Marlin_main.cpp 274 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. #ifdef TMC2130
  492. extern int8_t CrashDetectMenu;
  493. void crashdet_enable()
  494. {
  495. // MYSERIAL.println("crashdet_enable");
  496. tmc2130_sg_stop_on_crash = true;
  497. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  498. CrashDetectMenu = 1;
  499. }
  500. void crashdet_disable()
  501. {
  502. // MYSERIAL.println("crashdet_disable");
  503. tmc2130_sg_stop_on_crash = false;
  504. tmc2130_sg_crash = 0;
  505. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  506. CrashDetectMenu = 0;
  507. }
  508. void crashdet_stop_and_save_print()
  509. {
  510. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  511. }
  512. void crashdet_restore_print_and_continue()
  513. {
  514. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  515. // babystep_apply();
  516. }
  517. void crashdet_stop_and_save_print2()
  518. {
  519. cli();
  520. planner_abort_hard(); //abort printing
  521. cmdqueue_reset(); //empty cmdqueue
  522. card.sdprinting = false;
  523. card.closefile();
  524. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  525. st_reset_timer();
  526. sei();
  527. }
  528. void crashdet_detected(uint8_t mask)
  529. {
  530. // printf("CRASH_DETECTED");
  531. /* while (!is_buffer_empty())
  532. {
  533. process_commands();
  534. cmdqueue_pop_front();
  535. }*/
  536. st_synchronize();
  537. lcd_update_enable(true);
  538. lcd_implementation_clear();
  539. lcd_update(2);
  540. if (mask & X_AXIS_MASK)
  541. {
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  543. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  544. }
  545. if (mask & Y_AXIS_MASK)
  546. {
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  548. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  549. }
  550. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  551. bool yesno = true;
  552. #else
  553. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  554. #endif
  555. lcd_update_enable(true);
  556. lcd_update(2);
  557. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  558. if (yesno)
  559. {
  560. enquecommand_P(PSTR("G28 X Y"));
  561. enquecommand_P(PSTR("CRASH_RECOVER"));
  562. }
  563. else
  564. {
  565. enquecommand_P(PSTR("CRASH_CANCEL"));
  566. }
  567. }
  568. void crashdet_recover()
  569. {
  570. crashdet_restore_print_and_continue();
  571. tmc2130_sg_stop_on_crash = true;
  572. }
  573. void crashdet_cancel()
  574. {
  575. card.sdprinting = false;
  576. card.closefile();
  577. tmc2130_sg_stop_on_crash = true;
  578. }
  579. void failstats_reset_print()
  580. {
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  585. }
  586. #endif //TMC2130
  587. #ifdef MESH_BED_LEVELING
  588. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  589. #endif
  590. // Factory reset function
  591. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  592. // Level input parameter sets depth of reset
  593. // Quiet parameter masks all waitings for user interact.
  594. int er_progress = 0;
  595. void factory_reset(char level, bool quiet)
  596. {
  597. lcd_implementation_clear();
  598. int cursor_pos = 0;
  599. switch (level) {
  600. // Level 0: Language reset
  601. case 0:
  602. WRITE(BEEPER, HIGH);
  603. _delay_ms(100);
  604. WRITE(BEEPER, LOW);
  605. lcd_force_language_selection();
  606. break;
  607. //Level 1: Reset statistics
  608. case 1:
  609. WRITE(BEEPER, HIGH);
  610. _delay_ms(100);
  611. WRITE(BEEPER, LOW);
  612. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  613. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  616. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  617. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  620. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  621. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  622. lcd_menu_statistics();
  623. break;
  624. // Level 2: Prepare for shipping
  625. case 2:
  626. //lcd_printPGM(PSTR("Factory RESET"));
  627. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  628. // Force language selection at the next boot up.
  629. lcd_force_language_selection();
  630. // Force the "Follow calibration flow" message at the next boot up.
  631. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  632. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  633. farm_no = 0;
  634. farm_mode == false;
  635. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  636. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  637. WRITE(BEEPER, HIGH);
  638. _delay_ms(100);
  639. WRITE(BEEPER, LOW);
  640. //_delay_ms(2000);
  641. break;
  642. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  643. case 3:
  644. lcd_printPGM(PSTR("Factory RESET"));
  645. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. er_progress = 0;
  650. lcd_print_at_PGM(3, 3, PSTR(" "));
  651. lcd_implementation_print_at(3, 3, er_progress);
  652. // Erase EEPROM
  653. for (int i = 0; i < 4096; i++) {
  654. eeprom_write_byte((uint8_t*)i, 0xFF);
  655. if (i % 41 == 0) {
  656. er_progress++;
  657. lcd_print_at_PGM(3, 3, PSTR(" "));
  658. lcd_implementation_print_at(3, 3, er_progress);
  659. lcd_printPGM(PSTR("%"));
  660. }
  661. }
  662. break;
  663. case 4:
  664. bowden_menu();
  665. break;
  666. default:
  667. break;
  668. }
  669. }
  670. #include "LiquidCrystal.h"
  671. extern LiquidCrystal lcd;
  672. FILE _lcdout = {0};
  673. int lcd_putchar(char c, FILE *stream)
  674. {
  675. lcd.write(c);
  676. return 0;
  677. }
  678. FILE _uartout = {0};
  679. int uart_putchar(char c, FILE *stream)
  680. {
  681. MYSERIAL.write(c);
  682. return 0;
  683. }
  684. void lcd_splash()
  685. {
  686. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  687. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  688. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  689. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  690. }
  691. void factory_reset()
  692. {
  693. KEEPALIVE_STATE(PAUSED_FOR_USER);
  694. if (!READ(BTN_ENC))
  695. {
  696. _delay_ms(1000);
  697. if (!READ(BTN_ENC))
  698. {
  699. lcd_implementation_clear();
  700. lcd_printPGM(PSTR("Factory RESET"));
  701. SET_OUTPUT(BEEPER);
  702. WRITE(BEEPER, HIGH);
  703. while (!READ(BTN_ENC));
  704. WRITE(BEEPER, LOW);
  705. _delay_ms(2000);
  706. char level = reset_menu();
  707. factory_reset(level, false);
  708. switch (level) {
  709. case 0: _delay_ms(0); break;
  710. case 1: _delay_ms(0); break;
  711. case 2: _delay_ms(0); break;
  712. case 3: _delay_ms(0); break;
  713. }
  714. // _delay_ms(100);
  715. /*
  716. #ifdef MESH_BED_LEVELING
  717. _delay_ms(2000);
  718. if (!READ(BTN_ENC))
  719. {
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. _delay_ms(200);
  724. WRITE(BEEPER, HIGH);
  725. _delay_ms(100);
  726. WRITE(BEEPER, LOW);
  727. int _z = 0;
  728. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  729. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  730. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  731. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  732. }
  733. else
  734. {
  735. WRITE(BEEPER, HIGH);
  736. _delay_ms(100);
  737. WRITE(BEEPER, LOW);
  738. }
  739. #endif // mesh */
  740. }
  741. }
  742. else
  743. {
  744. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  745. }
  746. KEEPALIVE_STATE(IN_HANDLER);
  747. }
  748. void show_fw_version_warnings() {
  749. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  750. switch (FW_DEV_VERSION) {
  751. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  752. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  753. case(FW_VERSION_DEVEL):
  754. case(FW_VERSION_DEBUG):
  755. lcd_update_enable(false);
  756. lcd_implementation_clear();
  757. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  758. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  759. #else
  760. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  761. #endif
  762. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  763. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  764. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  765. lcd_wait_for_click();
  766. break;
  767. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  768. }
  769. lcd_update_enable(true);
  770. }
  771. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  772. {
  773. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  774. }
  775. // "Setup" function is called by the Arduino framework on startup.
  776. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  777. // are initialized by the main() routine provided by the Arduino framework.
  778. void setup()
  779. {
  780. lcd_init();
  781. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  782. lcd_splash();
  783. setup_killpin();
  784. setup_powerhold();
  785. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  786. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  787. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  788. if (farm_no == 0xFFFF) farm_no = 0;
  789. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  790. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  791. if (farm_mode)
  792. {
  793. prusa_statistics(8);
  794. selectedSerialPort = 1;
  795. }
  796. MYSERIAL.begin(BAUDRATE);
  797. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  798. stdout = uartout;
  799. SERIAL_PROTOCOLLNPGM("start");
  800. SERIAL_ECHO_START;
  801. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  802. #if 0
  803. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  804. for (int i = 0; i < 4096; ++i) {
  805. int b = eeprom_read_byte((unsigned char*)i);
  806. if (b != 255) {
  807. SERIAL_ECHO(i);
  808. SERIAL_ECHO(":");
  809. SERIAL_ECHO(b);
  810. SERIAL_ECHOLN("");
  811. }
  812. }
  813. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  814. #endif
  815. // Check startup - does nothing if bootloader sets MCUSR to 0
  816. byte mcu = MCUSR;
  817. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  818. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  819. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  820. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  821. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  822. if (mcu & 1) puts_P(MSG_POWERUP);
  823. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  824. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  825. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  826. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  827. MCUSR = 0;
  828. //SERIAL_ECHORPGM(MSG_MARLIN);
  829. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  830. #ifdef STRING_VERSION_CONFIG_H
  831. #ifdef STRING_CONFIG_H_AUTHOR
  832. SERIAL_ECHO_START;
  833. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  834. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  835. SERIAL_ECHORPGM(MSG_AUTHOR);
  836. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  837. SERIAL_ECHOPGM("Compiled: ");
  838. SERIAL_ECHOLNPGM(__DATE__);
  839. #endif
  840. #endif
  841. SERIAL_ECHO_START;
  842. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  843. SERIAL_ECHO(freeMemory());
  844. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  845. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  846. //lcd_update_enable(false); // why do we need this?? - andre
  847. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  848. bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  849. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  850. tp_init(); // Initialize temperature loop
  851. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  852. plan_init(); // Initialize planner;
  853. watchdog_init();
  854. factory_reset();
  855. #ifdef TMC2130
  856. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  857. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  858. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  859. if (crashdet)
  860. {
  861. crashdet_enable();
  862. MYSERIAL.println("CrashDetect ENABLED!");
  863. }
  864. else
  865. {
  866. crashdet_disable();
  867. MYSERIAL.println("CrashDetect DISABLED");
  868. }
  869. #endif //TMC2130
  870. st_init(); // Initialize stepper, this enables interrupts!
  871. setup_photpin();
  872. servo_init();
  873. // Reset the machine correction matrix.
  874. // It does not make sense to load the correction matrix until the machine is homed.
  875. world2machine_reset();
  876. #ifdef PAT9125
  877. fsensor_init();
  878. #endif //PAT9125
  879. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  880. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  881. #endif
  882. #ifdef DIGIPOT_I2C
  883. digipot_i2c_init();
  884. #endif
  885. setup_homepin();
  886. #ifdef TMC2130
  887. if (1) {
  888. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  889. // try to run to zero phase before powering the Z motor.
  890. // Move in negative direction
  891. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  892. // Round the current micro-micro steps to micro steps.
  893. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  894. // Until the phase counter is reset to zero.
  895. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  896. delay(2);
  897. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  898. delay(2);
  899. }
  900. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  901. }
  902. #endif //TMC2130
  903. #if defined(Z_AXIS_ALWAYS_ON)
  904. enable_z();
  905. #endif
  906. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  907. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  908. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  909. if (farm_no == 0xFFFF) farm_no = 0;
  910. if (farm_mode)
  911. {
  912. prusa_statistics(8);
  913. }
  914. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  915. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  916. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  917. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  918. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  919. // where all the EEPROM entries are set to 0x0ff.
  920. // Once a firmware boots up, it forces at least a language selection, which changes
  921. // EEPROM_LANG to number lower than 0x0ff.
  922. // 1) Set a high power mode.
  923. #ifdef TMC2130
  924. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  925. tmc2130_mode = TMC2130_MODE_NORMAL;
  926. #endif //TMC2130
  927. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  928. }
  929. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  930. // but this times out if a blocking dialog is shown in setup().
  931. card.initsd();
  932. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  933. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  934. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  935. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  936. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  937. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  938. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  939. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  940. #ifdef SNMM
  941. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  942. int _z = BOWDEN_LENGTH;
  943. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  944. }
  945. #endif
  946. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  947. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  948. // is being written into the EEPROM, so the update procedure will be triggered only once.
  949. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  950. if (lang_selected >= LANG_NUM){
  951. lcd_mylang();
  952. }
  953. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  954. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  955. temp_cal_active = false;
  956. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  957. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  958. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  959. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  960. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  961. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  962. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  963. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  964. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  965. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  966. temp_cal_active = true;
  967. }
  968. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  969. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  970. }
  971. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  972. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  973. }
  974. check_babystep(); //checking if Z babystep is in allowed range
  975. #ifdef UVLO_SUPPORT
  976. setup_uvlo_interrupt();
  977. #endif //UVLO_SUPPORT
  978. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  979. setup_fan_interrupt();
  980. #endif //DEBUG_DISABLE_FANCHECK
  981. #ifdef PAT9125
  982. #ifndef DEBUG_DISABLE_FSENSORCHECK
  983. fsensor_setup_interrupt();
  984. #endif //DEBUG_DISABLE_FSENSORCHECK
  985. #endif //PAT9125
  986. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  987. #ifndef DEBUG_DISABLE_STARTMSGS
  988. KEEPALIVE_STATE(PAUSED_FOR_USER);
  989. show_fw_version_warnings();
  990. if (!previous_settings_retrieved) {
  991. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
  992. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  993. }
  994. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  995. lcd_wizard(0);
  996. }
  997. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  998. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  999. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1000. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1001. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1002. // Show the message.
  1003. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1004. }
  1005. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1006. // Show the message.
  1007. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1008. lcd_update_enable(true);
  1009. }
  1010. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1011. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1012. lcd_update_enable(true);
  1013. }
  1014. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1015. // Show the message.
  1016. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1017. }
  1018. }
  1019. KEEPALIVE_STATE(IN_PROCESS);
  1020. #endif //DEBUG_DISABLE_STARTMSGS
  1021. lcd_update_enable(true);
  1022. lcd_implementation_clear();
  1023. lcd_update(2);
  1024. // Store the currently running firmware into an eeprom,
  1025. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1026. update_current_firmware_version_to_eeprom();
  1027. #ifdef UVLO_SUPPORT
  1028. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1029. /*
  1030. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1031. else {
  1032. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1033. lcd_update_enable(true);
  1034. lcd_update(2);
  1035. lcd_setstatuspgm(WELCOME_MSG);
  1036. }
  1037. */
  1038. manage_heater(); // Update temperatures
  1039. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1040. MYSERIAL.println("Power panic detected!");
  1041. MYSERIAL.print("Current bed temp:");
  1042. MYSERIAL.println(degBed());
  1043. MYSERIAL.print("Saved bed temp:");
  1044. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1045. #endif
  1046. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1047. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1048. MYSERIAL.println("Automatic recovery!");
  1049. #endif
  1050. recover_print(1);
  1051. }
  1052. else{
  1053. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1054. MYSERIAL.println("Normal recovery!");
  1055. #endif
  1056. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1057. else {
  1058. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1059. lcd_update_enable(true);
  1060. lcd_update(2);
  1061. lcd_setstatuspgm(WELCOME_MSG);
  1062. }
  1063. }
  1064. }
  1065. #endif //UVLO_SUPPORT
  1066. KEEPALIVE_STATE(NOT_BUSY);
  1067. wdt_enable(WDTO_4S);
  1068. }
  1069. #ifdef PAT9125
  1070. void fsensor_init() {
  1071. int pat9125 = pat9125_init();
  1072. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1073. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1074. if (!pat9125)
  1075. {
  1076. fsensor = 0; //disable sensor
  1077. fsensor_not_responding = true;
  1078. }
  1079. else {
  1080. fsensor_not_responding = false;
  1081. }
  1082. puts_P(PSTR("FSensor "));
  1083. if (fsensor)
  1084. {
  1085. puts_P(PSTR("ENABLED\n"));
  1086. fsensor_enable();
  1087. }
  1088. else
  1089. {
  1090. puts_P(PSTR("DISABLED\n"));
  1091. fsensor_disable();
  1092. }
  1093. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1094. filament_autoload_enabled = false;
  1095. fsensor_disable();
  1096. #endif //DEBUG_DISABLE_FSENSORCHECK
  1097. }
  1098. #endif //PAT9125
  1099. void trace();
  1100. #define CHUNK_SIZE 64 // bytes
  1101. #define SAFETY_MARGIN 1
  1102. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1103. int chunkHead = 0;
  1104. int serial_read_stream() {
  1105. setTargetHotend(0, 0);
  1106. setTargetBed(0);
  1107. lcd_implementation_clear();
  1108. lcd_printPGM(PSTR(" Upload in progress"));
  1109. // first wait for how many bytes we will receive
  1110. uint32_t bytesToReceive;
  1111. // receive the four bytes
  1112. char bytesToReceiveBuffer[4];
  1113. for (int i=0; i<4; i++) {
  1114. int data;
  1115. while ((data = MYSERIAL.read()) == -1) {};
  1116. bytesToReceiveBuffer[i] = data;
  1117. }
  1118. // make it a uint32
  1119. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1120. // we're ready, notify the sender
  1121. MYSERIAL.write('+');
  1122. // lock in the routine
  1123. uint32_t receivedBytes = 0;
  1124. while (prusa_sd_card_upload) {
  1125. int i;
  1126. for (i=0; i<CHUNK_SIZE; i++) {
  1127. int data;
  1128. // check if we're not done
  1129. if (receivedBytes == bytesToReceive) {
  1130. break;
  1131. }
  1132. // read the next byte
  1133. while ((data = MYSERIAL.read()) == -1) {};
  1134. receivedBytes++;
  1135. // save it to the chunk
  1136. chunk[i] = data;
  1137. }
  1138. // write the chunk to SD
  1139. card.write_command_no_newline(&chunk[0]);
  1140. // notify the sender we're ready for more data
  1141. MYSERIAL.write('+');
  1142. // for safety
  1143. manage_heater();
  1144. // check if we're done
  1145. if(receivedBytes == bytesToReceive) {
  1146. trace(); // beep
  1147. card.closefile();
  1148. prusa_sd_card_upload = false;
  1149. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1150. return 0;
  1151. }
  1152. }
  1153. }
  1154. #ifdef HOST_KEEPALIVE_FEATURE
  1155. /**
  1156. * Output a "busy" message at regular intervals
  1157. * while the machine is not accepting commands.
  1158. */
  1159. void host_keepalive() {
  1160. if (farm_mode) return;
  1161. long ms = millis();
  1162. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1163. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1164. switch (busy_state) {
  1165. case IN_HANDLER:
  1166. case IN_PROCESS:
  1167. SERIAL_ECHO_START;
  1168. SERIAL_ECHOLNPGM("busy: processing");
  1169. break;
  1170. case PAUSED_FOR_USER:
  1171. SERIAL_ECHO_START;
  1172. SERIAL_ECHOLNPGM("busy: paused for user");
  1173. break;
  1174. case PAUSED_FOR_INPUT:
  1175. SERIAL_ECHO_START;
  1176. SERIAL_ECHOLNPGM("busy: paused for input");
  1177. break;
  1178. default:
  1179. break;
  1180. }
  1181. }
  1182. prev_busy_signal_ms = ms;
  1183. }
  1184. #endif
  1185. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1186. // Before loop(), the setup() function is called by the main() routine.
  1187. void loop()
  1188. {
  1189. KEEPALIVE_STATE(NOT_BUSY);
  1190. bool stack_integrity = true;
  1191. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1192. {
  1193. is_usb_printing = true;
  1194. usb_printing_counter--;
  1195. _usb_timer = millis();
  1196. }
  1197. if (usb_printing_counter == 0)
  1198. {
  1199. is_usb_printing = false;
  1200. }
  1201. if (prusa_sd_card_upload)
  1202. {
  1203. //we read byte-by byte
  1204. serial_read_stream();
  1205. } else
  1206. {
  1207. get_command();
  1208. #ifdef SDSUPPORT
  1209. card.checkautostart(false);
  1210. #endif
  1211. if(buflen)
  1212. {
  1213. cmdbuffer_front_already_processed = false;
  1214. #ifdef SDSUPPORT
  1215. if(card.saving)
  1216. {
  1217. // Saving a G-code file onto an SD-card is in progress.
  1218. // Saving starts with M28, saving until M29 is seen.
  1219. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1220. card.write_command(CMDBUFFER_CURRENT_STRING);
  1221. if(card.logging)
  1222. process_commands();
  1223. else
  1224. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1225. } else {
  1226. card.closefile();
  1227. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1228. }
  1229. } else {
  1230. process_commands();
  1231. }
  1232. #else
  1233. process_commands();
  1234. #endif //SDSUPPORT
  1235. if (! cmdbuffer_front_already_processed && buflen)
  1236. {
  1237. // ptr points to the start of the block currently being processed.
  1238. // The first character in the block is the block type.
  1239. char *ptr = cmdbuffer + bufindr;
  1240. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1241. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1242. union {
  1243. struct {
  1244. char lo;
  1245. char hi;
  1246. } lohi;
  1247. uint16_t value;
  1248. } sdlen;
  1249. sdlen.value = 0;
  1250. {
  1251. // This block locks the interrupts globally for 3.25 us,
  1252. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1253. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1254. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1255. cli();
  1256. // Reset the command to something, which will be ignored by the power panic routine,
  1257. // so this buffer length will not be counted twice.
  1258. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1259. // Extract the current buffer length.
  1260. sdlen.lohi.lo = *ptr ++;
  1261. sdlen.lohi.hi = *ptr;
  1262. // and pass it to the planner queue.
  1263. planner_add_sd_length(sdlen.value);
  1264. sei();
  1265. }
  1266. }
  1267. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1268. // this block's SD card length will not be counted twice as its command type has been replaced
  1269. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1270. cmdqueue_pop_front();
  1271. }
  1272. host_keepalive();
  1273. }
  1274. }
  1275. //check heater every n milliseconds
  1276. manage_heater();
  1277. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1278. checkHitEndstops();
  1279. lcd_update();
  1280. #ifdef PAT9125
  1281. fsensor_update();
  1282. #endif //PAT9125
  1283. #ifdef TMC2130
  1284. tmc2130_check_overtemp();
  1285. if (tmc2130_sg_crash)
  1286. {
  1287. uint8_t crash = tmc2130_sg_crash;
  1288. tmc2130_sg_crash = 0;
  1289. // crashdet_stop_and_save_print();
  1290. switch (crash)
  1291. {
  1292. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1293. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1294. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1295. }
  1296. }
  1297. #endif //TMC2130
  1298. }
  1299. #define DEFINE_PGM_READ_ANY(type, reader) \
  1300. static inline type pgm_read_any(const type *p) \
  1301. { return pgm_read_##reader##_near(p); }
  1302. DEFINE_PGM_READ_ANY(float, float);
  1303. DEFINE_PGM_READ_ANY(signed char, byte);
  1304. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1305. static const PROGMEM type array##_P[3] = \
  1306. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1307. static inline type array(int axis) \
  1308. { return pgm_read_any(&array##_P[axis]); } \
  1309. type array##_ext(int axis) \
  1310. { return pgm_read_any(&array##_P[axis]); }
  1311. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1312. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1313. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1314. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1315. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1316. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1317. static void axis_is_at_home(int axis) {
  1318. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1319. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1320. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1321. }
  1322. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1323. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1324. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1325. saved_feedrate = feedrate;
  1326. saved_feedmultiply = feedmultiply;
  1327. feedmultiply = 100;
  1328. previous_millis_cmd = millis();
  1329. enable_endstops(enable_endstops_now);
  1330. }
  1331. static void clean_up_after_endstop_move() {
  1332. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1333. enable_endstops(false);
  1334. #endif
  1335. feedrate = saved_feedrate;
  1336. feedmultiply = saved_feedmultiply;
  1337. previous_millis_cmd = millis();
  1338. }
  1339. #ifdef ENABLE_AUTO_BED_LEVELING
  1340. #ifdef AUTO_BED_LEVELING_GRID
  1341. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1342. {
  1343. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1344. planeNormal.debug("planeNormal");
  1345. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1346. //bedLevel.debug("bedLevel");
  1347. //plan_bed_level_matrix.debug("bed level before");
  1348. //vector_3 uncorrected_position = plan_get_position_mm();
  1349. //uncorrected_position.debug("position before");
  1350. vector_3 corrected_position = plan_get_position();
  1351. // corrected_position.debug("position after");
  1352. current_position[X_AXIS] = corrected_position.x;
  1353. current_position[Y_AXIS] = corrected_position.y;
  1354. current_position[Z_AXIS] = corrected_position.z;
  1355. // put the bed at 0 so we don't go below it.
  1356. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1358. }
  1359. #else // not AUTO_BED_LEVELING_GRID
  1360. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1361. plan_bed_level_matrix.set_to_identity();
  1362. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1363. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1364. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1365. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1366. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1367. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1368. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1369. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1370. vector_3 corrected_position = plan_get_position();
  1371. current_position[X_AXIS] = corrected_position.x;
  1372. current_position[Y_AXIS] = corrected_position.y;
  1373. current_position[Z_AXIS] = corrected_position.z;
  1374. // put the bed at 0 so we don't go below it.
  1375. current_position[Z_AXIS] = zprobe_zoffset;
  1376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1377. }
  1378. #endif // AUTO_BED_LEVELING_GRID
  1379. static void run_z_probe() {
  1380. plan_bed_level_matrix.set_to_identity();
  1381. feedrate = homing_feedrate[Z_AXIS];
  1382. // move down until you find the bed
  1383. float zPosition = -10;
  1384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1385. st_synchronize();
  1386. // we have to let the planner know where we are right now as it is not where we said to go.
