Marlin_main.cpp 327 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. int8_t FarmMode = 0;
  170. bool prusa_sd_card_upload = false;
  171. unsigned int status_number = 0;
  172. unsigned long total_filament_used;
  173. unsigned int heating_status;
  174. unsigned int heating_status_counter;
  175. bool loading_flag = false;
  176. char snmm_filaments_used = 0;
  177. bool fan_state[2];
  178. int fan_edge_counter[2];
  179. int fan_speed[2];
  180. char dir_names[3][9];
  181. bool sortAlpha = false;
  182. float extruder_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. //shortcuts for more readable code
  192. #define _x current_position[X_AXIS]
  193. #define _y current_position[Y_AXIS]
  194. #define _z current_position[Z_AXIS]
  195. #define _e current_position[E_AXIS]
  196. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  197. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  198. bool axis_known_position[3] = {false, false, false};
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  203. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  204. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  205. #endif
  206. };
  207. #endif
  208. uint8_t active_extruder = 0;
  209. int fanSpeed=0;
  210. #ifdef FWRETRACT
  211. bool retracted[EXTRUDERS]={false
  212. #if EXTRUDERS > 1
  213. , false
  214. #if EXTRUDERS > 2
  215. , false
  216. #endif
  217. #endif
  218. };
  219. bool retracted_swap[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. float retract_length_swap = RETRACT_LENGTH_SWAP;
  228. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  229. #endif
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. bool cancel_heatup = false ;
  236. int busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. const char errormagic[] PROGMEM = "Error:";
  240. const char echomagic[] PROGMEM = "echo:";
  241. bool no_response = false;
  242. uint8_t important_status;
  243. uint8_t saved_filament_type;
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. bool wizard_active = false; //autoload temporarily disabled during wizard
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. //===========================================================================
  303. //=============================Routines======================================
  304. //===========================================================================
  305. static void get_arc_coordinates();
  306. static bool setTargetedHotend(int code, uint8_t &extruder);
  307. static void print_time_remaining_init();
  308. static void wait_for_heater(long codenum, uint8_t extruder);
  309. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  513. }
  514. #ifdef MESH_BED_LEVELING
  515. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  516. #endif
  517. // Factory reset function
  518. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  519. // Level input parameter sets depth of reset
  520. int er_progress = 0;
  521. static void factory_reset(char level)
  522. {
  523. lcd_clear();
  524. switch (level) {
  525. // Level 0: Language reset
  526. case 0:
  527. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  528. WRITE(BEEPER, HIGH);
  529. _delay_ms(100);
  530. WRITE(BEEPER, LOW);
  531. lang_reset();
  532. break;
  533. //Level 1: Reset statistics
  534. case 1:
  535. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  536. WRITE(BEEPER, HIGH);
  537. _delay_ms(100);
  538. WRITE(BEEPER, LOW);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. //_delay_ms(2000);
  587. break;
  588. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  589. case 3:
  590. lcd_puts_P(PSTR("Factory RESET"));
  591. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  592. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. er_progress = 0;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. // Erase EEPROM
  601. for (int i = 0; i < 4096; i++) {
  602. eeprom_update_byte((uint8_t*)i, 0xFF);
  603. if (i % 41 == 0) {
  604. er_progress++;
  605. lcd_puts_at_P(3, 3, PSTR(" "));
  606. lcd_set_cursor(3, 3);
  607. lcd_print(er_progress);
  608. lcd_puts_P(PSTR("%"));
  609. }
  610. }
  611. break;
  612. case 4:
  613. bowden_menu();
  614. break;
  615. default:
  616. break;
  617. }
  618. }
  619. extern "C" {
  620. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  621. }
  622. int uart_putchar(char c, FILE *)
  623. {
  624. MYSERIAL.write(c);
  625. return 0;
  626. }
  627. void lcd_splash()
  628. {
  629. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  630. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  631. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  632. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  633. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  634. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  635. }
  636. void factory_reset()
  637. {
  638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  639. if (!READ(BTN_ENC))
  640. {
  641. _delay_ms(1000);
  642. if (!READ(BTN_ENC))
  643. {
  644. lcd_clear();
  645. lcd_puts_P(PSTR("Factory RESET"));
  646. SET_OUTPUT(BEEPER);
  647. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  648. WRITE(BEEPER, HIGH);
  649. while (!READ(BTN_ENC));
  650. WRITE(BEEPER, LOW);
  651. _delay_ms(2000);
  652. char level = reset_menu();
  653. factory_reset(level);
  654. switch (level) {
  655. case 0: _delay_ms(0); break;
  656. case 1: _delay_ms(0); break;
  657. case 2: _delay_ms(0); break;
  658. case 3: _delay_ms(0); break;
  659. }
  660. }
  661. }
  662. KEEPALIVE_STATE(IN_HANDLER);
  663. }
  664. void show_fw_version_warnings() {
  665. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  666. switch (FW_DEV_VERSION) {
  667. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  668. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  669. case(FW_VERSION_DEVEL):
  670. case(FW_VERSION_DEBUG):
  671. lcd_update_enable(false);
  672. lcd_clear();
  673. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  674. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  675. #else
  676. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  677. #endif
  678. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  679. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  680. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  681. lcd_wait_for_click();
  682. break;
  683. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  684. }
  685. lcd_update_enable(true);
  686. }
  687. uint8_t check_printer_version()
  688. {
  689. uint8_t version_changed = 0;
  690. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  691. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  692. if (printer_type != PRINTER_TYPE) {
  693. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  694. else version_changed |= 0b10;
  695. }
  696. if (motherboard != MOTHERBOARD) {
  697. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  698. else version_changed |= 0b01;
  699. }
  700. return version_changed;
  701. }
  702. #ifdef BOOTAPP
  703. #include "bootapp.h" //bootloader support
  704. #endif //BOOTAPP
  705. #if (LANG_MODE != 0) //secondary language support
  706. #ifdef W25X20CL
  707. // language update from external flash
  708. #define LANGBOOT_BLOCKSIZE 0x1000u
  709. #define LANGBOOT_RAMBUFFER 0x0800
  710. void update_sec_lang_from_external_flash()
  711. {
  712. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  713. {
  714. uint8_t lang = boot_reserved >> 4;
  715. uint8_t state = boot_reserved & 0xf;
  716. lang_table_header_t header;
  717. uint32_t src_addr;
  718. if (lang_get_header(lang, &header, &src_addr))
  719. {
  720. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  721. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  722. _delay(100);
  723. boot_reserved = (state + 1) | (lang << 4);
  724. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  725. {
  726. cli();
  727. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  728. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  729. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  730. if (state == 0)
  731. {
  732. //TODO - check header integrity
  733. }
  734. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  735. }
  736. else
  737. {
  738. //TODO - check sec lang data integrity
  739. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  740. }
  741. }
  742. }
  743. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  744. }
  745. #ifdef DEBUG_W25X20CL
  746. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  747. {
  748. lang_table_header_t header;
  749. uint8_t count = 0;
  750. uint32_t addr = 0x00000;
  751. while (1)
  752. {
  753. printf_P(_n("LANGTABLE%d:"), count);
  754. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  755. if (header.magic != LANG_MAGIC)
  756. {
  757. printf_P(_n("NG!\n"));
  758. break;
  759. }
  760. printf_P(_n("OK\n"));
  761. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  762. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  763. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  764. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  765. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  766. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  767. addr += header.size;
  768. codes[count] = header.code;
  769. count ++;
  770. }
  771. return count;
  772. }
  773. void list_sec_lang_from_external_flash()
  774. {
  775. uint16_t codes[8];
  776. uint8_t count = lang_xflash_enum_codes(codes);
  777. printf_P(_n("XFlash lang count = %hhd\n"), count);
  778. }
  779. #endif //DEBUG_W25X20CL
  780. #endif //W25X20CL
  781. #endif //(LANG_MODE != 0)
  782. // "Setup" function is called by the Arduino framework on startup.
  783. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  784. // are initialized by the main() routine provided by the Arduino framework.
  785. void setup()
  786. {
  787. mmu_init();
  788. ultralcd_init();
  789. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  790. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  791. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  792. spi_init();
  793. lcd_splash();
  794. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  795. #ifdef W25X20CL
  796. if (!w25x20cl_init())
  797. kill(_i("External SPI flash W25X20CL not responding."));
  798. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  799. optiboot_w25x20cl_enter();
  800. #endif
  801. #if (LANG_MODE != 0) //secondary language support
  802. #ifdef W25X20CL
  803. if (w25x20cl_init())
  804. update_sec_lang_from_external_flash();
  805. #endif //W25X20CL
  806. #endif //(LANG_MODE != 0)
  807. setup_killpin();
  808. setup_powerhold();
  809. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  810. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  811. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  812. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  813. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  814. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  815. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  816. if (farm_mode)
  817. {
  818. no_response = true; //we need confirmation by recieving PRUSA thx
  819. important_status = 8;
  820. prusa_statistics(8);
  821. selectedSerialPort = 1;
  822. #ifdef TMC2130
  823. //increased extruder current (PFW363)
  824. tmc2130_current_h[E_AXIS] = 36;
  825. tmc2130_current_r[E_AXIS] = 36;
  826. #endif //TMC2130
  827. #ifdef FILAMENT_SENSOR
  828. //disabled filament autoload (PFW360)
  829. fsensor_autoload_set(false);
  830. #endif //FILAMENT_SENSOR
  831. }
  832. MYSERIAL.begin(BAUDRATE);
  833. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  834. #ifndef W25X20CL
  835. SERIAL_PROTOCOLLNPGM("start");
  836. #endif //W25X20CL
  837. stdout = uartout;
  838. SERIAL_ECHO_START;
  839. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  840. #ifdef DEBUG_SEC_LANG
  841. lang_table_header_t header;
  842. uint32_t src_addr = 0x00000;
  843. if (lang_get_header(1, &header, &src_addr))
  844. {
  845. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  846. #define LT_PRINT_TEST 2
  847. // flash usage
  848. // total p.test
  849. //0 252718 t+c text code
  850. //1 253142 424 170 254
  851. //2 253040 322 164 158
  852. //3 253248 530 135 395
  853. #if (LT_PRINT_TEST==1) //not optimized printf
  854. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  855. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  856. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  857. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  858. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  859. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  860. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  861. #elif (LT_PRINT_TEST==2) //optimized printf
  862. printf_P(
  863. _n(
  864. " _src_addr = 0x%08lx\n"
  865. " _lt_magic = 0x%08lx %S\n"
  866. " _lt_size = 0x%04x (%d)\n"
  867. " _lt_count = 0x%04x (%d)\n"
  868. " _lt_chsum = 0x%04x\n"
  869. " _lt_code = 0x%04x (%c%c)\n"
  870. " _lt_resv1 = 0x%08lx\n"
  871. ),
  872. src_addr,
  873. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  874. header.size, header.size,
  875. header.count, header.count,
  876. header.checksum,
  877. header.code, header.code >> 8, header.code & 0xff,
  878. header.signature
  879. );
  880. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  881. MYSERIAL.print(" _src_addr = 0x");
  882. MYSERIAL.println(src_addr, 16);
  883. MYSERIAL.print(" _lt_magic = 0x");
  884. MYSERIAL.print(header.magic, 16);
  885. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  886. MYSERIAL.print(" _lt_size = 0x");
  887. MYSERIAL.print(header.size, 16);
  888. MYSERIAL.print(" (");
  889. MYSERIAL.print(header.size, 10);
  890. MYSERIAL.println(")");
  891. MYSERIAL.print(" _lt_count = 0x");
  892. MYSERIAL.print(header.count, 16);
  893. MYSERIAL.print(" (");
  894. MYSERIAL.print(header.count, 10);
  895. MYSERIAL.println(")");
  896. MYSERIAL.print(" _lt_chsum = 0x");
  897. MYSERIAL.println(header.checksum, 16);
  898. MYSERIAL.print(" _lt_code = 0x");
  899. MYSERIAL.print(header.code, 16);
  900. MYSERIAL.print(" (");
  901. MYSERIAL.print((char)(header.code >> 8), 0);
  902. MYSERIAL.print((char)(header.code & 0xff), 0);
  903. MYSERIAL.println(")");
  904. MYSERIAL.print(" _lt_resv1 = 0x");
  905. MYSERIAL.println(header.signature, 16);
  906. #endif //(LT_PRINT_TEST==)
  907. #undef LT_PRINT_TEST
  908. #if 0
  909. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  910. for (uint16_t i = 0; i < 1024; i++)
  911. {
  912. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  913. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  914. if ((i % 16) == 15) putchar('\n');
  915. }
  916. #endif
  917. uint16_t sum = 0;
  918. for (uint16_t i = 0; i < header.size; i++)
  919. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  920. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  921. sum -= header.checksum; //subtract checksum
  922. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  923. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  924. if (sum == header.checksum)
  925. printf_P(_n("Checksum OK\n"), sum);
  926. else
  927. printf_P(_n("Checksum NG\n"), sum);
  928. }
  929. else
  930. printf_P(_n("lang_get_header failed!\n"));
  931. #if 0
  932. for (uint16_t i = 0; i < 1024*10; i++)
  933. {
  934. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  935. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  936. if ((i % 16) == 15) putchar('\n');
  937. }
  938. #endif
  939. #if 0
  940. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  941. for (int i = 0; i < 4096; ++i) {
  942. int b = eeprom_read_byte((unsigned char*)i);
  943. if (b != 255) {
  944. SERIAL_ECHO(i);
  945. SERIAL_ECHO(":");
  946. SERIAL_ECHO(b);
  947. SERIAL_ECHOLN("");
  948. }
  949. }
  950. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  951. #endif
  952. #endif //DEBUG_SEC_LANG
  953. // Check startup - does nothing if bootloader sets MCUSR to 0
  954. byte mcu = MCUSR;
  955. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  956. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  957. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  958. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  959. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  960. if (mcu & 1) puts_P(MSG_POWERUP);
  961. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  962. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  963. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  964. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  965. MCUSR = 0;
  966. //SERIAL_ECHORPGM(MSG_MARLIN);
  967. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  968. #ifdef STRING_VERSION_CONFIG_H
  969. #ifdef STRING_CONFIG_H_AUTHOR
  970. SERIAL_ECHO_START;
  971. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  972. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  973. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  974. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  975. SERIAL_ECHOPGM("Compiled: ");
  976. SERIAL_ECHOLNPGM(__DATE__);
  977. #endif
  978. #endif
  979. SERIAL_ECHO_START;
  980. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  981. SERIAL_ECHO(freeMemory());
  982. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  983. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  984. //lcd_update_enable(false); // why do we need this?? - andre
  985. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  986. bool previous_settings_retrieved = false;
  987. uint8_t hw_changed = check_printer_version();
  988. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  989. previous_settings_retrieved = Config_RetrieveSettings();
  990. }
  991. else { //printer version was changed so use default settings
  992. Config_ResetDefault();
  993. }
  994. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  995. tp_init(); // Initialize temperature loop
  996. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  997. plan_init(); // Initialize planner;
  998. factory_reset();
  999. lcd_encoder_diff=0;
  1000. #ifdef TMC2130
  1001. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1002. if (silentMode == 0xff) silentMode = 0;
  1003. tmc2130_mode = TMC2130_MODE_NORMAL;
  1004. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1005. if (crashdet && !farm_mode)
  1006. {
  1007. crashdet_enable();
  1008. puts_P(_N("CrashDetect ENABLED!"));
  1009. }
  1010. else
  1011. {
  1012. crashdet_disable();
  1013. puts_P(_N("CrashDetect DISABLED"));
  1014. }
  1015. #ifdef TMC2130_LINEARITY_CORRECTION
  1016. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1017. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1018. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1019. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1020. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1021. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1022. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1023. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1024. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1025. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1026. #endif //TMC2130_LINEARITY_CORRECTION
  1027. #ifdef TMC2130_VARIABLE_RESOLUTION
  1028. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1029. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1030. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1031. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1032. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1033. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1034. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1035. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1036. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1037. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1038. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1039. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1040. #else //TMC2130_VARIABLE_RESOLUTION
  1041. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1042. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1043. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1044. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1045. #endif //TMC2130_VARIABLE_RESOLUTION
  1046. #endif //TMC2130
  1047. st_init(); // Initialize stepper, this enables interrupts!
  1048. #ifdef TMC2130
  1049. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1050. update_mode_profile();
  1051. tmc2130_init();
  1052. #endif //TMC2130
  1053. setup_photpin();
  1054. servo_init();
  1055. // Reset the machine correction matrix.
  1056. // It does not make sense to load the correction matrix until the machine is homed.
  1057. world2machine_reset();
  1058. #ifdef FILAMENT_SENSOR
  1059. fsensor_init();
  1060. #endif //FILAMENT_SENSOR
  1061. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1062. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1063. #endif
  1064. setup_homepin();
  1065. #ifdef TMC2130
  1066. if (1) {
  1067. // try to run to zero phase before powering the Z motor.
  1068. // Move in negative direction
  1069. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1070. // Round the current micro-micro steps to micro steps.
  1071. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1072. // Until the phase counter is reset to zero.
  1073. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1074. _delay(2);
  1075. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1076. _delay(2);
  1077. }
  1078. }
  1079. #endif //TMC2130
  1080. #if defined(Z_AXIS_ALWAYS_ON)
  1081. enable_z();
  1082. #endif
  1083. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1084. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1085. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1086. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1087. if (farm_mode)
  1088. {
  1089. prusa_statistics(8);
  1090. }
  1091. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1092. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1093. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1094. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1095. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1096. // where all the EEPROM entries are set to 0x0ff.
  1097. // Once a firmware boots up, it forces at least a language selection, which changes
  1098. // EEPROM_LANG to number lower than 0x0ff.
  1099. // 1) Set a high power mode.
  1100. #ifdef TMC2130
  1101. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1102. tmc2130_mode = TMC2130_MODE_NORMAL;
  1103. #endif //TMC2130
  1104. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1105. }
  1106. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1107. // but this times out if a blocking dialog is shown in setup().
  1108. card.initsd();
  1109. #ifdef DEBUG_SD_SPEED_TEST
  1110. if (card.cardOK)
  1111. {
  1112. uint8_t* buff = (uint8_t*)block_buffer;
  1113. uint32_t block = 0;
  1114. uint32_t sumr = 0;
  1115. uint32_t sumw = 0;
  1116. for (int i = 0; i < 1024; i++)
  1117. {
  1118. uint32_t u = _micros();
  1119. bool res = card.card.readBlock(i, buff);
  1120. u = _micros() - u;
  1121. if (res)
  1122. {
  1123. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1124. sumr += u;
  1125. u = _micros();
  1126. res = card.card.writeBlock(i, buff);
  1127. u = _micros() - u;
  1128. if (res)
  1129. {
  1130. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1131. sumw += u;
  1132. }
  1133. else
  1134. {
  1135. printf_P(PSTR("writeBlock %4d error\n"), i);
  1136. break;
  1137. }
  1138. }
  1139. else
  1140. {
  1141. printf_P(PSTR("readBlock %4d error\n"), i);
  1142. break;
  1143. }
  1144. }
  1145. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1146. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1147. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1148. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1149. }
  1150. else
  1151. printf_P(PSTR("Card NG!\n"));
  1152. #endif //DEBUG_SD_SPEED_TEST
  1153. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1154. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1155. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1156. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1157. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1158. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1159. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1160. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1161. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1162. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1163. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1164. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1165. #ifdef SNMM
  1166. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1167. int _z = BOWDEN_LENGTH;
  1168. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1169. }
  1170. #endif
  1171. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1172. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1173. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1174. #if (LANG_MODE != 0) //secondary language support
  1175. #ifdef DEBUG_W25X20CL
  1176. W25X20CL_SPI_ENTER();
  1177. uint8_t uid[8]; // 64bit unique id
  1178. w25x20cl_rd_uid(uid);
  1179. puts_P(_n("W25X20CL UID="));
  1180. for (uint8_t i = 0; i < 8; i ++)
  1181. printf_P(PSTR("%02hhx"), uid[i]);
  1182. putchar('\n');
  1183. list_sec_lang_from_external_flash();
  1184. #endif //DEBUG_W25X20CL
  1185. // lang_reset();
  1186. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1187. lcd_language();
  1188. #ifdef DEBUG_SEC_LANG
  1189. uint16_t sec_lang_code = lang_get_code(1);
  1190. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1191. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1192. lang_print_sec_lang(uartout);
  1193. #endif //DEBUG_SEC_LANG
  1194. #endif //(LANG_MODE != 0)
  1195. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1196. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1197. temp_cal_active = false;
  1198. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1199. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1200. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1201. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1202. int16_t z_shift = 0;
  1203. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1204. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1205. temp_cal_active = false;
  1206. }
  1207. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1208. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1209. }
  1210. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1211. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1212. }
  1213. //mbl_mode_init();
  1214. mbl_settings_init();
  1215. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1216. if (SilentModeMenu_MMU == 255) {
  1217. SilentModeMenu_MMU = 1;
  1218. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1219. }
  1220. check_babystep(); //checking if Z babystep is in allowed range
  1221. #ifdef UVLO_SUPPORT
  1222. setup_uvlo_interrupt();
  1223. #endif //UVLO_SUPPORT
  1224. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1225. setup_fan_interrupt();
  1226. #endif //DEBUG_DISABLE_FANCHECK
  1227. #ifdef PAT9125
  1228. fsensor_setup_interrupt();
  1229. #endif //PAT9125
  1230. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1231. #ifndef DEBUG_DISABLE_STARTMSGS
  1232. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1233. show_fw_version_warnings();
  1234. switch (hw_changed) {
  1235. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1236. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1237. case(0b01):
  1238. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1239. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1240. break;
  1241. case(0b10):
  1242. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1243. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1244. break;
  1245. case(0b11):
  1246. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1247. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1248. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1249. break;
  1250. default: break; //no change, show no message
  1251. }
  1252. if (!previous_settings_retrieved) {
  1253. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1254. Config_StoreSettings();
  1255. }
  1256. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1257. lcd_wizard(WizState::Run);
  1258. }
  1259. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1260. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1261. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1262. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1263. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1264. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1265. // Show the message.
  1266. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1267. }
  1268. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1269. // Show the message.
  1270. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1271. lcd_update_enable(true);
  1272. }
  1273. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1274. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1275. lcd_update_enable(true);
  1276. }
  1277. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1278. // Show the message.
  1279. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1280. }
  1281. }
  1282. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1283. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1284. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1285. update_current_firmware_version_to_eeprom();
  1286. lcd_selftest();
  1287. }
  1288. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1289. KEEPALIVE_STATE(IN_PROCESS);
  1290. #endif //DEBUG_DISABLE_STARTMSGS
  1291. lcd_update_enable(true);
  1292. lcd_clear();
  1293. lcd_update(2);
  1294. // Store the currently running firmware into an eeprom,
  1295. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1296. update_current_firmware_version_to_eeprom();
  1297. #ifdef TMC2130
  1298. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1299. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1300. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1301. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1302. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1303. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1304. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1305. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1306. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1307. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1308. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1309. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1310. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1311. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1312. #endif //TMC2130
  1313. #ifdef UVLO_SUPPORT
  1314. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1315. /*
  1316. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1317. else {
  1318. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1319. lcd_update_enable(true);
  1320. lcd_update(2);
  1321. lcd_setstatuspgm(_T(WELCOME_MSG));
  1322. }
  1323. */
  1324. manage_heater(); // Update temperatures
  1325. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1326. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1327. #endif
  1328. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1329. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1330. puts_P(_N("Automatic recovery!"));
  1331. #endif
  1332. recover_print(1);
  1333. }
  1334. else{
  1335. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1336. puts_P(_N("Normal recovery!"));
  1337. #endif
  1338. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1339. else {
  1340. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1341. lcd_update_enable(true);
  1342. lcd_update(2);
  1343. lcd_setstatuspgm(_T(WELCOME_MSG));
  1344. }
  1345. }
  1346. }
  1347. #endif //UVLO_SUPPORT
  1348. KEEPALIVE_STATE(NOT_BUSY);
  1349. #ifdef WATCHDOG
  1350. wdt_enable(WDTO_4S);
  1351. #endif //WATCHDOG
  1352. }
  1353. void trace();
  1354. #define CHUNK_SIZE 64 // bytes
  1355. #define SAFETY_MARGIN 1
  1356. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1357. int chunkHead = 0;
  1358. void serial_read_stream() {
  1359. setAllTargetHotends(0);
  1360. setTargetBed(0);
  1361. lcd_clear();
  1362. lcd_puts_P(PSTR(" Upload in progress"));
  1363. // first wait for how many bytes we will receive
  1364. uint32_t bytesToReceive;
  1365. // receive the four bytes
  1366. char bytesToReceiveBuffer[4];
  1367. for (int i=0; i<4; i++) {
  1368. int data;
  1369. while ((data = MYSERIAL.read()) == -1) {};
  1370. bytesToReceiveBuffer[i] = data;
  1371. }
  1372. // make it a uint32
  1373. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1374. // we're ready, notify the sender
  1375. MYSERIAL.write('+');
  1376. // lock in the routine
  1377. uint32_t receivedBytes = 0;
  1378. while (prusa_sd_card_upload) {
  1379. int i;
  1380. for (i=0; i<CHUNK_SIZE; i++) {
  1381. int data;
  1382. // check if we're not done
  1383. if (receivedBytes == bytesToReceive) {
  1384. break;
  1385. }
  1386. // read the next byte
  1387. while ((data = MYSERIAL.read()) == -1) {};
  1388. receivedBytes++;
  1389. // save it to the chunk
  1390. chunk[i] = data;
  1391. }
  1392. // write the chunk to SD
  1393. card.write_command_no_newline(&chunk[0]);
  1394. // notify the sender we're ready for more data
  1395. MYSERIAL.write('+');
  1396. // for safety
  1397. manage_heater();
  1398. // check if we're done
  1399. if(receivedBytes == bytesToReceive) {
  1400. trace(); // beep
  1401. card.closefile();
  1402. prusa_sd_card_upload = false;
  1403. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1404. }
  1405. }
  1406. }
  1407. /**
  1408. * Output a "busy" message at regular intervals
  1409. * while the machine is not accepting commands.
  1410. */
  1411. void host_keepalive() {
  1412. #ifndef HOST_KEEPALIVE_FEATURE
  1413. return;
  1414. #endif //HOST_KEEPALIVE_FEATURE
  1415. if (farm_mode) return;
  1416. long ms = _millis();
  1417. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1418. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1419. switch (busy_state) {
  1420. case IN_HANDLER:
  1421. case IN_PROCESS:
  1422. SERIAL_ECHO_START;
  1423. SERIAL_ECHOLNPGM("busy: processing");
  1424. break;
  1425. case PAUSED_FOR_USER:
  1426. SERIAL_ECHO_START;
  1427. SERIAL_ECHOLNPGM("busy: paused for user");
  1428. break;
  1429. case PAUSED_FOR_INPUT:
  1430. SERIAL_ECHO_START;
  1431. SERIAL_ECHOLNPGM("busy: paused for input");
  1432. break;
  1433. default:
  1434. break;
  1435. }
  1436. }
  1437. prev_busy_signal_ms = ms;
  1438. }
  1439. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1440. // Before loop(), the setup() function is called by the main() routine.
  1441. void loop()
  1442. {
  1443. KEEPALIVE_STATE(NOT_BUSY);
  1444. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1445. {
  1446. is_usb_printing = true;
  1447. usb_printing_counter--;
  1448. _usb_timer = _millis();
  1449. }
  1450. if (usb_printing_counter == 0)
  1451. {
  1452. is_usb_printing = false;
  1453. }
  1454. if (prusa_sd_card_upload)
  1455. {
  1456. //we read byte-by byte
  1457. serial_read_stream();
  1458. } else
  1459. {
  1460. get_command();
  1461. #ifdef SDSUPPORT
  1462. card.checkautostart(false);
  1463. #endif
  1464. if(buflen)
  1465. {
  1466. cmdbuffer_front_already_processed = false;
  1467. #ifdef SDSUPPORT
  1468. if(card.saving)
  1469. {
  1470. // Saving a G-code file onto an SD-card is in progress.
  1471. // Saving starts with M28, saving until M29 is seen.
  1472. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1473. card.write_command(CMDBUFFER_CURRENT_STRING);
  1474. if(card.logging)
  1475. process_commands();
  1476. else
  1477. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1478. } else {
  1479. card.closefile();
  1480. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1481. }
  1482. } else {
  1483. process_commands();
  1484. }
  1485. #else
  1486. process_commands();
  1487. #endif //SDSUPPORT
  1488. if (! cmdbuffer_front_already_processed && buflen)
  1489. {
  1490. // ptr points to the start of the block currently being processed.
  1491. // The first character in the block is the block type.
  1492. char *ptr = cmdbuffer + bufindr;
  1493. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1494. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1495. union {
  1496. struct {
  1497. char lo;
  1498. char hi;
  1499. } lohi;
  1500. uint16_t value;
  1501. } sdlen;
  1502. sdlen.value = 0;
  1503. {
  1504. // This block locks the interrupts globally for 3.25 us,
  1505. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1506. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1507. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1508. cli();
  1509. // Reset the command to something, which will be ignored by the power panic routine,
  1510. // so this buffer length will not be counted twice.
  1511. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1512. // Extract the current buffer length.
  1513. sdlen.lohi.lo = *ptr ++;
  1514. sdlen.lohi.hi = *ptr;
  1515. // and pass it to the planner queue.
  1516. planner_add_sd_length(sdlen.value);
  1517. sei();
  1518. }
  1519. }
  1520. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1521. cli();
  1522. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1523. // and one for each command to previous block in the planner queue.
