. #ifdef LA_DEBUG
  987. if (block->advance_step_loops > 2)
  988. // @wavexx: we should really check for the difference between step_loops and
  989. // advance_step_loops instead. A difference of more than 1 will lead
  990. // to uneven speed and *should* be adjusted here by furthermore
  991. // reducing the speed.
  992. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  993. #endif
  994. }
  995. #endif
  996. // Start with a safe speed.
  997. // Safe speed is the speed, from which the machine may halt to stop immediately.
  998. float safe_speed = block->nominal_speed;
  999. bool limited = false;
  1000. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1001. float jerk = fabs(current_speed[axis]);
  1002. if (jerk > cs.max_jerk[axis]) {
  1003. // The actual jerk is lower, if it has been limited by the XY jerk.
  1004. if (limited) {
  1005. // Spare one division by a following gymnastics:
  1006. // Instead of jerk *= safe_speed / block->nominal_speed,
  1007. // multiply max_jerk[axis] by the divisor.
  1008. jerk *= safe_speed;
  1009. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1010. if (jerk > mjerk) {
  1011. safe_speed *= mjerk / jerk;
  1012. limited = true;
  1013. }
  1014. } else {
  1015. safe_speed = cs.max_jerk[axis];
  1016. limited = true;
  1017. }
  1018. }
  1019. }
  1020. // Reset the block flag.
  1021. block->flag = 0;
  1022. // Initial limit on the segment entry velocity.
  1023. float vmax_junction;
  1024. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1025. // Is it because we don't want to tinker with the first buffer line, which
  1026. // is likely to be executed by the stepper interrupt routine soon?
  1027. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1028. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1029. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1030. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1031. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1032. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1033. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1034. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1035. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1036. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1037. float v_factor = 1.f;
  1038. limited = false;
  1039. // Now limit the jerk in all axes.
  1040. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1041. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1042. float v_exit = previous_speed[axis];
  1043. float v_entry = current_speed [axis];
  1044. if (prev_speed_larger)
  1045. v_exit *= smaller_speed_factor;
  1046. if (limited) {
  1047. v_exit *= v_factor;
  1048. v_entry *= v_factor;
  1049. }
  1050. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1051. float jerk =
  1052. (v_exit > v_entry) ?
  1053. ((v_entry > 0.f || v_exit < 0.f) ?
  1054. // coasting
  1055. (v_exit - v_entry) :
  1056. // axis reversal
  1057. max(v_exit, - v_entry)) :
  1058. // v_exit <= v_entry
  1059. ((v_entry < 0.f || v_exit > 0.f) ?
  1060. // coasting
  1061. (v_entry - v_exit) :
  1062. // axis reversal
  1063. max(- v_exit, v_entry));
  1064. if (jerk > cs.max_jerk[axis]) {
  1065. v_factor *= cs.max_jerk[axis] / jerk;
  1066. limited = true;
  1067. }
  1068. }
  1069. if (limited)
  1070. vmax_junction *= v_factor;
  1071. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1072. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1073. float vmax_junction_threshold = vmax_junction * 0.99f;
  1074. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1075. // Not coasting. The machine will stop and start the movements anyway,
  1076. // better to start the segment from start.
  1077. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1078. vmax_junction = safe_speed;
  1079. }
  1080. } else {
  1081. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1082. vmax_junction = safe_speed;
  1083. }
  1084. // Max entry speed of this block equals the max exit speed of the previous block.
  1085. block->max_entry_speed = vmax_junction;
  1086. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1087. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1088. block->entry_speed = min(vmax_junction, v_allowable);
  1089. // Initialize planner efficiency flags
  1090. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1091. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1092. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1093. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1094. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1095. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1096. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1097. // Always calculate trapezoid for new block
  1098. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1099. // Update previous path unit_vector and nominal speed
  1100. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1101. previous_nominal_speed = block->nominal_speed;
  1102. previous_safe_speed = safe_speed;
  1103. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1104. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1105. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1106. if (block->step_event_count.wide <= 32767)
  1107. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1108. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1109. block_buffer_head = next_buffer_head;
  1110. // Update position
  1111. memcpy(position, target, sizeof(target)); // position[] = target[]
  1112. #ifdef LIN_ADVANCE
  1113. position_float[X_AXIS] = x;
  1114. position_float[Y_AXIS] = y;
  1115. position_float[Z_AXIS] = z;
  1116. position_float[E_AXIS] = e;
  1117. #endif
  1118. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1119. // the machine limits (maximum acceleration and maximum jerk).
  1120. // This runs asynchronously with the stepper interrupt controller, which may
  1121. // interfere with the process.