  1387. zPosition = st_get_position_mm(Z_AXIS);
  1388. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1389. // move up the retract distance
  1390. zPosition += home_retract_mm(Z_AXIS);
  1391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1392. st_synchronize();
  1393. // move back down slowly to find bed
  1394. feedrate = homing_feedrate[Z_AXIS]/4;
  1395. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1396. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1397. st_synchronize();
  1398. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1399. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1400. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1401. }
  1402. static void do_blocking_move_to(float x, float y, float z) {
  1403. float oldFeedRate = feedrate;
  1404. feedrate = homing_feedrate[Z_AXIS];
  1405. current_position[Z_AXIS] = z;
  1406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1407. st_synchronize();
  1408. feedrate = XY_TRAVEL_SPEED;
  1409. current_position[X_AXIS] = x;
  1410. current_position[Y_AXIS] = y;
  1411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1412. st_synchronize();
  1413. feedrate = oldFeedRate;
  1414. }
  1415. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1416. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1417. }
  1418. /// Probe bed height at position (x,y), returns the measured z value
  1419. static float probe_pt(float x, float y, float z_before) {
  1420. // move to right place
  1421. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1422. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1423. run_z_probe();
  1424. float measured_z = current_position[Z_AXIS];
  1425. SERIAL_PROTOCOLRPGM(MSG_BED);
  1426. SERIAL_PROTOCOLPGM(" x: ");
  1427. SERIAL_PROTOCOL(x);
  1428. SERIAL_PROTOCOLPGM(" y: ");
  1429. SERIAL_PROTOCOL(y);
  1430. SERIAL_PROTOCOLPGM(" z: ");
  1431. SERIAL_PROTOCOL(measured_z);
  1432. SERIAL_PROTOCOLPGM("\n");
  1433. return measured_z;
  1434. }
  1435. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1436. #ifdef LIN_ADVANCE
  1437. /**
  1438. * M900: Set and/or Get advance K factor and WH/D ratio
  1439. *
  1440. * K<factor> Set advance K factor
  1441. * R<ratio> Set ratio directly (overrides WH/D)
  1442. * W<width> H<height> D<diam> Set ratio from WH/D
  1443. */
  1444. inline void gcode_M900() {
  1445. st_synchronize();
  1446. const float newK = code_seen('K') ? code_value_float() : -1;
  1447. if (newK >= 0) extruder_advance_k = newK;
  1448. float newR = code_seen('R') ? code_value_float() : -1;
  1449. if (newR < 0) {
  1450. const float newD = code_seen('D') ? code_value_float() : -1,
  1451. newW = code_seen('W') ? code_value_float() : -1,
  1452. newH = code_seen('H') ? code_value_float() : -1;
  1453. if (newD >= 0 && newW >= 0 && newH >= 0)
  1454. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1455. }
  1456. if (newR >= 0) advance_ed_ratio = newR;
  1457. SERIAL_ECHO_START;
  1458. SERIAL_ECHOPGM("Advance K=");
  1459. SERIAL_ECHOLN(extruder_advance_k);
  1460. SERIAL_ECHOPGM(" E/D=");
  1461. const float ratio = advance_ed_ratio;
  1462. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1463. }
  1464. #endif // LIN_ADVANCE
  1465. bool check_commands() {
  1466. bool end_command_found = false;
  1467. while (buflen)
  1468. {
  1469. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1470. if (!cmdbuffer_front_already_processed)
  1471. cmdqueue_pop_front();
  1472. cmdbuffer_front_already_processed = false;
  1473. }
  1474. return end_command_found;
  1475. }
  1476. #ifdef TMC2130
  1477. bool calibrate_z_auto()
  1478. {
  1479. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1480. lcd_implementation_clear();
  1481. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1482. bool endstops_enabled = enable_endstops(true);
  1483. int axis_up_dir = -home_dir(Z_AXIS);
  1484. tmc2130_home_enter(Z_AXIS_MASK);
  1485. current_position[Z_AXIS] = 0;
  1486. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1487. set_destination_to_current();
  1488. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1489. feedrate = homing_feedrate[Z_AXIS];
  1490. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1491. st_synchronize();
  1492. // current_position[axis] = 0;
  1493. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1494. tmc2130_home_exit();
  1495. enable_endstops(false);
  1496. current_position[Z_AXIS] = 0;
  1497. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1498. set_destination_to_current();
  1499. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1500. feedrate = homing_feedrate[Z_AXIS] / 2;
  1501. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1502. st_synchronize();
  1503. enable_endstops(endstops_enabled);
  1504. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. return true;
  1507. }
  1508. #endif //TMC2130
  1509. void homeaxis(int axis)
  1510. {
  1511. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1512. #define HOMEAXIS_DO(LETTER) \
  1513. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1514. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1515. {
  1516. int axis_home_dir = home_dir(axis);
  1517. feedrate = homing_feedrate[axis];
  1518. #ifdef TMC2130
  1519. tmc2130_home_enter(X_AXIS_MASK << axis);
  1520. #endif
  1521. // Move right a bit, so that the print head does not touch the left end position,
  1522. // and the following left movement has a chance to achieve the required velocity
  1523. // for the stall guard to work.
  1524. current_position[axis] = 0;
  1525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1526. // destination[axis] = 11.f;
  1527. destination[axis] = 3.f;
  1528. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1529. st_synchronize();
  1530. // Move left away from the possible collision with the collision detection disabled.
  1531. endstops_hit_on_purpose();
  1532. enable_endstops(false);
  1533. current_position[axis] = 0;
  1534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1535. destination[axis] = - 1.;
  1536. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1537. st_synchronize();
  1538. // Now continue to move up to the left end stop with the collision detection enabled.
  1539. enable_endstops(true);
  1540. destination[axis] = - 1.1 * max_length(axis);
  1541. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1542. st_synchronize();
  1543. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1544. endstops_hit_on_purpose();
  1545. enable_endstops(false);
  1546. current_position[axis] = 0;
  1547. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1548. destination[axis] = 10.f;
  1549. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1550. st_synchronize();
  1551. endstops_hit_on_purpose();
  1552. // Now move left up to the collision, this time with a repeatable velocity.
  1553. enable_endstops(true);
  1554. destination[axis] = - 15.f;
  1555. feedrate = homing_feedrate[axis]/2;
  1556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1557. st_synchronize();
  1558. axis_is_at_home(axis);
  1559. axis_known_position[axis] = true;
  1560. #ifdef TMC2130
  1561. tmc2130_home_exit();
  1562. #endif
  1563. // Move the X carriage away from the collision.
  1564. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1565. endstops_hit_on_purpose();
  1566. enable_endstops(false);
  1567. {
  1568. // Two full periods (4 full steps).
  1569. float gap = 0.32f * 2.f;
  1570. current_position[axis] -= gap;
  1571. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1572. current_position[axis] += gap;
  1573. }
  1574. destination[axis] = current_position[axis];
  1575. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1576. st_synchronize();
  1577. feedrate = 0.0;
  1578. }
  1579. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1580. {
  1581. int axis_home_dir = home_dir(axis);
  1582. current_position[axis] = 0;
  1583. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1584. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1585. feedrate = homing_feedrate[axis];
  1586. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1587. st_synchronize();
  1588. current_position[axis] = 0;
  1589. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1590. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1591. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1592. st_synchronize();
  1593. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1594. feedrate = homing_feedrate[axis]/2 ;
  1595. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1596. st_synchronize();
  1597. axis_is_at_home(axis);
  1598. destination[axis] = current_position[axis];
  1599. feedrate = 0.0;
  1600. endstops_hit_on_purpose();
  1601. axis_known_position[axis] = true;
  1602. }
  1603. enable_endstops(endstops_enabled);
  1604. }
  1605. /**/
  1606. void home_xy()
  1607. {
  1608. set_destination_to_current();
  1609. homeaxis(X_AXIS);
  1610. homeaxis(Y_AXIS);
  1611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1612. endstops_hit_on_purpose();
  1613. }
  1614. void refresh_cmd_timeout(void)
  1615. {
  1616. previous_millis_cmd = millis();
  1617. }
  1618. #ifdef FWRETRACT
  1619. void retract(bool retracting, bool swapretract = false) {
  1620. if(retracting && !retracted[active_extruder]) {
  1621. destination[X_AXIS]=current_position[X_AXIS];
  1622. destination[Y_AXIS]=current_position[Y_AXIS];
  1623. destination[Z_AXIS]=current_position[Z_AXIS];
  1624. destination[E_AXIS]=current_position[E_AXIS];
  1625. if (swapretract) {
  1626. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1627. } else {
  1628. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1629. }
  1630. plan_set_e_position(current_position[E_AXIS]);
  1631. float oldFeedrate = feedrate;
  1632. feedrate=retract_feedrate*60;
  1633. retracted[active_extruder]=true;
  1634. prepare_move();
  1635. current_position[Z_AXIS]-=retract_zlift;
  1636. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1637. prepare_move();
  1638. feedrate = oldFeedrate;
  1639. } else if(!retracting && retracted[active_extruder]) {
  1640. destination[X_AXIS]=current_position[X_AXIS];
  1641. destination[Y_AXIS]=current_position[Y_AXIS];
  1642. destination[Z_AXIS]=current_position[Z_AXIS];
  1643. destination[E_AXIS]=current_position[E_AXIS];
  1644. current_position[Z_AXIS]+=retract_zlift;
  1645. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1646. //prepare_move();
  1647. if (swapretract) {
  1648. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1649. } else {
  1650. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1651. }
  1652. plan_set_e_position(current_position[E_AXIS]);
  1653. float oldFeedrate = feedrate;
  1654. feedrate=retract_recover_feedrate*60;
  1655. retracted[active_extruder]=false;
  1656. prepare_move();
  1657. feedrate = oldFeedrate;
  1658. }
  1659. } //retract
  1660. #endif //FWRETRACT
  1661. void trace() {
  1662. tone(BEEPER, 440);
  1663. delay(25);
  1664. noTone(BEEPER);
  1665. delay(20);
  1666. }
  1667. /*
  1668. void ramming() {
  1669. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1670. if (current_temperature[0] < 230) {
  1671. //PLA
  1672. max_feedrate[E_AXIS] = 50;
  1673. //current_position[E_AXIS] -= 8;
  1674. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1675. //current_position[E_AXIS] += 8;
  1676. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1677. current_position[E_AXIS] += 5.4;
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1679. current_position[E_AXIS] += 3.2;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1681. current_position[E_AXIS] += 3;
  1682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1683. st_synchronize();
  1684. max_feedrate[E_AXIS] = 80;
  1685. current_position[E_AXIS] -= 82;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1687. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1688. current_position[E_AXIS] -= 20;
  1689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1690. current_position[E_AXIS] += 5;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1692. current_position[E_AXIS] += 5;
  1693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1694. current_position[E_AXIS] -= 10;
  1695. st_synchronize();
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1697. current_position[E_AXIS] += 10;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1699. current_position[E_AXIS] -= 10;
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1701. current_position[E_AXIS] += 10;
  1702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1703. current_position[E_AXIS] -= 10;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1705. st_synchronize();
  1706. }
  1707. else {
  1708. //ABS
  1709. max_feedrate[E_AXIS] = 50;
  1710. //current_position[E_AXIS] -= 8;
  1711. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1712. //current_position[E_AXIS] += 8;
  1713. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1714. current_position[E_AXIS] += 3.1;
  1715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1716. current_position[E_AXIS] += 3.1;
  1717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1718. current_position[E_AXIS] += 4;
  1719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1720. st_synchronize();
  1721. //current_position[X_AXIS] += 23; //delay
  1722. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1723. //current_position[X_AXIS] -= 23; //delay
  1724. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1725. delay(4700);
  1726. max_feedrate[E_AXIS] = 80;
  1727. current_position[E_AXIS] -= 92;
  1728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1729. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1730. current_position[E_AXIS] -= 5;
  1731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1732. current_position[E_AXIS] += 5;
  1733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1734. current_position[E_AXIS] -= 5;
  1735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1736. st_synchronize();
  1737. current_position[E_AXIS] += 5;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1739. current_position[E_AXIS] -= 5;
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1741. current_position[E_AXIS] += 5;
  1742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1743. current_position[E_AXIS] -= 5;
  1744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1745. st_synchronize();
  1746. }
  1747. }
  1748. */
  1749. #ifdef TMC2130
  1750. void force_high_power_mode(bool start_high_power_section) {
  1751. uint8_t silent;
  1752. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1753. if (silent == 1) {
  1754. //we are in silent mode, set to normal mode to enable crash detection
  1755. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1756. st_synchronize();
  1757. cli();
  1758. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1759. tmc2130_init();
  1760. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1761. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1762. st_reset_timer();
  1763. sei();
  1764. digipot_init();
  1765. }
  1766. }
  1767. #endif //TMC2130
  1768. bool gcode_M45(bool onlyZ, int8_t verbosity_level);
  1769. {
  1770. bool final_result = false;
  1771. #ifdef TMC2130
  1772. FORCE_HIGH_POWER_START;
  1773. #endif // TMC2130
  1774. // Only Z calibration?
  1775. if (!onlyZ)
  1776. {
  1777. setTargetBed(0);
  1778. setTargetHotend(0, 0);
  1779. setTargetHotend(0, 1);
  1780. setTargetHotend(0, 2);
  1781. adjust_bed_reset(); //reset bed level correction
  1782. }
  1783. // Disable the default update procedure of the display. We will do a modal dialog.
  1784. lcd_update_enable(false);
  1785. // Let the planner use the uncorrected coordinates.
  1786. mbl.reset();
  1787. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1788. // the planner will not perform any adjustments in the XY plane.
  1789. // Wait for the motors to stop and update the current position with the absolute values.
  1790. world2machine_revert_to_uncorrected();
  1791. // Reset the baby step value applied without moving the axes.
  1792. babystep_reset();
  1793. // Mark all axes as in a need for homing.
  1794. memset(axis_known_position, 0, sizeof(axis_known_position));
  1795. // Home in the XY plane.
  1796. //set_destination_to_current();
  1797. setup_for_endstop_move();
  1798. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1799. home_xy();
  1800. enable_endstops(false);
  1801. current_position[X_AXIS] += 5;
  1802. current_position[Y_AXIS] += 5;
  1803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1804. st_synchronize();
  1805. // Let the user move the Z axes up to the end stoppers.
  1806. #ifdef TMC2130
  1807. if (calibrate_z_auto())
  1808. {
  1809. #else //TMC2130
  1810. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1811. {
  1812. #endif //TMC2130
  1813. refresh_cmd_timeout();
  1814. #ifndef STEEL_SHEET
  1815. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1816. {
  1817. lcd_wait_for_cool_down();
  1818. }
  1819. #endif //STEEL_SHEET
  1820. if(!onlyZ)
  1821. {
  1822. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1823. #ifdef STEEL_SHEET
  1824. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1825. #endif //STEEL_SHEET
  1826. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1827. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1828. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1829. KEEPALIVE_STATE(IN_HANDLER);
  1830. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1831. lcd_implementation_print_at(0, 2, 1);
  1832. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1833. }
  1834. // Move the print head close to the bed.
  1835. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1836. bool endstops_enabled = enable_endstops(true);
  1837. #ifdef TMC2130
  1838. tmc2130_home_enter(Z_AXIS_MASK);
  1839. #endif //TMC2130
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1841. st_synchronize();
  1842. #ifdef TMC2130
  1843. tmc2130_home_exit();
  1844. #endif //TMC2130
  1845. enable_endstops(endstops_enabled);
  1846. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1847. {
  1848. int8_t verbosity_level = 0;
  1849. if (code_seen('V'))
  1850. {
  1851. // Just 'V' without a number counts as V1.
  1852. char c = strchr_pointer[1];
  1853. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1854. }
  1855. if (onlyZ)
  1856. {
  1857. clean_up_after_endstop_move();
  1858. // Z only calibration.
  1859. // Load the machine correction matrix
  1860. world2machine_initialize();
  1861. // and correct the current_position to match the transformed coordinate system.
  1862. world2machine_update_current();
  1863. //FIXME
  1864. bool result = sample_mesh_and_store_reference();
  1865. if (result)
  1866. {
  1867. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1868. // Shipped, the nozzle height has been set already. The user can start printing now.
  1869. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1870. final_result = true;
  1871. // babystep_apply();
  1872. }
  1873. }
  1874. else
  1875. {
  1876. // Reset the baby step value and the baby step applied flag.
  1877. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1878. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1879. // Complete XYZ calibration.
  1880. uint8_t point_too_far_mask = 0;
  1881. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1882. clean_up_after_endstop_move();
  1883. // Print head up.
  1884. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1885. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1886. st_synchronize();
  1887. if (result >= 0)
  1888. {
  1889. point_too_far_mask = 0;
  1890. // Second half: The fine adjustment.
  1891. // Let the planner use the uncorrected coordinates.
  1892. mbl.reset();
  1893. world2machine_reset();
  1894. // Home in the XY plane.
  1895. setup_for_endstop_move();
  1896. home_xy();
  1897. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1898. clean_up_after_endstop_move();
  1899. // Print head up.
  1900. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1902. st_synchronize();
  1903. // if (result >= 0) babystep_apply();
  1904. }
  1905. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1906. if (result >= 0)
  1907. {
  1908. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1909. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1910. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1911. final_result = true;
  1912. }
  1913. }
  1914. #ifdef TMC2130
  1915. tmc2130_home_exit();
  1916. #endif
  1917. }
  1918. else
  1919. {
  1920. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1921. final_result = false;
  1922. }
  1923. }
  1924. else
  1925. {
  1926. // Timeouted.
  1927. }
  1928. lcd_update_enable(true);
  1929. #ifdef TMC2130
  1930. FORCE_HIGH_POWER_END;
  1931. #endif // TMC2130
  1932. return final_result;
  1933. }
  1934. void gcode_M701()
  1935. {
  1936. #ifdef SNMM
  1937. extr_adj(snmm_extruder);//loads current extruder
  1938. #else
  1939. enable_z();
  1940. custom_message = true;
  1941. custom_message_type = 2;
  1942. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1943. current_position[E_AXIS] += 70;
  1944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1945. current_position[E_AXIS] += 25;
  1946. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1947. st_synchronize();
  1948. tone(BEEPER, 500);
  1949. delay_keep_alive(50);
  1950. noTone(BEEPER);
  1951. if (!farm_mode && loading_flag) {
  1952. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1953. while (!clean) {
  1954. lcd_update_enable(true);
  1955. lcd_update(2);
  1956. current_position[E_AXIS] += 25;
  1957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1958. st_synchronize();
  1959. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1960. }
  1961. }
  1962. lcd_update_enable(true);
  1963. lcd_update(2);
  1964. lcd_setstatuspgm(WELCOME_MSG);
  1965. disable_z();
  1966. loading_flag = false;
  1967. custom_message = false;
  1968. custom_message_type = 0;
  1969. #endif
  1970. }
  1971. void process_commands()
  1972. {
  1973. #ifdef FILAMENT_RUNOUT_SUPPORT
  1974. SET_INPUT(FR_SENS);
  1975. #endif
  1976. #ifdef CMDBUFFER_DEBUG
  1977. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1978. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1979. SERIAL_ECHOLNPGM("");
  1980. SERIAL_ECHOPGM("In cmdqueue: ");
  1981. SERIAL_ECHO(buflen);
  1982. SERIAL_ECHOLNPGM("");
  1983. #endif /* CMDBUFFER_DEBUG */
  1984. unsigned long codenum; //throw away variable
  1985. char *starpos = NULL;
  1986. #ifdef ENABLE_AUTO_BED_LEVELING
  1987. float x_tmp, y_tmp, z_tmp, real_z;
  1988. #endif
  1989. // PRUSA GCODES
  1990. KEEPALIVE_STATE(IN_HANDLER);
  1991. #ifdef SNMM
  1992. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1993. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1994. int8_t SilentMode;
  1995. #endif
  1996. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1997. starpos = (strchr(strchr_pointer + 5, '*'));
  1998. if (starpos != NULL)
  1999. *(starpos) = '\0';
  2000. lcd_setstatus(strchr_pointer + 5);
  2001. }
  2002. #ifdef TMC2130
  2003. else if(code_seen("CRASH_DETECTED"))
  2004. {
  2005. uint8_t mask = 0;
  2006. if (code_seen("X")) mask |= X_AXIS_MASK;
  2007. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2008. crashdet_detected(mask);
  2009. }
  2010. else if(code_seen("CRASH_RECOVER"))
  2011. crashdet_recover();
  2012. else if(code_seen("CRASH_CANCEL"))
  2013. crashdet_cancel();
  2014. #endif //TMC2130
  2015. else if(code_seen("PRUSA")){
  2016. if (code_seen("Ping")) { //PRUSA Ping
  2017. if (farm_mode) {
  2018. PingTime = millis();
  2019. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2020. }
  2021. }
  2022. else if (code_seen("PRN")) {
  2023. MYSERIAL.println(status_number);
  2024. }else if (code_seen("FAN")) {
  2025. MYSERIAL.print("E0:");
  2026. MYSERIAL.print(60*fan_speed[0]);
  2027. MYSERIAL.println(" RPM");
  2028. MYSERIAL.print("PRN0:");
  2029. MYSERIAL.print(60*fan_speed[1]);
  2030. MYSERIAL.println(" RPM");
  2031. }else if (code_seen("fn")) {
  2032. if (farm_mode) {
  2033. MYSERIAL.println(farm_no);
  2034. }
  2035. else {
  2036. MYSERIAL.println("Not in farm mode.");
  2037. }
  2038. }else if (code_seen("fv")) {
  2039. // get file version
  2040. #ifdef SDSUPPORT
  2041. card.openFile(strchr_pointer + 3,true);
  2042. while (true) {
  2043. uint16_t readByte = card.get();
  2044. MYSERIAL.write(readByte);
  2045. if (readByte=='\n') {
  2046. break;
  2047. }
  2048. }
  2049. card.closefile();
  2050. #endif // SDSUPPORT
  2051. } else if (code_seen("M28")) {
  2052. trace();
  2053. prusa_sd_card_upload = true;
  2054. card.openFile(strchr_pointer+4,false);
  2055. } else if (code_seen("SN")) {
  2056. if (farm_mode) {
  2057. selectedSerialPort = 0;
  2058. MSerial.write(";S");
  2059. // S/N is:CZPX0917X003XC13518
  2060. int numbersRead = 0;
  2061. while (numbersRead < 19) {
  2062. while (MSerial.available() > 0) {
  2063. uint8_t serial_char = MSerial.read();
  2064. selectedSerialPort = 1;
  2065. MSerial.write(serial_char);
  2066. numbersRead++;
  2067. selectedSerialPort = 0;
  2068. }
  2069. }
  2070. selectedSerialPort = 1;
  2071. MSerial.write('\n');
  2072. /*for (int b = 0; b < 3; b++) {
  2073. tone(BEEPER, 110);
  2074. delay(50);
  2075. noTone(BEEPER);
  2076. delay(50);
  2077. }*/
  2078. } else {
  2079. MYSERIAL.println("Not in farm mode.");
  2080. }
  2081. } else if(code_seen("Fir")){
  2082. SERIAL_PROTOCOLLN(FW_VERSION);
  2083. } else if(code_seen("Rev")){
  2084. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2085. } else if(code_seen("Lang")) {
  2086. lcd_force_language_selection();
  2087. } else if(code_seen("Lz")) {
  2088. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2089. } else if (code_seen("SERIAL LOW")) {
  2090. MYSERIAL.println("SERIAL LOW");
  2091. MYSERIAL.begin(BAUDRATE);
  2092. return;
  2093. } else if (code_seen("SERIAL HIGH")) {
  2094. MYSERIAL.println("SERIAL HIGH");
  2095. MYSERIAL.begin(1152000);
  2096. return;
  2097. } else if(code_seen("Beat")) {
  2098. // Kick farm link timer
  2099. kicktime = millis();
  2100. } else if(code_seen("FR")) {
  2101. // Factory full reset
  2102. factory_reset(0,true);
  2103. }
  2104. //else if (code_seen('Cal')) {
  2105. // lcd_calibration();
  2106. // }
  2107. }
  2108. else if (code_seen('^')) {
  2109. // nothing, this is a version line
  2110. } else if(code_seen('G'))
  2111. {
  2112. switch((int)code_value())
  2113. {
  2114. case 0: // G0 -> G1
  2115. case 1: // G1
  2116. if(Stopped == false) {
  2117. #ifdef FILAMENT_RUNOUT_SUPPORT
  2118. if(READ(FR_SENS)){
  2119. feedmultiplyBckp=feedmultiply;
  2120. float target[4];
  2121. float lastpos[4];
  2122. target[X_AXIS]=current_position[X_AXIS];
  2123. target[Y_AXIS]=current_position[Y_AXIS];
  2124. target[Z_AXIS]=current_position[Z_AXIS];
  2125. target[E_AXIS]=current_position[E_AXIS];
  2126. lastpos[X_AXIS]=current_position[X_AXIS];
  2127. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2128. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2129. lastpos[E_AXIS]=current_position[E_AXIS];
  2130. //retract by E
  2131. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2132. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2133. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2134. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2135. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2136. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2137. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2138. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2139. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2140. //finish moves
  2141. st_synchronize();
  2142. //disable extruder steppers so filament can be removed
  2143. disable_e0();
  2144. disable_e1();
  2145. disable_e2();
  2146. delay(100);
  2147. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2148. uint8_t cnt=0;
  2149. int counterBeep = 0;
  2150. lcd_wait_interact();
  2151. while(!lcd_clicked()){
  2152. cnt++;
  2153. manage_heater();
  2154. manage_inactivity(true);
  2155. //lcd_update();
  2156. if(cnt==0)
  2157. {
  2158. #if BEEPER > 0
  2159. if (counterBeep== 500){
  2160. counterBeep = 0;
  2161. }
  2162. SET_OUTPUT(BEEPER);
  2163. if (counterBeep== 0){
  2164. WRITE(BEEPER,HIGH);
  2165. }
  2166. if (counterBeep== 20){
  2167. WRITE(BEEPER,LOW);
  2168. }
  2169. counterBeep++;
  2170. #else
  2171. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2172. lcd_buzz(1000/6,100);
  2173. #else
  2174. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2175. #endif
  2176. #endif
  2177. }
  2178. }
  2179. WRITE(BEEPER,LOW);
  2180. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2182. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2183. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2184. lcd_change_fil_state = 0;
  2185. lcd_loading_filament();
  2186. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2187. lcd_change_fil_state = 0;
  2188. lcd_alright();
  2189. switch(lcd_change_fil_state){
  2190. case 2:
  2191. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2192. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2193. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2194. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2195. lcd_loading_filament();
  2196. break;
  2197. case 3:
  2198. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2199. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2200. lcd_loading_color();
  2201. break;
  2202. default:
  2203. lcd_change_success();
  2204. break;
  2205. }
  2206. }
  2207. target[E_AXIS]+= 5;
  2208. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2209. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2210. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2211. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2212. //plan_set_e_position(current_position[E_AXIS]);
  2213. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2214. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2215. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2216. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2217. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2218. plan_set_e_position(lastpos[E_AXIS]);
  2219. feedmultiply=feedmultiplyBckp;
  2220. char cmd[9];
  2221. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2222. enquecommand(cmd);
  2223. }
  2224. #endif
  2225. get_coordinates(); // For X Y Z E F
  2226. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2227. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2228. }
  2229. #ifdef FWRETRACT
  2230. if(autoretract_enabled)
  2231. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2232. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2233. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2234. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2235. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2236. retract(!retracted);
  2237. return;
  2238. }
  2239. }
  2240. #endif //FWRETRACT
  2241. prepare_move();
  2242. //ClearToSend();
  2243. }
  2244. break;
  2245. case 2: // G2 - CW ARC
  2246. if(Stopped == false) {
  2247. get_arc_coordinates();
  2248. prepare_arc_move(true);
  2249. }
  2250. break;
  2251. case 3: // G3 - CCW ARC
  2252. if(Stopped == false) {
  2253. get_arc_coordinates();
  2254. prepare_arc_move(false);
  2255. }
  2256. break;
  2257. case 4: // G4 dwell
  2258. codenum = 0;
  2259. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2260. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2261. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2262. st_synchronize();
  2263. codenum += millis(); // keep track of when we started waiting
  2264. previous_millis_cmd = millis();
  2265. while(millis() < codenum) {
  2266. manage_heater();
  2267. manage_inactivity();
  2268. lcd_update();
  2269. }
  2270. break;
  2271. #ifdef FWRETRACT
  2272. case 10: // G10 retract
  2273. #if EXTRUDERS > 1
  2274. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2275. retract(true,retracted_swap[active_extruder]);
  2276. #else
  2277. retract(true);
  2278. #endif
  2279. break;
  2280. case 11: // G11 retract_recover
  2281. #if EXTRUDERS > 1
  2282. retract(false,retracted_swap[active_extruder]);
  2283. #else
  2284. retract(false);
  2285. #endif
  2286. break;
  2287. #endif //FWRETRACT
  2288. case 28: //G28 Home all Axis one at a time
  2289. {
  2290. st_synchronize();
  2291. #if 0
  2292. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2293. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2294. #endif
  2295. // Flag for the display update routine and to disable the print cancelation during homing.
