12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433 |
- /*
- planner.c - buffers movement commands and manages the acceleration profile plan
- Part of Grbl
-
- Copyright (c) 2009-2011 Simen Svale Skogsrud
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
- /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
- /*
- Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
-
- s == speed, a == acceleration, t == time, d == distance
-
- Basic definitions:
-
- Speed[s_, a_, t_] := s + (a*t)
- Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
-
- Distance to reach a specific speed with a constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
-
- Speed after a given distance of travel with constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- m -> Sqrt[2 a d + s^2]
-
- DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
-
- When to start braking (di) to reach a specified destionation speed (s2) after accelerating
- from initial speed s1 without ever stopping at a plateau:
-
- Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
-
- IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- */
- #include "Marlin.h"
- #include "planner.h"
- #include "stepper.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #ifdef MESH_BED_LEVELING
- #include "mesh_bed_leveling.h"
- #include "mesh_bed_calibration.h"
- #endif
- #ifdef TMC2130
- #include "tmc2130.h"
- #endif //TMC2130
- //===========================================================================
- //=============================public variables ============================
- //===========================================================================
- unsigned long minsegmenttime;
- float max_feedrate[NUM_AXIS]; // set the max speeds
- float axis_steps_per_unit[NUM_AXIS];
- unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
- float minimumfeedrate;
- float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
- float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
- // Jerk is a maximum immediate velocity change.
- float max_jerk[NUM_AXIS];
- float mintravelfeedrate;
- unsigned long axis_steps_per_sqr_second[NUM_AXIS];
- #ifdef ENABLE_AUTO_BED_LEVELING
- // this holds the required transform to compensate for bed level
- matrix_3x3 plan_bed_level_matrix = {
- 1.0, 0.0, 0.0,
- 0.0, 1.0, 0.0,
- 0.0, 0.0, 1.0,
- };
- #endif // #ifdef ENABLE_AUTO_BED_LEVELING
- // The current position of the tool in absolute steps
- long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
- static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
- static float previous_nominal_speed; // Nominal speed of previous path line segment
- static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
- #ifdef AUTOTEMP
- float autotemp_max=250;
- float autotemp_min=210;
- float autotemp_factor=0.1;
- bool autotemp_enabled=false;
- #endif
- unsigned char g_uc_extruder_last_move[3] = {0,0,0};
- //===========================================================================
- //=================semi-private variables, used in inline functions =====
- //===========================================================================
- block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
- volatile unsigned char block_buffer_head; // Index of the next block to be pushed
- volatile unsigned char block_buffer_tail; // Index of the block to process now
- #ifdef PLANNER_DIAGNOSTICS
- // Diagnostic function: Minimum number of planned moves since the last
- static uint8_t g_cntr_planner_queue_min = 0;
- #endif /* PLANNER_DIAGNOSTICS */
- //===========================================================================
- //=============================private variables ============================
- //===========================================================================
- #ifdef PREVENT_DANGEROUS_EXTRUDE
- float extrude_min_temp=EXTRUDE_MINTEMP;
- #endif
- #ifdef FILAMENT_SENSOR
- static char meas_sample; //temporary variable to hold filament measurement sample
- #endif
- #ifdef LIN_ADVANCE
- float extruder_advance_k = LIN_ADVANCE_K,
- advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
- position_float[NUM_AXIS] = { 0 };
- #endif
- // Returns the index of the next block in the ring buffer
- // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
- static inline int8_t next_block_index(int8_t block_index) {
- if (++ block_index == BLOCK_BUFFER_SIZE)
- block_index = 0;
- return block_index;
- }
- // Returns the index of the previous block in the ring buffer
- static inline int8_t prev_block_index(int8_t block_index) {
- if (block_index == 0)
- block_index = BLOCK_BUFFER_SIZE;
- -- block_index;
- return block_index;
- }
- //===========================================================================
- //=============================functions ============================
- //===========================================================================
- // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
- // given acceleration:
- FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
- {
- if (acceleration!=0) {
- return((target_rate*target_rate-initial_rate*initial_rate)/
- (2.0*acceleration));
- }
- else {
- return 0.0; // acceleration was 0, set acceleration distance to 0
- }
- }
- // This function gives you the point at which you must start braking (at the rate of -acceleration) if
- // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
- // a total travel of distance. This can be used to compute the intersection point between acceleration and
- // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
- FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
- {
- if (acceleration!=0) {
- return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
- (4.0*acceleration) );
- }
- else {
- return 0.0; // acceleration was 0, set intersection distance to 0
- }
- }
- #define MINIMAL_STEP_RATE 120
- // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
- void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
- {
- // These two lines are the only floating point calculations performed in this routine.
- uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
- uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
- // Limit minimal step rate (Otherwise the timer will overflow.)