  1524. planner_add_sd_length(1);
  1525. sei();
  1526. }
  1527. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1528. // this block's SD card length will not be counted twice as its command type has been replaced
  1529. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1530. cmdqueue_pop_front();
  1531. }
  1532. host_keepalive();
  1533. }
  1534. }
  1535. //check heater every n milliseconds
  1536. manage_heater();
  1537. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1538. checkHitEndstops();
  1539. lcd_update(0);
  1540. #ifdef TMC2130
  1541. tmc2130_check_overtemp();
  1542. if (tmc2130_sg_crash)
  1543. {
  1544. uint8_t crash = tmc2130_sg_crash;
  1545. tmc2130_sg_crash = 0;
  1546. // crashdet_stop_and_save_print();
  1547. switch (crash)
  1548. {
  1549. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1550. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1551. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1552. }
  1553. }
  1554. #endif //TMC2130
  1555. mmu_loop();
  1556. }
  1557. #define DEFINE_PGM_READ_ANY(type, reader) \
  1558. static inline type pgm_read_any(const type *p) \
  1559. { return pgm_read_##reader##_near(p); }
  1560. DEFINE_PGM_READ_ANY(float, float);
  1561. DEFINE_PGM_READ_ANY(signed char, byte);
  1562. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1563. static const PROGMEM type array##_P[3] = \
  1564. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1565. static inline type array(int axis) \
  1566. { return pgm_read_any(&array##_P[axis]); } \
  1567. type array##_ext(int axis) \
  1568. { return pgm_read_any(&array##_P[axis]); }
  1569. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1570. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1571. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1572. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1573. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1574. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1575. static void axis_is_at_home(int axis) {
  1576. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1577. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1578. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1579. }
  1580. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1581. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1582. //! @return original feedmultiply
  1583. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1584. saved_feedrate = feedrate;
  1585. int l_feedmultiply = feedmultiply;
  1586. feedmultiply = 100;
  1587. previous_millis_cmd = _millis();
  1588. enable_endstops(enable_endstops_now);
  1589. return l_feedmultiply;
  1590. }
  1591. //! @param original_feedmultiply feedmultiply to restore
  1592. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1593. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1594. enable_endstops(false);
  1595. #endif
  1596. feedrate = saved_feedrate;
  1597. feedmultiply = original_feedmultiply;
  1598. previous_millis_cmd = _millis();
  1599. }
  1600. #ifdef ENABLE_AUTO_BED_LEVELING
  1601. #ifdef AUTO_BED_LEVELING_GRID
  1602. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1603. {
  1604. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1605. planeNormal.debug("planeNormal");
  1606. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1607. //bedLevel.debug("bedLevel");
  1608. //plan_bed_level_matrix.debug("bed level before");
  1609. //vector_3 uncorrected_position = plan_get_position_mm();
  1610. //uncorrected_position.debug("position before");
  1611. vector_3 corrected_position = plan_get_position();
  1612. // corrected_position.debug("position after");
  1613. current_position[X_AXIS] = corrected_position.x;
  1614. current_position[Y_AXIS] = corrected_position.y;
  1615. current_position[Z_AXIS] = corrected_position.z;
  1616. // put the bed at 0 so we don't go below it.
  1617. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1618. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1619. }
  1620. #else // not AUTO_BED_LEVELING_GRID
  1621. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1622. plan_bed_level_matrix.set_to_identity();
  1623. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1624. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1625. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1626. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1627. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1628. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1629. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1630. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1631. vector_3 corrected_position = plan_get_position();
  1632. current_position[X_AXIS] = corrected_position.x;
  1633. current_position[Y_AXIS] = corrected_position.y;
  1634. current_position[Z_AXIS] = corrected_position.z;
  1635. // put the bed at 0 so we don't go below it.
  1636. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1637. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1638. }
  1639. #endif // AUTO_BED_LEVELING_GRID
  1640. static void run_z_probe() {
  1641. plan_bed_level_matrix.set_to_identity();
  1642. feedrate = homing_feedrate[Z_AXIS];
  1643. // move down until you find the bed
  1644. float zPosition = -10;
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1646. st_synchronize();
  1647. // we have to let the planner know where we are right now as it is not where we said to go.
  1648. zPosition = st_get_position_mm(Z_AXIS);
  1649. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1650. // move up the retract distance
  1651. zPosition += home_retract_mm(Z_AXIS);
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1653. st_synchronize();
  1654. // move back down slowly to find bed
  1655. feedrate = homing_feedrate[Z_AXIS]/4;
  1656. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1658. st_synchronize();
  1659. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1660. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. }
  1663. static void do_blocking_move_to(float x, float y, float z) {
  1664. float oldFeedRate = feedrate;
  1665. feedrate = homing_feedrate[Z_AXIS];
  1666. current_position[Z_AXIS] = z;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1668. st_synchronize();
  1669. feedrate = XY_TRAVEL_SPEED;
  1670. current_position[X_AXIS] = x;
  1671. current_position[Y_AXIS] = y;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1673. st_synchronize();
  1674. feedrate = oldFeedRate;
  1675. }
  1676. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1677. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1678. }
  1679. /// Probe bed height at position (x,y), returns the measured z value
  1680. static float probe_pt(float x, float y, float z_before) {
  1681. // move to right place
  1682. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1683. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1684. run_z_probe();
  1685. float measured_z = current_position[Z_AXIS];
  1686. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1687. SERIAL_PROTOCOLPGM(" x: ");
  1688. SERIAL_PROTOCOL(x);
  1689. SERIAL_PROTOCOLPGM(" y: ");
  1690. SERIAL_PROTOCOL(y);
  1691. SERIAL_PROTOCOLPGM(" z: ");
  1692. SERIAL_PROTOCOL(measured_z);
  1693. SERIAL_PROTOCOLPGM("\n");
  1694. return measured_z;
  1695. }
  1696. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1697. #ifdef LIN_ADVANCE
  1698. /**
  1699. * M900: Set and/or Get advance K factor and WH/D ratio
  1700. *
  1701. * K<factor> Set advance K factor
  1702. * R<ratio> Set ratio directly (overrides WH/D)
  1703. * W<width> H<height> D<diam> Set ratio from WH/D
  1704. */
  1705. inline void gcode_M900() {
  1706. st_synchronize();
  1707. const float newK = code_seen('K') ? code_value_float() : -1;
  1708. if (newK >= 0) extruder_advance_k = newK;
  1709. float newR = code_seen('R') ? code_value_float() : -1;
  1710. if (newR < 0) {
  1711. const float newD = code_seen('D') ? code_value_float() : -1,
  1712. newW = code_seen('W') ? code_value_float() : -1,
  1713. newH = code_seen('H') ? code_value_float() : -1;
  1714. if (newD >= 0 && newW >= 0 && newH >= 0)
  1715. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1716. }
  1717. if (newR >= 0) advance_ed_ratio = newR;
  1718. SERIAL_ECHO_START;
  1719. SERIAL_ECHOPGM("Advance K=");
  1720. SERIAL_ECHOLN(extruder_advance_k);
  1721. SERIAL_ECHOPGM(" E/D=");
  1722. const float ratio = advance_ed_ratio;
  1723. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1724. }
  1725. #endif // LIN_ADVANCE
  1726. bool check_commands() {
  1727. bool end_command_found = false;
  1728. while (buflen)
  1729. {
  1730. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1731. if (!cmdbuffer_front_already_processed)
  1732. cmdqueue_pop_front();
  1733. cmdbuffer_front_already_processed = false;
  1734. }
  1735. return end_command_found;
  1736. }
  1737. #ifdef TMC2130
  1738. bool calibrate_z_auto()
  1739. {
  1740. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1741. lcd_clear();
  1742. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1743. bool endstops_enabled = enable_endstops(true);
  1744. int axis_up_dir = -home_dir(Z_AXIS);
  1745. tmc2130_home_enter(Z_AXIS_MASK);
  1746. current_position[Z_AXIS] = 0;
  1747. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1748. set_destination_to_current();
  1749. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1750. feedrate = homing_feedrate[Z_AXIS];
  1751. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1752. st_synchronize();
  1753. // current_position[axis] = 0;
  1754. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. tmc2130_home_exit();
  1756. enable_endstops(false);
  1757. current_position[Z_AXIS] = 0;
  1758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1759. set_destination_to_current();
  1760. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1761. feedrate = homing_feedrate[Z_AXIS] / 2;
  1762. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1763. st_synchronize();
  1764. enable_endstops(endstops_enabled);
  1765. if (PRINTER_TYPE == PRINTER_MK3) {
  1766. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1767. }
  1768. else {
  1769. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1770. }
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. return true;
  1773. }
  1774. #endif //TMC2130
  1775. #ifdef TMC2130
  1776. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1777. #else
  1778. void homeaxis(int axis, uint8_t cnt)
  1779. #endif //TMC2130
  1780. {
  1781. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1782. #define HOMEAXIS_DO(LETTER) \
  1783. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1784. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1785. {
  1786. int axis_home_dir = home_dir(axis);
  1787. feedrate = homing_feedrate[axis];
  1788. #ifdef TMC2130
  1789. tmc2130_home_enter(X_AXIS_MASK << axis);
  1790. #endif //TMC2130
  1791. // Move away a bit, so that the print head does not touch the end position,
  1792. // and the following movement to endstop has a chance to achieve the required velocity
  1793. // for the stall guard to work.
  1794. current_position[axis] = 0;
  1795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1796. set_destination_to_current();
  1797. // destination[axis] = 11.f;
  1798. destination[axis] = -3.f * axis_home_dir;
  1799. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1802. endstops_hit_on_purpose();
  1803. enable_endstops(false);
  1804. current_position[axis] = 0;
  1805. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1806. destination[axis] = 1. * axis_home_dir;
  1807. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. // Now continue to move up to the left end stop with the collision detection enabled.
  1810. enable_endstops(true);
  1811. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1812. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1813. st_synchronize();
  1814. for (uint8_t i = 0; i < cnt; i++)
  1815. {
  1816. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1817. endstops_hit_on_purpose();
  1818. enable_endstops(false);
  1819. current_position[axis] = 0;
  1820. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1821. destination[axis] = -10.f * axis_home_dir;
  1822. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1823. st_synchronize();
  1824. endstops_hit_on_purpose();
  1825. // Now move left up to the collision, this time with a repeatable velocity.
  1826. enable_endstops(true);
  1827. destination[axis] = 11.f * axis_home_dir;
  1828. #ifdef TMC2130
  1829. feedrate = homing_feedrate[axis];
  1830. #else //TMC2130
  1831. feedrate = homing_feedrate[axis] / 2;
  1832. #endif //TMC2130
  1833. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1834. st_synchronize();
  1835. #ifdef TMC2130
  1836. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1837. if (pstep) pstep[i] = mscnt >> 4;
  1838. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1839. #endif //TMC2130
  1840. }
  1841. endstops_hit_on_purpose();
  1842. enable_endstops(false);
  1843. #ifdef TMC2130
  1844. uint8_t orig = tmc2130_home_origin[axis];
  1845. uint8_t back = tmc2130_home_bsteps[axis];
  1846. if (tmc2130_home_enabled && (orig <= 63))
  1847. {
  1848. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1849. if (back > 0)
  1850. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1851. }
  1852. else
  1853. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1854. tmc2130_home_exit();
  1855. #endif //TMC2130
  1856. axis_is_at_home(axis);
  1857. axis_known_position[axis] = true;
  1858. // Move from minimum
  1859. #ifdef TMC2130
  1860. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1861. #else //TMC2130
  1862. float dist = - axis_home_dir * 0.01f * 64;
  1863. #endif //TMC2130
  1864. current_position[axis] -= dist;
  1865. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1866. current_position[axis] += dist;
  1867. destination[axis] = current_position[axis];
  1868. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1869. st_synchronize();
  1870. feedrate = 0.0;
  1871. }
  1872. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1873. {
  1874. #ifdef TMC2130
  1875. FORCE_HIGH_POWER_START;
  1876. #endif
  1877. int axis_home_dir = home_dir(axis);
  1878. current_position[axis] = 0;
  1879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1880. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1881. feedrate = homing_feedrate[axis];
  1882. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1883. st_synchronize();
  1884. #ifdef TMC2130
  1885. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1886. FORCE_HIGH_POWER_END;
  1887. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1888. return;
  1889. }
  1890. #endif //TMC2130
  1891. current_position[axis] = 0;
  1892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1893. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1895. st_synchronize();
  1896. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1897. feedrate = homing_feedrate[axis]/2 ;
  1898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1899. st_synchronize();
  1900. #ifdef TMC2130
  1901. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1902. FORCE_HIGH_POWER_END;
  1903. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1904. return;
  1905. }
  1906. #endif //TMC2130
  1907. axis_is_at_home(axis);
  1908. destination[axis] = current_position[axis];
  1909. feedrate = 0.0;
  1910. endstops_hit_on_purpose();
  1911. axis_known_position[axis] = true;
  1912. #ifdef TMC2130
  1913. FORCE_HIGH_POWER_END;
  1914. #endif
  1915. }
  1916. enable_endstops(endstops_enabled);
  1917. }
  1918. /**/
  1919. void home_xy()
  1920. {
  1921. set_destination_to_current();
  1922. homeaxis(X_AXIS);
  1923. homeaxis(Y_AXIS);
  1924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1925. endstops_hit_on_purpose();
  1926. }
  1927. void refresh_cmd_timeout(void)
  1928. {
  1929. previous_millis_cmd = _millis();
  1930. }
  1931. #ifdef FWRETRACT
  1932. void retract(bool retracting, bool swapretract = false) {
  1933. if(retracting && !retracted[active_extruder]) {
  1934. destination[X_AXIS]=current_position[X_AXIS];
  1935. destination[Y_AXIS]=current_position[Y_AXIS];
  1936. destination[Z_AXIS]=current_position[Z_AXIS];
  1937. destination[E_AXIS]=current_position[E_AXIS];
  1938. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1939. plan_set_e_position(current_position[E_AXIS]);
  1940. float oldFeedrate = feedrate;
  1941. feedrate=cs.retract_feedrate*60;
  1942. retracted[active_extruder]=true;
  1943. prepare_move();
  1944. current_position[Z_AXIS]-=cs.retract_zlift;
  1945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1946. prepare_move();
  1947. feedrate = oldFeedrate;
  1948. } else if(!retracting && retracted[active_extruder]) {
  1949. destination[X_AXIS]=current_position[X_AXIS];
  1950. destination[Y_AXIS]=current_position[Y_AXIS];
  1951. destination[Z_AXIS]=current_position[Z_AXIS];
  1952. destination[E_AXIS]=current_position[E_AXIS];
  1953. current_position[Z_AXIS]+=cs.retract_zlift;
  1954. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1955. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1956. plan_set_e_position(current_position[E_AXIS]);
  1957. float oldFeedrate = feedrate;
  1958. feedrate=cs.retract_recover_feedrate*60;
  1959. retracted[active_extruder]=false;
  1960. prepare_move();
  1961. feedrate = oldFeedrate;
  1962. }
  1963. } //retract
  1964. #endif //FWRETRACT
  1965. void trace() {
  1966. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1967. _tone(BEEPER, 440);
  1968. _delay(25);
  1969. _noTone(BEEPER);
  1970. _delay(20);
  1971. }
  1972. /*
  1973. void ramming() {
  1974. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1975. if (current_temperature[0] < 230) {
  1976. //PLA
  1977. max_feedrate[E_AXIS] = 50;
  1978. //current_position[E_AXIS] -= 8;
  1979. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1980. //current_position[E_AXIS] += 8;
  1981. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1982. current_position[E_AXIS] += 5.4;
  1983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1984. current_position[E_AXIS] += 3.2;
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1986. current_position[E_AXIS] += 3;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1988. st_synchronize();
  1989. max_feedrate[E_AXIS] = 80;
  1990. current_position[E_AXIS] -= 82;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1992. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1993. current_position[E_AXIS] -= 20;
  1994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1995. current_position[E_AXIS] += 5;
  1996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1997. current_position[E_AXIS] += 5;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1999. current_position[E_AXIS] -= 10;
  2000. st_synchronize();
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2002. current_position[E_AXIS] += 10;
  2003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2004. current_position[E_AXIS] -= 10;
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2006. current_position[E_AXIS] += 10;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2008. current_position[E_AXIS] -= 10;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2010. st_synchronize();
  2011. }
  2012. else {
  2013. //ABS
  2014. max_feedrate[E_AXIS] = 50;
  2015. //current_position[E_AXIS] -= 8;
  2016. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2017. //current_position[E_AXIS] += 8;
  2018. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2019. current_position[E_AXIS] += 3.1;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2021. current_position[E_AXIS] += 3.1;
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2023. current_position[E_AXIS] += 4;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2025. st_synchronize();
  2026. //current_position[X_AXIS] += 23; //delay
  2027. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2028. //current_position[X_AXIS] -= 23; //delay
  2029. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2030. _delay(4700);
  2031. max_feedrate[E_AXIS] = 80;
  2032. current_position[E_AXIS] -= 92;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2034. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2035. current_position[E_AXIS] -= 5;
  2036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2037. current_position[E_AXIS] += 5;
  2038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2039. current_position[E_AXIS] -= 5;
  2040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2041. st_synchronize();
  2042. current_position[E_AXIS] += 5;
  2043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2044. current_position[E_AXIS] -= 5;
  2045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2046. current_position[E_AXIS] += 5;
  2047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2048. current_position[E_AXIS] -= 5;
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2050. st_synchronize();
  2051. }
  2052. }
  2053. */
  2054. #ifdef TMC2130
  2055. void force_high_power_mode(bool start_high_power_section) {
  2056. uint8_t silent;
  2057. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2058. if (silent == 1) {
  2059. //we are in silent mode, set to normal mode to enable crash detection
  2060. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2061. st_synchronize();
  2062. cli();
  2063. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2064. update_mode_profile();
  2065. tmc2130_init();
  2066. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2067. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2068. st_reset_timer();
  2069. sei();
  2070. }
  2071. }
  2072. #endif //TMC2130
  2073. #ifdef TMC2130
  2074. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2075. #else
  2076. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2077. #endif //TMC2130
  2078. {
  2079. st_synchronize();
  2080. #if 0
  2081. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2082. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2083. #endif
  2084. // Flag for the display update routine and to disable the print cancelation during homing.
  2085. homing_flag = true;
  2086. // Which axes should be homed?
  2087. bool home_x = home_x_axis;
  2088. bool home_y = home_y_axis;
  2089. bool home_z = home_z_axis;
  2090. // Either all X,Y,Z codes are present, or none of them.
  2091. bool home_all_axes = home_x == home_y && home_x == home_z;
  2092. if (home_all_axes)
  2093. // No X/Y/Z code provided means to home all axes.
  2094. home_x = home_y = home_z = true;
  2095. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2096. if (home_all_axes) {
  2097. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2098. feedrate = homing_feedrate[Z_AXIS];
  2099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2100. st_synchronize();
  2101. }
  2102. #ifdef ENABLE_AUTO_BED_LEVELING
  2103. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2104. #endif //ENABLE_AUTO_BED_LEVELING
  2105. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2106. // the planner will not perform any adjustments in the XY plane.
  2107. // Wait for the motors to stop and update the current position with the absolute values.
  2108. world2machine_revert_to_uncorrected();
  2109. // For mesh bed leveling deactivate the matrix temporarily.
  2110. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2111. // in a single axis only.
  2112. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2113. #ifdef MESH_BED_LEVELING
  2114. uint8_t mbl_was_active = mbl.active;
  2115. mbl.active = 0;
  2116. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2117. #endif
  2118. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2119. // consumed during the first movements following this statement.
  2120. if (home_z)
  2121. babystep_undo();
  2122. saved_feedrate = feedrate;
  2123. int l_feedmultiply = feedmultiply;
  2124. feedmultiply = 100;
  2125. previous_millis_cmd = _millis();
  2126. enable_endstops(true);
  2127. memcpy(destination, current_position, sizeof(destination));
  2128. feedrate = 0.0;
  2129. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2130. if(home_z)
  2131. homeaxis(Z_AXIS);
  2132. #endif
  2133. #ifdef QUICK_HOME
  2134. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2135. if(home_x && home_y) //first diagonal move
  2136. {
  2137. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2138. int x_axis_home_dir = home_dir(X_AXIS);
  2139. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2140. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2141. feedrate = homing_feedrate[X_AXIS];
  2142. if(homing_feedrate[Y_AXIS]<feedrate)
  2143. feedrate = homing_feedrate[Y_AXIS];
  2144. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2145. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2146. } else {
  2147. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2148. }
  2149. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2150. st_synchronize();
  2151. axis_is_at_home(X_AXIS);
  2152. axis_is_at_home(Y_AXIS);
  2153. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2154. destination[X_AXIS] = current_position[X_AXIS];
  2155. destination[Y_AXIS] = current_position[Y_AXIS];
  2156. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2157. feedrate = 0.0;
  2158. st_synchronize();
  2159. endstops_hit_on_purpose();
  2160. current_position[X_AXIS] = destination[X_AXIS];
  2161. current_position[Y_AXIS] = destination[Y_AXIS];
  2162. current_position[Z_AXIS] = destination[Z_AXIS];
  2163. }
  2164. #endif /* QUICK_HOME */
  2165. #ifdef TMC2130
  2166. if(home_x)
  2167. {
  2168. if (!calib)
  2169. homeaxis(X_AXIS);
  2170. else
  2171. tmc2130_home_calibrate(X_AXIS);
  2172. }
  2173. if(home_y)
  2174. {
  2175. if (!calib)
  2176. homeaxis(Y_AXIS);
  2177. else
  2178. tmc2130_home_calibrate(Y_AXIS);
  2179. }
  2180. #else //TMC2130
  2181. if(home_x) homeaxis(X_AXIS);
  2182. if(home_y) homeaxis(Y_AXIS);
  2183. #endif //TMC2130
  2184. if(home_x_axis && home_x_value != 0)
  2185. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2186. if(home_y_axis && home_y_value != 0)
  2187. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2188. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2189. #ifndef Z_SAFE_HOMING
  2190. if(home_z) {
  2191. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2192. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2193. feedrate = max_feedrate[Z_AXIS];
  2194. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2195. st_synchronize();
  2196. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2197. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2198. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2199. {
  2200. homeaxis(X_AXIS);
  2201. homeaxis(Y_AXIS);
  2202. }
  2203. // 1st mesh bed leveling measurement point, corrected.
  2204. world2machine_initialize();
  2205. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2206. world2machine_reset();
  2207. if (destination[Y_AXIS] < Y_MIN_POS)
  2208. destination[Y_AXIS] = Y_MIN_POS;
  2209. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2210. feedrate = homing_feedrate[Z_AXIS]/10;
  2211. current_position[Z_AXIS] = 0;
  2212. enable_endstops(false);
  2213. #ifdef DEBUG_BUILD
  2214. SERIAL_ECHOLNPGM("plan_set_position()");
  2215. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2216. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2217. #endif
  2218. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2219. #ifdef DEBUG_BUILD
  2220. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2221. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2222. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2223. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2224. #endif
  2225. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2226. st_synchronize();
  2227. current_position[X_AXIS] = destination[X_AXIS];
  2228. current_position[Y_AXIS] = destination[Y_AXIS];
  2229. enable_endstops(true);
  2230. endstops_hit_on_purpose();
  2231. homeaxis(Z_AXIS);
  2232. #else // MESH_BED_LEVELING
  2233. homeaxis(Z_AXIS);
  2234. #endif // MESH_BED_LEVELING
  2235. }
  2236. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2237. if(home_all_axes) {
  2238. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2239. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2240. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2241. feedrate = XY_TRAVEL_SPEED/60;
  2242. current_position[Z_AXIS] = 0;
  2243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2244. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2245. st_synchronize();
  2246. current_position[X_AXIS] = destination[X_AXIS];
  2247. current_position[Y_AXIS] = destination[Y_AXIS];
  2248. homeaxis(Z_AXIS);
  2249. }
  2250. // Let's see if X and Y are homed and probe is inside bed area.
  2251. if(home_z) {
  2252. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2253. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2254. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2255. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2256. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2257. current_position[Z_AXIS] = 0;
  2258. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2259. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2260. feedrate = max_feedrate[Z_AXIS];
  2261. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2262. st_synchronize();
  2263. homeaxis(Z_AXIS);
  2264. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2265. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2266. SERIAL_ECHO_START;
  2267. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2268. } else {
  2269. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2270. SERIAL_ECHO_START;
  2271. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2272. }
  2273. }
  2274. #endif // Z_SAFE_HOMING
  2275. #endif // Z_HOME_DIR < 0
  2276. if(home_z_axis && home_z_value != 0)
  2277. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2278. #ifdef ENABLE_AUTO_BED_LEVELING
  2279. if(home_z)
  2280. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2281. #endif
  2282. // Set the planner and stepper routine positions.
  2283. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2284. // contains the machine coordinates.
  2285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2286. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2287. enable_endstops(false);
  2288. #endif
  2289. feedrate = saved_feedrate;
  2290. feedmultiply = l_feedmultiply;
  2291. previous_millis_cmd = _millis();
  2292. endstops_hit_on_purpose();
  2293. #ifndef MESH_BED_LEVELING
  2294. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2295. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2296. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2297. lcd_adjust_z();
  2298. #endif
  2299. // Load the machine correction matrix
  2300. world2machine_initialize();
  2301. // and correct the current_position XY axes to match the transformed coordinate system.
  2302. world2machine_update_current();
  2303. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2304. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2305. {
  2306. if (! home_z && mbl_was_active) {
  2307. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2308. mbl.active = true;
  2309. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2310. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2311. }
  2312. }
  2313. else
  2314. {
  2315. st_synchronize();
  2316. homing_flag = false;
  2317. }
  2318. #endif
  2319. if (farm_mode) { prusa_statistics(20); };
  2320. homing_flag = false;
  2321. #if 0
  2322. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2323. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2324. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2325. #endif
  2326. }
  2327. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2328. {
  2329. #ifdef TMC2130
  2330. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2331. #else
  2332. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2333. #endif //TMC2130
  2334. }
  2335. void adjust_bed_reset()
  2336. {
  2337. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2338. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2339. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2340. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2341. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2342. }
  2343. //! @brief Calibrate XYZ
  2344. //! @param onlyZ if true, calibrate only Z axis
  2345. //! @param verbosity_level
  2346. //! @retval true Succeeded
  2347. //! @retval false Failed
  2348. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2349. {
  2350. bool final_result = false;
  2351. #ifdef TMC2130
  2352. FORCE_HIGH_POWER_START;
  2353. #endif // TMC2130
  2354. // Only Z calibration?
  2355. if (!onlyZ)
  2356. {
  2357. setTargetBed(0);
  2358. setAllTargetHotends(0);
  2359. adjust_bed_reset(); //reset bed level correction
  2360. }
  2361. // Disable the default update procedure of the display. We will do a modal dialog.
  2362. lcd_update_enable(false);
  2363. // Let the planner use the uncorrected coordinates.
  2364. mbl.reset();
  2365. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2366. // the planner will not perform any adjustments in the XY plane.
  2367. // Wait for the motors to stop and update the current position with the absolute values.
  2368. world2machine_revert_to_uncorrected();
  2369. // Reset the baby step value applied without moving the axes.
  2370. babystep_reset();
  2371. // Mark all axes as in a need for homing.
  2372. memset(axis_known_position, 0, sizeof(axis_known_position));
  2373. // Home in the XY plane.
  2374. //set_destination_to_current();
  2375. int l_feedmultiply = setup_for_endstop_move();
  2376. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2377. home_xy();
  2378. enable_endstops(false);
  2379. current_position[X_AXIS] += 5;
  2380. current_position[Y_AXIS] += 5;
  2381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2382. st_synchronize();
  2383. // Let the user move the Z axes up to the end stoppers.
  2384. #ifdef TMC2130
  2385. if (calibrate_z_auto())
  2386. {
  2387. #else //TMC2130
  2388. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2389. {
  2390. #endif //TMC2130
  2391. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2392. if(onlyZ){
  2393. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2394. lcd_set_cursor(0, 3);
  2395. lcd_print(1);
  2396. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2397. }else{
  2398. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2399. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2400. lcd_set_cursor(0, 2);
  2401. lcd_print(1);
  2402. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2403. }
  2404. refresh_cmd_timeout();
  2405. #ifndef STEEL_SHEET
  2406. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2407. {
  2408. lcd_wait_for_cool_down();
  2409. }
  2410. #endif //STEEL_SHEET
  2411. if(!onlyZ)
  2412. {
  2413. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2414. #ifdef STEEL_SHEET
  2415. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2416. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2417. #endif //STEEL_SHEET
  2418. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2419. KEEPALIVE_STATE(IN_HANDLER);
  2420. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2421. lcd_set_cursor(0, 2);
  2422. lcd_print(1);
  2423. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2424. }
  2425. bool endstops_enabled = enable_endstops(false);
  2426. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2428. st_synchronize();
  2429. // Move the print head close to the bed.
  2430. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2431. enable_endstops(true);
  2432. #ifdef TMC2130
  2433. tmc2130_home_enter(Z_AXIS_MASK);
  2434. #endif //TMC2130
  2435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2436. st_synchronize();
  2437. #ifdef TMC2130
  2438. tmc2130_home_exit();
  2439. #endif //TMC2130
  2440. enable_endstops(endstops_enabled);
  2441. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2442. {
  2443. if (onlyZ)
  2444. {
  2445. clean_up_after_endstop_move(l_feedmultiply);
  2446. // Z only calibration.
  2447. // Load the machine correction matrix
  2448. world2machine_initialize();
  2449. // and correct the current_position to match the transformed coordinate system.
  2450. world2machine_update_current();
  2451. //FIXME
  2452. bool result = sample_mesh_and_store_reference();
  2453. if (result)
  2454. {
  2455. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2456. // Shipped, the nozzle height has been set already. The user can start printing now.
  2457. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2458. final_result = true;
  2459. // babystep_apply();
  2460. }
  2461. }
  2462. else
  2463. {
  2464. // Reset the baby step value and the baby step applied flag.
  2465. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2466. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2467. // Complete XYZ calibration.
  2468. uint8_t point_too_far_mask = 0;
  2469. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2470. clean_up_after_endstop_move(l_feedmultiply);
  2471. // Print head up.
  2472. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2474. st_synchronize();
  2475. //#ifndef NEW_XYZCAL
  2476. if (result >= 0)
  2477. {
  2478. #ifdef HEATBED_V2
  2479. sample_z();
  2480. #else //HEATBED_V2
  2481. point_too_far_mask = 0;
  2482. // Second half: The fine adjustment.
  2483. // Let the planner use the uncorrected coordinates.
  2484. mbl.reset();
  2485. world2machine_reset();
  2486. // Home in the XY plane.
  2487. int l_feedmultiply = setup_for_endstop_move();
  2488. home_xy();
  2489. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2490. clean_up_after_endstop_move(l_feedmultiply);
  2491. // Print head up.
  2492. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2494. st_synchronize();
  2495. // if (result >= 0) babystep_apply();
  2496. #endif //HEATBED_V2
  2497. }
  2498. //#endif //NEW_XYZCAL
  2499. lcd_update_enable(true);
  2500. lcd_update(2);
  2501. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2502. if (result >= 0)
  2503. {
  2504. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2505. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2506. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2507. final_result = true;
  2508. }
  2509. }
  2510. #ifdef TMC2130
  2511. tmc2130_home_exit();
  2512. #endif
  2513. }
  2514. else
  2515. {
  2516. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2517. final_result = false;
  2518. }
  2519. }
  2520. else
  2521. {
  2522. // Timeouted.