  2296. homing_flag = true;
  2297. // Which axes should be homed?
  2298. bool home_x = code_seen(axis_codes[X_AXIS]);
  2299. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2300. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2301. // Either all X,Y,Z codes are present, or none of them.
  2302. bool home_all_axes = home_x == home_y && home_x == home_z;
  2303. if (home_all_axes)
  2304. // No X/Y/Z code provided means to home all axes.
  2305. home_x = home_y = home_z = true;
  2306. #ifdef ENABLE_AUTO_BED_LEVELING
  2307. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2308. #endif //ENABLE_AUTO_BED_LEVELING
  2309. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2310. // the planner will not perform any adjustments in the XY plane.
  2311. // Wait for the motors to stop and update the current position with the absolute values.
  2312. world2machine_revert_to_uncorrected();
  2313. // For mesh bed leveling deactivate the matrix temporarily.
  2314. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2315. // in a single axis only.
  2316. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2317. #ifdef MESH_BED_LEVELING
  2318. uint8_t mbl_was_active = mbl.active;
  2319. mbl.active = 0;
  2320. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2321. #endif
  2322. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2323. // consumed during the first movements following this statement.
  2324. if (home_z)
  2325. babystep_undo();
  2326. saved_feedrate = feedrate;
  2327. saved_feedmultiply = feedmultiply;
  2328. feedmultiply = 100;
  2329. previous_millis_cmd = millis();
  2330. enable_endstops(true);
  2331. memcpy(destination, current_position, sizeof(destination));
  2332. feedrate = 0.0;
  2333. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2334. if(home_z)
  2335. homeaxis(Z_AXIS);
  2336. #endif
  2337. #ifdef QUICK_HOME
  2338. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2339. if(home_x && home_y) //first diagonal move
  2340. {
  2341. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2342. int x_axis_home_dir = home_dir(X_AXIS);
  2343. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2344. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2345. feedrate = homing_feedrate[X_AXIS];
  2346. if(homing_feedrate[Y_AXIS]<feedrate)
  2347. feedrate = homing_feedrate[Y_AXIS];
  2348. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2349. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2350. } else {
  2351. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2352. }
  2353. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2354. st_synchronize();
  2355. axis_is_at_home(X_AXIS);
  2356. axis_is_at_home(Y_AXIS);
  2357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2358. destination[X_AXIS] = current_position[X_AXIS];
  2359. destination[Y_AXIS] = current_position[Y_AXIS];
  2360. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2361. feedrate = 0.0;
  2362. st_synchronize();
  2363. endstops_hit_on_purpose();
  2364. current_position[X_AXIS] = destination[X_AXIS];
  2365. current_position[Y_AXIS] = destination[Y_AXIS];
  2366. current_position[Z_AXIS] = destination[Z_AXIS];
  2367. }
  2368. #endif /* QUICK_HOME */
  2369. if(home_x)
  2370. homeaxis(X_AXIS);
  2371. if(home_y)
  2372. homeaxis(Y_AXIS);
  2373. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2374. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2375. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2376. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2377. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2378. #ifndef Z_SAFE_HOMING
  2379. if(home_z) {
  2380. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2381. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2382. feedrate = max_feedrate[Z_AXIS];
  2383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2384. st_synchronize();
  2385. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2386. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2387. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2388. {
  2389. homeaxis(X_AXIS);
  2390. homeaxis(Y_AXIS);
  2391. }
  2392. // 1st mesh bed leveling measurement point, corrected.
  2393. world2machine_initialize();
  2394. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2395. world2machine_reset();
  2396. if (destination[Y_AXIS] < Y_MIN_POS)
  2397. destination[Y_AXIS] = Y_MIN_POS;
  2398. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2399. feedrate = homing_feedrate[Z_AXIS]/10;
  2400. current_position[Z_AXIS] = 0;
  2401. enable_endstops(false);
  2402. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2403. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2404. st_synchronize();
  2405. current_position[X_AXIS] = destination[X_AXIS];
  2406. current_position[Y_AXIS] = destination[Y_AXIS];
  2407. enable_endstops(true);
  2408. endstops_hit_on_purpose();
  2409. homeaxis(Z_AXIS);
  2410. #else // MESH_BED_LEVELING
  2411. homeaxis(Z_AXIS);
  2412. #endif // MESH_BED_LEVELING
  2413. }
  2414. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2415. if(home_all_axes) {
  2416. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2417. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2418. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2419. feedrate = XY_TRAVEL_SPEED/60;
  2420. current_position[Z_AXIS] = 0;
  2421. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2422. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2423. st_synchronize();
  2424. current_position[X_AXIS] = destination[X_AXIS];
  2425. current_position[Y_AXIS] = destination[Y_AXIS];
  2426. homeaxis(Z_AXIS);
  2427. }
  2428. // Let's see if X and Y are homed and probe is inside bed area.
  2429. if(home_z) {
  2430. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2431. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2432. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2433. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2434. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2435. current_position[Z_AXIS] = 0;
  2436. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2437. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2438. feedrate = max_feedrate[Z_AXIS];
  2439. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2440. st_synchronize();
  2441. homeaxis(Z_AXIS);
  2442. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2443. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2444. SERIAL_ECHO_START;
  2445. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2446. } else {
  2447. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2448. SERIAL_ECHO_START;
  2449. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2450. }
  2451. }
  2452. #endif // Z_SAFE_HOMING
  2453. #endif // Z_HOME_DIR < 0
  2454. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2455. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2456. #ifdef ENABLE_AUTO_BED_LEVELING
  2457. if(home_z)
  2458. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2459. #endif
  2460. // Set the planner and stepper routine positions.
  2461. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2462. // contains the machine coordinates.
  2463. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2464. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2465. enable_endstops(false);
  2466. #endif
  2467. feedrate = saved_feedrate;
  2468. feedmultiply = saved_feedmultiply;
  2469. previous_millis_cmd = millis();
  2470. endstops_hit_on_purpose();
  2471. #ifndef MESH_BED_LEVELING
  2472. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2473. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2474. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2475. lcd_adjust_z();
  2476. #endif
  2477. // Load the machine correction matrix
  2478. world2machine_initialize();
  2479. // and correct the current_position XY axes to match the transformed coordinate system.
  2480. world2machine_update_current();
  2481. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2482. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2483. {
  2484. if (! home_z && mbl_was_active) {
  2485. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2486. mbl.active = true;
  2487. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2488. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2489. }
  2490. }
  2491. else
  2492. {
  2493. st_synchronize();
  2494. homing_flag = false;
  2495. // Push the commands to the front of the message queue in the reverse order!
  2496. // There shall be always enough space reserved for these commands.
  2497. // enquecommand_front_P((PSTR("G80")));
  2498. goto case_G80;
  2499. }
  2500. #endif
  2501. if (farm_mode) { prusa_statistics(20); };
  2502. homing_flag = false;
  2503. #if 0
  2504. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2505. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2506. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2507. #endif
  2508. break;
  2509. }
  2510. #ifdef ENABLE_AUTO_BED_LEVELING
  2511. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2512. {
  2513. #if Z_MIN_PIN == -1
  2514. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2515. #endif
  2516. // Prevent user from running a G29 without first homing in X and Y
  2517. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2518. {
  2519. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2520. SERIAL_ECHO_START;
  2521. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2522. break; // abort G29, since we don't know where we are
  2523. }
  2524. st_synchronize();
  2525. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2526. //vector_3 corrected_position = plan_get_position_mm();
  2527. //corrected_position.debug("position before G29");
  2528. plan_bed_level_matrix.set_to_identity();
  2529. vector_3 uncorrected_position = plan_get_position();
  2530. //uncorrected_position.debug("position durring G29");
  2531. current_position[X_AXIS] = uncorrected_position.x;
  2532. current_position[Y_AXIS] = uncorrected_position.y;
  2533. current_position[Z_AXIS] = uncorrected_position.z;
  2534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2535. setup_for_endstop_move();
  2536. feedrate = homing_feedrate[Z_AXIS];
  2537. #ifdef AUTO_BED_LEVELING_GRID
  2538. // probe at the points of a lattice grid
  2539. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2540. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2541. // solve the plane equation ax + by + d = z
  2542. // A is the matrix with rows [x y 1] for all the probed points
  2543. // B is the vector of the Z positions
  2544. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2545. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2546. // "A" matrix of the linear system of equations
  2547. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2548. // "B" vector of Z points
  2549. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2550. int probePointCounter = 0;
  2551. bool zig = true;
  2552. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2553. {
  2554. int xProbe, xInc;
  2555. if (zig)
  2556. {
  2557. xProbe = LEFT_PROBE_BED_POSITION;
  2558. //xEnd = RIGHT_PROBE_BED_POSITION;
  2559. xInc = xGridSpacing;
  2560. zig = false;
  2561. } else // zag
  2562. {
  2563. xProbe = RIGHT_PROBE_BED_POSITION;
  2564. //xEnd = LEFT_PROBE_BED_POSITION;
  2565. xInc = -xGridSpacing;
  2566. zig = true;
  2567. }
  2568. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2569. {
  2570. float z_before;
  2571. if (probePointCounter == 0)
  2572. {
  2573. // raise before probing
  2574. z_before = Z_RAISE_BEFORE_PROBING;
  2575. } else
  2576. {
  2577. // raise extruder
  2578. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2579. }
  2580. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2581. eqnBVector[probePointCounter] = measured_z;
  2582. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2583. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2584. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2585. probePointCounter++;
  2586. xProbe += xInc;
  2587. }
  2588. }
  2589. clean_up_after_endstop_move();
  2590. // solve lsq problem
  2591. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2592. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2593. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2594. SERIAL_PROTOCOLPGM(" b: ");
  2595. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2596. SERIAL_PROTOCOLPGM(" d: ");
  2597. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2598. set_bed_level_equation_lsq(plane_equation_coefficients);
  2599. free(plane_equation_coefficients);
  2600. #else // AUTO_BED_LEVELING_GRID not defined
  2601. // Probe at 3 arbitrary points
  2602. // probe 1
  2603. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2604. // probe 2
  2605. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2606. // probe 3
  2607. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2608. clean_up_after_endstop_move();
  2609. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2610. #endif // AUTO_BED_LEVELING_GRID
  2611. st_synchronize();
  2612. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2613. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2614. // When the bed is uneven, this height must be corrected.
  2615. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2616. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2617. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2618. z_tmp = current_position[Z_AXIS];
  2619. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2620. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2622. }
  2623. break;
  2624. #ifndef Z_PROBE_SLED
  2625. case 30: // G30 Single Z Probe
  2626. {
  2627. st_synchronize();
  2628. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2629. setup_for_endstop_move();
  2630. feedrate = homing_feedrate[Z_AXIS];
  2631. run_z_probe();
  2632. SERIAL_PROTOCOLPGM(MSG_BED);
  2633. SERIAL_PROTOCOLPGM(" X: ");
  2634. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2635. SERIAL_PROTOCOLPGM(" Y: ");
  2636. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2637. SERIAL_PROTOCOLPGM(" Z: ");
  2638. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2639. SERIAL_PROTOCOLPGM("\n");
  2640. clean_up_after_endstop_move();
  2641. }
  2642. break;
  2643. #else
  2644. case 31: // dock the sled
  2645. dock_sled(true);
  2646. break;
  2647. case 32: // undock the sled
  2648. dock_sled(false);
  2649. break;
  2650. #endif // Z_PROBE_SLED
  2651. #endif // ENABLE_AUTO_BED_LEVELING
  2652. #ifdef MESH_BED_LEVELING
  2653. case 30: // G30 Single Z Probe
  2654. {
  2655. st_synchronize();
  2656. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2657. setup_for_endstop_move();
  2658. feedrate = homing_feedrate[Z_AXIS];
  2659. find_bed_induction_sensor_point_z(-10.f, 3);
  2660. SERIAL_PROTOCOLRPGM(MSG_BED);
  2661. SERIAL_PROTOCOLPGM(" X: ");
  2662. MYSERIAL.print(current_position[X_AXIS], 5);
  2663. SERIAL_PROTOCOLPGM(" Y: ");
  2664. MYSERIAL.print(current_position[Y_AXIS], 5);
  2665. SERIAL_PROTOCOLPGM(" Z: ");
  2666. MYSERIAL.print(current_position[Z_AXIS], 5);
  2667. SERIAL_PROTOCOLPGM("\n");
  2668. clean_up_after_endstop_move();
  2669. }
  2670. break;
  2671. case 75:
  2672. {
  2673. for (int i = 40; i <= 110; i++) {
  2674. MYSERIAL.print(i);
  2675. MYSERIAL.print(" ");
  2676. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2677. }
  2678. }
  2679. break;
  2680. case 76: //PINDA probe temperature calibration
  2681. {
  2682. #ifdef PINDA_THERMISTOR
  2683. if (true)
  2684. {
  2685. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2686. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2687. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2688. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2689. // We don't know where we are! HOME!
  2690. // Push the commands to the front of the message queue in the reverse order!
  2691. // There shall be always enough space reserved for these commands.
  2692. repeatcommand_front(); // repeat G76 with all its parameters
  2693. enquecommand_front_P((PSTR("G28 W0")));
  2694. break;
  2695. }
  2696. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2697. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2698. float zero_z;
  2699. int z_shift = 0; //unit: steps
  2700. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2701. if (start_temp < 35) start_temp = 35;
  2702. if (start_temp < current_temperature_pinda) start_temp += 5;
  2703. SERIAL_ECHOPGM("start temperature: ");
  2704. MYSERIAL.println(start_temp);
  2705. // setTargetHotend(200, 0);
  2706. setTargetBed(70 + (start_temp - 30));
  2707. custom_message = true;
  2708. custom_message_type = 4;
  2709. custom_message_state = 1;
  2710. custom_message = MSG_TEMP_CALIBRATION;
  2711. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2712. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2713. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2715. st_synchronize();
  2716. while (current_temperature_pinda < start_temp)
  2717. {
  2718. delay_keep_alive(1000);
  2719. serialecho_temperatures();
  2720. }
  2721. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2722. current_position[Z_AXIS] = 5;
  2723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2724. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2725. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2727. st_synchronize();
  2728. find_bed_induction_sensor_point_z(-1.f);
  2729. zero_z = current_position[Z_AXIS];
  2730. //current_position[Z_AXIS]
  2731. SERIAL_ECHOLNPGM("");
  2732. SERIAL_ECHOPGM("ZERO: ");
  2733. MYSERIAL.print(current_position[Z_AXIS]);
  2734. SERIAL_ECHOLNPGM("");
  2735. int i = -1; for (; i < 5; i++)
  2736. {
  2737. float temp = (40 + i * 5);
  2738. SERIAL_ECHOPGM("Step: ");
  2739. MYSERIAL.print(i + 2);
  2740. SERIAL_ECHOLNPGM("/6 (skipped)");
  2741. SERIAL_ECHOPGM("PINDA temperature: ");
  2742. MYSERIAL.print((40 + i*5));
  2743. SERIAL_ECHOPGM(" Z shift (mm):");
  2744. MYSERIAL.print(0);
  2745. SERIAL_ECHOLNPGM("");
  2746. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2747. if (start_temp <= temp) break;
  2748. }
  2749. for (i++; i < 5; i++)
  2750. {
  2751. float temp = (40 + i * 5);
  2752. SERIAL_ECHOPGM("Step: ");
  2753. MYSERIAL.print(i + 2);
  2754. SERIAL_ECHOLNPGM("/6");
  2755. custom_message_state = i + 2;
  2756. setTargetBed(50 + 10 * (temp - 30) / 5);
  2757. // setTargetHotend(255, 0);
  2758. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2759. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2760. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2762. st_synchronize();
  2763. while (current_temperature_pinda < temp)
  2764. {
  2765. delay_keep_alive(1000);
  2766. serialecho_temperatures();
  2767. }
  2768. current_position[Z_AXIS] = 5;
  2769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2770. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2771. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2773. st_synchronize();
  2774. find_bed_induction_sensor_point_z(-1.f);
  2775. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2776. SERIAL_ECHOLNPGM("");
  2777. SERIAL_ECHOPGM("PINDA temperature: ");
  2778. MYSERIAL.print(current_temperature_pinda);
  2779. SERIAL_ECHOPGM(" Z shift (mm):");
  2780. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2781. SERIAL_ECHOLNPGM("");
  2782. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2783. }
  2784. custom_message_type = 0;
  2785. custom_message = false;
  2786. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2787. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2788. disable_x();
  2789. disable_y();
  2790. disable_z();
  2791. disable_e0();
  2792. disable_e1();
  2793. disable_e2();
  2794. setTargetBed(0); //set bed target temperature back to 0
  2795. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2796. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2797. lcd_update_enable(true);
  2798. lcd_update(2);
  2799. break;
  2800. }
  2801. #endif //PINDA_THERMISTOR
  2802. setTargetBed(PINDA_MIN_T);
  2803. float zero_z;
  2804. int z_shift = 0; //unit: steps
  2805. int t_c; // temperature
  2806. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2807. // We don't know where we are! HOME!
  2808. // Push the commands to the front of the message queue in the reverse order!
  2809. // There shall be always enough space reserved for these commands.
  2810. repeatcommand_front(); // repeat G76 with all its parameters
  2811. enquecommand_front_P((PSTR("G28 W0")));
  2812. break;
  2813. }
  2814. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2815. custom_message = true;
  2816. custom_message_type = 4;
  2817. custom_message_state = 1;
  2818. custom_message = MSG_TEMP_CALIBRATION;
  2819. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2820. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2821. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2823. st_synchronize();
  2824. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2825. delay_keep_alive(1000);
  2826. serialecho_temperatures();
  2827. }
  2828. //enquecommand_P(PSTR("M190 S50"));
  2829. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2830. delay_keep_alive(1000);
  2831. serialecho_temperatures();
  2832. }
  2833. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2834. current_position[Z_AXIS] = 5;
  2835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2836. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2837. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2839. st_synchronize();
  2840. find_bed_induction_sensor_point_z(-1.f);
  2841. zero_z = current_position[Z_AXIS];
  2842. //current_position[Z_AXIS]
  2843. SERIAL_ECHOLNPGM("");
  2844. SERIAL_ECHOPGM("ZERO: ");
  2845. MYSERIAL.print(current_position[Z_AXIS]);
  2846. SERIAL_ECHOLNPGM("");
  2847. for (int i = 0; i<5; i++) {
  2848. SERIAL_ECHOPGM("Step: ");
  2849. MYSERIAL.print(i+2);
  2850. SERIAL_ECHOLNPGM("/6");
  2851. custom_message_state = i + 2;
  2852. t_c = 60 + i * 10;
  2853. setTargetBed(t_c);
  2854. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2855. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2856. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2858. st_synchronize();
  2859. while (degBed() < t_c) {
  2860. delay_keep_alive(1000);
  2861. serialecho_temperatures();
  2862. }
  2863. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2864. delay_keep_alive(1000);
  2865. serialecho_temperatures();
  2866. }
  2867. current_position[Z_AXIS] = 5;
  2868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2869. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2870. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2872. st_synchronize();
  2873. find_bed_induction_sensor_point_z(-1.f);
  2874. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2875. SERIAL_ECHOLNPGM("");
  2876. SERIAL_ECHOPGM("Temperature: ");
  2877. MYSERIAL.print(t_c);
  2878. SERIAL_ECHOPGM(" Z shift (mm):");
  2879. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2880. SERIAL_ECHOLNPGM("");
  2881. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2882. }
  2883. custom_message_type = 0;
  2884. custom_message = false;
  2885. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2886. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2887. disable_x();
  2888. disable_y();
  2889. disable_z();
  2890. disable_e0();
  2891. disable_e1();
  2892. disable_e2();
  2893. setTargetBed(0); //set bed target temperature back to 0
  2894. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2895. lcd_update_enable(true);
  2896. lcd_update(2);
  2897. }
  2898. break;
  2899. #ifdef DIS
  2900. case 77:
  2901. {
  2902. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2903. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2904. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2905. float dimension_x = 40;
  2906. float dimension_y = 40;
  2907. int points_x = 40;
  2908. int points_y = 40;
  2909. float offset_x = 74;
  2910. float offset_y = 33;
  2911. if (code_seen('X')) dimension_x = code_value();
  2912. if (code_seen('Y')) dimension_y = code_value();
  2913. if (code_seen('XP')) points_x = code_value();
  2914. if (code_seen('YP')) points_y = code_value();
  2915. if (code_seen('XO')) offset_x = code_value();
  2916. if (code_seen('YO')) offset_y = code_value();
  2917. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2918. } break;
  2919. #endif
  2920. case 79: {
  2921. for (int i = 255; i > 0; i = i - 5) {
  2922. fanSpeed = i;
  2923. //delay_keep_alive(2000);
  2924. for (int j = 0; j < 100; j++) {
  2925. delay_keep_alive(100);
  2926. }
  2927. fan_speed[1];
  2928. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2929. }
  2930. }break;
  2931. /**
  2932. * G80: Mesh-based Z probe, probes a grid and produces a
  2933. * mesh to compensate for variable bed height
  2934. *
  2935. * The S0 report the points as below
  2936. *
  2937. * +----> X-axis
  2938. * |
  2939. * |
  2940. * v Y-axis
  2941. *
  2942. */
  2943. case 80:
  2944. #ifdef MK1BP
  2945. break;
  2946. #endif //MK1BP
  2947. case_G80:
  2948. {
  2949. mesh_bed_leveling_flag = true;
  2950. int8_t verbosity_level = 0;
  2951. static bool run = false;
  2952. if (code_seen('V')) {
  2953. // Just 'V' without a number counts as V1.
  2954. char c = strchr_pointer[1];
  2955. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2956. }
  2957. // Firstly check if we know where we are
  2958. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2959. // We don't know where we are! HOME!
  2960. // Push the commands to the front of the message queue in the reverse order!
  2961. // There shall be always enough space reserved for these commands.
  2962. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2963. repeatcommand_front(); // repeat G80 with all its parameters
  2964. enquecommand_front_P((PSTR("G28 W0")));
  2965. }
  2966. else {
  2967. mesh_bed_leveling_flag = false;
  2968. }
  2969. break;
  2970. }
  2971. bool temp_comp_start = true;
  2972. #ifdef PINDA_THERMISTOR
  2973. temp_comp_start = false;
  2974. #endif //PINDA_THERMISTOR
  2975. if (temp_comp_start)
  2976. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2977. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2978. temp_compensation_start();
  2979. run = true;
  2980. repeatcommand_front(); // repeat G80 with all its parameters
  2981. enquecommand_front_P((PSTR("G28 W0")));
  2982. }
  2983. else {
  2984. mesh_bed_leveling_flag = false;
  2985. }
  2986. break;
  2987. }
  2988. run = false;
  2989. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2990. mesh_bed_leveling_flag = false;
  2991. break;
  2992. }
  2993. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2994. bool custom_message_old = custom_message;
  2995. unsigned int custom_message_type_old = custom_message_type;
  2996. unsigned int custom_message_state_old = custom_message_state;
  2997. custom_message = true;
  2998. custom_message_type = 1;
  2999. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3000. lcd_update(1);
  3001. mbl.reset(); //reset mesh bed leveling
  3002. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3003. // consumed during the first movements following this statement.
