Marlin_main.cpp 272 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. #ifdef TMC2130
  492. extern int8_t CrashDetectMenu;
  493. void crashdet_enable()
  494. {
  495. // MYSERIAL.println("crashdet_enable");
  496. tmc2130_sg_stop_on_crash = true;
  497. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  498. CrashDetectMenu = 1;
  499. }
  500. void crashdet_disable()
  501. {
  502. // MYSERIAL.println("crashdet_disable");
  503. tmc2130_sg_stop_on_crash = false;
  504. tmc2130_sg_crash = 0;
  505. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  506. CrashDetectMenu = 0;
  507. }
  508. void crashdet_stop_and_save_print()
  509. {
  510. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  511. }
  512. void crashdet_restore_print_and_continue()
  513. {
  514. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  515. // babystep_apply();
  516. }
  517. void crashdet_stop_and_save_print2()
  518. {
  519. cli();
  520. planner_abort_hard(); //abort printing
  521. cmdqueue_reset(); //empty cmdqueue
  522. card.sdprinting = false;
  523. card.closefile();
  524. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  525. st_reset_timer();
  526. sei();
  527. }
  528. void crashdet_detected(uint8_t mask)
  529. {
  530. // printf("CRASH_DETECTED");
  531. /* while (!is_buffer_empty())
  532. {
  533. process_commands();
  534. cmdqueue_pop_front();
  535. }*/
  536. st_synchronize();
  537. lcd_update_enable(true);
  538. lcd_implementation_clear();
  539. lcd_update(2);
  540. if (mask & X_AXIS_MASK)
  541. {
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  543. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  544. }
  545. if (mask & Y_AXIS_MASK)
  546. {
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  548. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  549. }
  550. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  551. bool yesno = true;
  552. #else
  553. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  554. #endif
  555. lcd_update_enable(true);
  556. lcd_update(2);
  557. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  558. if (yesno)
  559. {
  560. enquecommand_P(PSTR("G28 X Y"));
  561. enquecommand_P(PSTR("CRASH_RECOVER"));
  562. }
  563. else
  564. {
  565. enquecommand_P(PSTR("CRASH_CANCEL"));
  566. }
  567. }
  568. void crashdet_recover()
  569. {
  570. crashdet_restore_print_and_continue();
  571. tmc2130_sg_stop_on_crash = true;
  572. }
  573. void crashdet_cancel()
  574. {
  575. card.sdprinting = false;
  576. card.closefile();
  577. tmc2130_sg_stop_on_crash = true;
  578. }
  579. void failstats_reset_print()
  580. {
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  585. }
  586. #endif //TMC2130
  587. #ifdef MESH_BED_LEVELING
  588. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  589. #endif
  590. // Factory reset function
  591. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  592. // Level input parameter sets depth of reset
  593. // Quiet parameter masks all waitings for user interact.
  594. int er_progress = 0;
  595. void factory_reset(char level, bool quiet)
  596. {
  597. lcd_implementation_clear();
  598. int cursor_pos = 0;
  599. switch (level) {
  600. // Level 0: Language reset
  601. case 0:
  602. WRITE(BEEPER, HIGH);
  603. _delay_ms(100);
  604. WRITE(BEEPER, LOW);
  605. lcd_force_language_selection();
  606. break;
  607. //Level 1: Reset statistics
  608. case 1:
  609. WRITE(BEEPER, HIGH);
  610. _delay_ms(100);
  611. WRITE(BEEPER, LOW);
  612. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  613. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  616. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  617. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  620. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  621. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  622. lcd_menu_statistics();
  623. break;
  624. // Level 2: Prepare for shipping
  625. case 2:
  626. //lcd_printPGM(PSTR("Factory RESET"));
  627. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  628. // Force language selection at the next boot up.
  629. lcd_force_language_selection();
  630. // Force the "Follow calibration flow" message at the next boot up.
  631. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  632. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  633. farm_no = 0;
  634. farm_mode == false;
  635. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  636. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  637. WRITE(BEEPER, HIGH);
  638. _delay_ms(100);
  639. WRITE(BEEPER, LOW);
  640. //_delay_ms(2000);
  641. break;
  642. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  643. case 3:
  644. lcd_printPGM(PSTR("Factory RESET"));
  645. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. er_progress = 0;
  650. lcd_print_at_PGM(3, 3, PSTR(" "));
  651. lcd_implementation_print_at(3, 3, er_progress);
  652. // Erase EEPROM
  653. for (int i = 0; i < 4096; i++) {
  654. eeprom_write_byte((uint8_t*)i, 0xFF);
  655. if (i % 41 == 0) {
  656. er_progress++;
  657. lcd_print_at_PGM(3, 3, PSTR(" "));
  658. lcd_implementation_print_at(3, 3, er_progress);
  659. lcd_printPGM(PSTR("%"));
  660. }
  661. }
  662. break;
  663. case 4:
  664. bowden_menu();
  665. break;
  666. default:
  667. break;
  668. }
  669. }
  670. #include "LiquidCrystal.h"
  671. extern LiquidCrystal lcd;
  672. FILE _lcdout = {0};
  673. int lcd_putchar(char c, FILE *stream)
  674. {
  675. lcd.write(c);
  676. return 0;
  677. }
  678. FILE _uartout = {0};
  679. int uart_putchar(char c, FILE *stream)
  680. {
  681. MYSERIAL.write(c);
  682. return 0;
  683. }
  684. void lcd_splash()
  685. {
  686. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  687. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  688. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  689. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  690. }
  691. void factory_reset()
  692. {
  693. KEEPALIVE_STATE(PAUSED_FOR_USER);
  694. if (!READ(BTN_ENC))
  695. {
  696. _delay_ms(1000);
  697. if (!READ(BTN_ENC))
  698. {
  699. lcd_implementation_clear();
  700. lcd_printPGM(PSTR("Factory RESET"));
  701. SET_OUTPUT(BEEPER);
  702. WRITE(BEEPER, HIGH);
  703. while (!READ(BTN_ENC));
  704. WRITE(BEEPER, LOW);
  705. _delay_ms(2000);
  706. char level = reset_menu();
  707. factory_reset(level, false);
  708. switch (level) {
  709. case 0: _delay_ms(0); break;
  710. case 1: _delay_ms(0); break;
  711. case 2: _delay_ms(0); break;
  712. case 3: _delay_ms(0); break;
  713. }
  714. // _delay_ms(100);
  715. /*
  716. #ifdef MESH_BED_LEVELING
  717. _delay_ms(2000);
  718. if (!READ(BTN_ENC))
  719. {
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. _delay_ms(200);
  724. WRITE(BEEPER, HIGH);
  725. _delay_ms(100);
  726. WRITE(BEEPER, LOW);
  727. int _z = 0;
  728. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  729. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  730. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  731. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  732. }
  733. else
  734. {
  735. WRITE(BEEPER, HIGH);
  736. _delay_ms(100);
  737. WRITE(BEEPER, LOW);
  738. }
  739. #endif // mesh */
  740. }
  741. }
  742. else
  743. {
  744. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  745. }
  746. KEEPALIVE_STATE(IN_HANDLER);
  747. }
  748. void show_fw_version_warnings() {
  749. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  750. switch (FW_DEV_VERSION) {
  751. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  752. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  753. case(FW_VERSION_DEVEL):
  754. case(FW_VERSION_DEBUG):
  755. lcd_update_enable(false);
  756. lcd_implementation_clear();
  757. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  758. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  759. #else
  760. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  761. #endif
  762. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  763. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  764. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  765. lcd_wait_for_click();
  766. break;
  767. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  768. }
  769. lcd_update_enable(true);
  770. }
  771. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  772. {
  773. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  774. }
  775. // "Setup" function is called by the Arduino framework on startup.
  776. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  777. // are initialized by the main() routine provided by the Arduino framework.
  778. void setup()
  779. {
  780. lcd_init();
  781. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  782. lcd_splash();
  783. setup_killpin();
  784. setup_powerhold();
  785. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  786. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  787. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  788. if (farm_no == 0xFFFF) farm_no = 0;
  789. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  790. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  791. if (farm_mode)
  792. {
  793. prusa_statistics(8);
  794. selectedSerialPort = 1;
  795. }
  796. MYSERIAL.begin(BAUDRATE);
  797. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  798. stdout = uartout;
  799. SERIAL_PROTOCOLLNPGM("start");
  800. SERIAL_ECHO_START;
  801. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  802. #if 0
  803. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  804. for (int i = 0; i < 4096; ++i) {
  805. int b = eeprom_read_byte((unsigned char*)i);
  806. if (b != 255) {
  807. SERIAL_ECHO(i);
  808. SERIAL_ECHO(":");
  809. SERIAL_ECHO(b);
  810. SERIAL_ECHOLN("");
  811. }
  812. }
  813. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  814. #endif
  815. // Check startup - does nothing if bootloader sets MCUSR to 0
  816. byte mcu = MCUSR;
  817. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  818. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  819. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  820. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  821. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  822. if (mcu & 1) puts_P(MSG_POWERUP);
  823. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  824. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  825. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  826. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  827. MCUSR = 0;
  828. //SERIAL_ECHORPGM(MSG_MARLIN);
  829. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  830. #ifdef STRING_VERSION_CONFIG_H
  831. #ifdef STRING_CONFIG_H_AUTHOR
  832. SERIAL_ECHO_START;
  833. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  834. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  835. SERIAL_ECHORPGM(MSG_AUTHOR);
  836. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  837. SERIAL_ECHOPGM("Compiled: ");
  838. SERIAL_ECHOLNPGM(__DATE__);
  839. #endif
  840. #endif
  841. SERIAL_ECHO_START;
  842. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  843. SERIAL_ECHO(freeMemory());
  844. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  845. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  846. //lcd_update_enable(false); // why do we need this?? - andre
  847. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  848. bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  849. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  850. tp_init(); // Initialize temperature loop
  851. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  852. plan_init(); // Initialize planner;
  853. watchdog_init();
  854. factory_reset();
  855. #ifdef TMC2130
  856. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  857. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  858. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  859. if (crashdet)
  860. {
  861. crashdet_enable();
  862. MYSERIAL.println("CrashDetect ENABLED!");
  863. }
  864. else
  865. {
  866. crashdet_disable();
  867. MYSERIAL.println("CrashDetect DISABLED");
  868. }
  869. #endif //TMC2130
  870. st_init(); // Initialize stepper, this enables interrupts!
  871. setup_photpin();
  872. servo_init();
  873. // Reset the machine correction matrix.
  874. // It does not make sense to load the correction matrix until the machine is homed.
  875. world2machine_reset();
  876. #ifdef PAT9125
  877. fsensor_init();
  878. #endif //PAT9125
  879. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  880. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  881. #endif
  882. #ifdef DIGIPOT_I2C
  883. digipot_i2c_init();
  884. #endif
  885. setup_homepin();
  886. #ifdef TMC2130
  887. if (1) {
  888. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  889. // try to run to zero phase before powering the Z motor.
  890. // Move in negative direction
  891. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  892. // Round the current micro-micro steps to micro steps.
  893. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  894. // Until the phase counter is reset to zero.
  895. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  896. delay(2);
  897. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  898. delay(2);
  899. }
  900. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  901. }
  902. #endif //TMC2130
  903. #if defined(Z_AXIS_ALWAYS_ON)
  904. enable_z();
  905. #endif
  906. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  907. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  908. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  909. if (farm_no == 0xFFFF) farm_no = 0;
  910. if (farm_mode)
  911. {
  912. prusa_statistics(8);
  913. }
  914. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  915. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  916. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  917. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  918. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  919. // where all the EEPROM entries are set to 0x0ff.
  920. // Once a firmware boots up, it forces at least a language selection, which changes
  921. // EEPROM_LANG to number lower than 0x0ff.
  922. // 1) Set a high power mode.
  923. #ifdef TMC2130
  924. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  925. tmc2130_mode = TMC2130_MODE_NORMAL;
  926. #endif //TMC2130
  927. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  928. }
  929. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  930. // but this times out if a blocking dialog is shown in setup().
  931. card.initsd();
  932. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  933. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  934. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  935. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  936. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  937. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  938. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  939. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  940. #ifdef SNMM
  941. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  942. int _z = BOWDEN_LENGTH;
  943. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  944. }
  945. #endif
  946. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  947. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  948. // is being written into the EEPROM, so the update procedure will be triggered only once.
  949. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  950. if (lang_selected >= LANG_NUM){
  951. lcd_mylang();
  952. }
  953. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  954. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  955. temp_cal_active = false;
  956. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  957. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  958. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  959. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  960. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  961. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  962. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  963. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  964. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  965. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  966. temp_cal_active = true;
  967. }
  968. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  969. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  970. }
  971. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  972. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  973. }
  974. check_babystep(); //checking if Z babystep is in allowed range
  975. #ifdef UVLO_SUPPORT
  976. setup_uvlo_interrupt();
  977. #endif //UVLO_SUPPORT
  978. #ifndef DEBUG_DISABLE_FANCHECK
  979. setup_fan_interrupt();
  980. #endif //DEBUG_DISABLE_FANCHECK
  981. #ifndef DEBUG_DISABLE_FSENSORCHECK
  982. fsensor_setup_interrupt();
  983. #endif //DEBUG_DISABLE_FSENSORCHECK
  984. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  985. #ifndef DEBUG_DISABLE_STARTMSGS
  986. KEEPALIVE_STATE(PAUSED_FOR_USER);
  987. show_fw_version_warnings();
  988. if (!previous_settings_retrieved) {
  989. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
  990. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  991. }
  992. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  993. lcd_wizard(0);
  994. }
  995. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  996. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  997. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  998. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  999. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1000. // Show the message.
  1001. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1002. }
  1003. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1004. // Show the message.
  1005. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1006. lcd_update_enable(true);
  1007. }
  1008. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1009. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1010. lcd_update_enable(true);
  1011. }
  1012. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1013. // Show the message.
  1014. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1015. }
  1016. }
  1017. KEEPALIVE_STATE(IN_PROCESS);
  1018. #endif //DEBUG_DISABLE_STARTMSGS
  1019. lcd_update_enable(true);
  1020. lcd_implementation_clear();
  1021. lcd_update(2);
  1022. // Store the currently running firmware into an eeprom,
  1023. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1024. update_current_firmware_version_to_eeprom();
  1025. #ifdef UVLO_SUPPORT
  1026. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1027. /*
  1028. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1029. else {
  1030. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1031. lcd_update_enable(true);
  1032. lcd_update(2);
  1033. lcd_setstatuspgm(WELCOME_MSG);
  1034. }
  1035. */
  1036. manage_heater(); // Update temperatures
  1037. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1038. MYSERIAL.println("Power panic detected!");
  1039. MYSERIAL.print("Current bed temp:");
  1040. MYSERIAL.println(degBed());
  1041. MYSERIAL.print("Saved bed temp:");
  1042. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1043. #endif
  1044. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1045. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1046. MYSERIAL.println("Automatic recovery!");
  1047. #endif
  1048. recover_print(1);
  1049. }
  1050. else{
  1051. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1052. MYSERIAL.println("Normal recovery!");
  1053. #endif
  1054. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1055. else {
  1056. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1057. lcd_update_enable(true);
  1058. lcd_update(2);
  1059. lcd_setstatuspgm(WELCOME_MSG);
  1060. }
  1061. }
  1062. }
  1063. #endif //UVLO_SUPPORT
  1064. KEEPALIVE_STATE(NOT_BUSY);
  1065. wdt_enable(WDTO_4S);
  1066. }
  1067. #ifdef PAT9125
  1068. void fsensor_init() {
  1069. int pat9125 = pat9125_init();
  1070. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1071. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1072. if (!pat9125)
  1073. {
  1074. fsensor = 0; //disable sensor
  1075. fsensor_not_responding = true;
  1076. }
  1077. else {
  1078. fsensor_not_responding = false;
  1079. }
  1080. puts_P(PSTR("FSensor "));
  1081. if (fsensor)
  1082. {
  1083. puts_P(PSTR("ENABLED\n"));
  1084. fsensor_enable();
  1085. }
  1086. else
  1087. {
  1088. puts_P(PSTR("DISABLED\n"));
  1089. fsensor_disable();
  1090. }
  1091. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1092. filament_autoload_enabled = false;
  1093. fsensor_disable();
  1094. #endif //DEBUG_DISABLE_FSENSORCHECK
  1095. }
  1096. #endif //PAT9125
  1097. void trace();
  1098. #define CHUNK_SIZE 64 // bytes
  1099. #define SAFETY_MARGIN 1
  1100. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1101. int chunkHead = 0;
  1102. int serial_read_stream() {
  1103. setTargetHotend(0, 0);
  1104. setTargetBed(0);
  1105. lcd_implementation_clear();
  1106. lcd_printPGM(PSTR(" Upload in progress"));
  1107. // first wait for how many bytes we will receive
  1108. uint32_t bytesToReceive;
  1109. // receive the four bytes
  1110. char bytesToReceiveBuffer[4];
  1111. for (int i=0; i<4; i++) {
  1112. int data;
  1113. while ((data = MYSERIAL.read()) == -1) {};
  1114. bytesToReceiveBuffer[i] = data;
  1115. }
  1116. // make it a uint32
  1117. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1118. // we're ready, notify the sender
  1119. MYSERIAL.write('+');
  1120. // lock in the routine
  1121. uint32_t receivedBytes = 0;
  1122. while (prusa_sd_card_upload) {
  1123. int i;
  1124. for (i=0; i<CHUNK_SIZE; i++) {
  1125. int data;
  1126. // check if we're not done
  1127. if (receivedBytes == bytesToReceive) {
  1128. break;
  1129. }
  1130. // read the next byte
  1131. while ((data = MYSERIAL.read()) == -1) {};
  1132. receivedBytes++;
  1133. // save it to the chunk
  1134. chunk[i] = data;
  1135. }
  1136. // write the chunk to SD
  1137. card.write_command_no_newline(&chunk[0]);
  1138. // notify the sender we're ready for more data
  1139. MYSERIAL.write('+');
  1140. // for safety
  1141. manage_heater();
  1142. // check if we're done
  1143. if(receivedBytes == bytesToReceive) {
  1144. trace(); // beep
  1145. card.closefile();
  1146. prusa_sd_card_upload = false;
  1147. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1148. return 0;
  1149. }
  1150. }
  1151. }
  1152. #ifdef HOST_KEEPALIVE_FEATURE
  1153. /**
  1154. * Output a "busy" message at regular intervals
  1155. * while the machine is not accepting commands.
  1156. */
  1157. void host_keepalive() {
  1158. if (farm_mode) return;
  1159. long ms = millis();
  1160. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1161. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1162. switch (busy_state) {
  1163. case IN_HANDLER:
  1164. case IN_PROCESS:
  1165. SERIAL_ECHO_START;
  1166. SERIAL_ECHOLNPGM("busy: processing");
  1167. break;
  1168. case PAUSED_FOR_USER:
  1169. SERIAL_ECHO_START;
  1170. SERIAL_ECHOLNPGM("busy: paused for user");
  1171. break;
  1172. case PAUSED_FOR_INPUT:
  1173. SERIAL_ECHO_START;
  1174. SERIAL_ECHOLNPGM("busy: paused for input");
  1175. break;
  1176. default:
  1177. break;
  1178. }
  1179. }
  1180. prev_busy_signal_ms = ms;
  1181. }
  1182. #endif
  1183. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1184. // Before loop(), the setup() function is called by the main() routine.
  1185. void loop()
  1186. {
  1187. KEEPALIVE_STATE(NOT_BUSY);
  1188. bool stack_integrity = true;
  1189. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1190. {
  1191. is_usb_printing = true;
  1192. usb_printing_counter--;
  1193. _usb_timer = millis();
  1194. }
  1195. if (usb_printing_counter == 0)
  1196. {
  1197. is_usb_printing = false;
  1198. }
  1199. if (prusa_sd_card_upload)
  1200. {
  1201. //we read byte-by byte
  1202. serial_read_stream();
  1203. } else
  1204. {
  1205. get_command();
  1206. #ifdef SDSUPPORT
  1207. card.checkautostart(false);
  1208. #endif
  1209. if(buflen)
  1210. {
  1211. cmdbuffer_front_already_processed = false;
  1212. #ifdef SDSUPPORT
  1213. if(card.saving)
  1214. {
  1215. // Saving a G-code file onto an SD-card is in progress.
  1216. // Saving starts with M28, saving until M29 is seen.
  1217. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1218. card.write_command(CMDBUFFER_CURRENT_STRING);
  1219. if(card.logging)
  1220. process_commands();
  1221. else
  1222. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1223. } else {
  1224. card.closefile();
  1225. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1226. }
  1227. } else {
  1228. process_commands();
  1229. }
  1230. #else
  1231. process_commands();
  1232. #endif //SDSUPPORT
  1233. if (! cmdbuffer_front_already_processed && buflen)
  1234. {
  1235. // ptr points to the start of the block currently being processed.
  1236. // The first character in the block is the block type.
  1237. char *ptr = cmdbuffer + bufindr;
  1238. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1239. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1240. union {
  1241. struct {
  1242. char lo;
  1243. char hi;
  1244. } lohi;
  1245. uint16_t value;
  1246. } sdlen;
  1247. sdlen.value = 0;
  1248. {
  1249. // This block locks the interrupts globally for 3.25 us,
  1250. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1251. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1252. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1253. cli();
  1254. // Reset the command to something, which will be ignored by the power panic routine,
  1255. // so this buffer length will not be counted twice.
  1256. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1257. // Extract the current buffer length.
  1258. sdlen.lohi.lo = *ptr ++;
  1259. sdlen.lohi.hi = *ptr;
  1260. // and pass it to the planner queue.
  1261. planner_add_sd_length(sdlen.value);
  1262. sei();
  1263. }
  1264. }
  1265. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1266. // this block's SD card length will not be counted twice as its command type has been replaced
  1267. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1268. cmdqueue_pop_front();
  1269. }
  1270. host_keepalive();
  1271. }
  1272. }
  1273. //check heater every n milliseconds
  1274. manage_heater();
  1275. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1276. checkHitEndstops();
  1277. lcd_update();
  1278. #ifdef PAT9125
  1279. fsensor_update();
  1280. #endif //PAT9125
  1281. #ifdef TMC2130
  1282. tmc2130_check_overtemp();
  1283. if (tmc2130_sg_crash)
  1284. {
  1285. uint8_t crash = tmc2130_sg_crash;
  1286. tmc2130_sg_crash = 0;
  1287. // crashdet_stop_and_save_print();
  1288. switch (crash)
  1289. {
  1290. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1291. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1292. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1293. }
  1294. }
  1295. #endif //TMC2130
  1296. }
  1297. #define DEFINE_PGM_READ_ANY(type, reader) \
  1298. static inline type pgm_read_any(const type *p) \
  1299. { return pgm_read_##reader##_near(p); }
  1300. DEFINE_PGM_READ_ANY(float, float);
  1301. DEFINE_PGM_READ_ANY(signed char, byte);
  1302. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1303. static const PROGMEM type array##_P[3] = \
  1304. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1305. static inline type array(int axis) \
  1306. { return pgm_read_any(&array##_P[axis]); } \
  1307. type array##_ext(int axis) \
  1308. { return pgm_read_any(&array##_P[axis]); }
  1309. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1310. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1311. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1312. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1313. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1314. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1315. static void axis_is_at_home(int axis) {
  1316. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1317. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1318. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1319. }
  1320. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1321. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1322. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1323. saved_feedrate = feedrate;
  1324. saved_feedmultiply = feedmultiply;
  1325. feedmultiply = 100;
  1326. previous_millis_cmd = millis();
  1327. enable_endstops(enable_endstops_now);
  1328. }
  1329. static void clean_up_after_endstop_move() {
  1330. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1331. enable_endstops(false);
  1332. #endif
  1333. feedrate = saved_feedrate;
  1334. feedmultiply = saved_feedmultiply;
  1335. previous_millis_cmd = millis();
  1336. }
  1337. #ifdef ENABLE_AUTO_BED_LEVELING
  1338. #ifdef AUTO_BED_LEVELING_GRID
  1339. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1340. {
  1341. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1342. planeNormal.debug("planeNormal");
  1343. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1344. //bedLevel.debug("bedLevel");
  1345. //plan_bed_level_matrix.debug("bed level before");
  1346. //vector_3 uncorrected_position = plan_get_position_mm();
  1347. //uncorrected_position.debug("position before");
  1348. vector_3 corrected_position = plan_get_position();
  1349. // corrected_position.debug("position after");
  1350. current_position[X_AXIS] = corrected_position.x;
  1351. current_position[Y_AXIS] = corrected_position.y;
  1352. current_position[Z_AXIS] = corrected_position.z;
  1353. // put the bed at 0 so we don't go below it.
  1354. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. }
  1357. #else // not AUTO_BED_LEVELING_GRID
  1358. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1359. plan_bed_level_matrix.set_to_identity();
  1360. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1361. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1362. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1363. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1364. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1365. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1366. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1367. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1368. vector_3 corrected_position = plan_get_position();
  1369. current_position[X_AXIS] = corrected_position.x;
  1370. current_position[Y_AXIS] = corrected_position.y;
  1371. current_position[Z_AXIS] = corrected_position.z;
  1372. // put the bed at 0 so we don't go below it.
  1373. current_position[Z_AXIS] = zprobe_zoffset;
  1374. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1375. }
  1376. #endif // AUTO_BED_LEVELING_GRID
  1377. static void run_z_probe() {
  1378. plan_bed_level_matrix.set_to_identity();
  1379. feedrate = homing_feedrate[Z_AXIS];
  1380. // move down until you find the bed
  1381. float zPosition = -10;
  1382. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1383. st_synchronize();
  1384. // we have to let the planner know where we are right now as it is not where we said to go.
