mmu.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. #include "fsensor.h"
  10. #include "cardreader.h"
  11. #include "ultralcd.h"
  12. #include "sound.h"
  13. #define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())
  14. #define MMU_TODELAY 100
  15. #define MMU_TIMEOUT 10
  16. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  17. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  18. #define MMU_HWRESET
  19. #define MMU_RST_PIN 76
  20. #define MMU_REQUIRED_FW_BUILDNR 81
  21. bool mmu_enabled = false;
  22. bool mmu_ready = false;
  23. static int8_t mmu_state = 0;
  24. uint8_t mmu_cmd = 0;
  25. uint8_t mmu_extruder = 0;
  26. //! This variable probably has no meaning and is planed to be removed
  27. uint8_t tmp_extruder = 0;
  28. int8_t mmu_finda = -1;
  29. int16_t mmu_version = -1;
  30. int16_t mmu_buildnr = -1;
  31. uint32_t mmu_last_request = 0;
  32. uint32_t mmu_last_response = 0;
  33. //clear rx buffer
  34. void mmu_clr_rx_buf(void)
  35. {
  36. while (fgetc(uart2io) >= 0);
  37. }
  38. //send command - puts
  39. int mmu_puts_P(const char* str)
  40. {
  41. mmu_clr_rx_buf(); //clear rx buffer
  42. int r = fputs_P(str, uart2io); //send command
  43. mmu_last_request = millis();
  44. return r;
  45. }
  46. //send command - printf
  47. int mmu_printf_P(const char* format, ...)
  48. {
  49. va_list args;
  50. va_start(args, format);
  51. mmu_clr_rx_buf(); //clear rx buffer
  52. int r = vfprintf_P(uart2io, format, args); //send command
  53. va_end(args);
  54. mmu_last_request = millis();
  55. return r;
  56. }
  57. //check 'ok' response
  58. int8_t mmu_rx_ok(void)
  59. {
  60. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  61. if (res == 1) mmu_last_response = millis();
  62. return res;
  63. }
  64. //check 'start' response
  65. int8_t mmu_rx_start(void)
  66. {
  67. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  68. if (res == 1) mmu_last_response = millis();
  69. return res;
  70. }
  71. //initialize mmu2 unit - first part - should be done at begining of startup process
  72. void mmu_init(void)
  73. {
  74. digitalWrite(MMU_RST_PIN, HIGH);
  75. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  76. uart2_init(); //init uart2
  77. _delay_ms(10); //wait 10ms for sure
  78. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  79. mmu_state = -1;
  80. }
  81. //mmu main loop - state machine processing
  82. void mmu_loop(void)
  83. {
  84. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  85. switch (mmu_state)
  86. {
  87. case 0:
  88. return;
  89. case -1:
  90. if (mmu_rx_start() > 0)
  91. {
  92. puts_P(PSTR("MMU => 'start'"));
  93. puts_P(PSTR("MMU <= 'S1'"));
  94. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  95. mmu_state = -2;
  96. }
  97. else if (millis() > 30000) //30sec after reset disable mmu
  98. {
  99. puts_P(PSTR("MMU not responding - DISABLED"));
  100. mmu_state = 0;
  101. }
  102. return;
  103. case -2:
  104. if (mmu_rx_ok() > 0)
  105. {
  106. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  107. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  108. puts_P(PSTR("MMU <= 'S2'"));
  109. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  110. mmu_state = -3;
  111. }
  112. return;
  113. case -3:
  114. if (mmu_rx_ok() > 0)
  115. {
  116. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  117. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  118. bool version_valid = mmu_check_version();
  119. if (!version_valid) mmu_show_warning();
  120. else puts_P(PSTR("MMU version valid"));
  121. puts_P(PSTR("MMU <= 'P0'"));
  122. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  123. mmu_state = -4;
  124. }
  125. return;
  126. case -4:
  127. if (mmu_rx_ok() > 0)
  128. {
  129. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  130. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  131. puts_P(PSTR("MMU - ENABLED"));
  132. mmu_enabled = true;
  133. mmu_state = 1;
  134. }
  135. return;
  136. case 1:
  137. if (mmu_cmd) //command request ?