- if (initial_rate < MINIMAL_STEP_RATE)
- initial_rate = MINIMAL_STEP_RATE;
- if (initial_rate > block->nominal_rate)
- initial_rate = block->nominal_rate;
- if (final_rate < MINIMAL_STEP_RATE)
- final_rate = MINIMAL_STEP_RATE;
- if (final_rate > block->nominal_rate)
- final_rate = block->nominal_rate;
- uint32_t acceleration = block->acceleration_st;
- if (acceleration == 0)
- // Don't allow zero acceleration.
- acceleration = 1;
- // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
- // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
- uint32_t initial_rate_sqr = initial_rate*initial_rate;
- //FIXME assert that this result fits a 64bit unsigned int.
- uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
- uint32_t final_rate_sqr = final_rate*final_rate;
- uint32_t acceleration_x2 = acceleration << 1;
- // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
- uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
- // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
- uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
- uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
- // Size of Plateau of Nominal Rate.
- uint32_t plateau_steps = 0;
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
- // have to use intersection_distance() to calculate when to abort acceleration and start braking
- // in order to reach the final_rate exactly at the end of this block.
- if (accel_decel_steps < block->step_event_count) {
- plateau_steps = block->step_event_count - accel_decel_steps;
- } else {
- uint32_t acceleration_x4 = acceleration << 2;
- // Avoid negative numbers
- if (final_rate_sqr >= initial_rate_sqr) {
- // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
- // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
- // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
- #if 0
- accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
- #else
- accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
- if (block->step_event_count & 1)
- accelerate_steps += acceleration_x2;
- accelerate_steps /= acceleration_x4;
- accelerate_steps += (block->step_event_count >> 1);
- #endif
- if (accelerate_steps > block->step_event_count)
- accelerate_steps = block->step_event_count;
- } else {
- #if 0
- decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
- #else
- decelerate_steps = initial_rate_sqr - final_rate_sqr;
- if (block->step_event_count & 1)
- decelerate_steps += acceleration_x2;
- decelerate_steps /= acceleration_x4;
- decelerate_steps += (block->step_event_count >> 1);
- #endif
- if (decelerate_steps > block->step_event_count)
- decelerate_steps = block->step_event_count;
- accelerate_steps = block->step_event_count - decelerate_steps;
- }
- }
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
- // This block locks the interrupts globally for 4.38 us,
- // which corresponds to a maximum repeat frequency of 228.57 kHz.
- // This blocking is safe in the context of a 10kHz stepper driver interrupt
- // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
- if (! block->busy) { // Don't update variables if block is busy.
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = accelerate_steps+plateau_steps;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
- }
- CRITICAL_SECTION_END;
- }
- // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
- // decceleration within the allotted distance.
- FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
- {
- // assert(decceleration < 0);
- return sqrt(target_velocity*target_velocity-2*decceleration*distance);
- }
- // Recalculates the motion plan according to the following algorithm:
- //
- // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
- // so that:
- // a. The junction jerk is within the set limit
- // b. No speed reduction within one block requires faster deceleration than the one, true constant
- // acceleration.
- // 2. Go over every block in chronological order and dial down junction speed reduction values if
- // a. The speed increase within one block would require faster accelleration than the one, true
- // constant acceleration.
- //
- // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
- // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
- // the set limit. Finally it will:
- //
- // 3. Recalculate trapezoids for all blocks.
- //
- //FIXME This routine is called 15x every time a new line is added to the planner,
- // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
- // if the CPU is found lacking computational power.
- //
- // Following sources may be used to optimize the 8-bit AVR code:
- // http://www.mikrocontroller.net/articles/AVR_Arithmetik
- // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
- //
- // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
- // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
- // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
- //
- // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
- // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
- // https://github.com/rekka/avrmultiplication
- //
- // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
- // https://courses.cit.cornell.edu/ee476/Math/
- // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
- //
- void planner_recalculate(const float &safe_final_speed)
- {
- // Reverse pass
- // Make a local copy of block_buffer_tail, because the interrupt can alter it
- // by consuming the blocks, therefore shortening the queue.
- unsigned char tail = block_buffer_tail;
- uint8_t block_index;
- block_t *prev, *current, *next;
- // SERIAL_ECHOLNPGM("planner_recalculate - 1");
- // At least three blocks are in the queue?
- unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
- if (n_blocks >= 3) {
- // Initialize the last tripple of blocks.
- block_index = prev_block_index(block_buffer_head);
- next = block_buffer + block_index;
- current = block_buffer + (block_index = prev_block_index(block_index));
- // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
- // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
- // 1) it may already be running at the stepper interrupt,
- // 2) there is no way to limit it when going in the forward direction.
- while (block_index != tail) {
- if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
- // Don't modify the entry velocity of the starting block.
- // Also don't modify the trapezoids before this block, they are finalized already, prepared
- // for the stepper interrupt routine to use them.