  2523. }
  2524. lcd_update_enable(true);
  2525. #ifdef TMC2130
  2526. FORCE_HIGH_POWER_END;
  2527. #endif // TMC2130
  2528. return final_result;
  2529. }
  2530. void gcode_M114()
  2531. {
  2532. SERIAL_PROTOCOLPGM("X:");
  2533. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2534. SERIAL_PROTOCOLPGM(" Y:");
  2535. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2536. SERIAL_PROTOCOLPGM(" Z:");
  2537. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2538. SERIAL_PROTOCOLPGM(" E:");
  2539. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2540. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2541. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2542. SERIAL_PROTOCOLPGM(" Y:");
  2543. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2544. SERIAL_PROTOCOLPGM(" Z:");
  2545. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2546. SERIAL_PROTOCOLPGM(" E:");
  2547. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2548. SERIAL_PROTOCOLLN("");
  2549. }
  2550. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2551. {
  2552. st_synchronize();
  2553. float lastpos[4];
  2554. if (farm_mode)
  2555. {
  2556. prusa_statistics(22);
  2557. }
  2558. //First backup current position and settings
  2559. int feedmultiplyBckp = feedmultiply;
  2560. float HotendTempBckp = degTargetHotend(active_extruder);
  2561. int fanSpeedBckp = fanSpeed;
  2562. lastpos[X_AXIS] = current_position[X_AXIS];
  2563. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2564. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2565. lastpos[E_AXIS] = current_position[E_AXIS];
  2566. //Retract E
  2567. current_position[E_AXIS] += e_shift;
  2568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2569. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2570. st_synchronize();
  2571. //Lift Z
  2572. current_position[Z_AXIS] += z_shift;
  2573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2574. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2575. st_synchronize();
  2576. //Move XY to side
  2577. current_position[X_AXIS] = x_position;
  2578. current_position[Y_AXIS] = y_position;
  2579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2580. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2581. st_synchronize();
  2582. //Beep, manage nozzle heater and wait for user to start unload filament
  2583. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2584. lcd_change_fil_state = 0;
  2585. // Unload filament
  2586. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2587. else unload_filament(); //unload filament for single material (used also in M702)
  2588. //finish moves
  2589. st_synchronize();
  2590. if (!mmu_enabled)
  2591. {
  2592. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2593. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2594. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2595. if (lcd_change_fil_state == 0)
  2596. {
  2597. lcd_clear();
  2598. lcd_set_cursor(0, 2);
  2599. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2600. current_position[X_AXIS] -= 100;
  2601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2602. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2603. st_synchronize();
  2604. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2605. }
  2606. }
  2607. if (mmu_enabled)
  2608. {
  2609. if (!automatic) {
  2610. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2611. mmu_M600_wait_and_beep();
  2612. if (saved_printing) {
  2613. lcd_clear();
  2614. lcd_set_cursor(0, 2);
  2615. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2616. mmu_command(MmuCmd::R0);
  2617. manage_response(false, false);
  2618. }
  2619. }
  2620. mmu_M600_load_filament(automatic, HotendTempBckp);
  2621. }
  2622. else
  2623. M600_load_filament();
  2624. if (!automatic) M600_check_state(HotendTempBckp);
  2625. lcd_update_enable(true);
  2626. //Not let's go back to print
  2627. fanSpeed = fanSpeedBckp;
  2628. //Feed a little of filament to stabilize pressure
  2629. if (!automatic)
  2630. {
  2631. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2633. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2634. }
  2635. //Move XY back
  2636. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2637. FILAMENTCHANGE_XYFEED, active_extruder);
  2638. st_synchronize();
  2639. //Move Z back
  2640. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2641. FILAMENTCHANGE_ZFEED, active_extruder);
  2642. st_synchronize();
  2643. //Set E position to original
  2644. plan_set_e_position(lastpos[E_AXIS]);
  2645. memcpy(current_position, lastpos, sizeof(lastpos));
  2646. memcpy(destination, current_position, sizeof(current_position));
  2647. //Recover feed rate
  2648. feedmultiply = feedmultiplyBckp;
  2649. char cmd[9];
  2650. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2651. enquecommand(cmd);
  2652. #ifdef IR_SENSOR
  2653. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2654. fsensor_check_autoload();
  2655. #endif //IR_SENSOR
  2656. lcd_setstatuspgm(_T(WELCOME_MSG));
  2657. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2658. }
  2659. void gcode_M701()
  2660. {
  2661. printf_P(PSTR("gcode_M701 begin\n"));
  2662. if (mmu_enabled)
  2663. {
  2664. extr_adj(tmp_extruder);//loads current extruder
  2665. mmu_extruder = tmp_extruder;
  2666. }
  2667. else
  2668. {
  2669. enable_z();
  2670. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2671. #ifdef FSENSOR_QUALITY
  2672. fsensor_oq_meassure_start(40);
  2673. #endif //FSENSOR_QUALITY
  2674. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2675. current_position[E_AXIS] += 40;
  2676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2677. st_synchronize();
  2678. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2679. current_position[E_AXIS] += 30;
  2680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2681. load_filament_final_feed(); //slow sequence
  2682. st_synchronize();
  2683. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2684. delay_keep_alive(50);
  2685. _noTone(BEEPER);
  2686. if (!farm_mode && loading_flag) {
  2687. lcd_load_filament_color_check();
  2688. }
  2689. lcd_update_enable(true);
  2690. lcd_update(2);
  2691. lcd_setstatuspgm(_T(WELCOME_MSG));
  2692. disable_z();
  2693. loading_flag = false;
  2694. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2695. #ifdef FSENSOR_QUALITY
  2696. fsensor_oq_meassure_stop();
  2697. if (!fsensor_oq_result())
  2698. {
  2699. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2700. lcd_update_enable(true);
  2701. lcd_update(2);
  2702. if (disable)
  2703. fsensor_disable();
  2704. }
  2705. #endif //FSENSOR_QUALITY
  2706. }
  2707. }
  2708. /**
  2709. * @brief Get serial number from 32U2 processor
  2710. *
  2711. * Typical format of S/N is:CZPX0917X003XC13518
  2712. *
  2713. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2714. *
  2715. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2716. * reply is transmitted to serial port 1 character by character.
  2717. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2718. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2719. * in any case.
  2720. */
  2721. static void gcode_PRUSA_SN()
  2722. {
  2723. if (farm_mode) {
  2724. selectedSerialPort = 0;
  2725. putchar(';');
  2726. putchar('S');
  2727. int numbersRead = 0;
  2728. ShortTimer timeout;
  2729. timeout.start();
  2730. while (numbersRead < 19) {
  2731. while (MSerial.available() > 0) {
  2732. uint8_t serial_char = MSerial.read();
  2733. selectedSerialPort = 1;
  2734. putchar(serial_char);
  2735. numbersRead++;
  2736. selectedSerialPort = 0;
  2737. }
  2738. if (timeout.expired(100u)) break;
  2739. }
  2740. selectedSerialPort = 1;
  2741. putchar('\n');
  2742. #if 0
  2743. for (int b = 0; b < 3; b++) {
  2744. _tone(BEEPER, 110);
  2745. _delay(50);
  2746. _noTone(BEEPER);
  2747. _delay(50);
  2748. }
  2749. #endif
  2750. } else {
  2751. puts_P(_N("Not in farm mode."));
  2752. }
  2753. }
  2754. #ifdef BACKLASH_X
  2755. extern uint8_t st_backlash_x;
  2756. #endif //BACKLASH_X
  2757. #ifdef BACKLASH_Y
  2758. extern uint8_t st_backlash_y;
  2759. #endif //BACKLASH_Y
  2760. //! @brief Parse and process commands
  2761. //!
  2762. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2763. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2764. //!
  2765. //! Implemented Codes
  2766. //! -------------------
  2767. //!
  2768. //!@n PRUSA CODES
  2769. //!@n P F - Returns FW versions
  2770. //!@n P R - Returns revision of printer
  2771. //!
  2772. //!@n G0 -> G1
  2773. //!@n G1 - Coordinated Movement X Y Z E
  2774. //!@n G2 - CW ARC
  2775. //!@n G3 - CCW ARC
  2776. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2777. //!@n G10 - retract filament according to settings of M207
  2778. //!@n G11 - retract recover filament according to settings of M208
  2779. //!@n G28 - Home all Axis
  2780. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2781. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2782. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2783. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2784. //!@n G80 - Automatic mesh bed leveling
  2785. //!@n G81 - Print bed profile
  2786. //!@n G90 - Use Absolute Coordinates
  2787. //!@n G91 - Use Relative Coordinates
  2788. //!@n G92 - Set current position to coordinates given
  2789. //!
  2790. //!@n M Codes
  2791. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2792. //!@n M1 - Same as M0
  2793. //!@n M17 - Enable/Power all stepper motors
  2794. //!@n M18 - Disable all stepper motors; same as M84
  2795. //!@n M20 - List SD card
  2796. //!@n M21 - Init SD card
  2797. //!@n M22 - Release SD card
  2798. //!@n M23 - Select SD file (M23 filename.g)
  2799. //!@n M24 - Start/resume SD print
  2800. //!@n M25 - Pause SD print
  2801. //!@n M26 - Set SD position in bytes (M26 S12345)
  2802. //!@n M27 - Report SD print status
  2803. //!@n M28 - Start SD write (M28 filename.g)
  2804. //!@n M29 - Stop SD write
  2805. //!@n M30 - Delete file from SD (M30 filename.g)
  2806. //!@n M31 - Output time since last M109 or SD card start to serial
  2807. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2808. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2809. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2810. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2811. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2812. //!@n M73 - Show percent done and print time remaining
  2813. //!@n M80 - Turn on Power Supply
  2814. //!@n M81 - Turn off Power Supply
  2815. //!@n M82 - Set E codes absolute (default)
  2816. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2817. //!@n M84 - Disable steppers until next move,
  2818. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2819. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2820. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2821. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2822. //!@n M104 - Set extruder target temp
  2823. //!@n M105 - Read current temp
  2824. //!@n M106 - Fan on
  2825. //!@n M107 - Fan off
  2826. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2827. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2828. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2829. //!@n M112 - Emergency stop
  2830. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2831. //!@n M114 - Output current position to serial port
  2832. //!@n M115 - Capabilities string
  2833. //!@n M117 - display message
  2834. //!@n M119 - Output Endstop status to serial port
  2835. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2836. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2837. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2838. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2839. //!@n M140 - Set bed target temp
  2840. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2841. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2842. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2843. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2844. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2845. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2846. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2847. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2848. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2849. //!@n M206 - set additional homing offset
  2850. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2851. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2852. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2853. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2854. //!@n M220 S<factor in percent>- set speed factor override percentage
  2855. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2856. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2857. //!@n M240 - Trigger a camera to take a photograph
  2858. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2859. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2860. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2861. //!@n M301 - Set PID parameters P I and D
  2862. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2863. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2864. //!@n M304 - Set bed PID parameters P I and D
  2865. //!@n M400 - Finish all moves
  2866. //!@n M401 - Lower z-probe if present
  2867. //!@n M402 - Raise z-probe if present
  2868. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2869. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2870. //!@n M406 - Turn off Filament Sensor extrusion control
  2871. //!@n M407 - Displays measured filament diameter
  2872. //!@n M500 - stores parameters in EEPROM
  2873. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2874. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2875. //!@n M503 - print the current settings (from memory not from EEPROM)
  2876. //!@n M509 - force language selection on next restart
  2877. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2878. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2879. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2880. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2881. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2882. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2883. //!@n M907 - Set digital trimpot motor current using axis codes.
  2884. //!@n M908 - Control digital trimpot directly.
  2885. //!@n M350 - Set microstepping mode.
  2886. //!@n M351 - Toggle MS1 MS2 pins directly.
  2887. //!
  2888. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2889. //!@n M999 - Restart after being stopped by error
  2890. void process_commands()
  2891. {
  2892. if (!buflen) return; //empty command
  2893. #ifdef FILAMENT_RUNOUT_SUPPORT
  2894. SET_INPUT(FR_SENS);
  2895. #endif
  2896. #ifdef CMDBUFFER_DEBUG
  2897. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2898. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2899. SERIAL_ECHOLNPGM("");
  2900. SERIAL_ECHOPGM("In cmdqueue: ");
  2901. SERIAL_ECHO(buflen);
  2902. SERIAL_ECHOLNPGM("");
  2903. #endif /* CMDBUFFER_DEBUG */
  2904. unsigned long codenum; //throw away variable
  2905. char *starpos = NULL;
  2906. #ifdef ENABLE_AUTO_BED_LEVELING
  2907. float x_tmp, y_tmp, z_tmp, real_z;
  2908. #endif
  2909. // PRUSA GCODES
  2910. KEEPALIVE_STATE(IN_HANDLER);
  2911. #ifdef SNMM
  2912. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2913. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2914. int8_t SilentMode;
  2915. #endif
  2916. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2917. starpos = (strchr(strchr_pointer + 5, '*'));
  2918. if (starpos != NULL)
  2919. *(starpos) = '\0';
  2920. lcd_setstatus(strchr_pointer + 5);
  2921. }
  2922. #ifdef TMC2130
  2923. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2924. {
  2925. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2926. {
  2927. uint8_t mask = 0;
  2928. if (code_seen('X')) mask |= X_AXIS_MASK;
  2929. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2930. crashdet_detected(mask);
  2931. }
  2932. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2933. crashdet_recover();
  2934. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2935. crashdet_cancel();
  2936. }
  2937. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2938. {
  2939. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2940. {
  2941. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2942. axis = (axis == 'E')?3:(axis - 'X');
  2943. if (axis < 4)
  2944. {
  2945. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2946. tmc2130_set_wave(axis, 247, fac);
  2947. }
  2948. }
  2949. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2950. {
  2951. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2952. axis = (axis == 'E')?3:(axis - 'X');
  2953. if (axis < 4)
  2954. {
  2955. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2956. uint16_t res = tmc2130_get_res(axis);
  2957. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2958. }
  2959. }
  2960. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2961. {
  2962. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2963. axis = (axis == 'E')?3:(axis - 'X');
  2964. if (axis < 4)
  2965. {
  2966. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2967. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2968. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2969. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2970. char* str_end = 0;
  2971. if (CMDBUFFER_CURRENT_STRING[14])
  2972. {
  2973. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2974. if (str_end && *str_end)
  2975. {
  2976. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2977. if (str_end && *str_end)
  2978. {
  2979. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2980. if (str_end && *str_end)
  2981. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2982. }
  2983. }
  2984. }
  2985. tmc2130_chopper_config[axis].toff = chop0;
  2986. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2987. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2988. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2989. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2990. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2991. }
  2992. }
  2993. }
  2994. #ifdef BACKLASH_X
  2995. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2996. {
  2997. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2998. st_backlash_x = bl;
  2999. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3000. }
  3001. #endif //BACKLASH_X
  3002. #ifdef BACKLASH_Y
  3003. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3004. {
  3005. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3006. st_backlash_y = bl;
  3007. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3008. }
  3009. #endif //BACKLASH_Y
  3010. #endif //TMC2130
  3011. else if(code_seen("PRUSA")){
  3012. if (code_seen("Ping")) { //! PRUSA Ping
  3013. if (farm_mode) {
  3014. PingTime = _millis();
  3015. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3016. }
  3017. }
  3018. else if (code_seen("PRN")) { //! PRUSA PRN
  3019. printf_P(_N("%d"), status_number);
  3020. }else if (code_seen("FAN")) { //! PRUSA FAN
  3021. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3022. }else if (code_seen("fn")) { //! PRUSA fn
  3023. if (farm_mode) {
  3024. printf_P(_N("%d"), farm_no);
  3025. }
  3026. else {
  3027. puts_P(_N("Not in farm mode."));
  3028. }
  3029. }
  3030. else if (code_seen("thx")) //! PRUSA thx
  3031. {
  3032. no_response = false;
  3033. }
  3034. else if (code_seen("uvlo")) //! PRUSA uvlo
  3035. {
  3036. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3037. enquecommand_P(PSTR("M24"));
  3038. }
  3039. #ifdef FILAMENT_SENSOR
  3040. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3041. {
  3042. fsensor_restore_print_and_continue();
  3043. }
  3044. #endif //FILAMENT_SENSOR
  3045. else if (code_seen("MMURES")) //! PRUSA MMURES
  3046. {
  3047. mmu_reset();
  3048. }
  3049. else if (code_seen("RESET")) { //! PRUSA RESET
  3050. // careful!
  3051. if (farm_mode) {
  3052. #ifdef WATCHDOG
  3053. boot_app_magic = BOOT_APP_MAGIC;
  3054. boot_app_flags = BOOT_APP_FLG_RUN;
  3055. wdt_enable(WDTO_15MS);
  3056. cli();
  3057. while(1);
  3058. #else //WATCHDOG
  3059. asm volatile("jmp 0x3E000");
  3060. #endif //WATCHDOG
  3061. }
  3062. else {
  3063. MYSERIAL.println("Not in farm mode.");
  3064. }
  3065. }else if (code_seen("fv")) { //! PRUSA fv
  3066. // get file version
  3067. #ifdef SDSUPPORT
  3068. card.openFile(strchr_pointer + 3,true);
  3069. while (true) {
  3070. uint16_t readByte = card.get();
  3071. MYSERIAL.write(readByte);
  3072. if (readByte=='\n') {
  3073. break;
  3074. }
  3075. }
  3076. card.closefile();
  3077. #endif // SDSUPPORT
  3078. } else if (code_seen("M28")) { //! PRUSA M28
  3079. trace();
  3080. prusa_sd_card_upload = true;
  3081. card.openFile(strchr_pointer+4,false);
  3082. } else if (code_seen("SN")) { //! PRUSA SN
  3083. gcode_PRUSA_SN();
  3084. } else if(code_seen("Fir")){ //! PRUSA Fir
  3085. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3086. } else if(code_seen("Rev")){ //! PRUSA Rev
  3087. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3088. } else if(code_seen("Lang")) { //! PRUSA Lang
  3089. lang_reset();
  3090. } else if(code_seen("Lz")) { //! PRUSA Lz
  3091. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3092. } else if(code_seen("Beat")) { //! PRUSA Beat
  3093. // Kick farm link timer
  3094. kicktime = _millis();
  3095. } else if(code_seen("FR")) { //! PRUSA FR
  3096. // Factory full reset
  3097. factory_reset(0);
  3098. }
  3099. //else if (code_seen('Cal')) {
  3100. // lcd_calibration();
  3101. // }
  3102. }
  3103. else if (code_seen('^')) {
  3104. // nothing, this is a version line
  3105. } else if(code_seen('G'))
  3106. {
  3107. gcode_in_progress = (int)code_value();
  3108. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3109. switch (gcode_in_progress)
  3110. {
  3111. case 0: // G0 -> G1
  3112. case 1: // G1
  3113. if(Stopped == false) {
  3114. #ifdef FILAMENT_RUNOUT_SUPPORT
  3115. if(READ(FR_SENS)){
  3116. int feedmultiplyBckp=feedmultiply;
  3117. float target[4];
  3118. float lastpos[4];
  3119. target[X_AXIS]=current_position[X_AXIS];
  3120. target[Y_AXIS]=current_position[Y_AXIS];
  3121. target[Z_AXIS]=current_position[Z_AXIS];
  3122. target[E_AXIS]=current_position[E_AXIS];
  3123. lastpos[X_AXIS]=current_position[X_AXIS];
  3124. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3125. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3126. lastpos[E_AXIS]=current_position[E_AXIS];
  3127. //retract by E
  3128. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3130. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3132. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3133. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3134. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3135. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3136. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3137. //finish moves
  3138. st_synchronize();
  3139. //disable extruder steppers so filament can be removed
  3140. disable_e0();
  3141. disable_e1();
  3142. disable_e2();
  3143. _delay(100);
  3144. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3145. uint8_t cnt=0;
  3146. int counterBeep = 0;
  3147. lcd_wait_interact();
  3148. while(!lcd_clicked()){
  3149. cnt++;
  3150. manage_heater();
  3151. manage_inactivity(true);
  3152. //lcd_update(0);
  3153. if(cnt==0)
  3154. {
  3155. #if BEEPER > 0
  3156. if (counterBeep== 500){
  3157. counterBeep = 0;
  3158. }
  3159. SET_OUTPUT(BEEPER);
  3160. if (counterBeep== 0){
  3161. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3162. WRITE(BEEPER,HIGH);
  3163. }
  3164. if (counterBeep== 20){
  3165. WRITE(BEEPER,LOW);
  3166. }
  3167. counterBeep++;
  3168. #else
  3169. #endif
  3170. }
  3171. }
  3172. WRITE(BEEPER,LOW);
  3173. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3174. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3175. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3176. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3177. lcd_change_fil_state = 0;
  3178. lcd_loading_filament();
  3179. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3180. lcd_change_fil_state = 0;
  3181. lcd_alright();
  3182. switch(lcd_change_fil_state){
  3183. case 2:
  3184. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3185. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3186. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3187. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3188. lcd_loading_filament();
  3189. break;
  3190. case 3:
  3191. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3192. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3193. lcd_loading_color();
  3194. break;
  3195. default:
  3196. lcd_change_success();
  3197. break;
  3198. }
  3199. }
  3200. target[E_AXIS]+= 5;
  3201. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3202. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3203. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3204. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3205. //plan_set_e_position(current_position[E_AXIS]);
  3206. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3207. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3208. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3209. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3210. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3211. plan_set_e_position(lastpos[E_AXIS]);
  3212. feedmultiply=feedmultiplyBckp;
  3213. char cmd[9];
  3214. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3215. enquecommand(cmd);
  3216. }
  3217. #endif
  3218. get_coordinates(); // For X Y Z E F
  3219. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3220. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3221. }
  3222. #ifdef FWRETRACT
  3223. if(cs.autoretract_enabled)
  3224. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3225. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3226. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3227. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3228. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3229. retract(!retracted[active_extruder]);
  3230. return;
  3231. }
  3232. }
  3233. #endif //FWRETRACT
  3234. prepare_move();
  3235. //ClearToSend();
  3236. }
  3237. break;
  3238. case 2: // G2 - CW ARC
  3239. if(Stopped == false) {
  3240. get_arc_coordinates();
  3241. prepare_arc_move(true);
  3242. }
  3243. break;
  3244. case 3: // G3 - CCW ARC
  3245. if(Stopped == false) {
  3246. get_arc_coordinates();
  3247. prepare_arc_move(false);
  3248. }
  3249. break;
  3250. case 4: // G4 dwell
  3251. codenum = 0;
  3252. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3253. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3254. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL c=0 r=0
  3255. st_synchronize();
  3256. codenum += _millis(); // keep track of when we started waiting
  3257. previous_millis_cmd = _millis();
  3258. while(_millis() < codenum) {
  3259. manage_heater();
  3260. manage_inactivity();
  3261. lcd_update(0);
  3262. }
  3263. break;
  3264. #ifdef FWRETRACT
  3265. case 10: // G10 retract
  3266. #if EXTRUDERS > 1
  3267. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3268. retract(true,retracted_swap[active_extruder]);
  3269. #else
  3270. retract(true);
  3271. #endif
  3272. break;
  3273. case 11: // G11 retract_recover
  3274. #if EXTRUDERS > 1
  3275. retract(false,retracted_swap[active_extruder]);
  3276. #else
  3277. retract(false);
  3278. #endif
  3279. break;
  3280. #endif //FWRETRACT
  3281. case 28: //G28 Home all Axis one at a time
  3282. {
  3283. long home_x_value = 0;
  3284. long home_y_value = 0;
  3285. long home_z_value = 0;
  3286. // Which axes should be homed?
  3287. bool home_x = code_seen(axis_codes[X_AXIS]);
  3288. home_x_value = code_value_long();
  3289. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3290. home_y_value = code_value_long();
  3291. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3292. home_z_value = code_value_long();
  3293. bool without_mbl = code_seen('W');
  3294. // calibrate?
  3295. #ifdef TMC2130
  3296. bool calib = code_seen('C');
  3297. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3298. #else
  3299. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3300. #endif //TMC2130
  3301. if ((home_x || home_y || without_mbl || home_z) == false) {
  3302. // Push the commands to the front of the message queue in the reverse order!
  3303. // There shall be always enough space reserved for these commands.
  3304. goto case_G80;
  3305. }
  3306. break;
  3307. }
  3308. #ifdef ENABLE_AUTO_BED_LEVELING
  3309. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3310. {
  3311. #if Z_MIN_PIN == -1
  3312. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3313. #endif
  3314. // Prevent user from running a G29 without first homing in X and Y
  3315. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3316. {
  3317. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3318. SERIAL_ECHO_START;
  3319. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3320. break; // abort G29, since we don't know where we are
  3321. }
  3322. st_synchronize();
  3323. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3324. //vector_3 corrected_position = plan_get_position_mm();
  3325. //corrected_position.debug("position before G29");
  3326. plan_bed_level_matrix.set_to_identity();
  3327. vector_3 uncorrected_position = plan_get_position();
  3328. //uncorrected_position.debug("position durring G29");
  3329. current_position[X_AXIS] = uncorrected_position.x;
  3330. current_position[Y_AXIS] = uncorrected_position.y;
  3331. current_position[Z_AXIS] = uncorrected_position.z;
  3332. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3333. int l_feedmultiply = setup_for_endstop_move();
  3334. feedrate = homing_feedrate[Z_AXIS];
  3335. #ifdef AUTO_BED_LEVELING_GRID
  3336. // probe at the points of a lattice grid
  3337. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3338. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3339. // solve the plane equation ax + by + d = z
  3340. // A is the matrix with rows [x y 1] for all the probed points
  3341. // B is the vector of the Z positions
  3342. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3343. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3344. // "A" matrix of the linear system of equations
  3345. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3346. // "B" vector of Z points
  3347. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3348. int probePointCounter = 0;
  3349. bool zig = true;
  3350. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3351. {
  3352. int xProbe, xInc;
  3353. if (zig)
  3354. {
  3355. xProbe = LEFT_PROBE_BED_POSITION;
  3356. //xEnd = RIGHT_PROBE_BED_POSITION;
  3357. xInc = xGridSpacing;
  3358. zig = false;
  3359. } else // zag
  3360. {
  3361. xProbe = RIGHT_PROBE_BED_POSITION;
  3362. //xEnd = LEFT_PROBE_BED_POSITION;
  3363. xInc = -xGridSpacing;
  3364. zig = true;
  3365. }
  3366. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3367. {
  3368. float z_before;
  3369. if (probePointCounter == 0)
  3370. {
  3371. // raise before probing
  3372. z_before = Z_RAISE_BEFORE_PROBING;
  3373. } else
  3374. {
  3375. // raise extruder
  3376. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3377. }
  3378. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3379. eqnBVector[probePointCounter] = measured_z;
  3380. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3381. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3382. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3383. probePointCounter++;
  3384. xProbe += xInc;
  3385. }
  3386. }
  3387. clean_up_after_endstop_move(l_feedmultiply);
  3388. // solve lsq problem
  3389. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3390. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3391. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3392. SERIAL_PROTOCOLPGM(" b: ");
  3393. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3394. SERIAL_PROTOCOLPGM(" d: ");
  3395. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3396. set_bed_level_equation_lsq(plane_equation_coefficients);
  3397. free(plane_equation_coefficients);
  3398. #else // AUTO_BED_LEVELING_GRID not defined
  3399. // Probe at 3 arbitrary points
  3400. // probe 1
  3401. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3402. // probe 2
  3403. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3404. // probe 3
  3405. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3406. clean_up_after_endstop_move(l_feedmultiply);
  3407. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3408. #endif // AUTO_BED_LEVELING_GRID
  3409. st_synchronize();
  3410. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3411. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3412. // When the bed is uneven, this height must be corrected.
  3413. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3414. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3415. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3416. z_tmp = current_position[Z_AXIS];
  3417. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3418. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3420. }
  3421. break;
  3422. #ifndef Z_PROBE_SLED
  3423. case 30: // G30 Single Z Probe
  3424. {
  3425. st_synchronize();
  3426. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3427. int l_feedmultiply = setup_for_endstop_move();
  3428. feedrate = homing_feedrate[Z_AXIS];
  3429. run_z_probe();
  3430. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3431. SERIAL_PROTOCOLPGM(" X: ");
  3432. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3433. SERIAL_PROTOCOLPGM(" Y: ");
  3434. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3435. SERIAL_PROTOCOLPGM(" Z: ");
  3436. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3437. SERIAL_PROTOCOLPGM("\n");
  3438. clean_up_after_endstop_move(l_feedmultiply);
  3439. }
  3440. break;
  3441. #else
  3442. case 31: // dock the sled
  3443. dock_sled(true);
  3444. break;
  3445. case 32: // undock the sled
  3446. dock_sled(false);
  3447. break;
  3448. #endif // Z_PROBE_SLED
  3449. #endif // ENABLE_AUTO_BED_LEVELING
  3450. #ifdef MESH_BED_LEVELING
  3451. case 30: // G30 Single Z Probe
  3452. {
  3453. st_synchronize();
  3454. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3455. int l_feedmultiply = setup_for_endstop_move();
  3456. feedrate = homing_feedrate[Z_AXIS];
  3457. find_bed_induction_sensor_point_z(-10.f, 3);
  3458. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3459. clean_up_after_endstop_move(l_feedmultiply);
  3460. }
  3461. break;
  3462. case 75:
  3463. {
  3464. for (int i = 40; i <= 110; i++)
  3465. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3466. }
  3467. break;
  3468. case 76: //! G76 - PINDA probe temperature calibration
  3469. {
  3470. #ifdef PINDA_THERMISTOR
  3471. if (true)
  3472. {
  3473. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3474. //we need to know accurate position of first calibration point
  3475. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3476. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3477. break;
  3478. }
  3479. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3480. {
  3481. // We don't know where we are! HOME!
  3482. // Push the commands to the front of the message queue in the reverse order!
  3483. // There shall be always enough space reserved for these commands.