  3004. babystep_undo();
  3005. // Cycle through all points and probe them
  3006. // First move up. During this first movement, the babystepping will be reverted.
  3007. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3009. // The move to the first calibration point.
  3010. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3011. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3012. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3013. #ifdef SUPPORT_VERBOSITY
  3014. if (verbosity_level >= 1) {
  3015. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3016. }
  3017. #endif //SUPPORT_VERBOSITY
  3018. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3020. // Wait until the move is finished.
  3021. st_synchronize();
  3022. int mesh_point = 0; //index number of calibration point
  3023. int ix = 0;
  3024. int iy = 0;
  3025. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3026. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3027. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3028. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3029. #ifdef SUPPORT_VERBOSITY
  3030. if (verbosity_level >= 1) {
  3031. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3032. }
  3033. #endif // SUPPORT_VERBOSITY
  3034. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3035. const char *kill_message = NULL;
  3036. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3037. // Get coords of a measuring point.
  3038. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3039. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3040. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3041. float z0 = 0.f;
  3042. if (has_z && mesh_point > 0) {
  3043. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3044. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3045. //#if 0
  3046. #ifdef SUPPORT_VERBOSITY
  3047. if (verbosity_level >= 1) {
  3048. SERIAL_ECHOLNPGM("");
  3049. SERIAL_ECHOPGM("Bed leveling, point: ");
  3050. MYSERIAL.print(mesh_point);
  3051. SERIAL_ECHOPGM(", calibration z: ");
  3052. MYSERIAL.print(z0, 5);
  3053. SERIAL_ECHOLNPGM("");
  3054. }
  3055. #endif // SUPPORT_VERBOSITY
  3056. //#endif
  3057. }
  3058. // Move Z up to MESH_HOME_Z_SEARCH.
  3059. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3061. st_synchronize();
  3062. // Move to XY position of the sensor point.
  3063. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3064. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3065. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3066. #ifdef SUPPORT_VERBOSITY
  3067. if (verbosity_level >= 1) {
  3068. SERIAL_PROTOCOL(mesh_point);
  3069. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3070. }
  3071. #endif // SUPPORT_VERBOSITY
  3072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3073. st_synchronize();
  3074. // Go down until endstop is hit
  3075. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3076. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3077. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3078. break;
  3079. }
  3080. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3081. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3082. break;
  3083. }
  3084. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3085. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3086. break;
  3087. }
  3088. #ifdef SUPPORT_VERBOSITY
  3089. if (verbosity_level >= 10) {
  3090. SERIAL_ECHOPGM("X: ");
  3091. MYSERIAL.print(current_position[X_AXIS], 5);
  3092. SERIAL_ECHOLNPGM("");
  3093. SERIAL_ECHOPGM("Y: ");
  3094. MYSERIAL.print(current_position[Y_AXIS], 5);
  3095. SERIAL_PROTOCOLPGM("\n");
  3096. }
  3097. #endif // SUPPORT_VERBOSITY
  3098. float offset_z = 0;
  3099. #ifdef PINDA_THERMISTOR
  3100. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3101. #endif //PINDA_THERMISTOR
  3102. // #ifdef SUPPORT_VERBOSITY
  3103. /* if (verbosity_level >= 1)
  3104. {
  3105. SERIAL_ECHOPGM("mesh bed leveling: ");
  3106. MYSERIAL.print(current_position[Z_AXIS], 5);
  3107. SERIAL_ECHOPGM(" offset: ");
  3108. MYSERIAL.print(offset_z, 5);
  3109. SERIAL_ECHOLNPGM("");
  3110. }*/
  3111. // #endif // SUPPORT_VERBOSITY
  3112. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3113. custom_message_state--;
  3114. mesh_point++;
  3115. lcd_update(1);
  3116. }
  3117. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3118. #ifdef SUPPORT_VERBOSITY
  3119. if (verbosity_level >= 20) {
  3120. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3121. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3122. MYSERIAL.print(current_position[Z_AXIS], 5);
  3123. }
  3124. #endif // SUPPORT_VERBOSITY
  3125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3126. st_synchronize();
  3127. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3128. kill(kill_message);
  3129. SERIAL_ECHOLNPGM("killed");
  3130. }
  3131. clean_up_after_endstop_move();
  3132. // SERIAL_ECHOLNPGM("clean up finished ");
  3133. bool apply_temp_comp = true;
  3134. #ifdef PINDA_THERMISTOR
  3135. apply_temp_comp = false;
  3136. #endif
  3137. if (apply_temp_comp)
  3138. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3139. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3140. // SERIAL_ECHOLNPGM("babystep applied");
  3141. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3142. #ifdef SUPPORT_VERBOSITY
  3143. if (verbosity_level >= 1) {
  3144. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3145. }
  3146. #endif // SUPPORT_VERBOSITY
  3147. for (uint8_t i = 0; i < 4; ++i) {
  3148. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3149. long correction = 0;
  3150. if (code_seen(codes[i]))
  3151. correction = code_value_long();
  3152. else if (eeprom_bed_correction_valid) {
  3153. unsigned char *addr = (i < 2) ?
  3154. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3155. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3156. correction = eeprom_read_int8(addr);
  3157. }
  3158. if (correction == 0)
  3159. continue;
  3160. float offset = float(correction) * 0.001f;
  3161. if (fabs(offset) > 0.101f) {
  3162. SERIAL_ERROR_START;
  3163. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3164. SERIAL_ECHO(offset);
  3165. SERIAL_ECHOLNPGM(" microns");
  3166. }
  3167. else {
  3168. switch (i) {
  3169. case 0:
  3170. for (uint8_t row = 0; row < 3; ++row) {
  3171. mbl.z_values[row][1] += 0.5f * offset;
  3172. mbl.z_values[row][0] += offset;
  3173. }
  3174. break;
  3175. case 1:
  3176. for (uint8_t row = 0; row < 3; ++row) {
  3177. mbl.z_values[row][1] += 0.5f * offset;
  3178. mbl.z_values[row][2] += offset;
  3179. }
  3180. break;
  3181. case 2:
  3182. for (uint8_t col = 0; col < 3; ++col) {
  3183. mbl.z_values[1][col] += 0.5f * offset;
  3184. mbl.z_values[0][col] += offset;
  3185. }
  3186. break;
  3187. case 3:
  3188. for (uint8_t col = 0; col < 3; ++col) {
  3189. mbl.z_values[1][col] += 0.5f * offset;
  3190. mbl.z_values[2][col] += offset;
  3191. }
  3192. break;
  3193. }
  3194. }
  3195. }
  3196. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3197. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3198. // SERIAL_ECHOLNPGM("Upsample finished");
  3199. mbl.active = 1; //activate mesh bed leveling
  3200. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3201. go_home_with_z_lift();
  3202. // SERIAL_ECHOLNPGM("Go home finished");
  3203. //unretract (after PINDA preheat retraction)
  3204. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3205. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3207. }
  3208. KEEPALIVE_STATE(NOT_BUSY);
  3209. // Restore custom message state
  3210. custom_message = custom_message_old;
  3211. custom_message_type = custom_message_type_old;
  3212. custom_message_state = custom_message_state_old;
  3213. mesh_bed_leveling_flag = false;
  3214. mesh_bed_run_from_menu = false;
  3215. lcd_update(2);
  3216. }
  3217. break;
  3218. /**
  3219. * G81: Print mesh bed leveling status and bed profile if activated
  3220. */
  3221. case 81:
  3222. if (mbl.active) {
  3223. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3224. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3225. SERIAL_PROTOCOLPGM(",");
  3226. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3227. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3228. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3229. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3230. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3231. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3232. SERIAL_PROTOCOLPGM(" ");
  3233. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3234. }
  3235. SERIAL_PROTOCOLPGM("\n");
  3236. }
  3237. }
  3238. else
  3239. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3240. break;
  3241. #if 0
  3242. /**
  3243. * G82: Single Z probe at current location
  3244. *
  3245. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3246. *
  3247. */
  3248. case 82:
  3249. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3250. setup_for_endstop_move();
  3251. find_bed_induction_sensor_point_z();
  3252. clean_up_after_endstop_move();
  3253. SERIAL_PROTOCOLPGM("Bed found at: ");
  3254. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3255. SERIAL_PROTOCOLPGM("\n");
  3256. break;
  3257. /**
  3258. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3259. */
  3260. case 83:
  3261. {
  3262. int babystepz = code_seen('S') ? code_value() : 0;
  3263. int BabyPosition = code_seen('P') ? code_value() : 0;
  3264. if (babystepz != 0) {
  3265. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3266. // Is the axis indexed starting with zero or one?
  3267. if (BabyPosition > 4) {
  3268. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3269. }else{
  3270. // Save it to the eeprom
  3271. babystepLoadZ = babystepz;
  3272. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3273. // adjust the Z
  3274. babystepsTodoZadd(babystepLoadZ);
  3275. }
  3276. }
  3277. }
  3278. break;
  3279. /**
  3280. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3281. */
  3282. case 84:
  3283. babystepsTodoZsubtract(babystepLoadZ);
  3284. // babystepLoadZ = 0;
  3285. break;
  3286. /**
  3287. * G85: Prusa3D specific: Pick best babystep
  3288. */
  3289. case 85:
  3290. lcd_pick_babystep();
  3291. break;
  3292. #endif
  3293. /**
  3294. * G86: Prusa3D specific: Disable babystep correction after home.
  3295. * This G-code will be performed at the start of a calibration script.
  3296. */
  3297. case 86:
  3298. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3299. break;
  3300. /**
  3301. * G87: Prusa3D specific: Enable babystep correction after home
  3302. * This G-code will be performed at the end of a calibration script.
  3303. */
  3304. case 87:
  3305. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3306. break;
  3307. /**
  3308. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3309. */
  3310. case 88:
  3311. break;
  3312. #endif // ENABLE_MESH_BED_LEVELING
  3313. case 90: // G90
  3314. relative_mode = false;
  3315. break;
  3316. case 91: // G91
  3317. relative_mode = true;
  3318. break;
  3319. case 92: // G92
  3320. if(!code_seen(axis_codes[E_AXIS]))
  3321. st_synchronize();
  3322. for(int8_t i=0; i < NUM_AXIS; i++) {
  3323. if(code_seen(axis_codes[i])) {
  3324. if(i == E_AXIS) {
  3325. current_position[i] = code_value();
  3326. plan_set_e_position(current_position[E_AXIS]);
  3327. }
  3328. else {
  3329. current_position[i] = code_value()+add_homing[i];
  3330. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3331. }
  3332. }
  3333. }
  3334. break;
  3335. case 98: //activate farm mode
  3336. farm_mode = 1;
  3337. PingTime = millis();
  3338. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3339. break;
  3340. case 99: //deactivate farm mode
  3341. farm_mode = 0;
  3342. lcd_printer_connected();
  3343. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3344. lcd_update(2);
  3345. break;
  3346. default:
  3347. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3348. }
  3349. } // end if(code_seen('G'))
  3350. else if(code_seen('M'))
  3351. {
  3352. int index;
  3353. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3354. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3355. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3356. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3357. } else
  3358. switch((int)code_value())
  3359. {
  3360. #ifdef ULTIPANEL
  3361. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3362. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3363. {
  3364. char *src = strchr_pointer + 2;
  3365. codenum = 0;
  3366. bool hasP = false, hasS = false;
  3367. if (code_seen('P')) {
  3368. codenum = code_value(); // milliseconds to wait
  3369. hasP = codenum > 0;
  3370. }
  3371. if (code_seen('S')) {
  3372. codenum = code_value() * 1000; // seconds to wait
  3373. hasS = codenum > 0;
  3374. }
  3375. starpos = strchr(src, '*');
  3376. if (starpos != NULL) *(starpos) = '\0';
  3377. while (*src == ' ') ++src;
  3378. if (!hasP && !hasS && *src != '\0') {
  3379. lcd_setstatus(src);
  3380. } else {
  3381. LCD_MESSAGERPGM(MSG_USERWAIT);
  3382. }
  3383. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3384. st_synchronize();
  3385. previous_millis_cmd = millis();
  3386. if (codenum > 0){
  3387. codenum += millis(); // keep track of when we started waiting
  3388. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3389. while(millis() < codenum && !lcd_clicked()){
  3390. manage_heater();
  3391. manage_inactivity(true);
  3392. lcd_update();
  3393. }
  3394. KEEPALIVE_STATE(IN_HANDLER);
  3395. lcd_ignore_click(false);
  3396. }else{
  3397. if (!lcd_detected())
  3398. break;
  3399. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3400. while(!lcd_clicked()){
  3401. manage_heater();
  3402. manage_inactivity(true);
  3403. lcd_update();
  3404. }
  3405. KEEPALIVE_STATE(IN_HANDLER);
  3406. }
  3407. if (IS_SD_PRINTING)
  3408. LCD_MESSAGERPGM(MSG_RESUMING);
  3409. else
  3410. LCD_MESSAGERPGM(WELCOME_MSG);
  3411. }
  3412. break;
  3413. #endif
  3414. case 17:
  3415. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3416. enable_x();
  3417. enable_y();
  3418. enable_z();
  3419. enable_e0();
  3420. enable_e1();
  3421. enable_e2();
  3422. break;
  3423. #ifdef SDSUPPORT
  3424. case 20: // M20 - list SD card
  3425. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3426. card.ls();
  3427. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3428. break;
  3429. case 21: // M21 - init SD card
  3430. card.initsd();
  3431. break;
  3432. case 22: //M22 - release SD card
  3433. card.release();
  3434. break;
  3435. case 23: //M23 - Select file
  3436. starpos = (strchr(strchr_pointer + 4,'*'));
  3437. if(starpos!=NULL)
  3438. *(starpos)='\0';
  3439. card.openFile(strchr_pointer + 4,true);
  3440. break;
  3441. case 24: //M24 - Start SD print
  3442. #ifdef TMC2130
  3443. if (!card.paused)
  3444. failstats_reset_print();
  3445. #endif //TMC2130
  3446. card.startFileprint();
  3447. starttime=millis();
  3448. break;
  3449. case 25: //M25 - Pause SD print
  3450. card.pauseSDPrint();
  3451. break;
  3452. case 26: //M26 - Set SD index
  3453. if(card.cardOK && code_seen('S')) {
  3454. card.setIndex(code_value_long());
  3455. }
  3456. break;
  3457. case 27: //M27 - Get SD status
  3458. card.getStatus();
  3459. break;
  3460. case 28: //M28 - Start SD write
  3461. starpos = (strchr(strchr_pointer + 4,'*'));
  3462. if(starpos != NULL){
  3463. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3464. strchr_pointer = strchr(npos,' ') + 1;
  3465. *(starpos) = '\0';
  3466. }
  3467. card.openFile(strchr_pointer+4,false);
  3468. break;
  3469. case 29: //M29 - Stop SD write
  3470. //processed in write to file routine above
  3471. //card,saving = false;
  3472. break;
  3473. case 30: //M30 <filename> Delete File
  3474. if (card.cardOK){
  3475. card.closefile();
  3476. starpos = (strchr(strchr_pointer + 4,'*'));
  3477. if(starpos != NULL){
  3478. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3479. strchr_pointer = strchr(npos,' ') + 1;
  3480. *(starpos) = '\0';
  3481. }
  3482. card.removeFile(strchr_pointer + 4);
  3483. }
  3484. break;
  3485. case 32: //M32 - Select file and start SD print
  3486. {
  3487. if(card.sdprinting) {
  3488. st_synchronize();
  3489. }
  3490. starpos = (strchr(strchr_pointer + 4,'*'));
  3491. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3492. if(namestartpos==NULL)
  3493. {
  3494. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3495. }
  3496. else
  3497. namestartpos++; //to skip the '!'
  3498. if(starpos!=NULL)
  3499. *(starpos)='\0';
  3500. bool call_procedure=(code_seen('P'));
  3501. if(strchr_pointer>namestartpos)
  3502. call_procedure=false; //false alert, 'P' found within filename
  3503. if( card.cardOK )
  3504. {
  3505. card.openFile(namestartpos,true,!call_procedure);
  3506. if(code_seen('S'))
  3507. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3508. card.setIndex(code_value_long());
  3509. card.startFileprint();
  3510. if(!call_procedure)
  3511. starttime=millis(); //procedure calls count as normal print time.
  3512. }
  3513. } break;
  3514. case 928: //M928 - Start SD write
  3515. starpos = (strchr(strchr_pointer + 5,'*'));
  3516. if(starpos != NULL){
  3517. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3518. strchr_pointer = strchr(npos,' ') + 1;
  3519. *(starpos) = '\0';
  3520. }
  3521. card.openLogFile(strchr_pointer+5);
  3522. break;
  3523. #endif //SDSUPPORT
  3524. case 31: //M31 take time since the start of the SD print or an M109 command
  3525. {
  3526. stoptime=millis();
  3527. char time[30];
  3528. unsigned long t=(stoptime-starttime)/1000;
  3529. int sec,min;
  3530. min=t/60;
  3531. sec=t%60;
  3532. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3533. SERIAL_ECHO_START;
  3534. SERIAL_ECHOLN(time);
  3535. lcd_setstatus(time);
  3536. autotempShutdown();
  3537. }
  3538. break;
  3539. #ifndef _DISABLE_M42_M226
  3540. case 42: //M42 -Change pin status via gcode
  3541. if (code_seen('S'))
  3542. {
  3543. int pin_status = code_value();
  3544. int pin_number = LED_PIN;
  3545. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3546. pin_number = code_value();
  3547. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3548. {
  3549. if (sensitive_pins[i] == pin_number)
  3550. {
  3551. pin_number = -1;
  3552. break;
  3553. }
  3554. }
  3555. #if defined(FAN_PIN) && FAN_PIN > -1
  3556. if (pin_number == FAN_PIN)
  3557. fanSpeed = pin_status;
  3558. #endif
  3559. if (pin_number > -1)
  3560. {
  3561. pinMode(pin_number, OUTPUT);
  3562. digitalWrite(pin_number, pin_status);
  3563. analogWrite(pin_number, pin_status);
  3564. }
  3565. }
  3566. break;
  3567. #endif //_DISABLE_M42_M226
  3568. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3569. // Reset the baby step value and the baby step applied flag.
  3570. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3571. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3572. // Reset the skew and offset in both RAM and EEPROM.
  3573. reset_bed_offset_and_skew();
  3574. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3575. // the planner will not perform any adjustments in the XY plane.
  3576. // Wait for the motors to stop and update the current position with the absolute values.
  3577. world2machine_revert_to_uncorrected();
  3578. break;
  3579. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3580. {
  3581. int8_t verbosity_level = 0;
  3582. bool only_Z = code_seen('Z');
  3583. #ifdef SUPPORT_VERBOSITY
  3584. if (code_seen('V'))
  3585. {
  3586. // Just 'V' without a number counts as V1.
  3587. char c = strchr_pointer[1];
  3588. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3589. }
  3590. #endif //SUPPORT_VERBOSITY
  3591. gcode_M45(only_Z, verbosity_level);
  3592. }
  3593. break;
  3594. /*
  3595. case 46:
  3596. {
  3597. // M46: Prusa3D: Show the assigned IP address.
  3598. uint8_t ip[4];
  3599. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3600. if (hasIP) {
  3601. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3602. SERIAL_ECHO(int(ip[0]));
  3603. SERIAL_ECHOPGM(".");
  3604. SERIAL_ECHO(int(ip[1]));
  3605. SERIAL_ECHOPGM(".");
  3606. SERIAL_ECHO(int(ip[2]));
  3607. SERIAL_ECHOPGM(".");
  3608. SERIAL_ECHO(int(ip[3]));
  3609. SERIAL_ECHOLNPGM("");
  3610. } else {
  3611. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3612. }
  3613. break;
  3614. }
  3615. */
  3616. case 47:
  3617. // M47: Prusa3D: Show end stops dialog on the display.
  3618. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3619. lcd_diag_show_end_stops();
  3620. KEEPALIVE_STATE(IN_HANDLER);
  3621. break;
  3622. #if 0
  3623. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3624. {
  3625. // Disable the default update procedure of the display. We will do a modal dialog.
  3626. lcd_update_enable(false);
  3627. // Let the planner use the uncorrected coordinates.
  3628. mbl.reset();
  3629. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3630. // the planner will not perform any adjustments in the XY plane.
  3631. // Wait for the motors to stop and update the current position with the absolute values.
  3632. world2machine_revert_to_uncorrected();
  3633. // Move the print head close to the bed.
  3634. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3636. st_synchronize();
  3637. // Home in the XY plane.
  3638. set_destination_to_current();
  3639. setup_for_endstop_move();
  3640. home_xy();
  3641. int8_t verbosity_level = 0;
  3642. if (code_seen('V')) {
  3643. // Just 'V' without a number counts as V1.
  3644. char c = strchr_pointer[1];
  3645. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3646. }
  3647. bool success = scan_bed_induction_points(verbosity_level);
  3648. clean_up_after_endstop_move();
  3649. // Print head up.
  3650. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3652. st_synchronize();
  3653. lcd_update_enable(true);
  3654. break;
  3655. }
  3656. #endif
  3657. // M48 Z-Probe repeatability measurement function.
  3658. //
  3659. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3660. //
  3661. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3662. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3663. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3664. // regenerated.
  3665. //
  3666. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3667. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3668. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3669. //
  3670. #ifdef ENABLE_AUTO_BED_LEVELING
  3671. #ifdef Z_PROBE_REPEATABILITY_TEST
  3672. case 48: // M48 Z-Probe repeatability
  3673. {
  3674. #if Z_MIN_PIN == -1
  3675. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3676. #endif
  3677. double sum=0.0;
  3678. double mean=0.0;
  3679. double sigma=0.0;
  3680. double sample_set[50];
  3681. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3682. double X_current, Y_current, Z_current;
  3683. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3684. if (code_seen('V') || code_seen('v')) {
  3685. verbose_level = code_value();
  3686. if (verbose_level<0 || verbose_level>4 ) {
  3687. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3688. goto Sigma_Exit;
  3689. }
  3690. }
  3691. if (verbose_level > 0) {
  3692. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3693. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3694. }
  3695. if (code_seen('n')) {
  3696. n_samples = code_value();
  3697. if (n_samples<4 || n_samples>50 ) {
  3698. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3699. goto Sigma_Exit;
  3700. }
  3701. }
  3702. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3703. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3704. Z_current = st_get_position_mm(Z_AXIS);
  3705. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3706. ext_position = st_get_position_mm(E_AXIS);
  3707. if (code_seen('X') || code_seen('x') ) {
  3708. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3709. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3710. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3711. goto Sigma_Exit;
  3712. }
  3713. }
  3714. if (code_seen('Y') || code_seen('y') ) {
  3715. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3716. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3717. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3718. goto Sigma_Exit;
  3719. }
  3720. }
  3721. if (code_seen('L') || code_seen('l') ) {
  3722. n_legs = code_value();
  3723. if ( n_legs==1 )
  3724. n_legs = 2;
  3725. if ( n_legs<0 || n_legs>15 ) {
  3726. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3727. goto Sigma_Exit;
  3728. }
  3729. }
  3730. //
  3731. // Do all the preliminary setup work. First raise the probe.
  3732. //
  3733. st_synchronize();
  3734. plan_bed_level_matrix.set_to_identity();
  3735. plan_buffer_line( X_current, Y_current, Z_start_location,
  3736. ext_position,
  3737. homing_feedrate[Z_AXIS]/60,
  3738. active_extruder);
  3739. st_synchronize();
  3740. //
  3741. // Now get everything to the specified probe point So we can safely do a probe to
  3742. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3743. // use that as a starting point for each probe.
  3744. //
  3745. if (verbose_level > 2)
  3746. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3747. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3748. ext_position,
  3749. homing_feedrate[X_AXIS]/60,
  3750. active_extruder);
  3751. st_synchronize();
  3752. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3753. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3754. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3755. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3756. //
  3757. // OK, do the inital probe to get us close to the bed.