- tail = block_index;
- // Update the number of blocks to process.
- n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
- // SERIAL_ECHOLNPGM("START");
- break;
- }
- // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
- // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
- // check for maximum allowable speed reductions to ensure maximum possible planned speed.
- if (current->entry_speed != current->max_entry_speed) {
- // assert(current->entry_speed < current->max_entry_speed);
- // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
- // segment and the maximum acceleration allowed for this segment.
- // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
- // Only compute for max allowable speed if block is decelerating and nominal length is false.
- // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
- // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
- // together with an assembly 32bit->16bit sqrt function.
- current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
- current->max_entry_speed :
- // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
- min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
- current->flag |= BLOCK_FLAG_RECALCULATE;
- }
- next = current;
- current = block_buffer + (block_index = prev_block_index(block_index));
- }
- }
- // SERIAL_ECHOLNPGM("planner_recalculate - 2");
- // Forward pass and recalculate the trapezoids.
- if (n_blocks >= 2) {
- // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
- block_index = tail;
- prev = block_buffer + block_index;
- current = block_buffer + (block_index = next_block_index(block_index));
- do {
- // If the previous block is an acceleration block, but it is not long enough to complete the
- // full speed change within the block, we need to adjust the entry speed accordingly. Entry
- // speeds have already been reset, maximized, and reverse planned by reverse planner.
- // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
- if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
- float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
- // Check for junction speed change
- if (current->entry_speed != entry_speed) {
- current->entry_speed = entry_speed;
- current->flag |= BLOCK_FLAG_RECALCULATE;
- }
- }
- // Recalculate if current block entry or exit junction speed has changed.
- if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
- // NOTE: Entry and exit factors always > 0 by all previous logic operations.
- calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
- // Reset current only to ensure next trapezoid is computed.
- prev->flag &= ~BLOCK_FLAG_RECALCULATE;
- }
- prev = current;
- current = block_buffer + (block_index = next_block_index(block_index));
- } while (block_index != block_buffer_head);
- }
- // SERIAL_ECHOLNPGM("planner_recalculate - 3");
- // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
- current = block_buffer + prev_block_index(block_buffer_head);
- calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
- current->flag &= ~BLOCK_FLAG_RECALCULATE;
- // SERIAL_ECHOLNPGM("planner_recalculate - 4");
- }
- void plan_init() {
- block_buffer_head = 0;
- block_buffer_tail = 0;
- memset(position, 0, sizeof(position)); // clear position
- #ifdef LIN_ADVANCE
- memset(position_float, 0, sizeof(position)); // clear position
- #endif
- previous_speed[0] = 0.0;
- previous_speed[1] = 0.0;
- previous_speed[2] = 0.0;
- previous_speed[3] = 0.0;
- previous_nominal_speed = 0.0;
- }
- #ifdef AUTOTEMP
- void getHighESpeed()
- {
- static float oldt=0;
- if(!autotemp_enabled){
- return;
- }
- if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
- return; //do nothing
- }
- float high=0.0;
- uint8_t block_index = block_buffer_tail;
- while(block_index != block_buffer_head) {
- if((block_buffer[block_index].steps_x != 0) ||
- (block_buffer[block_index].steps_y != 0) ||
- (block_buffer[block_index].steps_z != 0)) {
- float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
- //se; mm/sec;
- if(se>high)
- {
- high=se;
- }
- }
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
- }
- float g=autotemp_min+high*autotemp_factor;
- float t=g;
- if(t<autotemp_min)
- t=autotemp_min;
- if(t>autotemp_max)
- t=autotemp_max;
- if(oldt>t)
- {
- t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
- }
- oldt=t;
- setTargetHotend0(t);
- }
- #endif
- void check_axes_activity()
- {
- unsigned char x_active = 0;
- unsigned char y_active = 0;
- unsigned char z_active = 0;
- unsigned char e_active = 0;
- unsigned char tail_fan_speed = fanSpeed;
- block_t *block;
- if(block_buffer_tail != block_buffer_head)
- {
- uint8_t block_index = block_buffer_tail;
- tail_fan_speed = block_buffer[block_index].fan_speed;
- while(block_index != block_buffer_head)
- {
- block = &block_buffer[block_index];
- if(block->steps_x != 0) x_active++;
- if(block->steps_y != 0) y_active++;
- if(block->steps_z != 0) z_active++;
- if(block->steps_e != 0) e_active++;
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
- }
- }
- if((DISABLE_X) && (x_active == 0)) disable_x();
- if((DISABLE_Y) && (y_active == 0)) disable_y();
- if((DISABLE_Z) && (z_active == 0)) disable_z();
- if((DISABLE_E) && (e_active == 0))
- {
- disable_e0();
- disable_e1();
- disable_e2();
- }
- #if defined(FAN_PIN) && FAN_PIN > -1
- #ifdef FAN_KICKSTART_TIME
- static unsigned long fan_kick_end;
- if (tail_fan_speed) {
- if (fan_kick_end == 0) {
- // Just starting up fan - run at full power.
