Marlin_main.cpp 213 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. //#include "spline.h"
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // P Y - Starts filament allignment process for multicolor
  75. // G0 -> G1
  76. // G1 - Coordinated Movement X Y Z E
  77. // G2 - CW ARC
  78. // G3 - CCW ARC
  79. // G4 - Dwell S<seconds> or P<milliseconds>
  80. // G10 - retract filament according to settings of M207
  81. // G11 - retract recover filament according to settings of M208
  82. // G28 - Home all Axis
  83. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. // G30 - Single Z Probe, probes bed at current XY location.
  85. // G31 - Dock sled (Z_PROBE_SLED only)
  86. // G32 - Undock sled (Z_PROBE_SLED only)
  87. // G80 - Automatic mesh bed leveling
  88. // G81 - Print bed profile
  89. // G90 - Use Absolute Coordinates
  90. // G91 - Use Relative Coordinates
  91. // G92 - Set current position to coordinates given
  92. // M Codes
  93. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. // M1 - Same as M0
  95. // M17 - Enable/Power all stepper motors
  96. // M18 - Disable all stepper motors; same as M84
  97. // M20 - List SD card
  98. // M21 - Init SD card
  99. // M22 - Release SD card
  100. // M23 - Select SD file (M23 filename.g)
  101. // M24 - Start/resume SD print
  102. // M25 - Pause SD print
  103. // M26 - Set SD position in bytes (M26 S12345)
  104. // M27 - Report SD print status
  105. // M28 - Start SD write (M28 filename.g)
  106. // M29 - Stop SD write
  107. // M30 - Delete file from SD (M30 filename.g)
  108. // M31 - Output time since last M109 or SD card start to serial
  109. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  114. // M80 - Turn on Power Supply
  115. // M81 - Turn off Power Supply
  116. // M82 - Set E codes absolute (default)
  117. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  118. // M84 - Disable steppers until next move,
  119. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  120. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  121. // M92 - Set axis_steps_per_unit - same syntax as G92
  122. // M104 - Set extruder target temp
  123. // M105 - Read current temp
  124. // M106 - Fan on
  125. // M107 - Fan off
  126. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  127. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  128. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  129. // M112 - Emergency stop
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. union Data
  198. {
  199. byte b[2];
  200. int value;
  201. };
  202. float homing_feedrate[] = HOMING_FEEDRATE;
  203. // Currently only the extruder axis may be switched to a relative mode.
  204. // Other axes are always absolute or relative based on the common relative_mode flag.
  205. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  206. int feedmultiply=100; //100->1 200->2
  207. int saved_feedmultiply;
  208. int extrudemultiply=100; //100->1 200->2
  209. int extruder_multiply[EXTRUDERS] = {100
  210. #if EXTRUDERS > 1
  211. , 100
  212. #if EXTRUDERS > 2
  213. , 100
  214. #endif
  215. #endif
  216. };
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. unsigned long kicktime = millis()+100000;
  220. unsigned int usb_printing_counter;
  221. int lcd_change_fil_state = 0;
  222. int feedmultiplyBckp = 100;
  223. unsigned char lang_selected = 0;
  224. bool prusa_sd_card_upload = false;
  225. unsigned long total_filament_used;
  226. unsigned int heating_status;
  227. unsigned int heating_status_counter;
  228. bool custom_message;
  229. bool loading_flag = false;
  230. unsigned int custom_message_type;
  231. unsigned int custom_message_state;
  232. bool volumetric_enabled = false;
  233. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  234. #if EXTRUDERS > 1
  235. , DEFAULT_NOMINAL_FILAMENT_DIA
  236. #if EXTRUDERS > 2
  237. , DEFAULT_NOMINAL_FILAMENT_DIA
  238. #endif
  239. #endif
  240. };
  241. float volumetric_multiplier[EXTRUDERS] = {1.0
  242. #if EXTRUDERS > 1
  243. , 1.0
  244. #if EXTRUDERS > 2
  245. , 1.0
  246. #endif
  247. #endif
  248. };
  249. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  250. float add_homing[3]={0,0,0};
  251. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  252. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  253. bool axis_known_position[3] = {false, false, false};
  254. float zprobe_zoffset;
  255. // Extruder offset
  256. #if EXTRUDERS > 1
  257. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  258. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  259. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  260. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  261. #endif
  262. };
  263. #endif
  264. uint8_t active_extruder = 0;
  265. int fanSpeed=0;
  266. #ifdef FWRETRACT
  267. bool autoretract_enabled=false;
  268. bool retracted[EXTRUDERS]={false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #endif
  274. #endif
  275. };
  276. bool retracted_swap[EXTRUDERS]={false
  277. #if EXTRUDERS > 1
  278. , false
  279. #if EXTRUDERS > 2
  280. , false
  281. #endif
  282. #endif
  283. };
  284. float retract_length = RETRACT_LENGTH;
  285. float retract_length_swap = RETRACT_LENGTH_SWAP;
  286. float retract_feedrate = RETRACT_FEEDRATE;
  287. float retract_zlift = RETRACT_ZLIFT;
  288. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  289. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  290. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  291. #endif
  292. #ifdef ULTIPANEL
  293. #ifdef PS_DEFAULT_OFF
  294. bool powersupply = false;
  295. #else
  296. bool powersupply = true;
  297. #endif
  298. #endif
  299. bool cancel_heatup = false ;
  300. #ifdef FILAMENT_SENSOR
  301. //Variables for Filament Sensor input
  302. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  303. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  304. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  305. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  306. int delay_index1=0; //index into ring buffer
  307. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  308. float delay_dist=0; //delay distance counter
  309. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  310. #endif
  311. const char errormagic[] PROGMEM = "Error:";
  312. const char echomagic[] PROGMEM = "echo:";
  313. //===========================================================================
  314. //=============================Private Variables=============================
  315. //===========================================================================
  316. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  317. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  318. static float delta[3] = {0.0, 0.0, 0.0};
  319. // For tracing an arc
  320. static float offset[3] = {0.0, 0.0, 0.0};
  321. static bool home_all_axis = true;
  322. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  323. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  324. // Determines Absolute or Relative Coordinates.
  325. // Also there is bool axis_relative_modes[] per axis flag.
  326. static bool relative_mode = false;
  327. // String circular buffer. Commands may be pushed to the buffer from both sides:
  328. // Chained commands will be pushed to the front, interactive (from LCD menu)
  329. // and printing commands (from serial line or from SD card) are pushed to the tail.
  330. // First character of each entry indicates the type of the entry:
  331. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  332. // Command in cmdbuffer was sent over USB.
  333. #define CMDBUFFER_CURRENT_TYPE_USB 1
  334. // Command in cmdbuffer was read from SDCARD.
  335. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  336. // Command in cmdbuffer was generated by the UI.
  337. #define CMDBUFFER_CURRENT_TYPE_UI 3
  338. // Command in cmdbuffer was generated by another G-code.
  339. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  340. // How much space to reserve for the chained commands
  341. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  342. // which are pushed to the front of the queue?
  343. // Maximum 5 commands of max length 20 + null terminator.
  344. #define CMDBUFFER_RESERVE_FRONT (5*21)
  345. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  346. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  347. // Head of the circular buffer, where to read.
  348. static int bufindr = 0;
  349. // Tail of the buffer, where to write.
  350. static int bufindw = 0;
  351. // Number of lines in cmdbuffer.
  352. static int buflen = 0;
  353. // Flag for processing the current command inside the main Arduino loop().
  354. // If a new command was pushed to the front of a command buffer while
  355. // processing another command, this replaces the command on the top.
  356. // Therefore don't remove the command from the queue in the loop() function.
  357. static bool cmdbuffer_front_already_processed = false;
  358. // Type of a command, which is to be executed right now.
  359. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  360. // String of a command, which is to be executed right now.
  361. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  362. // Enable debugging of the command buffer.
  363. // Debugging information will be sent to serial line.
  364. // #define CMDBUFFER_DEBUG
  365. static int serial_count = 0;
  366. static boolean comment_mode = false;
  367. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  368. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  369. //static float tt = 0;
  370. //static float bt = 0;
  371. //Inactivity shutdown variables
  372. static unsigned long previous_millis_cmd = 0;
  373. unsigned long max_inactive_time = 0;
  374. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  375. unsigned long starttime=0;
  376. unsigned long stoptime=0;
  377. unsigned long _usb_timer = 0;
  378. static uint8_t tmp_extruder;
  379. bool Stopped=false;
  380. #if NUM_SERVOS > 0
  381. Servo servos[NUM_SERVOS];
  382. #endif
  383. bool CooldownNoWait = true;
  384. bool target_direction;
  385. //Insert variables if CHDK is defined
  386. #ifdef CHDK
  387. unsigned long chdkHigh = 0;
  388. boolean chdkActive = false;
  389. #endif
  390. //===========================================================================
  391. //=============================Routines======================================
  392. //===========================================================================
  393. void get_arc_coordinates();
  394. bool setTargetedHotend(int code);
  395. void serial_echopair_P(const char *s_P, float v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. void serial_echopair_P(const char *s_P, double v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. void serial_echopair_P(const char *s_P, unsigned long v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. #ifdef SDSUPPORT
  402. #include "SdFatUtil.h"
  403. int freeMemory() { return SdFatUtil::FreeRam(); }
  404. #else
  405. extern "C" {
  406. extern unsigned int __bss_end;
  407. extern unsigned int __heap_start;
  408. extern void *__brkval;
  409. int freeMemory() {
  410. int free_memory;
  411. if ((int)__brkval == 0)
  412. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  413. else
  414. free_memory = ((int)&free_memory) - ((int)__brkval);
  415. return free_memory;
  416. }
  417. }
  418. #endif //!SDSUPPORT
  419. // Pop the currently processed command from the queue.
  420. // It is expected, that there is at least one command in the queue.
  421. bool cmdqueue_pop_front()
  422. {
  423. if (buflen > 0) {
  424. #ifdef CMDBUFFER_DEBUG
  425. SERIAL_ECHOPGM("Dequeing ");
  426. SERIAL_ECHO(cmdbuffer+bufindr+1);
  427. SERIAL_ECHOLNPGM("");
  428. SERIAL_ECHOPGM("Old indices: buflen ");
  429. SERIAL_ECHO(buflen);
  430. SERIAL_ECHOPGM(", bufindr ");
  431. SERIAL_ECHO(bufindr);
  432. SERIAL_ECHOPGM(", bufindw ");
  433. SERIAL_ECHO(bufindw);
  434. SERIAL_ECHOPGM(", serial_count ");
  435. SERIAL_ECHO(serial_count);
  436. SERIAL_ECHOPGM(", bufsize ");
  437. SERIAL_ECHO(sizeof(cmdbuffer));
  438. SERIAL_ECHOLNPGM("");
  439. #endif /* CMDBUFFER_DEBUG */
  440. if (-- buflen == 0) {
  441. // Empty buffer.
  442. if (serial_count == 0)
  443. // No serial communication is pending. Reset both pointers to zero.
  444. bufindw = 0;
  445. bufindr = bufindw;
  446. } else {
  447. // There is at least one ready line in the buffer.
  448. // First skip the current command ID and iterate up to the end of the string.
  449. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  450. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  451. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  452. // If the end of the buffer was empty,
  453. if (bufindr == sizeof(cmdbuffer)) {
  454. // skip to the start and find the nonzero command.
  455. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  456. }
  457. #ifdef CMDBUFFER_DEBUG
  458. SERIAL_ECHOPGM("New indices: buflen ");
  459. SERIAL_ECHO(buflen);
  460. SERIAL_ECHOPGM(", bufindr ");
  461. SERIAL_ECHO(bufindr);
  462. SERIAL_ECHOPGM(", bufindw ");
  463. SERIAL_ECHO(bufindw);
  464. SERIAL_ECHOPGM(", serial_count ");
  465. SERIAL_ECHO(serial_count);
  466. SERIAL_ECHOPGM(" new command on the top: ");
  467. SERIAL_ECHO(cmdbuffer+bufindr+1);
  468. SERIAL_ECHOLNPGM("");
  469. #endif /* CMDBUFFER_DEBUG */
  470. }
  471. return true;
  472. }
  473. return false;
  474. }
  475. void cmdqueue_reset()
  476. {
  477. while (cmdqueue_pop_front()) ;
  478. }
  479. // How long a string could be pushed to the front of the command queue?
  480. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  481. // len_asked does not contain the zero terminator size.
  482. bool cmdqueue_could_enqueue_front(int len_asked)
  483. {
  484. // MAX_CMD_SIZE has to accommodate the zero terminator.