  1385. zPosition = st_get_position_mm(Z_AXIS);
  1386. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1387. // move up the retract distance
  1388. zPosition += home_retract_mm(Z_AXIS);
  1389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1390. st_synchronize();
  1391. // move back down slowly to find bed
  1392. feedrate = homing_feedrate[Z_AXIS]/4;
  1393. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1395. st_synchronize();
  1396. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1397. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1398. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1399. }
  1400. static void do_blocking_move_to(float x, float y, float z) {
  1401. float oldFeedRate = feedrate;
  1402. feedrate = homing_feedrate[Z_AXIS];
  1403. current_position[Z_AXIS] = z;
  1404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1405. st_synchronize();
  1406. feedrate = XY_TRAVEL_SPEED;
  1407. current_position[X_AXIS] = x;
  1408. current_position[Y_AXIS] = y;
  1409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1410. st_synchronize();
  1411. feedrate = oldFeedRate;
  1412. }
  1413. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1414. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1415. }
  1416. /// Probe bed height at position (x,y), returns the measured z value
  1417. static float probe_pt(float x, float y, float z_before) {
  1418. // move to right place
  1419. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1420. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1421. run_z_probe();
  1422. float measured_z = current_position[Z_AXIS];
  1423. SERIAL_PROTOCOLRPGM(MSG_BED);
  1424. SERIAL_PROTOCOLPGM(" x: ");
  1425. SERIAL_PROTOCOL(x);
  1426. SERIAL_PROTOCOLPGM(" y: ");
  1427. SERIAL_PROTOCOL(y);
  1428. SERIAL_PROTOCOLPGM(" z: ");
  1429. SERIAL_PROTOCOL(measured_z);
  1430. SERIAL_PROTOCOLPGM("\n");
  1431. return measured_z;
  1432. }
  1433. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1434. #ifdef LIN_ADVANCE
  1435. /**
  1436. * M900: Set and/or Get advance K factor and WH/D ratio
  1437. *
  1438. * K<factor> Set advance K factor
  1439. * R<ratio> Set ratio directly (overrides WH/D)
  1440. * W<width> H<height> D<diam> Set ratio from WH/D
  1441. */
  1442. inline void gcode_M900() {
  1443. st_synchronize();
  1444. const float newK = code_seen('K') ? code_value_float() : -1;
  1445. if (newK >= 0) extruder_advance_k = newK;
  1446. float newR = code_seen('R') ? code_value_float() : -1;
  1447. if (newR < 0) {
  1448. const float newD = code_seen('D') ? code_value_float() : -1,
  1449. newW = code_seen('W') ? code_value_float() : -1,
  1450. newH = code_seen('H') ? code_value_float() : -1;
  1451. if (newD >= 0 && newW >= 0 && newH >= 0)
  1452. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1453. }
  1454. if (newR >= 0) advance_ed_ratio = newR;
  1455. SERIAL_ECHO_START;
  1456. SERIAL_ECHOPGM("Advance K=");
  1457. SERIAL_ECHOLN(extruder_advance_k);
  1458. SERIAL_ECHOPGM(" E/D=");
  1459. const float ratio = advance_ed_ratio;
  1460. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1461. }
  1462. #endif // LIN_ADVANCE
  1463. bool check_commands() {
  1464. bool end_command_found = false;
  1465. while (buflen)
  1466. {
  1467. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1468. if (!cmdbuffer_front_already_processed)
  1469. cmdqueue_pop_front();
  1470. cmdbuffer_front_already_processed = false;
  1471. }
  1472. return end_command_found;
  1473. }
  1474. #ifdef TMC2130
  1475. bool calibrate_z_auto()
  1476. {
  1477. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1478. lcd_implementation_clear();
  1479. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1480. bool endstops_enabled = enable_endstops(true);
  1481. int axis_up_dir = -home_dir(Z_AXIS);
  1482. tmc2130_home_enter(Z_AXIS_MASK);
  1483. current_position[Z_AXIS] = 0;
  1484. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1485. set_destination_to_current();
  1486. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1487. feedrate = homing_feedrate[Z_AXIS];
  1488. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1489. st_synchronize();
  1490. // current_position[axis] = 0;
  1491. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1492. tmc2130_home_exit();
  1493. enable_endstops(false);
  1494. current_position[Z_AXIS] = 0;
  1495. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1496. set_destination_to_current();
  1497. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1498. feedrate = homing_feedrate[Z_AXIS] / 2;
  1499. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1500. st_synchronize();
  1501. enable_endstops(endstops_enabled);
  1502. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1503. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1504. return true;
  1505. }
  1506. #endif //TMC2130
  1507. void homeaxis(int axis)
  1508. {
  1509. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1510. #define HOMEAXIS_DO(LETTER) \
  1511. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1512. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1513. {
  1514. int axis_home_dir = home_dir(axis);
  1515. feedrate = homing_feedrate[axis];
  1516. #ifdef TMC2130
  1517. tmc2130_home_enter(X_AXIS_MASK << axis);
  1518. #endif
  1519. // Move right a bit, so that the print head does not touch the left end position,
  1520. // and the following left movement has a chance to achieve the required velocity
  1521. // for the stall guard to work.
  1522. current_position[axis] = 0;
  1523. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1524. // destination[axis] = 11.f;
  1525. destination[axis] = 3.f;
  1526. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1527. st_synchronize();
  1528. // Move left away from the possible collision with the collision detection disabled.
  1529. endstops_hit_on_purpose();
  1530. enable_endstops(false);
  1531. current_position[axis] = 0;
  1532. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1533. destination[axis] = - 1.;
  1534. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1535. st_synchronize();
  1536. // Now continue to move up to the left end stop with the collision detection enabled.
  1537. enable_endstops(true);
  1538. destination[axis] = - 1.1 * max_length(axis);
  1539. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1540. st_synchronize();
  1541. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1542. endstops_hit_on_purpose();
  1543. enable_endstops(false);
  1544. current_position[axis] = 0;
  1545. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1546. destination[axis] = 10.f;
  1547. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1548. st_synchronize();
  1549. endstops_hit_on_purpose();
  1550. // Now move left up to the collision, this time with a repeatable velocity.
  1551. enable_endstops(true);
  1552. destination[axis] = - 15.f;
  1553. feedrate = homing_feedrate[axis]/2;
  1554. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1555. st_synchronize();
  1556. axis_is_at_home(axis);
  1557. axis_known_position[axis] = true;
  1558. #ifdef TMC2130
  1559. tmc2130_home_exit();
  1560. #endif
  1561. // Move the X carriage away from the collision.
  1562. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1563. endstops_hit_on_purpose();
  1564. enable_endstops(false);
  1565. {
  1566. // Two full periods (4 full steps).
  1567. float gap = 0.32f * 2.f;
  1568. current_position[axis] -= gap;
  1569. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1570. current_position[axis] += gap;
  1571. }
  1572. destination[axis] = current_position[axis];
  1573. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1574. st_synchronize();
  1575. feedrate = 0.0;
  1576. }
  1577. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1578. {
  1579. int axis_home_dir = home_dir(axis);
  1580. current_position[axis] = 0;
  1581. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1582. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1583. feedrate = homing_feedrate[axis];
  1584. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1585. st_synchronize();
  1586. current_position[axis] = 0;
  1587. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1588. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1589. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1590. st_synchronize();
  1591. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1592. feedrate = homing_feedrate[axis]/2 ;
  1593. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1594. st_synchronize();
  1595. axis_is_at_home(axis);
  1596. destination[axis] = current_position[axis];
  1597. feedrate = 0.0;
  1598. endstops_hit_on_purpose();
  1599. axis_known_position[axis] = true;
  1600. }
  1601. enable_endstops(endstops_enabled);
  1602. }
  1603. /**/
  1604. void home_xy()
  1605. {
  1606. set_destination_to_current();
  1607. homeaxis(X_AXIS);
  1608. homeaxis(Y_AXIS);
  1609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1610. endstops_hit_on_purpose();
  1611. }
  1612. void refresh_cmd_timeout(void)
  1613. {
  1614. previous_millis_cmd = millis();
  1615. }
  1616. #ifdef FWRETRACT
  1617. void retract(bool retracting, bool swapretract = false) {
  1618. if(retracting && !retracted[active_extruder]) {
  1619. destination[X_AXIS]=current_position[X_AXIS];
  1620. destination[Y_AXIS]=current_position[Y_AXIS];
  1621. destination[Z_AXIS]=current_position[Z_AXIS];
  1622. destination[E_AXIS]=current_position[E_AXIS];
  1623. if (swapretract) {
  1624. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1625. } else {
  1626. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1627. }
  1628. plan_set_e_position(current_position[E_AXIS]);
  1629. float oldFeedrate = feedrate;
  1630. feedrate=retract_feedrate*60;
  1631. retracted[active_extruder]=true;
  1632. prepare_move();
  1633. current_position[Z_AXIS]-=retract_zlift;
  1634. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1635. prepare_move();
  1636. feedrate = oldFeedrate;
  1637. } else if(!retracting && retracted[active_extruder]) {
  1638. destination[X_AXIS]=current_position[X_AXIS];
  1639. destination[Y_AXIS]=current_position[Y_AXIS];
  1640. destination[Z_AXIS]=current_position[Z_AXIS];
  1641. destination[E_AXIS]=current_position[E_AXIS];
  1642. current_position[Z_AXIS]+=retract_zlift;
  1643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1644. //prepare_move();
  1645. if (swapretract) {
  1646. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1647. } else {
  1648. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1649. }
  1650. plan_set_e_position(current_position[E_AXIS]);
  1651. float oldFeedrate = feedrate;
  1652. feedrate=retract_recover_feedrate*60;
  1653. retracted[active_extruder]=false;
  1654. prepare_move();
  1655. feedrate = oldFeedrate;
  1656. }
  1657. } //retract
  1658. #endif //FWRETRACT
  1659. void trace() {
  1660. tone(BEEPER, 440);
  1661. delay(25);
  1662. noTone(BEEPER);
  1663. delay(20);
  1664. }
  1665. /*
  1666. void ramming() {
  1667. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1668. if (current_temperature[0] < 230) {
  1669. //PLA
  1670. max_feedrate[E_AXIS] = 50;
  1671. //current_position[E_AXIS] -= 8;
  1672. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1673. //current_position[E_AXIS] += 8;
  1674. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1675. current_position[E_AXIS] += 5.4;
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1677. current_position[E_AXIS] += 3.2;
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1679. current_position[E_AXIS] += 3;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1681. st_synchronize();
  1682. max_feedrate[E_AXIS] = 80;
  1683. current_position[E_AXIS] -= 82;
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1685. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1686. current_position[E_AXIS] -= 20;
  1687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1688. current_position[E_AXIS] += 5;
  1689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1690. current_position[E_AXIS] += 5;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1692. current_position[E_AXIS] -= 10;
  1693. st_synchronize();
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1695. current_position[E_AXIS] += 10;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1697. current_position[E_AXIS] -= 10;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1699. current_position[E_AXIS] += 10;
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1701. current_position[E_AXIS] -= 10;
  1702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1703. st_synchronize();
  1704. }
  1705. else {
  1706. //ABS
  1707. max_feedrate[E_AXIS] = 50;
  1708. //current_position[E_AXIS] -= 8;
  1709. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1710. //current_position[E_AXIS] += 8;
  1711. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1712. current_position[E_AXIS] += 3.1;
  1713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1714. current_position[E_AXIS] += 3.1;
  1715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1716. current_position[E_AXIS] += 4;
  1717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1718. st_synchronize();
  1719. //current_position[X_AXIS] += 23; //delay
  1720. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1721. //current_position[X_AXIS] -= 23; //delay
  1722. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1723. delay(4700);
  1724. max_feedrate[E_AXIS] = 80;
  1725. current_position[E_AXIS] -= 92;
  1726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1727. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1728. current_position[E_AXIS] -= 5;
  1729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1730. current_position[E_AXIS] += 5;
  1731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1732. current_position[E_AXIS] -= 5;
  1733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1734. st_synchronize();
  1735. current_position[E_AXIS] += 5;
  1736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1737. current_position[E_AXIS] -= 5;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1739. current_position[E_AXIS] += 5;
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1741. current_position[E_AXIS] -= 5;
  1742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1743. st_synchronize();
  1744. }
  1745. }
  1746. */
  1747. #ifdef TMC2130
  1748. void force_high_power_mode(bool start_high_power_section) {
  1749. uint8_t silent;
  1750. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1751. if (silent == 1) {
  1752. //we are in silent mode, set to normal mode to enable crash detection
  1753. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1754. st_synchronize();
  1755. cli();
  1756. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1757. tmc2130_init();
  1758. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1759. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1760. st_reset_timer();
  1761. sei();
  1762. digipot_init();
  1763. }
  1764. }
  1765. #endif //TMC2130
  1766. bool gcode_M45(bool onlyZ)
  1767. {
  1768. bool final_result = false;
  1769. #ifdef TMC2130
  1770. FORCE_HIGH_POWER_START;
  1771. #endif // TMC2130
  1772. // Only Z calibration?
  1773. if (!onlyZ)
  1774. {
  1775. setTargetBed(0);
  1776. setTargetHotend(0, 0);
  1777. setTargetHotend(0, 1);
  1778. setTargetHotend(0, 2);
  1779. adjust_bed_reset(); //reset bed level correction
  1780. }
  1781. // Disable the default update procedure of the display. We will do a modal dialog.
  1782. lcd_update_enable(false);
  1783. // Let the planner use the uncorrected coordinates.
  1784. mbl.reset();
  1785. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1786. // the planner will not perform any adjustments in the XY plane.
  1787. // Wait for the motors to stop and update the current position with the absolute values.
  1788. world2machine_revert_to_uncorrected();
  1789. // Reset the baby step value applied without moving the axes.
  1790. babystep_reset();
  1791. // Mark all axes as in a need for homing.
  1792. memset(axis_known_position, 0, sizeof(axis_known_position));
  1793. // Home in the XY plane.
  1794. //set_destination_to_current();
  1795. setup_for_endstop_move();
  1796. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1797. home_xy();
  1798. enable_endstops(false);
  1799. current_position[X_AXIS] += 5;
  1800. current_position[Y_AXIS] += 5;
  1801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1802. st_synchronize();
  1803. // Let the user move the Z axes up to the end stoppers.
  1804. #ifdef TMC2130
  1805. if (calibrate_z_auto())
  1806. {
  1807. #else //TMC2130
  1808. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1809. {
  1810. #endif //TMC2130
  1811. refresh_cmd_timeout();
  1812. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1813. //{
  1814. // lcd_wait_for_cool_down();
  1815. //}
  1816. if(!onlyZ)
  1817. {
  1818. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1819. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1820. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1821. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1822. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1823. KEEPALIVE_STATE(IN_HANDLER);
  1824. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1825. lcd_implementation_print_at(0, 2, 1);
  1826. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1827. }
  1828. // Move the print head close to the bed.
  1829. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1830. bool endstops_enabled = enable_endstops(true);
  1831. #ifdef TMC2130
  1832. tmc2130_home_enter(Z_AXIS_MASK);
  1833. #endif //TMC2130
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1835. st_synchronize();
  1836. #ifdef TMC2130
  1837. tmc2130_home_exit();
  1838. #endif //TMC2130
  1839. enable_endstops(endstops_enabled);
  1840. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1841. {
  1842. int8_t verbosity_level = 0;
  1843. if (code_seen('V'))
  1844. {
  1845. // Just 'V' without a number counts as V1.
  1846. char c = strchr_pointer[1];
  1847. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1848. }
  1849. if (onlyZ)
  1850. {
  1851. clean_up_after_endstop_move();
  1852. // Z only calibration.
  1853. // Load the machine correction matrix
  1854. world2machine_initialize();
  1855. // and correct the current_position to match the transformed coordinate system.
  1856. world2machine_update_current();
  1857. //FIXME
  1858. bool result = sample_mesh_and_store_reference();
  1859. if (result)
  1860. {
  1861. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1862. // Shipped, the nozzle height has been set already. The user can start printing now.
  1863. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1864. final_result = true;
  1865. // babystep_apply();
  1866. }
  1867. }
  1868. else
  1869. {
  1870. // Reset the baby step value and the baby step applied flag.
  1871. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1872. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1873. // Complete XYZ calibration.
  1874. uint8_t point_too_far_mask = 0;
  1875. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1876. clean_up_after_endstop_move();
  1877. // Print head up.
  1878. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1880. st_synchronize();
  1881. if (result >= 0)
  1882. {
  1883. point_too_far_mask = 0;
  1884. // Second half: The fine adjustment.
  1885. // Let the planner use the uncorrected coordinates.
  1886. mbl.reset();
  1887. world2machine_reset();
  1888. // Home in the XY plane.
  1889. setup_for_endstop_move();
  1890. home_xy();
  1891. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1892. clean_up_after_endstop_move();
  1893. // Print head up.
  1894. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1896. st_synchronize();
  1897. // if (result >= 0) babystep_apply();
  1898. }
  1899. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1900. if (result >= 0)
  1901. {
  1902. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1903. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1904. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1905. final_result = true;
  1906. }
  1907. }
  1908. #ifdef TMC2130
  1909. tmc2130_home_exit();
  1910. #endif
  1911. }
  1912. else
  1913. {
  1914. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1915. final_result = false;
  1916. }
  1917. }
  1918. else
  1919. {
  1920. // Timeouted.
  1921. }
  1922. lcd_update_enable(true);
  1923. #ifdef TMC2130
  1924. FORCE_HIGH_POWER_END;
  1925. #endif // TMC2130
  1926. return final_result;
  1927. }
  1928. void gcode_M701()
  1929. {
  1930. #ifdef SNMM
  1931. extr_adj(snmm_extruder);//loads current extruder
  1932. #else
  1933. enable_z();
  1934. custom_message = true;
  1935. custom_message_type = 2;
  1936. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1937. current_position[E_AXIS] += 70;
  1938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1939. current_position[E_AXIS] += 25;
  1940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1941. st_synchronize();
  1942. tone(BEEPER, 500);
  1943. delay_keep_alive(50);
  1944. noTone(BEEPER);
  1945. if (!farm_mode && loading_flag) {
  1946. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1947. while (!clean) {
  1948. lcd_update_enable(true);
  1949. lcd_update(2);
  1950. current_position[E_AXIS] += 25;
  1951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1952. st_synchronize();
  1953. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1954. }
  1955. }
  1956. lcd_update_enable(true);
  1957. lcd_update(2);
  1958. lcd_setstatuspgm(WELCOME_MSG);
  1959. disable_z();
  1960. loading_flag = false;
  1961. custom_message = false;
  1962. custom_message_type = 0;
  1963. #endif
  1964. }
  1965. void process_commands()
  1966. {
  1967. #ifdef FILAMENT_RUNOUT_SUPPORT
  1968. SET_INPUT(FR_SENS);
  1969. #endif
  1970. #ifdef CMDBUFFER_DEBUG
  1971. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1972. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1973. SERIAL_ECHOLNPGM("");
  1974. SERIAL_ECHOPGM("In cmdqueue: ");
  1975. SERIAL_ECHO(buflen);
  1976. SERIAL_ECHOLNPGM("");
  1977. #endif /* CMDBUFFER_DEBUG */
  1978. unsigned long codenum; //throw away variable
  1979. char *starpos = NULL;
  1980. #ifdef ENABLE_AUTO_BED_LEVELING
  1981. float x_tmp, y_tmp, z_tmp, real_z;
  1982. #endif
  1983. // PRUSA GCODES
  1984. KEEPALIVE_STATE(IN_HANDLER);
  1985. #ifdef SNMM
  1986. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1987. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1988. int8_t SilentMode;
  1989. #endif
  1990. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1991. starpos = (strchr(strchr_pointer + 5, '*'));
  1992. if (starpos != NULL)
  1993. *(starpos) = '\0';
  1994. lcd_setstatus(strchr_pointer + 5);
  1995. }
  1996. #ifdef TMC2130
  1997. else if(code_seen("CRASH_DETECTED"))
  1998. {
  1999. uint8_t mask = 0;
  2000. if (code_seen("X")) mask |= X_AXIS_MASK;
  2001. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2002. crashdet_detected(mask);
  2003. }
  2004. else if(code_seen("CRASH_RECOVER"))
  2005. crashdet_recover();
  2006. else if(code_seen("CRASH_CANCEL"))
  2007. crashdet_cancel();
  2008. #endif //TMC2130
  2009. else if(code_seen("PRUSA")){
  2010. if (code_seen("Ping")) { //PRUSA Ping
  2011. if (farm_mode) {
  2012. PingTime = millis();
  2013. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2014. }
  2015. }
  2016. else if (code_seen("PRN")) {
  2017. MYSERIAL.println(status_number);
  2018. }else if (code_seen("FAN")) {
  2019. MYSERIAL.print("E0:");
  2020. MYSERIAL.print(60*fan_speed[0]);
  2021. MYSERIAL.println(" RPM");
  2022. MYSERIAL.print("PRN0:");
  2023. MYSERIAL.print(60*fan_speed[1]);
  2024. MYSERIAL.println(" RPM");
  2025. }else if (code_seen("fn")) {
  2026. if (farm_mode) {
  2027. MYSERIAL.println(farm_no);
  2028. }
  2029. else {
  2030. MYSERIAL.println("Not in farm mode.");
  2031. }
  2032. }else if (code_seen("fv")) {
  2033. // get file version
  2034. #ifdef SDSUPPORT
  2035. card.openFile(strchr_pointer + 3,true);
  2036. while (true) {
  2037. uint16_t readByte = card.get();
  2038. MYSERIAL.write(readByte);
  2039. if (readByte=='\n') {
  2040. break;
  2041. }
  2042. }
  2043. card.closefile();
  2044. #endif // SDSUPPORT
  2045. } else if (code_seen("M28")) {
  2046. trace();
  2047. prusa_sd_card_upload = true;
  2048. card.openFile(strchr_pointer+4,false);
  2049. } else if (code_seen("SN")) {
  2050. if (farm_mode) {
  2051. selectedSerialPort = 0;
  2052. MSerial.write(";S");
  2053. // S/N is:CZPX0917X003XC13518
  2054. int numbersRead = 0;
  2055. while (numbersRead < 19) {
  2056. while (MSerial.available() > 0) {
  2057. uint8_t serial_char = MSerial.read();
  2058. selectedSerialPort = 1;
  2059. MSerial.write(serial_char);
  2060. numbersRead++;
  2061. selectedSerialPort = 0;
  2062. }
  2063. }
  2064. selectedSerialPort = 1;
  2065. MSerial.write('\n');
  2066. /*for (int b = 0; b < 3; b++) {
  2067. tone(BEEPER, 110);
  2068. delay(50);
  2069. noTone(BEEPER);
  2070. delay(50);
  2071. }*/
  2072. } else {
  2073. MYSERIAL.println("Not in farm mode.");
  2074. }
  2075. } else if(code_seen("Fir")){
  2076. SERIAL_PROTOCOLLN(FW_VERSION);
  2077. } else if(code_seen("Rev")){
  2078. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2079. } else if(code_seen("Lang")) {
  2080. lcd_force_language_selection();
  2081. } else if(code_seen("Lz")) {
  2082. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2083. } else if (code_seen("SERIAL LOW")) {
  2084. MYSERIAL.println("SERIAL LOW");
  2085. MYSERIAL.begin(BAUDRATE);
  2086. return;
  2087. } else if (code_seen("SERIAL HIGH")) {
  2088. MYSERIAL.println("SERIAL HIGH");
  2089. MYSERIAL.begin(1152000);
  2090. return;
  2091. } else if(code_seen("Beat")) {
  2092. // Kick farm link timer
  2093. kicktime = millis();
  2094. } else if(code_seen("FR")) {
  2095. // Factory full reset
  2096. factory_reset(0,true);
  2097. }
  2098. //else if (code_seen('Cal')) {
  2099. // lcd_calibration();
  2100. // }
  2101. }
  2102. else if (code_seen('^')) {
  2103. // nothing, this is a version line
  2104. } else if(code_seen('G'))
  2105. {
  2106. switch((int)code_value())
  2107. {
  2108. case 0: // G0 -> G1
  2109. case 1: // G1
  2110. if(Stopped == false) {
  2111. #ifdef FILAMENT_RUNOUT_SUPPORT
  2112. if(READ(FR_SENS)){
  2113. feedmultiplyBckp=feedmultiply;
  2114. float target[4];
  2115. float lastpos[4];
  2116. target[X_AXIS]=current_position[X_AXIS];
  2117. target[Y_AXIS]=current_position[Y_AXIS];
  2118. target[Z_AXIS]=current_position[Z_AXIS];
  2119. target[E_AXIS]=current_position[E_AXIS];
  2120. lastpos[X_AXIS]=current_position[X_AXIS];
  2121. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2122. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2123. lastpos[E_AXIS]=current_position[E_AXIS];
  2124. //retract by E
  2125. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2127. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2128. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2129. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2130. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2132. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2133. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2134. //finish moves
  2135. st_synchronize();
  2136. //disable extruder steppers so filament can be removed
  2137. disable_e0();
  2138. disable_e1();
  2139. disable_e2();
  2140. delay(100);
  2141. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2142. uint8_t cnt=0;
  2143. int counterBeep = 0;
  2144. lcd_wait_interact();
  2145. while(!lcd_clicked()){
  2146. cnt++;
  2147. manage_heater();
  2148. manage_inactivity(true);
  2149. //lcd_update();
  2150. if(cnt==0)
  2151. {
  2152. #if BEEPER > 0
  2153. if (counterBeep== 500){
  2154. counterBeep = 0;
  2155. }
  2156. SET_OUTPUT(BEEPER);
  2157. if (counterBeep== 0){
  2158. WRITE(BEEPER,HIGH);
  2159. }
  2160. if (counterBeep== 20){
  2161. WRITE(BEEPER,LOW);
  2162. }
  2163. counterBeep++;
  2164. #else
  2165. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2166. lcd_buzz(1000/6,100);
  2167. #else
  2168. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2169. #endif
  2170. #endif
  2171. }
  2172. }
  2173. WRITE(BEEPER,LOW);
  2174. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2175. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2176. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2177. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2178. lcd_change_fil_state = 0;
  2179. lcd_loading_filament();
  2180. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2181. lcd_change_fil_state = 0;
  2182. lcd_alright();
  2183. switch(lcd_change_fil_state){
  2184. case 2:
  2185. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2186. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2187. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2188. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2189. lcd_loading_filament();
  2190. break;
  2191. case 3:
  2192. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2193. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2194. lcd_loading_color();
  2195. break;
  2196. default:
  2197. lcd_change_success();
  2198. break;
  2199. }
  2200. }
  2201. target[E_AXIS]+= 5;
  2202. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2203. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2204. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2205. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2206. //plan_set_e_position(current_position[E_AXIS]);
  2207. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2208. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2209. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2210. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2211. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2212. plan_set_e_position(lastpos[E_AXIS]);
  2213. feedmultiply=feedmultiplyBckp;
  2214. char cmd[9];
  2215. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2216. enquecommand(cmd);
  2217. }
  2218. #endif
  2219. get_coordinates(); // For X Y Z E F
  2220. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2221. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2222. }
  2223. #ifdef FWRETRACT
  2224. if(autoretract_enabled)
  2225. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2226. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2227. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2228. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2229. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2230. retract(!retracted);
  2231. return;
  2232. }
  2233. }
  2234. #endif //FWRETRACT
  2235. prepare_move();
  2236. //ClearToSend();
  2237. }
  2238. break;
  2239. case 2: // G2 - CW ARC
  2240. if(Stopped == false) {
  2241. get_arc_coordinates();
  2242. prepare_arc_move(true);
  2243. }
  2244. break;
  2245. case 3: // G3 - CCW ARC
  2246. if(Stopped == false) {
  2247. get_arc_coordinates();
  2248. prepare_arc_move(false);
  2249. }
  2250. break;
  2251. case 4: // G4 dwell
  2252. codenum = 0;
  2253. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2254. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2255. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2256. st_synchronize();
  2257. codenum += millis(); // keep track of when we started waiting
  2258. previous_millis_cmd = millis();
  2259. while(millis() < codenum) {
  2260. manage_heater();
  2261. manage_inactivity();
  2262. lcd_update();
  2263. }
  2264. break;
  2265. #ifdef FWRETRACT
  2266. case 10: // G10 retract
  2267. #if EXTRUDERS > 1
  2268. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2269. retract(true,retracted_swap[active_extruder]);
  2270. #else
  2271. retract(true);
  2272. #endif
  2273. break;
  2274. case 11: // G11 retract_recover
  2275. #if EXTRUDERS > 1
  2276. retract(false,retracted_swap[active_extruder]);
  2277. #else
  2278. retract(false);
  2279. #endif
  2280. break;
  2281. #endif //FWRETRACT
  2282. case 28: //G28 Home all Axis one at a time
  2283. {
  2284. st_synchronize();
  2285. #if 0
  2286. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2287. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2288. #endif
  2289. // Flag for the display update routine and to disable the print cancelation during homing.