- fan_kick_end = millis() + FAN_KICKSTART_TIME;
- tail_fan_speed = 255;
- } else if (fan_kick_end > millis())
- // Fan still spinning up.
- tail_fan_speed = 255;
- } else {
- fan_kick_end = 0;
- }
- #endif//FAN_KICKSTART_TIME
- #ifdef FAN_SOFT_PWM
- fanSpeedSoftPwm = tail_fan_speed;
- #else
- analogWrite(FAN_PIN,tail_fan_speed);
- #endif//!FAN_SOFT_PWM
- #endif//FAN_PIN > -1
- #ifdef AUTOTEMP
- getHighESpeed();
- #endif
- }
- bool waiting_inside_plan_buffer_line_print_aborted = false;
- /*
- void planner_abort_soft()
- {
- // Empty the queue.
- while (blocks_queued()) plan_discard_current_block();
- // Relay to planner wait routine, that the current line shall be canceled.
- waiting_inside_plan_buffer_line_print_aborted = true;
- //current_position[i]
- }
- */
- #ifdef PLANNER_DIAGNOSTICS
- static inline void planner_update_queue_min_counter()
- {
- uint8_t new_counter = moves_planned();
- if (new_counter < g_cntr_planner_queue_min)
- g_cntr_planner_queue_min = new_counter;
- }
- #endif /* PLANNER_DIAGNOSTICS */
- extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
- void planner_abort_hard()
- {
- // Abort the stepper routine and flush the planner queue.
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
- // First update the planner's current position in the physical motor steps.
- position[X_AXIS] = st_get_position(X_AXIS);
- position[Y_AXIS] = st_get_position(Y_AXIS);
- position[Z_AXIS] = st_get_position(Z_AXIS);
- position[E_AXIS] = st_get_position(E_AXIS);
- // Second update the current position of the front end.
- current_position[X_AXIS] = st_get_position_mm(X_AXIS);
- current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
- current_position[E_AXIS] = st_get_position_mm(E_AXIS);
- // Apply the mesh bed leveling correction to the Z axis.
- #ifdef MESH_BED_LEVELING
- if (mbl.active) {
- #if 1
- // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
- // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
- current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
- #else
- // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
- if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
- current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
- else {
- float t = float(step_events_completed) / float(current_block->step_event_count);
- float vec[3] = {
- current_block->steps_x / axis_steps_per_unit[X_AXIS],
- current_block->steps_y / axis_steps_per_unit[Y_AXIS],
- current_block->steps_z / axis_steps_per_unit[Z_AXIS]
- };
- float pos1[3], pos2[3];
- for (int8_t i = 0; i < 3; ++ i) {
- if (current_block->direction_bits & (1<<i))
- vec[i] = - vec[i];
- pos1[i] = current_position[i] - vec[i] * t;
- pos2[i] = current_position[i] + vec[i] * (1.f - t);
- }
- pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
- pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
- current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
- }
- #endif
- }
- #endif
- // Clear the planner queue, reset and re-enable the stepper timer.
- quickStop();
- // Apply inverse world correction matrix.
- machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
- memcpy(destination, current_position, sizeof(destination));
- // Resets planner junction speeds. Assumes start from rest.
- previous_nominal_speed = 0.0;
- previous_speed[0] = 0.0;
- previous_speed[1] = 0.0;
- previous_speed[2] = 0.0;
- previous_speed[3] = 0.0;
- // Relay to planner wait routine, that the current line shall be canceled.
- waiting_inside_plan_buffer_line_print_aborted = true;
- }
- float junction_deviation = 0.1;
- // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
- // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
- // calculation the caller must also provide the physical length of the line in millimeters.
- void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
- {
- // Calculate the buffer head after we push this byte
- int next_buffer_head = next_block_index(block_buffer_head);
- // If the buffer is full: good! That means we are well ahead of the robot.
- // Rest here until there is room in the buffer.
- if (block_buffer_tail == next_buffer_head) {
- waiting_inside_plan_buffer_line_print_aborted = false;
- do {
- manage_heater();
- // Vojtech: Don't disable motors inside the planner!
- manage_inactivity(false);
- lcd_update();
- } while (block_buffer_tail == next_buffer_head);
- if (waiting_inside_plan_buffer_line_print_aborted) {
- // Inside the lcd_update() routine the print has been aborted.
- // Cancel the print, do not plan the current line this routine is waiting on.