  485. if (len_asked >= MAX_CMD_SIZE)
  486. return false;
  487. // Remove the currently processed command from the queue.
  488. if (! cmdbuffer_front_already_processed) {
  489. cmdqueue_pop_front();
  490. cmdbuffer_front_already_processed = true;
  491. }
  492. if (bufindr == bufindw && buflen > 0)
  493. // Full buffer.
  494. return false;
  495. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  496. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  497. if (bufindw < bufindr) {
  498. int bufindr_new = bufindr - len_asked - 2;
  499. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  500. if (endw <= bufindr_new) {
  501. bufindr = bufindr_new;
  502. return true;
  503. }
  504. } else {
  505. // Otherwise the free space is split between the start and end.
  506. if (len_asked + 2 <= bufindr) {
  507. // Could fit at the start.
  508. bufindr -= len_asked + 2;
  509. return true;
  510. }
  511. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  512. if (endw <= bufindr_new) {
  513. memset(cmdbuffer, 0, bufindr);
  514. bufindr = bufindr_new;
  515. return true;
  516. }
  517. }
  518. return false;
  519. }
  520. // Could one enqueue a command of lenthg len_asked into the buffer,
  521. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  522. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  523. // len_asked does not contain the zero terminator size.
  524. bool cmdqueue_could_enqueue_back(int len_asked)
  525. {
  526. // MAX_CMD_SIZE has to accommodate the zero terminator.
  527. if (len_asked >= MAX_CMD_SIZE)
  528. return false;
  529. if (bufindr == bufindw && buflen > 0)
  530. // Full buffer.
  531. return false;
  532. if (serial_count > 0) {
  533. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  534. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  535. // serial data.
  536. // How much memory to reserve for the commands pushed to the front?
  537. // End of the queue, when pushing to the end.
  538. int endw = bufindw + len_asked + 2;
  539. if (bufindw < bufindr)
  540. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  541. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  542. // Otherwise the free space is split between the start and end.
  543. if (// Could one fit to the end, including the reserve?
  544. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  545. // Could one fit to the end, and the reserve to the start?
  546. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  547. return true;
  548. // Could one fit both to the start?
  549. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  550. // Mark the rest of the buffer as used.
  551. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  552. // and point to the start.
  553. bufindw = 0;
  554. return true;
  555. }
  556. } else {
  557. // How much memory to reserve for the commands pushed to the front?
  558. // End of the queue, when pushing to the end.
  559. int endw = bufindw + len_asked + 2;
  560. if (bufindw < bufindr)
  561. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  562. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  563. // Otherwise the free space is split between the start and end.
  564. if (// Could one fit to the end, including the reserve?
  565. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  566. // Could one fit to the end, and the reserve to the start?
  567. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  568. return true;
  569. // Could one fit both to the start?
  570. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  571. // Mark the rest of the buffer as used.
  572. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  573. // and point to the start.
  574. bufindw = 0;
  575. return true;
  576. }
  577. }
  578. return false;
  579. }
  580. #ifdef CMDBUFFER_DEBUG
  581. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  582. {
  583. SERIAL_ECHOPGM("Entry nr: ");
  584. SERIAL_ECHO(nr);
  585. SERIAL_ECHOPGM(", type: ");
  586. SERIAL_ECHO(int(*p));
  587. SERIAL_ECHOPGM(", cmd: ");
  588. SERIAL_ECHO(p+1);
  589. SERIAL_ECHOLNPGM("");
  590. }
  591. static void cmdqueue_dump_to_serial()
  592. {
  593. if (buflen == 0) {
  594. SERIAL_ECHOLNPGM("The command buffer is empty.");
  595. } else {
  596. SERIAL_ECHOPGM("Content of the buffer: entries ");
  597. SERIAL_ECHO(buflen);
  598. SERIAL_ECHOPGM(", indr ");
  599. SERIAL_ECHO(bufindr);
  600. SERIAL_ECHOPGM(", indw ");
  601. SERIAL_ECHO(bufindw);
  602. SERIAL_ECHOLNPGM("");
  603. int nr = 0;
  604. if (bufindr < bufindw) {
  605. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  606. cmdqueue_dump_to_serial_single_line(nr, p);
  607. // Skip the command.
  608. for (++p; *p != 0; ++ p);
  609. // Skip the gaps.
  610. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  611. }
  612. } else {
  613. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  614. cmdqueue_dump_to_serial_single_line(nr, p);
  615. // Skip the command.
  616. for (++p; *p != 0; ++ p);
  617. // Skip the gaps.
  618. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  619. }
  620. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  621. cmdqueue_dump_to_serial_single_line(nr, p);
  622. // Skip the command.
  623. for (++p; *p != 0; ++ p);
  624. // Skip the gaps.
  625. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  626. }
  627. }
  628. SERIAL_ECHOLNPGM("End of the buffer.");
  629. }
  630. }
  631. #endif /* CMDBUFFER_DEBUG */
  632. //adds an command to the main command buffer
  633. //thats really done in a non-safe way.
  634. //needs overworking someday
  635. // Currently the maximum length of a command piped through this function is around 20 characters
  636. void enquecommand(const char *cmd, bool from_progmem)
  637. {
  638. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  639. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  640. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  641. if (cmdqueue_could_enqueue_back(len)) {
  642. // This is dangerous if a mixing of serial and this happens
  643. // This may easily be tested: If serial_count > 0, we have a problem.
  644. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  645. if (from_progmem)
  646. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  647. else
  648. strcpy(cmdbuffer + bufindw + 1, cmd);
  649. SERIAL_ECHO_START;
  650. SERIAL_ECHORPGM(MSG_Enqueing);
  651. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  652. SERIAL_ECHOLNPGM("\"");
  653. bufindw += len + 2;
  654. if (bufindw == sizeof(cmdbuffer))
  655. bufindw = 0;
  656. ++ buflen;
  657. #ifdef CMDBUFFER_DEBUG
  658. cmdqueue_dump_to_serial();
  659. #endif /* CMDBUFFER_DEBUG */
  660. } else {
  661. SERIAL_ERROR_START;
  662. SERIAL_ECHORPGM(MSG_Enqueing);
  663. if (from_progmem)
  664. SERIAL_PROTOCOLRPGM(cmd);
  665. else
  666. SERIAL_ECHO(cmd);
  667. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  668. #ifdef CMDBUFFER_DEBUG
  669. cmdqueue_dump_to_serial();
  670. #endif /* CMDBUFFER_DEBUG */
  671. }
  672. }
  673. void enquecommand_front(const char *cmd, bool from_progmem)
  674. {
  675. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  676. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  677. if (cmdqueue_could_enqueue_front(len)) {
  678. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  679. if (from_progmem)
  680. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  681. else
  682. strcpy(cmdbuffer + bufindr + 1, cmd);
  683. ++ buflen;
  684. SERIAL_ECHO_START;
  685. SERIAL_ECHOPGM("Enqueing to the front: \"");
  686. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  687. SERIAL_ECHOLNPGM("\"");
  688. #ifdef CMDBUFFER_DEBUG
  689. cmdqueue_dump_to_serial();
  690. #endif /* CMDBUFFER_DEBUG */
  691. } else {
  692. SERIAL_ERROR_START;
  693. SERIAL_ECHOPGM("Enqueing to the front: \"");
  694. if (from_progmem)
  695. SERIAL_PROTOCOLRPGM(cmd);
  696. else
  697. SERIAL_ECHO(cmd);
  698. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  699. #ifdef CMDBUFFER_DEBUG
  700. cmdqueue_dump_to_serial();
  701. #endif /* CMDBUFFER_DEBUG */
  702. }
  703. }
  704. // Mark the command at the top of the command queue as new.
  705. // Therefore it will not be removed from the queue.
  706. void repeatcommand_front()
  707. {
  708. cmdbuffer_front_already_processed = true;
  709. }
  710. void setup_killpin()
  711. {
  712. #if defined(KILL_PIN) && KILL_PIN > -1
  713. SET_INPUT(KILL_PIN);
  714. WRITE(KILL_PIN,HIGH);
  715. #endif
  716. }
  717. // Set home pin
  718. void setup_homepin(void)
  719. {
  720. #if defined(HOME_PIN) && HOME_PIN > -1
  721. SET_INPUT(HOME_PIN);
  722. WRITE(HOME_PIN,HIGH);
  723. #endif
  724. }
  725. void setup_photpin()
  726. {
  727. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  728. SET_OUTPUT(PHOTOGRAPH_PIN);
  729. WRITE(PHOTOGRAPH_PIN, LOW);
  730. #endif
  731. }
  732. void setup_powerhold()
  733. {
  734. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  735. SET_OUTPUT(SUICIDE_PIN);
  736. WRITE(SUICIDE_PIN, HIGH);
  737. #endif
  738. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  739. SET_OUTPUT(PS_ON_PIN);
  740. #if defined(PS_DEFAULT_OFF)
  741. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  742. #else
  743. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  744. #endif
  745. #endif
  746. }
  747. void suicide()
  748. {
  749. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  750. SET_OUTPUT(SUICIDE_PIN);
  751. WRITE(SUICIDE_PIN, LOW);
  752. #endif
  753. }
  754. void servo_init()
  755. {
  756. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  757. servos[0].attach(SERVO0_PIN);
  758. #endif
  759. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  760. servos[1].attach(SERVO1_PIN);
  761. #endif
  762. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  763. servos[2].attach(SERVO2_PIN);
  764. #endif
  765. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  766. servos[3].attach(SERVO3_PIN);
  767. #endif
  768. #if (NUM_SERVOS >= 5)
  769. #error "TODO: enter initalisation code for more servos"
  770. #endif
  771. }
  772. static void lcd_language_menu();
  773. #ifdef MESH_BED_LEVELING
  774. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  775. #endif
  776. // Factory reset function
  777. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  778. // Level input parameter sets depth of reset
  779. // Quiet parameter masks all waitings for user interact.
  780. int er_progress = 0;
  781. void factory_reset(char level, bool quiet)
  782. {
  783. lcd_implementation_clear();
  784. switch (level) {
  785. // Level 0: Language reset
  786. case 0:
  787. WRITE(BEEPER, HIGH);
  788. _delay_ms(100);
  789. WRITE(BEEPER, LOW);
  790. lcd_force_language_selection();
  791. break;
  792. //Level 1: Reset statistics
  793. case 1:
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  798. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  799. lcd_menu_statistics();
  800. break;
  801. // Level 2: Prepare for shipping
  802. case 2:
  803. //lcd_printPGM(PSTR("Factory RESET"));
  804. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  805. // Force language selection at the next boot up.
  806. lcd_force_language_selection();
  807. // Force the "Follow calibration flow" message at the next boot up.
  808. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  809. farm_no = 0;
  810. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  811. farm_mode = false;
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. //_delay_ms(2000);
  816. break;
  817. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  818. case 3:
  819. lcd_printPGM(PSTR("Factory RESET"));
  820. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. er_progress = 0;
  825. lcd_print_at_PGM(3, 3, PSTR(" "));
  826. lcd_implementation_print_at(3, 3, er_progress);
  827. // Erase EEPROM
  828. for (int i = 0; i < 4096; i++) {
  829. eeprom_write_byte((uint8_t*)i, 0xFF);
  830. if (i % 41 == 0) {
  831. er_progress++;
  832. lcd_print_at_PGM(3, 3, PSTR(" "));
  833. lcd_implementation_print_at(3, 3, er_progress);
  834. lcd_printPGM(PSTR("%"));
  835. }
  836. }
  837. break;
  838. default:
  839. break;
  840. }
  841. }
  842. // "Setup" function is called by the Arduino framework on startup.
  843. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  844. // are initialized by the main() routine provided by the Arduino framework.