  2290. homing_flag = true;
  2291. // Which axes should be homed?
  2292. bool home_x = code_seen(axis_codes[X_AXIS]);
  2293. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2294. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2295. // Either all X,Y,Z codes are present, or none of them.
  2296. bool home_all_axes = home_x == home_y && home_x == home_z;
  2297. if (home_all_axes)
  2298. // No X/Y/Z code provided means to home all axes.
  2299. home_x = home_y = home_z = true;
  2300. #ifdef ENABLE_AUTO_BED_LEVELING
  2301. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2302. #endif //ENABLE_AUTO_BED_LEVELING
  2303. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2304. // the planner will not perform any adjustments in the XY plane.
  2305. // Wait for the motors to stop and update the current position with the absolute values.
  2306. world2machine_revert_to_uncorrected();
  2307. // For mesh bed leveling deactivate the matrix temporarily.
  2308. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2309. // in a single axis only.
  2310. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2311. #ifdef MESH_BED_LEVELING
  2312. uint8_t mbl_was_active = mbl.active;
  2313. mbl.active = 0;
  2314. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2315. #endif
  2316. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2317. // consumed during the first movements following this statement.
  2318. if (home_z)
  2319. babystep_undo();
  2320. saved_feedrate = feedrate;
  2321. saved_feedmultiply = feedmultiply;
  2322. feedmultiply = 100;
  2323. previous_millis_cmd = millis();
  2324. enable_endstops(true);
  2325. memcpy(destination, current_position, sizeof(destination));
  2326. feedrate = 0.0;
  2327. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2328. if(home_z)
  2329. homeaxis(Z_AXIS);
  2330. #endif
  2331. #ifdef QUICK_HOME
  2332. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2333. if(home_x && home_y) //first diagonal move
  2334. {
  2335. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2336. int x_axis_home_dir = home_dir(X_AXIS);
  2337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2338. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2339. feedrate = homing_feedrate[X_AXIS];
  2340. if(homing_feedrate[Y_AXIS]<feedrate)
  2341. feedrate = homing_feedrate[Y_AXIS];
  2342. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2343. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2344. } else {
  2345. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2346. }
  2347. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2348. st_synchronize();
  2349. axis_is_at_home(X_AXIS);
  2350. axis_is_at_home(Y_AXIS);
  2351. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2352. destination[X_AXIS] = current_position[X_AXIS];
  2353. destination[Y_AXIS] = current_position[Y_AXIS];
  2354. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2355. feedrate = 0.0;
  2356. st_synchronize();
  2357. endstops_hit_on_purpose();
  2358. current_position[X_AXIS] = destination[X_AXIS];
  2359. current_position[Y_AXIS] = destination[Y_AXIS];
  2360. current_position[Z_AXIS] = destination[Z_AXIS];
  2361. }
  2362. #endif /* QUICK_HOME */
  2363. if(home_x)
  2364. homeaxis(X_AXIS);
  2365. if(home_y)
  2366. homeaxis(Y_AXIS);
  2367. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2368. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2369. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2370. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2371. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2372. #ifndef Z_SAFE_HOMING
  2373. if(home_z) {
  2374. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2375. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2376. feedrate = max_feedrate[Z_AXIS];
  2377. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2378. st_synchronize();
  2379. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2380. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2381. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2382. {
  2383. homeaxis(X_AXIS);
  2384. homeaxis(Y_AXIS);
  2385. }
  2386. // 1st mesh bed leveling measurement point, corrected.
  2387. world2machine_initialize();
  2388. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2389. world2machine_reset();
  2390. if (destination[Y_AXIS] < Y_MIN_POS)
  2391. destination[Y_AXIS] = Y_MIN_POS;
  2392. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2393. feedrate = homing_feedrate[Z_AXIS]/10;
  2394. current_position[Z_AXIS] = 0;
  2395. enable_endstops(false);
  2396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2397. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2398. st_synchronize();
  2399. current_position[X_AXIS] = destination[X_AXIS];
  2400. current_position[Y_AXIS] = destination[Y_AXIS];
  2401. enable_endstops(true);
  2402. endstops_hit_on_purpose();
  2403. homeaxis(Z_AXIS);
  2404. #else // MESH_BED_LEVELING
  2405. homeaxis(Z_AXIS);
  2406. #endif // MESH_BED_LEVELING
  2407. }
  2408. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2409. if(home_all_axes) {
  2410. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2411. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2412. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2413. feedrate = XY_TRAVEL_SPEED/60;
  2414. current_position[Z_AXIS] = 0;
  2415. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2416. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2417. st_synchronize();
  2418. current_position[X_AXIS] = destination[X_AXIS];
  2419. current_position[Y_AXIS] = destination[Y_AXIS];
  2420. homeaxis(Z_AXIS);
  2421. }
  2422. // Let's see if X and Y are homed and probe is inside bed area.
  2423. if(home_z) {
  2424. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2425. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2426. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2427. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2428. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2429. current_position[Z_AXIS] = 0;
  2430. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2431. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2432. feedrate = max_feedrate[Z_AXIS];
  2433. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2434. st_synchronize();
  2435. homeaxis(Z_AXIS);
  2436. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2437. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2438. SERIAL_ECHO_START;
  2439. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2440. } else {
  2441. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2442. SERIAL_ECHO_START;
  2443. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2444. }
  2445. }
  2446. #endif // Z_SAFE_HOMING
  2447. #endif // Z_HOME_DIR < 0
  2448. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2449. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2450. #ifdef ENABLE_AUTO_BED_LEVELING
  2451. if(home_z)
  2452. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2453. #endif
  2454. // Set the planner and stepper routine positions.
  2455. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2456. // contains the machine coordinates.
  2457. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2458. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2459. enable_endstops(false);
  2460. #endif
  2461. feedrate = saved_feedrate;
  2462. feedmultiply = saved_feedmultiply;
  2463. previous_millis_cmd = millis();
  2464. endstops_hit_on_purpose();
  2465. #ifndef MESH_BED_LEVELING
  2466. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2467. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2468. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2469. lcd_adjust_z();
  2470. #endif
  2471. // Load the machine correction matrix
  2472. world2machine_initialize();
  2473. // and correct the current_position XY axes to match the transformed coordinate system.
  2474. world2machine_update_current();
  2475. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2476. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2477. {
  2478. if (! home_z && mbl_was_active) {
  2479. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2480. mbl.active = true;
  2481. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2482. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2483. }
  2484. }
  2485. else
  2486. {
  2487. st_synchronize();
  2488. homing_flag = false;
  2489. // Push the commands to the front of the message queue in the reverse order!
  2490. // There shall be always enough space reserved for these commands.
  2491. // enquecommand_front_P((PSTR("G80")));
  2492. goto case_G80;
  2493. }
  2494. #endif
  2495. if (farm_mode) { prusa_statistics(20); };
  2496. homing_flag = false;
  2497. #if 0
  2498. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2499. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2500. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2501. #endif
  2502. break;
  2503. }
  2504. #ifdef ENABLE_AUTO_BED_LEVELING
  2505. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2506. {
  2507. #if Z_MIN_PIN == -1
  2508. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2509. #endif
  2510. // Prevent user from running a G29 without first homing in X and Y
  2511. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2512. {
  2513. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2514. SERIAL_ECHO_START;
  2515. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2516. break; // abort G29, since we don't know where we are
  2517. }
  2518. st_synchronize();
  2519. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2520. //vector_3 corrected_position = plan_get_position_mm();
  2521. //corrected_position.debug("position before G29");
  2522. plan_bed_level_matrix.set_to_identity();
  2523. vector_3 uncorrected_position = plan_get_position();
  2524. //uncorrected_position.debug("position durring G29");
  2525. current_position[X_AXIS] = uncorrected_position.x;
  2526. current_position[Y_AXIS] = uncorrected_position.y;
  2527. current_position[Z_AXIS] = uncorrected_position.z;
  2528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2529. setup_for_endstop_move();
  2530. feedrate = homing_feedrate[Z_AXIS];
  2531. #ifdef AUTO_BED_LEVELING_GRID
  2532. // probe at the points of a lattice grid
  2533. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2534. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2535. // solve the plane equation ax + by + d = z
  2536. // A is the matrix with rows [x y 1] for all the probed points
  2537. // B is the vector of the Z positions
  2538. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2539. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2540. // "A" matrix of the linear system of equations
  2541. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2542. // "B" vector of Z points
  2543. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2544. int probePointCounter = 0;
  2545. bool zig = true;
  2546. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2547. {
  2548. int xProbe, xInc;
  2549. if (zig)
  2550. {
  2551. xProbe = LEFT_PROBE_BED_POSITION;
  2552. //xEnd = RIGHT_PROBE_BED_POSITION;
  2553. xInc = xGridSpacing;
  2554. zig = false;
  2555. } else // zag
  2556. {
  2557. xProbe = RIGHT_PROBE_BED_POSITION;
  2558. //xEnd = LEFT_PROBE_BED_POSITION;
  2559. xInc = -xGridSpacing;
  2560. zig = true;
  2561. }
  2562. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2563. {
  2564. float z_before;
  2565. if (probePointCounter == 0)
  2566. {
  2567. // raise before probing
  2568. z_before = Z_RAISE_BEFORE_PROBING;
  2569. } else
  2570. {
  2571. // raise extruder
  2572. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2573. }
  2574. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2575. eqnBVector[probePointCounter] = measured_z;
  2576. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2577. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2578. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2579. probePointCounter++;
  2580. xProbe += xInc;
  2581. }
  2582. }
  2583. clean_up_after_endstop_move();
  2584. // solve lsq problem
  2585. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2586. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2587. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2588. SERIAL_PROTOCOLPGM(" b: ");
  2589. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2590. SERIAL_PROTOCOLPGM(" d: ");
  2591. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2592. set_bed_level_equation_lsq(plane_equation_coefficients);
  2593. free(plane_equation_coefficients);
  2594. #else // AUTO_BED_LEVELING_GRID not defined
  2595. // Probe at 3 arbitrary points
  2596. // probe 1
  2597. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2598. // probe 2
  2599. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2600. // probe 3
  2601. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2602. clean_up_after_endstop_move();
  2603. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2604. #endif // AUTO_BED_LEVELING_GRID
  2605. st_synchronize();
  2606. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2607. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2608. // When the bed is uneven, this height must be corrected.
  2609. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2610. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2611. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2612. z_tmp = current_position[Z_AXIS];
  2613. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2614. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2616. }
  2617. break;
  2618. #ifndef Z_PROBE_SLED
  2619. case 30: // G30 Single Z Probe
  2620. {
  2621. st_synchronize();
  2622. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2623. setup_for_endstop_move();
  2624. feedrate = homing_feedrate[Z_AXIS];
  2625. run_z_probe();
  2626. SERIAL_PROTOCOLPGM(MSG_BED);
  2627. SERIAL_PROTOCOLPGM(" X: ");
  2628. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2629. SERIAL_PROTOCOLPGM(" Y: ");
  2630. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2631. SERIAL_PROTOCOLPGM(" Z: ");
  2632. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2633. SERIAL_PROTOCOLPGM("\n");
  2634. clean_up_after_endstop_move();
  2635. }
  2636. break;
  2637. #else
  2638. case 31: // dock the sled
  2639. dock_sled(true);
  2640. break;
  2641. case 32: // undock the sled
  2642. dock_sled(false);
  2643. break;
  2644. #endif // Z_PROBE_SLED
  2645. #endif // ENABLE_AUTO_BED_LEVELING
  2646. #ifdef MESH_BED_LEVELING
  2647. case 30: // G30 Single Z Probe
  2648. {
  2649. st_synchronize();
  2650. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2651. setup_for_endstop_move();
  2652. feedrate = homing_feedrate[Z_AXIS];
  2653. find_bed_induction_sensor_point_z(-10.f, 3);
  2654. SERIAL_PROTOCOLRPGM(MSG_BED);
  2655. SERIAL_PROTOCOLPGM(" X: ");
  2656. MYSERIAL.print(current_position[X_AXIS], 5);
  2657. SERIAL_PROTOCOLPGM(" Y: ");
  2658. MYSERIAL.print(current_position[Y_AXIS], 5);
  2659. SERIAL_PROTOCOLPGM(" Z: ");
  2660. MYSERIAL.print(current_position[Z_AXIS], 5);
  2661. SERIAL_PROTOCOLPGM("\n");
  2662. clean_up_after_endstop_move();
  2663. }
  2664. break;
  2665. case 75:
  2666. {
  2667. for (int i = 40; i <= 110; i++) {
  2668. MYSERIAL.print(i);
  2669. MYSERIAL.print(" ");
  2670. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2671. }
  2672. }
  2673. break;
  2674. case 76: //PINDA probe temperature calibration
  2675. {
  2676. #ifdef PINDA_THERMISTOR
  2677. if (true)
  2678. {
  2679. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2680. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2681. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2682. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2683. // We don't know where we are! HOME!
  2684. // Push the commands to the front of the message queue in the reverse order!
  2685. // There shall be always enough space reserved for these commands.
  2686. repeatcommand_front(); // repeat G76 with all its parameters
  2687. enquecommand_front_P((PSTR("G28 W0")));
  2688. break;
  2689. }
  2690. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2691. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2692. float zero_z;
  2693. int z_shift = 0; //unit: steps
  2694. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2695. if (start_temp < 35) start_temp = 35;
  2696. if (start_temp < current_temperature_pinda) start_temp += 5;
  2697. SERIAL_ECHOPGM("start temperature: ");
  2698. MYSERIAL.println(start_temp);
  2699. // setTargetHotend(200, 0);
  2700. setTargetBed(70 + (start_temp - 30));
  2701. custom_message = true;
  2702. custom_message_type = 4;
  2703. custom_message_state = 1;
  2704. custom_message = MSG_TEMP_CALIBRATION;
  2705. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2706. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2707. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2709. st_synchronize();
  2710. while (current_temperature_pinda < start_temp)
  2711. {
  2712. delay_keep_alive(1000);
  2713. serialecho_temperatures();
  2714. }
  2715. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2716. current_position[Z_AXIS] = 5;
  2717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2718. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2719. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2721. st_synchronize();
  2722. find_bed_induction_sensor_point_z(-1.f);
  2723. zero_z = current_position[Z_AXIS];
  2724. //current_position[Z_AXIS]
  2725. SERIAL_ECHOLNPGM("");
  2726. SERIAL_ECHOPGM("ZERO: ");
  2727. MYSERIAL.print(current_position[Z_AXIS]);
  2728. SERIAL_ECHOLNPGM("");
  2729. int i = -1; for (; i < 5; i++)
  2730. {
  2731. float temp = (40 + i * 5);
  2732. SERIAL_ECHOPGM("Step: ");
  2733. MYSERIAL.print(i + 2);
  2734. SERIAL_ECHOLNPGM("/6 (skipped)");
  2735. SERIAL_ECHOPGM("PINDA temperature: ");
  2736. MYSERIAL.print((40 + i*5));
  2737. SERIAL_ECHOPGM(" Z shift (mm):");
  2738. MYSERIAL.print(0);
  2739. SERIAL_ECHOLNPGM("");
  2740. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2741. if (start_temp <= temp) break;
  2742. }
  2743. for (i++; i < 5; i++)
  2744. {
  2745. float temp = (40 + i * 5);
  2746. SERIAL_ECHOPGM("Step: ");
  2747. MYSERIAL.print(i + 2);
  2748. SERIAL_ECHOLNPGM("/6");
  2749. custom_message_state = i + 2;
  2750. setTargetBed(50 + 10 * (temp - 30) / 5);
  2751. // setTargetHotend(255, 0);
  2752. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2753. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2754. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2756. st_synchronize();
  2757. while (current_temperature_pinda < temp)
  2758. {
  2759. delay_keep_alive(1000);
  2760. serialecho_temperatures();
  2761. }
  2762. current_position[Z_AXIS] = 5;
  2763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2764. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2765. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2767. st_synchronize();
  2768. find_bed_induction_sensor_point_z(-1.f);
  2769. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2770. SERIAL_ECHOLNPGM("");
  2771. SERIAL_ECHOPGM("PINDA temperature: ");
  2772. MYSERIAL.print(current_temperature_pinda);
  2773. SERIAL_ECHOPGM(" Z shift (mm):");
  2774. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2775. SERIAL_ECHOLNPGM("");
  2776. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2777. }
  2778. custom_message_type = 0;
  2779. custom_message = false;
  2780. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2781. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2782. disable_x();
  2783. disable_y();
  2784. disable_z();
  2785. disable_e0();
  2786. disable_e1();
  2787. disable_e2();
  2788. setTargetBed(0); //set bed target temperature back to 0
  2789. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2790. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2791. lcd_update_enable(true);
  2792. lcd_update(2);
  2793. break;
  2794. }
  2795. #endif //PINDA_THERMISTOR
  2796. setTargetBed(PINDA_MIN_T);
  2797. float zero_z;
  2798. int z_shift = 0; //unit: steps
  2799. int t_c; // temperature
  2800. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2801. // We don't know where we are! HOME!
  2802. // Push the commands to the front of the message queue in the reverse order!
  2803. // There shall be always enough space reserved for these commands.
  2804. repeatcommand_front(); // repeat G76 with all its parameters
  2805. enquecommand_front_P((PSTR("G28 W0")));
  2806. break;
  2807. }
  2808. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2809. custom_message = true;
  2810. custom_message_type = 4;
  2811. custom_message_state = 1;
  2812. custom_message = MSG_TEMP_CALIBRATION;
  2813. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2814. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2815. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2817. st_synchronize();
  2818. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2819. delay_keep_alive(1000);
  2820. serialecho_temperatures();
  2821. }
  2822. //enquecommand_P(PSTR("M190 S50"));
  2823. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2824. delay_keep_alive(1000);
  2825. serialecho_temperatures();
  2826. }
  2827. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2828. current_position[Z_AXIS] = 5;
  2829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2830. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2831. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2833. st_synchronize();
  2834. find_bed_induction_sensor_point_z(-1.f);
  2835. zero_z = current_position[Z_AXIS];
  2836. //current_position[Z_AXIS]
  2837. SERIAL_ECHOLNPGM("");
  2838. SERIAL_ECHOPGM("ZERO: ");
  2839. MYSERIAL.print(current_position[Z_AXIS]);
  2840. SERIAL_ECHOLNPGM("");
  2841. for (int i = 0; i<5; i++) {
  2842. SERIAL_ECHOPGM("Step: ");
  2843. MYSERIAL.print(i+2);
  2844. SERIAL_ECHOLNPGM("/6");
  2845. custom_message_state = i + 2;
  2846. t_c = 60 + i * 10;
  2847. setTargetBed(t_c);
  2848. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2849. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2850. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2852. st_synchronize();
  2853. while (degBed() < t_c) {
  2854. delay_keep_alive(1000);
  2855. serialecho_temperatures();
  2856. }
  2857. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2858. delay_keep_alive(1000);
  2859. serialecho_temperatures();
  2860. }
  2861. current_position[Z_AXIS] = 5;
  2862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2863. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2864. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2865. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2866. st_synchronize();
  2867. find_bed_induction_sensor_point_z(-1.f);
  2868. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2869. SERIAL_ECHOLNPGM("");
  2870. SERIAL_ECHOPGM("Temperature: ");
  2871. MYSERIAL.print(t_c);
  2872. SERIAL_ECHOPGM(" Z shift (mm):");
  2873. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2874. SERIAL_ECHOLNPGM("");
  2875. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2876. }
  2877. custom_message_type = 0;
  2878. custom_message = false;
  2879. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2880. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2881. disable_x();
  2882. disable_y();
  2883. disable_z();
  2884. disable_e0();
  2885. disable_e1();
  2886. disable_e2();
  2887. setTargetBed(0); //set bed target temperature back to 0
  2888. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2889. lcd_update_enable(true);
  2890. lcd_update(2);
  2891. }
  2892. break;
  2893. #ifdef DIS
  2894. case 77:
  2895. {
  2896. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2897. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2898. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2899. float dimension_x = 40;
  2900. float dimension_y = 40;
  2901. int points_x = 40;
  2902. int points_y = 40;
  2903. float offset_x = 74;
  2904. float offset_y = 33;
  2905. if (code_seen('X')) dimension_x = code_value();
  2906. if (code_seen('Y')) dimension_y = code_value();
  2907. if (code_seen('XP')) points_x = code_value();
  2908. if (code_seen('YP')) points_y = code_value();
  2909. if (code_seen('XO')) offset_x = code_value();
  2910. if (code_seen('YO')) offset_y = code_value();
  2911. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2912. } break;
  2913. #endif
  2914. case 79: {
  2915. for (int i = 255; i > 0; i = i - 5) {
  2916. fanSpeed = i;
  2917. //delay_keep_alive(2000);
  2918. for (int j = 0; j < 100; j++) {
  2919. delay_keep_alive(100);
  2920. }
  2921. fan_speed[1];
  2922. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2923. }
  2924. }break;
  2925. /**
  2926. * G80: Mesh-based Z probe, probes a grid and produces a
  2927. * mesh to compensate for variable bed height
  2928. *
  2929. * The S0 report the points as below
  2930. *
  2931. * +----> X-axis
  2932. * |
  2933. * |
  2934. * v Y-axis
  2935. *
  2936. */
  2937. case 80:
  2938. #ifdef MK1BP
  2939. break;
  2940. #endif //MK1BP
  2941. case_G80:
  2942. {
  2943. mesh_bed_leveling_flag = true;
  2944. int8_t verbosity_level = 0;
  2945. static bool run = false;
  2946. if (code_seen('V')) {
  2947. // Just 'V' without a number counts as V1.
  2948. char c = strchr_pointer[1];
  2949. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2950. }
  2951. // Firstly check if we know where we are
  2952. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2953. // We don't know where we are! HOME!
  2954. // Push the commands to the front of the message queue in the reverse order!
  2955. // There shall be always enough space reserved for these commands.