  3484. repeatcommand_front(); // repeat G76 with all its parameters
  3485. enquecommand_front_P((PSTR("G28 W0")));
  3486. break;
  3487. }
  3488. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3489. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3490. if (result)
  3491. {
  3492. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3494. current_position[Z_AXIS] = 50;
  3495. current_position[Y_AXIS] = 180;
  3496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3497. st_synchronize();
  3498. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3499. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3500. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3502. st_synchronize();
  3503. gcode_G28(false, false, true);
  3504. }
  3505. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3506. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3507. current_position[Z_AXIS] = 100;
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3509. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3510. lcd_temp_cal_show_result(false);
  3511. break;
  3512. }
  3513. }
  3514. lcd_update_enable(true);
  3515. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3516. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3517. float zero_z;
  3518. int z_shift = 0; //unit: steps
  3519. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3520. if (start_temp < 35) start_temp = 35;
  3521. if (start_temp < current_temperature_pinda) start_temp += 5;
  3522. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3523. // setTargetHotend(200, 0);
  3524. setTargetBed(70 + (start_temp - 30));
  3525. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3526. custom_message_state = 1;
  3527. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3528. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3530. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3531. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3533. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3535. st_synchronize();
  3536. while (current_temperature_pinda < start_temp)
  3537. {
  3538. delay_keep_alive(1000);
  3539. serialecho_temperatures();
  3540. }
  3541. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3542. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3544. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3545. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3547. st_synchronize();
  3548. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3549. if (find_z_result == false) {
  3550. lcd_temp_cal_show_result(find_z_result);
  3551. break;
  3552. }
  3553. zero_z = current_position[Z_AXIS];
  3554. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3555. int i = -1; for (; i < 5; i++)
  3556. {
  3557. float temp = (40 + i * 5);
  3558. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3559. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3560. if (start_temp <= temp) break;
  3561. }
  3562. for (i++; i < 5; i++)
  3563. {
  3564. float temp = (40 + i * 5);
  3565. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3566. custom_message_state = i + 2;
  3567. setTargetBed(50 + 10 * (temp - 30) / 5);
  3568. // setTargetHotend(255, 0);
  3569. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3571. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3572. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3574. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3576. st_synchronize();
  3577. while (current_temperature_pinda < temp)
  3578. {
  3579. delay_keep_alive(1000);
  3580. serialecho_temperatures();
  3581. }
  3582. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3584. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3585. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3587. st_synchronize();
  3588. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3589. if (find_z_result == false) {
  3590. lcd_temp_cal_show_result(find_z_result);
  3591. break;
  3592. }
  3593. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3594. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3595. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3596. }
  3597. lcd_temp_cal_show_result(true);
  3598. break;
  3599. }
  3600. #endif //PINDA_THERMISTOR
  3601. setTargetBed(PINDA_MIN_T);
  3602. float zero_z;
  3603. int z_shift = 0; //unit: steps
  3604. int t_c; // temperature
  3605. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3606. // We don't know where we are! HOME!
  3607. // Push the commands to the front of the message queue in the reverse order!
  3608. // There shall be always enough space reserved for these commands.
  3609. repeatcommand_front(); // repeat G76 with all its parameters
  3610. enquecommand_front_P((PSTR("G28 W0")));
  3611. break;
  3612. }
  3613. puts_P(_N("PINDA probe calibration start"));
  3614. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3615. custom_message_state = 1;
  3616. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3617. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3618. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3619. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3621. st_synchronize();
  3622. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3623. delay_keep_alive(1000);
  3624. serialecho_temperatures();
  3625. }
  3626. //enquecommand_P(PSTR("M190 S50"));
  3627. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3628. delay_keep_alive(1000);
  3629. serialecho_temperatures();
  3630. }
  3631. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3632. current_position[Z_AXIS] = 5;
  3633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3634. current_position[X_AXIS] = BED_X0;
  3635. current_position[Y_AXIS] = BED_Y0;
  3636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3637. st_synchronize();
  3638. find_bed_induction_sensor_point_z(-1.f);
  3639. zero_z = current_position[Z_AXIS];
  3640. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3641. for (int i = 0; i<5; i++) {
  3642. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3643. custom_message_state = i + 2;
  3644. t_c = 60 + i * 10;
  3645. setTargetBed(t_c);
  3646. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3647. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3648. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3650. st_synchronize();
  3651. while (degBed() < t_c) {
  3652. delay_keep_alive(1000);
  3653. serialecho_temperatures();
  3654. }
  3655. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3656. delay_keep_alive(1000);
  3657. serialecho_temperatures();
  3658. }
  3659. current_position[Z_AXIS] = 5;
  3660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3661. current_position[X_AXIS] = BED_X0;
  3662. current_position[Y_AXIS] = BED_Y0;
  3663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3664. st_synchronize();
  3665. find_bed_induction_sensor_point_z(-1.f);
  3666. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3667. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3668. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3669. }
  3670. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3671. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3672. puts_P(_N("Temperature calibration done."));
  3673. disable_x();
  3674. disable_y();
  3675. disable_z();
  3676. disable_e0();
  3677. disable_e1();
  3678. disable_e2();
  3679. setTargetBed(0); //set bed target temperature back to 0
  3680. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3681. temp_cal_active = true;
  3682. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3683. lcd_update_enable(true);
  3684. lcd_update(2);
  3685. }
  3686. break;
  3687. /**
  3688. * G80: Mesh-based Z probe, probes a grid and produces a
  3689. * mesh to compensate for variable bed height
  3690. *
  3691. * The S0 report the points as below
  3692. * @code{.unparsed}
  3693. * +----> X-axis
  3694. * |
  3695. * |
  3696. * v Y-axis
  3697. * @endcode
  3698. */
  3699. case 80:
  3700. #ifdef MK1BP
  3701. break;
  3702. #endif //MK1BP
  3703. case_G80:
  3704. {
  3705. mesh_bed_leveling_flag = true;
  3706. static bool run = false;
  3707. #ifdef SUPPORT_VERBOSITY
  3708. int8_t verbosity_level = 0;
  3709. if (code_seen('V')) {
  3710. // Just 'V' without a number counts as V1.
  3711. char c = strchr_pointer[1];
  3712. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3713. }
  3714. #endif //SUPPORT_VERBOSITY
  3715. // Firstly check if we know where we are
  3716. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3717. // We don't know where we are! HOME!
  3718. // Push the commands to the front of the message queue in the reverse order!
  3719. // There shall be always enough space reserved for these commands.
  3720. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3721. repeatcommand_front(); // repeat G80 with all its parameters
  3722. enquecommand_front_P((PSTR("G28 W0")));
  3723. }
  3724. else {
  3725. mesh_bed_leveling_flag = false;
  3726. }
  3727. break;
  3728. }
  3729. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3730. if (code_seen('N')) {
  3731. nMeasPoints = code_value_uint8();
  3732. if (nMeasPoints != 7) {
  3733. nMeasPoints = 3;
  3734. }
  3735. }
  3736. else {
  3737. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3738. }
  3739. uint8_t nProbeRetry = 3;
  3740. if (code_seen('R')) {
  3741. nProbeRetry = code_value_uint8();
  3742. if (nProbeRetry > 10) {
  3743. nProbeRetry = 10;
  3744. }
  3745. }
  3746. else {
  3747. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3748. }
  3749. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3750. bool temp_comp_start = true;
  3751. #ifdef PINDA_THERMISTOR
  3752. temp_comp_start = false;
  3753. #endif //PINDA_THERMISTOR
  3754. if (temp_comp_start)
  3755. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3756. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3757. temp_compensation_start();
  3758. run = true;
  3759. repeatcommand_front(); // repeat G80 with all its parameters
  3760. enquecommand_front_P((PSTR("G28 W0")));
  3761. }
  3762. else {
  3763. mesh_bed_leveling_flag = false;
  3764. }
  3765. break;
  3766. }
  3767. run = false;
  3768. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3769. mesh_bed_leveling_flag = false;
  3770. break;
  3771. }
  3772. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3773. unsigned int custom_message_type_old = custom_message_type;
  3774. unsigned int custom_message_state_old = custom_message_state;
  3775. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3776. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3777. lcd_update(1);
  3778. mbl.reset(); //reset mesh bed leveling
  3779. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3780. // consumed during the first movements following this statement.
  3781. babystep_undo();
  3782. // Cycle through all points and probe them
  3783. // First move up. During this first movement, the babystepping will be reverted.
  3784. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3786. // The move to the first calibration point.
  3787. current_position[X_AXIS] = BED_X0;
  3788. current_position[Y_AXIS] = BED_Y0;
  3789. #ifdef SUPPORT_VERBOSITY
  3790. if (verbosity_level >= 1)
  3791. {
  3792. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3793. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3794. }
  3795. #else //SUPPORT_VERBOSITY
  3796. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3797. #endif //SUPPORT_VERBOSITY
  3798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3799. // Wait until the move is finished.
  3800. st_synchronize();
  3801. uint8_t mesh_point = 0; //index number of calibration point
  3802. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3803. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3804. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3805. #ifdef SUPPORT_VERBOSITY
  3806. if (verbosity_level >= 1) {
  3807. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3808. }
  3809. #endif // SUPPORT_VERBOSITY
  3810. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3811. const char *kill_message = NULL;
  3812. while (mesh_point != nMeasPoints * nMeasPoints) {
  3813. // Get coords of a measuring point.
  3814. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3815. uint8_t iy = mesh_point / nMeasPoints;
  3816. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3817. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3818. custom_message_state--;
  3819. mesh_point++;
  3820. continue; //skip
  3821. }*/
  3822. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3823. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3824. {
  3825. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3826. }
  3827. float z0 = 0.f;
  3828. if (has_z && (mesh_point > 0)) {
  3829. uint16_t z_offset_u = 0;
  3830. if (nMeasPoints == 7) {
  3831. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3832. }
  3833. else {
  3834. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3835. }
  3836. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3837. #ifdef SUPPORT_VERBOSITY
  3838. if (verbosity_level >= 1) {
  3839. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3840. }
  3841. #endif // SUPPORT_VERBOSITY
  3842. }
  3843. // Move Z up to MESH_HOME_Z_SEARCH.
  3844. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3845. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3846. float init_z_bckp = current_position[Z_AXIS];
  3847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3848. st_synchronize();
  3849. // Move to XY position of the sensor point.
  3850. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3851. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3852. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3853. #ifdef SUPPORT_VERBOSITY
  3854. if (verbosity_level >= 1) {
  3855. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3856. SERIAL_PROTOCOL(mesh_point);
  3857. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3858. }
  3859. #else //SUPPORT_VERBOSITY
  3860. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3861. #endif // SUPPORT_VERBOSITY
  3862. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3864. st_synchronize();
  3865. // Go down until endstop is hit
  3866. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3867. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3868. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3869. break;
  3870. }
  3871. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3872. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3873. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3874. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3875. st_synchronize();
  3876. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3877. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3878. break;
  3879. }
  3880. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3881. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3882. break;
  3883. }
  3884. }
  3885. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3886. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3887. break;
  3888. }
  3889. #ifdef SUPPORT_VERBOSITY
  3890. if (verbosity_level >= 10) {
  3891. SERIAL_ECHOPGM("X: ");
  3892. MYSERIAL.print(current_position[X_AXIS], 5);
  3893. SERIAL_ECHOLNPGM("");
  3894. SERIAL_ECHOPGM("Y: ");
  3895. MYSERIAL.print(current_position[Y_AXIS], 5);
  3896. SERIAL_PROTOCOLPGM("\n");
  3897. }
  3898. #endif // SUPPORT_VERBOSITY
  3899. float offset_z = 0;
  3900. #ifdef PINDA_THERMISTOR
  3901. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3902. #endif //PINDA_THERMISTOR
  3903. // #ifdef SUPPORT_VERBOSITY
  3904. /* if (verbosity_level >= 1)
  3905. {
  3906. SERIAL_ECHOPGM("mesh bed leveling: ");
  3907. MYSERIAL.print(current_position[Z_AXIS], 5);
  3908. SERIAL_ECHOPGM(" offset: ");
  3909. MYSERIAL.print(offset_z, 5);
  3910. SERIAL_ECHOLNPGM("");
  3911. }*/
  3912. // #endif // SUPPORT_VERBOSITY
  3913. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3914. custom_message_state--;
  3915. mesh_point++;
  3916. lcd_update(1);
  3917. }
  3918. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3919. #ifdef SUPPORT_VERBOSITY
  3920. if (verbosity_level >= 20) {
  3921. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3922. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3923. MYSERIAL.print(current_position[Z_AXIS], 5);
  3924. }
  3925. #endif // SUPPORT_VERBOSITY
  3926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3927. st_synchronize();
  3928. if (mesh_point != nMeasPoints * nMeasPoints) {
  3929. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3930. bool bState;
  3931. do { // repeat until Z-leveling o.k.
  3932. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3933. #ifdef TMC2130
  3934. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3935. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3936. #else // TMC2130
  3937. lcd_wait_for_click_delay(0); // ~ no timeout
  3938. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3939. #endif // TMC2130
  3940. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3941. bState=enable_z_endstop(false);
  3942. current_position[Z_AXIS] -= 1;
  3943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3944. st_synchronize();
  3945. enable_z_endstop(true);
  3946. #ifdef TMC2130
  3947. tmc2130_home_enter(Z_AXIS_MASK);
  3948. #endif // TMC2130
  3949. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3951. st_synchronize();
  3952. #ifdef TMC2130
  3953. tmc2130_home_exit();
  3954. #endif // TMC2130
  3955. enable_z_endstop(bState);
  3956. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3957. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3958. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3959. lcd_update_enable(true); // display / status-line recovery
  3960. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3961. repeatcommand_front(); // re-run (i.e. of "G80")
  3962. break;
  3963. }
  3964. clean_up_after_endstop_move(l_feedmultiply);
  3965. // SERIAL_ECHOLNPGM("clean up finished ");
  3966. bool apply_temp_comp = true;
  3967. #ifdef PINDA_THERMISTOR
  3968. apply_temp_comp = false;
  3969. #endif
  3970. if (apply_temp_comp)
  3971. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3972. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3973. // SERIAL_ECHOLNPGM("babystep applied");
  3974. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3975. #ifdef SUPPORT_VERBOSITY
  3976. if (verbosity_level >= 1) {
  3977. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3978. }
  3979. #endif // SUPPORT_VERBOSITY
  3980. for (uint8_t i = 0; i < 4; ++i) {
  3981. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3982. long correction = 0;
  3983. if (code_seen(codes[i]))
  3984. correction = code_value_long();
  3985. else if (eeprom_bed_correction_valid) {
  3986. unsigned char *addr = (i < 2) ?
  3987. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3988. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3989. correction = eeprom_read_int8(addr);
  3990. }
  3991. if (correction == 0)
  3992. continue;
  3993. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  3994. SERIAL_ERROR_START;
  3995. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3996. SERIAL_ECHO(correction);
  3997. SERIAL_ECHOLNPGM(" microns");
  3998. }
  3999. else {
  4000. float offset = float(correction) * 0.001f;
  4001. switch (i) {
  4002. case 0:
  4003. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4004. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4005. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4006. }
  4007. }
  4008. break;
  4009. case 1:
  4010. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4011. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4012. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4013. }
  4014. }
  4015. break;
  4016. case 2:
  4017. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4018. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4019. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4020. }
  4021. }
  4022. break;
  4023. case 3:
  4024. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4025. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4026. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4027. }
  4028. }
  4029. break;
  4030. }
  4031. }
  4032. }
  4033. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4034. if (nMeasPoints == 3) {
  4035. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4036. }
  4037. /*
  4038. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4039. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4040. SERIAL_PROTOCOLPGM(",");
  4041. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4042. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4043. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4044. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4045. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4046. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4047. SERIAL_PROTOCOLPGM(" ");
  4048. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4049. }
  4050. SERIAL_PROTOCOLPGM("\n");
  4051. }
  4052. */
  4053. if (nMeasPoints == 7 && magnet_elimination) {
  4054. mbl_interpolation(nMeasPoints);
  4055. }
  4056. /*
  4057. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4058. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4059. SERIAL_PROTOCOLPGM(",");
  4060. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4061. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4062. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4063. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4064. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4065. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4066. SERIAL_PROTOCOLPGM(" ");
  4067. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4068. }
  4069. SERIAL_PROTOCOLPGM("\n");
  4070. }
  4071. */
  4072. // SERIAL_ECHOLNPGM("Upsample finished");
  4073. mbl.active = 1; //activate mesh bed leveling
  4074. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4075. go_home_with_z_lift();
  4076. // SERIAL_ECHOLNPGM("Go home finished");
  4077. //unretract (after PINDA preheat retraction)
  4078. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4079. current_position[E_AXIS] += default_retraction;
  4080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4081. }
  4082. KEEPALIVE_STATE(NOT_BUSY);
  4083. // Restore custom message state
  4084. lcd_setstatuspgm(_T(WELCOME_MSG));
  4085. custom_message_type = custom_message_type_old;
  4086. custom_message_state = custom_message_state_old;
  4087. mesh_bed_leveling_flag = false;
  4088. mesh_bed_run_from_menu = false;
  4089. lcd_update(2);
  4090. }
  4091. break;
  4092. /**
  4093. * G81: Print mesh bed leveling status and bed profile if activated
  4094. */
  4095. case 81:
  4096. if (mbl.active) {
  4097. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4098. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4099. SERIAL_PROTOCOLPGM(",");
  4100. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4101. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4102. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4103. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4104. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4105. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4106. SERIAL_PROTOCOLPGM(" ");
  4107. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4108. }
  4109. SERIAL_PROTOCOLPGM("\n");
  4110. }
  4111. }
  4112. else
  4113. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4114. break;
  4115. #if 0
  4116. /**
  4117. * G82: Single Z probe at current location
  4118. *
  4119. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4120. *
  4121. */
  4122. case 82:
  4123. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4124. int l_feedmultiply = setup_for_endstop_move();
  4125. find_bed_induction_sensor_point_z();
  4126. clean_up_after_endstop_move(l_feedmultiply);
  4127. SERIAL_PROTOCOLPGM("Bed found at: ");
  4128. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4129. SERIAL_PROTOCOLPGM("\n");
  4130. break;
  4131. /**
  4132. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4133. */
  4134. case 83:
  4135. {
  4136. int babystepz = code_seen('S') ? code_value() : 0;
  4137. int BabyPosition = code_seen('P') ? code_value() : 0;
  4138. if (babystepz != 0) {
  4139. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4140. // Is the axis indexed starting with zero or one?
  4141. if (BabyPosition > 4) {
  4142. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4143. }else{
  4144. // Save it to the eeprom
  4145. babystepLoadZ = babystepz;
  4146. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4147. // adjust the Z
  4148. babystepsTodoZadd(babystepLoadZ);
  4149. }
  4150. }
  4151. }
  4152. break;
  4153. /**
  4154. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4155. */
  4156. case 84:
  4157. babystepsTodoZsubtract(babystepLoadZ);
  4158. // babystepLoadZ = 0;
  4159. break;
  4160. /**
  4161. * G85: Prusa3D specific: Pick best babystep
  4162. */
  4163. case 85:
  4164. lcd_pick_babystep();
  4165. break;
  4166. #endif
  4167. /**
  4168. * G86: Prusa3D specific: Disable babystep correction after home.
  4169. * This G-code will be performed at the start of a calibration script.
  4170. */
  4171. case 86:
  4172. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4173. break;
  4174. /**
  4175. * G87: Prusa3D specific: Enable babystep correction after home
  4176. * This G-code will be performed at the end of a calibration script.
  4177. */
  4178. case 87:
  4179. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4180. break;
  4181. /**
  4182. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4183. */
  4184. case 88:
  4185. break;
  4186. #endif // ENABLE_MESH_BED_LEVELING
  4187. case 90: // G90
  4188. relative_mode = false;
  4189. break;
  4190. case 91: // G91
  4191. relative_mode = true;
  4192. break;
  4193. case 92: // G92
  4194. if(!code_seen(axis_codes[E_AXIS]))
  4195. st_synchronize();
  4196. for(int8_t i=0; i < NUM_AXIS; i++) {
  4197. if(code_seen(axis_codes[i])) {
  4198. if(i == E_AXIS) {
  4199. current_position[i] = code_value();
  4200. plan_set_e_position(current_position[E_AXIS]);
  4201. }
  4202. else {
  4203. current_position[i] = code_value()+cs.add_homing[i];
  4204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4205. }
  4206. }
  4207. }
  4208. break;
  4209. case 98: //! G98 (activate farm mode)
  4210. farm_mode = 1;
  4211. PingTime = _millis();
  4212. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4213. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4214. SilentModeMenu = SILENT_MODE_OFF;
  4215. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4216. break;
  4217. case 99: //! G99 (deactivate farm mode)
  4218. farm_mode = 0;
  4219. lcd_printer_connected();
  4220. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4221. lcd_update(2);
  4222. break;
  4223. default:
  4224. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4225. }
  4226. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4227. gcode_in_progress = 0;
  4228. } // end if(code_seen('G'))
  4229. else if(code_seen('M'))
  4230. {
  4231. int index;
  4232. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4233. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4234. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4235. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4236. } else
  4237. {
  4238. mcode_in_progress = (int)code_value();
  4239. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4240. switch(mcode_in_progress)
  4241. {
  4242. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4243. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4244. {
  4245. char *src = strchr_pointer + 2;
  4246. codenum = 0;
  4247. bool hasP = false, hasS = false;
  4248. if (code_seen('P')) {
  4249. codenum = code_value(); // milliseconds to wait
  4250. hasP = codenum > 0;
  4251. }
  4252. if (code_seen('S')) {
  4253. codenum = code_value() * 1000; // seconds to wait
  4254. hasS = codenum > 0;
  4255. }
  4256. starpos = strchr(src, '*');
  4257. if (starpos != NULL) *(starpos) = '\0';
  4258. while (*src == ' ') ++src;
  4259. if (!hasP && !hasS && *src != '\0') {
  4260. lcd_setstatus(src);
  4261. } else {
  4262. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4263. }
  4264. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4265. st_synchronize();
  4266. previous_millis_cmd = _millis();
  4267. if (codenum > 0){
  4268. codenum += _millis(); // keep track of when we started waiting
  4269. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4270. while(_millis() < codenum && !lcd_clicked()){
  4271. manage_heater();
  4272. manage_inactivity(true);
  4273. lcd_update(0);
  4274. }
  4275. KEEPALIVE_STATE(IN_HANDLER);
  4276. lcd_ignore_click(false);
  4277. }else{
  4278. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4279. while(!lcd_clicked()){
  4280. manage_heater();
  4281. manage_inactivity(true);
  4282. lcd_update(0);
  4283. }
  4284. KEEPALIVE_STATE(IN_HANDLER);
  4285. }
  4286. if (IS_SD_PRINTING)
  4287. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4288. else
  4289. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4290. }
  4291. break;
  4292. case 17:
  4293. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4294. enable_x();
  4295. enable_y();
  4296. enable_z();
  4297. enable_e0();
  4298. enable_e1();
  4299. enable_e2();
  4300. break;
  4301. #ifdef SDSUPPORT
  4302. case 20: // M20 - list SD card
  4303. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4304. card.ls();
  4305. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4306. break;
  4307. case 21: // M21 - init SD card
  4308. card.initsd();
  4309. break;
  4310. case 22: //M22 - release SD card
  4311. card.release();
  4312. break;
  4313. case 23: //M23 - Select file
  4314. starpos = (strchr(strchr_pointer + 4,'*'));
  4315. if(starpos!=NULL)
  4316. *(starpos)='\0';
  4317. card.openFile(strchr_pointer + 4,true);
  4318. break;
  4319. case 24: //M24 - Start SD print
  4320. if (!card.paused)
  4321. failstats_reset_print();
  4322. card.startFileprint();
  4323. starttime=_millis();
  4324. break;
  4325. case 25: //M25 - Pause SD print
  4326. card.pauseSDPrint();
  4327. break;
  4328. case 26: //M26 - Set SD index
  4329. if(card.cardOK && code_seen('S')) {
  4330. card.setIndex(code_value_long());
  4331. }
  4332. break;
  4333. case 27: //M27 - Get SD status
  4334. card.getStatus();
  4335. break;
  4336. case 28: //M28 - Start SD write
  4337. starpos = (strchr(strchr_pointer + 4,'*'));
  4338. if(starpos != NULL){
  4339. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4340. strchr_pointer = strchr(npos,' ') + 1;
  4341. *(starpos) = '\0';
  4342. }
  4343. card.openFile(strchr_pointer+4,false);
  4344. break;
  4345. case 29: //M29 - Stop SD write
  4346. //processed in write to file routine above
  4347. //card,saving = false;
  4348. break;
  4349. case 30: //M30 <filename> Delete File
  4350. if (card.cardOK){
  4351. card.closefile();
  4352. starpos = (strchr(strchr_pointer + 4,'*'));
  4353. if(starpos != NULL){
  4354. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4355. strchr_pointer = strchr(npos,' ') + 1;
  4356. *(starpos) = '\0';
  4357. }
  4358. card.removeFile(strchr_pointer + 4);
  4359. }
  4360. break;
  4361. case 32: //M32 - Select file and start SD print
  4362. {
  4363. if(card.sdprinting) {
  4364. st_synchronize();
  4365. }
  4366. starpos = (strchr(strchr_pointer + 4,'*'));
  4367. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4368. if(namestartpos==NULL)
  4369. {
  4370. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4371. }
  4372. else
  4373. namestartpos++; //to skip the '!'
  4374. if(starpos!=NULL)
  4375. *(starpos)='\0';
  4376. bool call_procedure=(code_seen('P'));
  4377. if(strchr_pointer>namestartpos)
  4378. call_procedure=false; //false alert, 'P' found within filename
  4379. if( card.cardOK )
  4380. {
  4381. card.openFile(namestartpos,true,!call_procedure);
  4382. if(code_seen('S'))
  4383. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4384. card.setIndex(code_value_long());
  4385. card.startFileprint();
  4386. if(!call_procedure)
  4387. starttime=_millis(); //procedure calls count as normal print time.
  4388. }
  4389. } break;
  4390. case 928: //M928 - Start SD write
  4391. starpos = (strchr(strchr_pointer + 5,'*'));
  4392. if(starpos != NULL){
  4393. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4394. strchr_pointer = strchr(npos,' ') + 1;
  4395. *(starpos) = '\0';
  4396. }
  4397. card.openLogFile(strchr_pointer+5);
  4398. break;
  4399. #endif //SDSUPPORT
  4400. case 31: //M31 take time since the start of the SD print or an M109 command
  4401. {
  4402. stoptime=_millis();
  4403. char time[30];
  4404. unsigned long t=(stoptime-starttime)/1000;
  4405. int sec,min;
  4406. min=t/60;
  4407. sec=t%60;
  4408. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4409. SERIAL_ECHO_START;
  4410. SERIAL_ECHOLN(time);
  4411. lcd_setstatus(time);
  4412. autotempShutdown();
  4413. }
  4414. break;
  4415. case 42: //M42 -Change pin status via gcode
  4416. if (code_seen('S'))
  4417. {
  4418. int pin_status = code_value();
  4419. int pin_number = LED_PIN;
  4420. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4421. pin_number = code_value();
  4422. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4423. {
  4424. if (sensitive_pins[i] == pin_number)
  4425. {
  4426. pin_number = -1;
  4427. break;
  4428. }
  4429. }
  4430. #if defined(FAN_PIN) && FAN_PIN > -1
  4431. if (pin_number == FAN_PIN)
  4432. fanSpeed = pin_status;
  4433. #endif
  4434. if (pin_number > -1)
  4435. {
  4436. pinMode(pin_number, OUTPUT);
  4437. digitalWrite(pin_number, pin_status);
  4438. analogWrite(pin_number, pin_status);
  4439. }
  4440. }
  4441. break;
  4442. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4443. // Reset the baby step value and the baby step applied flag.
  4444. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4445. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4446. // Reset the skew and offset in both RAM and EEPROM.
  4447. reset_bed_offset_and_skew();
  4448. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4449. // the planner will not perform any adjustments in the XY plane.
  4450. // Wait for the motors to stop and update the current position with the absolute values.
  4451. world2machine_revert_to_uncorrected();
  4452. break;
  4453. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4454. {
  4455. int8_t verbosity_level = 0;
  4456. bool only_Z = code_seen('Z');
  4457. #ifdef SUPPORT_VERBOSITY
  4458. if (code_seen('V'))
  4459. {
  4460. // Just 'V' without a number counts as V1.
  4461. char c = strchr_pointer[1];
  4462. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4463. }
  4464. #endif //SUPPORT_VERBOSITY
  4465. gcode_M45(only_Z, verbosity_level);
  4466. }
  4467. break;
  4468. /*
  4469. case 46:
  4470. {
  4471. // M46: Prusa3D: Show the assigned IP address.
  4472. uint8_t ip[4];
  4473. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4474. if (hasIP) {
  4475. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4476. SERIAL_ECHO(int(ip[0]));
  4477. SERIAL_ECHOPGM(".");
  4478. SERIAL_ECHO(int(ip[1]));
  4479. SERIAL_ECHOPGM(".");
  4480. SERIAL_ECHO(int(ip[2]));
  4481. SERIAL_ECHOPGM(".");
  4482. SERIAL_ECHO(int(ip[3]));
  4483. SERIAL_ECHOLNPGM("");
  4484. } else {
  4485. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4486. }
  4487. break;
  4488. }
  4489. */
  4490. case 47:
  4491. //! M47: Prusa3D: Show end stops dialog on the display.
  4492. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4493. lcd_diag_show_end_stops();
  4494. KEEPALIVE_STATE(IN_HANDLER);
  4495. break;
  4496. #if 0
  4497. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4498. {
  4499. // Disable the default update procedure of the display. We will do a modal dialog.
  4500. lcd_update_enable(false);
  4501. // Let the planner use the uncorrected coordinates.
  4502. mbl.reset();
  4503. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4504. // the planner will not perform any adjustments in the XY plane.
  4505. // Wait for the motors to stop and update the current position with the absolute values.
  4506. world2machine_revert_to_uncorrected();
  4507. // Move the print head close to the bed.
  4508. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4510. st_synchronize();
  4511. // Home in the XY plane.
  4512. set_destination_to_current();
  4513. int l_feedmultiply = setup_for_endstop_move();
  4514. home_xy();
  4515. int8_t verbosity_level = 0;
  4516. if (code_seen('V')) {
  4517. // Just 'V' without a number counts as V1.
  4518. char c = strchr_pointer[1];
  4519. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4520. }
  4521. bool success = scan_bed_induction_points(verbosity_level);
  4522. clean_up_after_endstop_move(l_feedmultiply);
  4523. // Print head up.
  4524. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4526. st_synchronize();
  4527. lcd_update_enable(true);
  4528. break;
  4529. }
  4530. #endif
  4531. #ifdef ENABLE_AUTO_BED_LEVELING
  4532. #ifdef Z_PROBE_REPEATABILITY_TEST
  4533. //! M48 Z-Probe repeatability measurement function.