  3758. // Then retrace the right amount and use that in subsequent probes
  3759. //
  3760. setup_for_endstop_move();
  3761. run_z_probe();
  3762. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3763. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3764. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3765. ext_position,
  3766. homing_feedrate[X_AXIS]/60,
  3767. active_extruder);
  3768. st_synchronize();
  3769. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3770. for( n=0; n<n_samples; n++) {
  3771. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3772. if ( n_legs) {
  3773. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3774. int rotational_direction, l;
  3775. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3776. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3777. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3778. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3779. //SERIAL_ECHOPAIR(" theta: ",theta);
  3780. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3781. //SERIAL_PROTOCOLLNPGM("");
  3782. for( l=0; l<n_legs-1; l++) {
  3783. if (rotational_direction==1)
  3784. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3785. else
  3786. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3787. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3788. if ( radius<0.0 )
  3789. radius = -radius;
  3790. X_current = X_probe_location + cos(theta) * radius;
  3791. Y_current = Y_probe_location + sin(theta) * radius;
  3792. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3793. X_current = X_MIN_POS;
  3794. if ( X_current>X_MAX_POS)
  3795. X_current = X_MAX_POS;
  3796. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3797. Y_current = Y_MIN_POS;
  3798. if ( Y_current>Y_MAX_POS)
  3799. Y_current = Y_MAX_POS;
  3800. if (verbose_level>3 ) {
  3801. SERIAL_ECHOPAIR("x: ", X_current);
  3802. SERIAL_ECHOPAIR("y: ", Y_current);
  3803. SERIAL_PROTOCOLLNPGM("");
  3804. }
  3805. do_blocking_move_to( X_current, Y_current, Z_current );
  3806. }
  3807. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3808. }
  3809. setup_for_endstop_move();
  3810. run_z_probe();
  3811. sample_set[n] = current_position[Z_AXIS];
  3812. //
  3813. // Get the current mean for the data points we have so far
  3814. //
  3815. sum=0.0;
  3816. for( j=0; j<=n; j++) {
  3817. sum = sum + sample_set[j];
  3818. }
  3819. mean = sum / (double (n+1));
  3820. //
  3821. // Now, use that mean to calculate the standard deviation for the
  3822. // data points we have so far
  3823. //
  3824. sum=0.0;
  3825. for( j=0; j<=n; j++) {
  3826. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3827. }
  3828. sigma = sqrt( sum / (double (n+1)) );
  3829. if (verbose_level > 1) {
  3830. SERIAL_PROTOCOL(n+1);
  3831. SERIAL_PROTOCOL(" of ");
  3832. SERIAL_PROTOCOL(n_samples);
  3833. SERIAL_PROTOCOLPGM(" z: ");
  3834. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3835. }
  3836. if (verbose_level > 2) {
  3837. SERIAL_PROTOCOL(" mean: ");
  3838. SERIAL_PROTOCOL_F(mean,6);
  3839. SERIAL_PROTOCOL(" sigma: ");
  3840. SERIAL_PROTOCOL_F(sigma,6);
  3841. }
  3842. if (verbose_level > 0)
  3843. SERIAL_PROTOCOLPGM("\n");
  3844. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3845. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3846. st_synchronize();
  3847. }
  3848. delay(1000);
  3849. clean_up_after_endstop_move();
  3850. // enable_endstops(true);
  3851. if (verbose_level > 0) {
  3852. SERIAL_PROTOCOLPGM("Mean: ");
  3853. SERIAL_PROTOCOL_F(mean, 6);
  3854. SERIAL_PROTOCOLPGM("\n");
  3855. }
  3856. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3857. SERIAL_PROTOCOL_F(sigma, 6);
  3858. SERIAL_PROTOCOLPGM("\n\n");
  3859. Sigma_Exit:
  3860. break;
  3861. }
  3862. #endif // Z_PROBE_REPEATABILITY_TEST
  3863. #endif // ENABLE_AUTO_BED_LEVELING
  3864. case 104: // M104
  3865. if(setTargetedHotend(104)){
  3866. break;
  3867. }
  3868. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3869. setWatch();
  3870. break;
  3871. case 112: // M112 -Emergency Stop
  3872. kill("", 3);
  3873. break;
  3874. case 140: // M140 set bed temp
  3875. if (code_seen('S')) setTargetBed(code_value());
  3876. break;
  3877. case 105 : // M105
  3878. if(setTargetedHotend(105)){
  3879. break;
  3880. }
  3881. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3882. SERIAL_PROTOCOLPGM("ok T:");
  3883. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3884. SERIAL_PROTOCOLPGM(" /");
  3885. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3886. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3887. SERIAL_PROTOCOLPGM(" B:");
  3888. SERIAL_PROTOCOL_F(degBed(),1);
  3889. SERIAL_PROTOCOLPGM(" /");
  3890. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3891. #endif //TEMP_BED_PIN
  3892. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3893. SERIAL_PROTOCOLPGM(" T");
  3894. SERIAL_PROTOCOL(cur_extruder);
  3895. SERIAL_PROTOCOLPGM(":");
  3896. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3897. SERIAL_PROTOCOLPGM(" /");
  3898. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3899. }
  3900. #else
  3901. SERIAL_ERROR_START;
  3902. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3903. #endif
  3904. SERIAL_PROTOCOLPGM(" @:");
  3905. #ifdef EXTRUDER_WATTS
  3906. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3907. SERIAL_PROTOCOLPGM("W");
  3908. #else
  3909. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3910. #endif
  3911. SERIAL_PROTOCOLPGM(" B@:");
  3912. #ifdef BED_WATTS
  3913. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3914. SERIAL_PROTOCOLPGM("W");
  3915. #else
  3916. SERIAL_PROTOCOL(getHeaterPower(-1));
  3917. #endif
  3918. #ifdef PINDA_THERMISTOR
  3919. SERIAL_PROTOCOLPGM(" P:");
  3920. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3921. #endif //PINDA_THERMISTOR
  3922. #ifdef AMBIENT_THERMISTOR
  3923. SERIAL_PROTOCOLPGM(" A:");
  3924. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3925. #endif //AMBIENT_THERMISTOR
  3926. #ifdef SHOW_TEMP_ADC_VALUES
  3927. {float raw = 0.0;
  3928. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3929. SERIAL_PROTOCOLPGM(" ADC B:");
  3930. SERIAL_PROTOCOL_F(degBed(),1);
  3931. SERIAL_PROTOCOLPGM("C->");
  3932. raw = rawBedTemp();
  3933. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3934. SERIAL_PROTOCOLPGM(" Rb->");
  3935. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3936. SERIAL_PROTOCOLPGM(" Rxb->");
  3937. SERIAL_PROTOCOL_F(raw, 5);
  3938. #endif
  3939. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3940. SERIAL_PROTOCOLPGM(" T");
  3941. SERIAL_PROTOCOL(cur_extruder);
  3942. SERIAL_PROTOCOLPGM(":");
  3943. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3944. SERIAL_PROTOCOLPGM("C->");
  3945. raw = rawHotendTemp(cur_extruder);
  3946. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3947. SERIAL_PROTOCOLPGM(" Rt");
  3948. SERIAL_PROTOCOL(cur_extruder);
  3949. SERIAL_PROTOCOLPGM("->");
  3950. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3951. SERIAL_PROTOCOLPGM(" Rx");
  3952. SERIAL_PROTOCOL(cur_extruder);
  3953. SERIAL_PROTOCOLPGM("->");
  3954. SERIAL_PROTOCOL_F(raw, 5);
  3955. }}
  3956. #endif
  3957. SERIAL_PROTOCOLLN("");
  3958. KEEPALIVE_STATE(NOT_BUSY);
  3959. return;
  3960. break;
  3961. case 109:
  3962. {// M109 - Wait for extruder heater to reach target.
  3963. if(setTargetedHotend(109)){
  3964. break;
  3965. }
  3966. LCD_MESSAGERPGM(MSG_HEATING);
  3967. heating_status = 1;
  3968. if (farm_mode) { prusa_statistics(1); };
  3969. #ifdef AUTOTEMP
  3970. autotemp_enabled=false;
  3971. #endif
  3972. if (code_seen('S')) {
  3973. setTargetHotend(code_value(), tmp_extruder);
  3974. CooldownNoWait = true;
  3975. } else if (code_seen('R')) {
  3976. setTargetHotend(code_value(), tmp_extruder);
  3977. CooldownNoWait = false;
  3978. }
  3979. #ifdef AUTOTEMP
  3980. if (code_seen('S')) autotemp_min=code_value();
  3981. if (code_seen('B')) autotemp_max=code_value();
  3982. if (code_seen('F'))
  3983. {
  3984. autotemp_factor=code_value();
  3985. autotemp_enabled=true;
  3986. }
  3987. #endif
  3988. setWatch();
  3989. codenum = millis();
  3990. /* See if we are heating up or cooling down */
  3991. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3992. KEEPALIVE_STATE(NOT_BUSY);
  3993. cancel_heatup = false;
  3994. wait_for_heater(codenum); //loops until target temperature is reached
  3995. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3996. KEEPALIVE_STATE(IN_HANDLER);
  3997. heating_status = 2;
  3998. if (farm_mode) { prusa_statistics(2); };
  3999. //starttime=millis();
  4000. previous_millis_cmd = millis();
  4001. }
  4002. break;
  4003. case 190: // M190 - Wait for bed heater to reach target.
  4004. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4005. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4006. heating_status = 3;
  4007. if (farm_mode) { prusa_statistics(1); };
  4008. if (code_seen('S'))
  4009. {
  4010. setTargetBed(code_value());
  4011. CooldownNoWait = true;
  4012. }
  4013. else if (code_seen('R'))
  4014. {
  4015. setTargetBed(code_value());
  4016. CooldownNoWait = false;
  4017. }
  4018. codenum = millis();
  4019. cancel_heatup = false;
  4020. target_direction = isHeatingBed(); // true if heating, false if cooling
  4021. KEEPALIVE_STATE(NOT_BUSY);
  4022. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4023. {
  4024. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4025. {
  4026. if (!farm_mode) {
  4027. float tt = degHotend(active_extruder);
  4028. SERIAL_PROTOCOLPGM("T:");
  4029. SERIAL_PROTOCOL(tt);
  4030. SERIAL_PROTOCOLPGM(" E:");
  4031. SERIAL_PROTOCOL((int)active_extruder);
  4032. SERIAL_PROTOCOLPGM(" B:");
  4033. SERIAL_PROTOCOL_F(degBed(), 1);
  4034. SERIAL_PROTOCOLLN("");
  4035. }
  4036. codenum = millis();
  4037. }
  4038. manage_heater();
  4039. manage_inactivity();
  4040. lcd_update();
  4041. }
  4042. LCD_MESSAGERPGM(MSG_BED_DONE);
  4043. KEEPALIVE_STATE(IN_HANDLER);
  4044. heating_status = 4;
  4045. previous_millis_cmd = millis();
  4046. #endif
  4047. break;
  4048. #if defined(FAN_PIN) && FAN_PIN > -1
  4049. case 106: //M106 Fan On
  4050. if (code_seen('S')){
  4051. fanSpeed=constrain(code_value(),0,255);
  4052. }
  4053. else {
  4054. fanSpeed=255;
  4055. }
  4056. break;
  4057. case 107: //M107 Fan Off
  4058. fanSpeed = 0;
  4059. break;
  4060. #endif //FAN_PIN
  4061. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4062. case 80: // M80 - Turn on Power Supply
  4063. SET_OUTPUT(PS_ON_PIN); //GND
  4064. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4065. // If you have a switch on suicide pin, this is useful
  4066. // if you want to start another print with suicide feature after
  4067. // a print without suicide...
  4068. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4069. SET_OUTPUT(SUICIDE_PIN);
  4070. WRITE(SUICIDE_PIN, HIGH);
  4071. #endif
  4072. #ifdef ULTIPANEL
  4073. powersupply = true;
  4074. LCD_MESSAGERPGM(WELCOME_MSG);
  4075. lcd_update();
  4076. #endif
  4077. break;
  4078. #endif
  4079. case 81: // M81 - Turn off Power Supply
  4080. disable_heater();
  4081. st_synchronize();
  4082. disable_e0();
  4083. disable_e1();
  4084. disable_e2();
  4085. finishAndDisableSteppers();
  4086. fanSpeed = 0;
  4087. delay(1000); // Wait a little before to switch off
  4088. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4089. st_synchronize();
  4090. suicide();
  4091. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4092. SET_OUTPUT(PS_ON_PIN);
  4093. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4094. #endif
  4095. #ifdef ULTIPANEL
  4096. powersupply = false;
  4097. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4098. /*
  4099. MACHNAME = "Prusa i3"
  4100. MSGOFF = "Vypnuto"
  4101. "Prusai3"" ""vypnuto""."
  4102. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4103. */
  4104. lcd_update();
  4105. #endif
  4106. break;
  4107. case 82:
  4108. axis_relative_modes[3] = false;
  4109. break;
  4110. case 83:
  4111. axis_relative_modes[3] = true;
  4112. break;
  4113. case 18: //compatibility
  4114. case 84: // M84
  4115. if(code_seen('S')){
  4116. stepper_inactive_time = code_value() * 1000;
  4117. }
  4118. else
  4119. {
  4120. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4121. if(all_axis)
  4122. {
  4123. st_synchronize();
  4124. disable_e0();
  4125. disable_e1();
  4126. disable_e2();
  4127. finishAndDisableSteppers();
  4128. }
  4129. else
  4130. {
  4131. st_synchronize();
  4132. if (code_seen('X')) disable_x();
  4133. if (code_seen('Y')) disable_y();
  4134. if (code_seen('Z')) disable_z();
  4135. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4136. if (code_seen('E')) {
  4137. disable_e0();
  4138. disable_e1();
  4139. disable_e2();
  4140. }
  4141. #endif
  4142. }
  4143. }
  4144. snmm_filaments_used = 0;
  4145. break;
  4146. case 85: // M85
  4147. if(code_seen('S')) {
  4148. max_inactive_time = code_value() * 1000;
  4149. }
  4150. break;
  4151. case 92: // M92
  4152. for(int8_t i=0; i < NUM_AXIS; i++)
  4153. {
  4154. if(code_seen(axis_codes[i]))
  4155. {
  4156. if(i == 3) { // E
  4157. float value = code_value();
  4158. if(value < 20.0) {
  4159. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4160. max_jerk[E_AXIS] *= factor;
  4161. max_feedrate[i] *= factor;
  4162. axis_steps_per_sqr_second[i] *= factor;
  4163. }
  4164. axis_steps_per_unit[i] = value;
  4165. }
  4166. else {
  4167. axis_steps_per_unit[i] = code_value();
  4168. }
  4169. }
  4170. }
  4171. break;
  4172. case 110: // M110 - reset line pos
  4173. if (code_seen('N'))
  4174. gcode_LastN = code_value_long();
  4175. break;
  4176. #ifdef HOST_KEEPALIVE_FEATURE
  4177. case 113: // M113 - Get or set Host Keepalive interval
  4178. if (code_seen('S')) {
  4179. host_keepalive_interval = (uint8_t)code_value_short();
  4180. // NOMORE(host_keepalive_interval, 60);
  4181. }
  4182. else {
  4183. SERIAL_ECHO_START;
  4184. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4185. SERIAL_PROTOCOLLN("");
  4186. }
  4187. break;
  4188. #endif
  4189. case 115: // M115
  4190. if (code_seen('V')) {
  4191. // Report the Prusa version number.
  4192. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4193. } else if (code_seen('U')) {
  4194. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4195. // pause the print and ask the user to upgrade the firmware.
  4196. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4197. } else {
  4198. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4199. }
  4200. break;
  4201. /* case 117: // M117 display message
  4202. starpos = (strchr(strchr_pointer + 5,'*'));
  4203. if(starpos!=NULL)
  4204. *(starpos)='\0';
  4205. lcd_setstatus(strchr_pointer + 5);
  4206. break;*/
  4207. case 114: // M114
  4208. SERIAL_PROTOCOLPGM("X:");
  4209. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4210. SERIAL_PROTOCOLPGM(" Y:");
  4211. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4212. SERIAL_PROTOCOLPGM(" Z:");
  4213. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4214. SERIAL_PROTOCOLPGM(" E:");
  4215. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4216. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4217. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4218. SERIAL_PROTOCOLPGM(" Y:");
  4219. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4220. SERIAL_PROTOCOLPGM(" Z:");
  4221. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4222. SERIAL_PROTOCOLPGM(" E:");
  4223. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4224. SERIAL_PROTOCOLLN("");
  4225. break;
  4226. case 120: // M120
  4227. enable_endstops(false) ;
  4228. break;
  4229. case 121: // M121
  4230. enable_endstops(true) ;
  4231. break;
  4232. case 119: // M119
  4233. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4234. SERIAL_PROTOCOLLN("");
  4235. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4236. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4237. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4238. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4239. }else{
  4240. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4241. }
  4242. SERIAL_PROTOCOLLN("");
  4243. #endif
  4244. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4245. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4246. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4247. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4248. }else{
  4249. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4250. }
  4251. SERIAL_PROTOCOLLN("");
  4252. #endif
  4253. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4254. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4255. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4256. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4257. }else{
  4258. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4259. }
  4260. SERIAL_PROTOCOLLN("");
  4261. #endif
  4262. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4263. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4264. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4265. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4266. }else{
  4267. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4268. }
  4269. SERIAL_PROTOCOLLN("");
  4270. #endif
  4271. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4272. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4273. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4274. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4275. }else{
  4276. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4277. }
  4278. SERIAL_PROTOCOLLN("");
  4279. #endif
  4280. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4281. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4282. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4283. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4284. }else{
  4285. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4286. }
  4287. SERIAL_PROTOCOLLN("");
  4288. #endif
  4289. break;
  4290. //TODO: update for all axis, use for loop
  4291. #ifdef BLINKM
  4292. case 150: // M150
  4293. {
  4294. byte red;
  4295. byte grn;
  4296. byte blu;
  4297. if(code_seen('R')) red = code_value();
  4298. if(code_seen('U')) grn = code_value();
  4299. if(code_seen('B')) blu = code_value();
  4300. SendColors(red,grn,blu);
  4301. }
  4302. break;
  4303. #endif //BLINKM
  4304. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4305. {
  4306. tmp_extruder = active_extruder;
  4307. if(code_seen('T')) {
  4308. tmp_extruder = code_value();
  4309. if(tmp_extruder >= EXTRUDERS) {
  4310. SERIAL_ECHO_START;
  4311. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4312. break;
  4313. }
  4314. }
  4315. float area = .0;
  4316. if(code_seen('D')) {
  4317. float diameter = (float)code_value();
  4318. if (diameter == 0.0) {
  4319. // setting any extruder filament size disables volumetric on the assumption that
  4320. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4321. // for all extruders
  4322. volumetric_enabled = false;
  4323. } else {
  4324. filament_size[tmp_extruder] = (float)code_value();
  4325. // make sure all extruders have some sane value for the filament size
  4326. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4327. #if EXTRUDERS > 1
  4328. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4329. #if EXTRUDERS > 2
  4330. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4331. #endif
  4332. #endif
  4333. volumetric_enabled = true;
  4334. }
  4335. } else {
  4336. //reserved for setting filament diameter via UFID or filament measuring device
  4337. break;
  4338. }
  4339. calculate_volumetric_multipliers();
  4340. }
  4341. break;
  4342. case 201: // M201
  4343. for(int8_t i=0; i < NUM_AXIS; i++)
  4344. {
  4345. if(code_seen(axis_codes[i]))
  4346. {
  4347. max_acceleration_units_per_sq_second[i] = code_value();
  4348. }
  4349. }
  4350. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4351. reset_acceleration_rates();
  4352. break;
  4353. #if 0 // Not used for Sprinter/grbl gen6
  4354. case 202: // M202
  4355. for(int8_t i=0; i < NUM_AXIS; i++) {
  4356. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4357. }
  4358. break;
  4359. #endif
  4360. case 203: // M203 max feedrate mm/sec
  4361. for(int8_t i=0; i < NUM_AXIS; i++) {
  4362. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4363. }
  4364. break;
  4365. case 204: // M204 acclereration S normal moves T filmanent only moves
  4366. {
  4367. if(code_seen('S')) acceleration = code_value() ;
  4368. if(code_seen('T')) retract_acceleration = code_value() ;
  4369. }
  4370. break;
  4371. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4372. {
  4373. if(code_seen('S')) minimumfeedrate = code_value();
  4374. if(code_seen('T')) mintravelfeedrate = code_value();
  4375. if(code_seen('B')) minsegmenttime = code_value() ;
  4376. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4377. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4378. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4379. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4380. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4381. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4382. }
  4383. break;
  4384. case 206: // M206 additional homing offset
  4385. for(int8_t i=0; i < 3; i++)
  4386. {
  4387. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4388. }
  4389. break;
  4390. #ifdef FWRETRACT
  4391. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4392. {
  4393. if(code_seen('S'))
  4394. {
  4395. retract_length = code_value() ;
  4396. }
  4397. if(code_seen('F'))
  4398. {
  4399. retract_feedrate = code_value()/60 ;
  4400. }
  4401. if(code_seen('Z'))
  4402. {
  4403. retract_zlift = code_value() ;
  4404. }
  4405. }break;
  4406. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4407. {
  4408. if(code_seen('S'))
  4409. {
  4410. retract_recover_length = code_value() ;
  4411. }
  4412. if(code_seen('F'))
  4413. {
  4414. retract_recover_feedrate = code_value()/60 ;
  4415. }
  4416. }break;
  4417. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4418. {
  4419. if(code_seen('S'))
  4420. {
  4421. int t= code_value() ;
  4422. switch(t)
  4423. {
  4424. case 0:
  4425. {
  4426. autoretract_enabled=false;
  4427. retracted[0]=false;
  4428. #if EXTRUDERS > 1
  4429. retracted[1]=false;
  4430. #endif
  4431. #if EXTRUDERS > 2
  4432. retracted[2]=false;
  4433. #endif
  4434. }break;
  4435. case 1:
  4436. {
  4437. autoretract_enabled=true;
  4438. retracted[0]=false;
  4439. #if EXTRUDERS > 1
  4440. retracted[1]=false;
  4441. #endif
  4442. #if EXTRUDERS > 2
  4443. retracted[2]=false;
  4444. #endif
  4445. }break;
  4446. default:
  4447. SERIAL_ECHO_START;
  4448. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4449. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4450. SERIAL_ECHOLNPGM("\"(1)");
  4451. }
  4452. }
  4453. }break;
  4454. #endif // FWRETRACT
  4455. #if EXTRUDERS > 1
  4456. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4457. {
  4458. if(setTargetedHotend(218)){
  4459. break;
  4460. }
  4461. if(code_seen('X'))
  4462. {
  4463. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4464. }
  4465. if(code_seen('Y'))
  4466. {
  4467. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4468. }
  4469. SERIAL_ECHO_START;
  4470. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4471. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4472. {
  4473. SERIAL_ECHO(" ");
  4474. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4475. SERIAL_ECHO(",");
  4476. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4477. }
  4478. SERIAL_ECHOLN("");
  4479. }break;
  4480. #endif
  4481. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4482. {
  4483. if(code_seen('S'))
  4484. {
  4485. feedmultiply = code_value() ;
  4486. }
  4487. }
  4488. break;
  4489. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4490. {
  4491. if(code_seen('S'))
  4492. {
  4493. int tmp_code = code_value();
  4494. if (code_seen('T'))
  4495. {
  4496. if(setTargetedHotend(221)){
  4497. break;
  4498. }
  4499. extruder_multiply[tmp_extruder] = tmp_code;
  4500. }
  4501. else
  4502. {
  4503. extrudemultiply = tmp_code ;
  4504. }
  4505. }
  4506. }
  4507. break;
  4508. #ifndef _DISABLE_M42_M226
  4509. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4510. {
  4511. if(code_seen('P')){
  4512. int pin_number = code_value(); // pin number
  4513. int pin_state = -1; // required pin state - default is inverted
  4514. if(code_seen('S')) pin_state = code_value(); // required pin state
  4515. if(pin_state >= -1 && pin_state <= 1){
  4516. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4517. {
  4518. if (sensitive_pins[i] == pin_number)
  4519. {
  4520. pin_number = -1;
  4521. break;
  4522. }
  4523. }
  4524. if (pin_number > -1)
  4525. {
  4526. int target = LOW;
  4527. st_synchronize();
  4528. pinMode(pin_number, INPUT);
  4529. switch(pin_state){
  4530. case 1:
  4531. target = HIGH;
  4532. break;
  4533. case 0:
  4534. target = LOW;
  4535. break;
  4536. case -1:
  4537. target = !digitalRead(pin_number);
  4538. break;
  4539. }
  4540. while(digitalRead(pin_number) != target){
  4541. manage_heater();
  4542. manage_inactivity();
  4543. lcd_update();
  4544. }
  4545. }
  4546. }
  4547. }
  4548. }
  4549. break;
  4550. #endif //_DISABLE_M42_M226
  4551. #if NUM_SERVOS > 0
  4552. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4553. {
  4554. int servo_index = -1;
  4555. int servo_position = 0;
  4556. if (code_seen('P'))
  4557. servo_index = code_value();
  4558. if (code_seen('S')) {
  4559. servo_position = code_value();
  4560. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4561. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4562. servos[servo_index].attach(0);
  4563. #endif
  4564. servos[servo_index].write(servo_position);
  4565. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4566. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4567. servos[servo_index].detach();
  4568. #endif
  4569. }
  4570. else {
  4571. SERIAL_ECHO_START;
  4572. SERIAL_ECHO("Servo ");
  4573. SERIAL_ECHO(servo_index);
  4574. SERIAL_ECHOLN(" out of range");
  4575. }
  4576. }
  4577. else if (servo_index >= 0) {
  4578. SERIAL_PROTOCOL(MSG_OK);
  4579. SERIAL_PROTOCOL(" Servo ");
  4580. SERIAL_PROTOCOL(servo_index);
  4581. SERIAL_PROTOCOL(": ");
  4582. SERIAL_PROTOCOL(servos[servo_index].read());
  4583. SERIAL_PROTOCOLLN("");
  4584. }
  4585. }
  4586. break;
  4587. #endif // NUM_SERVOS > 0
  4588. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4589. case 300: // M300
  4590. {
  4591. int beepS = code_seen('S') ? code_value() : 110;
  4592. int beepP = code_seen('P') ? code_value() : 1000;
  4593. if (beepS > 0)
  4594. {
  4595. #if BEEPER > 0
  4596. tone(BEEPER, beepS);
  4597. delay(beepP);
  4598. noTone(BEEPER);
  4599. #elif defined(ULTRALCD)
  4600. lcd_buzz(beepS, beepP);
  4601. #elif defined(LCD_USE_I2C_BUZZER)
  4602. lcd_buzz(beepP, beepS);
  4603. #endif
  4604. }
  4605. else
  4606. {
  4607. delay(beepP);
  4608. }
  4609. }
  4610. break;
  4611. #endif // M300
  4612. #ifdef PIDTEMP
  4613. case 301: // M301
  4614. {
  4615. if(code_seen('P')) Kp = code_value();
  4616. if(code_seen('I')) Ki = scalePID_i(code_value());
  4617. if(code_seen('D')) Kd = scalePID_d(code_value());
  4618. #ifdef PID_ADD_EXTRUSION_RATE
  4619. if(code_seen('C')) Kc = code_value();
  4620. #endif
  4621. updatePID();
  4622. SERIAL_PROTOCOLRPGM(MSG_OK);
  4623. SERIAL_PROTOCOL(" p:");
  4624. SERIAL_PROTOCOL(Kp);
  4625. SERIAL_PROTOCOL(" i:");
  4626. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4627. SERIAL_PROTOCOL(" d:");
  4628. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4629. #ifdef PID_ADD_EXTRUSION_RATE
  4630. SERIAL_PROTOCOL(" c:");
  4631. //Kc does not have scaling applied above, or in resetting defaults
  4632. SERIAL_PROTOCOL(Kc);
  4633. #endif
  4634. SERIAL_PROTOCOLLN("");
  4635. }
  4636. break;
  4637. #endif //PIDTEMP
  4638. #ifdef PIDTEMPBED
  4639. case 304: // M304
  4640. {
  4641. if(code_seen('P')) bedKp = code_value();
  4642. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4643. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4644. updatePID();
  4645. SERIAL_PROTOCOLRPGM(MSG_OK);
  4646. SERIAL_PROTOCOL(" p:");
  4647. SERIAL_PROTOCOL(bedKp);
  4648. SERIAL_PROTOCOL(" i:");
  4649. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4650. SERIAL_PROTOCOL(" d:");
  4651. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4652. SERIAL_PROTOCOLLN("");
  4653. }
  4654. break;
  4655. #endif //PIDTEMP
  4656. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4657. {
  4658. #ifdef CHDK
  4659. SET_OUTPUT(CHDK);
  4660. WRITE(CHDK, HIGH);
  4661. chdkHigh = millis();
  4662. chdkActive = true;
  4663. #else
  4664. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4665. const uint8_t NUM_PULSES=16;
  4666. const float PULSE_LENGTH=0.01524;
  4667. for(int i=0; i < NUM_PULSES; i++) {
  4668. WRITE(PHOTOGRAPH_PIN, HIGH);
  4669. _delay_ms(PULSE_LENGTH);
  4670. WRITE(PHOTOGRAPH_PIN, LOW);
  4671. _delay_ms(PULSE_LENGTH);
  4672. }
  4673. delay(7.33);
  4674. for(int i=0; i < NUM_PULSES; i++) {
  4675. WRITE(PHOTOGRAPH_PIN, HIGH);
  4676. _delay_ms(PULSE_LENGTH);
  4677. WRITE(PHOTOGRAPH_PIN, LOW);
  4678. _delay_ms(PULSE_LENGTH);
  4679. }
  4680. #endif
  4681. #endif //chdk end if
  4682. }
  4683. break;
  4684. #ifdef DOGLCD
  4685. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4686. {
  4687. if (code_seen('C')) {
  4688. lcd_setcontrast( ((int)code_value())&63 );
  4689. }
  4690. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4691. SERIAL_PROTOCOL(lcd_contrast);
  4692. SERIAL_PROTOCOLLN("");
  4693. }
  4694. break;
  4695. #endif