  138. {
  139. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  140. {
  141. int extruder = mmu_cmd - MMU_CMD_T0;
  142. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  143. mmu_printf_P(PSTR("T%d\n"), extruder);
  144. mmu_state = 3; // wait for response
  145. }
  146. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  147. {
  148. int filament = mmu_cmd - MMU_CMD_L0;
  149. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  150. mmu_printf_P(PSTR("L%d\n"), filament);
  151. mmu_state = 3; // wait for response
  152. }
  153. else if (mmu_cmd == MMU_CMD_C0)
  154. {
  155. printf_P(PSTR("MMU <= 'C0'\n"));
  156. mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
  157. mmu_state = 3;
  158. }
  159. else if (mmu_cmd == MMU_CMD_U0)
  160. {
  161. printf_P(PSTR("MMU <= 'U0'\n"));
  162. mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
  163. mmu_state = 3;
  164. }
  165. mmu_cmd = 0;
  166. }
  167. else if ((mmu_last_response + 300) < millis()) //request every 300ms
  168. {
  169. puts_P(PSTR("MMU <= 'P0'"));
  170. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  171. mmu_state = 2;
  172. }
  173. return;
  174. case 2: //response to command P0
  175. if (mmu_rx_ok() > 0)
  176. {
  177. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  178. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  179. //printf_P(PSTR("Eact: %d\n"), int(e_active()));
  180. if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
  181. fsensor_stop_and_save_print();
  182. enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
  183. if (lcd_autoDeplete) enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
  184. else enquecommand_front_P(PSTR("M600")); //save print and run M600 command
  185. }
  186. mmu_state = 1;
  187. if (mmu_cmd == 0)
  188. mmu_ready = true;
  189. }
  190. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  191. { //resend request after timeout (30s)
  192. mmu_state = 1;
  193. }
  194. return;
  195. case 3: //response to commands T0-T4
  196. if (mmu_rx_ok() > 0)
  197. {
  198. printf_P(PSTR("MMU => 'ok'\n"));
  199. mmu_ready = true;
  200. mmu_state = 1;
  201. }
  202. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  203. { //resend request after timeout (5 min)
  204. mmu_state = 1;
  205. }
  206. return;
  207. }
  208. }
  209. void mmu_reset(void)
  210. {
  211. #ifdef MMU_HWRESET //HW - pulse reset pin
  212. digitalWrite(MMU_RST_PIN, LOW);
  213. _delay_us(100);
  214. digitalWrite(MMU_RST_PIN, HIGH);
  215. #else //SW - send X0 command
  216. mmu_puts_P(PSTR("X0\n"));
  217. #endif
  218. }
  219. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  220. {
  221. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  222. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  223. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  224. while ((mmu_rx_ok() <= 0) && (--timeout))
  225. delay_keep_alive(MMU_TODELAY);
  226. return timeout?1:0;
  227. }
  228. void mmu_command(uint8_t cmd)
  229. {
  230. mmu_cmd = cmd;
  231. mmu_ready = false;
  232. }
  233. bool mmu_get_response(void)
  234. {
  235. // printf_P(PSTR("mmu_get_response - begin\n"));
  236. KEEPALIVE_STATE(IN_PROCESS);
  237. while (mmu_cmd != 0)
  238. {
  239. // mmu_loop();
  240. delay_keep_alive(100);
  241. }
  242. while (!mmu_ready)
  243. {
  244. // mmu_loop();
  245. if (mmu_state != 3)
  246. break;
  247. delay_keep_alive(100);
  248. }
  249. bool ret = mmu_ready;
  250. mmu_ready = false;
  251. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  252. return ret;
  253. /* //waits for "ok" from mmu
  254. //function returns true if "ok" was received
  255. //if timeout is set to true function return false if there is no "ok" received before timeout
  256. bool response = true;
  257. LongTimer mmu_get_reponse_timeout;
  258. KEEPALIVE_STATE(IN_PROCESS);
  259. mmu_get_reponse_timeout.start();
  260. while (mmu_rx_ok() <= 0)
  261. {
  262. delay_keep_alive(100);
  263. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  264. { //5 minutes timeout
  265. response = false;