  845. void setup()
  846. {
  847. setup_killpin();
  848. setup_powerhold();
  849. MYSERIAL.begin(BAUDRATE);
  850. SERIAL_PROTOCOLLNPGM("start");
  851. SERIAL_ECHO_START;
  852. #if 0
  853. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  854. for (int i = 0; i < 4096; ++ i) {
  855. int b = eeprom_read_byte((unsigned char*)i);
  856. if (b != 255) {
  857. SERIAL_ECHO(i);
  858. SERIAL_ECHO(":");
  859. SERIAL_ECHO(b);
  860. SERIAL_ECHOLN("");
  861. }
  862. }
  863. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  864. #endif
  865. // Check startup - does nothing if bootloader sets MCUSR to 0
  866. byte mcu = MCUSR;
  867. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  868. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  869. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  870. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  871. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  872. MCUSR=0;
  873. //SERIAL_ECHORPGM(MSG_MARLIN);
  874. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  875. #ifdef STRING_VERSION_CONFIG_H
  876. #ifdef STRING_CONFIG_H_AUTHOR
  877. SERIAL_ECHO_START;
  878. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  879. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  880. SERIAL_ECHORPGM(MSG_AUTHOR);
  881. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  882. SERIAL_ECHOPGM("Compiled: ");
  883. SERIAL_ECHOLNPGM(__DATE__);
  884. #endif
  885. #endif
  886. SERIAL_ECHO_START;
  887. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  888. SERIAL_ECHO(freeMemory());
  889. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  890. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  891. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  892. Config_RetrieveSettings();
  893. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  894. tp_init(); // Initialize temperature loop
  895. plan_init(); // Initialize planner;
  896. watchdog_init();
  897. st_init(); // Initialize stepper, this enables interrupts!
  898. setup_photpin();
  899. servo_init();
  900. // Reset the machine correction matrix.
  901. // It does not make sense to load the correction matrix until the machine is homed.
  902. world2machine_reset();
  903. lcd_init();
  904. if (!READ(BTN_ENC))
  905. {
  906. _delay_ms(1000);
  907. if (!READ(BTN_ENC))
  908. {
  909. lcd_implementation_clear();
  910. lcd_printPGM(PSTR("Factory RESET"));
  911. SET_OUTPUT(BEEPER);
  912. WRITE(BEEPER, HIGH);
  913. while (!READ(BTN_ENC));
  914. WRITE(BEEPER, LOW);
  915. _delay_ms(2000);
  916. char level = reset_menu();
  917. factory_reset(level, false);
  918. switch (level) {
  919. case 0: _delay_ms(0); break;
  920. case 1: _delay_ms(0); break;
  921. case 2: _delay_ms(0); break;
  922. case 3: _delay_ms(0); break;
  923. }
  924. // _delay_ms(100);
  925. /*
  926. #ifdef MESH_BED_LEVELING
  927. _delay_ms(2000);
  928. if (!READ(BTN_ENC))
  929. {
  930. WRITE(BEEPER, HIGH);
  931. _delay_ms(100);
  932. WRITE(BEEPER, LOW);
  933. _delay_ms(200);
  934. WRITE(BEEPER, HIGH);
  935. _delay_ms(100);
  936. WRITE(BEEPER, LOW);
  937. int _z = 0;
  938. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  939. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  940. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  941. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  942. }
  943. else
  944. {
  945. WRITE(BEEPER, HIGH);
  946. _delay_ms(100);
  947. WRITE(BEEPER, LOW);
  948. }
  949. #endif // mesh */
  950. }
  951. }
  952. else
  953. {
  954. _delay_ms(1000); // wait 1sec to display the splash screen
  955. }
  956. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  957. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  958. #endif
  959. #ifdef DIGIPOT_I2C
  960. digipot_i2c_init();
  961. #endif
  962. setup_homepin();
  963. #if defined(Z_AXIS_ALWAYS_ON)
  964. enable_z();
  965. #endif
  966. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  967. if (farm_no > 0)
  968. {
  969. farm_mode = true;
  970. farm_no = farm_no;
  971. prusa_statistics(8);
  972. }
  973. else
  974. {
  975. farm_mode = false;
  976. farm_no = 0;
  977. }
  978. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  979. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  980. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  981. // but this times out if a blocking dialog is shown in setup().
  982. card.initsd();
  983. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  984. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  985. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  986. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  987. // where all the EEPROM entries are set to 0x0ff.
  988. // Once a firmware boots up, it forces at least a language selection, which changes
  989. // EEPROM_LANG to number lower than 0x0ff.
  990. // 1) Set a high power mode.
  991. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  992. }
  993. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  994. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  995. // is being written into the EEPROM, so the update procedure will be triggered only once.
  996. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  997. if (lang_selected >= LANG_NUM){
  998. lcd_mylang();
  999. }
  1000. check_babystep(); //checking if Z babystep is in allowed range
  1001. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1002. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1003. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1004. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1005. // Show the message.
  1006. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1007. lcd_update_enable(true);
  1008. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1009. // Show the message.
  1010. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1011. lcd_update_enable(true);
  1012. } else if (calibration_status() == CALIBRATION_STATUS_PINDA) {
  1013. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1014. lcd_update_enable(true);
  1015. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1016. // Show the message.
  1017. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1018. lcd_update_enable(true);
  1019. }
  1020. // Store the currently running firmware into an eeprom,
  1021. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1022. update_current_firmware_version_to_eeprom();
  1023. }
  1024. void trace();
  1025. #define CHUNK_SIZE 64 // bytes
  1026. #define SAFETY_MARGIN 1
  1027. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1028. int chunkHead = 0;
  1029. int serial_read_stream() {
  1030. setTargetHotend(0, 0);
  1031. setTargetBed(0);
  1032. lcd_implementation_clear();
  1033. lcd_printPGM(PSTR(" Upload in progress"));
  1034. // first wait for how many bytes we will receive
  1035. uint32_t bytesToReceive;
  1036. // receive the four bytes
  1037. char bytesToReceiveBuffer[4];
  1038. for (int i=0; i<4; i++) {
  1039. int data;
  1040. while ((data = MYSERIAL.read()) == -1) {};
  1041. bytesToReceiveBuffer[i] = data;
  1042. }
  1043. // make it a uint32
  1044. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1045. // we're ready, notify the sender
  1046. MYSERIAL.write('+');
  1047. // lock in the routine
  1048. uint32_t receivedBytes = 0;
  1049. while (prusa_sd_card_upload) {
  1050. int i;
  1051. for (i=0; i<CHUNK_SIZE; i++) {
  1052. int data;
  1053. // check if we're not done
  1054. if (receivedBytes == bytesToReceive) {
  1055. break;
  1056. }
  1057. // read the next byte
  1058. while ((data = MYSERIAL.read()) == -1) {};
  1059. receivedBytes++;
  1060. // save it to the chunk
  1061. chunk[i] = data;
  1062. }
  1063. // write the chunk to SD
  1064. card.write_command_no_newline(&chunk[0]);
  1065. // notify the sender we're ready for more data
  1066. MYSERIAL.write('+');
  1067. // for safety
  1068. manage_heater();
  1069. // check if we're done
  1070. if(receivedBytes == bytesToReceive) {
  1071. trace(); // beep
  1072. card.closefile();
  1073. prusa_sd_card_upload = false;
  1074. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1075. return 0;
  1076. }
  1077. }
  1078. }
  1079. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1080. // Before loop(), the setup() function is called by the main() routine.
  1081. void loop()
  1082. {
  1083. bool stack_integrity = true;
  1084. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1085. {
  1086. is_usb_printing = true;
  1087. usb_printing_counter--;
  1088. _usb_timer = millis();
  1089. }
  1090. if (usb_printing_counter == 0)
  1091. {
  1092. is_usb_printing = false;
  1093. }
  1094. if (prusa_sd_card_upload)
  1095. {
  1096. //we read byte-by byte
  1097. serial_read_stream();
  1098. } else
  1099. {
  1100. get_command();
  1101. #ifdef SDSUPPORT
  1102. card.checkautostart(false);
  1103. #endif
  1104. if(buflen)
  1105. {
  1106. #ifdef SDSUPPORT
  1107. if(card.saving)
  1108. {
  1109. // Saving a G-code file onto an SD-card is in progress.
  1110. // Saving starts with M28, saving until M29 is seen.
  1111. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1112. card.write_command(CMDBUFFER_CURRENT_STRING);
  1113. if(card.logging)
  1114. process_commands();
  1115. else
  1116. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1117. } else {
  1118. card.closefile();
  1119. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1120. }
  1121. } else {
  1122. process_commands();
  1123. }
  1124. #else
  1125. process_commands();
  1126. #endif //SDSUPPORT
  1127. if (! cmdbuffer_front_already_processed)
  1128. cmdqueue_pop_front();
  1129. cmdbuffer_front_already_processed = false;
  1130. }
  1131. }
  1132. //check heater every n milliseconds
  1133. manage_heater();
  1134. manage_inactivity();
  1135. checkHitEndstops();
  1136. lcd_update();
  1137. }
  1138. void get_command()
  1139. {
  1140. // Test and reserve space for the new command string.
  1141. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1142. return;
  1143. while (MYSERIAL.available() > 0) {
  1144. char serial_char = MYSERIAL.read();
  1145. TimeSent = millis();
  1146. TimeNow = millis();
  1147. if (serial_char < 0)
  1148. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1149. // and Marlin does not support such file names anyway.
  1150. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1151. // to a hang-up of the print process from an SD card.
  1152. continue;
  1153. if(serial_char == '\n' ||
  1154. serial_char == '\r' ||
  1155. (serial_char == ':' && comment_mode == false) ||
  1156. serial_count >= (MAX_CMD_SIZE - 1) )
  1157. {
  1158. if(!serial_count) { //if empty line
  1159. comment_mode = false; //for new command
  1160. return;
  1161. }
  1162. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1163. if(!comment_mode){
  1164. comment_mode = false; //for new command
  1165. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1166. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1167. {
  1168. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1169. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1170. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1171. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1172. // M110 - set current line number.
  1173. // Line numbers not sent in succession.
  1174. SERIAL_ERROR_START;
  1175. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1176. SERIAL_ERRORLN(gcode_LastN);
  1177. //Serial.println(gcode_N);
  1178. FlushSerialRequestResend();
  1179. serial_count = 0;
  1180. return;
  1181. }
  1182. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1183. {
  1184. byte checksum = 0;
  1185. char *p = cmdbuffer+bufindw+1;
  1186. while (p != strchr_pointer)
  1187. checksum = checksum^(*p++);
  1188. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1189. SERIAL_ERROR_START;
  1190. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1191. SERIAL_ERRORLN(gcode_LastN);
  1192. FlushSerialRequestResend();
  1193. serial_count = 0;
  1194. return;
  1195. }
  1196. // If no errors, remove the checksum and continue parsing.
  1197. *strchr_pointer = 0;
  1198. }
  1199. else
  1200. {
  1201. SERIAL_ERROR_START;
  1202. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1203. SERIAL_ERRORLN(gcode_LastN);
  1204. FlushSerialRequestResend();
  1205. serial_count = 0;
  1206. return;
  1207. }
  1208. gcode_LastN = gcode_N;
  1209. //if no errors, continue parsing
  1210. } // end of 'N' command
  1211. }
  1212. else // if we don't receive 'N' but still see '*'
  1213. {
  1214. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1215. {
  1216. SERIAL_ERROR_START;
  1217. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1218. SERIAL_ERRORLN(gcode_LastN);
  1219. serial_count = 0;
  1220. return;
  1221. }
  1222. } // end of '*' command
  1223. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1224. if (! IS_SD_PRINTING) {
  1225. usb_printing_counter = 10;
  1226. is_usb_printing = true;
  1227. }
  1228. if (Stopped == true) {
  1229. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1230. if (gcode >= 0 && gcode <= 3) {
  1231. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1232. LCD_MESSAGERPGM(MSG_STOPPED);
  1233. }
  1234. }
  1235. } // end of 'G' command
  1236. //If command was e-stop process now
  1237. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1238. kill();
  1239. // Store the current line into buffer, move to the next line.
  1240. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1241. #ifdef CMDBUFFER_DEBUG
  1242. SERIAL_ECHO_START;
  1243. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1244. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1245. SERIAL_ECHOLNPGM("");
  1246. #endif /* CMDBUFFER_DEBUG */
  1247. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1248. if (bufindw == sizeof(cmdbuffer))
  1249. bufindw = 0;
  1250. ++ buflen;
  1251. #ifdef CMDBUFFER_DEBUG
  1252. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1253. SERIAL_ECHO(buflen);
  1254. SERIAL_ECHOLNPGM("");
  1255. #endif /* CMDBUFFER_DEBUG */
  1256. } // end of 'not comment mode'
  1257. serial_count = 0; //clear buffer
  1258. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1259. // in the queue, as this function will reserve the memory.
  1260. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1261. return;
  1262. } // end of "end of line" processing
  1263. else {
  1264. // Not an "end of line" symbol. Store the new character into a buffer.