- #ifdef PLANNER_DIAGNOSTICS
- planner_update_queue_min_counter();
- #endif /* PLANNER_DIAGNOSTICS */
- return;
- }
- }
- #ifdef PLANNER_DIAGNOSTICS
- planner_update_queue_min_counter();
- #endif /* PLANNER_DIAGNOSTICS */
- #ifdef ENABLE_AUTO_BED_LEVELING
- apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
- #endif // ENABLE_AUTO_BED_LEVELING
- // Apply the machine correction matrix.
- {
- #if 0
- SERIAL_ECHOPGM("Planner, current position - servos: ");
- MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Planner, target position, initial: ");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Planner, world2machine: ");
- MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
- SERIAL_ECHOLNPGM("");
- SERIAL_ECHOPGM("Planner, offset: ");
- MYSERIAL.print(world2machine_shift[0], 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(world2machine_shift[1], 5);
- SERIAL_ECHOLNPGM("");
- #endif
- world2machine(x, y);
- #if 0
- SERIAL_ECHOPGM("Planner, target position, corrected: ");
- MYSERIAL.print(x, 5);
- SERIAL_ECHOPGM(", ");
- MYSERIAL.print(y, 5);
- SERIAL_ECHOLNPGM("");
- #endif
- }
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
- long target[4];
- target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- #ifdef MESH_BED_LEVELING
- if (mbl.active){
- target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
- }else{
- target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- }
- #else
- target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- #endif // ENABLE_MESH_BED_LEVELING
- target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
-
- #ifdef LIN_ADVANCE
- const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
- float de_float = e - position_float[E_AXIS];
- #endif
-
- #ifdef PREVENT_DANGEROUS_EXTRUDE
- if(target[E_AXIS]!=position[E_AXIS])
- {
- if(degHotend(active_extruder)<extrude_min_temp)
- {
- position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
- #ifdef LIN_ADVANCE
- position_float[E_AXIS] = e;
- de_float = 0;
- #endif
- SERIAL_ECHO_START;
- SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
- }
-
- #ifdef PREVENT_LENGTHY_EXTRUDE
- if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
- {
- position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
- #ifdef LIN_ADVANCE
- position_float[E_AXIS] = e;
- de_float = 0;
- #endif
- SERIAL_ECHO_START;
- SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
- }
- #endif
- }
- #endif
- // Prepare to set up new block
- block_t *block = &block_buffer[block_buffer_head];
- // Set sdlen for calculating sd position
- block->sdlen = 0;
- // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
- block->busy = false;
- // Number of steps for each axis
- #ifndef COREXY
- // default non-h-bot planning
- block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
- block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
- #else
- // corexy planning
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
- block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
- block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
- #endif
- block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
- block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
- if (volumetric_multiplier[active_extruder] != 1.f)
- block->steps_e *= volumetric_multiplier[active_extruder];
- if (extrudemultiply != 100) {
- block->steps_e *= extrudemultiply;
- block->steps_e /= 100;
- }
- block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
- // Bail if this is a zero-length block
- if (block->step_event_count <= dropsegments)
- {
- #ifdef PLANNER_DIAGNOSTICS
- planner_update_queue_min_counter();
- #endif /* PLANNER_DIAGNOSTICS */
- return;
- }
- block->fan_speed = fanSpeed;
- // Compute direction bits for this block
- block->direction_bits = 0;
- #ifndef COREXY
- if (target[X_AXIS] < position[X_AXIS])
- {
- block->direction_bits |= (1<<X_AXIS);
- }
- if (target[Y_AXIS] < position[Y_AXIS])
- {
- block->direction_bits |= (1<<Y_AXIS);
- }
- #else
- if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
- {
- block->direction_bits |= (1<<X_AXIS);
- }
- if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
- {
- block->direction_bits |= (1<<Y_AXIS);
- }
- #endif
- if (target[Z_AXIS] < position[Z_AXIS])
- {
- block->direction_bits |= (1<<Z_AXIS);
- }
- if (target[E_AXIS] < position[E_AXIS])
- {
- block->direction_bits |= (1<<E_AXIS);
- }
- block->active_extruder = extruder;
- //enable active axes
- #ifdef COREXY
- if((block->steps_x != 0) || (block->steps_y != 0))
- {
- enable_x();
- enable_y();
- }
- #else
- if(block->steps_x != 0) enable_x();
- if(block->steps_y != 0) enable_y();
- #endif
- #ifndef Z_LATE_ENABLE
- if(block->steps_z != 0) enable_z();
- #endif
- // Enable extruder(s)
- if(block->steps_e != 0)
- {
- if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
- {
- if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
- if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
- if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
-
- switch(extruder)
- {
- case 0:
- enable_e0();
- g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
-
- if(g_uc_extruder_last_move[1] == 0) disable_e1();
- if(g_uc_extruder_last_move[2] == 0) disable_e2();
- break;
- case 1:
- enable_e1();
- g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
-
- if(g_uc_extruder_last_move[0] == 0) disable_e0();
- if(g_uc_extruder_last_move[2] == 0) disable_e2();
- break;
- case 2:
- enable_e2();
- g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
-
- if(g_uc_extruder_last_move[0] == 0) disable_e0();
- if(g_uc_extruder_last_move[1] == 0) disable_e1();
- break;
- }
- }
- else //enable all
- {
- enable_e0();
- enable_e1();
- enable_e2();
- }
- }
- if (block->steps_e == 0)
- {
- if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
- }
- else
- {
- if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
- }
- /* This part of the code calculates the total length of the movement.