  4696. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4697. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4698. {
  4699. float temp = .0;
  4700. if (code_seen('S')) temp=code_value();
  4701. set_extrude_min_temp(temp);
  4702. }
  4703. break;
  4704. #endif
  4705. case 303: // M303 PID autotune
  4706. {
  4707. float temp = 150.0;
  4708. int e=0;
  4709. int c=5;
  4710. if (code_seen('E')) e=code_value();
  4711. if (e<0)
  4712. temp=70;
  4713. if (code_seen('S')) temp=code_value();
  4714. if (code_seen('C')) c=code_value();
  4715. PID_autotune(temp, e, c);
  4716. }
  4717. break;
  4718. case 400: // M400 finish all moves
  4719. {
  4720. st_synchronize();
  4721. }
  4722. break;
  4723. #ifdef FILAMENT_SENSOR
  4724. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4725. {
  4726. #if (FILWIDTH_PIN > -1)
  4727. if(code_seen('N')) filament_width_nominal=code_value();
  4728. else{
  4729. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4730. SERIAL_PROTOCOLLN(filament_width_nominal);
  4731. }
  4732. #endif
  4733. }
  4734. break;
  4735. case 405: //M405 Turn on filament sensor for control
  4736. {
  4737. if(code_seen('D')) meas_delay_cm=code_value();
  4738. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4739. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4740. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4741. {
  4742. int temp_ratio = widthFil_to_size_ratio();
  4743. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4744. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4745. }
  4746. delay_index1=0;
  4747. delay_index2=0;
  4748. }
  4749. filament_sensor = true ;
  4750. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4751. //SERIAL_PROTOCOL(filament_width_meas);
  4752. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4753. //SERIAL_PROTOCOL(extrudemultiply);
  4754. }
  4755. break;
  4756. case 406: //M406 Turn off filament sensor for control
  4757. {
  4758. filament_sensor = false ;
  4759. }
  4760. break;
  4761. case 407: //M407 Display measured filament diameter
  4762. {
  4763. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4764. SERIAL_PROTOCOLLN(filament_width_meas);
  4765. }
  4766. break;
  4767. #endif
  4768. case 500: // M500 Store settings in EEPROM
  4769. {
  4770. Config_StoreSettings(EEPROM_OFFSET);
  4771. }
  4772. break;
  4773. case 501: // M501 Read settings from EEPROM
  4774. {
  4775. Config_RetrieveSettings(EEPROM_OFFSET);
  4776. }
  4777. break;
  4778. case 502: // M502 Revert to default settings
  4779. {
  4780. Config_ResetDefault();
  4781. }
  4782. break;
  4783. case 503: // M503 print settings currently in memory
  4784. {
  4785. Config_PrintSettings();
  4786. }
  4787. break;
  4788. case 509: //M509 Force language selection
  4789. {
  4790. lcd_force_language_selection();
  4791. SERIAL_ECHO_START;
  4792. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4793. }
  4794. break;
  4795. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4796. case 540:
  4797. {
  4798. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4799. }
  4800. break;
  4801. #endif
  4802. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4803. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4804. {
  4805. float value;
  4806. if (code_seen('Z'))
  4807. {
  4808. value = code_value();
  4809. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4810. {
  4811. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4812. SERIAL_ECHO_START;
  4813. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4814. SERIAL_PROTOCOLLN("");
  4815. }
  4816. else
  4817. {
  4818. SERIAL_ECHO_START;
  4819. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4820. SERIAL_ECHORPGM(MSG_Z_MIN);
  4821. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4822. SERIAL_ECHORPGM(MSG_Z_MAX);
  4823. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4824. SERIAL_PROTOCOLLN("");
  4825. }
  4826. }
  4827. else
  4828. {
  4829. SERIAL_ECHO_START;
  4830. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4831. SERIAL_ECHO(-zprobe_zoffset);
  4832. SERIAL_PROTOCOLLN("");
  4833. }
  4834. break;
  4835. }
  4836. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4837. #ifdef FILAMENTCHANGEENABLE
  4838. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4839. {
  4840. #ifdef PAT9125
  4841. bool old_fsensor_enabled = fsensor_enabled;
  4842. fsensor_enabled = false; //temporary solution for unexpected restarting
  4843. #endif //PAT9125
  4844. st_synchronize();
  4845. float target[4];
  4846. float lastpos[4];
  4847. if (farm_mode)
  4848. {
  4849. prusa_statistics(22);
  4850. }
  4851. feedmultiplyBckp=feedmultiply;
  4852. int8_t TooLowZ = 0;
  4853. float HotendTempBckp = degTargetHotend(active_extruder);
  4854. int fanSpeedBckp = fanSpeed;
  4855. target[X_AXIS]=current_position[X_AXIS];
  4856. target[Y_AXIS]=current_position[Y_AXIS];
  4857. target[Z_AXIS]=current_position[Z_AXIS];
  4858. target[E_AXIS]=current_position[E_AXIS];
  4859. lastpos[X_AXIS]=current_position[X_AXIS];
  4860. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4861. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4862. lastpos[E_AXIS]=current_position[E_AXIS];
  4863. //Restract extruder
  4864. if(code_seen('E'))
  4865. {
  4866. target[E_AXIS]+= code_value();
  4867. }
  4868. else
  4869. {
  4870. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4871. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4872. #endif
  4873. }
  4874. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4875. //Lift Z
  4876. if(code_seen('Z'))
  4877. {
  4878. target[Z_AXIS]+= code_value();
  4879. }
  4880. else
  4881. {
  4882. #ifdef FILAMENTCHANGE_ZADD
  4883. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4884. if(target[Z_AXIS] < 10){
  4885. target[Z_AXIS]+= 10 ;
  4886. TooLowZ = 1;
  4887. }else{
  4888. TooLowZ = 0;
  4889. }
  4890. #endif
  4891. }
  4892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4893. //Move XY to side
  4894. if(code_seen('X'))
  4895. {
  4896. target[X_AXIS]+= code_value();
  4897. }
  4898. else
  4899. {
  4900. #ifdef FILAMENTCHANGE_XPOS
  4901. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4902. #endif
  4903. }
  4904. if(code_seen('Y'))
  4905. {
  4906. target[Y_AXIS]= code_value();
  4907. }
  4908. else
  4909. {
  4910. #ifdef FILAMENTCHANGE_YPOS
  4911. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4912. #endif
  4913. }
  4914. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4915. st_synchronize();
  4916. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4917. uint8_t cnt = 0;
  4918. int counterBeep = 0;
  4919. fanSpeed = 0;
  4920. unsigned long waiting_start_time = millis();
  4921. uint8_t wait_for_user_state = 0;
  4922. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4923. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4924. //cnt++;
  4925. manage_heater();
  4926. manage_inactivity(true);
  4927. /*#ifdef SNMM
  4928. target[E_AXIS] += 0.002;
  4929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4930. #endif // SNMM*/
  4931. //if (cnt == 0)
  4932. {
  4933. #if BEEPER > 0
  4934. if (counterBeep == 500) {
  4935. counterBeep = 0;
  4936. }
  4937. SET_OUTPUT(BEEPER);
  4938. if (counterBeep == 0) {
  4939. WRITE(BEEPER, HIGH);
  4940. }
  4941. if (counterBeep == 20) {
  4942. WRITE(BEEPER, LOW);
  4943. }
  4944. counterBeep++;
  4945. #else
  4946. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4947. lcd_buzz(1000 / 6, 100);
  4948. #else
  4949. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4950. #endif
  4951. #endif
  4952. }
  4953. switch (wait_for_user_state) {
  4954. case 0:
  4955. delay_keep_alive(4);
  4956. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4957. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4958. wait_for_user_state = 1;
  4959. setTargetHotend(0, 0);
  4960. setTargetHotend(0, 1);
  4961. setTargetHotend(0, 2);
  4962. st_synchronize();
  4963. disable_e0();
  4964. disable_e1();
  4965. disable_e2();
  4966. }
  4967. break;
  4968. case 1:
  4969. delay_keep_alive(4);
  4970. if (lcd_clicked()) {
  4971. setTargetHotend(HotendTempBckp, active_extruder);
  4972. lcd_wait_for_heater();
  4973. wait_for_user_state = 2;
  4974. }
  4975. break;
  4976. case 2:
  4977. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4978. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4979. waiting_start_time = millis();
  4980. wait_for_user_state = 0;
  4981. }
  4982. else {
  4983. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4984. lcd.setCursor(1, 4);
  4985. lcd.print(ftostr3(degHotend(active_extruder)));
  4986. }
  4987. break;
  4988. }
  4989. }
  4990. WRITE(BEEPER, LOW);
  4991. lcd_change_fil_state = 0;
  4992. // Unload filament
  4993. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4994. KEEPALIVE_STATE(IN_HANDLER);
  4995. custom_message = true;
  4996. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4997. if (code_seen('L'))
  4998. {
  4999. target[E_AXIS] += code_value();
  5000. }
  5001. else
  5002. {
  5003. #ifdef SNMM
  5004. #else
  5005. #ifdef FILAMENTCHANGE_FINALRETRACT
  5006. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5007. #endif
  5008. #endif // SNMM
  5009. }
  5010. #ifdef SNMM
  5011. target[E_AXIS] += 12;
  5012. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5013. target[E_AXIS] += 6;
  5014. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5015. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5016. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5017. st_synchronize();
  5018. target[E_AXIS] += (FIL_COOLING);
  5019. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5020. target[E_AXIS] += (FIL_COOLING*-1);
  5021. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5022. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5023. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5024. st_synchronize();
  5025. #else
  5026. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5027. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5028. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5029. st_synchronize();
  5030. #ifdef TMC2130
  5031. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5032. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5033. #else
  5034. digipot_current(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5035. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5036. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5037. #endif //TMC2130
  5038. target[E_AXIS] -= 45;
  5039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5040. st_synchronize();
  5041. target[E_AXIS] -= 15;
  5042. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5043. st_synchronize();
  5044. target[E_AXIS] -= 20;
  5045. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5046. st_synchronize();
  5047. #ifdef TMC2130
  5048. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5049. #else
  5050. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5051. if(silentMode) digipot_current(2, tmp_motor[2]); //set E back to normal operation currents
  5052. else digipot_current(2, tmp_motor_loud[2]);
  5053. #endif //TMC2130
  5054. #endif // SNMM
  5055. //finish moves
  5056. st_synchronize();
  5057. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5058. //disable extruder steppers so filament can be removed
  5059. disable_e0();
  5060. disable_e1();
  5061. disable_e2();
  5062. delay(100);
  5063. WRITE(BEEPER, HIGH);
  5064. counterBeep = 0;
  5065. while(!lcd_clicked() && (counterBeep < 50)) {
  5066. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5067. delay_keep_alive(100);
  5068. counterBeep++;
  5069. }
  5070. WRITE(BEEPER, LOW);
  5071. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5072. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5073. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5074. //lcd_return_to_status();
  5075. lcd_update_enable(true);
  5076. //Wait for user to insert filament
  5077. lcd_wait_interact();
  5078. //load_filament_time = millis();
  5079. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5080. #ifdef PAT9125
  5081. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5082. #endif //PAT9125
  5083. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5084. while(!lcd_clicked())
  5085. {
  5086. manage_heater();
  5087. manage_inactivity(true);
  5088. #ifdef PAT9125
  5089. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5090. {
  5091. tone(BEEPER, 1000);
  5092. delay_keep_alive(50);
  5093. noTone(BEEPER);
  5094. break;
  5095. }
  5096. #endif //PAT9125
  5097. /*#ifdef SNMM
  5098. target[E_AXIS] += 0.002;
  5099. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5100. #endif // SNMM*/
  5101. }
  5102. #ifdef PAT9125
  5103. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5104. #endif //PAT9125
  5105. //WRITE(BEEPER, LOW);
  5106. KEEPALIVE_STATE(IN_HANDLER);
  5107. #ifdef SNMM
  5108. display_loading();
  5109. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5110. do {
  5111. target[E_AXIS] += 0.002;
  5112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5113. delay_keep_alive(2);
  5114. } while (!lcd_clicked());
  5115. KEEPALIVE_STATE(IN_HANDLER);
  5116. /*if (millis() - load_filament_time > 2) {
  5117. load_filament_time = millis();
  5118. target[E_AXIS] += 0.001;
  5119. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5120. }*/
  5121. //Filament inserted
  5122. //Feed the filament to the end of nozzle quickly
  5123. st_synchronize();
  5124. target[E_AXIS] += bowden_length[snmm_extruder];
  5125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5126. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5128. target[E_AXIS] += 40;
  5129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5130. target[E_AXIS] += 10;
  5131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5132. #else
  5133. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5134. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5135. #endif // SNMM
  5136. //Extrude some filament
  5137. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5138. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5139. //Wait for user to check the state
  5140. lcd_change_fil_state = 0;
  5141. lcd_loading_filament();
  5142. tone(BEEPER, 500);
  5143. delay_keep_alive(50);
  5144. noTone(BEEPER);
  5145. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5146. lcd_change_fil_state = 0;
  5147. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5148. lcd_alright();
  5149. KEEPALIVE_STATE(IN_HANDLER);
  5150. switch(lcd_change_fil_state){
  5151. // Filament failed to load so load it again
  5152. case 2:
  5153. #ifdef SNMM
  5154. display_loading();
  5155. do {
  5156. target[E_AXIS] += 0.002;
  5157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5158. delay_keep_alive(2);
  5159. } while (!lcd_clicked());
  5160. st_synchronize();
  5161. target[E_AXIS] += bowden_length[snmm_extruder];
  5162. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5163. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5165. target[E_AXIS] += 40;
  5166. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5167. target[E_AXIS] += 10;
  5168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5169. #else
  5170. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5171. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5172. #endif
  5173. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5174. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5175. lcd_loading_filament();
  5176. break;
  5177. // Filament loaded properly but color is not clear
  5178. case 3:
  5179. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5180. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5181. lcd_loading_color();
  5182. break;
  5183. // Everything good
  5184. default:
  5185. lcd_change_success();
  5186. lcd_update_enable(true);
  5187. break;
  5188. }
  5189. }
  5190. //Not let's go back to print
  5191. fanSpeed = fanSpeedBckp;
  5192. //Feed a little of filament to stabilize pressure
  5193. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5194. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5195. //Retract
  5196. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5197. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5198. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5199. //Move XY back
  5200. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5201. //Move Z back
  5202. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5203. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5204. //Unretract
  5205. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5206. //Set E position to original
  5207. plan_set_e_position(lastpos[E_AXIS]);
  5208. //Recover feed rate
  5209. feedmultiply=feedmultiplyBckp;
  5210. char cmd[9];
  5211. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5212. enquecommand(cmd);
  5213. lcd_setstatuspgm(WELCOME_MSG);
  5214. custom_message = false;
  5215. custom_message_type = 0;
  5216. #ifdef PAT9125
  5217. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5218. if (fsensor_M600)
  5219. {
  5220. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5221. st_synchronize();
  5222. while (!is_buffer_empty())
  5223. {
  5224. process_commands();
  5225. cmdqueue_pop_front();
  5226. }
  5227. fsensor_enable();
  5228. fsensor_restore_print_and_continue();
  5229. }
  5230. #endif //PAT9125
  5231. }
  5232. break;
  5233. #endif //FILAMENTCHANGEENABLE
  5234. case 601: {
  5235. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5236. }
  5237. break;
  5238. case 602: {
  5239. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5240. }
  5241. break;
  5242. #ifdef LIN_ADVANCE
  5243. case 900: // M900: Set LIN_ADVANCE options.
  5244. gcode_M900();
  5245. break;
  5246. #endif
  5247. case 907: // M907 Set digital trimpot motor current using axis codes.
  5248. {
  5249. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5250. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5251. if(code_seen('B')) digipot_current(4,code_value());
  5252. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5253. #endif
  5254. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5255. if(code_seen('X')) digipot_current(0, code_value());
  5256. #endif
  5257. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5258. if(code_seen('Z')) digipot_current(1, code_value());
  5259. #endif
  5260. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5261. if(code_seen('E')) digipot_current(2, code_value());
  5262. #endif
  5263. #ifdef DIGIPOT_I2C
  5264. // this one uses actual amps in floating point
  5265. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5266. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5267. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5268. #endif
  5269. }
  5270. break;
  5271. case 908: // M908 Control digital trimpot directly.
  5272. {
  5273. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5274. uint8_t channel,current;
  5275. if(code_seen('P')) channel=code_value();
  5276. if(code_seen('S')) current=code_value();
  5277. digitalPotWrite(channel, current);
  5278. #endif
  5279. }
  5280. break;
  5281. #ifdef TMC2130
  5282. case 910: // M910 TMC2130 init
  5283. {
  5284. tmc2130_init();
  5285. }
  5286. break;
  5287. case 911: // M911 Set TMC2130 holding currents
  5288. {
  5289. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5290. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5291. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5292. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5293. }
  5294. break;
  5295. case 912: // M912 Set TMC2130 running currents
  5296. {
  5297. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5298. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5299. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5300. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5301. }
  5302. break;
  5303. case 913: // M913 Print TMC2130 currents
  5304. {
  5305. tmc2130_print_currents();
  5306. }
  5307. break;
  5308. case 914: // M914 Set normal mode
  5309. {
  5310. tmc2130_mode = TMC2130_MODE_NORMAL;
  5311. tmc2130_init();
  5312. }
  5313. break;
  5314. case 915: // M915 Set silent mode
  5315. {
  5316. tmc2130_mode = TMC2130_MODE_SILENT;
  5317. tmc2130_init();
  5318. }
  5319. break;
  5320. case 916: // M916 Set sg_thrs
  5321. {
  5322. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5323. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5324. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5325. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5326. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5327. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5328. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5329. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5330. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5331. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5332. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5333. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5334. }
  5335. break;
  5336. case 917: // M917 Set TMC2130 pwm_ampl
  5337. {
  5338. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5339. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5340. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5341. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5342. }
  5343. break;
  5344. case 918: // M918 Set TMC2130 pwm_grad
  5345. {
  5346. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5347. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5348. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5349. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5350. }
  5351. break;
  5352. #endif //TMC2130
  5353. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5354. {
  5355. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5356. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5357. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5358. if(code_seen('B')) microstep_mode(4,code_value());
  5359. microstep_readings();
  5360. #endif
  5361. }
  5362. break;
  5363. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5364. {
  5365. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5366. if(code_seen('S')) switch((int)code_value())
  5367. {
  5368. case 1:
  5369. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5370. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5371. break;
  5372. case 2:
  5373. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5374. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5375. break;
  5376. }
  5377. microstep_readings();
  5378. #endif
  5379. }
  5380. break;
  5381. case 701: //M701: load filament
  5382. {
  5383. gcode_M701();
  5384. }
  5385. break;
  5386. case 702:
  5387. {
  5388. #ifdef SNMM
  5389. if (code_seen('U')) {
  5390. extr_unload_used(); //unload all filaments which were used in current print
  5391. }
  5392. else if (code_seen('C')) {
  5393. extr_unload(); //unload just current filament
  5394. }
  5395. else {
  5396. extr_unload_all(); //unload all filaments
  5397. }
  5398. #else
  5399. #ifdef PAT9125
  5400. bool old_fsensor_enabled = fsensor_enabled;
  5401. fsensor_enabled = false;
  5402. #endif //PAT9125
  5403. custom_message = true;
  5404. custom_message_type = 2;
  5405. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5406. // extr_unload2();
  5407. current_position[E_AXIS] -= 45;
  5408. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5409. st_synchronize();
  5410. current_position[E_AXIS] -= 15;
  5411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5412. st_synchronize();
  5413. current_position[E_AXIS] -= 20;
  5414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5415. st_synchronize();
  5416. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5417. //disable extruder steppers so filament can be removed
  5418. disable_e0();
  5419. disable_e1();
  5420. disable_e2();
  5421. delay(100);
  5422. WRITE(BEEPER, HIGH);
  5423. uint8_t counterBeep = 0;
  5424. while (!lcd_clicked() && (counterBeep < 50)) {
  5425. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5426. delay_keep_alive(100);
  5427. counterBeep++;
  5428. }
  5429. WRITE(BEEPER, LOW);
  5430. st_synchronize();
  5431. while (lcd_clicked()) delay_keep_alive(100);
  5432. lcd_update_enable(true);
  5433. lcd_setstatuspgm(WELCOME_MSG);
  5434. custom_message = false;
  5435. custom_message_type = 0;
  5436. #ifdef PAT9125
  5437. fsensor_enabled = old_fsensor_enabled;
  5438. #endif //PAT9125
  5439. #endif
  5440. }
  5441. break;
  5442. case 999: // M999: Restart after being stopped
  5443. Stopped = false;
  5444. lcd_reset_alert_level();
  5445. gcode_LastN = Stopped_gcode_LastN;
  5446. FlushSerialRequestResend();
  5447. break;
  5448. default:
  5449. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5450. }
  5451. } // end if(code_seen('M')) (end of M codes)
  5452. else if(code_seen('T'))
  5453. {
  5454. int index;
  5455. st_synchronize();
  5456. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5457. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5458. SERIAL_ECHOLNPGM("Invalid T code.");
  5459. }
  5460. else {
  5461. if (*(strchr_pointer + index) == '?') {
  5462. tmp_extruder = choose_extruder_menu();
  5463. }
  5464. else {
  5465. tmp_extruder = code_value();
  5466. }
  5467. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5468. #ifdef SNMM
  5469. #ifdef LIN_ADVANCE
  5470. if (snmm_extruder != tmp_extruder)
  5471. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5472. #endif
  5473. snmm_extruder = tmp_extruder;
  5474. delay(100);
  5475. disable_e0();
  5476. disable_e1();
  5477. disable_e2();
  5478. pinMode(E_MUX0_PIN, OUTPUT);
  5479. pinMode(E_MUX1_PIN, OUTPUT);
  5480. pinMode(E_MUX2_PIN, OUTPUT);
  5481. delay(100);
  5482. SERIAL_ECHO_START;
  5483. SERIAL_ECHO("T:");
  5484. SERIAL_ECHOLN((int)tmp_extruder);
  5485. switch (tmp_extruder) {
  5486. case 1:
  5487. WRITE(E_MUX0_PIN, HIGH);
  5488. WRITE(E_MUX1_PIN, LOW);
  5489. WRITE(E_MUX2_PIN, LOW);
  5490. break;
  5491. case 2:
  5492. WRITE(E_MUX0_PIN, LOW);
  5493. WRITE(E_MUX1_PIN, HIGH);
  5494. WRITE(E_MUX2_PIN, LOW);
  5495. break;
  5496. case 3:
  5497. WRITE(E_MUX0_PIN, HIGH);
  5498. WRITE(E_MUX1_PIN, HIGH);
  5499. WRITE(E_MUX2_PIN, LOW);
  5500. break;
  5501. default:
  5502. WRITE(E_MUX0_PIN, LOW);
  5503. WRITE(E_MUX1_PIN, LOW);
  5504. WRITE(E_MUX2_PIN, LOW);
  5505. break;
  5506. }
  5507. delay(100);
  5508. #else
  5509. if (tmp_extruder >= EXTRUDERS) {
  5510. SERIAL_ECHO_START;
  5511. SERIAL_ECHOPGM("T");
  5512. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5513. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5514. }
  5515. else {
  5516. boolean make_move = false;
  5517. if (code_seen('F')) {
  5518. make_move = true;
  5519. next_feedrate = code_value();
  5520. if (next_feedrate > 0.0) {
  5521. feedrate = next_feedrate;
  5522. }
  5523. }
  5524. #if EXTRUDERS > 1
  5525. if (tmp_extruder != active_extruder) {
  5526. // Save current position to return to after applying extruder offset
  5527. memcpy(destination, current_position, sizeof(destination));
  5528. // Offset extruder (only by XY)
  5529. int i;
  5530. for (i = 0; i < 2; i++) {
  5531. current_position[i] = current_position[i] -
  5532. extruder_offset[i][active_extruder] +
  5533. extruder_offset[i][tmp_extruder];
  5534. }
  5535. // Set the new active extruder and position
  5536. active_extruder = tmp_extruder;
  5537. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5538. // Move to the old position if 'F' was in the parameters
  5539. if (make_move && Stopped == false) {
  5540. prepare_move();
  5541. }
  5542. }
  5543. #endif
  5544. SERIAL_ECHO_START;
  5545. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5546. SERIAL_PROTOCOLLN((int)active_extruder);
  5547. }
  5548. #endif
  5549. }
  5550. } // end if(code_seen('T')) (end of T codes)
  5551. #ifdef DEBUG_DCODES
  5552. else if (code_seen('D')) // D codes (debug)
  5553. {
  5554. switch((int)code_value())
  5555. {
  5556. case -1: // D-1 - Endless loop
  5557. dcode__1(); break;
  5558. case 0: // D0 - Reset
  5559. dcode_0(); break;
  5560. case 1: // D1 - Clear EEPROM
  5561. dcode_1(); break;
  5562. case 2: // D2 - Read/Write RAM
  5563. dcode_2(); break;
  5564. case 3: // D3 - Read/Write EEPROM
  5565. dcode_3(); break;
  5566. case 4: // D4 - Read/Write PIN
  5567. dcode_4(); break;
  5568. case 5: // D5 - Read/Write FLASH
  5569. // dcode_5(); break;
  5570. break;
  5571. case 6: // D6 - Read/Write external FLASH
  5572. dcode_6(); break;
  5573. case 7: // D7 - Read/Write Bootloader
  5574. dcode_7(); break;
  5575. case 8: // D8 - Read/Write PINDA
  5576. dcode_8(); break;
  5577. case 9: // D9 - Read/Write ADC
  5578. dcode_9(); break;
  5579. case 10: // D10 - XYZ calibration = OK
  5580. dcode_10(); break;
  5581. case 12: //D12 - Reset failstat counters
  5582. dcode_12(); break;
  5583. #ifdef TMC2130
  5584. case 2130: // D9125 - TMC2130
  5585. dcode_2130(); break;
  5586. #endif //TMC2130
  5587. #ifdef PAT9125
  5588. case 9125: // D9125 - PAT9125
  5589. dcode_9125(); break;
  5590. #endif //PAT9125
  5591. }
  5592. }
  5593. #endif //DEBUG_DCODES
  5594. else
  5595. {
  5596. SERIAL_ECHO_START;
  5597. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5598. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5599. SERIAL_ECHOLNPGM("\"(2)");
  5600. }
  5601. KEEPALIVE_STATE(NOT_BUSY);
  5602. ClearToSend();
  5603. }
  5604. void FlushSerialRequestResend()
  5605. {
  5606. //char cmdbuffer[bufindr][100]="Resend:";
  5607. MYSERIAL.flush();
  5608. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5609. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5610. previous_millis_cmd = millis();
  5611. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5612. }
  5613. // Confirm the execution of a command, if sent from a serial line.