  1265. if(serial_char == ';') comment_mode = true;
  1266. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1267. }
  1268. } // end of serial line processing loop
  1269. if(farm_mode){
  1270. TimeNow = millis();
  1271. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1272. cmdbuffer[bufindw+serial_count+1] = 0;
  1273. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1274. if (bufindw == sizeof(cmdbuffer))
  1275. bufindw = 0;
  1276. ++ buflen;
  1277. serial_count = 0;
  1278. SERIAL_ECHOPGM("TIMEOUT:");
  1279. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1280. return;
  1281. }
  1282. }
  1283. #ifdef SDSUPPORT
  1284. if(!card.sdprinting || serial_count!=0){
  1285. // If there is a half filled buffer from serial line, wait until return before
  1286. // continuing with the serial line.
  1287. return;
  1288. }
  1289. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1290. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1291. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1292. static bool stop_buffering=false;
  1293. if(buflen==0) stop_buffering=false;
  1294. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1295. while( !card.eof() && !stop_buffering) {
  1296. int16_t n=card.get();
  1297. char serial_char = (char)n;
  1298. if(serial_char == '\n' ||
  1299. serial_char == '\r' ||
  1300. (serial_char == '#' && comment_mode == false) ||
  1301. (serial_char == ':' && comment_mode == false) ||
  1302. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1303. {
  1304. if(card.eof()){
  1305. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1306. stoptime=millis();
  1307. char time[30];
  1308. unsigned long t=(stoptime-starttime)/1000;
  1309. int hours, minutes;
  1310. minutes=(t/60)%60;
  1311. hours=t/60/60;
  1312. save_statistics(total_filament_used, t);
  1313. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1314. SERIAL_ECHO_START;
  1315. SERIAL_ECHOLN(time);
  1316. lcd_setstatus(time);
  1317. card.printingHasFinished();
  1318. card.checkautostart(true);
  1319. if (farm_mode)
  1320. {
  1321. prusa_statistics(6);
  1322. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1323. }
  1324. }
  1325. if(serial_char=='#')
  1326. stop_buffering=true;
  1327. if(!serial_count)
  1328. {
  1329. comment_mode = false; //for new command
  1330. return; //if empty line
  1331. }
  1332. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1333. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1334. ++ buflen;
  1335. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1336. if (bufindw == sizeof(cmdbuffer))
  1337. bufindw = 0;
  1338. comment_mode = false; //for new command
  1339. serial_count = 0; //clear buffer
  1340. // The following line will reserve buffer space if available.
  1341. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1342. return;
  1343. }
  1344. else
  1345. {
  1346. if(serial_char == ';') comment_mode = true;
  1347. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1348. }
  1349. }
  1350. #endif //SDSUPPORT
  1351. }
  1352. // Return True if a character was found
  1353. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1354. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1355. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1356. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1357. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1358. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1359. #define DEFINE_PGM_READ_ANY(type, reader) \
  1360. static inline type pgm_read_any(const type *p) \
  1361. { return pgm_read_##reader##_near(p); }
  1362. DEFINE_PGM_READ_ANY(float, float);
  1363. DEFINE_PGM_READ_ANY(signed char, byte);
  1364. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1365. static const PROGMEM type array##_P[3] = \
  1366. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1367. static inline type array(int axis) \
  1368. { return pgm_read_any(&array##_P[axis]); } \
  1369. type array##_ext(int axis) \
  1370. { return pgm_read_any(&array##_P[axis]); }
  1371. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1372. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1373. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1374. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1375. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1376. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1377. static void axis_is_at_home(int axis) {
  1378. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1379. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1380. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1381. }
  1382. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1383. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1384. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1385. saved_feedrate = feedrate;
  1386. saved_feedmultiply = feedmultiply;
  1387. feedmultiply = 100;
  1388. previous_millis_cmd = millis();
  1389. enable_endstops(enable_endstops_now);
  1390. }
  1391. static void clean_up_after_endstop_move() {
  1392. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1393. enable_endstops(false);
  1394. #endif
  1395. feedrate = saved_feedrate;
  1396. feedmultiply = saved_feedmultiply;
  1397. previous_millis_cmd = millis();
  1398. }
  1399. #ifdef ENABLE_AUTO_BED_LEVELING
  1400. #ifdef AUTO_BED_LEVELING_GRID
  1401. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1402. {
  1403. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1404. planeNormal.debug("planeNormal");
  1405. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1406. //bedLevel.debug("bedLevel");
  1407. //plan_bed_level_matrix.debug("bed level before");
  1408. //vector_3 uncorrected_position = plan_get_position_mm();
  1409. //uncorrected_position.debug("position before");
  1410. vector_3 corrected_position = plan_get_position();
  1411. // corrected_position.debug("position after");
  1412. current_position[X_AXIS] = corrected_position.x;
  1413. current_position[Y_AXIS] = corrected_position.y;
  1414. current_position[Z_AXIS] = corrected_position.z;
  1415. // put the bed at 0 so we don't go below it.
  1416. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1418. }
  1419. #else // not AUTO_BED_LEVELING_GRID
  1420. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1421. plan_bed_level_matrix.set_to_identity();
  1422. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1423. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1424. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1425. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1426. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1427. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1428. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1429. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1430. vector_3 corrected_position = plan_get_position();
  1431. current_position[X_AXIS] = corrected_position.x;
  1432. current_position[Y_AXIS] = corrected_position.y;
  1433. current_position[Z_AXIS] = corrected_position.z;
  1434. // put the bed at 0 so we don't go below it.
  1435. current_position[Z_AXIS] = zprobe_zoffset;
  1436. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1437. }
  1438. #endif // AUTO_BED_LEVELING_GRID
  1439. static void run_z_probe() {
  1440. plan_bed_level_matrix.set_to_identity();
  1441. feedrate = homing_feedrate[Z_AXIS];
  1442. // move down until you find the bed
  1443. float zPosition = -10;
  1444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1445. st_synchronize();
  1446. // we have to let the planner know where we are right now as it is not where we said to go.
  1447. zPosition = st_get_position_mm(Z_AXIS);
  1448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1449. // move up the retract distance
  1450. zPosition += home_retract_mm(Z_AXIS);
  1451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1452. st_synchronize();
  1453. // move back down slowly to find bed
  1454. feedrate = homing_feedrate[Z_AXIS]/4;
  1455. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1457. st_synchronize();
  1458. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1459. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. }
  1462. static void do_blocking_move_to(float x, float y, float z) {
  1463. float oldFeedRate = feedrate;
  1464. feedrate = homing_feedrate[Z_AXIS];
  1465. current_position[Z_AXIS] = z;
  1466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1467. st_synchronize();
  1468. feedrate = XY_TRAVEL_SPEED;
  1469. current_position[X_AXIS] = x;
  1470. current_position[Y_AXIS] = y;
  1471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1472. st_synchronize();
  1473. feedrate = oldFeedRate;
  1474. }
  1475. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1476. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1477. }
  1478. /// Probe bed height at position (x,y), returns the measured z value
  1479. static float probe_pt(float x, float y, float z_before) {
  1480. // move to right place
  1481. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1482. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1483. run_z_probe();
  1484. float measured_z = current_position[Z_AXIS];
  1485. SERIAL_PROTOCOLRPGM(MSG_BED);
  1486. SERIAL_PROTOCOLPGM(" x: ");
  1487. SERIAL_PROTOCOL(x);
  1488. SERIAL_PROTOCOLPGM(" y: ");
  1489. SERIAL_PROTOCOL(y);
  1490. SERIAL_PROTOCOLPGM(" z: ");
  1491. SERIAL_PROTOCOL(measured_z);
  1492. SERIAL_PROTOCOLPGM("\n");
  1493. return measured_z;
  1494. }
  1495. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1496. void homeaxis(int axis) {
  1497. #define HOMEAXIS_DO(LETTER) \
  1498. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1499. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1500. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1501. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1502. 0) {
  1503. int axis_home_dir = home_dir(axis);
  1504. current_position[axis] = 0;
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1507. feedrate = homing_feedrate[axis];
  1508. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1509. st_synchronize();
  1510. current_position[axis] = 0;
  1511. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1512. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1513. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1514. st_synchronize();
  1515. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1516. feedrate = homing_feedrate[axis]/2 ;
  1517. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1518. st_synchronize();
  1519. axis_is_at_home(axis);
  1520. destination[axis] = current_position[axis];
  1521. feedrate = 0.0;
  1522. endstops_hit_on_purpose();
  1523. axis_known_position[axis] = true;
  1524. }
  1525. }
  1526. void home_xy()
  1527. {
  1528. set_destination_to_current();
  1529. homeaxis(X_AXIS);
  1530. homeaxis(Y_AXIS);
  1531. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1532. endstops_hit_on_purpose();
  1533. }
  1534. void refresh_cmd_timeout(void)
  1535. {
  1536. previous_millis_cmd = millis();
  1537. }
  1538. #ifdef FWRETRACT
  1539. void retract(bool retracting, bool swapretract = false) {
  1540. if(retracting && !retracted[active_extruder]) {
  1541. destination[X_AXIS]=current_position[X_AXIS];
  1542. destination[Y_AXIS]=current_position[Y_AXIS];
  1543. destination[Z_AXIS]=current_position[Z_AXIS];
  1544. destination[E_AXIS]=current_position[E_AXIS];
  1545. if (swapretract) {
  1546. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1547. } else {
  1548. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1549. }
  1550. plan_set_e_position(current_position[E_AXIS]);
  1551. float oldFeedrate = feedrate;
  1552. feedrate=retract_feedrate*60;
  1553. retracted[active_extruder]=true;
  1554. prepare_move();
  1555. current_position[Z_AXIS]-=retract_zlift;
  1556. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1557. prepare_move();
  1558. feedrate = oldFeedrate;
  1559. } else if(!retracting && retracted[active_extruder]) {
  1560. destination[X_AXIS]=current_position[X_AXIS];
  1561. destination[Y_AXIS]=current_position[Y_AXIS];
  1562. destination[Z_AXIS]=current_position[Z_AXIS];
  1563. destination[E_AXIS]=current_position[E_AXIS];
  1564. current_position[Z_AXIS]+=retract_zlift;
  1565. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1566. //prepare_move();
  1567. if (swapretract) {
  1568. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1569. } else {
  1570. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1571. }
  1572. plan_set_e_position(current_position[E_AXIS]);
  1573. float oldFeedrate = feedrate;
  1574. feedrate=retract_recover_feedrate*60;
  1575. retracted[active_extruder]=false;
  1576. prepare_move();
  1577. feedrate = oldFeedrate;
  1578. }
  1579. } //retract
  1580. #endif //FWRETRACT
  1581. void trace() {
  1582. tone(BEEPER, 440);
  1583. delay(25);
  1584. noTone(BEEPER);
  1585. delay(20);
  1586. }
  1587. void ramming() {
  1588. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1589. if (current_temperature[0] < 230) {
  1590. //PLA
  1591. max_feedrate[E_AXIS] = 50;
  1592. //current_position[E_AXIS] -= 8;
  1593. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1594. //current_position[E_AXIS] += 8;
  1595. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1596. current_position[E_AXIS] += 5.4;
  1597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1598. current_position[E_AXIS] += 3.2;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1600. current_position[E_AXIS] += 3;
  1601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1602. st_synchronize();
  1603. max_feedrate[E_AXIS] = 80;
  1604. current_position[E_AXIS] -= 82;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1606. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1607. current_position[E_AXIS] -= 20;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1609. current_position[E_AXIS] += 5;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1611. current_position[E_AXIS] += 5;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1613. current_position[E_AXIS] -= 10;
  1614. st_synchronize();
  1615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1616. current_position[E_AXIS] += 10;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1618. current_position[E_AXIS] -= 10;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1620. current_position[E_AXIS] += 10;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1622. current_position[E_AXIS] -= 10;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1624. st_synchronize();
  1625. }
  1626. else {
  1627. //ABS
  1628. max_feedrate[E_AXIS] = 50;
  1629. //current_position[E_AXIS] -= 8;
  1630. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1631. //current_position[E_AXIS] += 8;
  1632. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1633. current_position[E_AXIS] += 3.1;
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1635. current_position[E_AXIS] += 3.1;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1637. current_position[E_AXIS] += 4;