  2956. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2957. repeatcommand_front(); // repeat G80 with all its parameters
  2958. enquecommand_front_P((PSTR("G28 W0")));
  2959. }
  2960. else {
  2961. mesh_bed_leveling_flag = false;
  2962. }
  2963. break;
  2964. }
  2965. bool temp_comp_start = true;
  2966. #ifdef PINDA_THERMISTOR
  2967. temp_comp_start = false;
  2968. #endif //PINDA_THERMISTOR
  2969. if (temp_comp_start)
  2970. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2971. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2972. temp_compensation_start();
  2973. run = true;
  2974. repeatcommand_front(); // repeat G80 with all its parameters
  2975. enquecommand_front_P((PSTR("G28 W0")));
  2976. }
  2977. else {
  2978. mesh_bed_leveling_flag = false;
  2979. }
  2980. break;
  2981. }
  2982. run = false;
  2983. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2984. mesh_bed_leveling_flag = false;
  2985. break;
  2986. }
  2987. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2988. bool custom_message_old = custom_message;
  2989. unsigned int custom_message_type_old = custom_message_type;
  2990. unsigned int custom_message_state_old = custom_message_state;
  2991. custom_message = true;
  2992. custom_message_type = 1;
  2993. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2994. lcd_update(1);
  2995. mbl.reset(); //reset mesh bed leveling
  2996. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2997. // consumed during the first movements following this statement.
  2998. babystep_undo();
  2999. // Cycle through all points and probe them
  3000. // First move up. During this first movement, the babystepping will be reverted.
  3001. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3003. // The move to the first calibration point.
  3004. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3005. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3006. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3007. #ifdef SUPPORT_VERBOSITY
  3008. if (verbosity_level >= 1) {
  3009. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3010. }
  3011. #endif //SUPPORT_VERBOSITY
  3012. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3014. // Wait until the move is finished.
  3015. st_synchronize();
  3016. int mesh_point = 0; //index number of calibration point
  3017. int ix = 0;
  3018. int iy = 0;
  3019. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3020. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3021. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3022. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3023. #ifdef SUPPORT_VERBOSITY
  3024. if (verbosity_level >= 1) {
  3025. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3026. }
  3027. #endif // SUPPORT_VERBOSITY
  3028. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3029. const char *kill_message = NULL;
  3030. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3031. // Get coords of a measuring point.
  3032. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3033. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3034. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3035. float z0 = 0.f;
  3036. if (has_z && mesh_point > 0) {
  3037. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3038. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3039. //#if 0
  3040. #ifdef SUPPORT_VERBOSITY
  3041. if (verbosity_level >= 1) {
  3042. SERIAL_ECHOLNPGM("");
  3043. SERIAL_ECHOPGM("Bed leveling, point: ");
  3044. MYSERIAL.print(mesh_point);
  3045. SERIAL_ECHOPGM(", calibration z: ");
  3046. MYSERIAL.print(z0, 5);
  3047. SERIAL_ECHOLNPGM("");
  3048. }
  3049. #endif // SUPPORT_VERBOSITY
  3050. //#endif
  3051. }
  3052. // Move Z up to MESH_HOME_Z_SEARCH.
  3053. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3055. st_synchronize();
  3056. // Move to XY position of the sensor point.
  3057. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3058. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3059. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3060. #ifdef SUPPORT_VERBOSITY
  3061. if (verbosity_level >= 1) {
  3062. SERIAL_PROTOCOL(mesh_point);
  3063. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3064. }
  3065. #endif // SUPPORT_VERBOSITY
  3066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3067. st_synchronize();
  3068. // Go down until endstop is hit
  3069. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3070. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3071. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3072. break;
  3073. }
  3074. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3075. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3076. break;
  3077. }
  3078. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3079. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3080. break;
  3081. }
  3082. #ifdef SUPPORT_VERBOSITY
  3083. if (verbosity_level >= 10) {
  3084. SERIAL_ECHOPGM("X: ");
  3085. MYSERIAL.print(current_position[X_AXIS], 5);
  3086. SERIAL_ECHOLNPGM("");
  3087. SERIAL_ECHOPGM("Y: ");
  3088. MYSERIAL.print(current_position[Y_AXIS], 5);
  3089. SERIAL_PROTOCOLPGM("\n");
  3090. }
  3091. #endif // SUPPORT_VERBOSITY
  3092. float offset_z = 0;
  3093. #ifdef PINDA_THERMISTOR
  3094. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3095. #endif //PINDA_THERMISTOR
  3096. // #ifdef SUPPORT_VERBOSITY
  3097. /* if (verbosity_level >= 1)
  3098. {
  3099. SERIAL_ECHOPGM("mesh bed leveling: ");
  3100. MYSERIAL.print(current_position[Z_AXIS], 5);
  3101. SERIAL_ECHOPGM(" offset: ");
  3102. MYSERIAL.print(offset_z, 5);
  3103. SERIAL_ECHOLNPGM("");
  3104. }*/
  3105. // #endif // SUPPORT_VERBOSITY
  3106. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3107. custom_message_state--;
  3108. mesh_point++;
  3109. lcd_update(1);
  3110. }
  3111. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3112. #ifdef SUPPORT_VERBOSITY
  3113. if (verbosity_level >= 20) {
  3114. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3115. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3116. MYSERIAL.print(current_position[Z_AXIS], 5);
  3117. }
  3118. #endif // SUPPORT_VERBOSITY
  3119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3120. st_synchronize();
  3121. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3122. kill(kill_message);
  3123. SERIAL_ECHOLNPGM("killed");
  3124. }
  3125. clean_up_after_endstop_move();
  3126. // SERIAL_ECHOLNPGM("clean up finished ");
  3127. bool apply_temp_comp = true;
  3128. #ifdef PINDA_THERMISTOR
  3129. apply_temp_comp = false;
  3130. #endif
  3131. if (apply_temp_comp)
  3132. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3133. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3134. // SERIAL_ECHOLNPGM("babystep applied");
  3135. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3136. #ifdef SUPPORT_VERBOSITY
  3137. if (verbosity_level >= 1) {
  3138. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3139. }
  3140. #endif // SUPPORT_VERBOSITY
  3141. for (uint8_t i = 0; i < 4; ++i) {
  3142. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3143. long correction = 0;
  3144. if (code_seen(codes[i]))
  3145. correction = code_value_long();
  3146. else if (eeprom_bed_correction_valid) {
  3147. unsigned char *addr = (i < 2) ?
  3148. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3149. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3150. correction = eeprom_read_int8(addr);
  3151. }
  3152. if (correction == 0)
  3153. continue;
  3154. float offset = float(correction) * 0.001f;
  3155. if (fabs(offset) > 0.101f) {
  3156. SERIAL_ERROR_START;
  3157. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3158. SERIAL_ECHO(offset);
  3159. SERIAL_ECHOLNPGM(" microns");
  3160. }
  3161. else {
  3162. switch (i) {
  3163. case 0:
  3164. for (uint8_t row = 0; row < 3; ++row) {
  3165. mbl.z_values[row][1] += 0.5f * offset;
  3166. mbl.z_values[row][0] += offset;
  3167. }
  3168. break;
  3169. case 1:
  3170. for (uint8_t row = 0; row < 3; ++row) {
  3171. mbl.z_values[row][1] += 0.5f * offset;
  3172. mbl.z_values[row][2] += offset;
  3173. }
  3174. break;
  3175. case 2:
  3176. for (uint8_t col = 0; col < 3; ++col) {
  3177. mbl.z_values[1][col] += 0.5f * offset;
  3178. mbl.z_values[0][col] += offset;
  3179. }
  3180. break;
  3181. case 3:
  3182. for (uint8_t col = 0; col < 3; ++col) {
  3183. mbl.z_values[1][col] += 0.5f * offset;
  3184. mbl.z_values[2][col] += offset;
  3185. }
  3186. break;
  3187. }
  3188. }
  3189. }
  3190. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3191. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3192. // SERIAL_ECHOLNPGM("Upsample finished");
  3193. mbl.active = 1; //activate mesh bed leveling
  3194. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3195. go_home_with_z_lift();
  3196. // SERIAL_ECHOLNPGM("Go home finished");
  3197. //unretract (after PINDA preheat retraction)
  3198. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3199. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3201. }
  3202. KEEPALIVE_STATE(NOT_BUSY);
  3203. // Restore custom message state
  3204. custom_message = custom_message_old;
  3205. custom_message_type = custom_message_type_old;
  3206. custom_message_state = custom_message_state_old;
  3207. mesh_bed_leveling_flag = false;
  3208. mesh_bed_run_from_menu = false;
  3209. lcd_update(2);
  3210. }
  3211. break;
  3212. /**
  3213. * G81: Print mesh bed leveling status and bed profile if activated
  3214. */
  3215. case 81:
  3216. if (mbl.active) {
  3217. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3218. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3219. SERIAL_PROTOCOLPGM(",");
  3220. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3221. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3222. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3223. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3224. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3225. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3226. SERIAL_PROTOCOLPGM(" ");
  3227. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3228. }
  3229. SERIAL_PROTOCOLPGM("\n");
  3230. }
  3231. }
  3232. else
  3233. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3234. break;
  3235. #if 0
  3236. /**
  3237. * G82: Single Z probe at current location
  3238. *
  3239. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3240. *
  3241. */
  3242. case 82:
  3243. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3244. setup_for_endstop_move();
  3245. find_bed_induction_sensor_point_z();
  3246. clean_up_after_endstop_move();
  3247. SERIAL_PROTOCOLPGM("Bed found at: ");
  3248. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3249. SERIAL_PROTOCOLPGM("\n");
  3250. break;
  3251. /**
  3252. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3253. */
  3254. case 83:
  3255. {
  3256. int babystepz = code_seen('S') ? code_value() : 0;
  3257. int BabyPosition = code_seen('P') ? code_value() : 0;
  3258. if (babystepz != 0) {
  3259. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3260. // Is the axis indexed starting with zero or one?
  3261. if (BabyPosition > 4) {
  3262. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3263. }else{
  3264. // Save it to the eeprom
  3265. babystepLoadZ = babystepz;
  3266. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3267. // adjust the Z
  3268. babystepsTodoZadd(babystepLoadZ);
  3269. }
  3270. }
  3271. }
  3272. break;
  3273. /**
  3274. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3275. */
  3276. case 84:
  3277. babystepsTodoZsubtract(babystepLoadZ);
  3278. // babystepLoadZ = 0;
  3279. break;
  3280. /**
  3281. * G85: Prusa3D specific: Pick best babystep
  3282. */
  3283. case 85:
  3284. lcd_pick_babystep();
  3285. break;
  3286. #endif
  3287. /**
  3288. * G86: Prusa3D specific: Disable babystep correction after home.
  3289. * This G-code will be performed at the start of a calibration script.
  3290. */
  3291. case 86:
  3292. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3293. break;
  3294. /**
  3295. * G87: Prusa3D specific: Enable babystep correction after home
  3296. * This G-code will be performed at the end of a calibration script.
  3297. */
  3298. case 87:
  3299. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3300. break;
  3301. /**
  3302. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3303. */
  3304. case 88:
  3305. break;
  3306. #endif // ENABLE_MESH_BED_LEVELING
  3307. case 90: // G90
  3308. relative_mode = false;
  3309. break;
  3310. case 91: // G91
  3311. relative_mode = true;
  3312. break;
  3313. case 92: // G92
  3314. if(!code_seen(axis_codes[E_AXIS]))
  3315. st_synchronize();
  3316. for(int8_t i=0; i < NUM_AXIS; i++) {
  3317. if(code_seen(axis_codes[i])) {
  3318. if(i == E_AXIS) {
  3319. current_position[i] = code_value();
  3320. plan_set_e_position(current_position[E_AXIS]);
  3321. }
  3322. else {
  3323. current_position[i] = code_value()+add_homing[i];
  3324. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3325. }
  3326. }
  3327. }
  3328. break;
  3329. case 98: //activate farm mode
  3330. farm_mode = 1;
  3331. PingTime = millis();
  3332. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3333. break;
  3334. case 99: //deactivate farm mode
  3335. farm_mode = 0;
  3336. lcd_printer_connected();
  3337. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3338. lcd_update(2);
  3339. break;
  3340. default:
  3341. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3342. }
  3343. } // end if(code_seen('G'))
  3344. else if(code_seen('M'))
  3345. {
  3346. int index;
  3347. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3348. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3349. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3350. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3351. } else
  3352. switch((int)code_value())
  3353. {
  3354. #ifdef ULTIPANEL
  3355. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3356. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3357. {
  3358. char *src = strchr_pointer + 2;
  3359. codenum = 0;
  3360. bool hasP = false, hasS = false;
  3361. if (code_seen('P')) {
  3362. codenum = code_value(); // milliseconds to wait
  3363. hasP = codenum > 0;
  3364. }
  3365. if (code_seen('S')) {
  3366. codenum = code_value() * 1000; // seconds to wait
  3367. hasS = codenum > 0;
  3368. }
  3369. starpos = strchr(src, '*');
  3370. if (starpos != NULL) *(starpos) = '\0';
  3371. while (*src == ' ') ++src;
  3372. if (!hasP && !hasS && *src != '\0') {
  3373. lcd_setstatus(src);
  3374. } else {
  3375. LCD_MESSAGERPGM(MSG_USERWAIT);
  3376. }
  3377. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3378. st_synchronize();
  3379. previous_millis_cmd = millis();
  3380. if (codenum > 0){
  3381. codenum += millis(); // keep track of when we started waiting
  3382. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3383. while(millis() < codenum && !lcd_clicked()){
  3384. manage_heater();
  3385. manage_inactivity(true);
  3386. lcd_update();
  3387. }
  3388. KEEPALIVE_STATE(IN_HANDLER);
  3389. lcd_ignore_click(false);
  3390. }else{
  3391. if (!lcd_detected())
  3392. break;
  3393. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3394. while(!lcd_clicked()){
  3395. manage_heater();
  3396. manage_inactivity(true);
  3397. lcd_update();
  3398. }
  3399. KEEPALIVE_STATE(IN_HANDLER);
  3400. }
  3401. if (IS_SD_PRINTING)
  3402. LCD_MESSAGERPGM(MSG_RESUMING);
  3403. else
  3404. LCD_MESSAGERPGM(WELCOME_MSG);
  3405. }
  3406. break;
  3407. #endif
  3408. case 17:
  3409. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3410. enable_x();
  3411. enable_y();
  3412. enable_z();
  3413. enable_e0();
  3414. enable_e1();
  3415. enable_e2();
  3416. break;
  3417. #ifdef SDSUPPORT
  3418. case 20: // M20 - list SD card
  3419. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3420. card.ls();
  3421. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3422. break;
  3423. case 21: // M21 - init SD card
  3424. card.initsd();
  3425. break;
  3426. case 22: //M22 - release SD card
  3427. card.release();
  3428. break;
  3429. case 23: //M23 - Select file
  3430. starpos = (strchr(strchr_pointer + 4,'*'));
  3431. if(starpos!=NULL)
  3432. *(starpos)='\0';
  3433. card.openFile(strchr_pointer + 4,true);
  3434. break;
  3435. case 24: //M24 - Start SD print
  3436. #ifdef TMC2130
  3437. if (!card.paused)
  3438. failstats_reset_print();
  3439. #endif //TMC2130
  3440. card.startFileprint();
  3441. starttime=millis();
  3442. break;
  3443. case 25: //M25 - Pause SD print
  3444. card.pauseSDPrint();
  3445. break;
  3446. case 26: //M26 - Set SD index
  3447. if(card.cardOK && code_seen('S')) {
  3448. card.setIndex(code_value_long());
  3449. }
  3450. break;
  3451. case 27: //M27 - Get SD status
  3452. card.getStatus();
  3453. break;
  3454. case 28: //M28 - Start SD write
  3455. starpos = (strchr(strchr_pointer + 4,'*'));
  3456. if(starpos != NULL){
  3457. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3458. strchr_pointer = strchr(npos,' ') + 1;
  3459. *(starpos) = '\0';
  3460. }
  3461. card.openFile(strchr_pointer+4,false);
  3462. break;
  3463. case 29: //M29 - Stop SD write
  3464. //processed in write to file routine above
  3465. //card,saving = false;
  3466. break;
  3467. case 30: //M30 <filename> Delete File
  3468. if (card.cardOK){
  3469. card.closefile();
  3470. starpos = (strchr(strchr_pointer + 4,'*'));
  3471. if(starpos != NULL){
  3472. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3473. strchr_pointer = strchr(npos,' ') + 1;
  3474. *(starpos) = '\0';
  3475. }
  3476. card.removeFile(strchr_pointer + 4);
  3477. }
  3478. break;
  3479. case 32: //M32 - Select file and start SD print
  3480. {
  3481. if(card.sdprinting) {
  3482. st_synchronize();
  3483. }
  3484. starpos = (strchr(strchr_pointer + 4,'*'));
  3485. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3486. if(namestartpos==NULL)
  3487. {
  3488. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3489. }
  3490. else
  3491. namestartpos++; //to skip the '!'
  3492. if(starpos!=NULL)
  3493. *(starpos)='\0';
  3494. bool call_procedure=(code_seen('P'));
  3495. if(strchr_pointer>namestartpos)
  3496. call_procedure=false; //false alert, 'P' found within filename
  3497. if( card.cardOK )
  3498. {
  3499. card.openFile(namestartpos,true,!call_procedure);
  3500. if(code_seen('S'))
  3501. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3502. card.setIndex(code_value_long());
  3503. card.startFileprint();
  3504. if(!call_procedure)
  3505. starttime=millis(); //procedure calls count as normal print time.
  3506. }
  3507. } break;
  3508. case 928: //M928 - Start SD write
  3509. starpos = (strchr(strchr_pointer + 5,'*'));
  3510. if(starpos != NULL){
  3511. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3512. strchr_pointer = strchr(npos,' ') + 1;
  3513. *(starpos) = '\0';
  3514. }
  3515. card.openLogFile(strchr_pointer+5);
  3516. break;
  3517. #endif //SDSUPPORT
  3518. case 31: //M31 take time since the start of the SD print or an M109 command
  3519. {
  3520. stoptime=millis();
  3521. char time[30];
  3522. unsigned long t=(stoptime-starttime)/1000;
  3523. int sec,min;
  3524. min=t/60;
  3525. sec=t%60;
  3526. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3527. SERIAL_ECHO_START;
  3528. SERIAL_ECHOLN(time);
  3529. lcd_setstatus(time);
  3530. autotempShutdown();
  3531. }
  3532. break;
  3533. #ifndef _DISABLE_M42_M226
  3534. case 42: //M42 -Change pin status via gcode
  3535. if (code_seen('S'))
  3536. {
  3537. int pin_status = code_value();
  3538. int pin_number = LED_PIN;
  3539. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3540. pin_number = code_value();
  3541. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3542. {
  3543. if (sensitive_pins[i] == pin_number)
  3544. {
  3545. pin_number = -1;
  3546. break;
  3547. }
  3548. }
  3549. #if defined(FAN_PIN) && FAN_PIN > -1
  3550. if (pin_number == FAN_PIN)
  3551. fanSpeed = pin_status;
  3552. #endif
  3553. if (pin_number > -1)
  3554. {
  3555. pinMode(pin_number, OUTPUT);
  3556. digitalWrite(pin_number, pin_status);
  3557. analogWrite(pin_number, pin_status);
  3558. }
  3559. }
  3560. break;
  3561. #endif //_DISABLE_M42_M226
  3562. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3563. // Reset the baby step value and the baby step applied flag.
  3564. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3565. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3566. // Reset the skew and offset in both RAM and EEPROM.
  3567. reset_bed_offset_and_skew();
  3568. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3569. // the planner will not perform any adjustments in the XY plane.
  3570. // Wait for the motors to stop and update the current position with the absolute values.
  3571. world2machine_revert_to_uncorrected();
  3572. break;
  3573. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3574. {
  3575. bool only_Z = code_seen('Z');
  3576. gcode_M45(only_Z);
  3577. }
  3578. break;
  3579. /*
  3580. case 46:
  3581. {
  3582. // M46: Prusa3D: Show the assigned IP address.
  3583. uint8_t ip[4];
  3584. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3585. if (hasIP) {
  3586. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3587. SERIAL_ECHO(int(ip[0]));
  3588. SERIAL_ECHOPGM(".");
  3589. SERIAL_ECHO(int(ip[1]));
  3590. SERIAL_ECHOPGM(".");
  3591. SERIAL_ECHO(int(ip[2]));
  3592. SERIAL_ECHOPGM(".");
  3593. SERIAL_ECHO(int(ip[3]));
  3594. SERIAL_ECHOLNPGM("");
  3595. } else {
  3596. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3597. }
  3598. break;
  3599. }
  3600. */
  3601. case 47:
  3602. // M47: Prusa3D: Show end stops dialog on the display.
  3603. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3604. lcd_diag_show_end_stops();
  3605. KEEPALIVE_STATE(IN_HANDLER);
  3606. break;
  3607. #if 0
  3608. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3609. {
  3610. // Disable the default update procedure of the display. We will do a modal dialog.
  3611. lcd_update_enable(false);
  3612. // Let the planner use the uncorrected coordinates.
  3613. mbl.reset();
  3614. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3615. // the planner will not perform any adjustments in the XY plane.
  3616. // Wait for the motors to stop and update the current position with the absolute values.
  3617. world2machine_revert_to_uncorrected();
  3618. // Move the print head close to the bed.
  3619. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3621. st_synchronize();
  3622. // Home in the XY plane.
  3623. set_destination_to_current();
  3624. setup_for_endstop_move();
  3625. home_xy();
  3626. int8_t verbosity_level = 0;
  3627. if (code_seen('V')) {
  3628. // Just 'V' without a number counts as V1.
  3629. char c = strchr_pointer[1];
  3630. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3631. }
  3632. bool success = scan_bed_induction_points(verbosity_level);
  3633. clean_up_after_endstop_move();
  3634. // Print head up.
  3635. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3637. st_synchronize();
  3638. lcd_update_enable(true);
  3639. break;
  3640. }
  3641. #endif
  3642. // M48 Z-Probe repeatability measurement function.
  3643. //
  3644. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3645. //
  3646. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3647. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3648. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3649. // regenerated.
  3650. //
  3651. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3652. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3653. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3654. //
  3655. #ifdef ENABLE_AUTO_BED_LEVELING
  3656. #ifdef Z_PROBE_REPEATABILITY_TEST
  3657. case 48: // M48 Z-Probe repeatability
  3658. {
  3659. #if Z_MIN_PIN == -1
  3660. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3661. #endif
  3662. double sum=0.0;
  3663. double mean=0.0;
  3664. double sigma=0.0;
  3665. double sample_set[50];
  3666. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3667. double X_current, Y_current, Z_current;
  3668. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3669. if (code_seen('V') || code_seen('v')) {
  3670. verbose_level = code_value();
  3671. if (verbose_level<0 || verbose_level>4 ) {
  3672. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3673. goto Sigma_Exit;
  3674. }
  3675. }
  3676. if (verbose_level > 0) {
  3677. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3678. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3679. }
  3680. if (code_seen('n')) {
  3681. n_samples = code_value();
  3682. if (n_samples<4 || n_samples>50 ) {
  3683. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3684. goto Sigma_Exit;
  3685. }
  3686. }
  3687. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3688. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3689. Z_current = st_get_position_mm(Z_AXIS);
  3690. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3691. ext_position = st_get_position_mm(E_AXIS);
  3692. if (code_seen('X') || code_seen('x') ) {
  3693. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3694. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3695. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3696. goto Sigma_Exit;
  3697. }
  3698. }
  3699. if (code_seen('Y') || code_seen('y') ) {
  3700. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3701. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3702. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3703. goto Sigma_Exit;
  3704. }
  3705. }
  3706. if (code_seen('L') || code_seen('l') ) {
  3707. n_legs = code_value();
  3708. if ( n_legs==1 )
  3709. n_legs = 2;
  3710. if ( n_legs<0 || n_legs>15 ) {
  3711. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3712. goto Sigma_Exit;
  3713. }
  3714. }
  3715. //
  3716. // Do all the preliminary setup work. First raise the probe.
  3717. //
  3718. st_synchronize();
  3719. plan_bed_level_matrix.set_to_identity();
  3720. plan_buffer_line( X_current, Y_current, Z_start_location,
  3721. ext_position,
  3722. homing_feedrate[Z_AXIS]/60,
  3723. active_extruder);
  3724. st_synchronize();
  3725. //
  3726. // Now get everything to the specified probe point So we can safely do a probe to
  3727. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3728. // use that as a starting point for each probe.
  3729. //
  3730. if (verbose_level > 2)
  3731. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3732. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3733. ext_position,
  3734. homing_feedrate[X_AXIS]/60,
  3735. active_extruder);
  3736. st_synchronize();
  3737. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3738. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3739. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3740. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3741. //
  3742. // OK, do the inital probe to get us close to the bed.