  4534. //!
  4535. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4536. //!
  4537. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4538. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4539. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4540. //! regenerated.
  4541. //!
  4542. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4543. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4544. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4545. //!
  4546. case 48: // M48 Z-Probe repeatability
  4547. {
  4548. #if Z_MIN_PIN == -1
  4549. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4550. #endif
  4551. double sum=0.0;
  4552. double mean=0.0;
  4553. double sigma=0.0;
  4554. double sample_set[50];
  4555. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4556. double X_current, Y_current, Z_current;
  4557. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4558. if (code_seen('V') || code_seen('v')) {
  4559. verbose_level = code_value();
  4560. if (verbose_level<0 || verbose_level>4 ) {
  4561. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4562. goto Sigma_Exit;
  4563. }
  4564. }
  4565. if (verbose_level > 0) {
  4566. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4567. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4568. }
  4569. if (code_seen('n')) {
  4570. n_samples = code_value();
  4571. if (n_samples<4 || n_samples>50 ) {
  4572. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4573. goto Sigma_Exit;
  4574. }
  4575. }
  4576. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4577. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4578. Z_current = st_get_position_mm(Z_AXIS);
  4579. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4580. ext_position = st_get_position_mm(E_AXIS);
  4581. if (code_seen('X') || code_seen('x') ) {
  4582. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4583. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4584. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4585. goto Sigma_Exit;
  4586. }
  4587. }
  4588. if (code_seen('Y') || code_seen('y') ) {
  4589. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4590. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4591. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4592. goto Sigma_Exit;
  4593. }
  4594. }
  4595. if (code_seen('L') || code_seen('l') ) {
  4596. n_legs = code_value();
  4597. if ( n_legs==1 )
  4598. n_legs = 2;
  4599. if ( n_legs<0 || n_legs>15 ) {
  4600. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4601. goto Sigma_Exit;
  4602. }
  4603. }
  4604. //
  4605. // Do all the preliminary setup work. First raise the probe.
  4606. //
  4607. st_synchronize();
  4608. plan_bed_level_matrix.set_to_identity();
  4609. plan_buffer_line( X_current, Y_current, Z_start_location,
  4610. ext_position,
  4611. homing_feedrate[Z_AXIS]/60,
  4612. active_extruder);
  4613. st_synchronize();
  4614. //
  4615. // Now get everything to the specified probe point So we can safely do a probe to
  4616. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4617. // use that as a starting point for each probe.
  4618. //
  4619. if (verbose_level > 2)
  4620. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4621. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4622. ext_position,
  4623. homing_feedrate[X_AXIS]/60,
  4624. active_extruder);
  4625. st_synchronize();
  4626. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4627. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4628. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4629. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4630. //
  4631. // OK, do the inital probe to get us close to the bed.
  4632. // Then retrace the right amount and use that in subsequent probes
  4633. //
  4634. int l_feedmultiply = setup_for_endstop_move();
  4635. run_z_probe();
  4636. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4637. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4638. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4639. ext_position,
  4640. homing_feedrate[X_AXIS]/60,
  4641. active_extruder);
  4642. st_synchronize();
  4643. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4644. for( n=0; n<n_samples; n++) {
  4645. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4646. if ( n_legs) {
  4647. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4648. int rotational_direction, l;
  4649. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4650. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4651. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4652. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4653. //SERIAL_ECHOPAIR(" theta: ",theta);
  4654. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4655. //SERIAL_PROTOCOLLNPGM("");
  4656. for( l=0; l<n_legs-1; l++) {
  4657. if (rotational_direction==1)
  4658. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4659. else
  4660. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4661. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4662. if ( radius<0.0 )
  4663. radius = -radius;
  4664. X_current = X_probe_location + cos(theta) * radius;
  4665. Y_current = Y_probe_location + sin(theta) * radius;
  4666. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4667. X_current = X_MIN_POS;
  4668. if ( X_current>X_MAX_POS)
  4669. X_current = X_MAX_POS;
  4670. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4671. Y_current = Y_MIN_POS;
  4672. if ( Y_current>Y_MAX_POS)
  4673. Y_current = Y_MAX_POS;
  4674. if (verbose_level>3 ) {
  4675. SERIAL_ECHOPAIR("x: ", X_current);
  4676. SERIAL_ECHOPAIR("y: ", Y_current);
  4677. SERIAL_PROTOCOLLNPGM("");
  4678. }
  4679. do_blocking_move_to( X_current, Y_current, Z_current );
  4680. }
  4681. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4682. }
  4683. int l_feedmultiply = setup_for_endstop_move();
  4684. run_z_probe();
  4685. sample_set[n] = current_position[Z_AXIS];
  4686. //
  4687. // Get the current mean for the data points we have so far
  4688. //
  4689. sum=0.0;
  4690. for( j=0; j<=n; j++) {
  4691. sum = sum + sample_set[j];
  4692. }
  4693. mean = sum / (double (n+1));
  4694. //
  4695. // Now, use that mean to calculate the standard deviation for the
  4696. // data points we have so far
  4697. //
  4698. sum=0.0;
  4699. for( j=0; j<=n; j++) {
  4700. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4701. }
  4702. sigma = sqrt( sum / (double (n+1)) );
  4703. if (verbose_level > 1) {
  4704. SERIAL_PROTOCOL(n+1);
  4705. SERIAL_PROTOCOL(" of ");
  4706. SERIAL_PROTOCOL(n_samples);
  4707. SERIAL_PROTOCOLPGM(" z: ");
  4708. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4709. }
  4710. if (verbose_level > 2) {
  4711. SERIAL_PROTOCOL(" mean: ");
  4712. SERIAL_PROTOCOL_F(mean,6);
  4713. SERIAL_PROTOCOL(" sigma: ");
  4714. SERIAL_PROTOCOL_F(sigma,6);
  4715. }
  4716. if (verbose_level > 0)
  4717. SERIAL_PROTOCOLPGM("\n");
  4718. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4719. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4720. st_synchronize();
  4721. }
  4722. _delay(1000);
  4723. clean_up_after_endstop_move(l_feedmultiply);
  4724. // enable_endstops(true);
  4725. if (verbose_level > 0) {
  4726. SERIAL_PROTOCOLPGM("Mean: ");
  4727. SERIAL_PROTOCOL_F(mean, 6);
  4728. SERIAL_PROTOCOLPGM("\n");
  4729. }
  4730. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4731. SERIAL_PROTOCOL_F(sigma, 6);
  4732. SERIAL_PROTOCOLPGM("\n\n");
  4733. Sigma_Exit:
  4734. break;
  4735. }
  4736. #endif // Z_PROBE_REPEATABILITY_TEST
  4737. #endif // ENABLE_AUTO_BED_LEVELING
  4738. case 73: //M73 show percent done and time remaining
  4739. if(code_seen('P')) print_percent_done_normal = code_value();
  4740. if(code_seen('R')) print_time_remaining_normal = code_value();
  4741. if(code_seen('Q')) print_percent_done_silent = code_value();
  4742. if(code_seen('S')) print_time_remaining_silent = code_value();
  4743. {
  4744. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4745. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4746. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4747. }
  4748. break;
  4749. case 104: // M104
  4750. {
  4751. uint8_t extruder;
  4752. if(setTargetedHotend(104,extruder)){
  4753. break;
  4754. }
  4755. if (code_seen('S'))
  4756. {
  4757. setTargetHotendSafe(code_value(), extruder);
  4758. }
  4759. setWatch();
  4760. break;
  4761. }
  4762. case 112: // M112 -Emergency Stop
  4763. kill(_n(""), 3);
  4764. break;
  4765. case 140: // M140 set bed temp
  4766. if (code_seen('S')) setTargetBed(code_value());
  4767. break;
  4768. case 105 : // M105
  4769. {
  4770. uint8_t extruder;
  4771. if(setTargetedHotend(105, extruder)){
  4772. break;
  4773. }
  4774. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4775. SERIAL_PROTOCOLPGM("ok T:");
  4776. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4777. SERIAL_PROTOCOLPGM(" /");
  4778. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4779. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4780. SERIAL_PROTOCOLPGM(" B:");
  4781. SERIAL_PROTOCOL_F(degBed(),1);
  4782. SERIAL_PROTOCOLPGM(" /");
  4783. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4784. #endif //TEMP_BED_PIN
  4785. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4786. SERIAL_PROTOCOLPGM(" T");
  4787. SERIAL_PROTOCOL(cur_extruder);
  4788. SERIAL_PROTOCOLPGM(":");
  4789. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4790. SERIAL_PROTOCOLPGM(" /");
  4791. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4792. }
  4793. #else
  4794. SERIAL_ERROR_START;
  4795. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4796. #endif
  4797. SERIAL_PROTOCOLPGM(" @:");
  4798. #ifdef EXTRUDER_WATTS
  4799. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4800. SERIAL_PROTOCOLPGM("W");
  4801. #else
  4802. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4803. #endif
  4804. SERIAL_PROTOCOLPGM(" B@:");
  4805. #ifdef BED_WATTS
  4806. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4807. SERIAL_PROTOCOLPGM("W");
  4808. #else
  4809. SERIAL_PROTOCOL(getHeaterPower(-1));
  4810. #endif
  4811. #ifdef PINDA_THERMISTOR
  4812. SERIAL_PROTOCOLPGM(" P:");
  4813. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4814. #endif //PINDA_THERMISTOR
  4815. #ifdef AMBIENT_THERMISTOR
  4816. SERIAL_PROTOCOLPGM(" A:");
  4817. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4818. #endif //AMBIENT_THERMISTOR
  4819. #ifdef SHOW_TEMP_ADC_VALUES
  4820. {float raw = 0.0;
  4821. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4822. SERIAL_PROTOCOLPGM(" ADC B:");
  4823. SERIAL_PROTOCOL_F(degBed(),1);
  4824. SERIAL_PROTOCOLPGM("C->");
  4825. raw = rawBedTemp();
  4826. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4827. SERIAL_PROTOCOLPGM(" Rb->");
  4828. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4829. SERIAL_PROTOCOLPGM(" Rxb->");
  4830. SERIAL_PROTOCOL_F(raw, 5);
  4831. #endif
  4832. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4833. SERIAL_PROTOCOLPGM(" T");
  4834. SERIAL_PROTOCOL(cur_extruder);
  4835. SERIAL_PROTOCOLPGM(":");
  4836. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4837. SERIAL_PROTOCOLPGM("C->");
  4838. raw = rawHotendTemp(cur_extruder);
  4839. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4840. SERIAL_PROTOCOLPGM(" Rt");
  4841. SERIAL_PROTOCOL(cur_extruder);
  4842. SERIAL_PROTOCOLPGM("->");
  4843. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4844. SERIAL_PROTOCOLPGM(" Rx");
  4845. SERIAL_PROTOCOL(cur_extruder);
  4846. SERIAL_PROTOCOLPGM("->");
  4847. SERIAL_PROTOCOL_F(raw, 5);
  4848. }}
  4849. #endif
  4850. SERIAL_PROTOCOLLN("");
  4851. KEEPALIVE_STATE(NOT_BUSY);
  4852. return;
  4853. break;
  4854. }
  4855. case 109:
  4856. {// M109 - Wait for extruder heater to reach target.
  4857. uint8_t extruder;
  4858. if(setTargetedHotend(109, extruder)){
  4859. break;
  4860. }
  4861. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4862. heating_status = 1;
  4863. if (farm_mode) { prusa_statistics(1); };
  4864. #ifdef AUTOTEMP
  4865. autotemp_enabled=false;
  4866. #endif
  4867. if (code_seen('S')) {
  4868. setTargetHotendSafe(code_value(), extruder);
  4869. CooldownNoWait = true;
  4870. } else if (code_seen('R')) {
  4871. setTargetHotendSafe(code_value(), extruder);
  4872. CooldownNoWait = false;
  4873. }
  4874. #ifdef AUTOTEMP
  4875. if (code_seen('S')) autotemp_min=code_value();
  4876. if (code_seen('B')) autotemp_max=code_value();
  4877. if (code_seen('F'))
  4878. {
  4879. autotemp_factor=code_value();
  4880. autotemp_enabled=true;
  4881. }
  4882. #endif
  4883. setWatch();
  4884. codenum = _millis();
  4885. /* See if we are heating up or cooling down */
  4886. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4887. KEEPALIVE_STATE(NOT_BUSY);
  4888. cancel_heatup = false;
  4889. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4890. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4891. KEEPALIVE_STATE(IN_HANDLER);
  4892. heating_status = 2;
  4893. if (farm_mode) { prusa_statistics(2); };
  4894. //starttime=_millis();
  4895. previous_millis_cmd = _millis();
  4896. }
  4897. break;
  4898. case 190: // M190 - Wait for bed heater to reach target.
  4899. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4900. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4901. heating_status = 3;
  4902. if (farm_mode) { prusa_statistics(1); };
  4903. if (code_seen('S'))
  4904. {
  4905. setTargetBed(code_value());
  4906. CooldownNoWait = true;
  4907. }
  4908. else if (code_seen('R'))
  4909. {
  4910. setTargetBed(code_value());
  4911. CooldownNoWait = false;
  4912. }
  4913. codenum = _millis();
  4914. cancel_heatup = false;
  4915. target_direction = isHeatingBed(); // true if heating, false if cooling
  4916. KEEPALIVE_STATE(NOT_BUSY);
  4917. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4918. {
  4919. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4920. {
  4921. if (!farm_mode) {
  4922. float tt = degHotend(active_extruder);
  4923. SERIAL_PROTOCOLPGM("T:");
  4924. SERIAL_PROTOCOL(tt);
  4925. SERIAL_PROTOCOLPGM(" E:");
  4926. SERIAL_PROTOCOL((int)active_extruder);
  4927. SERIAL_PROTOCOLPGM(" B:");
  4928. SERIAL_PROTOCOL_F(degBed(), 1);
  4929. SERIAL_PROTOCOLLN("");
  4930. }
  4931. codenum = _millis();
  4932. }
  4933. manage_heater();
  4934. manage_inactivity();
  4935. lcd_update(0);
  4936. }
  4937. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4938. KEEPALIVE_STATE(IN_HANDLER);
  4939. heating_status = 4;
  4940. previous_millis_cmd = _millis();
  4941. #endif
  4942. break;
  4943. #if defined(FAN_PIN) && FAN_PIN > -1
  4944. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4945. if (code_seen('S')){
  4946. fanSpeed=constrain(code_value(),0,255);
  4947. }
  4948. else {
  4949. fanSpeed=255;
  4950. }
  4951. break;
  4952. case 107: //M107 Fan Off
  4953. fanSpeed = 0;
  4954. break;
  4955. #endif //FAN_PIN
  4956. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4957. case 80: // M80 - Turn on Power Supply
  4958. SET_OUTPUT(PS_ON_PIN); //GND
  4959. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4960. // If you have a switch on suicide pin, this is useful
  4961. // if you want to start another print with suicide feature after
  4962. // a print without suicide...
  4963. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4964. SET_OUTPUT(SUICIDE_PIN);
  4965. WRITE(SUICIDE_PIN, HIGH);
  4966. #endif
  4967. powersupply = true;
  4968. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4969. lcd_update(0);
  4970. break;
  4971. #endif
  4972. case 81: // M81 - Turn off Power Supply
  4973. disable_heater();
  4974. st_synchronize();
  4975. disable_e0();
  4976. disable_e1();
  4977. disable_e2();
  4978. finishAndDisableSteppers();
  4979. fanSpeed = 0;
  4980. _delay(1000); // Wait a little before to switch off
  4981. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4982. st_synchronize();
  4983. suicide();
  4984. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4985. SET_OUTPUT(PS_ON_PIN);
  4986. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4987. #endif
  4988. powersupply = false;
  4989. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4990. lcd_update(0);
  4991. break;
  4992. case 82:
  4993. axis_relative_modes[3] = false;
  4994. break;
  4995. case 83:
  4996. axis_relative_modes[3] = true;
  4997. break;
  4998. case 18: //compatibility
  4999. case 84: // M84
  5000. if(code_seen('S')){
  5001. stepper_inactive_time = code_value() * 1000;
  5002. }
  5003. else
  5004. {
  5005. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5006. if(all_axis)
  5007. {
  5008. st_synchronize();
  5009. disable_e0();
  5010. disable_e1();
  5011. disable_e2();
  5012. finishAndDisableSteppers();
  5013. }
  5014. else
  5015. {
  5016. st_synchronize();
  5017. if (code_seen('X')) disable_x();
  5018. if (code_seen('Y')) disable_y();
  5019. if (code_seen('Z')) disable_z();
  5020. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5021. if (code_seen('E')) {
  5022. disable_e0();
  5023. disable_e1();
  5024. disable_e2();
  5025. }
  5026. #endif
  5027. }
  5028. }
  5029. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5030. print_time_remaining_init();
  5031. snmm_filaments_used = 0;
  5032. break;
  5033. case 85: // M85
  5034. if(code_seen('S')) {
  5035. max_inactive_time = code_value() * 1000;
  5036. }
  5037. break;
  5038. #ifdef SAFETYTIMER
  5039. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5040. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5041. if (code_seen('S')) {
  5042. safetytimer_inactive_time = code_value() * 1000;
  5043. safetyTimer.start();
  5044. }
  5045. break;
  5046. #endif
  5047. case 92: // M92
  5048. for(int8_t i=0; i < NUM_AXIS; i++)
  5049. {
  5050. if(code_seen(axis_codes[i]))
  5051. {
  5052. if(i == 3) { // E
  5053. float value = code_value();
  5054. if(value < 20.0) {
  5055. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5056. cs.max_jerk[E_AXIS] *= factor;
  5057. max_feedrate[i] *= factor;
  5058. axis_steps_per_sqr_second[i] *= factor;
  5059. }
  5060. cs.axis_steps_per_unit[i] = value;
  5061. }
  5062. else {
  5063. cs.axis_steps_per_unit[i] = code_value();
  5064. }
  5065. }
  5066. }
  5067. break;
  5068. case 110: //! M110 N<line number> - reset line pos
  5069. if (code_seen('N'))
  5070. gcode_LastN = code_value_long();
  5071. break;
  5072. case 113: // M113 - Get or set Host Keepalive interval
  5073. if (code_seen('S')) {
  5074. host_keepalive_interval = (uint8_t)code_value_short();
  5075. // NOMORE(host_keepalive_interval, 60);
  5076. }
  5077. else {
  5078. SERIAL_ECHO_START;
  5079. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5080. SERIAL_PROTOCOLLN("");
  5081. }
  5082. break;
  5083. case 115: // M115
  5084. if (code_seen('V')) {
  5085. // Report the Prusa version number.
  5086. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5087. } else if (code_seen('U')) {
  5088. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5089. // pause the print and ask the user to upgrade the firmware.
  5090. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5091. } else {
  5092. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5093. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5094. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5095. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5096. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5097. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5098. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5099. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5100. SERIAL_ECHOPGM(" UUID:");
  5101. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5102. }
  5103. break;
  5104. /* case 117: // M117 display message
  5105. starpos = (strchr(strchr_pointer + 5,'*'));
  5106. if(starpos!=NULL)
  5107. *(starpos)='\0';
  5108. lcd_setstatus(strchr_pointer + 5);
  5109. break;*/
  5110. case 114: // M114
  5111. gcode_M114();
  5112. break;
  5113. case 120: //! M120 - Disable endstops
  5114. enable_endstops(false) ;
  5115. break;
  5116. case 121: //! M121 - Enable endstops
  5117. enable_endstops(true) ;
  5118. break;
  5119. case 119: // M119
  5120. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5121. SERIAL_PROTOCOLLN("");
  5122. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5123. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5124. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5125. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5126. }else{
  5127. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5128. }
  5129. SERIAL_PROTOCOLLN("");
  5130. #endif
  5131. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5132. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5133. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5134. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5135. }else{
  5136. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5137. }
  5138. SERIAL_PROTOCOLLN("");
  5139. #endif
  5140. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5141. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5142. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5143. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5144. }else{
  5145. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5146. }
  5147. SERIAL_PROTOCOLLN("");
  5148. #endif
  5149. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5150. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5151. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5152. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5153. }else{
  5154. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5155. }
  5156. SERIAL_PROTOCOLLN("");
  5157. #endif
  5158. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5159. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5160. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5161. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5162. }else{
  5163. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5164. }
  5165. SERIAL_PROTOCOLLN("");
  5166. #endif
  5167. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5168. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5169. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5170. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5171. }else{
  5172. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5173. }
  5174. SERIAL_PROTOCOLLN("");
  5175. #endif
  5176. break;
  5177. //TODO: update for all axis, use for loop
  5178. #ifdef BLINKM
  5179. case 150: // M150
  5180. {
  5181. byte red;
  5182. byte grn;
  5183. byte blu;
  5184. if(code_seen('R')) red = code_value();
  5185. if(code_seen('U')) grn = code_value();
  5186. if(code_seen('B')) blu = code_value();
  5187. SendColors(red,grn,blu);
  5188. }
  5189. break;
  5190. #endif //BLINKM
  5191. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5192. {
  5193. uint8_t extruder = active_extruder;
  5194. if(code_seen('T')) {
  5195. extruder = code_value();
  5196. if(extruder >= EXTRUDERS) {
  5197. SERIAL_ECHO_START;
  5198. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5199. break;
  5200. }
  5201. }
  5202. if(code_seen('D')) {
  5203. float diameter = (float)code_value();
  5204. if (diameter == 0.0) {
  5205. // setting any extruder filament size disables volumetric on the assumption that
  5206. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5207. // for all extruders
  5208. cs.volumetric_enabled = false;
  5209. } else {
  5210. cs.filament_size[extruder] = (float)code_value();
  5211. // make sure all extruders have some sane value for the filament size
  5212. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5213. #if EXTRUDERS > 1
  5214. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5215. #if EXTRUDERS > 2
  5216. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5217. #endif
  5218. #endif
  5219. cs.volumetric_enabled = true;
  5220. }
  5221. } else {
  5222. //reserved for setting filament diameter via UFID or filament measuring device
  5223. break;
  5224. }
  5225. calculate_extruder_multipliers();
  5226. }
  5227. break;
  5228. case 201: // M201
  5229. for (int8_t i = 0; i < NUM_AXIS; i++)
  5230. {
  5231. if (code_seen(axis_codes[i]))
  5232. {
  5233. unsigned long val = code_value();
  5234. #ifdef TMC2130
  5235. unsigned long val_silent = val;
  5236. if ((i == X_AXIS) || (i == Y_AXIS))
  5237. {
  5238. if (val > NORMAL_MAX_ACCEL_XY)
  5239. val = NORMAL_MAX_ACCEL_XY;
  5240. if (val_silent > SILENT_MAX_ACCEL_XY)
  5241. val_silent = SILENT_MAX_ACCEL_XY;
  5242. }
  5243. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5244. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5245. #else //TMC2130
  5246. max_acceleration_units_per_sq_second[i] = val;
  5247. #endif //TMC2130
  5248. }
  5249. }
  5250. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5251. reset_acceleration_rates();
  5252. break;
  5253. #if 0 // Not used for Sprinter/grbl gen6
  5254. case 202: // M202
  5255. for(int8_t i=0; i < NUM_AXIS; i++) {
  5256. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5257. }
  5258. break;
  5259. #endif
  5260. case 203: // M203 max feedrate mm/sec
  5261. for (int8_t i = 0; i < NUM_AXIS; i++)
  5262. {
  5263. if (code_seen(axis_codes[i]))
  5264. {
  5265. float val = code_value();
  5266. #ifdef TMC2130
  5267. float val_silent = val;
  5268. if ((i == X_AXIS) || (i == Y_AXIS))
  5269. {
  5270. if (val > NORMAL_MAX_FEEDRATE_XY)
  5271. val = NORMAL_MAX_FEEDRATE_XY;
  5272. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5273. val_silent = SILENT_MAX_FEEDRATE_XY;
  5274. }
  5275. cs.max_feedrate_normal[i] = val;
  5276. cs.max_feedrate_silent[i] = val_silent;
  5277. #else //TMC2130
  5278. max_feedrate[i] = val;
  5279. #endif //TMC2130
  5280. }
  5281. }
  5282. break;
  5283. case 204:
  5284. //! M204 acclereration settings.
  5285. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5286. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5287. {
  5288. if(code_seen('S')) {
  5289. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5290. // and it is also generated by Slic3r to control acceleration per extrusion type
  5291. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5292. cs.acceleration = code_value();
  5293. // Interpret the T value as retract acceleration in the old Marlin format.
  5294. if(code_seen('T'))
  5295. cs.retract_acceleration = code_value();
  5296. } else {
  5297. // New acceleration format, compatible with the upstream Marlin.
  5298. if(code_seen('P'))
  5299. cs.acceleration = code_value();
  5300. if(code_seen('R'))
  5301. cs.retract_acceleration = code_value();
  5302. if(code_seen('T')) {
  5303. // Interpret the T value as the travel acceleration in the new Marlin format.
