swi2c.c 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. //swi2c.c
  2. #include "swi2c.h"
  3. #include <avr/io.h>
  4. #include <util/delay.h>
  5. #include <avr/pgmspace.h>
  6. #include "stdbool.h"
  7. #include "Configuration_prusa.h"
  8. #include "pins.h"
  9. #include "fastio.h"
  10. #ifdef SWI2C_SCL
  11. #define SWI2C_RMSK 0x01 //read mask (bit0 = 1)
  12. #define SWI2C_WMSK 0x00 //write mask (bit0 = 0)
  13. #define SWI2C_ASHF 0x01 //address shift (<< 1)
  14. #define SWI2C_DMSK 0x7f //device address mask
  15. static void __delay(void);
  16. static void swi2c_start(void);
  17. static void swi2c_stop(void);
  18. // static void swi2c_ack(void);
  19. static void swi2c_nack(void);
  20. static uint8_t swi2c_wait_ack();
  21. static uint8_t swi2c_read(void);
  22. static void swi2c_write(uint8_t data);
  23. void swi2c_init(void)
  24. {
  25. SET_INPUT(SWI2C_SDA);
  26. WRITE(SWI2C_SDA, 1); //SDA must be input with pullups while we are not sure if the slave is outputing or not
  27. WRITE(SWI2C_SCL, 0);
  28. SET_OUTPUT(SWI2C_SCL); //SCL can be an output at all times. The bus is not in a multi-master configuration.
  29. for (uint8_t i = 0; i < 100; i++) //wait. Not sure what for, but wait anyway.
  30. __delay();
  31. for (uint8_t i = 0; i < 10; i++) { //send nack 10 times. This makes sure that the slave gets a nack regardless of it's state when we init the bus.
  32. swi2c_nack();
  33. }
  34. swi2c_stop(); //"release" the bus by sending a stop condition.
  35. SET_OUTPUT(SWI2C_SDA); //finally make the SDA line an output since the bus is idle for sure.
  36. }
  37. static void __delay(void)
  38. {
  39. _delay_us(1.5);
  40. }
  41. static void swi2c_start(void)
  42. {
  43. WRITE(SWI2C_SDA, 0);
  44. __delay();
  45. WRITE(SWI2C_SCL, 0);
  46. __delay();
  47. }
  48. static void swi2c_stop(void)
  49. {
  50. WRITE(SWI2C_SCL, 1);
  51. __delay();
  52. WRITE(SWI2C_SDA, 1);
  53. __delay();
  54. }
  55. /*
  56. static void swi2c_ack(void)
  57. {
  58. WRITE(SWI2C_SDA, 0);
  59. __delay();
  60. WRITE(SWI2C_SCL, 1);
  61. __delay();
  62. WRITE(SWI2C_SCL, 0);
  63. __delay();
  64. }
  65. */
  66. static void swi2c_nack(void)
  67. {
  68. WRITE(SWI2C_SDA, 1);
  69. __delay();
  70. WRITE(SWI2C_SCL, 1);
  71. __delay();
  72. WRITE(SWI2C_SCL, 0);
  73. __delay();
  74. }
  75. static uint8_t swi2c_wait_ack()
  76. {
  77. SET_INPUT(SWI2C_SDA);
  78. __delay();
  79. // WRITE(SWI2C_SDA, 1);
  80. __delay();
  81. WRITE(SWI2C_SCL, 1);
  82. // __delay();
  83. uint8_t ack = 0;
  84. uint16_t ackto = SWI2C_TMO;
  85. while (!(ack = (!READ(SWI2C_SDA))) && ackto--) __delay();
  86. WRITE(SWI2C_SCL, 0);
  87. __delay();
  88. SET_OUTPUT(SWI2C_SDA);
  89. __delay();
  90. WRITE(SWI2C_SDA, 0);
  91. __delay();
  92. return ack;
  93. }
  94. static uint8_t swi2c_read(void)
  95. {
  96. WRITE(SWI2C_SDA, 1);
  97. __delay();
  98. SET_INPUT(SWI2C_SDA);
  99. uint8_t data = 0;
  100. for (uint8_t bit = 8; bit-- > 0;)
  101. {
  102. WRITE(SWI2C_SCL, 1);