  3743. // Then retrace the right amount and use that in subsequent probes
  3744. //
  3745. setup_for_endstop_move();
  3746. run_z_probe();
  3747. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3748. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3749. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3750. ext_position,
  3751. homing_feedrate[X_AXIS]/60,
  3752. active_extruder);
  3753. st_synchronize();
  3754. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3755. for( n=0; n<n_samples; n++) {
  3756. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3757. if ( n_legs) {
  3758. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3759. int rotational_direction, l;
  3760. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3761. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3762. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3763. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3764. //SERIAL_ECHOPAIR(" theta: ",theta);
  3765. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3766. //SERIAL_PROTOCOLLNPGM("");
  3767. for( l=0; l<n_legs-1; l++) {
  3768. if (rotational_direction==1)
  3769. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3770. else
  3771. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3772. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3773. if ( radius<0.0 )
  3774. radius = -radius;
  3775. X_current = X_probe_location + cos(theta) * radius;
  3776. Y_current = Y_probe_location + sin(theta) * radius;
  3777. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3778. X_current = X_MIN_POS;
  3779. if ( X_current>X_MAX_POS)
  3780. X_current = X_MAX_POS;
  3781. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3782. Y_current = Y_MIN_POS;
  3783. if ( Y_current>Y_MAX_POS)
  3784. Y_current = Y_MAX_POS;
  3785. if (verbose_level>3 ) {
  3786. SERIAL_ECHOPAIR("x: ", X_current);
  3787. SERIAL_ECHOPAIR("y: ", Y_current);
  3788. SERIAL_PROTOCOLLNPGM("");
  3789. }
  3790. do_blocking_move_to( X_current, Y_current, Z_current );
  3791. }
  3792. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3793. }
  3794. setup_for_endstop_move();
  3795. run_z_probe();
  3796. sample_set[n] = current_position[Z_AXIS];
  3797. //
  3798. // Get the current mean for the data points we have so far
  3799. //
  3800. sum=0.0;
  3801. for( j=0; j<=n; j++) {
  3802. sum = sum + sample_set[j];
  3803. }
  3804. mean = sum / (double (n+1));
  3805. //
  3806. // Now, use that mean to calculate the standard deviation for the
  3807. // data points we have so far
  3808. //
  3809. sum=0.0;
  3810. for( j=0; j<=n; j++) {
  3811. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3812. }
  3813. sigma = sqrt( sum / (double (n+1)) );
  3814. if (verbose_level > 1) {
  3815. SERIAL_PROTOCOL(n+1);
  3816. SERIAL_PROTOCOL(" of ");
  3817. SERIAL_PROTOCOL(n_samples);
  3818. SERIAL_PROTOCOLPGM(" z: ");
  3819. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3820. }
  3821. if (verbose_level > 2) {
  3822. SERIAL_PROTOCOL(" mean: ");
  3823. SERIAL_PROTOCOL_F(mean,6);
  3824. SERIAL_PROTOCOL(" sigma: ");
  3825. SERIAL_PROTOCOL_F(sigma,6);
  3826. }
  3827. if (verbose_level > 0)
  3828. SERIAL_PROTOCOLPGM("\n");
  3829. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3830. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3831. st_synchronize();
  3832. }
  3833. delay(1000);
  3834. clean_up_after_endstop_move();
  3835. // enable_endstops(true);
  3836. if (verbose_level > 0) {
  3837. SERIAL_PROTOCOLPGM("Mean: ");
  3838. SERIAL_PROTOCOL_F(mean, 6);
  3839. SERIAL_PROTOCOLPGM("\n");
  3840. }
  3841. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3842. SERIAL_PROTOCOL_F(sigma, 6);
  3843. SERIAL_PROTOCOLPGM("\n\n");
  3844. Sigma_Exit:
  3845. break;
  3846. }
  3847. #endif // Z_PROBE_REPEATABILITY_TEST
  3848. #endif // ENABLE_AUTO_BED_LEVELING
  3849. case 104: // M104
  3850. if(setTargetedHotend(104)){
  3851. break;
  3852. }
  3853. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3854. setWatch();
  3855. break;
  3856. case 112: // M112 -Emergency Stop
  3857. kill("", 3);
  3858. break;
  3859. case 140: // M140 set bed temp
  3860. if (code_seen('S')) setTargetBed(code_value());
  3861. break;
  3862. case 105 : // M105
  3863. if(setTargetedHotend(105)){
  3864. break;
  3865. }
  3866. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3867. SERIAL_PROTOCOLPGM("ok T:");
  3868. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3869. SERIAL_PROTOCOLPGM(" /");
  3870. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3871. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3872. SERIAL_PROTOCOLPGM(" B:");
  3873. SERIAL_PROTOCOL_F(degBed(),1);
  3874. SERIAL_PROTOCOLPGM(" /");
  3875. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3876. #endif //TEMP_BED_PIN
  3877. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3878. SERIAL_PROTOCOLPGM(" T");
  3879. SERIAL_PROTOCOL(cur_extruder);
  3880. SERIAL_PROTOCOLPGM(":");
  3881. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3882. SERIAL_PROTOCOLPGM(" /");
  3883. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3884. }
  3885. #else
  3886. SERIAL_ERROR_START;
  3887. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3888. #endif
  3889. SERIAL_PROTOCOLPGM(" @:");
  3890. #ifdef EXTRUDER_WATTS
  3891. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3892. SERIAL_PROTOCOLPGM("W");
  3893. #else
  3894. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3895. #endif
  3896. SERIAL_PROTOCOLPGM(" B@:");
  3897. #ifdef BED_WATTS
  3898. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3899. SERIAL_PROTOCOLPGM("W");
  3900. #else
  3901. SERIAL_PROTOCOL(getHeaterPower(-1));
  3902. #endif
  3903. #ifdef PINDA_THERMISTOR
  3904. SERIAL_PROTOCOLPGM(" P:");
  3905. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3906. #endif //PINDA_THERMISTOR
  3907. #ifdef AMBIENT_THERMISTOR
  3908. SERIAL_PROTOCOLPGM(" A:");
  3909. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3910. #endif //AMBIENT_THERMISTOR
  3911. #ifdef SHOW_TEMP_ADC_VALUES
  3912. {float raw = 0.0;
  3913. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3914. SERIAL_PROTOCOLPGM(" ADC B:");
  3915. SERIAL_PROTOCOL_F(degBed(),1);
  3916. SERIAL_PROTOCOLPGM("C->");
  3917. raw = rawBedTemp();
  3918. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3919. SERIAL_PROTOCOLPGM(" Rb->");
  3920. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3921. SERIAL_PROTOCOLPGM(" Rxb->");
  3922. SERIAL_PROTOCOL_F(raw, 5);
  3923. #endif
  3924. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3925. SERIAL_PROTOCOLPGM(" T");
  3926. SERIAL_PROTOCOL(cur_extruder);
  3927. SERIAL_PROTOCOLPGM(":");
  3928. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3929. SERIAL_PROTOCOLPGM("C->");
  3930. raw = rawHotendTemp(cur_extruder);
  3931. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3932. SERIAL_PROTOCOLPGM(" Rt");
  3933. SERIAL_PROTOCOL(cur_extruder);
  3934. SERIAL_PROTOCOLPGM("->");
  3935. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3936. SERIAL_PROTOCOLPGM(" Rx");
  3937. SERIAL_PROTOCOL(cur_extruder);
  3938. SERIAL_PROTOCOLPGM("->");
  3939. SERIAL_PROTOCOL_F(raw, 5);
  3940. }}
  3941. #endif
  3942. SERIAL_PROTOCOLLN("");
  3943. KEEPALIVE_STATE(NOT_BUSY);
  3944. return;
  3945. break;
  3946. case 109:
  3947. {// M109 - Wait for extruder heater to reach target.
  3948. if(setTargetedHotend(109)){
  3949. break;
  3950. }
  3951. LCD_MESSAGERPGM(MSG_HEATING);
  3952. heating_status = 1;
  3953. if (farm_mode) { prusa_statistics(1); };
  3954. #ifdef AUTOTEMP
  3955. autotemp_enabled=false;
  3956. #endif
  3957. if (code_seen('S')) {
  3958. setTargetHotend(code_value(), tmp_extruder);
  3959. CooldownNoWait = true;
  3960. } else if (code_seen('R')) {
  3961. setTargetHotend(code_value(), tmp_extruder);
  3962. CooldownNoWait = false;
  3963. }
  3964. #ifdef AUTOTEMP
  3965. if (code_seen('S')) autotemp_min=code_value();
  3966. if (code_seen('B')) autotemp_max=code_value();
  3967. if (code_seen('F'))
  3968. {
  3969. autotemp_factor=code_value();
  3970. autotemp_enabled=true;
  3971. }
  3972. #endif
  3973. setWatch();
  3974. codenum = millis();
  3975. /* See if we are heating up or cooling down */
  3976. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3977. KEEPALIVE_STATE(NOT_BUSY);
  3978. cancel_heatup = false;
  3979. wait_for_heater(codenum); //loops until target temperature is reached
  3980. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3981. KEEPALIVE_STATE(IN_HANDLER);
  3982. heating_status = 2;
  3983. if (farm_mode) { prusa_statistics(2); };
  3984. //starttime=millis();
  3985. previous_millis_cmd = millis();
  3986. }
  3987. break;
  3988. case 190: // M190 - Wait for bed heater to reach target.
  3989. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3990. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3991. heating_status = 3;
  3992. if (farm_mode) { prusa_statistics(1); };
  3993. if (code_seen('S'))
  3994. {
  3995. setTargetBed(code_value());
  3996. CooldownNoWait = true;
  3997. }
  3998. else if (code_seen('R'))
  3999. {
  4000. setTargetBed(code_value());
  4001. CooldownNoWait = false;
  4002. }
  4003. codenum = millis();
  4004. cancel_heatup = false;
  4005. target_direction = isHeatingBed(); // true if heating, false if cooling
  4006. KEEPALIVE_STATE(NOT_BUSY);
  4007. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4008. {
  4009. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4010. {
  4011. if (!farm_mode) {
  4012. float tt = degHotend(active_extruder);
  4013. SERIAL_PROTOCOLPGM("T:");
  4014. SERIAL_PROTOCOL(tt);
  4015. SERIAL_PROTOCOLPGM(" E:");
  4016. SERIAL_PROTOCOL((int)active_extruder);
  4017. SERIAL_PROTOCOLPGM(" B:");
  4018. SERIAL_PROTOCOL_F(degBed(), 1);
  4019. SERIAL_PROTOCOLLN("");
  4020. }
  4021. codenum = millis();
  4022. }
  4023. manage_heater();
  4024. manage_inactivity();
  4025. lcd_update();
  4026. }
  4027. LCD_MESSAGERPGM(MSG_BED_DONE);
  4028. KEEPALIVE_STATE(IN_HANDLER);
  4029. heating_status = 4;
  4030. previous_millis_cmd = millis();
  4031. #endif
  4032. break;
  4033. #if defined(FAN_PIN) && FAN_PIN > -1
  4034. case 106: //M106 Fan On
  4035. if (code_seen('S')){
  4036. fanSpeed=constrain(code_value(),0,255);
  4037. }
  4038. else {
  4039. fanSpeed=255;
  4040. }
  4041. break;
  4042. case 107: //M107 Fan Off
  4043. fanSpeed = 0;
  4044. break;
  4045. #endif //FAN_PIN
  4046. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4047. case 80: // M80 - Turn on Power Supply
  4048. SET_OUTPUT(PS_ON_PIN); //GND
  4049. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4050. // If you have a switch on suicide pin, this is useful
  4051. // if you want to start another print with suicide feature after
  4052. // a print without suicide...
  4053. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4054. SET_OUTPUT(SUICIDE_PIN);
  4055. WRITE(SUICIDE_PIN, HIGH);
  4056. #endif
  4057. #ifdef ULTIPANEL
  4058. powersupply = true;
  4059. LCD_MESSAGERPGM(WELCOME_MSG);
  4060. lcd_update();
  4061. #endif
  4062. break;
  4063. #endif
  4064. case 81: // M81 - Turn off Power Supply
  4065. disable_heater();
  4066. st_synchronize();
  4067. disable_e0();
  4068. disable_e1();
  4069. disable_e2();
  4070. finishAndDisableSteppers();
  4071. fanSpeed = 0;
  4072. delay(1000); // Wait a little before to switch off
  4073. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4074. st_synchronize();
  4075. suicide();
  4076. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4077. SET_OUTPUT(PS_ON_PIN);
  4078. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4079. #endif
  4080. #ifdef ULTIPANEL
  4081. powersupply = false;
  4082. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4083. /*
  4084. MACHNAME = "Prusa i3"
  4085. MSGOFF = "Vypnuto"
  4086. "Prusai3"" ""vypnuto""."
  4087. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4088. */
  4089. lcd_update();
  4090. #endif
  4091. break;
  4092. case 82:
  4093. axis_relative_modes[3] = false;
  4094. break;
  4095. case 83:
  4096. axis_relative_modes[3] = true;
  4097. break;
  4098. case 18: //compatibility
  4099. case 84: // M84
  4100. if(code_seen('S')){
  4101. stepper_inactive_time = code_value() * 1000;
  4102. }
  4103. else
  4104. {
  4105. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4106. if(all_axis)
  4107. {
  4108. st_synchronize();
  4109. disable_e0();
  4110. disable_e1();
  4111. disable_e2();
  4112. finishAndDisableSteppers();
  4113. }
  4114. else
  4115. {
  4116. st_synchronize();
  4117. if (code_seen('X')) disable_x();
  4118. if (code_seen('Y')) disable_y();
  4119. if (code_seen('Z')) disable_z();
  4120. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4121. if (code_seen('E')) {
  4122. disable_e0();
  4123. disable_e1();
  4124. disable_e2();
  4125. }
  4126. #endif
  4127. }
  4128. }
  4129. snmm_filaments_used = 0;
  4130. break;
  4131. case 85: // M85
  4132. if(code_seen('S')) {
  4133. max_inactive_time = code_value() * 1000;
  4134. }
  4135. break;
  4136. case 92: // M92
  4137. for(int8_t i=0; i < NUM_AXIS; i++)
  4138. {
  4139. if(code_seen(axis_codes[i]))
  4140. {
  4141. if(i == 3) { // E
  4142. float value = code_value();
  4143. if(value < 20.0) {
  4144. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4145. max_jerk[E_AXIS] *= factor;
  4146. max_feedrate[i] *= factor;
  4147. axis_steps_per_sqr_second[i] *= factor;
  4148. }
  4149. axis_steps_per_unit[i] = value;
  4150. }
  4151. else {
  4152. axis_steps_per_unit[i] = code_value();
  4153. }
  4154. }
  4155. }
  4156. break;
  4157. case 110: // M110 - reset line pos
  4158. if (code_seen('N'))
  4159. gcode_LastN = code_value_long();
  4160. break;
  4161. #ifdef HOST_KEEPALIVE_FEATURE
  4162. case 113: // M113 - Get or set Host Keepalive interval
  4163. if (code_seen('S')) {
  4164. host_keepalive_interval = (uint8_t)code_value_short();
  4165. // NOMORE(host_keepalive_interval, 60);
  4166. }
  4167. else {
  4168. SERIAL_ECHO_START;
  4169. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4170. SERIAL_PROTOCOLLN("");
  4171. }
  4172. break;
  4173. #endif
  4174. case 115: // M115
  4175. if (code_seen('V')) {
  4176. // Report the Prusa version number.
  4177. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4178. } else if (code_seen('U')) {
  4179. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4180. // pause the print and ask the user to upgrade the firmware.
  4181. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4182. } else {
  4183. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4184. }
  4185. break;
  4186. /* case 117: // M117 display message
  4187. starpos = (strchr(strchr_pointer + 5,'*'));
  4188. if(starpos!=NULL)
  4189. *(starpos)='\0';
  4190. lcd_setstatus(strchr_pointer + 5);
  4191. break;*/
  4192. case 114: // M114
  4193. SERIAL_PROTOCOLPGM("X:");
  4194. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4195. SERIAL_PROTOCOLPGM(" Y:");
  4196. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4197. SERIAL_PROTOCOLPGM(" Z:");
  4198. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4199. SERIAL_PROTOCOLPGM(" E:");
  4200. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4201. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4202. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4203. SERIAL_PROTOCOLPGM(" Y:");
  4204. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4205. SERIAL_PROTOCOLPGM(" Z:");
  4206. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4207. SERIAL_PROTOCOLPGM(" E:");
  4208. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4209. SERIAL_PROTOCOLLN("");
  4210. break;
  4211. case 120: // M120
  4212. enable_endstops(false) ;
  4213. break;
  4214. case 121: // M121
  4215. enable_endstops(true) ;
  4216. break;
  4217. case 119: // M119
  4218. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4219. SERIAL_PROTOCOLLN("");
  4220. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4221. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4222. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4223. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4224. }else{
  4225. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4226. }
  4227. SERIAL_PROTOCOLLN("");
  4228. #endif
  4229. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4230. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4231. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4232. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4233. }else{
  4234. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4235. }
  4236. SERIAL_PROTOCOLLN("");
  4237. #endif
  4238. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4239. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4240. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4241. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4242. }else{
  4243. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4244. }
  4245. SERIAL_PROTOCOLLN("");
  4246. #endif
  4247. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4248. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4249. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4250. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4251. }else{
  4252. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4253. }
  4254. SERIAL_PROTOCOLLN("");
  4255. #endif
  4256. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4257. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4258. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4259. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4260. }else{
  4261. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4262. }
  4263. SERIAL_PROTOCOLLN("");
  4264. #endif
  4265. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4266. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4267. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4268. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4269. }else{
  4270. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4271. }
  4272. SERIAL_PROTOCOLLN("");
  4273. #endif
  4274. break;
  4275. //TODO: update for all axis, use for loop
  4276. #ifdef BLINKM
  4277. case 150: // M150
  4278. {
  4279. byte red;
  4280. byte grn;
  4281. byte blu;
  4282. if(code_seen('R')) red = code_value();
  4283. if(code_seen('U')) grn = code_value();
  4284. if(code_seen('B')) blu = code_value();
  4285. SendColors(red,grn,blu);
  4286. }
  4287. break;
  4288. #endif //BLINKM
  4289. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4290. {
  4291. tmp_extruder = active_extruder;
  4292. if(code_seen('T')) {
  4293. tmp_extruder = code_value();
  4294. if(tmp_extruder >= EXTRUDERS) {
  4295. SERIAL_ECHO_START;
  4296. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4297. break;
  4298. }
  4299. }
  4300. float area = .0;
  4301. if(code_seen('D')) {
  4302. float diameter = (float)code_value();
  4303. if (diameter == 0.0) {
  4304. // setting any extruder filament size disables volumetric on the assumption that
  4305. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4306. // for all extruders
  4307. volumetric_enabled = false;
  4308. } else {
  4309. filament_size[tmp_extruder] = (float)code_value();
  4310. // make sure all extruders have some sane value for the filament size
  4311. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4312. #if EXTRUDERS > 1
  4313. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4314. #if EXTRUDERS > 2
  4315. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4316. #endif
  4317. #endif
  4318. volumetric_enabled = true;
  4319. }
  4320. } else {
  4321. //reserved for setting filament diameter via UFID or filament measuring device
  4322. break;
  4323. }
  4324. calculate_volumetric_multipliers();
  4325. }
  4326. break;
  4327. case 201: // M201
  4328. for(int8_t i=0; i < NUM_AXIS; i++)
  4329. {
  4330. if(code_seen(axis_codes[i]))
  4331. {
  4332. max_acceleration_units_per_sq_second[i] = code_value();
  4333. }
  4334. }
  4335. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4336. reset_acceleration_rates();
  4337. break;
  4338. #if 0 // Not used for Sprinter/grbl gen6
  4339. case 202: // M202
  4340. for(int8_t i=0; i < NUM_AXIS; i++) {
  4341. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4342. }
  4343. break;
  4344. #endif
  4345. case 203: // M203 max feedrate mm/sec
  4346. for(int8_t i=0; i < NUM_AXIS; i++) {
  4347. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4348. }
  4349. break;
  4350. case 204: // M204 acclereration S normal moves T filmanent only moves
  4351. {
  4352. if(code_seen('S')) acceleration = code_value() ;
  4353. if(code_seen('T')) retract_acceleration = code_value() ;
  4354. }
  4355. break;
  4356. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4357. {
  4358. if(code_seen('S')) minimumfeedrate = code_value();
  4359. if(code_seen('T')) mintravelfeedrate = code_value();
  4360. if(code_seen('B')) minsegmenttime = code_value() ;
  4361. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4362. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4363. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4364. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4365. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4366. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4367. }
  4368. break;
  4369. case 206: // M206 additional homing offset
  4370. for(int8_t i=0; i < 3; i++)
  4371. {
  4372. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4373. }
  4374. break;
  4375. #ifdef FWRETRACT
  4376. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4377. {
  4378. if(code_seen('S'))
  4379. {
  4380. retract_length = code_value() ;
  4381. }
  4382. if(code_seen('F'))
  4383. {
  4384. retract_feedrate = code_value()/60 ;
  4385. }
  4386. if(code_seen('Z'))
  4387. {
  4388. retract_zlift = code_value() ;
  4389. }
  4390. }break;
  4391. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4392. {
  4393. if(code_seen('S'))
  4394. {
  4395. retract_recover_length = code_value() ;
  4396. }
  4397. if(code_seen('F'))
  4398. {
  4399. retract_recover_feedrate = code_value()/60 ;
  4400. }
  4401. }break;
  4402. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4403. {
  4404. if(code_seen('S'))
  4405. {
  4406. int t= code_value() ;
  4407. switch(t)
  4408. {
  4409. case 0:
  4410. {
  4411. autoretract_enabled=false;
  4412. retracted[0]=false;
  4413. #if EXTRUDERS > 1
  4414. retracted[1]=false;
  4415. #endif
  4416. #if EXTRUDERS > 2
  4417. retracted[2]=false;
  4418. #endif
  4419. }break;
  4420. case 1:
  4421. {
  4422. autoretract_enabled=true;
  4423. retracted[0]=false;
  4424. #if EXTRUDERS > 1
  4425. retracted[1]=false;
  4426. #endif
  4427. #if EXTRUDERS > 2
  4428. retracted[2]=false;
  4429. #endif
  4430. }break;
  4431. default:
  4432. SERIAL_ECHO_START;
  4433. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4434. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4435. SERIAL_ECHOLNPGM("\"(1)");
  4436. }
  4437. }
  4438. }break;
  4439. #endif // FWRETRACT
  4440. #if EXTRUDERS > 1
  4441. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4442. {
  4443. if(setTargetedHotend(218)){
  4444. break;
  4445. }
  4446. if(code_seen('X'))
  4447. {
  4448. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4449. }
  4450. if(code_seen('Y'))
  4451. {
  4452. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4453. }
  4454. SERIAL_ECHO_START;
  4455. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4456. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4457. {
  4458. SERIAL_ECHO(" ");
  4459. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4460. SERIAL_ECHO(",");
  4461. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4462. }
  4463. SERIAL_ECHOLN("");
  4464. }break;
  4465. #endif
  4466. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4467. {
  4468. if(code_seen('S'))
  4469. {
  4470. feedmultiply = code_value() ;
  4471. }
  4472. }
  4473. break;
  4474. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4475. {
  4476. if(code_seen('S'))
  4477. {
  4478. int tmp_code = code_value();
  4479. if (code_seen('T'))
  4480. {
  4481. if(setTargetedHotend(221)){
  4482. break;
  4483. }
  4484. extruder_multiply[tmp_extruder] = tmp_code;
  4485. }
  4486. else
  4487. {
  4488. extrudemultiply = tmp_code ;
  4489. }
  4490. }
  4491. }
  4492. break;
  4493. #ifndef _DISABLE_M42_M226
  4494. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4495. {
  4496. if(code_seen('P')){
  4497. int pin_number = code_value(); // pin number
  4498. int pin_state = -1; // required pin state - default is inverted
  4499. if(code_seen('S')) pin_state = code_value(); // required pin state
  4500. if(pin_state >= -1 && pin_state <= 1){
  4501. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4502. {
  4503. if (sensitive_pins[i] == pin_number)
  4504. {
  4505. pin_number = -1;
  4506. break;
  4507. }
  4508. }
  4509. if (pin_number > -1)
  4510. {
  4511. int target = LOW;
  4512. st_synchronize();
  4513. pinMode(pin_number, INPUT);
  4514. switch(pin_state){
  4515. case 1:
  4516. target = HIGH;
  4517. break;
  4518. case 0:
  4519. target = LOW;
  4520. break;
  4521. case -1:
  4522. target = !digitalRead(pin_number);
  4523. break;
  4524. }
  4525. while(digitalRead(pin_number) != target){
  4526. manage_heater();
  4527. manage_inactivity();
  4528. lcd_update();
  4529. }
  4530. }
  4531. }
  4532. }
  4533. }
  4534. break;
  4535. #endif //_DISABLE_M42_M226
  4536. #if NUM_SERVOS > 0
  4537. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4538. {
  4539. int servo_index = -1;
  4540. int servo_position = 0;
  4541. if (code_seen('P'))
  4542. servo_index = code_value();
  4543. if (code_seen('S')) {
  4544. servo_position = code_value();
  4545. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4546. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4547. servos[servo_index].attach(0);
  4548. #endif
  4549. servos[servo_index].write(servo_position);
  4550. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4551. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4552. servos[servo_index].detach();
  4553. #endif
  4554. }
  4555. else {
  4556. SERIAL_ECHO_START;
  4557. SERIAL_ECHO("Servo ");
  4558. SERIAL_ECHO(servo_index);
  4559. SERIAL_ECHOLN(" out of range");
  4560. }
  4561. }
  4562. else if (servo_index >= 0) {
  4563. SERIAL_PROTOCOL(MSG_OK);
  4564. SERIAL_PROTOCOL(" Servo ");
  4565. SERIAL_PROTOCOL(servo_index);
  4566. SERIAL_PROTOCOL(": ");
  4567. SERIAL_PROTOCOL(servos[servo_index].read());
  4568. SERIAL_PROTOCOLLN("");
  4569. }
  4570. }
  4571. break;
  4572. #endif // NUM_SERVOS > 0
  4573. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4574. case 300: // M300
  4575. {
  4576. int beepS = code_seen('S') ? code_value() : 110;
  4577. int beepP = code_seen('P') ? code_value() : 1000;
  4578. if (beepS > 0)
  4579. {
  4580. #if BEEPER > 0
  4581. tone(BEEPER, beepS);
  4582. delay(beepP);
  4583. noTone(BEEPER);
  4584. #elif defined(ULTRALCD)
  4585. lcd_buzz(beepS, beepP);
  4586. #elif defined(LCD_USE_I2C_BUZZER)
  4587. lcd_buzz(beepP, beepS);
  4588. #endif
  4589. }
  4590. else
  4591. {
  4592. delay(beepP);
  4593. }
  4594. }
  4595. break;
  4596. #endif // M300
  4597. #ifdef PIDTEMP
  4598. case 301: // M301
  4599. {
  4600. if(code_seen('P')) Kp = code_value();
  4601. if(code_seen('I')) Ki = scalePID_i(code_value());
  4602. if(code_seen('D')) Kd = scalePID_d(code_value());
  4603. #ifdef PID_ADD_EXTRUSION_RATE
  4604. if(code_seen('C')) Kc = code_value();
  4605. #endif
  4606. updatePID();
  4607. SERIAL_PROTOCOLRPGM(MSG_OK);
  4608. SERIAL_PROTOCOL(" p:");
  4609. SERIAL_PROTOCOL(Kp);
  4610. SERIAL_PROTOCOL(" i:");
  4611. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4612. SERIAL_PROTOCOL(" d:");
  4613. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4614. #ifdef PID_ADD_EXTRUSION_RATE
  4615. SERIAL_PROTOCOL(" c:");
  4616. //Kc does not have scaling applied above, or in resetting defaults
  4617. SERIAL_PROTOCOL(Kc);
  4618. #endif
  4619. SERIAL_PROTOCOLLN("");
  4620. }
  4621. break;
  4622. #endif //PIDTEMP
  4623. #ifdef PIDTEMPBED
  4624. case 304: // M304
  4625. {
  4626. if(code_seen('P')) bedKp = code_value();
  4627. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4628. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4629. updatePID();
  4630. SERIAL_PROTOCOLRPGM(MSG_OK);
  4631. SERIAL_PROTOCOL(" p:");
  4632. SERIAL_PROTOCOL(bedKp);
  4633. SERIAL_PROTOCOL(" i:");
  4634. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4635. SERIAL_PROTOCOL(" d:");
  4636. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4637. SERIAL_PROTOCOLLN("");
  4638. }
  4639. break;
  4640. #endif //PIDTEMP
  4641. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4642. {
  4643. #ifdef CHDK
  4644. SET_OUTPUT(CHDK);
  4645. WRITE(CHDK, HIGH);
  4646. chdkHigh = millis();
  4647. chdkActive = true;
  4648. #else
  4649. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4650. const uint8_t NUM_PULSES=16;
  4651. const float PULSE_LENGTH=0.01524;
  4652. for(int i=0; i < NUM_PULSES; i++) {
  4653. WRITE(PHOTOGRAPH_PIN, HIGH);
  4654. _delay_ms(PULSE_LENGTH);
  4655. WRITE(PHOTOGRAPH_PIN, LOW);
  4656. _delay_ms(PULSE_LENGTH);
  4657. }
  4658. delay(7.33);
  4659. for(int i=0; i < NUM_PULSES; i++) {
  4660. WRITE(PHOTOGRAPH_PIN, HIGH);
  4661. _delay_ms(PULSE_LENGTH);
  4662. WRITE(PHOTOGRAPH_PIN, LOW);
  4663. _delay_ms(PULSE_LENGTH);
  4664. }
  4665. #endif
  4666. #endif //chdk end if
  4667. }
  4668. break;
  4669. #ifdef DOGLCD