  1638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1639. st_synchronize();
  1640. /*current_position[X_AXIS] += 23; //delay
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1642. current_position[X_AXIS] -= 23; //delay
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1644. delay(4700);
  1645. max_feedrate[E_AXIS] = 80;
  1646. current_position[E_AXIS] -= 92;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1648. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1649. current_position[E_AXIS] -= 5;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1651. current_position[E_AXIS] += 5;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1653. current_position[E_AXIS] -= 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1655. st_synchronize();
  1656. current_position[E_AXIS] += 5;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1658. current_position[E_AXIS] -= 5;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1660. current_position[E_AXIS] += 5;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1662. current_position[E_AXIS] -= 5;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1664. st_synchronize();
  1665. }
  1666. }
  1667. void process_commands()
  1668. {
  1669. #ifdef FILAMENT_RUNOUT_SUPPORT
  1670. SET_INPUT(FR_SENS);
  1671. #endif
  1672. #ifdef CMDBUFFER_DEBUG
  1673. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1674. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1675. SERIAL_ECHOLNPGM("");
  1676. SERIAL_ECHOPGM("In cmdqueue: ");
  1677. SERIAL_ECHO(buflen);
  1678. SERIAL_ECHOLNPGM("");
  1679. #endif /* CMDBUFFER_DEBUG */
  1680. unsigned long codenum; //throw away variable
  1681. char *starpos = NULL;
  1682. #ifdef ENABLE_AUTO_BED_LEVELING
  1683. float x_tmp, y_tmp, z_tmp, real_z;
  1684. #endif
  1685. // PRUSA GCODES
  1686. #ifdef SNMM
  1687. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1688. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1689. int8_t SilentMode;
  1690. #endif
  1691. if(code_seen("PRUSA")){
  1692. if (code_seen("fn")) {
  1693. if (farm_mode) {
  1694. MYSERIAL.println(farm_no);
  1695. }
  1696. else {
  1697. MYSERIAL.println("Not in farm mode.");
  1698. }
  1699. }else if (code_seen("fv")) {
  1700. // get file version
  1701. #ifdef SDSUPPORT
  1702. card.openFile(strchr_pointer + 3,true);
  1703. while (true) {
  1704. uint16_t readByte = card.get();
  1705. MYSERIAL.write(readByte);
  1706. if (readByte=='\n') {
  1707. break;
  1708. }
  1709. }
  1710. card.closefile();
  1711. #endif // SDSUPPORT
  1712. } else if (code_seen("M28")) {
  1713. trace();
  1714. prusa_sd_card_upload = true;
  1715. card.openFile(strchr_pointer+4,false);
  1716. } else if(code_seen("Fir")){
  1717. SERIAL_PROTOCOLLN(FW_version);
  1718. } else if(code_seen("Rev")){
  1719. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1720. } else if(code_seen("Lang")) {
  1721. lcd_force_language_selection();
  1722. } else if(code_seen("Lz")) {
  1723. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1724. } else if (code_seen("SERIAL LOW")) {
  1725. MYSERIAL.println("SERIAL LOW");
  1726. MYSERIAL.begin(BAUDRATE);
  1727. return;
  1728. } else if (code_seen("SERIAL HIGH")) {
  1729. MYSERIAL.println("SERIAL HIGH");
  1730. MYSERIAL.begin(1152000);
  1731. return;
  1732. } else if(code_seen("Beat")) {
  1733. // Kick farm link timer
  1734. kicktime = millis();
  1735. } else if(code_seen("FR")) {
  1736. // Factory full reset
  1737. factory_reset(0,true);
  1738. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1739. #ifdef SNMM
  1740. int extr;
  1741. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1742. lcd_implementation_clear();
  1743. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1744. current_position[Z_AXIS] = 100;
  1745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1746. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1747. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1748. change_extr(extr);
  1749. ramming();
  1750. }
  1751. change_extr(0);
  1752. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1754. st_synchronize();
  1755. for (extr = 1; extr < 4; extr++) {
  1756. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1757. change_extr(extr);
  1758. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1760. st_synchronize();
  1761. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1762. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1764. st_synchronize();
  1765. }
  1766. change_extr(0);
  1767. current_position[E_AXIS] += 25;
  1768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1769. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1770. ramming();
  1771. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1772. else digipot_current(2, tmp_motor_loud[2]);
  1773. st_synchronize();
  1774. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1775. lcd_implementation_clear();
  1776. lcd_printPGM(MSG_PLEASE_WAIT);
  1777. current_position[Z_AXIS] = 0;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1779. st_synchronize();
  1780. lcd_update_enable(true);
  1781. #endif
  1782. }
  1783. else if (code_seen("SetF")) {
  1784. #ifdef SNMM
  1785. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1786. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1787. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1788. #endif
  1789. }
  1790. else if (code_seen("ResF")) {
  1791. #ifdef SNMM
  1792. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1793. #endif
  1794. }
  1795. //else if (code_seen('Cal')) {
  1796. // lcd_calibration();
  1797. // }
  1798. }
  1799. else if (code_seen('^')) {
  1800. // nothing, this is a version line
  1801. } else if(code_seen('G'))
  1802. {
  1803. switch((int)code_value())
  1804. {
  1805. case 0: // G0 -> G1
  1806. case 1: // G1
  1807. if(Stopped == false) {
  1808. #ifdef FILAMENT_RUNOUT_SUPPORT
  1809. if(READ(FR_SENS)){
  1810. feedmultiplyBckp=feedmultiply;
  1811. float target[4];
  1812. float lastpos[4];
  1813. target[X_AXIS]=current_position[X_AXIS];
  1814. target[Y_AXIS]=current_position[Y_AXIS];
  1815. target[Z_AXIS]=current_position[Z_AXIS];
  1816. target[E_AXIS]=current_position[E_AXIS];
  1817. lastpos[X_AXIS]=current_position[X_AXIS];
  1818. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1819. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1820. lastpos[E_AXIS]=current_position[E_AXIS];
  1821. //retract by E
  1822. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1824. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1826. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1827. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1829. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1831. //finish moves
  1832. st_synchronize();
  1833. //disable extruder steppers so filament can be removed
  1834. disable_e0();
  1835. disable_e1();
  1836. disable_e2();
  1837. delay(100);
  1838. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1839. uint8_t cnt=0;
  1840. int counterBeep = 0;
  1841. lcd_wait_interact();
  1842. while(!lcd_clicked()){
  1843. cnt++;
  1844. manage_heater();
  1845. manage_inactivity(true);
  1846. //lcd_update();
  1847. if(cnt==0)
  1848. {
  1849. #if BEEPER > 0
  1850. if (counterBeep== 500){
  1851. counterBeep = 0;
  1852. }
  1853. SET_OUTPUT(BEEPER);
  1854. if (counterBeep== 0){
  1855. WRITE(BEEPER,HIGH);
  1856. }
  1857. if (counterBeep== 20){
  1858. WRITE(BEEPER,LOW);
  1859. }
  1860. counterBeep++;
  1861. #else
  1862. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1863. lcd_buzz(1000/6,100);
  1864. #else
  1865. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1866. #endif
  1867. #endif
  1868. }
  1869. }
  1870. WRITE(BEEPER,LOW);
  1871. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1872. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1873. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1874. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1875. lcd_change_fil_state = 0;
  1876. lcd_loading_filament();
  1877. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1878. lcd_change_fil_state = 0;
  1879. lcd_alright();
  1880. switch(lcd_change_fil_state){
  1881. case 2:
  1882. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1883. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1884. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1886. lcd_loading_filament();
  1887. break;
  1888. case 3:
  1889. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1891. lcd_loading_color();
  1892. break;
  1893. default:
  1894. lcd_change_success();
  1895. break;
  1896. }
  1897. }
  1898. target[E_AXIS]+= 5;
  1899. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1900. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1901. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1902. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1903. //plan_set_e_position(current_position[E_AXIS]);
  1904. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1905. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1906. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1907. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1908. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1909. plan_set_e_position(lastpos[E_AXIS]);
  1910. feedmultiply=feedmultiplyBckp;
  1911. char cmd[9];
  1912. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1913. enquecommand(cmd);
  1914. }
  1915. #endif
  1916. get_coordinates(); // For X Y Z E F
  1917. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1918. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1919. }
  1920. #ifdef FWRETRACT
  1921. if(autoretract_enabled)
  1922. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1923. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1924. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1925. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1926. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1927. retract(!retracted);
  1928. return;
  1929. }
  1930. }
  1931. #endif //FWRETRACT
  1932. prepare_move();
  1933. //ClearToSend();
  1934. }
  1935. break;
  1936. case 2: // G2 - CW ARC
  1937. if(Stopped == false) {
  1938. get_arc_coordinates();
  1939. prepare_arc_move(true);
  1940. }
  1941. break;
  1942. case 3: // G3 - CCW ARC
  1943. if(Stopped == false) {
  1944. get_arc_coordinates();
  1945. prepare_arc_move(false);
  1946. }
  1947. break;
  1948. case 4: // G4 dwell
  1949. LCD_MESSAGERPGM(MSG_DWELL);
  1950. codenum = 0;
  1951. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1952. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1953. st_synchronize();
  1954. codenum += millis(); // keep track of when we started waiting
  1955. previous_millis_cmd = millis();
  1956. while(millis() < codenum) {
  1957. manage_heater();
  1958. manage_inactivity();
  1959. lcd_update();
  1960. }
  1961. break;
  1962. #ifdef FWRETRACT
  1963. case 10: // G10 retract
  1964. #if EXTRUDERS > 1
  1965. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1966. retract(true,retracted_swap[active_extruder]);
  1967. #else
  1968. retract(true);
  1969. #endif
  1970. break;
  1971. case 11: // G11 retract_recover
  1972. #if EXTRUDERS > 1
  1973. retract(false,retracted_swap[active_extruder]);
  1974. #else
  1975. retract(false);
  1976. #endif
  1977. break;
  1978. #endif //FWRETRACT
  1979. case 28: //G28 Home all Axis one at a time
  1980. homing_flag = true;
  1981. #ifdef ENABLE_AUTO_BED_LEVELING
  1982. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1983. #endif //ENABLE_AUTO_BED_LEVELING
  1984. // For mesh bed leveling deactivate the matrix temporarily
  1985. #ifdef MESH_BED_LEVELING
  1986. mbl.active = 0;
  1987. #endif
  1988. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1989. // the planner will not perform any adjustments in the XY plane.
  1990. // Wait for the motors to stop and update the current position with the absolute values.
  1991. world2machine_revert_to_uncorrected();
  1992. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1993. // consumed during the first movements following this statement.
  1994. babystep_undo();
  1995. saved_feedrate = feedrate;
  1996. saved_feedmultiply = feedmultiply;
  1997. feedmultiply = 100;
  1998. previous_millis_cmd = millis();
  1999. enable_endstops(true);
  2000. for(int8_t i=0; i < NUM_AXIS; i++)
  2001. destination[i] = current_position[i];
  2002. feedrate = 0.0;
  2003. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2004. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2005. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2006. homeaxis(Z_AXIS);
  2007. }
  2008. #endif
  2009. #ifdef QUICK_HOME
  2010. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2011. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2012. {
  2013. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2014. int x_axis_home_dir = home_dir(X_AXIS);
  2015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2016. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2017. feedrate = homing_feedrate[X_AXIS];
  2018. if(homing_feedrate[Y_AXIS]<feedrate)
  2019. feedrate = homing_feedrate[Y_AXIS];
  2020. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2021. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2022. } else {
  2023. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2024. }
  2025. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2026. st_synchronize();
  2027. axis_is_at_home(X_AXIS);
  2028. axis_is_at_home(Y_AXIS);
  2029. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2030. destination[X_AXIS] = current_position[X_AXIS];
  2031. destination[Y_AXIS] = current_position[Y_AXIS];
  2032. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2033. feedrate = 0.0;
  2034. st_synchronize();
  2035. endstops_hit_on_purpose();
  2036. current_position[X_AXIS] = destination[X_AXIS];
  2037. current_position[Y_AXIS] = destination[Y_AXIS];
  2038. current_position[Z_AXIS] = destination[Z_AXIS];
  2039. }
  2040. #endif /* QUICK_HOME */
  2041. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2042. homeaxis(X_AXIS);
  2043. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2044. homeaxis(Y_AXIS);
  2045. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2046. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2047. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2048. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2049. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2050. #ifndef Z_SAFE_HOMING
  2051. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2052. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2053. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2054. feedrate = max_feedrate[Z_AXIS];
  2055. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2056. st_synchronize();
  2057. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2058. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2059. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2060. {
  2061. homeaxis(X_AXIS);
  2062. homeaxis(Y_AXIS);
  2063. }
  2064. // 1st mesh bed leveling measurement point, corrected.