  5614. // Execution of a command from a SD card will not be confirmed.
  5615. void ClearToSend()
  5616. {
  5617. previous_millis_cmd = millis();
  5618. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5619. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5620. }
  5621. void get_coordinates()
  5622. {
  5623. bool seen[4]={false,false,false,false};
  5624. for(int8_t i=0; i < NUM_AXIS; i++) {
  5625. if(code_seen(axis_codes[i]))
  5626. {
  5627. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5628. seen[i]=true;
  5629. }
  5630. else destination[i] = current_position[i]; //Are these else lines really needed?
  5631. }
  5632. if(code_seen('F')) {
  5633. next_feedrate = code_value();
  5634. #ifdef MAX_SILENT_FEEDRATE
  5635. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5636. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5637. #endif //MAX_SILENT_FEEDRATE
  5638. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5639. }
  5640. }
  5641. void get_arc_coordinates()
  5642. {
  5643. #ifdef SF_ARC_FIX
  5644. bool relative_mode_backup = relative_mode;
  5645. relative_mode = true;
  5646. #endif
  5647. get_coordinates();
  5648. #ifdef SF_ARC_FIX
  5649. relative_mode=relative_mode_backup;
  5650. #endif
  5651. if(code_seen('I')) {
  5652. offset[0] = code_value();
  5653. }
  5654. else {
  5655. offset[0] = 0.0;
  5656. }
  5657. if(code_seen('J')) {
  5658. offset[1] = code_value();
  5659. }
  5660. else {
  5661. offset[1] = 0.0;
  5662. }
  5663. }
  5664. void clamp_to_software_endstops(float target[3])
  5665. {
  5666. #ifdef DEBUG_DISABLE_SWLIMITS
  5667. return;
  5668. #endif //DEBUG_DISABLE_SWLIMITS
  5669. world2machine_clamp(target[0], target[1]);
  5670. // Clamp the Z coordinate.
  5671. if (min_software_endstops) {
  5672. float negative_z_offset = 0;
  5673. #ifdef ENABLE_AUTO_BED_LEVELING
  5674. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5675. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5676. #endif
  5677. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5678. }
  5679. if (max_software_endstops) {
  5680. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5681. }
  5682. }
  5683. #ifdef MESH_BED_LEVELING
  5684. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5685. float dx = x - current_position[X_AXIS];
  5686. float dy = y - current_position[Y_AXIS];
  5687. float dz = z - current_position[Z_AXIS];
  5688. int n_segments = 0;
  5689. if (mbl.active) {
  5690. float len = abs(dx) + abs(dy);
  5691. if (len > 0)
  5692. // Split to 3cm segments or shorter.
  5693. n_segments = int(ceil(len / 30.f));
  5694. }
  5695. if (n_segments > 1) {
  5696. float de = e - current_position[E_AXIS];
  5697. for (int i = 1; i < n_segments; ++ i) {
  5698. float t = float(i) / float(n_segments);
  5699. plan_buffer_line(
  5700. current_position[X_AXIS] + t * dx,
  5701. current_position[Y_AXIS] + t * dy,
  5702. current_position[Z_AXIS] + t * dz,
  5703. current_position[E_AXIS] + t * de,
  5704. feed_rate, extruder);
  5705. }
  5706. }
  5707. // The rest of the path.
  5708. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5709. current_position[X_AXIS] = x;
  5710. current_position[Y_AXIS] = y;
  5711. current_position[Z_AXIS] = z;
  5712. current_position[E_AXIS] = e;
  5713. }
  5714. #endif // MESH_BED_LEVELING
  5715. void prepare_move()
  5716. {
  5717. clamp_to_software_endstops(destination);
  5718. previous_millis_cmd = millis();
  5719. // Do not use feedmultiply for E or Z only moves
  5720. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5721. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5722. }
  5723. else {
  5724. #ifdef MESH_BED_LEVELING
  5725. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5726. #else
  5727. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5728. #endif
  5729. }
  5730. for(int8_t i=0; i < NUM_AXIS; i++) {
  5731. current_position[i] = destination[i];
  5732. }
  5733. }
  5734. void prepare_arc_move(char isclockwise) {
  5735. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5736. // Trace the arc
  5737. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5738. // As far as the parser is concerned, the position is now == target. In reality the
  5739. // motion control system might still be processing the action and the real tool position
  5740. // in any intermediate location.
  5741. for(int8_t i=0; i < NUM_AXIS; i++) {
  5742. current_position[i] = destination[i];
  5743. }
  5744. previous_millis_cmd = millis();
  5745. }
  5746. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5747. #if defined(FAN_PIN)
  5748. #if CONTROLLERFAN_PIN == FAN_PIN
  5749. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5750. #endif
  5751. #endif
  5752. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5753. unsigned long lastMotorCheck = 0;
  5754. void controllerFan()
  5755. {
  5756. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5757. {
  5758. lastMotorCheck = millis();
  5759. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5760. #if EXTRUDERS > 2
  5761. || !READ(E2_ENABLE_PIN)
  5762. #endif
  5763. #if EXTRUDER > 1
  5764. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5765. || !READ(X2_ENABLE_PIN)
  5766. #endif
  5767. || !READ(E1_ENABLE_PIN)
  5768. #endif
  5769. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5770. {
  5771. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5772. }
  5773. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5774. {
  5775. digitalWrite(CONTROLLERFAN_PIN, 0);
  5776. analogWrite(CONTROLLERFAN_PIN, 0);
  5777. }
  5778. else
  5779. {
  5780. // allows digital or PWM fan output to be used (see M42 handling)
  5781. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5782. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5783. }
  5784. }
  5785. }
  5786. #endif
  5787. #ifdef TEMP_STAT_LEDS
  5788. static bool blue_led = false;
  5789. static bool red_led = false;
  5790. static uint32_t stat_update = 0;
  5791. void handle_status_leds(void) {
  5792. float max_temp = 0.0;
  5793. if(millis() > stat_update) {
  5794. stat_update += 500; // Update every 0.5s
  5795. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5796. max_temp = max(max_temp, degHotend(cur_extruder));
  5797. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5798. }
  5799. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5800. max_temp = max(max_temp, degTargetBed());
  5801. max_temp = max(max_temp, degBed());
  5802. #endif
  5803. if((max_temp > 55.0) && (red_led == false)) {
  5804. digitalWrite(STAT_LED_RED, 1);
  5805. digitalWrite(STAT_LED_BLUE, 0);
  5806. red_led = true;
  5807. blue_led = false;
  5808. }
  5809. if((max_temp < 54.0) && (blue_led == false)) {
  5810. digitalWrite(STAT_LED_RED, 0);
  5811. digitalWrite(STAT_LED_BLUE, 1);
  5812. red_led = false;
  5813. blue_led = true;
  5814. }
  5815. }
  5816. }
  5817. #endif
  5818. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5819. {
  5820. #ifdef PAT9125
  5821. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5822. {
  5823. if (fsensor_autoload_enabled)
  5824. {
  5825. if (fsensor_check_autoload())
  5826. {
  5827. if (degHotend0() > EXTRUDE_MINTEMP)
  5828. {
  5829. fsensor_autoload_check_stop();
  5830. tone(BEEPER, 1000);
  5831. delay_keep_alive(50);
  5832. noTone(BEEPER);
  5833. loading_flag = true;
  5834. enquecommand_front_P((PSTR("M701")));
  5835. }
  5836. else
  5837. {
  5838. lcd_update_enable(false);
  5839. lcd_implementation_clear();
  5840. lcd.setCursor(0, 0);
  5841. lcd_printPGM(MSG_ERROR);
  5842. lcd.setCursor(0, 2);
  5843. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5844. delay(2000);
  5845. lcd_implementation_clear();
  5846. lcd_update_enable(true);
  5847. }
  5848. }
  5849. }
  5850. else
  5851. fsensor_autoload_check_start();
  5852. }
  5853. else
  5854. if (fsensor_autoload_enabled)
  5855. fsensor_autoload_check_stop();
  5856. #endif //PAT9125
  5857. #if defined(KILL_PIN) && KILL_PIN > -1
  5858. static int killCount = 0; // make the inactivity button a bit less responsive
  5859. const int KILL_DELAY = 10000;
  5860. #endif
  5861. if(buflen < (BUFSIZE-1)){
  5862. get_command();
  5863. }
  5864. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5865. if(max_inactive_time)
  5866. kill("", 4);
  5867. if(stepper_inactive_time) {
  5868. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5869. {
  5870. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5871. disable_x();
  5872. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5873. disable_y();
  5874. disable_z();
  5875. disable_e0();
  5876. disable_e1();
  5877. disable_e2();
  5878. }
  5879. }
  5880. }
  5881. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5882. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5883. {
  5884. chdkActive = false;
  5885. WRITE(CHDK, LOW);
  5886. }
  5887. #endif
  5888. #if defined(KILL_PIN) && KILL_PIN > -1
  5889. // Check if the kill button was pressed and wait just in case it was an accidental
  5890. // key kill key press
  5891. // -------------------------------------------------------------------------------
  5892. if( 0 == READ(KILL_PIN) )
  5893. {
  5894. killCount++;
  5895. }
  5896. else if (killCount > 0)
  5897. {
  5898. killCount--;
  5899. }
  5900. // Exceeded threshold and we can confirm that it was not accidental
  5901. // KILL the machine
  5902. // ----------------------------------------------------------------
  5903. if ( killCount >= KILL_DELAY)
  5904. {
  5905. kill("", 5);
  5906. }
  5907. #endif
  5908. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5909. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5910. #endif
  5911. #ifdef EXTRUDER_RUNOUT_PREVENT
  5912. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5913. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5914. {
  5915. bool oldstatus=READ(E0_ENABLE_PIN);
  5916. enable_e0();
  5917. float oldepos=current_position[E_AXIS];
  5918. float oldedes=destination[E_AXIS];
  5919. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5920. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5921. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5922. current_position[E_AXIS]=oldepos;
  5923. destination[E_AXIS]=oldedes;
  5924. plan_set_e_position(oldepos);
  5925. previous_millis_cmd=millis();
  5926. st_synchronize();
  5927. WRITE(E0_ENABLE_PIN,oldstatus);
  5928. }
  5929. #endif
  5930. #ifdef TEMP_STAT_LEDS
  5931. handle_status_leds();
  5932. #endif
  5933. check_axes_activity();
  5934. }
  5935. void kill(const char *full_screen_message, unsigned char id)
  5936. {
  5937. SERIAL_ECHOPGM("KILL: ");
  5938. MYSERIAL.println(int(id));
  5939. //return;
  5940. cli(); // Stop interrupts
  5941. disable_heater();
  5942. disable_x();
  5943. // SERIAL_ECHOLNPGM("kill - disable Y");
  5944. disable_y();
  5945. disable_z();
  5946. disable_e0();
  5947. disable_e1();
  5948. disable_e2();
  5949. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5950. pinMode(PS_ON_PIN,INPUT);
  5951. #endif
  5952. SERIAL_ERROR_START;
  5953. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5954. if (full_screen_message != NULL) {
  5955. SERIAL_ERRORLNRPGM(full_screen_message);
  5956. lcd_display_message_fullscreen_P(full_screen_message);
  5957. } else {
  5958. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5959. }
  5960. // FMC small patch to update the LCD before ending
  5961. sei(); // enable interrupts
  5962. for ( int i=5; i--; lcd_update())
  5963. {
  5964. delay(200);
  5965. }
  5966. cli(); // disable interrupts
  5967. suicide();
  5968. while(1)
  5969. {
  5970. wdt_reset();
  5971. /* Intentionally left empty */
  5972. } // Wait for reset
  5973. }
  5974. void Stop()
  5975. {
  5976. disable_heater();
  5977. if(Stopped == false) {
  5978. Stopped = true;
  5979. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5980. SERIAL_ERROR_START;
  5981. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5982. LCD_MESSAGERPGM(MSG_STOPPED);
  5983. }
  5984. }
  5985. bool IsStopped() { return Stopped; };
  5986. #ifdef FAST_PWM_FAN
  5987. void setPwmFrequency(uint8_t pin, int val)
  5988. {
  5989. val &= 0x07;
  5990. switch(digitalPinToTimer(pin))
  5991. {
  5992. #if defined(TCCR0A)
  5993. case TIMER0A:
  5994. case TIMER0B:
  5995. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5996. // TCCR0B |= val;
  5997. break;
  5998. #endif
  5999. #if defined(TCCR1A)
  6000. case TIMER1A:
  6001. case TIMER1B:
  6002. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6003. // TCCR1B |= val;
  6004. break;
  6005. #endif
  6006. #if defined(TCCR2)
  6007. case TIMER2:
  6008. case TIMER2:
  6009. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6010. TCCR2 |= val;
  6011. break;
  6012. #endif
  6013. #if defined(TCCR2A)
  6014. case TIMER2A:
  6015. case TIMER2B:
  6016. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6017. TCCR2B |= val;
  6018. break;
  6019. #endif
  6020. #if defined(TCCR3A)
  6021. case TIMER3A:
  6022. case TIMER3B:
  6023. case TIMER3C:
  6024. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6025. TCCR3B |= val;
  6026. break;
  6027. #endif
  6028. #if defined(TCCR4A)
  6029. case TIMER4A:
  6030. case TIMER4B:
  6031. case TIMER4C:
  6032. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6033. TCCR4B |= val;
  6034. break;
  6035. #endif
  6036. #if defined(TCCR5A)
  6037. case TIMER5A:
  6038. case TIMER5B:
  6039. case TIMER5C:
  6040. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6041. TCCR5B |= val;
  6042. break;
  6043. #endif
  6044. }
  6045. }
  6046. #endif //FAST_PWM_FAN
  6047. bool setTargetedHotend(int code){
  6048. tmp_extruder = active_extruder;
  6049. if(code_seen('T')) {
  6050. tmp_extruder = code_value();
  6051. if(tmp_extruder >= EXTRUDERS) {
  6052. SERIAL_ECHO_START;
  6053. switch(code){
  6054. case 104:
  6055. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6056. break;
  6057. case 105:
  6058. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6059. break;
  6060. case 109:
  6061. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6062. break;
  6063. case 218:
  6064. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6065. break;
  6066. case 221:
  6067. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6068. break;
  6069. }
  6070. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6071. return true;
  6072. }
  6073. }
  6074. return false;
  6075. }
  6076. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6077. {
  6078. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6079. {
  6080. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6081. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6082. }
  6083. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6084. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6085. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6086. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6087. total_filament_used = 0;
  6088. }
  6089. float calculate_volumetric_multiplier(float diameter) {
  6090. float area = .0;
  6091. float radius = .0;
  6092. radius = diameter * .5;
  6093. if (! volumetric_enabled || radius == 0) {
  6094. area = 1;
  6095. }
  6096. else {
  6097. area = M_PI * pow(radius, 2);
  6098. }
  6099. return 1.0 / area;
  6100. }
  6101. void calculate_volumetric_multipliers() {
  6102. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  6103. #if EXTRUDERS > 1
  6104. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  6105. #if EXTRUDERS > 2
  6106. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  6107. #endif
  6108. #endif
  6109. }
  6110. void delay_keep_alive(unsigned int ms)
  6111. {
  6112. for (;;) {
  6113. manage_heater();
  6114. // Manage inactivity, but don't disable steppers on timeout.
  6115. manage_inactivity(true);
  6116. lcd_update();
  6117. if (ms == 0)
  6118. break;
  6119. else if (ms >= 50) {
  6120. delay(50);
  6121. ms -= 50;
  6122. } else {
  6123. delay(ms);
  6124. ms = 0;
  6125. }
  6126. }
  6127. }
  6128. void wait_for_heater(long codenum) {
  6129. #ifdef TEMP_RESIDENCY_TIME
  6130. long residencyStart;
  6131. residencyStart = -1;
  6132. /* continue to loop until we have reached the target temp
  6133. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6134. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6135. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6136. #else
  6137. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6138. #endif //TEMP_RESIDENCY_TIME
  6139. if ((millis() - codenum) > 1000UL)
  6140. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6141. if (!farm_mode) {
  6142. SERIAL_PROTOCOLPGM("T:");
  6143. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6144. SERIAL_PROTOCOLPGM(" E:");
  6145. SERIAL_PROTOCOL((int)tmp_extruder);
  6146. #ifdef TEMP_RESIDENCY_TIME
  6147. SERIAL_PROTOCOLPGM(" W:");
  6148. if (residencyStart > -1)
  6149. {
  6150. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6151. SERIAL_PROTOCOLLN(codenum);
  6152. }
  6153. else
  6154. {
  6155. SERIAL_PROTOCOLLN("?");
  6156. }
  6157. }
  6158. #else
  6159. SERIAL_PROTOCOLLN("");
  6160. #endif
  6161. codenum = millis();
  6162. }
  6163. manage_heater();
  6164. manage_inactivity();
  6165. lcd_update();
  6166. #ifdef TEMP_RESIDENCY_TIME
  6167. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6168. or when current temp falls outside the hysteresis after target temp was reached */
  6169. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6170. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6171. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6172. {
  6173. residencyStart = millis();
  6174. }
  6175. #endif //TEMP_RESIDENCY_TIME
  6176. }
  6177. }
  6178. void check_babystep() {
  6179. int babystep_z;
  6180. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6181. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6182. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6183. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6184. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6185. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6186. lcd_update_enable(true);
  6187. }
  6188. }
  6189. #ifdef DIS
  6190. void d_setup()
  6191. {
  6192. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6193. pinMode(D_DATA, INPUT_PULLUP);
  6194. pinMode(D_REQUIRE, OUTPUT);
  6195. digitalWrite(D_REQUIRE, HIGH);
  6196. }
  6197. float d_ReadData()
  6198. {
  6199. int digit[13];
  6200. String mergeOutput;
  6201. float output;
  6202. digitalWrite(D_REQUIRE, HIGH);
  6203. for (int i = 0; i<13; i++)
  6204. {
  6205. for (int j = 0; j < 4; j++)
  6206. {
  6207. while (digitalRead(D_DATACLOCK) == LOW) {}
  6208. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6209. bitWrite(digit[i], j, digitalRead(D_DATA));
  6210. }
  6211. }
  6212. digitalWrite(D_REQUIRE, LOW);
  6213. mergeOutput = "";
  6214. output = 0;
  6215. for (int r = 5; r <= 10; r++) //Merge digits
  6216. {
  6217. mergeOutput += digit[r];
  6218. }
  6219. output = mergeOutput.toFloat();
  6220. if (digit[4] == 8) //Handle sign
  6221. {
  6222. output *= -1;
  6223. }
  6224. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6225. {
  6226. output /= 10;
  6227. }
  6228. return output;
  6229. }
  6230. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6231. int t1 = 0;
  6232. int t_delay = 0;
  6233. int digit[13];
  6234. int m;
  6235. char str[3];
  6236. //String mergeOutput;
  6237. char mergeOutput[15];
  6238. float output;
  6239. int mesh_point = 0; //index number of calibration point
  6240. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6241. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6242. float mesh_home_z_search = 4;
  6243. float row[x_points_num];
  6244. int ix = 0;
  6245. int iy = 0;
  6246. char* filename_wldsd = "wldsd.txt";
  6247. char data_wldsd[70];
  6248. char numb_wldsd[10];
  6249. d_setup();
  6250. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6251. // We don't know where we are! HOME!
  6252. // Push the commands to the front of the message queue in the reverse order!
  6253. // There shall be always enough space reserved for these commands.