  4670. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4671. {
  4672. if (code_seen('C')) {
  4673. lcd_setcontrast( ((int)code_value())&63 );
  4674. }
  4675. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4676. SERIAL_PROTOCOL(lcd_contrast);
  4677. SERIAL_PROTOCOLLN("");
  4678. }
  4679. break;
  4680. #endif
  4681. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4682. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4683. {
  4684. float temp = .0;
  4685. if (code_seen('S')) temp=code_value();
  4686. set_extrude_min_temp(temp);
  4687. }
  4688. break;
  4689. #endif
  4690. case 303: // M303 PID autotune
  4691. {
  4692. float temp = 150.0;
  4693. int e=0;
  4694. int c=5;
  4695. if (code_seen('E')) e=code_value();
  4696. if (e<0)
  4697. temp=70;
  4698. if (code_seen('S')) temp=code_value();
  4699. if (code_seen('C')) c=code_value();
  4700. PID_autotune(temp, e, c);
  4701. }
  4702. break;
  4703. case 400: // M400 finish all moves
  4704. {
  4705. st_synchronize();
  4706. }
  4707. break;
  4708. #ifdef FILAMENT_SENSOR
  4709. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4710. {
  4711. #if (FILWIDTH_PIN > -1)
  4712. if(code_seen('N')) filament_width_nominal=code_value();
  4713. else{
  4714. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4715. SERIAL_PROTOCOLLN(filament_width_nominal);
  4716. }
  4717. #endif
  4718. }
  4719. break;
  4720. case 405: //M405 Turn on filament sensor for control
  4721. {
  4722. if(code_seen('D')) meas_delay_cm=code_value();
  4723. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4724. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4725. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4726. {
  4727. int temp_ratio = widthFil_to_size_ratio();
  4728. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4729. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4730. }
  4731. delay_index1=0;
  4732. delay_index2=0;
  4733. }
  4734. filament_sensor = true ;
  4735. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4736. //SERIAL_PROTOCOL(filament_width_meas);
  4737. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4738. //SERIAL_PROTOCOL(extrudemultiply);
  4739. }
  4740. break;
  4741. case 406: //M406 Turn off filament sensor for control
  4742. {
  4743. filament_sensor = false ;
  4744. }
  4745. break;
  4746. case 407: //M407 Display measured filament diameter
  4747. {
  4748. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4749. SERIAL_PROTOCOLLN(filament_width_meas);
  4750. }
  4751. break;
  4752. #endif
  4753. case 500: // M500 Store settings in EEPROM
  4754. {
  4755. Config_StoreSettings(EEPROM_OFFSET);
  4756. }
  4757. break;
  4758. case 501: // M501 Read settings from EEPROM
  4759. {
  4760. Config_RetrieveSettings(EEPROM_OFFSET);
  4761. }
  4762. break;
  4763. case 502: // M502 Revert to default settings
  4764. {
  4765. Config_ResetDefault();
  4766. }
  4767. break;
  4768. case 503: // M503 print settings currently in memory
  4769. {
  4770. Config_PrintSettings();
  4771. }
  4772. break;
  4773. case 509: //M509 Force language selection
  4774. {
  4775. lcd_force_language_selection();
  4776. SERIAL_ECHO_START;
  4777. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4778. }
  4779. break;
  4780. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4781. case 540:
  4782. {
  4783. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4784. }
  4785. break;
  4786. #endif
  4787. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4788. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4789. {
  4790. float value;
  4791. if (code_seen('Z'))
  4792. {
  4793. value = code_value();
  4794. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4795. {
  4796. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4797. SERIAL_ECHO_START;
  4798. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4799. SERIAL_PROTOCOLLN("");
  4800. }
  4801. else
  4802. {
  4803. SERIAL_ECHO_START;
  4804. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4805. SERIAL_ECHORPGM(MSG_Z_MIN);
  4806. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4807. SERIAL_ECHORPGM(MSG_Z_MAX);
  4808. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4809. SERIAL_PROTOCOLLN("");
  4810. }
  4811. }
  4812. else
  4813. {
  4814. SERIAL_ECHO_START;
  4815. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4816. SERIAL_ECHO(-zprobe_zoffset);
  4817. SERIAL_PROTOCOLLN("");
  4818. }
  4819. break;
  4820. }
  4821. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4822. #ifdef FILAMENTCHANGEENABLE
  4823. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4824. {
  4825. bool old_fsensor_enabled = fsensor_enabled;
  4826. fsensor_enabled = false; //temporary solution for unexpected restarting
  4827. st_synchronize();
  4828. float target[4];
  4829. float lastpos[4];
  4830. if (farm_mode)
  4831. {
  4832. prusa_statistics(22);
  4833. }
  4834. feedmultiplyBckp=feedmultiply;
  4835. int8_t TooLowZ = 0;
  4836. float HotendTempBckp = degTargetHotend(active_extruder);
  4837. int fanSpeedBckp = fanSpeed;
  4838. target[X_AXIS]=current_position[X_AXIS];
  4839. target[Y_AXIS]=current_position[Y_AXIS];
  4840. target[Z_AXIS]=current_position[Z_AXIS];
  4841. target[E_AXIS]=current_position[E_AXIS];
  4842. lastpos[X_AXIS]=current_position[X_AXIS];
  4843. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4844. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4845. lastpos[E_AXIS]=current_position[E_AXIS];
  4846. //Restract extruder
  4847. if(code_seen('E'))
  4848. {
  4849. target[E_AXIS]+= code_value();
  4850. }
  4851. else
  4852. {
  4853. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4854. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4855. #endif
  4856. }
  4857. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4858. //Lift Z
  4859. if(code_seen('Z'))
  4860. {
  4861. target[Z_AXIS]+= code_value();
  4862. }
  4863. else
  4864. {
  4865. #ifdef FILAMENTCHANGE_ZADD
  4866. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4867. if(target[Z_AXIS] < 10){
  4868. target[Z_AXIS]+= 10 ;
  4869. TooLowZ = 1;
  4870. }else{
  4871. TooLowZ = 0;
  4872. }
  4873. #endif
  4874. }
  4875. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4876. //Move XY to side
  4877. if(code_seen('X'))
  4878. {
  4879. target[X_AXIS]+= code_value();
  4880. }
  4881. else
  4882. {
  4883. #ifdef FILAMENTCHANGE_XPOS
  4884. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4885. #endif
  4886. }
  4887. if(code_seen('Y'))
  4888. {
  4889. target[Y_AXIS]= code_value();
  4890. }
  4891. else
  4892. {
  4893. #ifdef FILAMENTCHANGE_YPOS
  4894. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4895. #endif
  4896. }
  4897. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4898. st_synchronize();
  4899. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4900. uint8_t cnt = 0;
  4901. int counterBeep = 0;
  4902. fanSpeed = 0;
  4903. unsigned long waiting_start_time = millis();
  4904. uint8_t wait_for_user_state = 0;
  4905. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4906. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4907. //cnt++;
  4908. manage_heater();
  4909. manage_inactivity(true);
  4910. /*#ifdef SNMM
  4911. target[E_AXIS] += 0.002;
  4912. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4913. #endif // SNMM*/
  4914. //if (cnt == 0)
  4915. {
  4916. #if BEEPER > 0
  4917. if (counterBeep == 500) {
  4918. counterBeep = 0;
  4919. }
  4920. SET_OUTPUT(BEEPER);
  4921. if (counterBeep == 0) {
  4922. WRITE(BEEPER, HIGH);
  4923. }
  4924. if (counterBeep == 20) {
  4925. WRITE(BEEPER, LOW);
  4926. }
  4927. counterBeep++;
  4928. #else
  4929. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4930. lcd_buzz(1000 / 6, 100);
  4931. #else
  4932. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4933. #endif
  4934. #endif
  4935. }
  4936. switch (wait_for_user_state) {
  4937. case 0:
  4938. delay_keep_alive(4);
  4939. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4940. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4941. wait_for_user_state = 1;
  4942. setTargetHotend(0, 0);
  4943. setTargetHotend(0, 1);
  4944. setTargetHotend(0, 2);
  4945. st_synchronize();
  4946. disable_e0();
  4947. disable_e1();
  4948. disable_e2();
  4949. }
  4950. break;
  4951. case 1:
  4952. delay_keep_alive(4);
  4953. if (lcd_clicked()) {
  4954. setTargetHotend(HotendTempBckp, active_extruder);
  4955. lcd_wait_for_heater();
  4956. wait_for_user_state = 2;
  4957. }
  4958. break;
  4959. case 2:
  4960. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4961. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4962. waiting_start_time = millis();
  4963. wait_for_user_state = 0;
  4964. }
  4965. else {
  4966. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4967. lcd.setCursor(1, 4);
  4968. lcd.print(ftostr3(degHotend(active_extruder)));
  4969. }
  4970. break;
  4971. }
  4972. }
  4973. WRITE(BEEPER, LOW);
  4974. lcd_change_fil_state = 0;
  4975. // Unload filament
  4976. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4977. KEEPALIVE_STATE(IN_HANDLER);
  4978. custom_message = true;
  4979. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4980. if (code_seen('L'))
  4981. {
  4982. target[E_AXIS] += code_value();
  4983. }
  4984. else
  4985. {
  4986. #ifdef SNMM
  4987. #else
  4988. #ifdef FILAMENTCHANGE_FINALRETRACT
  4989. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4990. #endif
  4991. #endif // SNMM
  4992. }
  4993. #ifdef SNMM
  4994. target[E_AXIS] += 12;
  4995. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4996. target[E_AXIS] += 6;
  4997. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4998. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4999. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5000. st_synchronize();
  5001. target[E_AXIS] += (FIL_COOLING);
  5002. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5003. target[E_AXIS] += (FIL_COOLING*-1);
  5004. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5005. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5006. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5007. st_synchronize();
  5008. #else
  5009. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5010. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5011. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5012. st_synchronize();
  5013. #ifdef TMC2130
  5014. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5015. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5016. #endif //TMC2130
  5017. target[E_AXIS] -= 45;
  5018. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5019. st_synchronize();
  5020. target[E_AXIS] -= 15;
  5021. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5022. st_synchronize();
  5023. target[E_AXIS] -= 20;
  5024. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5025. st_synchronize();
  5026. #ifdef TMC2130
  5027. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5028. #endif //TMC2130
  5029. #endif // SNMM
  5030. //finish moves
  5031. st_synchronize();
  5032. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5033. //disable extruder steppers so filament can be removed
  5034. disable_e0();
  5035. disable_e1();
  5036. disable_e2();
  5037. delay(100);
  5038. WRITE(BEEPER, HIGH);
  5039. counterBeep = 0;
  5040. while(!lcd_clicked() && (counterBeep < 50)) {
  5041. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5042. delay_keep_alive(100);
  5043. counterBeep++;
  5044. }
  5045. WRITE(BEEPER, LOW);
  5046. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5047. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5048. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5049. //lcd_return_to_status();
  5050. lcd_update_enable(true);
  5051. //Wait for user to insert filament
  5052. lcd_wait_interact();
  5053. //load_filament_time = millis();
  5054. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5055. #ifdef PAT9125
  5056. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5057. #endif //PAT9125
  5058. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5059. while(!lcd_clicked())
  5060. {
  5061. manage_heater();
  5062. manage_inactivity(true);
  5063. #ifdef PAT9125
  5064. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5065. {
  5066. tone(BEEPER, 1000);
  5067. delay_keep_alive(50);
  5068. noTone(BEEPER);
  5069. break;
  5070. }
  5071. #endif //PAT9125
  5072. /*#ifdef SNMM
  5073. target[E_AXIS] += 0.002;
  5074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5075. #endif // SNMM*/
  5076. }
  5077. #ifdef PAT9125
  5078. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5079. #endif //PAT9125
  5080. //WRITE(BEEPER, LOW);
  5081. KEEPALIVE_STATE(IN_HANDLER);
  5082. #ifdef SNMM
  5083. display_loading();
  5084. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5085. do {
  5086. target[E_AXIS] += 0.002;
  5087. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5088. delay_keep_alive(2);
  5089. } while (!lcd_clicked());
  5090. KEEPALIVE_STATE(IN_HANDLER);
  5091. /*if (millis() - load_filament_time > 2) {
  5092. load_filament_time = millis();
  5093. target[E_AXIS] += 0.001;
  5094. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5095. }*/
  5096. //Filament inserted
  5097. //Feed the filament to the end of nozzle quickly
  5098. st_synchronize();
  5099. target[E_AXIS] += bowden_length[snmm_extruder];
  5100. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5101. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5102. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5103. target[E_AXIS] += 40;
  5104. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5105. target[E_AXIS] += 10;
  5106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5107. #else
  5108. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5109. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5110. #endif // SNMM
  5111. //Extrude some filament
  5112. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5114. //Wait for user to check the state
  5115. lcd_change_fil_state = 0;
  5116. lcd_loading_filament();
  5117. tone(BEEPER, 500);
  5118. delay_keep_alive(50);
  5119. noTone(BEEPER);
  5120. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5121. lcd_change_fil_state = 0;
  5122. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5123. lcd_alright();
  5124. KEEPALIVE_STATE(IN_HANDLER);
  5125. switch(lcd_change_fil_state){
  5126. // Filament failed to load so load it again
  5127. case 2:
  5128. #ifdef SNMM
  5129. display_loading();
  5130. do {
  5131. target[E_AXIS] += 0.002;
  5132. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5133. delay_keep_alive(2);
  5134. } while (!lcd_clicked());
  5135. st_synchronize();
  5136. target[E_AXIS] += bowden_length[snmm_extruder];
  5137. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5138. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5139. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5140. target[E_AXIS] += 40;
  5141. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5142. target[E_AXIS] += 10;
  5143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5144. #else
  5145. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5146. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5147. #endif
  5148. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5149. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5150. lcd_loading_filament();
  5151. break;
  5152. // Filament loaded properly but color is not clear
  5153. case 3:
  5154. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5156. lcd_loading_color();
  5157. break;
  5158. // Everything good
  5159. default:
  5160. lcd_change_success();
  5161. lcd_update_enable(true);
  5162. break;
  5163. }
  5164. }
  5165. //Not let's go back to print
  5166. fanSpeed = fanSpeedBckp;
  5167. //Feed a little of filament to stabilize pressure
  5168. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5169. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5170. //Retract
  5171. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5172. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5173. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5174. //Move XY back
  5175. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5176. //Move Z back
  5177. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5178. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5179. //Unretract
  5180. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5181. //Set E position to original
  5182. plan_set_e_position(lastpos[E_AXIS]);
  5183. //Recover feed rate
  5184. feedmultiply=feedmultiplyBckp;
  5185. char cmd[9];
  5186. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5187. enquecommand(cmd);
  5188. lcd_setstatuspgm(WELCOME_MSG);
  5189. custom_message = false;
  5190. custom_message_type = 0;
  5191. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5192. #ifdef PAT9125
  5193. if (fsensor_M600)
  5194. {
  5195. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5196. st_synchronize();
  5197. while (!is_buffer_empty())
  5198. {
  5199. process_commands();
  5200. cmdqueue_pop_front();
  5201. }
  5202. fsensor_enable();
  5203. fsensor_restore_print_and_continue();
  5204. }
  5205. #endif //PAT9125
  5206. }
  5207. break;
  5208. #endif //FILAMENTCHANGEENABLE
  5209. case 601: {
  5210. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5211. }
  5212. break;
  5213. case 602: {
  5214. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5215. }
  5216. break;
  5217. #ifdef LIN_ADVANCE
  5218. case 900: // M900: Set LIN_ADVANCE options.
  5219. gcode_M900();
  5220. break;
  5221. #endif
  5222. case 907: // M907 Set digital trimpot motor current using axis codes.
  5223. {
  5224. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5225. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5226. if(code_seen('B')) digipot_current(4,code_value());
  5227. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5228. #endif
  5229. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5230. if(code_seen('X')) digipot_current(0, code_value());
  5231. #endif
  5232. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5233. if(code_seen('Z')) digipot_current(1, code_value());
  5234. #endif
  5235. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5236. if(code_seen('E')) digipot_current(2, code_value());
  5237. #endif
  5238. #ifdef DIGIPOT_I2C
  5239. // this one uses actual amps in floating point
  5240. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5241. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5242. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5243. #endif
  5244. }
  5245. break;
  5246. case 908: // M908 Control digital trimpot directly.
  5247. {
  5248. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5249. uint8_t channel,current;
  5250. if(code_seen('P')) channel=code_value();
  5251. if(code_seen('S')) current=code_value();
  5252. digitalPotWrite(channel, current);
  5253. #endif
  5254. }
  5255. break;
  5256. #ifdef TMC2130
  5257. case 910: // M910 TMC2130 init
  5258. {
  5259. tmc2130_init();
  5260. }
  5261. break;
  5262. case 911: // M911 Set TMC2130 holding currents
  5263. {
  5264. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5265. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5266. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5267. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5268. }
  5269. break;
  5270. case 912: // M912 Set TMC2130 running currents
  5271. {
  5272. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5273. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5274. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5275. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5276. }
  5277. break;
  5278. case 913: // M913 Print TMC2130 currents
  5279. {
  5280. tmc2130_print_currents();
  5281. }
  5282. break;
  5283. case 914: // M914 Set normal mode
  5284. {
  5285. tmc2130_mode = TMC2130_MODE_NORMAL;
  5286. tmc2130_init();
  5287. }
  5288. break;
  5289. case 915: // M915 Set silent mode
  5290. {
  5291. tmc2130_mode = TMC2130_MODE_SILENT;
  5292. tmc2130_init();
  5293. }
  5294. break;
  5295. case 916: // M916 Set sg_thrs
  5296. {
  5297. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5298. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5299. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5300. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5301. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5302. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5303. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5304. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5305. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5306. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5307. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5308. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5309. }
  5310. break;
  5311. case 917: // M917 Set TMC2130 pwm_ampl
  5312. {
  5313. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5314. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5315. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5316. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5317. }
  5318. break;
  5319. case 918: // M918 Set TMC2130 pwm_grad
  5320. {
  5321. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5322. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5323. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5324. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5325. }
  5326. break;
  5327. #endif //TMC2130
  5328. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5329. {
  5330. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5331. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5332. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5333. if(code_seen('B')) microstep_mode(4,code_value());
  5334. microstep_readings();
  5335. #endif
  5336. }
  5337. break;
  5338. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5339. {
  5340. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5341. if(code_seen('S')) switch((int)code_value())
  5342. {
  5343. case 1:
  5344. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5345. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5346. break;
  5347. case 2:
  5348. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5349. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5350. break;
  5351. }
  5352. microstep_readings();
  5353. #endif
  5354. }
  5355. break;
  5356. case 701: //M701: load filament
  5357. {
  5358. gcode_M701();
  5359. }
  5360. break;
  5361. case 702:
  5362. {
  5363. #ifdef SNMM
  5364. if (code_seen('U')) {
  5365. extr_unload_used(); //unload all filaments which were used in current print
  5366. }
  5367. else if (code_seen('C')) {
  5368. extr_unload(); //unload just current filament
  5369. }
  5370. else {
  5371. extr_unload_all(); //unload all filaments
  5372. }
  5373. #else
  5374. bool old_fsensor_enabled = fsensor_enabled;
  5375. fsensor_enabled = false;
  5376. custom_message = true;
  5377. custom_message_type = 2;
  5378. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5379. // extr_unload2();
  5380. current_position[E_AXIS] -= 45;
  5381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5382. st_synchronize();
  5383. current_position[E_AXIS] -= 15;
  5384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5385. st_synchronize();
  5386. current_position[E_AXIS] -= 20;
  5387. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5388. st_synchronize();
  5389. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5390. //disable extruder steppers so filament can be removed
  5391. disable_e0();
  5392. disable_e1();
  5393. disable_e2();
  5394. delay(100);
  5395. WRITE(BEEPER, HIGH);
  5396. uint8_t counterBeep = 0;
  5397. while (!lcd_clicked() && (counterBeep < 50)) {
  5398. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5399. delay_keep_alive(100);
  5400. counterBeep++;
  5401. }
  5402. WRITE(BEEPER, LOW);
  5403. st_synchronize();
  5404. while (lcd_clicked()) delay_keep_alive(100);
  5405. lcd_update_enable(true);
  5406. lcd_setstatuspgm(WELCOME_MSG);
  5407. custom_message = false;
  5408. custom_message_type = 0;
  5409. fsensor_enabled = old_fsensor_enabled;
  5410. #endif
  5411. }
  5412. break;
  5413. case 999: // M999: Restart after being stopped
  5414. Stopped = false;
  5415. lcd_reset_alert_level();
  5416. gcode_LastN = Stopped_gcode_LastN;
  5417. FlushSerialRequestResend();
  5418. break;
  5419. default:
  5420. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5421. }
  5422. } // end if(code_seen('M')) (end of M codes)
  5423. else if(code_seen('T'))
  5424. {
  5425. int index;
  5426. st_synchronize();
  5427. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5428. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5429. SERIAL_ECHOLNPGM("Invalid T code.");
  5430. }
  5431. else {
  5432. if (*(strchr_pointer + index) == '?') {
  5433. tmp_extruder = choose_extruder_menu();
  5434. }
  5435. else {
  5436. tmp_extruder = code_value();
  5437. }
  5438. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5439. #ifdef SNMM
  5440. #ifdef LIN_ADVANCE
  5441. if (snmm_extruder != tmp_extruder)
  5442. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5443. #endif
  5444. snmm_extruder = tmp_extruder;
  5445. delay(100);
  5446. disable_e0();
  5447. disable_e1();
  5448. disable_e2();
  5449. pinMode(E_MUX0_PIN, OUTPUT);
  5450. pinMode(E_MUX1_PIN, OUTPUT);
  5451. pinMode(E_MUX2_PIN, OUTPUT);
  5452. delay(100);
  5453. SERIAL_ECHO_START;
  5454. SERIAL_ECHO("T:");
  5455. SERIAL_ECHOLN((int)tmp_extruder);
  5456. switch (tmp_extruder) {
  5457. case 1:
  5458. WRITE(E_MUX0_PIN, HIGH);
  5459. WRITE(E_MUX1_PIN, LOW);
  5460. WRITE(E_MUX2_PIN, LOW);
  5461. break;
  5462. case 2:
  5463. WRITE(E_MUX0_PIN, LOW);
  5464. WRITE(E_MUX1_PIN, HIGH);
  5465. WRITE(E_MUX2_PIN, LOW);
  5466. break;
  5467. case 3:
  5468. WRITE(E_MUX0_PIN, HIGH);
  5469. WRITE(E_MUX1_PIN, HIGH);
  5470. WRITE(E_MUX2_PIN, LOW);
  5471. break;
  5472. default:
  5473. WRITE(E_MUX0_PIN, LOW);
  5474. WRITE(E_MUX1_PIN, LOW);
  5475. WRITE(E_MUX2_PIN, LOW);
  5476. break;
  5477. }
  5478. delay(100);
  5479. #else
  5480. if (tmp_extruder >= EXTRUDERS) {
  5481. SERIAL_ECHO_START;
  5482. SERIAL_ECHOPGM("T");
  5483. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5484. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5485. }
  5486. else {
  5487. boolean make_move = false;
  5488. if (code_seen('F')) {
  5489. make_move = true;
  5490. next_feedrate = code_value();
  5491. if (next_feedrate > 0.0) {
  5492. feedrate = next_feedrate;
  5493. }
  5494. }
  5495. #if EXTRUDERS > 1
  5496. if (tmp_extruder != active_extruder) {
  5497. // Save current position to return to after applying extruder offset
  5498. memcpy(destination, current_position, sizeof(destination));
  5499. // Offset extruder (only by XY)
  5500. int i;
  5501. for (i = 0; i < 2; i++) {
  5502. current_position[i] = current_position[i] -
  5503. extruder_offset[i][active_extruder] +
  5504. extruder_offset[i][tmp_extruder];
  5505. }
  5506. // Set the new active extruder and position
  5507. active_extruder = tmp_extruder;
  5508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5509. // Move to the old position if 'F' was in the parameters
  5510. if (make_move && Stopped == false) {
  5511. prepare_move();
  5512. }
  5513. }
  5514. #endif
  5515. SERIAL_ECHO_START;
  5516. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5517. SERIAL_PROTOCOLLN((int)active_extruder);
  5518. }
  5519. #endif
  5520. }
  5521. } // end if(code_seen('T')) (end of T codes)
  5522. #ifdef DEBUG_DCODES
  5523. else if (code_seen('D')) // D codes (debug)
  5524. {
  5525. switch((int)code_value())
  5526. {
  5527. case -1: // D-1 - Endless loop
  5528. dcode__1(); break;
  5529. case 0: // D0 - Reset
  5530. dcode_0(); break;
  5531. case 1: // D1 - Clear EEPROM
  5532. dcode_1(); break;
  5533. case 2: // D2 - Read/Write RAM
  5534. dcode_2(); break;
  5535. case 3: // D3 - Read/Write EEPROM
  5536. dcode_3(); break;
  5537. case 4: // D4 - Read/Write PIN
  5538. dcode_4(); break;
  5539. case 5: // D5 - Read/Write FLASH
  5540. // dcode_5(); break;
  5541. break;
  5542. case 6: // D6 - Read/Write external FLASH
  5543. dcode_6(); break;
  5544. case 7: // D7 - Read/Write Bootloader
  5545. dcode_7(); break;
  5546. case 8: // D8 - Read/Write PINDA
  5547. dcode_8(); break;
  5548. case 9: // D9 - Read/Write ADC
  5549. dcode_9(); break;
  5550. case 10: // D10 - XYZ calibration = OK
  5551. dcode_10(); break;
  5552. case 12: //D12 - Reset failstat counters
  5553. dcode_12(); break;
  5554. case 2130: // D9125 - TMC2130
  5555. dcode_2130(); break;
  5556. case 9125: // D9125 - PAT9125
  5557. dcode_9125(); break;
  5558. }
  5559. }
  5560. #endif //DEBUG_DCODES
  5561. else
  5562. {
  5563. SERIAL_ECHO_START;
  5564. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5565. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5566. SERIAL_ECHOLNPGM("\"(2)");
  5567. }
  5568. KEEPALIVE_STATE(NOT_BUSY);
  5569. ClearToSend();
  5570. }
  5571. void FlushSerialRequestResend()
  5572. {
  5573. //char cmdbuffer[bufindr][100]="Resend:";
  5574. MYSERIAL.flush();
  5575. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5576. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5577. previous_millis_cmd = millis();
  5578. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5579. }
  5580. // Confirm the execution of a command, if sent from a serial line.