  266. break;
  267. }
  268. }
  269. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  270. return response;*/
  271. }
  272. void manage_response(bool move_axes, bool turn_off_nozzle)
  273. {
  274. bool response = false;
  275. mmu_print_saved = false;
  276. bool lcd_update_was_enabled = false;
  277. float hotend_temp_bckp = degTargetHotend(active_extruder);
  278. float z_position_bckp = current_position[Z_AXIS];
  279. float x_position_bckp = current_position[X_AXIS];
  280. float y_position_bckp = current_position[Y_AXIS];
  281. while(!response)
  282. {
  283. response = mmu_get_response(); //wait for "ok" from mmu
  284. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  285. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  286. if (lcd_update_enabled) {
  287. lcd_update_was_enabled = true;
  288. lcd_update_enable(false);
  289. }
  290. st_synchronize();
  291. mmu_print_saved = true;
  292. printf_P(PSTR("MMU not responding\n"));
  293. hotend_temp_bckp = degTargetHotend(active_extruder);
  294. if (move_axes) {
  295. z_position_bckp = current_position[Z_AXIS];
  296. x_position_bckp = current_position[X_AXIS];
  297. y_position_bckp = current_position[Y_AXIS];
  298. //lift z
  299. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  300. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  302. st_synchronize();
  303. //Move XY to side
  304. current_position[X_AXIS] = X_PAUSE_POS;
  305. current_position[Y_AXIS] = Y_PAUSE_POS;
  306. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  307. st_synchronize();
  308. }
  309. if (turn_off_nozzle) {
  310. //set nozzle target temperature to 0
  311. setAllTargetHotends(0);
  312. }
  313. }
  314. lcd_display_message_fullscreen_P(_i("MMU needs user attention. Fix the issue and then press button on MMU unit."));
  315. delay_keep_alive(1000);
  316. }
  317. else if (mmu_print_saved) {
  318. printf_P(PSTR("MMU starts responding\n"));
  319. if (turn_off_nozzle)
  320. {
  321. lcd_clear();
  322. setTargetHotend(hotend_temp_bckp, active_extruder);
  323. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  324. delay_keep_alive(3000);
  325. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  326. {
  327. delay_keep_alive(1000);
  328. lcd_wait_for_heater();
  329. }
  330. }
  331. if (move_axes) {
  332. lcd_clear();
  333. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  334. current_position[X_AXIS] = x_position_bckp;
  335. current_position[Y_AXIS] = y_position_bckp;
  336. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  337. st_synchronize();
  338. current_position[Z_AXIS] = z_position_bckp;
  339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  340. st_synchronize();
  341. }
  342. else {
  343. lcd_clear();
  344. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  345. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  346. }
  347. }
  348. }
  349. if (lcd_update_was_enabled) lcd_update_enable(true);
  350. }
  351. void mmu_load_to_nozzle()
  352. {
  353. st_synchronize();
  354. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  355. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  356. current_position[E_AXIS] += 7.2f;
  357. float feedrate = 562;
  358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  359. st_synchronize();
  360. current_position[E_AXIS] += 14.4f;
  361. feedrate = 871;
  362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  363. st_synchronize();
  364. current_position[E_AXIS] += 36.0f;
  365. feedrate = 1393;
  366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  367. st_synchronize();
  368. current_position[E_AXIS] += 14.4f;
  369. feedrate = 871;
  370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  371. st_synchronize();
  372. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  373. }
  374. void mmu_M600_wait_and_beep() {
  375. //Beep and wait for user to remove old filament and prepare new filament for load
  376. KEEPALIVE_STATE(PAUSED_FOR_USER);
  377. int counterBeep = 0;
  378. lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
  379. bool bFirst=true;