  6254. repeatcommand_front(); // repeat G80 with all its parameters
  6255. enquecommand_front_P((PSTR("G28 W0")));
  6256. enquecommand_front_P((PSTR("G1 Z5")));
  6257. return;
  6258. }
  6259. bool custom_message_old = custom_message;
  6260. unsigned int custom_message_type_old = custom_message_type;
  6261. unsigned int custom_message_state_old = custom_message_state;
  6262. custom_message = true;
  6263. custom_message_type = 1;
  6264. custom_message_state = (x_points_num * y_points_num) + 10;
  6265. lcd_update(1);
  6266. mbl.reset();
  6267. babystep_undo();
  6268. card.openFile(filename_wldsd, false);
  6269. current_position[Z_AXIS] = mesh_home_z_search;
  6270. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6271. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6272. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6273. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6274. setup_for_endstop_move(false);
  6275. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6276. SERIAL_PROTOCOL(x_points_num);
  6277. SERIAL_PROTOCOLPGM(",");
  6278. SERIAL_PROTOCOL(y_points_num);
  6279. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6280. SERIAL_PROTOCOL(mesh_home_z_search);
  6281. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6282. SERIAL_PROTOCOL(x_dimension);
  6283. SERIAL_PROTOCOLPGM(",");
  6284. SERIAL_PROTOCOL(y_dimension);
  6285. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6286. while (mesh_point != x_points_num * y_points_num) {
  6287. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6288. iy = mesh_point / x_points_num;
  6289. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6290. float z0 = 0.f;
  6291. current_position[Z_AXIS] = mesh_home_z_search;
  6292. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6293. st_synchronize();
  6294. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6295. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6296. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6297. st_synchronize();
  6298. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6299. break;
  6300. card.closefile();
  6301. }
  6302. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6303. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6304. //strcat(data_wldsd, numb_wldsd);
  6305. //MYSERIAL.println(data_wldsd);
  6306. //delay(1000);
  6307. //delay(3000);
  6308. //t1 = millis();
  6309. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6310. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6311. memset(digit, 0, sizeof(digit));
  6312. //cli();
  6313. digitalWrite(D_REQUIRE, LOW);
  6314. for (int i = 0; i<13; i++)
  6315. {
  6316. //t1 = millis();
  6317. for (int j = 0; j < 4; j++)
  6318. {
  6319. while (digitalRead(D_DATACLOCK) == LOW) {}
  6320. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6321. bitWrite(digit[i], j, digitalRead(D_DATA));
  6322. }
  6323. //t_delay = (millis() - t1);
  6324. //SERIAL_PROTOCOLPGM(" ");
  6325. //SERIAL_PROTOCOL_F(t_delay, 5);
  6326. //SERIAL_PROTOCOLPGM(" ");
  6327. }
  6328. //sei();
  6329. digitalWrite(D_REQUIRE, HIGH);
  6330. mergeOutput[0] = '\0';
  6331. output = 0;
  6332. for (int r = 5; r <= 10; r++) //Merge digits
  6333. {
  6334. sprintf(str, "%d", digit[r]);
  6335. strcat(mergeOutput, str);
  6336. }
  6337. output = atof(mergeOutput);
  6338. if (digit[4] == 8) //Handle sign
  6339. {
  6340. output *= -1;
  6341. }
  6342. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6343. {
  6344. output *= 0.1;
  6345. }
  6346. //output = d_ReadData();
  6347. //row[ix] = current_position[Z_AXIS];
  6348. memset(data_wldsd, 0, sizeof(data_wldsd));
  6349. for (int i = 0; i <3; i++) {
  6350. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6351. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6352. strcat(data_wldsd, numb_wldsd);
  6353. strcat(data_wldsd, ";");
  6354. }
  6355. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6356. dtostrf(output, 8, 5, numb_wldsd);
  6357. strcat(data_wldsd, numb_wldsd);
  6358. //strcat(data_wldsd, ";");
  6359. card.write_command(data_wldsd);
  6360. //row[ix] = d_ReadData();
  6361. row[ix] = output; // current_position[Z_AXIS];
  6362. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6363. for (int i = 0; i < x_points_num; i++) {
  6364. SERIAL_PROTOCOLPGM(" ");
  6365. SERIAL_PROTOCOL_F(row[i], 5);
  6366. }
  6367. SERIAL_PROTOCOLPGM("\n");
  6368. }
  6369. custom_message_state--;
  6370. mesh_point++;
  6371. lcd_update(1);
  6372. }
  6373. card.closefile();
  6374. }
  6375. #endif
  6376. void temp_compensation_start() {
  6377. custom_message = true;
  6378. custom_message_type = 5;
  6379. custom_message_state = PINDA_HEAT_T + 1;
  6380. lcd_update(2);
  6381. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6382. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6383. }
  6384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6385. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6386. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6387. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6389. st_synchronize();
  6390. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6391. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6392. delay_keep_alive(1000);
  6393. custom_message_state = PINDA_HEAT_T - i;
  6394. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6395. else lcd_update(1);
  6396. }
  6397. custom_message_type = 0;
  6398. custom_message_state = 0;
  6399. custom_message = false;
  6400. }
  6401. void temp_compensation_apply() {
  6402. int i_add;
  6403. int compensation_value;
  6404. int z_shift = 0;
  6405. float z_shift_mm;
  6406. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6407. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6408. i_add = (target_temperature_bed - 60) / 10;
  6409. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6410. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6411. }else {
  6412. //interpolation
  6413. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6414. }
  6415. SERIAL_PROTOCOLPGM("\n");
  6416. SERIAL_PROTOCOLPGM("Z shift applied:");
  6417. MYSERIAL.print(z_shift_mm);
  6418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6419. st_synchronize();
  6420. plan_set_z_position(current_position[Z_AXIS]);
  6421. }
  6422. else {
  6423. //we have no temp compensation data
  6424. }
  6425. }
  6426. float temp_comp_interpolation(float inp_temperature) {
  6427. //cubic spline interpolation
  6428. int n, i, j, k;
  6429. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6430. int shift[10];
  6431. int temp_C[10];
  6432. n = 6; //number of measured points
  6433. shift[0] = 0;
  6434. for (i = 0; i < n; i++) {
  6435. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6436. temp_C[i] = 50 + i * 10; //temperature in C
  6437. #ifdef PINDA_THERMISTOR
  6438. temp_C[i] = 35 + i * 5; //temperature in C
  6439. #else
  6440. temp_C[i] = 50 + i * 10; //temperature in C
  6441. #endif
  6442. x[i] = (float)temp_C[i];
  6443. f[i] = (float)shift[i];
  6444. }
  6445. if (inp_temperature < x[0]) return 0;
  6446. for (i = n - 1; i>0; i--) {
  6447. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6448. h[i - 1] = x[i] - x[i - 1];
  6449. }
  6450. //*********** formation of h, s , f matrix **************
  6451. for (i = 1; i<n - 1; i++) {
  6452. m[i][i] = 2 * (h[i - 1] + h[i]);
  6453. if (i != 1) {
  6454. m[i][i - 1] = h[i - 1];
  6455. m[i - 1][i] = h[i - 1];
  6456. }
  6457. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6458. }
  6459. //*********** forward elimination **************
  6460. for (i = 1; i<n - 2; i++) {
  6461. temp = (m[i + 1][i] / m[i][i]);
  6462. for (j = 1; j <= n - 1; j++)
  6463. m[i + 1][j] -= temp*m[i][j];
  6464. }
  6465. //*********** backward substitution *********
  6466. for (i = n - 2; i>0; i--) {
  6467. sum = 0;
  6468. for (j = i; j <= n - 2; j++)
  6469. sum += m[i][j] * s[j];
  6470. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6471. }
  6472. for (i = 0; i<n - 1; i++)
  6473. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6474. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6475. b = s[i] / 2;
  6476. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6477. d = f[i];
  6478. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6479. }
  6480. return sum;
  6481. }
  6482. #ifdef PINDA_THERMISTOR
  6483. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6484. {
  6485. if (!temp_cal_active) return 0;
  6486. if (!calibration_status_pinda()) return 0;
  6487. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6488. }
  6489. #endif //PINDA_THERMISTOR
  6490. void long_pause() //long pause print
  6491. {
  6492. st_synchronize();
  6493. //save currently set parameters to global variables
  6494. saved_feedmultiply = feedmultiply;
  6495. HotendTempBckp = degTargetHotend(active_extruder);
  6496. fanSpeedBckp = fanSpeed;
  6497. start_pause_print = millis();
  6498. //save position
  6499. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6500. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6501. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6502. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6503. //retract
  6504. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6506. //lift z
  6507. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6508. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6510. //set nozzle target temperature to 0
  6511. setTargetHotend(0, 0);
  6512. setTargetHotend(0, 1);
  6513. setTargetHotend(0, 2);
  6514. //Move XY to side
  6515. current_position[X_AXIS] = X_PAUSE_POS;
  6516. current_position[Y_AXIS] = Y_PAUSE_POS;
  6517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6518. // Turn off the print fan
  6519. fanSpeed = 0;
  6520. st_synchronize();
  6521. }
  6522. void serialecho_temperatures() {
  6523. float tt = degHotend(active_extruder);
  6524. SERIAL_PROTOCOLPGM("T:");
  6525. SERIAL_PROTOCOL(tt);
  6526. SERIAL_PROTOCOLPGM(" E:");
  6527. SERIAL_PROTOCOL((int)active_extruder);
  6528. SERIAL_PROTOCOLPGM(" B:");
  6529. SERIAL_PROTOCOL_F(degBed(), 1);
  6530. SERIAL_PROTOCOLLN("");
  6531. }
  6532. extern uint32_t sdpos_atomic;
  6533. #ifdef UVLO_SUPPORT
  6534. void uvlo_()
  6535. {
  6536. unsigned long time_start = millis();
  6537. bool sd_print = card.sdprinting;
  6538. // Conserve power as soon as possible.
  6539. disable_x();
  6540. disable_y();
  6541. disable_e0();
  6542. #ifdef TMC2130
  6543. tmc2130_set_current_h(Z_AXIS, 20);
  6544. tmc2130_set_current_r(Z_AXIS, 20);
  6545. tmc2130_set_current_h(E_AXIS, 20);
  6546. tmc2130_set_current_r(E_AXIS, 20);
  6547. #endif //TMC2130
  6548. // Indicate that the interrupt has been triggered.
  6549. // SERIAL_ECHOLNPGM("UVLO");
  6550. // Read out the current Z motor microstep counter. This will be later used
  6551. // for reaching the zero full step before powering off.
  6552. uint16_t z_microsteps = 0;
  6553. #ifdef TMC2130
  6554. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6555. #endif //TMC2130
  6556. // Calculate the file position, from which to resume this print.
  6557. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6558. {
  6559. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6560. sd_position -= sdlen_planner;
  6561. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6562. sd_position -= sdlen_cmdqueue;
  6563. if (sd_position < 0) sd_position = 0;
  6564. }
  6565. // Backup the feedrate in mm/min.
  6566. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6567. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6568. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6569. // are in action.
  6570. planner_abort_hard();
  6571. // Store the current extruder position.
  6572. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6573. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6574. // Clean the input command queue.
  6575. cmdqueue_reset();
  6576. card.sdprinting = false;
  6577. // card.closefile();
  6578. // Enable stepper driver interrupt to move Z axis.
  6579. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6580. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6581. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6582. sei();
  6583. plan_buffer_line(
  6584. current_position[X_AXIS],
  6585. current_position[Y_AXIS],
  6586. current_position[Z_AXIS],
  6587. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6588. 95, active_extruder);
  6589. st_synchronize();
  6590. disable_e0();
  6591. plan_buffer_line(
  6592. current_position[X_AXIS],
  6593. current_position[Y_AXIS],
  6594. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6595. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6596. 40, active_extruder);
  6597. st_synchronize();
  6598. disable_e0();
  6599. plan_buffer_line(
  6600. current_position[X_AXIS],
  6601. current_position[Y_AXIS],
  6602. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6603. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6604. 40, active_extruder);
  6605. st_synchronize();
  6606. disable_e0();
  6607. disable_z();
  6608. // Move Z up to the next 0th full step.
  6609. // Write the file position.
  6610. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6611. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6612. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6613. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6614. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6615. // Scale the z value to 1u resolution.
  6616. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6617. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6618. }
  6619. // Read out the current Z motor microstep counter. This will be later used
  6620. // for reaching the zero full step before powering off.
  6621. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6622. // Store the current position.
  6623. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6624. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6625. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6626. // Store the current feed rate, temperatures and fan speed.
  6627. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6628. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6629. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6630. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6631. // Finaly store the "power outage" flag.
  6632. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6633. st_synchronize();
  6634. SERIAL_ECHOPGM("stps");
  6635. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6636. disable_z();
  6637. // Increment power failure counter
  6638. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6639. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6640. SERIAL_ECHOLNPGM("UVLO - end");
  6641. MYSERIAL.println(millis() - time_start);
  6642. #if 0
  6643. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6644. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6646. st_synchronize();
  6647. #endif
  6648. cli();
  6649. volatile unsigned int ppcount = 0;
  6650. SET_OUTPUT(BEEPER);
  6651. WRITE(BEEPER, HIGH);
  6652. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6653. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6654. }
  6655. WRITE(BEEPER, LOW);
  6656. while(1){
  6657. #if 1
  6658. WRITE(BEEPER, LOW);
  6659. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6660. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6661. }
  6662. #endif
  6663. };
  6664. }
  6665. #endif //UVLO_SUPPORT
  6666. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  6667. void setup_fan_interrupt() {
  6668. //INT7
  6669. DDRE &= ~(1 << 7); //input pin
  6670. PORTE &= ~(1 << 7); //no internal pull-up
  6671. //start with sensing rising edge
  6672. EICRB &= ~(1 << 6);
  6673. EICRB |= (1 << 7);
  6674. //enable INT7 interrupt
  6675. EIMSK |= (1 << 7);
  6676. }
  6677. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6678. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6679. ISR(INT7_vect) {
  6680. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6681. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6682. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6683. t_fan_rising_edge = millis_nc();
  6684. }
  6685. else { //interrupt was triggered by falling edge
  6686. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6687. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6688. }
  6689. }
  6690. EICRB ^= (1 << 6); //change edge
  6691. }
  6692. #endif
  6693. #ifdef UVLO_SUPPORT
  6694. void setup_uvlo_interrupt() {
  6695. DDRE &= ~(1 << 4); //input pin
  6696. PORTE &= ~(1 << 4); //no internal pull-up
  6697. //sensing falling edge
  6698. EICRB |= (1 << 0);
  6699. EICRB &= ~(1 << 1);
  6700. //enable INT4 interrupt
  6701. EIMSK |= (1 << 4);
  6702. }
  6703. ISR(INT4_vect) {
  6704. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6705. SERIAL_ECHOLNPGM("INT4");
  6706. if (IS_SD_PRINTING) uvlo_();
  6707. }
  6708. void recover_print(uint8_t automatic) {
  6709. char cmd[30];
  6710. lcd_update_enable(true);
  6711. lcd_update(2);
  6712. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6713. recover_machine_state_after_power_panic();
  6714. // Set the target bed and nozzle temperatures.
  6715. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6716. enquecommand(cmd);
  6717. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6718. enquecommand(cmd);
  6719. // Lift the print head, so one may remove the excess priming material.
  6720. if (current_position[Z_AXIS] < 25)
  6721. enquecommand_P(PSTR("G1 Z25 F800"));
  6722. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6723. enquecommand_P(PSTR("G28 X Y"));
  6724. // Set the target bed and nozzle temperatures and wait.
  6725. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6726. enquecommand(cmd);
  6727. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6728. enquecommand(cmd);
  6729. enquecommand_P(PSTR("M83")); //E axis relative mode
  6730. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6731. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6732. if(automatic == 0){
  6733. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6734. }
  6735. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6736. // Mark the power panic status as inactive.
  6737. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6738. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6739. delay_keep_alive(1000);
  6740. }*/
  6741. SERIAL_ECHOPGM("After waiting for temp:");
  6742. SERIAL_ECHOPGM("Current position X_AXIS:");
  6743. MYSERIAL.println(current_position[X_AXIS]);
  6744. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6745. MYSERIAL.println(current_position[Y_AXIS]);
  6746. // Restart the print.
  6747. restore_print_from_eeprom();
  6748. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6749. MYSERIAL.print(current_position[Z_AXIS]);
  6750. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6751. MYSERIAL.print(current_position[E_AXIS]);
  6752. }
  6753. void recover_machine_state_after_power_panic()
  6754. {
  6755. char cmd[30];
  6756. // 1) Recover the logical cordinates at the time of the power panic.
  6757. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6758. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6759. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6760. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6761. // The current position after power panic is moved to the next closest 0th full step.
  6762. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6763. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6764. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6765. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6766. sprintf_P(cmd, PSTR("G92 E"));
  6767. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6768. enquecommand(cmd);
  6769. }
  6770. memcpy(destination, current_position, sizeof(destination));
  6771. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6772. print_world_coordinates();
  6773. // 2) Initialize the logical to physical coordinate system transformation.
  6774. world2machine_initialize();
  6775. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6776. mbl.active = false;
  6777. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6778. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6779. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6780. // Scale the z value to 10u resolution.
  6781. int16_t v;
  6782. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6783. if (v != 0)
  6784. mbl.active = true;
  6785. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6786. }
  6787. if (mbl.active)
  6788. mbl.upsample_3x3();
  6789. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6790. // print_mesh_bed_leveling_table();
  6791. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6792. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6793. babystep_load();
  6794. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6796. // 6) Power up the motors, mark their positions as known.
  6797. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6798. axis_known_position[X_AXIS] = true; enable_x();
  6799. axis_known_position[Y_AXIS] = true; enable_y();
  6800. axis_known_position[Z_AXIS] = true; enable_z();
  6801. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6802. print_physical_coordinates();
  6803. // 7) Recover the target temperatures.
  6804. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6805. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6806. }
  6807. void restore_print_from_eeprom() {
  6808. float x_rec, y_rec, z_pos;
  6809. int feedrate_rec;
  6810. uint8_t fan_speed_rec;
  6811. char cmd[30];
  6812. char* c;
  6813. char filename[13];
  6814. uint8_t depth = 0;
  6815. char dir_name[9];
  6816. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6817. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6818. SERIAL_ECHOPGM("Feedrate:");
  6819. MYSERIAL.println(feedrate_rec);
  6820. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6821. MYSERIAL.println(int(depth));
  6822. for (int i = 0; i < depth; i++) {
  6823. for (int j = 0; j < 8; j++) {
  6824. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6825. }
  6826. dir_name[8] = '\0';
  6827. MYSERIAL.println(dir_name);
  6828. card.chdir(dir_name);
  6829. }
  6830. for (int i = 0; i < 8; i++) {
  6831. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6832. }
  6833. filename[8] = '\0';
  6834. MYSERIAL.print(filename);
  6835. strcat_P(filename, PSTR(".gco"));
  6836. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6837. for (c = &cmd[4]; *c; c++)
  6838. *c = tolower(*c);
  6839. enquecommand(cmd);
  6840. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6841. SERIAL_ECHOPGM("Position read from eeprom:");
  6842. MYSERIAL.println(position);
  6843. // E axis relative mode.
  6844. enquecommand_P(PSTR("M83"));
  6845. // Move to the XY print position in logical coordinates, where the print has been killed.
  6846. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6847. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6848. strcat_P(cmd, PSTR(" F2000"));
  6849. enquecommand(cmd);
  6850. // Move the Z axis down to the print, in logical coordinates.
  6851. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6852. enquecommand(cmd);
  6853. // Unretract.
  6854. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6855. // Set the feedrate saved at the power panic.
  6856. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6857. enquecommand(cmd);
  6858. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6859. {
  6860. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6861. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6862. }
  6863. // Set the fan speed saved at the power panic.
  6864. strcpy_P(cmd, PSTR("M106 S"));
  6865. strcat(cmd, itostr3(int(fan_speed_rec)));
  6866. enquecommand(cmd);
  6867. // Set a position in the file.
  6868. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6869. enquecommand(cmd);
  6870. // Start SD print.
  6871. enquecommand_P(PSTR("M24"));
  6872. }
  6873. #endif //UVLO_SUPPORT
  6874. ////////////////////////////////////////////////////////////////////////////////
  6875. // new save/restore printing
  6876. //extern uint32_t sdpos_atomic;
  6877. bool saved_printing = false;
  6878. uint32_t saved_sdpos = 0;
  6879. float saved_pos[4] = {0, 0, 0, 0};
  6880. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6881. float saved_feedrate2 = 0;
  6882. uint8_t saved_active_extruder = 0;
  6883. bool saved_extruder_under_pressure = false;
  6884. void stop_and_save_print_to_ram(float z_move, float e_move)
  6885. {
  6886. if (saved_printing) return;
  6887. cli();
  6888. unsigned char nplanner_blocks = number_of_blocks();
  6889. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6890. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6891. saved_sdpos -= sdlen_planner;
  6892. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6893. saved_sdpos -= sdlen_cmdqueue;
  6894. #if 0
  6895. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6896. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6897. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6898. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6899. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6900. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6901. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6902. {
  6903. card.setIndex(saved_sdpos);
  6904. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6905. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6906. MYSERIAL.print(char(card.get()));
  6907. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6908. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6909. MYSERIAL.print(char(card.get()));
  6910. SERIAL_ECHOLNPGM("End of command buffer");
  6911. }
  6912. {
  6913. // Print the content of the planner buffer, line by line:
  6914. card.setIndex(saved_sdpos);
  6915. int8_t iline = 0;
  6916. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6917. SERIAL_ECHOPGM("Planner line (from file): ");
  6918. MYSERIAL.print(int(iline), DEC);
  6919. SERIAL_ECHOPGM(", length: ");
  6920. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6921. SERIAL_ECHOPGM(", steps: (");
  6922. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6923. SERIAL_ECHOPGM(",");
  6924. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6925. SERIAL_ECHOPGM(",");
  6926. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6927. SERIAL_ECHOPGM(",");
  6928. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6929. SERIAL_ECHOPGM("), events: ");
  6930. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6931. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6932. MYSERIAL.print(char(card.get()));
  6933. }
  6934. }
  6935. {
  6936. // Print the content of the command buffer, line by line:
  6937. int8_t iline = 0;
  6938. union {
  6939. struct {
  6940. char lo;
  6941. char hi;
  6942. } lohi;
  6943. uint16_t value;
  6944. } sdlen_single;
  6945. int _bufindr = bufindr;
  6946. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6947. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6948. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6949. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6950. }
  6951. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6952. MYSERIAL.print(int(iline), DEC);
  6953. SERIAL_ECHOPGM(", type: ");
  6954. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6955. SERIAL_ECHOPGM(", len: ");
  6956. MYSERIAL.println(sdlen_single.value, DEC);
  6957. // Print the content of the buffer line.
  6958. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6959. SERIAL_ECHOPGM("Buffer line (from file): ");
  6960. MYSERIAL.print(int(iline), DEC);
  6961. MYSERIAL.println(int(iline), DEC);
  6962. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6963. MYSERIAL.print(char(card.get()));
  6964. if (-- _buflen == 0)
  6965. break;
  6966. // First skip the current command ID and iterate up to the end of the string.
  6967. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6968. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6969. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6970. // If the end of the buffer was empty,
  6971. if (_bufindr == sizeof(cmdbuffer)) {
  6972. // skip to the start and find the nonzero command.
  6973. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6974. }
  6975. }
  6976. }
  6977. #endif
  6978. #if 0
  6979. saved_feedrate2 = feedrate; //save feedrate
  6980. #else
  6981. // Try to deduce the feedrate from the first block of the planner.
  6982. // Speed is in mm/min.
  6983. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6984. #endif
  6985. planner_abort_hard(); //abort printing
  6986. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6987. saved_active_extruder = active_extruder; //save active_extruder
  6988. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6989. cmdqueue_reset(); //empty cmdqueue
  6990. card.sdprinting = false;
  6991. // card.closefile();
  6992. saved_printing = true;
  6993. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  6994. st_reset_timer();
  6995. sei();
  6996. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6997. #if 1
  6998. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6999. char buf[48];
  7000. strcpy_P(buf, PSTR("G1 Z"));
  7001. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7002. strcat_P(buf, PSTR(" E"));
  7003. // Relative extrusion
  7004. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7005. strcat_P(buf, PSTR(" F"));
  7006. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7007. // At this point the command queue is empty.
  7008. enquecommand(buf, false);
  7009. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7010. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7011. repeatcommand_front();
  7012. #else
  7013. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7014. st_synchronize(); //wait moving
  7015. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7016. memcpy(destination, current_position, sizeof(destination));
  7017. #endif
  7018. }
  7019. }
  7020. void restore_print_from_ram_and_continue(float e_move)
  7021. {
  7022. if (!saved_printing) return;
  7023. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7024. // current_position[axis] = st_get_position_mm(axis);
  7025. active_extruder = saved_active_extruder; //restore active_extruder
  7026. feedrate = saved_feedrate2; //restore feedrate
  7027. float e = saved_pos[E_AXIS] - e_move;
  7028. plan_set_e_position(e);
  7029. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7030. st_synchronize();
  7031. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7032. memcpy(destination, current_position, sizeof(destination));
  7033. card.setIndex(saved_sdpos);
  7034. sdpos_atomic = saved_sdpos;
  7035. card.sdprinting = true;
  7036. saved_printing = false;
  7037. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7038. }
  7039. void print_world_coordinates()
  7040. {
  7041. SERIAL_ECHOPGM("world coordinates: (");
  7042. MYSERIAL.print(current_position[X_AXIS], 3);
  7043. SERIAL_ECHOPGM(", ");
  7044. MYSERIAL.print(current_position[Y_AXIS], 3);
  7045. SERIAL_ECHOPGM(", ");
  7046. MYSERIAL.print(current_position[Z_AXIS], 3);
  7047. SERIAL_ECHOLNPGM(")");
  7048. }
  7049. void print_physical_coordinates()
  7050. {
  7051. SERIAL_ECHOPGM("physical coordinates: (");
  7052. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7053. SERIAL_ECHOPGM(", ");
  7054. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7055. SERIAL_ECHOPGM(", ");
  7056. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7057. SERIAL_ECHOLNPGM(")");
  7058. }
  7059. void print_mesh_bed_leveling_table()
  7060. {
  7061. SERIAL_ECHOPGM("mesh bed leveling: ");
  7062. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7063. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7064. MYSERIAL.print(mbl.z_values[y][x], 3);
  7065. SERIAL_ECHOPGM(" ");
  7066. }
  7067. SERIAL_ECHOLNPGM("");
  7068. }
  7069. #define FIL_LOAD_LENGTH 60
  7070. void extr_unload2() { //unloads filament
  7071. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7072. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7073. // int8_t SilentMode;
  7074. uint8_t snmm_extruder = 0;
  7075. if (degHotend0() > EXTRUDE_MINTEMP) {
  7076. lcd_implementation_clear();
  7077. lcd_display_message_fullscreen_P(PSTR(""));
  7078. max_feedrate[E_AXIS] = 50;
  7079. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7080. // lcd.print(" ");
  7081. // lcd.print(snmm_extruder + 1);
  7082. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7083. if (current_position[Z_AXIS] < 15) {
  7084. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7086. }
  7087. current_position[E_AXIS] += 10; //extrusion
  7088. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7089. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7090. if (current_temperature[0] < 230) { //PLA & all other filaments
  7091. current_position[E_AXIS] += 5.4;
  7092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7093. current_position[E_AXIS] += 3.2;
  7094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7095. current_position[E_AXIS] += 3;
  7096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7097. }
  7098. else { //ABS
  7099. current_position[E_AXIS] += 3.1;
  7100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7101. current_position[E_AXIS] += 3.1;
  7102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7103. current_position[E_AXIS] += 4;
  7104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7105. /*current_position[X_AXIS] += 23; //delay
  7106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7107. current_position[X_AXIS] -= 23; //delay
  7108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7109. delay_keep_alive(4700);
  7110. }
  7111. max_feedrate[E_AXIS] = 80;
  7112. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7114. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7116. st_synchronize();
  7117. //digipot_init();
  7118. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7119. // else digipot_current(2, tmp_motor_loud[2]);
  7120. lcd_update_enable(true);
  7121. // lcd_return_to_status();
  7122. max_feedrate[E_AXIS] = 50;
  7123. }
  7124. else {
  7125. lcd_implementation_clear();
  7126. lcd.setCursor(0, 0);
  7127. lcd_printPGM(MSG_ERROR);
  7128. lcd.setCursor(0, 2);
  7129. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7130. delay(2000);
  7131. lcd_implementation_clear();
  7132. }
  7133. // lcd_return_to_status();
  7134. }