- For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
- But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
- and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
- So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
- Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
- */
- #ifndef COREXY
- float delta_mm[4];
- delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
- delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
- #else
- float delta_mm[6];
- delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
- delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
- delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
- delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
- #endif
- delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
- delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
- if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
- {
- block->millimeters = fabs(delta_mm[E_AXIS]);
- }
- else
- {
- #ifndef COREXY
- block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
- #else
- block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
- #endif
- }
- float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
- // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
- float inverse_second = feed_rate * inverse_millimeters;
- int moves_queued = moves_planned();
- // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
- #ifdef SLOWDOWN
- //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
- // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
- if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
- // segment time in micro seconds
- unsigned long segment_time = lround(1000000.0/inverse_second);
- if (segment_time < minsegmenttime)
- // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
- }
- #endif // SLOWDOWN
- block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
- block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
- #ifdef FILAMENT_SENSOR
- //FMM update ring buffer used for delay with filament measurements
-
-
- if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
- {
- delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
-
- while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
- delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
- while (delay_dist<0)
- delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
-
- delay_index1=delay_dist/10.0; //calculate index
-
- //ensure the number is within range of the array after converting from floating point
- if(delay_index1<0)
- delay_index1=0;
- else if (delay_index1>MAX_MEASUREMENT_DELAY)
- delay_index1=MAX_MEASUREMENT_DELAY;
-
- if(delay_index1 != delay_index2) //moved index
- {
- meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
- }
- while( delay_index1 != delay_index2)
- {
- delay_index2 = delay_index2 + 1;
- if(delay_index2>MAX_MEASUREMENT_DELAY)
- delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
- if(delay_index2<0)
- delay_index2=0;
- else if (delay_index2>MAX_MEASUREMENT_DELAY)
- delay_index2=MAX_MEASUREMENT_DELAY;
-
- measurement_delay[delay_index2]=meas_sample;
- }
-
-
- }
- #endif
- // Calculate and limit speed in mm/sec for each axis
- float current_speed[4];
- float speed_factor = 1.0; //factor <=1 do decrease speed
- for(int i=0; i < 4; i++)
- {
- current_speed[i] = delta_mm[i] * inverse_second;
- #ifdef TMC2130
- float max_fr = max_feedrate[i];
- if (i < 2) // X, Y
- {
- if (tmc2130_mode == TMC2130_MODE_SILENT)
- {
- if (max_fr > SILENT_MAX_FEEDRATE)
- max_fr = SILENT_MAX_FEEDRATE;
- }
- else
- {
- if (max_fr > NORMAL_MAX_FEEDRATE)
- max_fr = NORMAL_MAX_FEEDRATE;
- }
- }
- if(fabs(current_speed[i]) > max_fr)
- speed_factor = min(speed_factor, max_fr / fabs(current_speed[i]));
- #else //TMC2130
- if(fabs(current_speed[i]) > max_feedrate[i])
- speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
- #endif //TMC2130
- }
- // Correct the speed
- if( speed_factor < 1.0)
- {
- for(unsigned char i=0; i < 4; i++)
- {
- current_speed[i] *= speed_factor;
- }
- block->nominal_speed *= speed_factor;
- block->nominal_rate *= speed_factor;
- }
- // Compute and limit the acceleration rate for the trapezoid generator.
- // block->step_event_count ... event count of the fastest axis
- // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
- float steps_per_mm = block->step_event_count/block->millimeters;
- if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
- {
- block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
- }
- else
- {
- block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
- #ifdef TMC2130
- #ifdef SIMPLE_ACCEL_LIMIT // in some cases can be acceleration limited inproperly
- if (tmc2130_mode == TMC2130_MODE_SILENT)
- {
- if (block->steps_x || block->steps_y)
- if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
- }
- else
- {
- if (block->steps_x || block->steps_y)
- if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
- }
- if (block->steps_x && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
- if (block->steps_y && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
- if (block->steps_z && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
- if (block->steps_e && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
- #else // SIMPLE_ACCEL_LIMIT
- if (tmc2130_mode == TMC2130_MODE_SILENT)
- {
- if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
- if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
- }
- else
- {
- if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
- if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
- }
- if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
- #endif // SIMPLE_ACCEL_LIMIT
- #else //TMC2130
- // Limit acceleration per axis
- //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
- if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
- if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
- #endif //TMC2130
- }
- // Acceleration of the segment, in mm/sec^2
- block->acceleration = block->acceleration_st / steps_per_mm;
- #if 0
- // Oversample diagonal movements by a power of 2 up to 8x
- // to achieve more accurate diagonal movements.