  380. while (!lcd_clicked()){
  381. manage_heater();
  382. manage_inactivity(true);
  383. #if BEEPER > 0
  384. if (counterBeep == 500) {
  385. counterBeep = 0;
  386. }
  387. SET_OUTPUT(BEEPER);
  388. if (counterBeep == 0) {
  389. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  390. {
  391. bFirst=false;
  392. WRITE(BEEPER, HIGH);
  393. }
  394. }
  395. if (counterBeep == 20) {
  396. WRITE(BEEPER, LOW);
  397. }
  398. counterBeep++;
  399. #endif //BEEPER > 0
  400. delay_keep_alive(4);
  401. }
  402. WRITE(BEEPER, LOW);
  403. }
  404. void mmu_M600_load_filament(bool automatic)
  405. {
  406. //load filament for mmu v2
  407. bool yes = false;
  408. tmp_extruder = mmu_extruder;
  409. if (!automatic) {
  410. mmu_M600_wait_and_beep();
  411. #ifdef MMU_M600_SWITCH_EXTRUDER
  412. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  413. if(yes) tmp_extruder = choose_extruder_menu();
  414. else tmp_extruder = mmu_extruder;
  415. #else
  416. tmp_extruder = mmu_extruder;
  417. #endif //MMU_M600_SWITCH_EXTRUDER
  418. }
  419. else {
  420. tmp_extruder = (tmp_extruder+1)%5;
  421. }
  422. lcd_update_enable(false);
  423. lcd_clear();
  424. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  425. lcd_print(" ");
  426. lcd_print(tmp_extruder + 1);
  427. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  428. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  429. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  430. mmu_command(MMU_CMD_T0 + tmp_extruder);
  431. manage_response(false, true);
  432. mmu_command(MMU_CMD_C0);
  433. mmu_extruder = tmp_extruder; //filament change is finished
  434. mmu_load_to_nozzle();
  435. st_synchronize();
  436. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  437. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  438. }
  439. void extr_mov(float shift, float feed_rate)
  440. { //move extruder no matter what the current heater temperature is
  441. set_extrude_min_temp(.0);
  442. current_position[E_AXIS] += shift;
  443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  444. set_extrude_min_temp(EXTRUDE_MINTEMP);
  445. }
  446. void change_extr(int
  447. #ifdef SNMM
  448. extr
  449. #endif //SNMM
  450. ) { //switches multiplexer for extruders
  451. #ifdef SNMM
  452. st_synchronize();
  453. delay(100);
  454. disable_e0();
  455. disable_e1();
  456. disable_e2();
  457. mmu_extruder = extr;
  458. pinMode(E_MUX0_PIN, OUTPUT);
  459. pinMode(E_MUX1_PIN, OUTPUT);
  460. switch (extr) {
  461. case 1:
  462. WRITE(E_MUX0_PIN, HIGH);
  463. WRITE(E_MUX1_PIN, LOW);
  464. break;
  465. case 2:
  466. WRITE(E_MUX0_PIN, LOW);
  467. WRITE(E_MUX1_PIN, HIGH);
  468. break;
  469. case 3:
  470. WRITE(E_MUX0_PIN, HIGH);
  471. WRITE(E_MUX1_PIN, HIGH);
  472. break;
  473. default:
  474. WRITE(E_MUX0_PIN, LOW);
  475. WRITE(E_MUX1_PIN, LOW);
  476. break;
  477. }
  478. delay(100);
  479. #endif
  480. }
  481. int get_ext_nr()
  482. { //reads multiplexer input pins and return current extruder number (counted from 0)
  483. #ifndef SNMM
  484. return(mmu_extruder); //update needed
  485. #else
  486. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  487. #endif
  488. }
  489. void display_loading()
  490. {
  491. switch (mmu_extruder)
  492. {
  493. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  494. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  495. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  496. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  497. }
  498. }
  499. void extr_adj(int extruder) //loading filament for SNMM
  500. {
  501. #ifndef SNMM
  502. uint8_t cmd = MMU_CMD_L0 + extruder;
  503. if (cmd > MMU_CMD_L4)
  504. {
  505. printf_P(PSTR("Filament out of range %d \n"),extruder);
  506. return;
  507. }
  508. mmu_command(cmd);
  509. //show which filament is currently loaded
  510. lcd_update_enable(false);
  511. lcd_clear();
  512. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  513. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  514. //else lcd.print(" ");
  515. lcd_print(" ");