  5304. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5305. // travel_acceleration = code_value();
  5306. }
  5307. }
  5308. }
  5309. break;
  5310. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5311. {
  5312. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5313. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5314. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5315. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5316. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5317. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5318. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5319. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5320. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5321. }
  5322. break;
  5323. case 206: // M206 additional homing offset
  5324. for(int8_t i=0; i < 3; i++)
  5325. {
  5326. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5327. }
  5328. break;
  5329. #ifdef FWRETRACT
  5330. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5331. {
  5332. if(code_seen('S'))
  5333. {
  5334. cs.retract_length = code_value() ;
  5335. }
  5336. if(code_seen('F'))
  5337. {
  5338. cs.retract_feedrate = code_value()/60 ;
  5339. }
  5340. if(code_seen('Z'))
  5341. {
  5342. cs.retract_zlift = code_value() ;
  5343. }
  5344. }break;
  5345. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5346. {
  5347. if(code_seen('S'))
  5348. {
  5349. cs.retract_recover_length = code_value() ;
  5350. }
  5351. if(code_seen('F'))
  5352. {
  5353. cs.retract_recover_feedrate = code_value()/60 ;
  5354. }
  5355. }break;
  5356. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5357. {
  5358. if(code_seen('S'))
  5359. {
  5360. int t= code_value() ;
  5361. switch(t)
  5362. {
  5363. case 0:
  5364. {
  5365. cs.autoretract_enabled=false;
  5366. retracted[0]=false;
  5367. #if EXTRUDERS > 1
  5368. retracted[1]=false;
  5369. #endif
  5370. #if EXTRUDERS > 2
  5371. retracted[2]=false;
  5372. #endif
  5373. }break;
  5374. case 1:
  5375. {
  5376. cs.autoretract_enabled=true;
  5377. retracted[0]=false;
  5378. #if EXTRUDERS > 1
  5379. retracted[1]=false;
  5380. #endif
  5381. #if EXTRUDERS > 2
  5382. retracted[2]=false;
  5383. #endif
  5384. }break;
  5385. default:
  5386. SERIAL_ECHO_START;
  5387. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5388. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5389. SERIAL_ECHOLNPGM("\"(1)");
  5390. }
  5391. }
  5392. }break;
  5393. #endif // FWRETRACT
  5394. #if EXTRUDERS > 1
  5395. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5396. {
  5397. uint8_t extruder;
  5398. if(setTargetedHotend(218, extruder)){
  5399. break;
  5400. }
  5401. if(code_seen('X'))
  5402. {
  5403. extruder_offset[X_AXIS][extruder] = code_value();
  5404. }
  5405. if(code_seen('Y'))
  5406. {
  5407. extruder_offset[Y_AXIS][extruder] = code_value();
  5408. }
  5409. SERIAL_ECHO_START;
  5410. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5411. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5412. {
  5413. SERIAL_ECHO(" ");
  5414. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5415. SERIAL_ECHO(",");
  5416. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5417. }
  5418. SERIAL_ECHOLN("");
  5419. }break;
  5420. #endif
  5421. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5422. {
  5423. if (code_seen('B')) //backup current speed factor
  5424. {
  5425. saved_feedmultiply_mm = feedmultiply;
  5426. }
  5427. if(code_seen('S'))
  5428. {
  5429. feedmultiply = code_value() ;
  5430. }
  5431. if (code_seen('R')) { //restore previous feedmultiply
  5432. feedmultiply = saved_feedmultiply_mm;
  5433. }
  5434. }
  5435. break;
  5436. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5437. {
  5438. if(code_seen('S'))
  5439. {
  5440. int tmp_code = code_value();
  5441. if (code_seen('T'))
  5442. {
  5443. uint8_t extruder;
  5444. if(setTargetedHotend(221, extruder)){
  5445. break;
  5446. }
  5447. extruder_multiply[extruder] = tmp_code;
  5448. }
  5449. else
  5450. {
  5451. extrudemultiply = tmp_code ;
  5452. }
  5453. }
  5454. calculate_extruder_multipliers();
  5455. }
  5456. break;
  5457. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5458. {
  5459. if(code_seen('P')){
  5460. int pin_number = code_value(); // pin number
  5461. int pin_state = -1; // required pin state - default is inverted
  5462. if(code_seen('S')) pin_state = code_value(); // required pin state
  5463. if(pin_state >= -1 && pin_state <= 1){
  5464. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5465. {
  5466. if (sensitive_pins[i] == pin_number)
  5467. {
  5468. pin_number = -1;
  5469. break;
  5470. }
  5471. }
  5472. if (pin_number > -1)
  5473. {
  5474. int target = LOW;
  5475. st_synchronize();
  5476. pinMode(pin_number, INPUT);
  5477. switch(pin_state){
  5478. case 1:
  5479. target = HIGH;
  5480. break;
  5481. case 0:
  5482. target = LOW;
  5483. break;
  5484. case -1:
  5485. target = !digitalRead(pin_number);
  5486. break;
  5487. }
  5488. while(digitalRead(pin_number) != target){
  5489. manage_heater();
  5490. manage_inactivity();
  5491. lcd_update(0);
  5492. }
  5493. }
  5494. }
  5495. }
  5496. }
  5497. break;
  5498. #if NUM_SERVOS > 0
  5499. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5500. {
  5501. int servo_index = -1;
  5502. int servo_position = 0;
  5503. if (code_seen('P'))
  5504. servo_index = code_value();
  5505. if (code_seen('S')) {
  5506. servo_position = code_value();
  5507. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5508. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5509. servos[servo_index].attach(0);
  5510. #endif
  5511. servos[servo_index].write(servo_position);
  5512. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5513. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5514. servos[servo_index].detach();
  5515. #endif
  5516. }
  5517. else {
  5518. SERIAL_ECHO_START;
  5519. SERIAL_ECHO("Servo ");
  5520. SERIAL_ECHO(servo_index);
  5521. SERIAL_ECHOLN(" out of range");
  5522. }
  5523. }
  5524. else if (servo_index >= 0) {
  5525. SERIAL_PROTOCOL(MSG_OK);
  5526. SERIAL_PROTOCOL(" Servo ");
  5527. SERIAL_PROTOCOL(servo_index);
  5528. SERIAL_PROTOCOL(": ");
  5529. SERIAL_PROTOCOL(servos[servo_index].read());
  5530. SERIAL_PROTOCOLLN("");
  5531. }
  5532. }
  5533. break;
  5534. #endif // NUM_SERVOS > 0
  5535. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5536. case 300: // M300
  5537. {
  5538. int beepS = code_seen('S') ? code_value() : 110;
  5539. int beepP = code_seen('P') ? code_value() : 1000;
  5540. if (beepS > 0)
  5541. {
  5542. #if BEEPER > 0
  5543. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5544. _tone(BEEPER, beepS);
  5545. _delay(beepP);
  5546. _noTone(BEEPER);
  5547. #endif
  5548. }
  5549. else
  5550. {
  5551. _delay(beepP);
  5552. }
  5553. }
  5554. break;
  5555. #endif // M300
  5556. #ifdef PIDTEMP
  5557. case 301: // M301
  5558. {
  5559. if(code_seen('P')) cs.Kp = code_value();
  5560. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5561. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5562. #ifdef PID_ADD_EXTRUSION_RATE
  5563. if(code_seen('C')) Kc = code_value();
  5564. #endif
  5565. updatePID();
  5566. SERIAL_PROTOCOLRPGM(MSG_OK);
  5567. SERIAL_PROTOCOL(" p:");
  5568. SERIAL_PROTOCOL(cs.Kp);
  5569. SERIAL_PROTOCOL(" i:");
  5570. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5571. SERIAL_PROTOCOL(" d:");
  5572. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5573. #ifdef PID_ADD_EXTRUSION_RATE
  5574. SERIAL_PROTOCOL(" c:");
  5575. //Kc does not have scaling applied above, or in resetting defaults
  5576. SERIAL_PROTOCOL(Kc);
  5577. #endif
  5578. SERIAL_PROTOCOLLN("");
  5579. }
  5580. break;
  5581. #endif //PIDTEMP
  5582. #ifdef PIDTEMPBED
  5583. case 304: // M304
  5584. {
  5585. if(code_seen('P')) cs.bedKp = code_value();
  5586. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5587. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5588. updatePID();
  5589. SERIAL_PROTOCOLRPGM(MSG_OK);
  5590. SERIAL_PROTOCOL(" p:");
  5591. SERIAL_PROTOCOL(cs.bedKp);
  5592. SERIAL_PROTOCOL(" i:");
  5593. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5594. SERIAL_PROTOCOL(" d:");
  5595. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5596. SERIAL_PROTOCOLLN("");
  5597. }
  5598. break;
  5599. #endif //PIDTEMP
  5600. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5601. {
  5602. #ifdef CHDK
  5603. SET_OUTPUT(CHDK);
  5604. WRITE(CHDK, HIGH);
  5605. chdkHigh = _millis();
  5606. chdkActive = true;
  5607. #else
  5608. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5609. const uint8_t NUM_PULSES=16;
  5610. const float PULSE_LENGTH=0.01524;
  5611. for(int i=0; i < NUM_PULSES; i++) {
  5612. WRITE(PHOTOGRAPH_PIN, HIGH);
  5613. _delay_ms(PULSE_LENGTH);
  5614. WRITE(PHOTOGRAPH_PIN, LOW);
  5615. _delay_ms(PULSE_LENGTH);
  5616. }
  5617. _delay(7.33);
  5618. for(int i=0; i < NUM_PULSES; i++) {
  5619. WRITE(PHOTOGRAPH_PIN, HIGH);
  5620. _delay_ms(PULSE_LENGTH);
  5621. WRITE(PHOTOGRAPH_PIN, LOW);
  5622. _delay_ms(PULSE_LENGTH);
  5623. }
  5624. #endif
  5625. #endif //chdk end if
  5626. }
  5627. break;
  5628. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5629. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5630. {
  5631. float temp = .0;
  5632. if (code_seen('S')) temp=code_value();
  5633. set_extrude_min_temp(temp);
  5634. }
  5635. break;
  5636. #endif
  5637. case 303: // M303 PID autotune
  5638. {
  5639. float temp = 150.0;
  5640. int e=0;
  5641. int c=5;
  5642. if (code_seen('E')) e=code_value();
  5643. if (e<0)
  5644. temp=70;
  5645. if (code_seen('S')) temp=code_value();
  5646. if (code_seen('C')) c=code_value();
  5647. PID_autotune(temp, e, c);
  5648. }
  5649. break;
  5650. case 400: // M400 finish all moves
  5651. {
  5652. st_synchronize();
  5653. }
  5654. break;
  5655. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5656. {
  5657. //! currently three different materials are needed (default, flex and PVA)
  5658. //! add storing this information for different load/unload profiles etc. in the future
  5659. //!firmware does not wait for "ok" from mmu
  5660. if (mmu_enabled)
  5661. {
  5662. uint8_t extruder = 255;
  5663. uint8_t filament = FILAMENT_UNDEFINED;
  5664. if(code_seen('E')) extruder = code_value();
  5665. if(code_seen('F')) filament = code_value();
  5666. mmu_set_filament_type(extruder, filament);
  5667. }
  5668. }
  5669. break;
  5670. case 500: // M500 Store settings in EEPROM
  5671. {
  5672. Config_StoreSettings();
  5673. }
  5674. break;
  5675. case 501: // M501 Read settings from EEPROM
  5676. {
  5677. Config_RetrieveSettings();
  5678. }
  5679. break;
  5680. case 502: // M502 Revert to default settings
  5681. {
  5682. Config_ResetDefault();
  5683. }
  5684. break;
  5685. case 503: // M503 print settings currently in memory
  5686. {
  5687. Config_PrintSettings();
  5688. }
  5689. break;
  5690. case 509: //M509 Force language selection
  5691. {
  5692. lang_reset();
  5693. SERIAL_ECHO_START;
  5694. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5695. }
  5696. break;
  5697. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5698. case 540:
  5699. {
  5700. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5701. }
  5702. break;
  5703. #endif
  5704. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5705. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5706. {
  5707. float value;
  5708. if (code_seen('Z'))
  5709. {
  5710. value = code_value();
  5711. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5712. {
  5713. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5714. SERIAL_ECHO_START;
  5715. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5716. SERIAL_PROTOCOLLN("");
  5717. }
  5718. else
  5719. {
  5720. SERIAL_ECHO_START;
  5721. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5722. SERIAL_ECHORPGM(MSG_Z_MIN);
  5723. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5724. SERIAL_ECHORPGM(MSG_Z_MAX);
  5725. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5726. SERIAL_PROTOCOLLN("");
  5727. }
  5728. }
  5729. else
  5730. {
  5731. SERIAL_ECHO_START;
  5732. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5733. SERIAL_ECHO(-cs.zprobe_zoffset);
  5734. SERIAL_PROTOCOLLN("");
  5735. }
  5736. break;
  5737. }
  5738. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5739. #ifdef FILAMENTCHANGEENABLE
  5740. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5741. {
  5742. st_synchronize();
  5743. float x_position = current_position[X_AXIS];
  5744. float y_position = current_position[Y_AXIS];
  5745. float z_shift = 0;
  5746. float e_shift_init = 0;
  5747. float e_shift_late = 0;
  5748. bool automatic = false;
  5749. //Retract extruder
  5750. if(code_seen('E'))
  5751. {
  5752. e_shift_init = code_value();
  5753. }
  5754. else
  5755. {
  5756. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5757. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5758. #endif
  5759. }
  5760. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5761. if (code_seen('L'))
  5762. {
  5763. e_shift_late = code_value();
  5764. }
  5765. else
  5766. {
  5767. #ifdef FILAMENTCHANGE_FINALRETRACT
  5768. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5769. #endif
  5770. }
  5771. //Lift Z
  5772. if(code_seen('Z'))
  5773. {
  5774. z_shift = code_value();
  5775. }
  5776. else
  5777. {
  5778. #ifdef FILAMENTCHANGE_ZADD
  5779. z_shift= FILAMENTCHANGE_ZADD ;
  5780. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5781. #endif
  5782. }
  5783. //Move XY to side
  5784. if(code_seen('X'))
  5785. {
  5786. x_position = code_value();
  5787. }
  5788. else
  5789. {
  5790. #ifdef FILAMENTCHANGE_XPOS
  5791. x_position = FILAMENTCHANGE_XPOS;
  5792. #endif
  5793. }
  5794. if(code_seen('Y'))
  5795. {
  5796. y_position = code_value();
  5797. }
  5798. else
  5799. {
  5800. #ifdef FILAMENTCHANGE_YPOS
  5801. y_position = FILAMENTCHANGE_YPOS ;
  5802. #endif
  5803. }
  5804. if (mmu_enabled && code_seen("AUTO"))
  5805. automatic = true;
  5806. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5807. }
  5808. break;
  5809. #endif //FILAMENTCHANGEENABLE
  5810. case 601: //! M601 - Pause print
  5811. {
  5812. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5813. lcd_pause_print();
  5814. }
  5815. break;
  5816. case 602: { //! M602 - Resume print
  5817. lcd_resume_print();
  5818. }
  5819. break;
  5820. #ifdef PINDA_THERMISTOR
  5821. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5822. {
  5823. int set_target_pinda = 0;
  5824. if (code_seen('S')) {
  5825. set_target_pinda = code_value();
  5826. }
  5827. else {
  5828. break;
  5829. }
  5830. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5831. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5832. SERIAL_PROTOCOL(set_target_pinda);
  5833. SERIAL_PROTOCOLLN("");
  5834. codenum = _millis();
  5835. cancel_heatup = false;
  5836. bool is_pinda_cooling = false;
  5837. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5838. is_pinda_cooling = true;
  5839. }
  5840. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5841. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5842. {
  5843. SERIAL_PROTOCOLPGM("P:");
  5844. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5845. SERIAL_PROTOCOLPGM("/");
  5846. SERIAL_PROTOCOL(set_target_pinda);
  5847. SERIAL_PROTOCOLLN("");
  5848. codenum = _millis();
  5849. }
  5850. manage_heater();
  5851. manage_inactivity();
  5852. lcd_update(0);
  5853. }
  5854. LCD_MESSAGERPGM(MSG_OK);
  5855. break;
  5856. }
  5857. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5858. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5859. uint8_t cal_status = calibration_status_pinda();
  5860. int16_t usteps = 0;
  5861. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5862. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5863. for (uint8_t i = 0; i < 6; i++)
  5864. {
  5865. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5866. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5867. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5868. SERIAL_PROTOCOLPGM(", ");
  5869. SERIAL_PROTOCOL(35 + (i * 5));
  5870. SERIAL_PROTOCOLPGM(", ");
  5871. SERIAL_PROTOCOL(usteps);
  5872. SERIAL_PROTOCOLPGM(", ");
  5873. SERIAL_PROTOCOL(mm * 1000);
  5874. SERIAL_PROTOCOLLN("");
  5875. }
  5876. }
  5877. else if (code_seen('!')) { // ! - Set factory default values
  5878. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5879. int16_t z_shift = 8; //40C - 20um - 8usteps
  5880. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5881. z_shift = 24; //45C - 60um - 24usteps
  5882. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5883. z_shift = 48; //50C - 120um - 48usteps
  5884. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5885. z_shift = 80; //55C - 200um - 80usteps
  5886. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5887. z_shift = 120; //60C - 300um - 120usteps
  5888. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5889. SERIAL_PROTOCOLLN("factory restored");
  5890. }
  5891. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5892. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5893. int16_t z_shift = 0;
  5894. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5895. SERIAL_PROTOCOLLN("zerorized");
  5896. }
  5897. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5898. int16_t usteps = code_value();
  5899. if (code_seen('I')) {
  5900. uint8_t index = code_value();
  5901. if (index < 5) {
  5902. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5903. SERIAL_PROTOCOLLN("OK");
  5904. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5905. for (uint8_t i = 0; i < 6; i++)
  5906. {
  5907. usteps = 0;
  5908. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5909. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5910. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5911. SERIAL_PROTOCOLPGM(", ");
  5912. SERIAL_PROTOCOL(35 + (i * 5));
  5913. SERIAL_PROTOCOLPGM(", ");
  5914. SERIAL_PROTOCOL(usteps);
  5915. SERIAL_PROTOCOLPGM(", ");
  5916. SERIAL_PROTOCOL(mm * 1000);
  5917. SERIAL_PROTOCOLLN("");
  5918. }
  5919. }
  5920. }
  5921. }
  5922. else {
  5923. SERIAL_PROTOCOLPGM("no valid command");
  5924. }
  5925. break;
  5926. #endif //PINDA_THERMISTOR
  5927. #ifdef LIN_ADVANCE
  5928. case 900: // M900: Set LIN_ADVANCE options.
  5929. gcode_M900();
  5930. break;
  5931. #endif
  5932. case 907: // M907 Set digital trimpot motor current using axis codes.
  5933. {
  5934. #ifdef TMC2130
  5935. for (int i = 0; i < NUM_AXIS; i++)
  5936. if(code_seen(axis_codes[i]))
  5937. {
  5938. long cur_mA = code_value_long();
  5939. uint8_t val = tmc2130_cur2val(cur_mA);
  5940. tmc2130_set_current_h(i, val);
  5941. tmc2130_set_current_r(i, val);
  5942. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5943. }
  5944. #else //TMC2130
  5945. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5946. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5947. if(code_seen('B')) st_current_set(4,code_value());
  5948. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5949. #endif
  5950. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5951. if(code_seen('X')) st_current_set(0, code_value());
  5952. #endif
  5953. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5954. if(code_seen('Z')) st_current_set(1, code_value());
  5955. #endif
  5956. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5957. if(code_seen('E')) st_current_set(2, code_value());
  5958. #endif
  5959. #endif //TMC2130
  5960. }
  5961. break;
  5962. case 908: // M908 Control digital trimpot directly.
  5963. {
  5964. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5965. uint8_t channel,current;
  5966. if(code_seen('P')) channel=code_value();
  5967. if(code_seen('S')) current=code_value();
  5968. digitalPotWrite(channel, current);
  5969. #endif
  5970. }
  5971. break;
  5972. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5973. case 910: //! M910 - TMC2130 init
  5974. {
  5975. tmc2130_init();
  5976. }
  5977. break;
  5978. case 911: //! M911 - Set TMC2130 holding currents
  5979. {
  5980. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5981. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5982. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5983. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5984. }
  5985. break;
  5986. case 912: //! M912 - Set TMC2130 running currents
  5987. {
  5988. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5989. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5990. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5991. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5992. }
  5993. break;
  5994. case 913: //! M913 - Print TMC2130 currents
  5995. {
  5996. tmc2130_print_currents();
  5997. }
  5998. break;
  5999. case 914: //! M914 - Set normal mode
  6000. {
  6001. tmc2130_mode = TMC2130_MODE_NORMAL;
  6002. update_mode_profile();
  6003. tmc2130_init();
  6004. }
  6005. break;
  6006. case 915: //! M915 - Set silent mode
  6007. {
  6008. tmc2130_mode = TMC2130_MODE_SILENT;
  6009. update_mode_profile();
  6010. tmc2130_init();
  6011. }
  6012. break;
  6013. case 916: //! M916 - Set sg_thrs
  6014. {
  6015. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6016. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6017. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6018. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6019. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6020. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6021. }
  6022. break;
  6023. case 917: //! M917 - Set TMC2130 pwm_ampl
  6024. {
  6025. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6026. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6027. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6028. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6029. }
  6030. break;
  6031. case 918: //! M918 - Set TMC2130 pwm_grad
  6032. {
  6033. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6034. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6035. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6036. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6037. }
  6038. break;
  6039. #endif //TMC2130_SERVICE_CODES_M910_M918
  6040. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6041. {
  6042. #ifdef TMC2130
  6043. if(code_seen('E'))
  6044. {
  6045. uint16_t res_new = code_value();
  6046. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6047. {
  6048. st_synchronize();
  6049. uint8_t axis = E_AXIS;
  6050. uint16_t res = tmc2130_get_res(axis);
  6051. tmc2130_set_res(axis, res_new);
  6052. if (res_new > res)
  6053. {
  6054. uint16_t fac = (res_new / res);
  6055. cs.axis_steps_per_unit[axis] *= fac;
  6056. position[E_AXIS] *= fac;
  6057. }
  6058. else
  6059. {
  6060. uint16_t fac = (res / res_new);
  6061. cs.axis_steps_per_unit[axis] /= fac;
  6062. position[E_AXIS] /= fac;
  6063. }
  6064. }
  6065. }
  6066. #else //TMC2130
  6067. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6068. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6069. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6070. if(code_seen('B')) microstep_mode(4,code_value());
  6071. microstep_readings();
  6072. #endif
  6073. #endif //TMC2130
  6074. }
  6075. break;
  6076. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6077. {
  6078. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6079. if(code_seen('S')) switch((int)code_value())
  6080. {
  6081. case 1:
  6082. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6083. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6084. break;
  6085. case 2:
  6086. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6087. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6088. break;
  6089. }
  6090. microstep_readings();
  6091. #endif
  6092. }
  6093. break;
  6094. case 701: //! M701 - load filament
  6095. {
  6096. if (mmu_enabled && code_seen('E'))
  6097. tmp_extruder = code_value();
  6098. gcode_M701();
  6099. }
  6100. break;
  6101. case 702: //! M702 [U C] -
  6102. {
  6103. #ifdef SNMM
  6104. if (code_seen('U'))
  6105. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6106. else if (code_seen('C'))
  6107. extr_unload(); //! if "C" unload just current filament
  6108. else
  6109. extr_unload_all(); //! otherwise unload all filaments
  6110. #else
  6111. if (code_seen('C')) {
  6112. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6113. }
  6114. else {
  6115. if(mmu_enabled) extr_unload(); //! unload current filament
  6116. else unload_filament();
  6117. }
  6118. #endif //SNMM
  6119. }
  6120. break;
  6121. case 999: // M999: Restart after being stopped
  6122. Stopped = false;
  6123. lcd_reset_alert_level();
  6124. gcode_LastN = Stopped_gcode_LastN;
  6125. FlushSerialRequestResend();
  6126. break;
  6127. default:
  6128. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6129. }
  6130. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6131. mcode_in_progress = 0;
  6132. }
  6133. }
  6134. // end if(code_seen('M')) (end of M codes)
  6135. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6136. //! select filament in case of MMU_V2
  6137. //! if extruder is "?", open menu to let the user select extruder/filament
  6138. //!
  6139. //! For MMU_V2:
  6140. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6141. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6142. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6143. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6144. else if(code_seen('T'))
  6145. {
  6146. int index;
  6147. bool load_to_nozzle = false;
  6148. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6149. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6150. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6151. SERIAL_ECHOLNPGM("Invalid T code.");
  6152. }
  6153. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6154. if (mmu_enabled)
  6155. {
  6156. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6157. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6158. {
  6159. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6160. }
  6161. else
  6162. {
  6163. st_synchronize();
  6164. mmu_command(MmuCmd::T0 + tmp_extruder);
  6165. manage_response(true, true, MMU_TCODE_MOVE);
  6166. }
  6167. }
  6168. }
  6169. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6170. if (mmu_enabled)
  6171. {
  6172. st_synchronize();
  6173. mmu_continue_loading();
  6174. mmu_extruder = tmp_extruder; //filament change is finished
  6175. mmu_load_to_nozzle();
  6176. }
  6177. }
  6178. else {
  6179. if (*(strchr_pointer + index) == '?')
  6180. {
  6181. if(mmu_enabled)
  6182. {
  6183. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6184. load_to_nozzle = true;
  6185. } else
  6186. {
  6187. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6188. }
  6189. }
  6190. else {
  6191. tmp_extruder = code_value();
  6192. if (mmu_enabled && lcd_autoDepleteEnabled())
  6193. {
  6194. tmp_extruder = ad_getAlternative(tmp_extruder);
  6195. }
  6196. }
  6197. st_synchronize();
  6198. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6199. if (mmu_enabled)
  6200. {
  6201. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6202. {
  6203. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6204. }
  6205. else
  6206. {
  6207. mmu_command(MmuCmd::T0 + tmp_extruder);
  6208. manage_response(true, true, MMU_TCODE_MOVE);
  6209. mmu_continue_loading();
  6210. mmu_extruder = tmp_extruder; //filament change is finished
  6211. if (load_to_nozzle)// for single material usage with mmu
  6212. {
  6213. mmu_load_to_nozzle();
  6214. }
  6215. }
  6216. }
  6217. else
  6218. {
  6219. #ifdef SNMM
  6220. #ifdef LIN_ADVANCE
  6221. if (mmu_extruder != tmp_extruder)
  6222. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6223. #endif
  6224. mmu_extruder = tmp_extruder;
  6225. _delay(100);
  6226. disable_e0();
  6227. disable_e1();
  6228. disable_e2();
  6229. pinMode(E_MUX0_PIN, OUTPUT);
  6230. pinMode(E_MUX1_PIN, OUTPUT);
  6231. _delay(100);
  6232. SERIAL_ECHO_START;
  6233. SERIAL_ECHO("T:");
  6234. SERIAL_ECHOLN((int)tmp_extruder);
  6235. switch (tmp_extruder) {
  6236. case 1:
  6237. WRITE(E_MUX0_PIN, HIGH);
  6238. WRITE(E_MUX1_PIN, LOW);
  6239. break;
  6240. case 2:
  6241. WRITE(E_MUX0_PIN, LOW);
  6242. WRITE(E_MUX1_PIN, HIGH);
  6243. break;
  6244. case 3:
  6245. WRITE(E_MUX0_PIN, HIGH);
  6246. WRITE(E_MUX1_PIN, HIGH);
  6247. break;
  6248. default:
  6249. WRITE(E_MUX0_PIN, LOW);
  6250. WRITE(E_MUX1_PIN, LOW);
  6251. break;
  6252. }
  6253. _delay(100);
  6254. #else //SNMM
  6255. if (tmp_extruder >= EXTRUDERS) {
  6256. SERIAL_ECHO_START;
  6257. SERIAL_ECHOPGM("T");
  6258. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6259. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6260. }
  6261. else {
  6262. #if EXTRUDERS > 1
  6263. boolean make_move = false;
  6264. #endif
  6265. if (code_seen('F')) {
  6266. #if EXTRUDERS > 1
  6267. make_move = true;
  6268. #endif
  6269. next_feedrate = code_value();
  6270. if (next_feedrate > 0.0) {
  6271. feedrate = next_feedrate;
  6272. }
  6273. }
  6274. #if EXTRUDERS > 1
  6275. if (tmp_extruder != active_extruder) {
  6276. // Save current position to return to after applying extruder offset
  6277. memcpy(destination, current_position, sizeof(destination));
  6278. // Offset extruder (only by XY)
  6279. int i;
  6280. for (i = 0; i < 2; i++) {
  6281. current_position[i] = current_position[i] -
  6282. extruder_offset[i][active_extruder] +
  6283. extruder_offset[i][tmp_extruder];
  6284. }
  6285. // Set the new active extruder and position
  6286. active_extruder = tmp_extruder;
  6287. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6288. // Move to the old position if 'F' was in the parameters
  6289. if (make_move && Stopped == false) {
  6290. prepare_move();
  6291. }
  6292. }
  6293. #endif
  6294. SERIAL_ECHO_START;
  6295. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6296. SERIAL_PROTOCOLLN((int)active_extruder);
  6297. }
  6298. #endif //SNMM
  6299. }
  6300. }
  6301. } // end if(code_seen('T')) (end of T codes)
  6302. else if (code_seen('D')) // D codes (debug)
  6303. {
  6304. switch((int)code_value())
  6305. {
  6306. #ifdef DEBUG_DCODES
  6307. case -1: //! D-1 - Endless loop
  6308. dcode__1(); break;
  6309. case 0: //! D0 - Reset
  6310. dcode_0(); break;
  6311. case 1: //! D1 - Clear EEPROM
  6312. dcode_1(); break;
  6313. case 2: //! D2 - Read/Write RAM
  6314. dcode_2(); break;
  6315. #endif //DEBUG_DCODES
  6316. #ifdef DEBUG_DCODE3
  6317. case 3: //! D3 - Read/Write EEPROM
  6318. dcode_3(); break;
  6319. #endif //DEBUG_DCODE3
  6320. #ifdef DEBUG_DCODES
  6321. case 4: //! D4 - Read/Write PIN
  6322. dcode_4(); break;
  6323. #endif //DEBUG_DCODES
  6324. #ifdef DEBUG_DCODE5
  6325. case 5: // D5 - Read/Write FLASH
  6326. dcode_5(); break;
  6327. break;
  6328. #endif //DEBUG_DCODE5
  6329. #ifdef DEBUG_DCODES
  6330. case 6: // D6 - Read/Write external FLASH
  6331. dcode_6(); break;
  6332. case 7: //! D7 - Read/Write Bootloader
  6333. dcode_7(); break;
  6334. case 8: //! D8 - Read/Write PINDA
  6335. dcode_8(); break;
  6336. case 9: //! D9 - Read/Write ADC
  6337. dcode_9(); break;
  6338. case 10: //! D10 - XYZ calibration = OK
  6339. dcode_10(); break;
  6340. #endif //DEBUG_DCODES
  6341. #ifdef HEATBED_ANALYSIS
  6342. case 80:
  6343. {
  6344. float dimension_x = 40;
  6345. float dimension_y = 40;
  6346. int points_x = 40;
  6347. int points_y = 40;
  6348. float offset_x = 74;
  6349. float offset_y = 33;
  6350. if (code_seen('E')) dimension_x = code_value();
  6351. if (code_seen('F')) dimension_y = code_value();
  6352. if (code_seen('G')) {points_x = code_value(); }
  6353. if (code_seen('H')) {points_y = code_value(); }
  6354. if (code_seen('I')) {offset_x = code_value(); }
  6355. if (code_seen('J')) {offset_y = code_value(); }
  6356. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6357. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6358. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6359. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6360. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6361. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6362. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6363. }break;
  6364. case 81:
  6365. {
  6366. float dimension_x = 40;
  6367. float dimension_y = 40;
  6368. int points_x = 40;
  6369. int points_y = 40;
  6370. float offset_x = 74;
  6371. float offset_y = 33;
  6372. if (code_seen('E')) dimension_x = code_value();
  6373. if (code_seen('F')) dimension_y = code_value();
  6374. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6375. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6376. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6377. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6378. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6379. } break;
  6380. #endif //HEATBED_ANALYSIS
  6381. #ifdef DEBUG_DCODES
  6382. case 106: //D106 print measured fan speed for different pwm values
  6383. {
  6384. for (int i = 255; i > 0; i = i - 5) {
  6385. fanSpeed = i;
  6386. //delay_keep_alive(2000);
  6387. for (int j = 0; j < 100; j++) {
  6388. delay_keep_alive(100);
  6389. }
  6390. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6391. }
  6392. }break;
  6393. #ifdef TMC2130
  6394. case 2130: //! D2130 - TMC2130
  6395. dcode_2130(); break;
  6396. #endif //TMC2130
  6397. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6398. case 9125: //! D9125 - FILAMENT_SENSOR
  6399. dcode_9125(); break;
  6400. #endif //FILAMENT_SENSOR
  6401. #endif //DEBUG_DCODES
  6402. }
  6403. }
  6404. else
  6405. {
  6406. SERIAL_ECHO_START;
  6407. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6408. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6409. SERIAL_ECHOLNPGM("\"(2)");
  6410. }
  6411. KEEPALIVE_STATE(NOT_BUSY);
  6412. ClearToSend();
  6413. }
  6414. void FlushSerialRequestResend()
  6415. {
  6416. //char cmdbuffer[bufindr][100]="Resend:";
  6417. MYSERIAL.flush();
  6418. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6419. }
  6420. // Confirm the execution of a command, if sent from a serial line.
  6421. // Execution of a command from a SD card will not be confirmed.
  6422. void ClearToSend()
  6423. {
  6424. previous_millis_cmd = _millis();
  6425. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6426. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6427. }
  6428. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6429. void update_currents() {
  6430. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6431. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6432. float tmp_motor[3];
  6433. //SERIAL_ECHOLNPGM("Currents updated: ");
  6434. if (destination[Z_AXIS] < Z_SILENT) {
  6435. //SERIAL_ECHOLNPGM("LOW");
  6436. for (uint8_t i = 0; i < 3; i++) {
  6437. st_current_set(i, current_low[i]);
  6438. /*MYSERIAL.print(int(i));
  6439. SERIAL_ECHOPGM(": ");
  6440. MYSERIAL.println(current_low[i]);*/
  6441. }
  6442. }
  6443. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6444. //SERIAL_ECHOLNPGM("HIGH");
  6445. for (uint8_t i = 0; i < 3; i++) {
  6446. st_current_set(i, current_high[i]);
  6447. /*MYSERIAL.print(int(i));
  6448. SERIAL_ECHOPGM(": ");
  6449. MYSERIAL.println(current_high[i]);*/
  6450. }
  6451. }
  6452. else {
  6453. for (uint8_t i = 0; i < 3; i++) {
  6454. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6455. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6456. st_current_set(i, tmp_motor[i]);
  6457. /*MYSERIAL.print(int(i));
  6458. SERIAL_ECHOPGM(": ");
  6459. MYSERIAL.println(tmp_motor[i]);*/
  6460. }
  6461. }
  6462. }
  6463. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6464. void get_coordinates()
  6465. {
  6466. bool seen[4]={false,false,false,false};
  6467. for(int8_t i=0; i < NUM_AXIS; i++) {
  6468. if(code_seen(axis_codes[i]))
  6469. {
  6470. bool relative = axis_relative_modes[i] || relative_mode;
  6471. destination[i] = (float)code_value();
  6472. if (i == E_AXIS) {
  6473. float emult = extruder_multiplier[active_extruder];
  6474. if (emult != 1.) {
  6475. if (! relative) {
  6476. destination[i] -= current_position[i];
  6477. relative = true;
  6478. }
  6479. destination[i] *= emult;
  6480. }
  6481. }
  6482. if (relative)
  6483. destination[i] += current_position[i];
  6484. seen[i]=true;
  6485. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6486. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6487. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6488. }
  6489. else destination[i] = current_position[i]; //Are these else lines really needed?