  103. __delay();
  104. data |= (READ(SWI2C_SDA)) << bit;
  105. WRITE(SWI2C_SCL, 0);
  106. __delay();
  107. }
  108. SET_OUTPUT(SWI2C_SDA);
  109. return data;
  110. }
  111. static void swi2c_write(uint8_t data)
  112. {
  113. for (uint8_t bit = 8; bit-- > 0;)
  114. {
  115. WRITE(SWI2C_SDA, data & _BV(bit));
  116. __delay();
  117. WRITE(SWI2C_SCL, 1);
  118. __delay();
  119. WRITE(SWI2C_SCL, 0);
  120. __delay();
  121. }
  122. }
  123. uint8_t swi2c_check(uint8_t dev_addr)
  124. {
  125. swi2c_start();
  126. swi2c_write((dev_addr & SWI2C_DMSK) << SWI2C_ASHF);
  127. if (!swi2c_wait_ack()) { swi2c_stop(); return 1; }
  128. swi2c_stop();
  129. return 0;
  130. }
  131. #ifdef SWI2C_A8 //8bit address
  132. uint8_t swi2c_readByte_A8(uint8_t dev_addr, uint8_t addr, uint8_t* pbyte)
  133. {
  134. swi2c_start();
  135. swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
  136. if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
  137. swi2c_write(addr & 0xff);
  138. if (!swi2c_wait_ack()) return 0;
  139. swi2c_stop();
  140. swi2c_start();
  141. swi2c_write(SWI2C_RMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
  142. if (!swi2c_wait_ack()) return 0;
  143. uint8_t byte = swi2c_read();
  144. swi2c_stop();
  145. if (pbyte) *pbyte = byte;
  146. return 1;
  147. }
  148. uint8_t swi2c_writeByte_A8(uint8_t dev_addr, uint8_t addr, uint8_t* pbyte)
  149. {
  150. swi2c_start();
  151. swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
  152. if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
  153. swi2c_write(addr & 0xff);
  154. if (!swi2c_wait_ack()) return 0;
  155. swi2c_write(*pbyte);
  156. if (!swi2c_wait_ack()) return 0;
  157. swi2c_stop();
  158. return 1;
  159. }
  160. #endif //SWI2C_A8
  161. #ifdef SWI2C_A16 //16bit address
  162. uint8_t swi2c_readByte_A16(uint8_t dev_addr, unsigned short addr, uint8_t* pbyte)
  163. {
  164. swi2c_start();
  165. swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
  166. if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
  167. swi2c_write(addr >> 8);
  168. if (!swi2c_wait_ack()) return 0;
  169. swi2c_write(addr & 0xff);
  170. if (!swi2c_wait_ack()) return 0;
  171. swi2c_stop();
  172. swi2c_start();
  173. swi2c_write(SWI2C_RMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
  174. if (!swi2c_wait_ack()) return 0;
  175. uint8_t byte = swi2c_read();
  176. swi2c_stop();
  177. if (pbyte) *pbyte = byte;
  178. return 1;
  179. }
  180. uint8_t swi2c_writeByte_A16(uint8_t dev_addr, unsigned short addr, uint8_t* pbyte)
  181. {
  182. swi2c_start();
  183. swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
  184. if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
  185. swi2c_write(addr >> 8);
  186. if (!swi2c_wait_ack()) return 0;
  187. swi2c_write(addr & 0xff);
  188. if (!swi2c_wait_ack()) return 0;
  189. swi2c_write(*pbyte);
  190. if (!swi2c_wait_ack()) return 0;
  191. swi2c_stop();
  192. return 1;
  193. }
  194. #endif //SWI2C_A16
  195. #endif //SWI2C_SCL