  516. lcd_print(extruder + 1);
  517. // get response
  518. manage_response(false, false);
  519. lcd_update_enable(true);
  520. //lcd_return_to_status();
  521. #else
  522. bool correct;
  523. max_feedrate[E_AXIS] =80;
  524. //max_feedrate[E_AXIS] = 50;
  525. START:
  526. lcd_clear();
  527. lcd_set_cursor(0, 0);
  528. switch (extruder) {
  529. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  530. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  531. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  532. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  533. }
  534. KEEPALIVE_STATE(PAUSED_FOR_USER);
  535. do{
  536. extr_mov(0.001,1000);
  537. delay_keep_alive(2);
  538. } while (!lcd_clicked());
  539. //delay_keep_alive(500);
  540. KEEPALIVE_STATE(IN_HANDLER);
  541. st_synchronize();
  542. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  543. //if (!correct) goto START;
  544. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  545. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  546. extr_mov(bowden_length[extruder], 500);
  547. lcd_clear();
  548. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  549. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  550. else lcd_print(" ");
  551. lcd_print(mmu_extruder + 1);
  552. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  553. st_synchronize();
  554. max_feedrate[E_AXIS] = 50;
  555. lcd_update_enable(true);
  556. lcd_return_to_status();
  557. lcdDrawUpdate = 2;
  558. #endif
  559. }
  560. void extr_unload()
  561. { //unload just current filament for multimaterial printers
  562. #ifdef SNMM
  563. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  564. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  565. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  566. #endif
  567. if (degHotend0() > EXTRUDE_MINTEMP)
  568. {
  569. #ifndef SNMM
  570. st_synchronize();
  571. //show which filament is currently unloaded
  572. lcd_update_enable(false);
  573. lcd_clear();
  574. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  575. lcd_print(" ");
  576. lcd_print(mmu_extruder + 1);
  577. current_position[E_AXIS] -= 80;
  578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  579. st_synchronize();
  580. mmu_command(MMU_CMD_U0);
  581. // get response
  582. manage_response(false, true);
  583. lcd_update_enable(true);
  584. #else //SNMM
  585. lcd_clear();
  586. lcd_display_message_fullscreen_P(PSTR(""));
  587. max_feedrate[E_AXIS] = 50;
  588. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  589. lcd_print(" ");
  590. lcd_print(mmu_extruder + 1);
  591. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  592. if (current_position[Z_AXIS] < 15) {
  593. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  595. }
  596. current_position[E_AXIS] += 10; //extrusion
  597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  598. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  599. if (current_temperature[0] < 230) { //PLA & all other filaments
  600. current_position[E_AXIS] += 5.4;
  601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  602. current_position[E_AXIS] += 3.2;
  603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  604. current_position[E_AXIS] += 3;
  605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  606. }
  607. else { //ABS
  608. current_position[E_AXIS] += 3.1;
  609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  610. current_position[E_AXIS] += 3.1;
  611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  612. current_position[E_AXIS] += 4;
  613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  614. /*current_position[X_AXIS] += 23; //delay
  615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  616. current_position[X_AXIS] -= 23; //delay
  617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  618. delay_keep_alive(4700);
  619. }
  620. max_feedrate[E_AXIS] = 80;
  621. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  623. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  625. st_synchronize();
  626. //st_current_init();