  6490. }
  6491. if(code_seen('F')) {
  6492. next_feedrate = code_value();
  6493. #ifdef MAX_SILENT_FEEDRATE
  6494. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6495. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6496. #endif //MAX_SILENT_FEEDRATE
  6497. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6498. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6499. {
  6500. // float e_max_speed =
  6501. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6502. }
  6503. }
  6504. }
  6505. void get_arc_coordinates()
  6506. {
  6507. #ifdef SF_ARC_FIX
  6508. bool relative_mode_backup = relative_mode;
  6509. relative_mode = true;
  6510. #endif
  6511. get_coordinates();
  6512. #ifdef SF_ARC_FIX
  6513. relative_mode=relative_mode_backup;
  6514. #endif
  6515. if(code_seen('I')) {
  6516. offset[0] = code_value();
  6517. }
  6518. else {
  6519. offset[0] = 0.0;
  6520. }
  6521. if(code_seen('J')) {
  6522. offset[1] = code_value();
  6523. }
  6524. else {
  6525. offset[1] = 0.0;
  6526. }
  6527. }
  6528. void clamp_to_software_endstops(float target[3])
  6529. {
  6530. #ifdef DEBUG_DISABLE_SWLIMITS
  6531. return;
  6532. #endif //DEBUG_DISABLE_SWLIMITS
  6533. world2machine_clamp(target[0], target[1]);
  6534. // Clamp the Z coordinate.
  6535. if (min_software_endstops) {
  6536. float negative_z_offset = 0;
  6537. #ifdef ENABLE_AUTO_BED_LEVELING
  6538. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6539. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6540. #endif
  6541. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6542. }
  6543. if (max_software_endstops) {
  6544. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6545. }
  6546. }
  6547. #ifdef MESH_BED_LEVELING
  6548. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6549. float dx = x - current_position[X_AXIS];
  6550. float dy = y - current_position[Y_AXIS];
  6551. float dz = z - current_position[Z_AXIS];
  6552. int n_segments = 0;
  6553. if (mbl.active) {
  6554. float len = abs(dx) + abs(dy);
  6555. if (len > 0)
  6556. // Split to 3cm segments or shorter.
  6557. n_segments = int(ceil(len / 30.f));
  6558. }
  6559. if (n_segments > 1) {
  6560. float de = e - current_position[E_AXIS];
  6561. for (int i = 1; i < n_segments; ++ i) {
  6562. float t = float(i) / float(n_segments);
  6563. if (saved_printing || (mbl.active == false)) return;
  6564. plan_buffer_line(
  6565. current_position[X_AXIS] + t * dx,
  6566. current_position[Y_AXIS] + t * dy,
  6567. current_position[Z_AXIS] + t * dz,
  6568. current_position[E_AXIS] + t * de,
  6569. feed_rate, extruder);
  6570. }
  6571. }
  6572. // The rest of the path.
  6573. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6574. current_position[X_AXIS] = x;
  6575. current_position[Y_AXIS] = y;
  6576. current_position[Z_AXIS] = z;
  6577. current_position[E_AXIS] = e;
  6578. }
  6579. #endif // MESH_BED_LEVELING
  6580. void prepare_move()
  6581. {
  6582. clamp_to_software_endstops(destination);
  6583. previous_millis_cmd = _millis();
  6584. // Do not use feedmultiply for E or Z only moves
  6585. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6586. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6587. }
  6588. else {
  6589. #ifdef MESH_BED_LEVELING
  6590. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6591. #else
  6592. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6593. #endif
  6594. }
  6595. for(int8_t i=0; i < NUM_AXIS; i++) {
  6596. current_position[i] = destination[i];
  6597. }
  6598. }
  6599. void prepare_arc_move(char isclockwise) {
  6600. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6601. // Trace the arc
  6602. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6603. // As far as the parser is concerned, the position is now == target. In reality the
  6604. // motion control system might still be processing the action and the real tool position
  6605. // in any intermediate location.
  6606. for(int8_t i=0; i < NUM_AXIS; i++) {
  6607. current_position[i] = destination[i];
  6608. }
  6609. previous_millis_cmd = _millis();
  6610. }
  6611. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6612. #if defined(FAN_PIN)
  6613. #if CONTROLLERFAN_PIN == FAN_PIN
  6614. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6615. #endif
  6616. #endif
  6617. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6618. unsigned long lastMotorCheck = 0;
  6619. void controllerFan()
  6620. {
  6621. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6622. {
  6623. lastMotorCheck = _millis();
  6624. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6625. #if EXTRUDERS > 2
  6626. || !READ(E2_ENABLE_PIN)
  6627. #endif
  6628. #if EXTRUDER > 1
  6629. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6630. || !READ(X2_ENABLE_PIN)
  6631. #endif
  6632. || !READ(E1_ENABLE_PIN)
  6633. #endif
  6634. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6635. {
  6636. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6637. }
  6638. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6639. {
  6640. digitalWrite(CONTROLLERFAN_PIN, 0);
  6641. analogWrite(CONTROLLERFAN_PIN, 0);
  6642. }
  6643. else
  6644. {
  6645. // allows digital or PWM fan output to be used (see M42 handling)
  6646. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6647. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6648. }
  6649. }
  6650. }
  6651. #endif
  6652. #ifdef TEMP_STAT_LEDS
  6653. static bool blue_led = false;
  6654. static bool red_led = false;
  6655. static uint32_t stat_update = 0;
  6656. void handle_status_leds(void) {
  6657. float max_temp = 0.0;
  6658. if(_millis() > stat_update) {
  6659. stat_update += 500; // Update every 0.5s
  6660. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6661. max_temp = max(max_temp, degHotend(cur_extruder));
  6662. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6663. }
  6664. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6665. max_temp = max(max_temp, degTargetBed());
  6666. max_temp = max(max_temp, degBed());
  6667. #endif
  6668. if((max_temp > 55.0) && (red_led == false)) {
  6669. digitalWrite(STAT_LED_RED, 1);
  6670. digitalWrite(STAT_LED_BLUE, 0);
  6671. red_led = true;
  6672. blue_led = false;
  6673. }
  6674. if((max_temp < 54.0) && (blue_led == false)) {
  6675. digitalWrite(STAT_LED_RED, 0);
  6676. digitalWrite(STAT_LED_BLUE, 1);
  6677. red_led = false;
  6678. blue_led = true;
  6679. }
  6680. }
  6681. }
  6682. #endif
  6683. #ifdef SAFETYTIMER
  6684. /**
  6685. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6686. *
  6687. * Full screen blocking notification message is shown after heater turning off.
  6688. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6689. * damage print.
  6690. *
  6691. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6692. */
  6693. static void handleSafetyTimer()
  6694. {
  6695. #if (EXTRUDERS > 1)
  6696. #error Implemented only for one extruder.
  6697. #endif //(EXTRUDERS > 1)
  6698. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6699. {
  6700. safetyTimer.stop();
  6701. }
  6702. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6703. {
  6704. safetyTimer.start();
  6705. }
  6706. else if (safetyTimer.expired(safetytimer_inactive_time))
  6707. {
  6708. setTargetBed(0);
  6709. setAllTargetHotends(0);
  6710. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6711. }
  6712. }
  6713. #endif //SAFETYTIMER
  6714. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6715. {
  6716. bool bInhibitFlag;
  6717. #ifdef FILAMENT_SENSOR
  6718. if (mmu_enabled == false)
  6719. {
  6720. //-// if (mcode_in_progress != 600) //M600 not in progress
  6721. #ifdef PAT9125
  6722. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6723. #endif // PAT9125
  6724. #ifdef IR_SENSOR
  6725. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6726. #endif // IR_SENSOR
  6727. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6728. {
  6729. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6730. {
  6731. if (fsensor_check_autoload())
  6732. {
  6733. #ifdef PAT9125
  6734. fsensor_autoload_check_stop();
  6735. #endif //PAT9125
  6736. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6737. if(0)
  6738. {
  6739. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6740. _tone(BEEPER, 1000);
  6741. delay_keep_alive(50);
  6742. _noTone(BEEPER);
  6743. loading_flag = true;
  6744. enquecommand_front_P((PSTR("M701")));
  6745. }
  6746. else
  6747. {
  6748. /*
  6749. lcd_update_enable(false);
  6750. show_preheat_nozzle_warning();
  6751. lcd_update_enable(true);
  6752. */
  6753. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6754. bFilamentFirstRun=false;
  6755. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6756. {
  6757. bFilamentPreheatState=true;
  6758. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6759. menu_submenu(mFilamentItemForce);
  6760. }
  6761. else
  6762. {
  6763. menu_submenu(mFilamentMenu);
  6764. lcd_timeoutToStatus.start();
  6765. }
  6766. }
  6767. }
  6768. }
  6769. else
  6770. {
  6771. #ifdef PAT9125
  6772. fsensor_autoload_check_stop();
  6773. #endif //PAT9125
  6774. fsensor_update();
  6775. }
  6776. }
  6777. }
  6778. #endif //FILAMENT_SENSOR
  6779. #ifdef SAFETYTIMER
  6780. handleSafetyTimer();
  6781. #endif //SAFETYTIMER
  6782. #if defined(KILL_PIN) && KILL_PIN > -1
  6783. static int killCount = 0; // make the inactivity button a bit less responsive
  6784. const int KILL_DELAY = 10000;
  6785. #endif
  6786. if(buflen < (BUFSIZE-1)){
  6787. get_command();
  6788. }
  6789. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6790. if(max_inactive_time)
  6791. kill(_n(""), 4);
  6792. if(stepper_inactive_time) {
  6793. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6794. {
  6795. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6796. disable_x();
  6797. disable_y();
  6798. disable_z();
  6799. disable_e0();
  6800. disable_e1();
  6801. disable_e2();
  6802. }
  6803. }
  6804. }
  6805. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6806. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6807. {
  6808. chdkActive = false;
  6809. WRITE(CHDK, LOW);
  6810. }
  6811. #endif
  6812. #if defined(KILL_PIN) && KILL_PIN > -1
  6813. // Check if the kill button was pressed and wait just in case it was an accidental
  6814. // key kill key press
  6815. // -------------------------------------------------------------------------------
  6816. if( 0 == READ(KILL_PIN) )
  6817. {
  6818. killCount++;
  6819. }
  6820. else if (killCount > 0)
  6821. {
  6822. killCount--;
  6823. }
  6824. // Exceeded threshold and we can confirm that it was not accidental
  6825. // KILL the machine
  6826. // ----------------------------------------------------------------
  6827. if ( killCount >= KILL_DELAY)
  6828. {
  6829. kill("", 5);
  6830. }
  6831. #endif
  6832. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6833. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6834. #endif
  6835. #ifdef EXTRUDER_RUNOUT_PREVENT
  6836. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6837. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6838. {
  6839. bool oldstatus=READ(E0_ENABLE_PIN);
  6840. enable_e0();
  6841. float oldepos=current_position[E_AXIS];
  6842. float oldedes=destination[E_AXIS];
  6843. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6844. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6845. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6846. current_position[E_AXIS]=oldepos;
  6847. destination[E_AXIS]=oldedes;
  6848. plan_set_e_position(oldepos);
  6849. previous_millis_cmd=_millis();
  6850. st_synchronize();
  6851. WRITE(E0_ENABLE_PIN,oldstatus);
  6852. }
  6853. #endif
  6854. #ifdef TEMP_STAT_LEDS
  6855. handle_status_leds();
  6856. #endif
  6857. check_axes_activity();
  6858. mmu_loop();
  6859. }
  6860. void kill(const char *full_screen_message, unsigned char id)
  6861. {
  6862. printf_P(_N("KILL: %d\n"), id);
  6863. //return;
  6864. cli(); // Stop interrupts
  6865. disable_heater();
  6866. disable_x();
  6867. // SERIAL_ECHOLNPGM("kill - disable Y");
  6868. disable_y();
  6869. disable_z();
  6870. disable_e0();
  6871. disable_e1();
  6872. disable_e2();
  6873. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6874. pinMode(PS_ON_PIN,INPUT);
  6875. #endif
  6876. SERIAL_ERROR_START;
  6877. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6878. if (full_screen_message != NULL) {
  6879. SERIAL_ERRORLNRPGM(full_screen_message);
  6880. lcd_display_message_fullscreen_P(full_screen_message);
  6881. } else {
  6882. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED c=0 r=0
  6883. }
  6884. // FMC small patch to update the LCD before ending
  6885. sei(); // enable interrupts
  6886. for ( int i=5; i--; lcd_update(0))
  6887. {
  6888. _delay(200);
  6889. }
  6890. cli(); // disable interrupts
  6891. suicide();
  6892. while(1)
  6893. {
  6894. #ifdef WATCHDOG
  6895. wdt_reset();
  6896. #endif //WATCHDOG
  6897. /* Intentionally left empty */
  6898. } // Wait for reset
  6899. }
  6900. void Stop()
  6901. {
  6902. disable_heater();
  6903. if(Stopped == false) {
  6904. Stopped = true;
  6905. lcd_print_stop();
  6906. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6907. SERIAL_ERROR_START;
  6908. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6909. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6910. }
  6911. }
  6912. bool IsStopped() { return Stopped; };
  6913. #ifdef FAST_PWM_FAN
  6914. void setPwmFrequency(uint8_t pin, int val)
  6915. {
  6916. val &= 0x07;
  6917. switch(digitalPinToTimer(pin))
  6918. {
  6919. #if defined(TCCR0A)
  6920. case TIMER0A:
  6921. case TIMER0B:
  6922. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6923. // TCCR0B |= val;
  6924. break;
  6925. #endif
  6926. #if defined(TCCR1A)
  6927. case TIMER1A:
  6928. case TIMER1B:
  6929. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6930. // TCCR1B |= val;
  6931. break;
  6932. #endif
  6933. #if defined(TCCR2)
  6934. case TIMER2:
  6935. case TIMER2:
  6936. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6937. TCCR2 |= val;
  6938. break;
  6939. #endif
  6940. #if defined(TCCR2A)
  6941. case TIMER2A:
  6942. case TIMER2B:
  6943. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6944. TCCR2B |= val;
  6945. break;
  6946. #endif
  6947. #if defined(TCCR3A)
  6948. case TIMER3A:
  6949. case TIMER3B:
  6950. case TIMER3C:
  6951. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6952. TCCR3B |= val;
  6953. break;
  6954. #endif
  6955. #if defined(TCCR4A)
  6956. case TIMER4A:
  6957. case TIMER4B:
  6958. case TIMER4C:
  6959. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6960. TCCR4B |= val;
  6961. break;
  6962. #endif
  6963. #if defined(TCCR5A)
  6964. case TIMER5A:
  6965. case TIMER5B:
  6966. case TIMER5C:
  6967. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6968. TCCR5B |= val;
  6969. break;
  6970. #endif
  6971. }
  6972. }
  6973. #endif //FAST_PWM_FAN
  6974. //! @brief Get and validate extruder number
  6975. //!
  6976. //! If it is not specified, active_extruder is returned in parameter extruder.
  6977. //! @param [in] code M code number
  6978. //! @param [out] extruder
  6979. //! @return error
  6980. //! @retval true Invalid extruder specified in T code
  6981. //! @retval false Valid extruder specified in T code, or not specifiead
  6982. bool setTargetedHotend(int code, uint8_t &extruder)
  6983. {
  6984. extruder = active_extruder;
  6985. if(code_seen('T')) {
  6986. extruder = code_value();
  6987. if(extruder >= EXTRUDERS) {
  6988. SERIAL_ECHO_START;
  6989. switch(code){
  6990. case 104:
  6991. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6992. break;
  6993. case 105:
  6994. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6995. break;
  6996. case 109:
  6997. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6998. break;
  6999. case 218:
  7000. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  7001. break;
  7002. case 221:
  7003. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  7004. break;
  7005. }
  7006. SERIAL_PROTOCOLLN((int)extruder);
  7007. return true;
  7008. }
  7009. }
  7010. return false;
  7011. }
  7012. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7013. {
  7014. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7015. {
  7016. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7017. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7018. }
  7019. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7020. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7021. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7022. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7023. total_filament_used = 0;
  7024. }
  7025. float calculate_extruder_multiplier(float diameter) {
  7026. float out = 1.f;
  7027. if (cs.volumetric_enabled && diameter > 0.f) {
  7028. float area = M_PI * diameter * diameter * 0.25;
  7029. out = 1.f / area;
  7030. }
  7031. if (extrudemultiply != 100)
  7032. out *= float(extrudemultiply) * 0.01f;
  7033. return out;
  7034. }
  7035. void calculate_extruder_multipliers() {
  7036. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7037. #if EXTRUDERS > 1
  7038. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7039. #if EXTRUDERS > 2
  7040. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7041. #endif
  7042. #endif
  7043. }
  7044. void delay_keep_alive(unsigned int ms)
  7045. {
  7046. for (;;) {
  7047. manage_heater();
  7048. // Manage inactivity, but don't disable steppers on timeout.
  7049. manage_inactivity(true);
  7050. lcd_update(0);
  7051. if (ms == 0)
  7052. break;
  7053. else if (ms >= 50) {
  7054. _delay(50);
  7055. ms -= 50;
  7056. } else {
  7057. _delay(ms);
  7058. ms = 0;
  7059. }
  7060. }
  7061. }
  7062. static void wait_for_heater(long codenum, uint8_t extruder) {
  7063. #ifdef TEMP_RESIDENCY_TIME
  7064. long residencyStart;
  7065. residencyStart = -1;
  7066. /* continue to loop until we have reached the target temp
  7067. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7068. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7069. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7070. #else
  7071. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7072. #endif //TEMP_RESIDENCY_TIME
  7073. if ((_millis() - codenum) > 1000UL)
  7074. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7075. if (!farm_mode) {
  7076. SERIAL_PROTOCOLPGM("T:");
  7077. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7078. SERIAL_PROTOCOLPGM(" E:");
  7079. SERIAL_PROTOCOL((int)extruder);
  7080. #ifdef TEMP_RESIDENCY_TIME
  7081. SERIAL_PROTOCOLPGM(" W:");
  7082. if (residencyStart > -1)
  7083. {
  7084. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7085. SERIAL_PROTOCOLLN(codenum);
  7086. }
  7087. else
  7088. {
  7089. SERIAL_PROTOCOLLN("?");
  7090. }
  7091. }
  7092. #else
  7093. SERIAL_PROTOCOLLN("");
  7094. #endif
  7095. codenum = _millis();
  7096. }
  7097. manage_heater();
  7098. manage_inactivity(true); //do not disable steppers
  7099. lcd_update(0);
  7100. #ifdef TEMP_RESIDENCY_TIME
  7101. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7102. or when current temp falls outside the hysteresis after target temp was reached */
  7103. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7104. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7105. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7106. {
  7107. residencyStart = _millis();
  7108. }
  7109. #endif //TEMP_RESIDENCY_TIME
  7110. }
  7111. }
  7112. void check_babystep()
  7113. {
  7114. int babystep_z;
  7115. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7116. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7117. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7118. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7119. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7120. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7121. lcd_update_enable(true);
  7122. }
  7123. }
  7124. #ifdef HEATBED_ANALYSIS
  7125. void d_setup()
  7126. {
  7127. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7128. pinMode(D_DATA, INPUT_PULLUP);
  7129. pinMode(D_REQUIRE, OUTPUT);
  7130. digitalWrite(D_REQUIRE, HIGH);
  7131. }
  7132. float d_ReadData()
  7133. {
  7134. int digit[13];
  7135. String mergeOutput;
  7136. float output;
  7137. digitalWrite(D_REQUIRE, HIGH);
  7138. for (int i = 0; i<13; i++)
  7139. {
  7140. for (int j = 0; j < 4; j++)
  7141. {
  7142. while (digitalRead(D_DATACLOCK) == LOW) {}
  7143. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7144. bitWrite(digit[i], j, digitalRead(D_DATA));
  7145. }
  7146. }
  7147. digitalWrite(D_REQUIRE, LOW);
  7148. mergeOutput = "";
  7149. output = 0;
  7150. for (int r = 5; r <= 10; r++) //Merge digits
  7151. {
  7152. mergeOutput += digit[r];
  7153. }
  7154. output = mergeOutput.toFloat();
  7155. if (digit[4] == 8) //Handle sign
  7156. {
  7157. output *= -1;
  7158. }
  7159. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7160. {
  7161. output /= 10;
  7162. }
  7163. return output;
  7164. }
  7165. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7166. int t1 = 0;
  7167. int t_delay = 0;
  7168. int digit[13];
  7169. int m;
  7170. char str[3];
  7171. //String mergeOutput;
  7172. char mergeOutput[15];
  7173. float output;
  7174. int mesh_point = 0; //index number of calibration point
  7175. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7176. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7177. float mesh_home_z_search = 4;
  7178. float measure_z_heigth = 0.2f;
  7179. float row[x_points_num];
  7180. int ix = 0;
  7181. int iy = 0;
  7182. const char* filename_wldsd = "mesh.txt";
  7183. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7184. char numb_wldsd[8]; // (" -A.BCD" + null)
  7185. #ifdef MICROMETER_LOGGING
  7186. d_setup();
  7187. #endif //MICROMETER_LOGGING
  7188. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7189. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7190. unsigned int custom_message_type_old = custom_message_type;
  7191. unsigned int custom_message_state_old = custom_message_state;
  7192. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7193. custom_message_state = (x_points_num * y_points_num) + 10;
  7194. lcd_update(1);
  7195. //mbl.reset();
  7196. babystep_undo();
  7197. card.openFile(filename_wldsd, false);
  7198. /*destination[Z_AXIS] = mesh_home_z_search;
  7199. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7200. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7201. for(int8_t i=0; i < NUM_AXIS; i++) {
  7202. current_position[i] = destination[i];
  7203. }
  7204. st_synchronize();
  7205. */
  7206. destination[Z_AXIS] = measure_z_heigth;
  7207. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7208. for(int8_t i=0; i < NUM_AXIS; i++) {
  7209. current_position[i] = destination[i];
  7210. }
  7211. st_synchronize();
  7212. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7213. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7214. SERIAL_PROTOCOL(x_points_num);
  7215. SERIAL_PROTOCOLPGM(",");
  7216. SERIAL_PROTOCOL(y_points_num);
  7217. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7218. SERIAL_PROTOCOL(mesh_home_z_search);
  7219. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7220. SERIAL_PROTOCOL(x_dimension);
  7221. SERIAL_PROTOCOLPGM(",");
  7222. SERIAL_PROTOCOL(y_dimension);
  7223. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7224. while (mesh_point != x_points_num * y_points_num) {
  7225. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7226. iy = mesh_point / x_points_num;
  7227. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7228. float z0 = 0.f;
  7229. /*destination[Z_AXIS] = mesh_home_z_search;
  7230. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7231. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7232. for(int8_t i=0; i < NUM_AXIS; i++) {
  7233. current_position[i] = destination[i];
  7234. }
  7235. st_synchronize();*/
  7236. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7237. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7238. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7239. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7240. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7241. for(int8_t i=0; i < NUM_AXIS; i++) {
  7242. current_position[i] = destination[i];
  7243. }
  7244. st_synchronize();
  7245. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7246. delay_keep_alive(1000);
  7247. #ifdef MICROMETER_LOGGING
  7248. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7249. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7250. //strcat(data_wldsd, numb_wldsd);
  7251. //MYSERIAL.println(data_wldsd);
  7252. //delay(1000);
  7253. //delay(3000);
  7254. //t1 = millis();
  7255. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7256. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7257. memset(digit, 0, sizeof(digit));
  7258. //cli();
  7259. digitalWrite(D_REQUIRE, LOW);
  7260. for (int i = 0; i<13; i++)
  7261. {
  7262. //t1 = millis();
  7263. for (int j = 0; j < 4; j++)
  7264. {
  7265. while (digitalRead(D_DATACLOCK) == LOW) {}
  7266. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7267. //printf_P(PSTR("Done %d\n"), j);
  7268. bitWrite(digit[i], j, digitalRead(D_DATA));
  7269. }
  7270. //t_delay = (millis() - t1);
  7271. //SERIAL_PROTOCOLPGM(" ");
  7272. //SERIAL_PROTOCOL_F(t_delay, 5);
  7273. //SERIAL_PROTOCOLPGM(" ");
  7274. }
  7275. //sei();
  7276. digitalWrite(D_REQUIRE, HIGH);
  7277. mergeOutput[0] = '\0';
  7278. output = 0;
  7279. for (int r = 5; r <= 10; r++) //Merge digits
  7280. {
  7281. sprintf(str, "%d", digit[r]);
  7282. strcat(mergeOutput, str);
  7283. }
  7284. output = atof(mergeOutput);
  7285. if (digit[4] == 8) //Handle sign
  7286. {
  7287. output *= -1;
  7288. }
  7289. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7290. {
  7291. output *= 0.1;
  7292. }
  7293. //output = d_ReadData();
  7294. //row[ix] = current_position[Z_AXIS];
  7295. //row[ix] = d_ReadData();
  7296. row[ix] = output;
  7297. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7298. memset(data_wldsd, 0, sizeof(data_wldsd));
  7299. for (int i = 0; i < x_points_num; i++) {
  7300. SERIAL_PROTOCOLPGM(" ");
  7301. SERIAL_PROTOCOL_F(row[i], 5);
  7302. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7303. dtostrf(row[i], 7, 3, numb_wldsd);
  7304. strcat(data_wldsd, numb_wldsd);
  7305. }
  7306. card.write_command(data_wldsd);
  7307. SERIAL_PROTOCOLPGM("\n");
  7308. }
  7309. custom_message_state--;
  7310. mesh_point++;
  7311. lcd_update(1);
  7312. }
  7313. #endif //MICROMETER_LOGGING
  7314. card.closefile();
  7315. //clean_up_after_endstop_move(l_feedmultiply);
  7316. }
  7317. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7318. int t1 = 0;
  7319. int t_delay = 0;
  7320. int digit[13];
  7321. int m;
  7322. char str[3];
  7323. //String mergeOutput;
  7324. char mergeOutput[15];
  7325. float output;
  7326. int mesh_point = 0; //index number of calibration point
  7327. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7328. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7329. float mesh_home_z_search = 4;
  7330. float row[x_points_num];
  7331. int ix = 0;
  7332. int iy = 0;
  7333. const char* filename_wldsd = "wldsd.txt";
  7334. char data_wldsd[70];
  7335. char numb_wldsd[10];
  7336. d_setup();
  7337. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7338. // We don't know where we are! HOME!
  7339. // Push the commands to the front of the message queue in the reverse order!
  7340. // There shall be always enough space reserved for these commands.