  2065. world2machine_initialize();
  2066. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2067. world2machine_reset();
  2068. if (destination[Y_AXIS] < Y_MIN_POS)
  2069. destination[Y_AXIS] = Y_MIN_POS;
  2070. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2071. feedrate = homing_feedrate[Z_AXIS]/10;
  2072. current_position[Z_AXIS] = 0;
  2073. enable_endstops(false);
  2074. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2075. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2076. st_synchronize();
  2077. current_position[X_AXIS] = destination[X_AXIS];
  2078. current_position[Y_AXIS] = destination[Y_AXIS];
  2079. enable_endstops(true);
  2080. endstops_hit_on_purpose();
  2081. homeaxis(Z_AXIS);
  2082. #else // MESH_BED_LEVELING
  2083. homeaxis(Z_AXIS);
  2084. #endif // MESH_BED_LEVELING
  2085. }
  2086. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2087. if(home_all_axis) {
  2088. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2089. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2090. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2091. feedrate = XY_TRAVEL_SPEED/60;
  2092. current_position[Z_AXIS] = 0;
  2093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2094. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2095. st_synchronize();
  2096. current_position[X_AXIS] = destination[X_AXIS];
  2097. current_position[Y_AXIS] = destination[Y_AXIS];
  2098. homeaxis(Z_AXIS);
  2099. }
  2100. // Let's see if X and Y are homed and probe is inside bed area.
  2101. if(code_seen(axis_codes[Z_AXIS])) {
  2102. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2103. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2104. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2105. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2106. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2107. current_position[Z_AXIS] = 0;
  2108. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2109. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2110. feedrate = max_feedrate[Z_AXIS];
  2111. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2112. st_synchronize();
  2113. homeaxis(Z_AXIS);
  2114. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2115. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2116. SERIAL_ECHO_START;
  2117. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2118. } else {
  2119. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2120. SERIAL_ECHO_START;
  2121. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2122. }
  2123. }
  2124. #endif // Z_SAFE_HOMING
  2125. #endif // Z_HOME_DIR < 0
  2126. if(code_seen(axis_codes[Z_AXIS])) {
  2127. if(code_value_long() != 0) {
  2128. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2129. }
  2130. }
  2131. #ifdef ENABLE_AUTO_BED_LEVELING
  2132. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2133. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2134. }
  2135. #endif
  2136. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2137. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2138. enable_endstops(false);
  2139. #endif
  2140. feedrate = saved_feedrate;
  2141. feedmultiply = saved_feedmultiply;
  2142. previous_millis_cmd = millis();
  2143. endstops_hit_on_purpose();
  2144. #ifndef MESH_BED_LEVELING
  2145. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2146. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2147. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2148. lcd_adjust_z();
  2149. #endif
  2150. // Load the machine correction matrix
  2151. world2machine_initialize();
  2152. // and correct the current_position to match the transformed coordinate system.
  2153. world2machine_update_current();
  2154. #ifdef MESH_BED_LEVELING
  2155. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2156. {
  2157. }
  2158. else
  2159. {
  2160. st_synchronize();
  2161. homing_flag = false;
  2162. // Push the commands to the front of the message queue in the reverse order!
  2163. // There shall be always enough space reserved for these commands.
  2164. // enquecommand_front_P((PSTR("G80")));
  2165. goto case_G80;
  2166. }
  2167. #endif
  2168. if (farm_mode) { prusa_statistics(20); };
  2169. homing_flag = false;
  2170. break;
  2171. #ifdef ENABLE_AUTO_BED_LEVELING
  2172. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2173. {
  2174. #if Z_MIN_PIN == -1
  2175. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2176. #endif
  2177. // Prevent user from running a G29 without first homing in X and Y
  2178. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2179. {
  2180. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2181. SERIAL_ECHO_START;
  2182. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2183. break; // abort G29, since we don't know where we are
  2184. }
  2185. st_synchronize();
  2186. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2187. //vector_3 corrected_position = plan_get_position_mm();
  2188. //corrected_position.debug("position before G29");
  2189. plan_bed_level_matrix.set_to_identity();
  2190. vector_3 uncorrected_position = plan_get_position();
  2191. //uncorrected_position.debug("position durring G29");
  2192. current_position[X_AXIS] = uncorrected_position.x;
  2193. current_position[Y_AXIS] = uncorrected_position.y;
  2194. current_position[Z_AXIS] = uncorrected_position.z;
  2195. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2196. setup_for_endstop_move();
  2197. feedrate = homing_feedrate[Z_AXIS];
  2198. #ifdef AUTO_BED_LEVELING_GRID
  2199. // probe at the points of a lattice grid
  2200. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2201. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2202. // solve the plane equation ax + by + d = z
  2203. // A is the matrix with rows [x y 1] for all the probed points
  2204. // B is the vector of the Z positions
  2205. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2206. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2207. // "A" matrix of the linear system of equations
  2208. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2209. // "B" vector of Z points
  2210. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2211. int probePointCounter = 0;
  2212. bool zig = true;
  2213. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2214. {
  2215. int xProbe, xInc;
  2216. if (zig)
  2217. {
  2218. xProbe = LEFT_PROBE_BED_POSITION;
  2219. //xEnd = RIGHT_PROBE_BED_POSITION;
  2220. xInc = xGridSpacing;
  2221. zig = false;
  2222. } else // zag
  2223. {
  2224. xProbe = RIGHT_PROBE_BED_POSITION;
  2225. //xEnd = LEFT_PROBE_BED_POSITION;
  2226. xInc = -xGridSpacing;
  2227. zig = true;
  2228. }
  2229. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2230. {
  2231. float z_before;
  2232. if (probePointCounter == 0)
  2233. {
  2234. // raise before probing
  2235. z_before = Z_RAISE_BEFORE_PROBING;
  2236. } else
  2237. {
  2238. // raise extruder
  2239. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2240. }
  2241. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2242. eqnBVector[probePointCounter] = measured_z;
  2243. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2244. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2245. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2246. probePointCounter++;
  2247. xProbe += xInc;
  2248. }
  2249. }
  2250. clean_up_after_endstop_move();
  2251. // solve lsq problem
  2252. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2253. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2254. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2255. SERIAL_PROTOCOLPGM(" b: ");
  2256. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2257. SERIAL_PROTOCOLPGM(" d: ");
  2258. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2259. set_bed_level_equation_lsq(plane_equation_coefficients);
  2260. free(plane_equation_coefficients);
  2261. #else // AUTO_BED_LEVELING_GRID not defined
  2262. // Probe at 3 arbitrary points
  2263. // probe 1
  2264. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2265. // probe 2
  2266. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2267. // probe 3
  2268. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2269. clean_up_after_endstop_move();
  2270. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2271. #endif // AUTO_BED_LEVELING_GRID
  2272. st_synchronize();
  2273. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2274. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2275. // When the bed is uneven, this height must be corrected.
  2276. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2277. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2278. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2279. z_tmp = current_position[Z_AXIS];
  2280. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2281. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2282. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2283. }
  2284. break;
  2285. #ifndef Z_PROBE_SLED
  2286. case 30: // G30 Single Z Probe
  2287. {
  2288. st_synchronize();
  2289. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2290. setup_for_endstop_move();
  2291. feedrate = homing_feedrate[Z_AXIS];
  2292. run_z_probe();
  2293. SERIAL_PROTOCOLPGM(MSG_BED);
  2294. SERIAL_PROTOCOLPGM(" X: ");
  2295. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2296. SERIAL_PROTOCOLPGM(" Y: ");
  2297. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2298. SERIAL_PROTOCOLPGM(" Z: ");
  2299. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2300. SERIAL_PROTOCOLPGM("\n");
  2301. clean_up_after_endstop_move();
  2302. }
  2303. break;
  2304. #else
  2305. case 31: // dock the sled
  2306. dock_sled(true);
  2307. break;
  2308. case 32: // undock the sled
  2309. dock_sled(false);
  2310. break;
  2311. #endif // Z_PROBE_SLED
  2312. #endif // ENABLE_AUTO_BED_LEVELING
  2313. #ifdef MESH_BED_LEVELING
  2314. case 30: // G30 Single Z Probe
  2315. {
  2316. st_synchronize();
  2317. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2318. setup_for_endstop_move();
  2319. feedrate = homing_feedrate[Z_AXIS];
  2320. find_bed_induction_sensor_point_z(-10.f, 3);
  2321. SERIAL_PROTOCOLRPGM(MSG_BED);
  2322. SERIAL_PROTOCOLPGM(" X: ");
  2323. MYSERIAL.print(current_position[X_AXIS], 5);
  2324. SERIAL_PROTOCOLPGM(" Y: ");
  2325. MYSERIAL.print(current_position[Y_AXIS], 5);
  2326. SERIAL_PROTOCOLPGM(" Z: ");
  2327. MYSERIAL.print(current_position[Z_AXIS], 5);
  2328. SERIAL_PROTOCOLPGM("\n");
  2329. clean_up_after_endstop_move();
  2330. }
  2331. break;
  2332. /**
  2333. * G80: Mesh-based Z probe, probes a grid and produces a
  2334. * mesh to compensate for variable bed height
  2335. *
  2336. * The S0 report the points as below
  2337. *
  2338. * +----> X-axis
  2339. * |
  2340. * |
  2341. * v Y-axis
  2342. *
  2343. */
  2344. case 76: //PINDA probe temperature calibration
  2345. {
  2346. setTargetBed(PINDA_MIN_T);
  2347. float zero_z;
  2348. int z_shift = 0; //unit: steps
  2349. int t_c; // temperature
  2350. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2351. // We don't know where we are! HOME!
  2352. // Push the commands to the front of the message queue in the reverse order!
  2353. // There shall be always enough space reserved for these commands.
  2354. repeatcommand_front(); // repeat G76 with all its parameters
  2355. enquecommand_front_P((PSTR("G28 W0")));
  2356. break;
  2357. }
  2358. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2359. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2360. current_position[Z_AXIS] = 0;
  2361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2362. st_synchronize();
  2363. while (degBed() < PINDA_MIN_T) delay_keep_alive(1000);
  2364. //enquecommand_P(PSTR("M190 S50"));
  2365. for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  2366. current_position[Z_AXIS] = 5;
  2367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2368. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2369. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2371. st_synchronize();
  2372. find_bed_induction_sensor_point_z(-1.f);
  2373. zero_z = current_position[Z_AXIS];
  2374. //current_position[Z_AXIS]
  2375. SERIAL_ECHOLNPGM("");
  2376. SERIAL_ECHOPGM("ZERO: ");
  2377. MYSERIAL.print(current_position[Z_AXIS]);
  2378. SERIAL_ECHOLNPGM("");
  2379. for (int i = 0; i<5; i++) {
  2380. t_c = 60 + i * 10;
  2381. setTargetBed(t_c);
  2382. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2383. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2384. current_position[Z_AXIS] = 0;
  2385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2386. st_synchronize();
  2387. while (degBed() < t_c) delay_keep_alive(1000);
  2388. for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  2389. current_position[Z_AXIS] = 5;
  2390. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2391. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2392. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2393. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2394. st_synchronize();
  2395. find_bed_induction_sensor_point_z(-1.f);
  2396. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2397. SERIAL_ECHOLNPGM("");
  2398. SERIAL_ECHOPGM("Temperature: ");
  2399. MYSERIAL.print(t_c);
  2400. SERIAL_ECHOPGM(" Z shift (mm):");
  2401. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2402. SERIAL_ECHOLNPGM("");
  2403. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2404. }
  2405. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2406. setTargetBed(0); //set bed target temperature back to 0
  2407. }
  2408. break;
  2409. #ifdef DIS
  2410. case 77:
  2411. {
  2412. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2413. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2414. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2415. float dimension_x = 40;
  2416. float dimension_y = 40;
  2417. int points_x = 40;
  2418. int points_y = 40;
  2419. float offset_x = 74;
  2420. float offset_y = 33;
  2421. if (code_seen('X')) dimension_x = code_value();
  2422. if (code_seen('Y')) dimension_y = code_value();
  2423. if (code_seen('XP')) points_x = code_value();
  2424. if (code_seen('YP')) points_y = code_value();
  2425. if (code_seen('XO')) offset_x = code_value();
  2426. if (code_seen('YO')) offset_y = code_value();
  2427. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2428. } break;
  2429. #endif
  2430. case 80:
  2431. case_G80:
  2432. {
  2433. int8_t verbosity_level = 0;
  2434. static bool run = false;
  2435. if (code_seen('V')) {
  2436. // Just 'V' without a number counts as V1.
  2437. char c = strchr_pointer[1];
  2438. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2439. }
  2440. // Firstly check if we know where we are
  2441. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2442. // We don't know where we are! HOME!