  1122. planner_recalculate(safe_speed);
  1123. // SERIAL_ECHOPGM("Q");
  1124. // SERIAL_ECHO(int(moves_planned()));
  1125. // SERIAL_ECHOLNPGM("");
  1126. #ifdef PLANNER_DIAGNOSTICS
  1127. planner_update_queue_min_counter();
  1128. #endif /* PLANNER_DIAGNOSTIC */
  1129. // The stepper timer interrupt will run continuously from now on.
  1130. // If there are no planner blocks to be executed by the stepper routine,
  1131. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1132. // from the planner queue if available.
  1133. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1134. }
  1135. #ifdef ENABLE_AUTO_BED_LEVELING
  1136. vector_3 plan_get_position() {
  1137. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1138. //position.debug("in plan_get position");
  1139. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1140. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1141. //inverse.debug("in plan_get inverse");
  1142. position.apply_rotation(inverse);
  1143. //position.debug("after rotation");
  1144. return position;
  1145. }
  1146. #endif // ENABLE_AUTO_BED_LEVELING
  1147. void plan_set_position(float x, float y, float z, const float &e)
  1148. {
  1149. #ifdef ENABLE_AUTO_BED_LEVELING
  1150. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1151. #endif // ENABLE_AUTO_BED_LEVELING
  1152. // Apply the machine correction matrix.
  1153. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1154. {
  1155. float tmpx = x;
  1156. float tmpy = y;
  1157. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1158. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1159. }
  1160. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1161. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1162. #ifdef MESH_BED_LEVELING
  1163. position[Z_AXIS] = mbl.active ?
  1164. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1165. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1166. #else
  1167. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1168. #endif // ENABLE_MESH_BED_LEVELING
  1169. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1170. #ifdef LIN_ADVANCE
  1171. position_float[X_AXIS] = x;
  1172. position_float[Y_AXIS] = y;
  1173. position_float[Z_AXIS] = z;
  1174. position_float[E_AXIS] = e;
  1175. #endif
  1176. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1177. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1178. previous_speed[0] = 0.0;
  1179. previous_speed[1] = 0.0;
  1180. previous_speed[2] = 0.0;
  1181. previous_speed[3] = 0.0;
  1182. }
  1183. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1184. void plan_set_z_position(const float &z)
  1185. {
  1186. #ifdef LIN_ADVANCE
  1187. position_float[Z_AXIS] = z;
  1188. #endif
  1189. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1190. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1191. }
  1192. void plan_set_e_position(const float &e)
  1193. {
  1194. #ifdef LIN_ADVANCE
  1195. position_float[E_AXIS] = e;
  1196. #endif
  1197. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1198. st_set_e_position(position[E_AXIS]);
  1199. }
  1200. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1201. void set_extrude_min_temp(float temp)
  1202. {
  1203. extrude_min_temp=temp;
  1204. }
  1205. #endif
  1206. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1207. void reset_acceleration_rates()
  1208. {
  1209. for(int8_t i=0; i < NUM_AXIS; i++)
  1210. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1211. }
  1212. #ifdef TMC2130
  1213. void update_mode_profile()
  1214. {
  1215. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1216. {
  1217. max_feedrate = cs.max_feedrate_normal;
  1218. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1219. }
  1220. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1221. {
  1222. max_feedrate = cs.max_feedrate_silent;
  1223. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1224. }
  1225. reset_acceleration_rates();
  1226. }
  1227. #endif //TMC2130
  1228. unsigned char number_of_blocks()
  1229. {
  1230. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1231. }
  1232. #ifdef PLANNER_DIAGNOSTICS
  1233. uint8_t planner_queue_min()
  1234. {
  1235. return g_cntr_planner_queue_min;
  1236. }
  1237. void planner_queue_min_reset()
  1238. {
  1239. g_cntr_planner_queue_min = moves_planned();
  1240. }
  1241. #endif /* PLANNER_DIAGNOSTICS */
  1242. void planner_add_sd_length(uint16_t sdlen)
  1243. {
  1244. if (block_buffer_head != block_buffer_tail) {
  1245. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1246. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1247. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1248. } else {
  1249. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1250. // at a power panic, so the length of this command may be forgotten.
  1251. }
  1252. }
  1253. uint16_t planner_calc_sd_length()
  1254. {
  1255. unsigned char _block_buffer_head = block_buffer_head;
  1256. unsigned char _block_buffer_tail = block_buffer_tail;
  1257. uint16_t sdlen = 0;
  1258. while (_block_buffer_head != _block_buffer_tail)
  1259. {
  1260. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1261. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1262. }
  1263. return sdlen;
  1264. }