  5581. // Execution of a command from a SD card will not be confirmed.
  5582. void ClearToSend()
  5583. {
  5584. previous_millis_cmd = millis();
  5585. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5586. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5587. }
  5588. void get_coordinates()
  5589. {
  5590. bool seen[4]={false,false,false,false};
  5591. for(int8_t i=0; i < NUM_AXIS; i++) {
  5592. if(code_seen(axis_codes[i]))
  5593. {
  5594. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5595. seen[i]=true;
  5596. }
  5597. else destination[i] = current_position[i]; //Are these else lines really needed?
  5598. }
  5599. if(code_seen('F')) {
  5600. next_feedrate = code_value();
  5601. #ifdef MAX_SILENT_FEEDRATE
  5602. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5603. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5604. #endif //MAX_SILENT_FEEDRATE
  5605. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5606. }
  5607. }
  5608. void get_arc_coordinates()
  5609. {
  5610. #ifdef SF_ARC_FIX
  5611. bool relative_mode_backup = relative_mode;
  5612. relative_mode = true;
  5613. #endif
  5614. get_coordinates();
  5615. #ifdef SF_ARC_FIX
  5616. relative_mode=relative_mode_backup;
  5617. #endif
  5618. if(code_seen('I')) {
  5619. offset[0] = code_value();
  5620. }
  5621. else {
  5622. offset[0] = 0.0;
  5623. }
  5624. if(code_seen('J')) {
  5625. offset[1] = code_value();
  5626. }
  5627. else {
  5628. offset[1] = 0.0;
  5629. }
  5630. }
  5631. void clamp_to_software_endstops(float target[3])
  5632. {
  5633. #ifdef DEBUG_DISABLE_SWLIMITS
  5634. return;
  5635. #endif //DEBUG_DISABLE_SWLIMITS
  5636. world2machine_clamp(target[0], target[1]);
  5637. // Clamp the Z coordinate.
  5638. if (min_software_endstops) {
  5639. float negative_z_offset = 0;
  5640. #ifdef ENABLE_AUTO_BED_LEVELING
  5641. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5642. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5643. #endif
  5644. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5645. }
  5646. if (max_software_endstops) {
  5647. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5648. }
  5649. }
  5650. #ifdef MESH_BED_LEVELING
  5651. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5652. float dx = x - current_position[X_AXIS];
  5653. float dy = y - current_position[Y_AXIS];
  5654. float dz = z - current_position[Z_AXIS];
  5655. int n_segments = 0;
  5656. if (mbl.active) {
  5657. float len = abs(dx) + abs(dy);
  5658. if (len > 0)
  5659. // Split to 3cm segments or shorter.
  5660. n_segments = int(ceil(len / 30.f));
  5661. }
  5662. if (n_segments > 1) {
  5663. float de = e - current_position[E_AXIS];
  5664. for (int i = 1; i < n_segments; ++ i) {
  5665. float t = float(i) / float(n_segments);
  5666. plan_buffer_line(
  5667. current_position[X_AXIS] + t * dx,
  5668. current_position[Y_AXIS] + t * dy,
  5669. current_position[Z_AXIS] + t * dz,
  5670. current_position[E_AXIS] + t * de,
  5671. feed_rate, extruder);
  5672. }
  5673. }
  5674. // The rest of the path.
  5675. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5676. current_position[X_AXIS] = x;
  5677. current_position[Y_AXIS] = y;
  5678. current_position[Z_AXIS] = z;
  5679. current_position[E_AXIS] = e;
  5680. }
  5681. #endif // MESH_BED_LEVELING
  5682. void prepare_move()
  5683. {
  5684. clamp_to_software_endstops(destination);
  5685. previous_millis_cmd = millis();
  5686. // Do not use feedmultiply for E or Z only moves
  5687. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5688. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5689. }
  5690. else {
  5691. #ifdef MESH_BED_LEVELING
  5692. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5693. #else
  5694. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5695. #endif
  5696. }
  5697. for(int8_t i=0; i < NUM_AXIS; i++) {
  5698. current_position[i] = destination[i];
  5699. }
  5700. }
  5701. void prepare_arc_move(char isclockwise) {
  5702. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5703. // Trace the arc
  5704. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5705. // As far as the parser is concerned, the position is now == target. In reality the
  5706. // motion control system might still be processing the action and the real tool position
  5707. // in any intermediate location.
  5708. for(int8_t i=0; i < NUM_AXIS; i++) {
  5709. current_position[i] = destination[i];
  5710. }
  5711. previous_millis_cmd = millis();
  5712. }
  5713. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5714. #if defined(FAN_PIN)
  5715. #if CONTROLLERFAN_PIN == FAN_PIN
  5716. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5717. #endif
  5718. #endif
  5719. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5720. unsigned long lastMotorCheck = 0;
  5721. void controllerFan()
  5722. {
  5723. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5724. {
  5725. lastMotorCheck = millis();
  5726. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5727. #if EXTRUDERS > 2
  5728. || !READ(E2_ENABLE_PIN)
  5729. #endif
  5730. #if EXTRUDER > 1
  5731. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5732. || !READ(X2_ENABLE_PIN)
  5733. #endif
  5734. || !READ(E1_ENABLE_PIN)
  5735. #endif
  5736. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5737. {
  5738. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5739. }
  5740. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5741. {
  5742. digitalWrite(CONTROLLERFAN_PIN, 0);
  5743. analogWrite(CONTROLLERFAN_PIN, 0);
  5744. }
  5745. else
  5746. {
  5747. // allows digital or PWM fan output to be used (see M42 handling)
  5748. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5749. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5750. }
  5751. }
  5752. }
  5753. #endif
  5754. #ifdef TEMP_STAT_LEDS
  5755. static bool blue_led = false;
  5756. static bool red_led = false;
  5757. static uint32_t stat_update = 0;
  5758. void handle_status_leds(void) {
  5759. float max_temp = 0.0;
  5760. if(millis() > stat_update) {
  5761. stat_update += 500; // Update every 0.5s
  5762. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5763. max_temp = max(max_temp, degHotend(cur_extruder));
  5764. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5765. }
  5766. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5767. max_temp = max(max_temp, degTargetBed());
  5768. max_temp = max(max_temp, degBed());
  5769. #endif
  5770. if((max_temp > 55.0) && (red_led == false)) {
  5771. digitalWrite(STAT_LED_RED, 1);
  5772. digitalWrite(STAT_LED_BLUE, 0);
  5773. red_led = true;
  5774. blue_led = false;
  5775. }
  5776. if((max_temp < 54.0) && (blue_led == false)) {
  5777. digitalWrite(STAT_LED_RED, 0);
  5778. digitalWrite(STAT_LED_BLUE, 1);
  5779. red_led = false;
  5780. blue_led = true;
  5781. }
  5782. }
  5783. }
  5784. #endif
  5785. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5786. {
  5787. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5788. {
  5789. if (fsensor_autoload_enabled)
  5790. {
  5791. if (fsensor_check_autoload())
  5792. {
  5793. if (degHotend0() > EXTRUDE_MINTEMP)
  5794. {
  5795. fsensor_autoload_check_stop();
  5796. tone(BEEPER, 1000);
  5797. delay_keep_alive(50);
  5798. noTone(BEEPER);
  5799. loading_flag = true;
  5800. enquecommand_front_P((PSTR("M701")));
  5801. }
  5802. else
  5803. {
  5804. lcd_update_enable(false);
  5805. lcd_implementation_clear();
  5806. lcd.setCursor(0, 0);
  5807. lcd_printPGM(MSG_ERROR);
  5808. lcd.setCursor(0, 2);
  5809. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5810. delay(2000);
  5811. lcd_implementation_clear();
  5812. lcd_update_enable(true);
  5813. }
  5814. }
  5815. }
  5816. else
  5817. fsensor_autoload_check_start();
  5818. }
  5819. else
  5820. if (fsensor_autoload_enabled)
  5821. fsensor_autoload_check_stop();
  5822. #if defined(KILL_PIN) && KILL_PIN > -1
  5823. static int killCount = 0; // make the inactivity button a bit less responsive
  5824. const int KILL_DELAY = 10000;
  5825. #endif
  5826. if(buflen < (BUFSIZE-1)){
  5827. get_command();
  5828. }
  5829. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5830. if(max_inactive_time)
  5831. kill("", 4);
  5832. if(stepper_inactive_time) {
  5833. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5834. {
  5835. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5836. disable_x();
  5837. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5838. disable_y();
  5839. disable_z();
  5840. disable_e0();
  5841. disable_e1();
  5842. disable_e2();
  5843. }
  5844. }
  5845. }
  5846. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5847. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5848. {
  5849. chdkActive = false;
  5850. WRITE(CHDK, LOW);
  5851. }
  5852. #endif
  5853. #if defined(KILL_PIN) && KILL_PIN > -1
  5854. // Check if the kill button was pressed and wait just in case it was an accidental
  5855. // key kill key press
  5856. // -------------------------------------------------------------------------------
  5857. if( 0 == READ(KILL_PIN) )
  5858. {
  5859. killCount++;
  5860. }
  5861. else if (killCount > 0)
  5862. {
  5863. killCount--;
  5864. }
  5865. // Exceeded threshold and we can confirm that it was not accidental
  5866. // KILL the machine
  5867. // ----------------------------------------------------------------
  5868. if ( killCount >= KILL_DELAY)
  5869. {
  5870. kill("", 5);
  5871. }
  5872. #endif
  5873. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5874. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5875. #endif
  5876. #ifdef EXTRUDER_RUNOUT_PREVENT
  5877. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5878. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5879. {
  5880. bool oldstatus=READ(E0_ENABLE_PIN);
  5881. enable_e0();
  5882. float oldepos=current_position[E_AXIS];
  5883. float oldedes=destination[E_AXIS];
  5884. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5885. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5886. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5887. current_position[E_AXIS]=oldepos;
  5888. destination[E_AXIS]=oldedes;
  5889. plan_set_e_position(oldepos);
  5890. previous_millis_cmd=millis();
  5891. st_synchronize();
  5892. WRITE(E0_ENABLE_PIN,oldstatus);
  5893. }
  5894. #endif
  5895. #ifdef TEMP_STAT_LEDS
  5896. handle_status_leds();
  5897. #endif
  5898. check_axes_activity();
  5899. }
  5900. void kill(const char *full_screen_message, unsigned char id)
  5901. {
  5902. SERIAL_ECHOPGM("KILL: ");
  5903. MYSERIAL.println(int(id));
  5904. //return;
  5905. cli(); // Stop interrupts
  5906. disable_heater();
  5907. disable_x();
  5908. // SERIAL_ECHOLNPGM("kill - disable Y");
  5909. disable_y();
  5910. disable_z();
  5911. disable_e0();
  5912. disable_e1();
  5913. disable_e2();
  5914. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5915. pinMode(PS_ON_PIN,INPUT);
  5916. #endif
  5917. SERIAL_ERROR_START;
  5918. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5919. if (full_screen_message != NULL) {
  5920. SERIAL_ERRORLNRPGM(full_screen_message);
  5921. lcd_display_message_fullscreen_P(full_screen_message);
  5922. } else {
  5923. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5924. }
  5925. // FMC small patch to update the LCD before ending
  5926. sei(); // enable interrupts
  5927. for ( int i=5; i--; lcd_update())
  5928. {
  5929. delay(200);
  5930. }
  5931. cli(); // disable interrupts
  5932. suicide();
  5933. while(1)
  5934. {
  5935. wdt_reset();
  5936. /* Intentionally left empty */
  5937. } // Wait for reset
  5938. }
  5939. void Stop()
  5940. {
  5941. disable_heater();
  5942. if(Stopped == false) {
  5943. Stopped = true;
  5944. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5945. SERIAL_ERROR_START;
  5946. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5947. LCD_MESSAGERPGM(MSG_STOPPED);
  5948. }
  5949. }
  5950. bool IsStopped() { return Stopped; };
  5951. #ifdef FAST_PWM_FAN
  5952. void setPwmFrequency(uint8_t pin, int val)
  5953. {
  5954. val &= 0x07;
  5955. switch(digitalPinToTimer(pin))
  5956. {
  5957. #if defined(TCCR0A)
  5958. case TIMER0A:
  5959. case TIMER0B:
  5960. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5961. // TCCR0B |= val;
  5962. break;
  5963. #endif
  5964. #if defined(TCCR1A)
  5965. case TIMER1A:
  5966. case TIMER1B:
  5967. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5968. // TCCR1B |= val;
  5969. break;
  5970. #endif
  5971. #if defined(TCCR2)
  5972. case TIMER2:
  5973. case TIMER2:
  5974. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5975. TCCR2 |= val;
  5976. break;
  5977. #endif
  5978. #if defined(TCCR2A)
  5979. case TIMER2A:
  5980. case TIMER2B:
  5981. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5982. TCCR2B |= val;
  5983. break;
  5984. #endif
  5985. #if defined(TCCR3A)
  5986. case TIMER3A:
  5987. case TIMER3B:
  5988. case TIMER3C:
  5989. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5990. TCCR3B |= val;
  5991. break;
  5992. #endif
  5993. #if defined(TCCR4A)
  5994. case TIMER4A:
  5995. case TIMER4B:
  5996. case TIMER4C:
  5997. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5998. TCCR4B |= val;
  5999. break;
  6000. #endif
  6001. #if defined(TCCR5A)
  6002. case TIMER5A:
  6003. case TIMER5B:
  6004. case TIMER5C:
  6005. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6006. TCCR5B |= val;
  6007. break;
  6008. #endif
  6009. }
  6010. }
  6011. #endif //FAST_PWM_FAN
  6012. bool setTargetedHotend(int code){
  6013. tmp_extruder = active_extruder;
  6014. if(code_seen('T')) {
  6015. tmp_extruder = code_value();
  6016. if(tmp_extruder >= EXTRUDERS) {
  6017. SERIAL_ECHO_START;
  6018. switch(code){
  6019. case 104:
  6020. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6021. break;
  6022. case 105:
  6023. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6024. break;
  6025. case 109:
  6026. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6027. break;
  6028. case 218:
  6029. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6030. break;
  6031. case 221:
  6032. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6033. break;
  6034. }
  6035. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6036. return true;
  6037. }
  6038. }
  6039. return false;
  6040. }
  6041. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6042. {
  6043. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6044. {
  6045. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6046. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6047. }
  6048. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6049. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6050. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6051. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6052. total_filament_used = 0;
  6053. }
  6054. float calculate_volumetric_multiplier(float diameter) {
  6055. float area = .0;
  6056. float radius = .0;
  6057. radius = diameter * .5;
  6058. if (! volumetric_enabled || radius == 0) {
  6059. area = 1;
  6060. }
  6061. else {
  6062. area = M_PI * pow(radius, 2);
  6063. }
  6064. return 1.0 / area;
  6065. }
  6066. void calculate_volumetric_multipliers() {
  6067. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  6068. #if EXTRUDERS > 1
  6069. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  6070. #if EXTRUDERS > 2
  6071. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  6072. #endif
  6073. #endif
  6074. }
  6075. void delay_keep_alive(unsigned int ms)
  6076. {
  6077. for (;;) {
  6078. manage_heater();
  6079. // Manage inactivity, but don't disable steppers on timeout.
  6080. manage_inactivity(true);
  6081. lcd_update();
  6082. if (ms == 0)
  6083. break;
  6084. else if (ms >= 50) {
  6085. delay(50);
  6086. ms -= 50;
  6087. } else {
  6088. delay(ms);
  6089. ms = 0;
  6090. }
  6091. }
  6092. }
  6093. void wait_for_heater(long codenum) {
  6094. #ifdef TEMP_RESIDENCY_TIME
  6095. long residencyStart;
  6096. residencyStart = -1;
  6097. /* continue to loop until we have reached the target temp
  6098. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6099. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6100. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6101. #else
  6102. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6103. #endif //TEMP_RESIDENCY_TIME
  6104. if ((millis() - codenum) > 1000UL)
  6105. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6106. if (!farm_mode) {
  6107. SERIAL_PROTOCOLPGM("T:");
  6108. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6109. SERIAL_PROTOCOLPGM(" E:");
  6110. SERIAL_PROTOCOL((int)tmp_extruder);
  6111. #ifdef TEMP_RESIDENCY_TIME
  6112. SERIAL_PROTOCOLPGM(" W:");
  6113. if (residencyStart > -1)
  6114. {
  6115. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6116. SERIAL_PROTOCOLLN(codenum);
  6117. }
  6118. else
  6119. {
  6120. SERIAL_PROTOCOLLN("?");
  6121. }
  6122. }
  6123. #else
  6124. SERIAL_PROTOCOLLN("");
  6125. #endif
  6126. codenum = millis();
  6127. }
  6128. manage_heater();
  6129. manage_inactivity();
  6130. lcd_update();
  6131. #ifdef TEMP_RESIDENCY_TIME
  6132. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6133. or when current temp falls outside the hysteresis after target temp was reached */
  6134. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6135. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6136. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6137. {
  6138. residencyStart = millis();
  6139. }
  6140. #endif //TEMP_RESIDENCY_TIME
  6141. }
  6142. }
  6143. void check_babystep() {
  6144. int babystep_z;
  6145. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6146. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6147. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6148. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6149. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6150. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6151. lcd_update_enable(true);
  6152. }
  6153. }
  6154. #ifdef DIS
  6155. void d_setup()
  6156. {
  6157. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6158. pinMode(D_DATA, INPUT_PULLUP);
  6159. pinMode(D_REQUIRE, OUTPUT);
  6160. digitalWrite(D_REQUIRE, HIGH);
  6161. }
  6162. float d_ReadData()
  6163. {
  6164. int digit[13];
  6165. String mergeOutput;
  6166. float output;
  6167. digitalWrite(D_REQUIRE, HIGH);
  6168. for (int i = 0; i<13; i++)
  6169. {
  6170. for (int j = 0; j < 4; j++)
  6171. {
  6172. while (digitalRead(D_DATACLOCK) == LOW) {}
  6173. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6174. bitWrite(digit[i], j, digitalRead(D_DATA));
  6175. }
  6176. }
  6177. digitalWrite(D_REQUIRE, LOW);
  6178. mergeOutput = "";
  6179. output = 0;
  6180. for (int r = 5; r <= 10; r++) //Merge digits
  6181. {
  6182. mergeOutput += digit[r];
  6183. }
  6184. output = mergeOutput.toFloat();
  6185. if (digit[4] == 8) //Handle sign
  6186. {
  6187. output *= -1;
  6188. }
  6189. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6190. {
  6191. output /= 10;
  6192. }
  6193. return output;
  6194. }
  6195. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6196. int t1 = 0;
  6197. int t_delay = 0;
  6198. int digit[13];
  6199. int m;
  6200. char str[3];
  6201. //String mergeOutput;
  6202. char mergeOutput[15];
  6203. float output;
  6204. int mesh_point = 0; //index number of calibration point
  6205. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6206. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6207. float mesh_home_z_search = 4;
  6208. float row[x_points_num];
  6209. int ix = 0;
  6210. int iy = 0;
  6211. char* filename_wldsd = "wldsd.txt";
  6212. char data_wldsd[70];
  6213. char numb_wldsd[10];
  6214. d_setup();
  6215. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6216. // We don't know where we are! HOME!
  6217. // Push the commands to the front of the message queue in the reverse order!
  6218. // There shall be always enough space reserved for these commands.