  2443. // Push the commands to the front of the message queue in the reverse order!
  2444. // There shall be always enough space reserved for these commands.
  2445. repeatcommand_front(); // repeat G80 with all its parameters
  2446. enquecommand_front_P((PSTR("G28 W0")));
  2447. break;
  2448. }
  2449. if (run == false) {
  2450. temp_compensation_start();
  2451. run = true;
  2452. repeatcommand_front(); // repeat G80 with all its parameters
  2453. enquecommand_front_P((PSTR("G28 W0")));
  2454. break;
  2455. }
  2456. run = false;
  2457. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2458. bool custom_message_old = custom_message;
  2459. unsigned int custom_message_type_old = custom_message_type;
  2460. unsigned int custom_message_state_old = custom_message_state;
  2461. custom_message = true;
  2462. custom_message_type = 1;
  2463. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2464. lcd_update(1);
  2465. mbl.reset(); //reset mesh bed leveling
  2466. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2467. // consumed during the first movements following this statement.
  2468. babystep_undo();
  2469. // Cycle through all points and probe them
  2470. // First move up. During this first movement, the babystepping will be reverted.
  2471. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2473. // The move to the first calibration point.
  2474. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2475. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2476. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2477. if (verbosity_level >= 1) {
  2478. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2479. }
  2480. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2482. // Wait until the move is finished.
  2483. st_synchronize();
  2484. int mesh_point = 0; //index number of calibration point
  2485. int ix = 0;
  2486. int iy = 0;
  2487. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2488. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2489. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2490. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2491. if (verbosity_level >= 1) {
  2492. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2493. }
  2494. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2495. const char *kill_message = NULL;
  2496. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2497. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2498. // Get coords of a measuring point.
  2499. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2500. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2501. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2502. float z0 = 0.f;
  2503. if (has_z && mesh_point > 0) {
  2504. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2505. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2506. //#if 0
  2507. if (verbosity_level >= 1) {
  2508. SERIAL_ECHOPGM("Bed leveling, point: ");
  2509. MYSERIAL.print(mesh_point);
  2510. SERIAL_ECHOPGM(", calibration z: ");
  2511. MYSERIAL.print(z0, 5);
  2512. SERIAL_ECHOLNPGM("");
  2513. }
  2514. //#endif
  2515. }
  2516. // Move Z up to MESH_HOME_Z_SEARCH.
  2517. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2519. st_synchronize();
  2520. // Move to XY position of the sensor point.
  2521. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2522. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2523. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2524. if (verbosity_level >= 1) {
  2525. SERIAL_PROTOCOL(mesh_point);
  2526. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2527. }
  2528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2529. st_synchronize();
  2530. // Go down until endstop is hit
  2531. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2532. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2533. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2534. break;
  2535. }
  2536. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2537. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2538. break;
  2539. }
  2540. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2541. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2542. break;
  2543. }
  2544. if (verbosity_level >= 10) {
  2545. SERIAL_ECHOPGM("X: ");
  2546. MYSERIAL.print(current_position[X_AXIS], 5);
  2547. SERIAL_ECHOLNPGM("");
  2548. SERIAL_ECHOPGM("Y: ");
  2549. MYSERIAL.print(current_position[Y_AXIS], 5);
  2550. SERIAL_PROTOCOLPGM("\n");
  2551. }
  2552. if (verbosity_level >= 1) {
  2553. SERIAL_ECHOPGM("mesh bed leveling: ");
  2554. MYSERIAL.print(current_position[Z_AXIS], 5);
  2555. SERIAL_ECHOLNPGM("");
  2556. }
  2557. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2558. custom_message_state--;
  2559. mesh_point++;
  2560. lcd_update(1);
  2561. }
  2562. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2563. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2564. if (verbosity_level >= 20) {
  2565. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2566. MYSERIAL.print(current_position[Z_AXIS], 5);
  2567. }
  2568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2569. st_synchronize();
  2570. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2571. kill(kill_message);
  2572. SERIAL_ECHOLNPGM("killed");
  2573. }
  2574. clean_up_after_endstop_move();
  2575. SERIAL_ECHOLNPGM("clean up finished ");
  2576. temp_compensation_apply(); //apply PINDA temperature compensation
  2577. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2578. SERIAL_ECHOLNPGM("babystep applied");
  2579. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2580. if (verbosity_level >= 1) {
  2581. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2582. }
  2583. for (uint8_t i = 0; i < 4; ++i) {
  2584. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2585. long correction = 0;
  2586. if (code_seen(codes[i]))
  2587. correction = code_value_long();
  2588. else if (eeprom_bed_correction_valid) {
  2589. unsigned char *addr = (i < 2) ?
  2590. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2591. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2592. correction = eeprom_read_int8(addr);
  2593. }
  2594. if (correction == 0)
  2595. continue;
  2596. float offset = float(correction) * 0.001f;
  2597. if (fabs(offset) > 0.101f) {
  2598. SERIAL_ERROR_START;
  2599. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2600. SERIAL_ECHO(offset);
  2601. SERIAL_ECHOLNPGM(" microns");
  2602. }
  2603. else {
  2604. switch (i) {
  2605. case 0:
  2606. for (uint8_t row = 0; row < 3; ++row) {
  2607. mbl.z_values[row][1] += 0.5f * offset;
  2608. mbl.z_values[row][0] += offset;
  2609. }
  2610. break;
  2611. case 1:
  2612. for (uint8_t row = 0; row < 3; ++row) {
  2613. mbl.z_values[row][1] += 0.5f * offset;
  2614. mbl.z_values[row][2] += offset;
  2615. }
  2616. break;
  2617. case 2:
  2618. for (uint8_t col = 0; col < 3; ++col) {
  2619. mbl.z_values[1][col] += 0.5f * offset;
  2620. mbl.z_values[0][col] += offset;
  2621. }
  2622. break;
  2623. case 3:
  2624. for (uint8_t col = 0; col < 3; ++col) {
  2625. mbl.z_values[1][col] += 0.5f * offset;
  2626. mbl.z_values[2][col] += offset;
  2627. }
  2628. break;
  2629. }
  2630. }
  2631. }
  2632. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2633. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2634. SERIAL_ECHOLNPGM("Upsample finished");
  2635. mbl.active = 1; //activate mesh bed leveling
  2636. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2637. go_home_with_z_lift();
  2638. SERIAL_ECHOLNPGM("Go home finished");
  2639. // Restore custom message state
  2640. custom_message = custom_message_old;
  2641. custom_message_type = custom_message_type_old;
  2642. custom_message_state = custom_message_state_old;
  2643. lcd_update(1);
  2644. }
  2645. break;
  2646. /**
  2647. * G81: Print mesh bed leveling status and bed profile if activated
  2648. */
  2649. case 81:
  2650. if (mbl.active) {
  2651. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2652. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2653. SERIAL_PROTOCOLPGM(",");
  2654. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2655. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2656. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2657. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2658. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2659. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2660. SERIAL_PROTOCOLPGM(" ");
  2661. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2662. }
  2663. SERIAL_PROTOCOLPGM("\n");
  2664. }
  2665. }
  2666. else
  2667. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2668. break;
  2669. #if 0
  2670. /**
  2671. * G82: Single Z probe at current location
  2672. *
  2673. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2674. *
  2675. */
  2676. case 82:
  2677. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2678. setup_for_endstop_move();
  2679. find_bed_induction_sensor_point_z();
  2680. clean_up_after_endstop_move();
  2681. SERIAL_PROTOCOLPGM("Bed found at: ");
  2682. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2683. SERIAL_PROTOCOLPGM("\n");
  2684. break;
  2685. /**
  2686. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2687. */
  2688. case 83:
  2689. {
  2690. int babystepz = code_seen('S') ? code_value() : 0;
  2691. int BabyPosition = code_seen('P') ? code_value() : 0;
  2692. if (babystepz != 0) {
  2693. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2694. // Is the axis indexed starting with zero or one?
  2695. if (BabyPosition > 4) {
  2696. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2697. }else{
  2698. // Save it to the eeprom
  2699. babystepLoadZ = babystepz;
  2700. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2701. // adjust the Z
  2702. babystepsTodoZadd(babystepLoadZ);
  2703. }
  2704. }
  2705. }
  2706. break;
  2707. /**
  2708. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2709. */
  2710. case 84:
  2711. babystepsTodoZsubtract(babystepLoadZ);
  2712. // babystepLoadZ = 0;
  2713. break;
  2714. /**
  2715. * G85: Prusa3D specific: Pick best babystep
  2716. */
  2717. case 85:
  2718. lcd_pick_babystep();
  2719. break;
  2720. #endif
  2721. /**
  2722. * G86: Prusa3D specific: Disable babystep correction after home.
  2723. * This G-code will be performed at the start of a calibration script.
  2724. */
  2725. case 86:
  2726. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2727. break;
  2728. /**
  2729. * G87: Prusa3D specific: Enable babystep correction after home
  2730. * This G-code will be performed at the end of a calibration script.
  2731. */
  2732. case 87:
  2733. calibration_status_store(CALIBRATION_STATUS_PINDA);
  2734. break;
  2735. /**
  2736. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2737. */
  2738. case 88:
  2739. break;
  2740. #endif // ENABLE_MESH_BED_LEVELING
  2741. case 90: // G90
  2742. relative_mode = false;
  2743. break;
  2744. case 91: // G91
  2745. relative_mode = true;
  2746. break;
  2747. case 92: // G92
  2748. if(!code_seen(axis_codes[E_AXIS]))
  2749. st_synchronize();
  2750. for(int8_t i=0; i < NUM_AXIS; i++) {
  2751. if(code_seen(axis_codes[i])) {
  2752. if(i == E_AXIS) {
  2753. current_position[i] = code_value();
  2754. plan_set_e_position(current_position[E_AXIS]);
  2755. }
  2756. else {
  2757. current_position[i] = code_value()+add_homing[i];
  2758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2759. }
  2760. }
  2761. }
  2762. break;
  2763. case 98:
  2764. farm_no = 21;
  2765. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2766. farm_mode = true;
  2767. break;
  2768. case 99:
  2769. farm_no = 0;
  2770. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2771. farm_mode = false;
  2772. break;
  2773. }
  2774. } // end if(code_seen('G'))
  2775. else if(code_seen('M'))
  2776. {
  2777. int index;
  2778. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2779. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2780. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2781. SERIAL_ECHOLNPGM("Invalid M code");
  2782. } else
  2783. switch((int)code_value())
  2784. {
  2785. #ifdef ULTIPANEL
  2786. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2787. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2788. {
  2789. char *src = strchr_pointer + 2;
  2790. codenum = 0;
  2791. bool hasP = false, hasS = false;
  2792. if (code_seen('P')) {
  2793. codenum = code_value(); // milliseconds to wait
  2794. hasP = codenum > 0;
  2795. }
  2796. if (code_seen('S')) {
  2797. codenum = code_value() * 1000; // seconds to wait
  2798. hasS = codenum > 0;
  2799. }
  2800. starpos = strchr(src, '*');
  2801. if (starpos != NULL) *(starpos) = '\0';
  2802. while (*src == ' ') ++src;
  2803. if (!hasP && !hasS && *src != '\0') {
  2804. lcd_setstatus(src);
  2805. } else {
  2806. LCD_MESSAGERPGM(MSG_USERWAIT);
  2807. }
  2808. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2809. st_synchronize();
  2810. previous_millis_cmd = millis();
  2811. if (codenum > 0){
  2812. codenum += millis(); // keep track of when we started waiting
  2813. while(millis() < codenum && !lcd_clicked()){
  2814. manage_heater();
  2815. manage_inactivity(true);
  2816. lcd_update();
  2817. }
  2818. lcd_ignore_click(false);
  2819. }else{
  2820. if (!lcd_detected())
  2821. break;
  2822. while(!lcd_clicked()){
  2823. manage_heater();
  2824. manage_inactivity(true);
  2825. lcd_update();
  2826. }
  2827. }
  2828. if (IS_SD_PRINTING)
  2829. LCD_MESSAGERPGM(MSG_RESUMING);
  2830. else
  2831. LCD_MESSAGERPGM(WELCOME_MSG);
  2832. }
  2833. break;
  2834. #endif
  2835. case 17:
  2836. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2837. enable_x();
  2838. enable_y();
  2839. enable_z();
  2840. enable_e0();
  2841. enable_e1();
  2842. enable_e2();
  2843. break;
  2844. #ifdef SDSUPPORT
  2845. case 20: // M20 - list SD card
  2846. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2847. card.ls();
  2848. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2849. break;
  2850. case 21: // M21 - init SD card
  2851. card.initsd();
  2852. break;
  2853. case 22: //M22 - release SD card
  2854. card.release();
  2855. break;
  2856. case 23: //M23 - Select file
  2857. starpos = (strchr(strchr_pointer + 4,'*'));
  2858. if(starpos!=NULL)
  2859. *(starpos)='\0';
  2860. card.openFile(strchr_pointer + 4,true);
  2861. break;
  2862. case 24: //M24 - Start SD print
  2863. card.startFileprint();
  2864. starttime=millis();
  2865. break;
  2866. case 25: //M25 - Pause SD print
  2867. card.pauseSDPrint();
  2868. break;
  2869. case 26: //M26 - Set SD index
  2870. if(card.cardOK && code_seen('S')) {
  2871. card.setIndex(code_value_long());
  2872. }
  2873. break;
  2874. case 27: //M27 - Get SD status
  2875. card.getStatus();
  2876. break;
  2877. case 28: //M28 - Start SD write
  2878. starpos = (strchr(strchr_pointer + 4,'*'));
  2879. if(starpos != NULL){
  2880. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2881. strchr_pointer = strchr(npos,' ') + 1;
  2882. *(starpos) = '\0';
  2883. }
  2884. card.openFile(strchr_pointer+4,false);
  2885. break;
  2886. case 29: //M29 - Stop SD write
  2887. //processed in write to file routine above
  2888. //card,saving = false;
  2889. break;
  2890. case 30: //M30 <filename> Delete File
  2891. if (card.cardOK){
  2892. card.closefile();
  2893. starpos = (strchr(strchr_pointer + 4,'*'));
  2894. if(starpos != NULL){
  2895. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2896. strchr_pointer = strchr(npos,' ') + 1;
  2897. *(starpos) = '\0';
  2898. }
  2899. card.removeFile(strchr_pointer + 4);
  2900. }
  2901. break;
  2902. case 32: //M32 - Select file and start SD print
  2903. {
  2904. if(card.sdprinting) {
  2905. st_synchronize();
  2906. }
  2907. starpos = (strchr(strchr_pointer + 4,'*'));
  2908. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2909. if(namestartpos==NULL)
  2910. {
  2911. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2912. }
  2913. else
  2914. namestartpos++; //to skip the '!'