  627. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  628. else st_current_set(2, tmp_motor_loud[2]);
  629. lcd_update_enable(true);
  630. lcd_return_to_status();
  631. max_feedrate[E_AXIS] = 50;
  632. #endif //SNMM
  633. }
  634. else
  635. {
  636. lcd_clear();
  637. lcd_set_cursor(0, 0);
  638. lcd_puts_P(_T(MSG_ERROR));
  639. lcd_set_cursor(0, 2);
  640. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  641. delay(2000);
  642. lcd_clear();
  643. }
  644. //lcd_return_to_status();
  645. }
  646. //wrapper functions for loading filament
  647. void extr_adj_0()
  648. {
  649. #ifndef SNMM
  650. enquecommand_P(PSTR("M701 E0"));
  651. #else
  652. change_extr(0);
  653. extr_adj(0);
  654. #endif
  655. }
  656. void extr_adj_1()
  657. {
  658. #ifndef SNMM
  659. enquecommand_P(PSTR("M701 E1"));
  660. #else
  661. change_extr(1);
  662. extr_adj(1);
  663. #endif
  664. }
  665. void extr_adj_2()
  666. {
  667. #ifndef SNMM
  668. enquecommand_P(PSTR("M701 E2"));
  669. #else
  670. change_extr(2);
  671. extr_adj(2);
  672. #endif
  673. }
  674. void extr_adj_3()
  675. {
  676. #ifndef SNMM
  677. enquecommand_P(PSTR("M701 E3"));
  678. #else
  679. change_extr(3);
  680. extr_adj(3);
  681. #endif
  682. }
  683. void extr_adj_4()
  684. {
  685. #ifndef SNMM
  686. enquecommand_P(PSTR("M701 E4"));
  687. #else
  688. change_extr(4);
  689. extr_adj(4);
  690. #endif
  691. }
  692. void load_all()
  693. {
  694. #ifndef SNMM
  695. enquecommand_P(PSTR("M701 E0"));
  696. enquecommand_P(PSTR("M701 E1"));
  697. enquecommand_P(PSTR("M701 E2"));
  698. enquecommand_P(PSTR("M701 E3"));
  699. enquecommand_P(PSTR("M701 E4"));
  700. #else
  701. for (int i = 0; i < 4; i++)
  702. {
  703. change_extr(i);
  704. extr_adj(i);
  705. }
  706. #endif
  707. }
  708. //wrapper functions for changing extruders
  709. void extr_change_0()
  710. {
  711. change_extr(0);
  712. lcd_return_to_status();
  713. }
  714. void extr_change_1()
  715. {
  716. change_extr(1);
  717. lcd_return_to_status();
  718. }
  719. void extr_change_2()
  720. {
  721. change_extr(2);
  722. lcd_return_to_status();
  723. }
  724. void extr_change_3()
  725. {
  726. change_extr(3);
  727. lcd_return_to_status();
  728. }
  729. //wrapper functions for unloading filament
  730. void extr_unload_all()
  731. {
  732. if (degHotend0() > EXTRUDE_MINTEMP)
  733. {
  734. for (int i = 0; i < 4; i++)
  735. {
  736. change_extr(i);
  737. extr_unload();
  738. }
  739. }
  740. else
  741. {
  742. lcd_clear();
  743. lcd_set_cursor(0, 0);
  744. lcd_puts_P(_T(MSG_ERROR));
  745. lcd_set_cursor(0, 2);
  746. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  747. delay(2000);
  748. lcd_clear();
  749. lcd_return_to_status();
  750. }
  751. }
  752. //unloading just used filament (for snmm)
  753. void extr_unload_used()
  754. {
  755. if (degHotend0() > EXTRUDE_MINTEMP) {
  756. for (int i = 0; i < 4; i++) {
  757. if (snmm_filaments_used & (1 << i)) {
  758. change_extr(i);
  759. extr_unload();
  760. }
  761. }
  762. snmm_filaments_used = 0;
  763. }
  764. else {
  765. lcd_clear();
  766. lcd_set_cursor(0, 0);
  767. lcd_puts_P(_T(MSG_ERROR));
  768. lcd_set_cursor(0, 2);
  769. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  770. delay(2000);
  771. lcd_clear();
  772. lcd_return_to_status();
  773. }
  774. }
  775. void extr_unload_0()
  776. {
  777. change_extr(0);
  778. extr_unload();
  779. }
  780. void extr_unload_1()
  781. {
  782. change_extr(1);
  783. extr_unload();
  784. }
  785. void extr_unload_2()
  786. {
  787. change_extr(2);
  788. extr_unload();
  789. }
  790. void extr_unload_3()
  791. {
  792. change_extr(3);
  793. extr_unload();
  794. }
  795. void extr_unload_4()
  796. {
  797. change_extr(4);
  798. extr_unload();
  799. }
  800. bool mmu_check_version()
  801. {
  802. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  803. }
  804. void mmu_show_warning()
  805. {
  806. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  807. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  808. }