  6219. repeatcommand_front(); // repeat G80 with all its parameters
  6220. enquecommand_front_P((PSTR("G28 W0")));
  6221. enquecommand_front_P((PSTR("G1 Z5")));
  6222. return;
  6223. }
  6224. bool custom_message_old = custom_message;
  6225. unsigned int custom_message_type_old = custom_message_type;
  6226. unsigned int custom_message_state_old = custom_message_state;
  6227. custom_message = true;
  6228. custom_message_type = 1;
  6229. custom_message_state = (x_points_num * y_points_num) + 10;
  6230. lcd_update(1);
  6231. mbl.reset();
  6232. babystep_undo();
  6233. card.openFile(filename_wldsd, false);
  6234. current_position[Z_AXIS] = mesh_home_z_search;
  6235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6236. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6237. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6238. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6239. setup_for_endstop_move(false);
  6240. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6241. SERIAL_PROTOCOL(x_points_num);
  6242. SERIAL_PROTOCOLPGM(",");
  6243. SERIAL_PROTOCOL(y_points_num);
  6244. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6245. SERIAL_PROTOCOL(mesh_home_z_search);
  6246. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6247. SERIAL_PROTOCOL(x_dimension);
  6248. SERIAL_PROTOCOLPGM(",");
  6249. SERIAL_PROTOCOL(y_dimension);
  6250. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6251. while (mesh_point != x_points_num * y_points_num) {
  6252. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6253. iy = mesh_point / x_points_num;
  6254. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6255. float z0 = 0.f;
  6256. current_position[Z_AXIS] = mesh_home_z_search;
  6257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6258. st_synchronize();
  6259. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6260. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6262. st_synchronize();
  6263. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6264. break;
  6265. card.closefile();
  6266. }
  6267. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6268. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6269. //strcat(data_wldsd, numb_wldsd);
  6270. //MYSERIAL.println(data_wldsd);
  6271. //delay(1000);
  6272. //delay(3000);
  6273. //t1 = millis();
  6274. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6275. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6276. memset(digit, 0, sizeof(digit));
  6277. //cli();
  6278. digitalWrite(D_REQUIRE, LOW);
  6279. for (int i = 0; i<13; i++)
  6280. {
  6281. //t1 = millis();
  6282. for (int j = 0; j < 4; j++)
  6283. {
  6284. while (digitalRead(D_DATACLOCK) == LOW) {}
  6285. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6286. bitWrite(digit[i], j, digitalRead(D_DATA));
  6287. }
  6288. //t_delay = (millis() - t1);
  6289. //SERIAL_PROTOCOLPGM(" ");
  6290. //SERIAL_PROTOCOL_F(t_delay, 5);
  6291. //SERIAL_PROTOCOLPGM(" ");
  6292. }
  6293. //sei();
  6294. digitalWrite(D_REQUIRE, HIGH);
  6295. mergeOutput[0] = '\0';
  6296. output = 0;
  6297. for (int r = 5; r <= 10; r++) //Merge digits
  6298. {
  6299. sprintf(str, "%d", digit[r]);
  6300. strcat(mergeOutput, str);
  6301. }
  6302. output = atof(mergeOutput);
  6303. if (digit[4] == 8) //Handle sign
  6304. {
  6305. output *= -1;
  6306. }
  6307. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6308. {
  6309. output *= 0.1;
  6310. }
  6311. //output = d_ReadData();
  6312. //row[ix] = current_position[Z_AXIS];
  6313. memset(data_wldsd, 0, sizeof(data_wldsd));
  6314. for (int i = 0; i <3; i++) {
  6315. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6316. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6317. strcat(data_wldsd, numb_wldsd);
  6318. strcat(data_wldsd, ";");
  6319. }
  6320. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6321. dtostrf(output, 8, 5, numb_wldsd);
  6322. strcat(data_wldsd, numb_wldsd);
  6323. //strcat(data_wldsd, ";");
  6324. card.write_command(data_wldsd);
  6325. //row[ix] = d_ReadData();
  6326. row[ix] = output; // current_position[Z_AXIS];
  6327. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6328. for (int i = 0; i < x_points_num; i++) {
  6329. SERIAL_PROTOCOLPGM(" ");
  6330. SERIAL_PROTOCOL_F(row[i], 5);
  6331. }
  6332. SERIAL_PROTOCOLPGM("\n");
  6333. }
  6334. custom_message_state--;
  6335. mesh_point++;
  6336. lcd_update(1);
  6337. }
  6338. card.closefile();
  6339. }
  6340. #endif
  6341. void temp_compensation_start() {
  6342. custom_message = true;
  6343. custom_message_type = 5;
  6344. custom_message_state = PINDA_HEAT_T + 1;
  6345. lcd_update(2);
  6346. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6347. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6348. }
  6349. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6350. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6351. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6352. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6354. st_synchronize();
  6355. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6356. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6357. delay_keep_alive(1000);
  6358. custom_message_state = PINDA_HEAT_T - i;
  6359. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6360. else lcd_update(1);
  6361. }
  6362. custom_message_type = 0;
  6363. custom_message_state = 0;
  6364. custom_message = false;
  6365. }
  6366. void temp_compensation_apply() {
  6367. int i_add;
  6368. int compensation_value;
  6369. int z_shift = 0;
  6370. float z_shift_mm;
  6371. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6372. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6373. i_add = (target_temperature_bed - 60) / 10;
  6374. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6375. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6376. }else {
  6377. //interpolation
  6378. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6379. }
  6380. SERIAL_PROTOCOLPGM("\n");
  6381. SERIAL_PROTOCOLPGM("Z shift applied:");
  6382. MYSERIAL.print(z_shift_mm);
  6383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6384. st_synchronize();
  6385. plan_set_z_position(current_position[Z_AXIS]);
  6386. }
  6387. else {
  6388. //we have no temp compensation data
  6389. }
  6390. }
  6391. float temp_comp_interpolation(float inp_temperature) {
  6392. //cubic spline interpolation
  6393. int n, i, j, k;
  6394. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6395. int shift[10];
  6396. int temp_C[10];
  6397. n = 6; //number of measured points
  6398. shift[0] = 0;
  6399. for (i = 0; i < n; i++) {
  6400. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6401. temp_C[i] = 50 + i * 10; //temperature in C
  6402. #ifdef PINDA_THERMISTOR
  6403. temp_C[i] = 35 + i * 5; //temperature in C
  6404. #else
  6405. temp_C[i] = 50 + i * 10; //temperature in C
  6406. #endif
  6407. x[i] = (float)temp_C[i];
  6408. f[i] = (float)shift[i];
  6409. }
  6410. if (inp_temperature < x[0]) return 0;
  6411. for (i = n - 1; i>0; i--) {
  6412. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6413. h[i - 1] = x[i] - x[i - 1];
  6414. }
  6415. //*********** formation of h, s , f matrix **************
  6416. for (i = 1; i<n - 1; i++) {
  6417. m[i][i] = 2 * (h[i - 1] + h[i]);
  6418. if (i != 1) {
  6419. m[i][i - 1] = h[i - 1];
  6420. m[i - 1][i] = h[i - 1];
  6421. }
  6422. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6423. }
  6424. //*********** forward elimination **************
  6425. for (i = 1; i<n - 2; i++) {
  6426. temp = (m[i + 1][i] / m[i][i]);
  6427. for (j = 1; j <= n - 1; j++)
  6428. m[i + 1][j] -= temp*m[i][j];
  6429. }
  6430. //*********** backward substitution *********
  6431. for (i = n - 2; i>0; i--) {
  6432. sum = 0;
  6433. for (j = i; j <= n - 2; j++)
  6434. sum += m[i][j] * s[j];
  6435. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6436. }
  6437. for (i = 0; i<n - 1; i++)
  6438. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6439. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6440. b = s[i] / 2;
  6441. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6442. d = f[i];
  6443. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6444. }
  6445. return sum;
  6446. }
  6447. #ifdef PINDA_THERMISTOR
  6448. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6449. {
  6450. if (!temp_cal_active) return 0;
  6451. if (!calibration_status_pinda()) return 0;
  6452. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6453. }
  6454. #endif //PINDA_THERMISTOR
  6455. void long_pause() //long pause print
  6456. {
  6457. st_synchronize();
  6458. //save currently set parameters to global variables
  6459. saved_feedmultiply = feedmultiply;
  6460. HotendTempBckp = degTargetHotend(active_extruder);
  6461. fanSpeedBckp = fanSpeed;
  6462. start_pause_print = millis();
  6463. //save position
  6464. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6465. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6466. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6467. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6468. //retract
  6469. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6470. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6471. //lift z
  6472. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6473. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6475. //set nozzle target temperature to 0
  6476. setTargetHotend(0, 0);
  6477. setTargetHotend(0, 1);
  6478. setTargetHotend(0, 2);
  6479. //Move XY to side
  6480. current_position[X_AXIS] = X_PAUSE_POS;
  6481. current_position[Y_AXIS] = Y_PAUSE_POS;
  6482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6483. // Turn off the print fan
  6484. fanSpeed = 0;
  6485. st_synchronize();
  6486. }
  6487. void serialecho_temperatures() {
  6488. float tt = degHotend(active_extruder);
  6489. SERIAL_PROTOCOLPGM("T:");
  6490. SERIAL_PROTOCOL(tt);
  6491. SERIAL_PROTOCOLPGM(" E:");
  6492. SERIAL_PROTOCOL((int)active_extruder);
  6493. SERIAL_PROTOCOLPGM(" B:");
  6494. SERIAL_PROTOCOL_F(degBed(), 1);
  6495. SERIAL_PROTOCOLLN("");
  6496. }
  6497. extern uint32_t sdpos_atomic;
  6498. #ifdef UVLO_SUPPORT
  6499. void uvlo_()
  6500. {
  6501. unsigned long time_start = millis();
  6502. bool sd_print = card.sdprinting;
  6503. // Conserve power as soon as possible.
  6504. disable_x();
  6505. disable_y();
  6506. disable_e0();
  6507. #ifdef TMC2130
  6508. tmc2130_set_current_h(Z_AXIS, 20);
  6509. tmc2130_set_current_r(Z_AXIS, 20);
  6510. tmc2130_set_current_h(E_AXIS, 20);
  6511. tmc2130_set_current_r(E_AXIS, 20);
  6512. #endif //TMC2130
  6513. // Indicate that the interrupt has been triggered.
  6514. // SERIAL_ECHOLNPGM("UVLO");
  6515. // Read out the current Z motor microstep counter. This will be later used
  6516. // for reaching the zero full step before powering off.
  6517. uint16_t z_microsteps = 0;
  6518. #ifdef TMC2130
  6519. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6520. #endif //TMC2130
  6521. // Calculate the file position, from which to resume this print.
  6522. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6523. {
  6524. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6525. sd_position -= sdlen_planner;
  6526. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6527. sd_position -= sdlen_cmdqueue;
  6528. if (sd_position < 0) sd_position = 0;
  6529. }
  6530. // Backup the feedrate in mm/min.
  6531. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6532. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6533. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6534. // are in action.
  6535. planner_abort_hard();
  6536. // Store the current extruder position.
  6537. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6538. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6539. // Clean the input command queue.
  6540. cmdqueue_reset();
  6541. card.sdprinting = false;
  6542. // card.closefile();
  6543. // Enable stepper driver interrupt to move Z axis.
  6544. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6545. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6546. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6547. sei();
  6548. plan_buffer_line(
  6549. current_position[X_AXIS],
  6550. current_position[Y_AXIS],
  6551. current_position[Z_AXIS],
  6552. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6553. 95, active_extruder);
  6554. st_synchronize();
  6555. disable_e0();
  6556. plan_buffer_line(
  6557. current_position[X_AXIS],
  6558. current_position[Y_AXIS],
  6559. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6560. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6561. 40, active_extruder);
  6562. st_synchronize();
  6563. disable_e0();
  6564. plan_buffer_line(
  6565. current_position[X_AXIS],
  6566. current_position[Y_AXIS],
  6567. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6568. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6569. 40, active_extruder);
  6570. st_synchronize();
  6571. disable_e0();
  6572. disable_z();
  6573. // Move Z up to the next 0th full step.
  6574. // Write the file position.
  6575. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6576. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6577. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6578. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6579. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6580. // Scale the z value to 1u resolution.
  6581. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6582. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6583. }
  6584. // Read out the current Z motor microstep counter. This will be later used
  6585. // for reaching the zero full step before powering off.
  6586. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6587. // Store the current position.
  6588. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6589. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6590. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6591. // Store the current feed rate, temperatures and fan speed.
  6592. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6593. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6594. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6595. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6596. // Finaly store the "power outage" flag.
  6597. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6598. st_synchronize();
  6599. SERIAL_ECHOPGM("stps");
  6600. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6601. disable_z();
  6602. // Increment power failure counter
  6603. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6604. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6605. SERIAL_ECHOLNPGM("UVLO - end");
  6606. MYSERIAL.println(millis() - time_start);
  6607. #if 0
  6608. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6609. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6611. st_synchronize();
  6612. #endif
  6613. cli();
  6614. volatile unsigned int ppcount = 0;
  6615. SET_OUTPUT(BEEPER);
  6616. WRITE(BEEPER, HIGH);
  6617. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6618. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6619. }
  6620. WRITE(BEEPER, LOW);
  6621. while(1){
  6622. #if 1
  6623. WRITE(BEEPER, LOW);
  6624. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6625. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6626. }
  6627. #endif
  6628. };
  6629. }
  6630. #endif //UVLO_SUPPORT
  6631. void setup_fan_interrupt() {
  6632. //INT7
  6633. DDRE &= ~(1 << 7); //input pin
  6634. PORTE &= ~(1 << 7); //no internal pull-up
  6635. //start with sensing rising edge
  6636. EICRB &= ~(1 << 6);
  6637. EICRB |= (1 << 7);
  6638. //enable INT7 interrupt
  6639. EIMSK |= (1 << 7);
  6640. }
  6641. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6642. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6643. ISR(INT7_vect) {
  6644. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6645. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6646. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6647. t_fan_rising_edge = millis_nc();
  6648. }
  6649. else { //interrupt was triggered by falling edge
  6650. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6651. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6652. }
  6653. }
  6654. EICRB ^= (1 << 6); //change edge
  6655. }
  6656. #ifdef UVLO_SUPPORT
  6657. void setup_uvlo_interrupt() {
  6658. DDRE &= ~(1 << 4); //input pin
  6659. PORTE &= ~(1 << 4); //no internal pull-up
  6660. //sensing falling edge
  6661. EICRB |= (1 << 0);
  6662. EICRB &= ~(1 << 1);
  6663. //enable INT4 interrupt
  6664. EIMSK |= (1 << 4);
  6665. }
  6666. ISR(INT4_vect) {
  6667. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6668. SERIAL_ECHOLNPGM("INT4");
  6669. if (IS_SD_PRINTING) uvlo_();
  6670. }
  6671. void recover_print(uint8_t automatic) {
  6672. char cmd[30];
  6673. lcd_update_enable(true);
  6674. lcd_update(2);
  6675. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6676. recover_machine_state_after_power_panic();
  6677. // Set the target bed and nozzle temperatures.
  6678. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6679. enquecommand(cmd);
  6680. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6681. enquecommand(cmd);
  6682. // Lift the print head, so one may remove the excess priming material.
  6683. if (current_position[Z_AXIS] < 25)
  6684. enquecommand_P(PSTR("G1 Z25 F800"));
  6685. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6686. enquecommand_P(PSTR("G28 X Y"));
  6687. // Set the target bed and nozzle temperatures and wait.
  6688. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6689. enquecommand(cmd);
  6690. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6691. enquecommand(cmd);
  6692. enquecommand_P(PSTR("M83")); //E axis relative mode
  6693. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6694. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6695. if(automatic == 0){
  6696. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6697. }
  6698. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6699. // Mark the power panic status as inactive.
  6700. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6701. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6702. delay_keep_alive(1000);
  6703. }*/
  6704. SERIAL_ECHOPGM("After waiting for temp:");
  6705. SERIAL_ECHOPGM("Current position X_AXIS:");
  6706. MYSERIAL.println(current_position[X_AXIS]);
  6707. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6708. MYSERIAL.println(current_position[Y_AXIS]);
  6709. // Restart the print.
  6710. restore_print_from_eeprom();
  6711. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6712. MYSERIAL.print(current_position[Z_AXIS]);
  6713. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6714. MYSERIAL.print(current_position[E_AXIS]);
  6715. }
  6716. void recover_machine_state_after_power_panic()
  6717. {
  6718. char cmd[30];
  6719. // 1) Recover the logical cordinates at the time of the power panic.
  6720. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6721. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6722. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6723. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6724. // The current position after power panic is moved to the next closest 0th full step.
  6725. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6726. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6727. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6728. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6729. sprintf_P(cmd, PSTR("G92 E"));
  6730. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6731. enquecommand(cmd);
  6732. }
  6733. memcpy(destination, current_position, sizeof(destination));
  6734. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6735. print_world_coordinates();
  6736. // 2) Initialize the logical to physical coordinate system transformation.
  6737. world2machine_initialize();
  6738. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6739. mbl.active = false;
  6740. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6741. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6742. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6743. // Scale the z value to 10u resolution.
  6744. int16_t v;
  6745. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6746. if (v != 0)
  6747. mbl.active = true;
  6748. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6749. }
  6750. if (mbl.active)
  6751. mbl.upsample_3x3();
  6752. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6753. // print_mesh_bed_leveling_table();
  6754. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6755. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6756. babystep_load();
  6757. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6759. // 6) Power up the motors, mark their positions as known.
  6760. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6761. axis_known_position[X_AXIS] = true; enable_x();
  6762. axis_known_position[Y_AXIS] = true; enable_y();
  6763. axis_known_position[Z_AXIS] = true; enable_z();
  6764. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6765. print_physical_coordinates();
  6766. // 7) Recover the target temperatures.
  6767. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6768. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6769. }
  6770. void restore_print_from_eeprom() {
  6771. float x_rec, y_rec, z_pos;
  6772. int feedrate_rec;
  6773. uint8_t fan_speed_rec;
  6774. char cmd[30];
  6775. char* c;
  6776. char filename[13];
  6777. uint8_t depth = 0;
  6778. char dir_name[9];
  6779. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6780. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6781. SERIAL_ECHOPGM("Feedrate:");
  6782. MYSERIAL.println(feedrate_rec);
  6783. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6784. MYSERIAL.println(int(depth));
  6785. for (int i = 0; i < depth; i++) {
  6786. for (int j = 0; j < 8; j++) {
  6787. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6788. }
  6789. dir_name[8] = '\0';
  6790. MYSERIAL.println(dir_name);
  6791. card.chdir(dir_name);
  6792. }
  6793. for (int i = 0; i < 8; i++) {
  6794. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6795. }
  6796. filename[8] = '\0';
  6797. MYSERIAL.print(filename);
  6798. strcat_P(filename, PSTR(".gco"));
  6799. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6800. for (c = &cmd[4]; *c; c++)
  6801. *c = tolower(*c);
  6802. enquecommand(cmd);
  6803. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6804. SERIAL_ECHOPGM("Position read from eeprom:");
  6805. MYSERIAL.println(position);
  6806. // E axis relative mode.
  6807. enquecommand_P(PSTR("M83"));
  6808. // Move to the XY print position in logical coordinates, where the print has been killed.
  6809. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6810. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6811. strcat_P(cmd, PSTR(" F2000"));
  6812. enquecommand(cmd);
  6813. // Move the Z axis down to the print, in logical coordinates.
  6814. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6815. enquecommand(cmd);
  6816. // Unretract.
  6817. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6818. // Set the feedrate saved at the power panic.
  6819. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6820. enquecommand(cmd);
  6821. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6822. {
  6823. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6824. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6825. }
  6826. // Set the fan speed saved at the power panic.
  6827. strcpy_P(cmd, PSTR("M106 S"));
  6828. strcat(cmd, itostr3(int(fan_speed_rec)));
  6829. enquecommand(cmd);
  6830. // Set a position in the file.
  6831. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6832. enquecommand(cmd);
  6833. // Start SD print.
  6834. enquecommand_P(PSTR("M24"));
  6835. }
  6836. #endif //UVLO_SUPPORT
  6837. ////////////////////////////////////////////////////////////////////////////////
  6838. // new save/restore printing
  6839. //extern uint32_t sdpos_atomic;
  6840. bool saved_printing = false;
  6841. uint32_t saved_sdpos = 0;
  6842. float saved_pos[4] = {0, 0, 0, 0};
  6843. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6844. float saved_feedrate2 = 0;
  6845. uint8_t saved_active_extruder = 0;
  6846. bool saved_extruder_under_pressure = false;
  6847. void stop_and_save_print_to_ram(float z_move, float e_move)
  6848. {
  6849. if (saved_printing) return;
  6850. cli();
  6851. unsigned char nplanner_blocks = number_of_blocks();
  6852. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6853. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6854. saved_sdpos -= sdlen_planner;
  6855. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6856. saved_sdpos -= sdlen_cmdqueue;
  6857. #if 0
  6858. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6859. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6860. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6861. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6862. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6863. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6864. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6865. {
  6866. card.setIndex(saved_sdpos);
  6867. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6868. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6869. MYSERIAL.print(char(card.get()));
  6870. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6871. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6872. MYSERIAL.print(char(card.get()));
  6873. SERIAL_ECHOLNPGM("End of command buffer");
  6874. }
  6875. {
  6876. // Print the content of the planner buffer, line by line:
  6877. card.setIndex(saved_sdpos);
  6878. int8_t iline = 0;
  6879. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6880. SERIAL_ECHOPGM("Planner line (from file): ");
  6881. MYSERIAL.print(int(iline), DEC);
  6882. SERIAL_ECHOPGM(", length: ");
  6883. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6884. SERIAL_ECHOPGM(", steps: (");
  6885. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6886. SERIAL_ECHOPGM(",");
  6887. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6888. SERIAL_ECHOPGM(",");
  6889. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6890. SERIAL_ECHOPGM(",");
  6891. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6892. SERIAL_ECHOPGM("), events: ");
  6893. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6894. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6895. MYSERIAL.print(char(card.get()));
  6896. }
  6897. }
  6898. {
  6899. // Print the content of the command buffer, line by line:
  6900. int8_t iline = 0;
  6901. union {
  6902. struct {
  6903. char lo;
  6904. char hi;
  6905. } lohi;
  6906. uint16_t value;
  6907. } sdlen_single;
  6908. int _bufindr = bufindr;
  6909. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6910. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6911. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6912. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6913. }
  6914. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6915. MYSERIAL.print(int(iline), DEC);
  6916. SERIAL_ECHOPGM(", type: ");
  6917. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6918. SERIAL_ECHOPGM(", len: ");
  6919. MYSERIAL.println(sdlen_single.value, DEC);
  6920. // Print the content of the buffer line.
  6921. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6922. SERIAL_ECHOPGM("Buffer line (from file): ");
  6923. MYSERIAL.print(int(iline), DEC);
  6924. MYSERIAL.println(int(iline), DEC);
  6925. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6926. MYSERIAL.print(char(card.get()));
  6927. if (-- _buflen == 0)
  6928. break;
  6929. // First skip the current command ID and iterate up to the end of the string.
  6930. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6931. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6932. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6933. // If the end of the buffer was empty,
  6934. if (_bufindr == sizeof(cmdbuffer)) {
  6935. // skip to the start and find the nonzero command.
  6936. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6937. }
  6938. }
  6939. }
  6940. #endif
  6941. #if 0
  6942. saved_feedrate2 = feedrate; //save feedrate
  6943. #else
  6944. // Try to deduce the feedrate from the first block of the planner.
  6945. // Speed is in mm/min.
  6946. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6947. #endif
  6948. planner_abort_hard(); //abort printing
  6949. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6950. saved_active_extruder = active_extruder; //save active_extruder
  6951. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6952. cmdqueue_reset(); //empty cmdqueue
  6953. card.sdprinting = false;
  6954. // card.closefile();
  6955. saved_printing = true;
  6956. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  6957. st_reset_timer();
  6958. sei();
  6959. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6960. #if 1
  6961. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6962. char buf[48];
  6963. strcpy_P(buf, PSTR("G1 Z"));
  6964. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6965. strcat_P(buf, PSTR(" E"));
  6966. // Relative extrusion
  6967. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6968. strcat_P(buf, PSTR(" F"));
  6969. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6970. // At this point the command queue is empty.
  6971. enquecommand(buf, false);
  6972. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6973. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6974. repeatcommand_front();
  6975. #else
  6976. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6977. st_synchronize(); //wait moving
  6978. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6979. memcpy(destination, current_position, sizeof(destination));
  6980. #endif
  6981. }
  6982. }
  6983. void restore_print_from_ram_and_continue(float e_move)
  6984. {
  6985. if (!saved_printing) return;
  6986. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6987. // current_position[axis] = st_get_position_mm(axis);
  6988. active_extruder = saved_active_extruder; //restore active_extruder
  6989. feedrate = saved_feedrate2; //restore feedrate
  6990. float e = saved_pos[E_AXIS] - e_move;
  6991. plan_set_e_position(e);
  6992. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6993. st_synchronize();
  6994. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6995. memcpy(destination, current_position, sizeof(destination));
  6996. card.setIndex(saved_sdpos);
  6997. sdpos_atomic = saved_sdpos;
  6998. card.sdprinting = true;
  6999. saved_printing = false;
  7000. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7001. }
  7002. void print_world_coordinates()
  7003. {
  7004. SERIAL_ECHOPGM("world coordinates: (");
  7005. MYSERIAL.print(current_position[X_AXIS], 3);
  7006. SERIAL_ECHOPGM(", ");
  7007. MYSERIAL.print(current_position[Y_AXIS], 3);
  7008. SERIAL_ECHOPGM(", ");
  7009. MYSERIAL.print(current_position[Z_AXIS], 3);
  7010. SERIAL_ECHOLNPGM(")");
  7011. }
  7012. void print_physical_coordinates()
  7013. {
  7014. SERIAL_ECHOPGM("physical coordinates: (");
  7015. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7016. SERIAL_ECHOPGM(", ");
  7017. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7018. SERIAL_ECHOPGM(", ");
  7019. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7020. SERIAL_ECHOLNPGM(")");
  7021. }
  7022. void print_mesh_bed_leveling_table()
  7023. {
  7024. SERIAL_ECHOPGM("mesh bed leveling: ");
  7025. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7026. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7027. MYSERIAL.print(mbl.z_values[y][x], 3);
  7028. SERIAL_ECHOPGM(" ");
  7029. }
  7030. SERIAL_ECHOLNPGM("");
  7031. }
  7032. #define FIL_LOAD_LENGTH 60
  7033. void extr_unload2() { //unloads filament
  7034. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7035. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7036. // int8_t SilentMode;
  7037. uint8_t snmm_extruder = 0;
  7038. if (degHotend0() > EXTRUDE_MINTEMP) {
  7039. lcd_implementation_clear();
  7040. lcd_display_message_fullscreen_P(PSTR(""));
  7041. max_feedrate[E_AXIS] = 50;
  7042. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7043. // lcd.print(" ");
  7044. // lcd.print(snmm_extruder + 1);
  7045. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7046. if (current_position[Z_AXIS] < 15) {
  7047. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7049. }
  7050. current_position[E_AXIS] += 10; //extrusion
  7051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7052. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7053. if (current_temperature[0] < 230) { //PLA & all other filaments
  7054. current_position[E_AXIS] += 5.4;
  7055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7056. current_position[E_AXIS] += 3.2;
  7057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7058. current_position[E_AXIS] += 3;
  7059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7060. }
  7061. else { //ABS
  7062. current_position[E_AXIS] += 3.1;
  7063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7064. current_position[E_AXIS] += 3.1;
  7065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7066. current_position[E_AXIS] += 4;
  7067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7068. /*current_position[X_AXIS] += 23; //delay
  7069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7070. current_position[X_AXIS] -= 23; //delay
  7071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7072. delay_keep_alive(4700);
  7073. }
  7074. max_feedrate[E_AXIS] = 80;
  7075. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7077. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7079. st_synchronize();
  7080. //digipot_init();
  7081. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7082. // else digipot_current(2, tmp_motor_loud[2]);
  7083. lcd_update_enable(true);
  7084. // lcd_return_to_status();
  7085. max_feedrate[E_AXIS] = 50;
  7086. }
  7087. else {
  7088. lcd_implementation_clear();
  7089. lcd.setCursor(0, 0);
  7090. lcd_printPGM(MSG_ERROR);
  7091. lcd.setCursor(0, 2);
  7092. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7093. delay(2000);
  7094. lcd_implementation_clear();
  7095. }
  7096. // lcd_return_to_status();
  7097. }