  7341. repeatcommand_front(); // repeat G80 with all its parameters
  7342. enquecommand_front_P((PSTR("G28 W0")));
  7343. enquecommand_front_P((PSTR("G1 Z5")));
  7344. return;
  7345. }
  7346. unsigned int custom_message_type_old = custom_message_type;
  7347. unsigned int custom_message_state_old = custom_message_state;
  7348. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7349. custom_message_state = (x_points_num * y_points_num) + 10;
  7350. lcd_update(1);
  7351. mbl.reset();
  7352. babystep_undo();
  7353. card.openFile(filename_wldsd, false);
  7354. current_position[Z_AXIS] = mesh_home_z_search;
  7355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7356. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7357. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7358. int l_feedmultiply = setup_for_endstop_move(false);
  7359. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7360. SERIAL_PROTOCOL(x_points_num);
  7361. SERIAL_PROTOCOLPGM(",");
  7362. SERIAL_PROTOCOL(y_points_num);
  7363. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7364. SERIAL_PROTOCOL(mesh_home_z_search);
  7365. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7366. SERIAL_PROTOCOL(x_dimension);
  7367. SERIAL_PROTOCOLPGM(",");
  7368. SERIAL_PROTOCOL(y_dimension);
  7369. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7370. while (mesh_point != x_points_num * y_points_num) {
  7371. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7372. iy = mesh_point / x_points_num;
  7373. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7374. float z0 = 0.f;
  7375. current_position[Z_AXIS] = mesh_home_z_search;
  7376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7377. st_synchronize();
  7378. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7379. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7381. st_synchronize();
  7382. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7383. break;
  7384. card.closefile();
  7385. }
  7386. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7387. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7388. //strcat(data_wldsd, numb_wldsd);
  7389. //MYSERIAL.println(data_wldsd);
  7390. //_delay(1000);
  7391. //_delay(3000);
  7392. //t1 = _millis();
  7393. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7394. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7395. memset(digit, 0, sizeof(digit));
  7396. //cli();
  7397. digitalWrite(D_REQUIRE, LOW);
  7398. for (int i = 0; i<13; i++)
  7399. {
  7400. //t1 = _millis();
  7401. for (int j = 0; j < 4; j++)
  7402. {
  7403. while (digitalRead(D_DATACLOCK) == LOW) {}
  7404. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7405. bitWrite(digit[i], j, digitalRead(D_DATA));
  7406. }
  7407. //t_delay = (_millis() - t1);
  7408. //SERIAL_PROTOCOLPGM(" ");
  7409. //SERIAL_PROTOCOL_F(t_delay, 5);
  7410. //SERIAL_PROTOCOLPGM(" ");
  7411. }
  7412. //sei();
  7413. digitalWrite(D_REQUIRE, HIGH);
  7414. mergeOutput[0] = '\0';
  7415. output = 0;
  7416. for (int r = 5; r <= 10; r++) //Merge digits
  7417. {
  7418. sprintf(str, "%d", digit[r]);
  7419. strcat(mergeOutput, str);
  7420. }
  7421. output = atof(mergeOutput);
  7422. if (digit[4] == 8) //Handle sign
  7423. {
  7424. output *= -1;
  7425. }
  7426. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7427. {
  7428. output *= 0.1;
  7429. }
  7430. //output = d_ReadData();
  7431. //row[ix] = current_position[Z_AXIS];
  7432. memset(data_wldsd, 0, sizeof(data_wldsd));
  7433. for (int i = 0; i <3; i++) {
  7434. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7435. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7436. strcat(data_wldsd, numb_wldsd);
  7437. strcat(data_wldsd, ";");
  7438. }
  7439. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7440. dtostrf(output, 8, 5, numb_wldsd);
  7441. strcat(data_wldsd, numb_wldsd);
  7442. //strcat(data_wldsd, ";");
  7443. card.write_command(data_wldsd);
  7444. //row[ix] = d_ReadData();
  7445. row[ix] = output; // current_position[Z_AXIS];
  7446. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7447. for (int i = 0; i < x_points_num; i++) {
  7448. SERIAL_PROTOCOLPGM(" ");
  7449. SERIAL_PROTOCOL_F(row[i], 5);
  7450. }
  7451. SERIAL_PROTOCOLPGM("\n");
  7452. }
  7453. custom_message_state--;
  7454. mesh_point++;
  7455. lcd_update(1);
  7456. }
  7457. card.closefile();
  7458. clean_up_after_endstop_move(l_feedmultiply);
  7459. }
  7460. #endif //HEATBED_ANALYSIS
  7461. void temp_compensation_start() {
  7462. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7463. custom_message_state = PINDA_HEAT_T + 1;
  7464. lcd_update(2);
  7465. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7466. current_position[E_AXIS] -= default_retraction;
  7467. }
  7468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7469. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7470. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7471. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7473. st_synchronize();
  7474. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7475. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7476. delay_keep_alive(1000);
  7477. custom_message_state = PINDA_HEAT_T - i;
  7478. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7479. else lcd_update(1);
  7480. }
  7481. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7482. custom_message_state = 0;
  7483. }
  7484. void temp_compensation_apply() {
  7485. int i_add;
  7486. int z_shift = 0;
  7487. float z_shift_mm;
  7488. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7489. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7490. i_add = (target_temperature_bed - 60) / 10;
  7491. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7492. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7493. }else {
  7494. //interpolation
  7495. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7496. }
  7497. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7499. st_synchronize();
  7500. plan_set_z_position(current_position[Z_AXIS]);
  7501. }
  7502. else {
  7503. //we have no temp compensation data
  7504. }
  7505. }
  7506. float temp_comp_interpolation(float inp_temperature) {
  7507. //cubic spline interpolation
  7508. int n, i, j;
  7509. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7510. int shift[10];
  7511. int temp_C[10];
  7512. n = 6; //number of measured points
  7513. shift[0] = 0;
  7514. for (i = 0; i < n; i++) {
  7515. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7516. temp_C[i] = 50 + i * 10; //temperature in C
  7517. #ifdef PINDA_THERMISTOR
  7518. temp_C[i] = 35 + i * 5; //temperature in C
  7519. #else
  7520. temp_C[i] = 50 + i * 10; //temperature in C
  7521. #endif
  7522. x[i] = (float)temp_C[i];
  7523. f[i] = (float)shift[i];
  7524. }
  7525. if (inp_temperature < x[0]) return 0;
  7526. for (i = n - 1; i>0; i--) {
  7527. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7528. h[i - 1] = x[i] - x[i - 1];
  7529. }
  7530. //*********** formation of h, s , f matrix **************
  7531. for (i = 1; i<n - 1; i++) {
  7532. m[i][i] = 2 * (h[i - 1] + h[i]);
  7533. if (i != 1) {
  7534. m[i][i - 1] = h[i - 1];
  7535. m[i - 1][i] = h[i - 1];
  7536. }
  7537. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7538. }
  7539. //*********** forward elimination **************
  7540. for (i = 1; i<n - 2; i++) {
  7541. temp = (m[i + 1][i] / m[i][i]);
  7542. for (j = 1; j <= n - 1; j++)
  7543. m[i + 1][j] -= temp*m[i][j];
  7544. }
  7545. //*********** backward substitution *********
  7546. for (i = n - 2; i>0; i--) {
  7547. sum = 0;
  7548. for (j = i; j <= n - 2; j++)
  7549. sum += m[i][j] * s[j];
  7550. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7551. }
  7552. for (i = 0; i<n - 1; i++)
  7553. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7554. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7555. b = s[i] / 2;
  7556. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7557. d = f[i];
  7558. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7559. }
  7560. return sum;
  7561. }
  7562. #ifdef PINDA_THERMISTOR
  7563. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7564. {
  7565. if (!temp_cal_active) return 0;
  7566. if (!calibration_status_pinda()) return 0;
  7567. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7568. }
  7569. #endif //PINDA_THERMISTOR
  7570. void long_pause() //long pause print
  7571. {
  7572. st_synchronize();
  7573. start_pause_print = _millis();
  7574. //retract
  7575. current_position[E_AXIS] -= default_retraction;
  7576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7577. //lift z
  7578. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7579. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7581. //Move XY to side
  7582. current_position[X_AXIS] = X_PAUSE_POS;
  7583. current_position[Y_AXIS] = Y_PAUSE_POS;
  7584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7585. // Turn off the print fan
  7586. fanSpeed = 0;
  7587. st_synchronize();
  7588. }
  7589. void serialecho_temperatures() {
  7590. float tt = degHotend(active_extruder);
  7591. SERIAL_PROTOCOLPGM("T:");
  7592. SERIAL_PROTOCOL(tt);
  7593. SERIAL_PROTOCOLPGM(" E:");
  7594. SERIAL_PROTOCOL((int)active_extruder);
  7595. SERIAL_PROTOCOLPGM(" B:");
  7596. SERIAL_PROTOCOL_F(degBed(), 1);
  7597. SERIAL_PROTOCOLLN("");
  7598. }
  7599. extern uint32_t sdpos_atomic;
  7600. #ifdef UVLO_SUPPORT
  7601. void uvlo_()
  7602. {
  7603. unsigned long time_start = _millis();
  7604. bool sd_print = card.sdprinting;
  7605. // Conserve power as soon as possible.
  7606. disable_x();
  7607. disable_y();
  7608. #ifdef TMC2130
  7609. tmc2130_set_current_h(Z_AXIS, 20);
  7610. tmc2130_set_current_r(Z_AXIS, 20);
  7611. tmc2130_set_current_h(E_AXIS, 20);
  7612. tmc2130_set_current_r(E_AXIS, 20);
  7613. #endif //TMC2130
  7614. // Indicate that the interrupt has been triggered.
  7615. // SERIAL_ECHOLNPGM("UVLO");
  7616. // Read out the current Z motor microstep counter. This will be later used
  7617. // for reaching the zero full step before powering off.
  7618. uint16_t z_microsteps = 0;
  7619. #ifdef TMC2130
  7620. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7621. #endif //TMC2130
  7622. // Calculate the file position, from which to resume this print.
  7623. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7624. {
  7625. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7626. sd_position -= sdlen_planner;
  7627. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7628. sd_position -= sdlen_cmdqueue;
  7629. if (sd_position < 0) sd_position = 0;
  7630. }
  7631. // Backup the feedrate in mm/min.
  7632. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7633. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7634. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7635. // are in action.
  7636. planner_abort_hard();
  7637. // Store the current extruder position.
  7638. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7639. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7640. // Clean the input command queue.
  7641. cmdqueue_reset();
  7642. card.sdprinting = false;
  7643. // card.closefile();
  7644. // Enable stepper driver interrupt to move Z axis.
  7645. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7646. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7647. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7648. sei();
  7649. plan_buffer_line(
  7650. current_position[X_AXIS],
  7651. current_position[Y_AXIS],
  7652. current_position[Z_AXIS],
  7653. current_position[E_AXIS] - default_retraction,
  7654. 95, active_extruder);
  7655. st_synchronize();
  7656. disable_e0();
  7657. plan_buffer_line(
  7658. current_position[X_AXIS],
  7659. current_position[Y_AXIS],
  7660. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7661. current_position[E_AXIS] - default_retraction,
  7662. 40, active_extruder);
  7663. st_synchronize();
  7664. disable_e0();
  7665. plan_buffer_line(
  7666. current_position[X_AXIS],
  7667. current_position[Y_AXIS],
  7668. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7669. current_position[E_AXIS] - default_retraction,
  7670. 40, active_extruder);
  7671. st_synchronize();
  7672. disable_e0();
  7673. disable_z();
  7674. // Move Z up to the next 0th full step.
  7675. // Write the file position.
  7676. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7677. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7678. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7679. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7680. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7681. // Scale the z value to 1u resolution.
  7682. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7683. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7684. }
  7685. // Read out the current Z motor microstep counter. This will be later used
  7686. // for reaching the zero full step before powering off.
  7687. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7688. // Store the current position.
  7689. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7690. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7691. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7692. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7693. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7694. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7695. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7696. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7697. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7698. #if EXTRUDERS > 1
  7699. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7700. #if EXTRUDERS > 2
  7701. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7702. #endif
  7703. #endif
  7704. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7705. // Finaly store the "power outage" flag.
  7706. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7707. st_synchronize();
  7708. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7709. disable_z();
  7710. // Increment power failure counter
  7711. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7712. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7713. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7714. #if 0
  7715. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7716. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7718. st_synchronize();
  7719. #endif
  7720. wdt_enable(WDTO_500MS);
  7721. WRITE(BEEPER,HIGH);
  7722. while(1)
  7723. ;
  7724. }
  7725. void uvlo_tiny()
  7726. {
  7727. uint16_t z_microsteps=0;
  7728. // Conserve power as soon as possible.
  7729. disable_x();
  7730. disable_y();
  7731. disable_e0();
  7732. #ifdef TMC2130
  7733. tmc2130_set_current_h(Z_AXIS, 20);
  7734. tmc2130_set_current_r(Z_AXIS, 20);
  7735. #endif //TMC2130
  7736. // Read out the current Z motor microstep counter
  7737. #ifdef TMC2130
  7738. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7739. #endif //TMC2130
  7740. planner_abort_hard();
  7741. sei();
  7742. plan_buffer_line(
  7743. current_position[X_AXIS],
  7744. current_position[Y_AXIS],
  7745. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7746. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7747. current_position[E_AXIS],
  7748. 40, active_extruder);
  7749. st_synchronize();
  7750. disable_z();
  7751. // Finaly store the "power outage" flag.
  7752. //if(sd_print)
  7753. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7754. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7755. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7756. // Increment power failure counter
  7757. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7758. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7759. wdt_enable(WDTO_500MS);
  7760. WRITE(BEEPER,HIGH);
  7761. while(1)
  7762. ;
  7763. }
  7764. #endif //UVLO_SUPPORT
  7765. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7766. void setup_fan_interrupt() {
  7767. //INT7
  7768. DDRE &= ~(1 << 7); //input pin
  7769. PORTE &= ~(1 << 7); //no internal pull-up
  7770. //start with sensing rising edge
  7771. EICRB &= ~(1 << 6);
  7772. EICRB |= (1 << 7);
  7773. //enable INT7 interrupt
  7774. EIMSK |= (1 << 7);
  7775. }
  7776. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7777. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7778. ISR(INT7_vect) {
  7779. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7780. #ifdef FAN_SOFT_PWM
  7781. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7782. #else //FAN_SOFT_PWM
  7783. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7784. #endif //FAN_SOFT_PWM
  7785. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7786. t_fan_rising_edge = millis_nc();
  7787. }
  7788. else { //interrupt was triggered by falling edge
  7789. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7790. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7791. }
  7792. }
  7793. EICRB ^= (1 << 6); //change edge
  7794. }
  7795. #endif
  7796. #ifdef UVLO_SUPPORT
  7797. void setup_uvlo_interrupt() {
  7798. DDRE &= ~(1 << 4); //input pin
  7799. PORTE &= ~(1 << 4); //no internal pull-up
  7800. //sensing falling edge
  7801. EICRB |= (1 << 0);
  7802. EICRB &= ~(1 << 1);
  7803. //enable INT4 interrupt
  7804. EIMSK |= (1 << 4);
  7805. }
  7806. ISR(INT4_vect) {
  7807. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7808. SERIAL_ECHOLNPGM("INT4");
  7809. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7810. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7811. }
  7812. void recover_print(uint8_t automatic) {
  7813. char cmd[30];
  7814. lcd_update_enable(true);
  7815. lcd_update(2);
  7816. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7817. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7818. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7819. // Lift the print head, so one may remove the excess priming material.
  7820. if(!bTiny&&(current_position[Z_AXIS]<25))
  7821. enquecommand_P(PSTR("G1 Z25 F800"));
  7822. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7823. enquecommand_P(PSTR("G28 X Y"));
  7824. // Set the target bed and nozzle temperatures and wait.
  7825. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7826. enquecommand(cmd);
  7827. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7828. enquecommand(cmd);
  7829. enquecommand_P(PSTR("M83")); //E axis relative mode
  7830. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7831. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7832. if(automatic == 0){
  7833. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7834. }
  7835. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7836. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7837. // Restart the print.
  7838. restore_print_from_eeprom();
  7839. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7840. }
  7841. void recover_machine_state_after_power_panic(bool bTiny)
  7842. {
  7843. char cmd[30];
  7844. // 1) Recover the logical cordinates at the time of the power panic.
  7845. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7846. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7847. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7848. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7849. // The current position after power panic is moved to the next closest 0th full step.
  7850. if(bTiny)
  7851. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7852. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7853. else
  7854. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7855. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7856. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7857. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7858. sprintf_P(cmd, PSTR("G92 E"));
  7859. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7860. enquecommand(cmd);
  7861. }
  7862. memcpy(destination, current_position, sizeof(destination));
  7863. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7864. print_world_coordinates();
  7865. // 2) Initialize the logical to physical coordinate system transformation.
  7866. world2machine_initialize();
  7867. // 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7868. mbl.active = false;
  7869. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7870. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7871. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7872. // Scale the z value to 10u resolution.
  7873. int16_t v;
  7874. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7875. if (v != 0)
  7876. mbl.active = true;
  7877. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7878. }
  7879. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7880. // print_mesh_bed_leveling_table();
  7881. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7882. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7883. babystep_load();
  7884. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7885. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7886. // 6) Power up the motors, mark their positions as known.
  7887. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7888. axis_known_position[X_AXIS] = true; enable_x();
  7889. axis_known_position[Y_AXIS] = true; enable_y();
  7890. axis_known_position[Z_AXIS] = true; enable_z();
  7891. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7892. print_physical_coordinates();
  7893. // 7) Recover the target temperatures.
  7894. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7895. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7896. // 8) Recover extruder multipilers
  7897. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7898. #if EXTRUDERS > 1
  7899. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7900. #if EXTRUDERS > 2
  7901. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7902. #endif
  7903. #endif
  7904. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7905. }
  7906. void restore_print_from_eeprom() {
  7907. int feedrate_rec;
  7908. uint8_t fan_speed_rec;
  7909. char cmd[30];
  7910. char filename[13];
  7911. uint8_t depth = 0;
  7912. char dir_name[9];
  7913. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7914. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7915. SERIAL_ECHOPGM("Feedrate:");
  7916. MYSERIAL.println(feedrate_rec);
  7917. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7918. MYSERIAL.println(int(depth));
  7919. for (int i = 0; i < depth; i++) {
  7920. for (int j = 0; j < 8; j++) {
  7921. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7922. }
  7923. dir_name[8] = '\0';
  7924. MYSERIAL.println(dir_name);
  7925. strcpy(dir_names[i], dir_name);
  7926. card.chdir(dir_name);
  7927. }
  7928. for (int i = 0; i < 8; i++) {
  7929. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7930. }
  7931. filename[8] = '\0';
  7932. MYSERIAL.print(filename);
  7933. strcat_P(filename, PSTR(".gco"));
  7934. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7935. enquecommand(cmd);
  7936. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7937. SERIAL_ECHOPGM("Position read from eeprom:");
  7938. MYSERIAL.println(position);
  7939. // E axis relative mode.
  7940. enquecommand_P(PSTR("M83"));
  7941. // Move to the XY print position in logical coordinates, where the print has been killed.
  7942. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7943. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7944. strcat_P(cmd, PSTR(" F2000"));
  7945. enquecommand(cmd);
  7946. // Move the Z axis down to the print, in logical coordinates.
  7947. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7948. enquecommand(cmd);
  7949. // Unretract.
  7950. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7951. // Set the feedrate saved at the power panic.
  7952. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7953. enquecommand(cmd);
  7954. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7955. {
  7956. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7957. }
  7958. // Set the fan speed saved at the power panic.
  7959. strcpy_P(cmd, PSTR("M106 S"));
  7960. strcat(cmd, itostr3(int(fan_speed_rec)));
  7961. enquecommand(cmd);
  7962. // Set a position in the file.
  7963. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7964. enquecommand(cmd);
  7965. enquecommand_P(PSTR("G4 S0"));
  7966. enquecommand_P(PSTR("PRUSA uvlo"));
  7967. }
  7968. #endif //UVLO_SUPPORT
  7969. //! @brief Immediately stop print moves
  7970. //!
  7971. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7972. //! If printing from sd card, position in file is saved.
  7973. //! If printing from USB, line number is saved.
  7974. //!
  7975. //! @param z_move
  7976. //! @param e_move
  7977. void stop_and_save_print_to_ram(float z_move, float e_move)
  7978. {
  7979. if (saved_printing) return;
  7980. #if 0
  7981. unsigned char nplanner_blocks;
  7982. #endif
  7983. unsigned char nlines;
  7984. uint16_t sdlen_planner;
  7985. uint16_t sdlen_cmdqueue;
  7986. cli();
  7987. if (card.sdprinting) {
  7988. #if 0
  7989. nplanner_blocks = number_of_blocks();
  7990. #endif
  7991. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7992. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7993. saved_sdpos -= sdlen_planner;
  7994. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7995. saved_sdpos -= sdlen_cmdqueue;
  7996. saved_printing_type = PRINTING_TYPE_SD;
  7997. }
  7998. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7999. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8000. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8001. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8002. saved_sdpos -= nlines;
  8003. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8004. saved_printing_type = PRINTING_TYPE_USB;
  8005. }
  8006. else {
  8007. saved_printing_type = PRINTING_TYPE_NONE;
  8008. //not sd printing nor usb printing
  8009. }
  8010. #if 0
  8011. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8012. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8013. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8014. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8015. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8016. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8017. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8018. {
  8019. card.setIndex(saved_sdpos);
  8020. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8021. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8022. MYSERIAL.print(char(card.get()));
  8023. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8024. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8025. MYSERIAL.print(char(card.get()));
  8026. SERIAL_ECHOLNPGM("End of command buffer");
  8027. }
  8028. {
  8029. // Print the content of the planner buffer, line by line:
  8030. card.setIndex(saved_sdpos);
  8031. int8_t iline = 0;
  8032. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8033. SERIAL_ECHOPGM("Planner line (from file): ");
  8034. MYSERIAL.print(int(iline), DEC);
  8035. SERIAL_ECHOPGM(", length: ");
  8036. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8037. SERIAL_ECHOPGM(", steps: (");
  8038. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8039. SERIAL_ECHOPGM(",");
  8040. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8041. SERIAL_ECHOPGM(",");
  8042. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8043. SERIAL_ECHOPGM(",");
  8044. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8045. SERIAL_ECHOPGM("), events: ");
  8046. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8047. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8048. MYSERIAL.print(char(card.get()));
  8049. }
  8050. }
  8051. {
  8052. // Print the content of the command buffer, line by line:
  8053. int8_t iline = 0;
  8054. union {
  8055. struct {
  8056. char lo;
  8057. char hi;
  8058. } lohi;
  8059. uint16_t value;
  8060. } sdlen_single;
  8061. int _bufindr = bufindr;
  8062. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8063. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8064. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8065. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8066. }
  8067. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8068. MYSERIAL.print(int(iline), DEC);
  8069. SERIAL_ECHOPGM(", type: ");
  8070. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8071. SERIAL_ECHOPGM(", len: ");
  8072. MYSERIAL.println(sdlen_single.value, DEC);
  8073. // Print the content of the buffer line.
  8074. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8075. SERIAL_ECHOPGM("Buffer line (from file): ");
  8076. MYSERIAL.println(int(iline), DEC);
  8077. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8078. MYSERIAL.print(char(card.get()));
  8079. if (-- _buflen == 0)
  8080. break;
  8081. // First skip the current command ID and iterate up to the end of the string.
  8082. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8083. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8084. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8085. // If the end of the buffer was empty,
  8086. if (_bufindr == sizeof(cmdbuffer)) {
  8087. // skip to the start and find the nonzero command.
  8088. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8089. }
  8090. }
  8091. }
  8092. #endif
  8093. #if 0
  8094. saved_feedrate2 = feedrate; //save feedrate
  8095. #else
  8096. // Try to deduce the feedrate from the first block of the planner.
  8097. // Speed is in mm/min.
  8098. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8099. #endif
  8100. planner_abort_hard(); //abort printing
  8101. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8102. saved_active_extruder = active_extruder; //save active_extruder
  8103. saved_extruder_temperature = degTargetHotend(active_extruder);
  8104. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8105. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8106. saved_fanSpeed = fanSpeed;
  8107. cmdqueue_reset(); //empty cmdqueue
  8108. card.sdprinting = false;
  8109. // card.closefile();
  8110. saved_printing = true;
  8111. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8112. st_reset_timer();
  8113. sei();
  8114. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8115. #if 1
  8116. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8117. char buf[48];
  8118. // First unretract (relative extrusion)
  8119. if(!saved_extruder_relative_mode){
  8120. strcpy_P(buf, PSTR("M83"));
  8121. enquecommand(buf, false);
  8122. }
  8123. //retract 45mm/s
  8124. strcpy_P(buf, PSTR("G1 E"));
  8125. dtostrf(e_move, 6, 3, buf + strlen(buf));
  8126. strcat_P(buf, PSTR(" F"));
  8127. dtostrf(2700, 8, 3, buf + strlen(buf));
  8128. enquecommand(buf, false);
  8129. // Then lift Z axis
  8130. strcpy_P(buf, PSTR("G1 Z"));
  8131. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  8132. strcat_P(buf, PSTR(" F"));
  8133. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  8134. // At this point the command queue is empty.
  8135. enquecommand(buf, false);
  8136. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8137. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8138. repeatcommand_front();
  8139. #else
  8140. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8141. st_synchronize(); //wait moving
  8142. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8143. memcpy(destination, current_position, sizeof(destination));
  8144. #endif
  8145. }
  8146. }
  8147. //! @brief Restore print from ram
  8148. //!
  8149. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8150. //! waits for extruder temperature restore, then restores position and continues
  8151. //! print moves.
  8152. //! Internaly lcd_update() is called by wait_for_heater().
  8153. //!
  8154. //! @param e_move
  8155. void restore_print_from_ram_and_continue(float e_move)
  8156. {
  8157. if (!saved_printing) return;
  8158. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8159. // current_position[axis] = st_get_position_mm(axis);
  8160. active_extruder = saved_active_extruder; //restore active_extruder
  8161. if (saved_extruder_temperature) {
  8162. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8163. heating_status = 1;
  8164. wait_for_heater(_millis(), saved_active_extruder);
  8165. heating_status = 2;
  8166. }
  8167. feedrate = saved_feedrate2; //restore feedrate
  8168. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8169. fanSpeed = saved_fanSpeed;
  8170. float e = saved_pos[E_AXIS] - e_move;
  8171. plan_set_e_position(e);
  8172. //first move print head in XY to the saved position:
  8173. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8174. st_synchronize();
  8175. //then move Z
  8176. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8177. st_synchronize();
  8178. //and finaly unretract (35mm/s)
  8179. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8180. st_synchronize();
  8181. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8182. memcpy(destination, current_position, sizeof(destination));
  8183. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8184. card.setIndex(saved_sdpos);
  8185. sdpos_atomic = saved_sdpos;
  8186. card.sdprinting = true;
  8187. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8188. }
  8189. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8190. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8191. serial_count = 0;
  8192. FlushSerialRequestResend();
  8193. }
  8194. else {
  8195. //not sd printing nor usb printing
  8196. }
  8197. lcd_setstatuspgm(_T(WELCOME_MSG));
  8198. saved_printing = false;
  8199. }
  8200. void print_world_coordinates()
  8201. {
  8202. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8203. }
  8204. void print_physical_coordinates()
  8205. {
  8206. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8207. }
  8208. void print_mesh_bed_leveling_table()
  8209. {
  8210. SERIAL_ECHOPGM("mesh bed leveling: ");
  8211. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8212. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8213. MYSERIAL.print(mbl.z_values[y][x], 3);
  8214. SERIAL_ECHOPGM(" ");
  8215. }
  8216. SERIAL_ECHOLNPGM("");
  8217. }
  8218. uint16_t print_time_remaining() {
  8219. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8220. #ifdef TMC2130
  8221. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8222. else print_t = print_time_remaining_silent;
  8223. #else
  8224. print_t = print_time_remaining_normal;
  8225. #endif //TMC2130
  8226. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8227. return print_t;
  8228. }
  8229. uint8_t calc_percent_done()
  8230. {
  8231. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8232. uint8_t percent_done = 0;
  8233. #ifdef TMC2130
  8234. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8235. percent_done = print_percent_done_normal;
  8236. }
  8237. else if (print_percent_done_silent <= 100) {
  8238. percent_done = print_percent_done_silent;
  8239. }
  8240. #else
  8241. if (print_percent_done_normal <= 100) {
  8242. percent_done = print_percent_done_normal;
  8243. }
  8244. #endif //TMC2130
  8245. else {
  8246. percent_done = card.percentDone();
  8247. }
  8248. return percent_done;
  8249. }
  8250. static void print_time_remaining_init()
  8251. {
  8252. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8253. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8254. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8255. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8256. }
  8257. void load_filament_final_feed()
  8258. {
  8259. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8260. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8261. }
  8262. //! @brief Wait for user to check the state
  8263. //! @par nozzle_temp nozzle temperature to load filament
  8264. void M600_check_state(float nozzle_temp)
  8265. {
  8266. lcd_change_fil_state = 0;
  8267. while (lcd_change_fil_state != 1)
  8268. {
  8269. lcd_change_fil_state = 0;
  8270. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8271. lcd_alright();
  8272. KEEPALIVE_STATE(IN_HANDLER);
  8273. switch(lcd_change_fil_state)
  8274. {
  8275. // Filament failed to load so load it again
  8276. case 2:
  8277. if (mmu_enabled)
  8278. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8279. else
  8280. M600_load_filament_movements();
  8281. break;
  8282. // Filament loaded properly but color is not clear
  8283. case 3:
  8284. st_synchronize();
  8285. load_filament_final_feed();
  8286. lcd_loading_color();
  8287. st_synchronize();
  8288. break;
  8289. // Everything good
  8290. default:
  8291. lcd_change_success();
  8292. break;
  8293. }
  8294. }
  8295. }
  8296. //! @brief Wait for user action
  8297. //!
  8298. //! Beep, manage nozzle heater and wait for user to start unload filament
  8299. //! If times out, active extruder temperature is set to 0.
  8300. //!
  8301. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8302. void M600_wait_for_user(float HotendTempBckp) {
  8303. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8304. int counterBeep = 0;
  8305. unsigned long waiting_start_time = _millis();
  8306. uint8_t wait_for_user_state = 0;
  8307. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8308. bool bFirst=true;
  8309. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8310. manage_heater();
  8311. manage_inactivity(true);
  8312. #if BEEPER > 0
  8313. if (counterBeep == 500) {
  8314. counterBeep = 0;
  8315. }
  8316. SET_OUTPUT(BEEPER);
  8317. if (counterBeep == 0) {
  8318. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8319. {
  8320. bFirst=false;
  8321. WRITE(BEEPER, HIGH);
  8322. }
  8323. }
  8324. if (counterBeep == 20) {
  8325. WRITE(BEEPER, LOW);
  8326. }
  8327. counterBeep++;
  8328. #endif //BEEPER > 0
  8329. switch (wait_for_user_state) {
  8330. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8331. delay_keep_alive(4);
  8332. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8333. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8334. wait_for_user_state = 1;
  8335. setAllTargetHotends(0);
  8336. st_synchronize();
  8337. disable_e0();
  8338. disable_e1();
  8339. disable_e2();
  8340. }
  8341. break;
  8342. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8343. delay_keep_alive(4);
  8344. if (lcd_clicked()) {
  8345. setTargetHotend(HotendTempBckp, active_extruder);
  8346. lcd_wait_for_heater();
  8347. wait_for_user_state = 2;
  8348. }
  8349. break;
  8350. case 2: //waiting for nozzle to reach target temperature
  8351. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8352. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8353. waiting_start_time = _millis();
  8354. wait_for_user_state = 0;
  8355. }
  8356. else {
  8357. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8358. lcd_set_cursor(1, 4);
  8359. lcd_print(ftostr3(degHotend(active_extruder)));
  8360. }
  8361. break;
  8362. }
  8363. }
  8364. WRITE(BEEPER, LOW);
  8365. }
  8366. void M600_load_filament_movements()
  8367. {
  8368. #ifdef SNMM
  8369. display_loading();
  8370. do
  8371. {
  8372. current_position[E_AXIS] += 0.002;
  8373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8374. delay_keep_alive(2);
  8375. }
  8376. while (!lcd_clicked());
  8377. st_synchronize();
  8378. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8379. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8380. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8382. current_position[E_AXIS] += 40;
  8383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8384. current_position[E_AXIS] += 10;
  8385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8386. #else
  8387. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8388. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8389. #endif
  8390. load_filament_final_feed();
  8391. lcd_loading_filament();
  8392. st_synchronize();
  8393. }
  8394. void M600_load_filament() {
  8395. //load filament for single material and SNMM
  8396. lcd_wait_interact();
  8397. //load_filament_time = _millis();
  8398. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8399. #ifdef PAT9125
  8400. fsensor_autoload_check_start();
  8401. #endif //PAT9125
  8402. while(!lcd_clicked())
  8403. {
  8404. manage_heater();
  8405. manage_inactivity(true);
  8406. #ifdef FILAMENT_SENSOR
  8407. if (fsensor_check_autoload())
  8408. {
  8409. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8410. _tone(BEEPER, 1000);
  8411. delay_keep_alive(50);
  8412. _noTone(BEEPER);
  8413. break;
  8414. }
  8415. #endif //FILAMENT_SENSOR
  8416. }
  8417. #ifdef PAT9125
  8418. fsensor_autoload_check_stop();
  8419. #endif //PAT9125
  8420. KEEPALIVE_STATE(IN_HANDLER);
  8421. #ifdef FSENSOR_QUALITY
  8422. fsensor_oq_meassure_start(70);
  8423. #endif //FSENSOR_QUALITY
  8424. M600_load_filament_movements();
  8425. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8426. _tone(BEEPER, 500);
  8427. delay_keep_alive(50);
  8428. _noTone(BEEPER);
  8429. #ifdef FSENSOR_QUALITY
  8430. fsensor_oq_meassure_stop();
  8431. if (!fsensor_oq_result())
  8432. {
  8433. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8434. lcd_update_enable(true);
  8435. lcd_update(2);
  8436. if (disable)
  8437. fsensor_disable();
  8438. }
  8439. #endif //FSENSOR_QUALITY
  8440. lcd_update_enable(false);
  8441. }
  8442. #define FIL_LOAD_LENGTH 60