- uint8_t bresenham_oversample = 1;
- for (uint8_t i = 0; i < 3; ++ i) {
- if (block->nominal_rate >= 5000) // 5kHz
- break;
- block->nominal_rate << 1;
- bresenham_oversample << 1;
- block->step_event_count << 1;
- }
- if (bresenham_oversample > 1)
- // Lower the acceleration steps/sec^2 to account for the oversampling.
- block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
- #endif
- block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
- // Start with a safe speed.
- // Safe speed is the speed, from which the machine may halt to stop immediately.
- float safe_speed = block->nominal_speed;
- bool limited = false;
- for (uint8_t axis = 0; axis < 4; ++ axis) {
- float jerk = fabs(current_speed[axis]);
- if (jerk > max_jerk[axis]) {
- // The actual jerk is lower, if it has been limited by the XY jerk.
- if (limited) {
- // Spare one division by a following gymnastics:
- // Instead of jerk *= safe_speed / block->nominal_speed,
- // multiply max_jerk[axis] by the divisor.
- jerk *= safe_speed;
- float mjerk = max_jerk[axis] * block->nominal_speed;
- if (jerk > mjerk) {
- safe_speed *= mjerk / jerk;
- limited = true;
- }
- } else {
- safe_speed = max_jerk[axis];
- limited = true;
- }
- }
- }
- // Reset the block flag.
- block->flag = 0;
- // Initial limit on the segment entry velocity.
- float vmax_junction;
- //FIXME Vojtech: Why only if at least two lines are planned in the queue?
- // Is it because we don't want to tinker with the first buffer line, which
- // is likely to be executed by the stepper interrupt routine soon?
- if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
- // Estimate a maximum velocity allowed at a joint of two successive segments.
- // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
- // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
- // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
- bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
- float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
- // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
- vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
- // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
- float v_factor = 1.f;
- limited = false;
- // Now limit the jerk in all axes.
- for (uint8_t axis = 0; axis < 4; ++ axis) {
- // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
- float v_exit = previous_speed[axis];
- float v_entry = current_speed [axis];
- if (prev_speed_larger)
- v_exit *= smaller_speed_factor;
- if (limited) {
- v_exit *= v_factor;
- v_entry *= v_factor;
- }
- // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
- float jerk =
- (v_exit > v_entry) ?
- ((v_entry > 0.f || v_exit < 0.f) ?
- // coasting
- (v_exit - v_entry) :
- // axis reversal
- max(v_exit, - v_entry)) :
- // v_exit <= v_entry
- ((v_entry < 0.f || v_exit > 0.f) ?
- // coasting
- (v_entry - v_exit) :
- // axis reversal
- max(- v_exit, v_entry));
- if (jerk > max_jerk[axis]) {
- v_factor *= max_jerk[axis] / jerk;
- limited = true;
- }
- }
- if (limited)
- vmax_junction *= v_factor;
- // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
- // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
- float vmax_junction_threshold = vmax_junction * 0.99f;
- if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
- // Not coasting. The machine will stop and start the movements anyway,
- // better to start the segment from start.
- block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
- vmax_junction = safe_speed;
- }
- } else {
- block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
- vmax_junction = safe_speed;
- }
- // Max entry speed of this block equals the max exit speed of the previous block.
- block->max_entry_speed = vmax_junction;
- // Initialize block entry speed. Compute based on deceleration to safe_speed.
- double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
- block->entry_speed = min(vmax_junction, v_allowable);
- // Initialize planner efficiency flags
- // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
- // Always calculate trapezoid for new block
- block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
- // Update previous path unit_vector and nominal speed
- memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
- previous_nominal_speed = block->nominal_speed;
- previous_safe_speed = safe_speed;
- #ifdef LIN_ADVANCE
- //
- // Use LIN_ADVANCE for blocks if all these are true:
- //
- // esteps : We have E steps todo (a printing move)
- //
- // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
- //
- // extruder_advance_k : There is an advance factor set.
- //
- // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
- // In that case, the retract and move will be executed together.
- // This leads to too many advance steps due to a huge e_acceleration.
- // The math is good, but we must avoid retract moves with advance!
- // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
- //
- block->use_advance_lead = block->steps_e
- && (block->steps_x || block->steps_y)
- && extruder_advance_k
- && (uint32_t)block->steps_e != block->step_event_count
- && de_float > 0.0;
- if (block->use_advance_lead)
- block->abs_adv_steps_multiplier8 = lround(
- extruder_advance_k
- * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
- * (block->nominal_speed / (float)block->nominal_rate)
- * axis_steps_per_unit[E_AXIS] * 256.0
- );
- #endif
-
- // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
- block->speed_factor = block->nominal_rate / block->nominal_speed;
- calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
- // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
- block_buffer_head = next_buffer_head;
- // Update position
- memcpy(position, target, sizeof(target)); // position[] = target[]
- #ifdef LIN_ADVANCE
- position_float[X_AXIS] = x;
- position_float[Y_AXIS] = y;
- position_float[Z_AXIS] = z;
- position_float[E_AXIS] = e;
- #endif
-
- // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
- // the machine limits (maximum acceleration and maximum jerk).
- // This runs asynchronously with the stepper interrupt controller, which may
- // interfere with the process.
- planner_recalculate(safe_speed);
- // SERIAL_ECHOPGM("Q");
- // SERIAL_ECHO(int(moves_planned()));
- // SERIAL_ECHOLNPGM("");
- #ifdef PLANNER_DIAGNOSTICS
- planner_update_queue_min_counter();
- #endif /* PLANNER_DIAGNOSTIC */
- // The stepper timer interrupt will run continuously from now on.
- // If there are no planner blocks to be executed by the stepper routine,
- // the stepper interrupt ticks at 1kHz to wake up and pick a block
- // from the planner queue if available.
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- #ifdef ENABLE_AUTO_BED_LEVELING
- vector_3 plan_get_position() {
- vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
- //position.debug("in plan_get position");
- //plan_bed_level_matrix.debug("in plan_get bed_level");
- matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
- //inverse.debug("in plan_get inverse");
- position.apply_rotation(inverse);
- //position.debug("after rotation");
- return position;
- }
- #endif // ENABLE_AUTO_BED_LEVELING
- void plan_set_position(float x, float y, float z, const float &e)
- {
- #ifdef ENABLE_AUTO_BED_LEVELING
- apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
- #endif // ENABLE_AUTO_BED_LEVELING
- // Apply the machine correction matrix.
- if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
- {
- float tmpx = x;
- float tmpy = y;
- x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
- y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
- }
- position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- #ifdef MESH_BED_LEVELING
- position[Z_AXIS] = mbl.active ?
- lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
- lround(z*axis_steps_per_unit[Z_AXIS]);
- #else
- position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- #endif // ENABLE_MESH_BED_LEVELING
- position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
- #ifdef LIN_ADVANCE
- position_float[X_AXIS] = x;
- position_float[Y_AXIS] = y;
- position_float[Z_AXIS] = z;
- position_float[E_AXIS] = e;
- #endif
- st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
- previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
- previous_speed[0] = 0.0;
- previous_speed[1] = 0.0;
- previous_speed[2] = 0.0;
- previous_speed[3] = 0.0;
- }
- // Only useful in the bed leveling routine, when the mesh bed leveling is off.
- void plan_set_z_position(const float &z)
- {
- #ifdef LIN_ADVANCE
- position_float[Z_AXIS] = z;
- #endif
- position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
- }
- void plan_set_e_position(const float &e)
- {
- #ifdef LIN_ADVANCE
- position_float[E_AXIS] = e;
- #endif
- position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
- st_set_e_position(position[E_AXIS]);
- }
- #ifdef PREVENT_DANGEROUS_EXTRUDE
- void set_extrude_min_temp(float temp)
- {
- extrude_min_temp=temp;
- }
- #endif
- // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
- void reset_acceleration_rates()
- {
- for(int8_t i=0; i < NUM_AXIS; i++)
- {
- axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- }
- }
- unsigned char number_of_blocks() {
- return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
- }
- #ifdef PLANNER_DIAGNOSTICS
- uint8_t planner_queue_min()
- {
- return g_cntr_planner_queue_min;
- }
- void planner_queue_min_reset()
- {
- g_cntr_planner_queue_min = moves_planned();
- }
- #endif /* PLANNER_DIAGNOSTICS */
- void planner_add_sd_length(uint16_t sdlen)
- {
- if (block_buffer_head != block_buffer_tail) {
- // The planner buffer is not empty. Get the index of the last buffer line entered,
- // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
- block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
- } else {
- // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
- // at a power panic, so the length of this command may be forgotten.
- }
- }
- uint16_t planner_calc_sd_length()
- {
- unsigned char _block_buffer_head = block_buffer_head;
- unsigned char _block_buffer_tail = block_buffer_tail;
- uint16_t sdlen = 0;
- while (_block_buffer_head != _block_buffer_tail)
- {
- sdlen += block_buffer[_block_buffer_tail].sdlen;
- _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
- }
- return sdlen;
- }
|