  2915. if(starpos!=NULL)
  2916. *(starpos)='\0';
  2917. bool call_procedure=(code_seen('P'));
  2918. if(strchr_pointer>namestartpos)
  2919. call_procedure=false; //false alert, 'P' found within filename
  2920. if( card.cardOK )
  2921. {
  2922. card.openFile(namestartpos,true,!call_procedure);
  2923. if(code_seen('S'))
  2924. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2925. card.setIndex(code_value_long());
  2926. card.startFileprint();
  2927. if(!call_procedure)
  2928. starttime=millis(); //procedure calls count as normal print time.
  2929. }
  2930. } break;
  2931. case 928: //M928 - Start SD write
  2932. starpos = (strchr(strchr_pointer + 5,'*'));
  2933. if(starpos != NULL){
  2934. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2935. strchr_pointer = strchr(npos,' ') + 1;
  2936. *(starpos) = '\0';
  2937. }
  2938. card.openLogFile(strchr_pointer+5);
  2939. break;
  2940. #endif //SDSUPPORT
  2941. case 31: //M31 take time since the start of the SD print or an M109 command
  2942. {
  2943. stoptime=millis();
  2944. char time[30];
  2945. unsigned long t=(stoptime-starttime)/1000;
  2946. int sec,min;
  2947. min=t/60;
  2948. sec=t%60;
  2949. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2950. SERIAL_ECHO_START;
  2951. SERIAL_ECHOLN(time);
  2952. lcd_setstatus(time);
  2953. autotempShutdown();
  2954. }
  2955. break;
  2956. case 42: //M42 -Change pin status via gcode
  2957. if (code_seen('S'))
  2958. {
  2959. int pin_status = code_value();
  2960. int pin_number = LED_PIN;
  2961. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2962. pin_number = code_value();
  2963. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2964. {
  2965. if (sensitive_pins[i] == pin_number)
  2966. {
  2967. pin_number = -1;
  2968. break;
  2969. }
  2970. }
  2971. #if defined(FAN_PIN) && FAN_PIN > -1
  2972. if (pin_number == FAN_PIN)
  2973. fanSpeed = pin_status;
  2974. #endif
  2975. if (pin_number > -1)
  2976. {
  2977. pinMode(pin_number, OUTPUT);
  2978. digitalWrite(pin_number, pin_status);
  2979. analogWrite(pin_number, pin_status);
  2980. }
  2981. }
  2982. break;
  2983. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2984. // Reset the baby step value and the baby step applied flag.
  2985. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2986. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2987. // Reset the skew and offset in both RAM and EEPROM.
  2988. reset_bed_offset_and_skew();
  2989. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2990. // the planner will not perform any adjustments in the XY plane.
  2991. // Wait for the motors to stop and update the current position with the absolute values.
  2992. world2machine_revert_to_uncorrected();
  2993. break;
  2994. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2995. {
  2996. // Only Z calibration?
  2997. bool onlyZ = code_seen('Z');
  2998. if (!onlyZ) {
  2999. setTargetBed(0);
  3000. setTargetHotend(0, 0);
  3001. setTargetHotend(0, 1);
  3002. setTargetHotend(0, 2);
  3003. adjust_bed_reset(); //reset bed level correction
  3004. }
  3005. // Disable the default update procedure of the display. We will do a modal dialog.
  3006. lcd_update_enable(false);
  3007. // Let the planner use the uncorrected coordinates.
  3008. mbl.reset();
  3009. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3010. // the planner will not perform any adjustments in the XY plane.
  3011. // Wait for the motors to stop and update the current position with the absolute values.
  3012. world2machine_revert_to_uncorrected();
  3013. // Reset the baby step value applied without moving the axes.
  3014. babystep_reset();
  3015. // Mark all axes as in a need for homing.
  3016. memset(axis_known_position, 0, sizeof(axis_known_position));
  3017. // Let the user move the Z axes up to the end stoppers.
  3018. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3019. refresh_cmd_timeout();
  3020. if (((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION))&& (!onlyZ)) lcd_wait_for_cool_down();
  3021. lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
  3022. lcd_implementation_print_at(0, 3, 1);
  3023. lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
  3024. // Move the print head close to the bed.
  3025. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3027. st_synchronize();
  3028. // Home in the XY plane.
  3029. set_destination_to_current();
  3030. setup_for_endstop_move();
  3031. home_xy();
  3032. int8_t verbosity_level = 0;
  3033. if (code_seen('V')) {
  3034. // Just 'V' without a number counts as V1.
  3035. char c = strchr_pointer[1];
  3036. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3037. }
  3038. if (onlyZ) {
  3039. clean_up_after_endstop_move();
  3040. // Z only calibration.
  3041. // Load the machine correction matrix
  3042. world2machine_initialize();
  3043. // and correct the current_position to match the transformed coordinate system.
  3044. world2machine_update_current();
  3045. //FIXME
  3046. bool result = sample_mesh_and_store_reference();
  3047. if (result) {
  3048. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3049. // Shipped, the nozzle height has been set already. The user can start printing now.
  3050. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3051. // babystep_apply();
  3052. }
  3053. } else {
  3054. // Reset the baby step value and the baby step applied flag.
  3055. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3056. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3057. // Complete XYZ calibration.
  3058. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  3059. uint8_t point_too_far_mask = 0;
  3060. clean_up_after_endstop_move();
  3061. // Print head up.
  3062. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3064. st_synchronize();
  3065. if (result >= 0) {
  3066. // Second half: The fine adjustment.
  3067. // Let the planner use the uncorrected coordinates.
  3068. mbl.reset();
  3069. world2machine_reset();
  3070. // Home in the XY plane.
  3071. setup_for_endstop_move();
  3072. home_xy();
  3073. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3074. clean_up_after_endstop_move();
  3075. // Print head up.
  3076. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3078. st_synchronize();
  3079. // if (result >= 0) babystep_apply();
  3080. }
  3081. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3082. if (result >= 0) {
  3083. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3084. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3085. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3086. }
  3087. }
  3088. } else {
  3089. // Timeouted.
  3090. }
  3091. lcd_update_enable(true);
  3092. break;
  3093. }
  3094. /*
  3095. case 46:
  3096. {
  3097. // M46: Prusa3D: Show the assigned IP address.
  3098. uint8_t ip[4];
  3099. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3100. if (hasIP) {
  3101. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3102. SERIAL_ECHO(int(ip[0]));
  3103. SERIAL_ECHOPGM(".");
  3104. SERIAL_ECHO(int(ip[1]));
  3105. SERIAL_ECHOPGM(".");
  3106. SERIAL_ECHO(int(ip[2]));
  3107. SERIAL_ECHOPGM(".");
  3108. SERIAL_ECHO(int(ip[3]));
  3109. SERIAL_ECHOLNPGM("");
  3110. } else {
  3111. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3112. }
  3113. break;
  3114. }
  3115. */
  3116. case 47:
  3117. // M47: Prusa3D: Show end stops dialog on the display.
  3118. lcd_diag_show_end_stops();
  3119. break;
  3120. #if 0
  3121. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3122. {
  3123. // Disable the default update procedure of the display. We will do a modal dialog.
  3124. lcd_update_enable(false);
  3125. // Let the planner use the uncorrected coordinates.
  3126. mbl.reset();
  3127. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3128. // the planner will not perform any adjustments in the XY plane.
  3129. // Wait for the motors to stop and update the current position with the absolute values.
  3130. world2machine_revert_to_uncorrected();
  3131. // Move the print head close to the bed.
  3132. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3134. st_synchronize();
  3135. // Home in the XY plane.
  3136. set_destination_to_current();
  3137. setup_for_endstop_move();
  3138. home_xy();
  3139. int8_t verbosity_level = 0;
  3140. if (code_seen('V')) {
  3141. // Just 'V' without a number counts as V1.
  3142. char c = strchr_pointer[1];
  3143. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3144. }
  3145. bool success = scan_bed_induction_points(verbosity_level);
  3146. clean_up_after_endstop_move();
  3147. // Print head up.
  3148. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3150. st_synchronize();
  3151. lcd_update_enable(true);
  3152. break;
  3153. }
  3154. #endif
  3155. // M48 Z-Probe repeatability measurement function.
  3156. //
  3157. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3158. //
  3159. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3160. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3161. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3162. // regenerated.
  3163. //
  3164. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3165. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3166. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3167. //
  3168. #ifdef ENABLE_AUTO_BED_LEVELING
  3169. #ifdef Z_PROBE_REPEATABILITY_TEST
  3170. case 48: // M48 Z-Probe repeatability
  3171. {
  3172. #if Z_MIN_PIN == -1
  3173. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3174. #endif
  3175. double sum=0.0;
  3176. double mean=0.0;
  3177. double sigma=0.0;
  3178. double sample_set[50];
  3179. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3180. double X_current, Y_current, Z_current;
  3181. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3182. if (code_seen('V') || code_seen('v')) {
  3183. verbose_level = code_value();
  3184. if (verbose_level<0 || verbose_level>4 ) {
  3185. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3186. goto Sigma_Exit;
  3187. }
  3188. }
  3189. if (verbose_level > 0) {
  3190. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3191. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3192. }
  3193. if (code_seen('n')) {
  3194. n_samples = code_value();
  3195. if (n_samples<4 || n_samples>50 ) {
  3196. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3197. goto Sigma_Exit;
  3198. }
  3199. }
  3200. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3201. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3202. Z_current = st_get_position_mm(Z_AXIS);
  3203. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3204. ext_position = st_get_position_mm(E_AXIS);
  3205. if (code_seen('X') || code_seen('x') ) {
  3206. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3207. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3208. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3209. goto Sigma_Exit;
  3210. }
  3211. }
  3212. if (code_seen('Y') || code_seen('y') ) {
  3213. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3214. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3215. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3216. goto Sigma_Exit;
  3217. }
  3218. }
  3219. if (code_seen('L') || code_seen('l') ) {
  3220. n_legs = code_value();
  3221. if ( n_legs==1 )
  3222. n_legs = 2;
  3223. if ( n_legs<0 || n_legs>15 ) {
  3224. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3225. goto Sigma_Exit;
  3226. }
  3227. }
  3228. //
  3229. // Do all the preliminary setup work. First raise the probe.
  3230. //
  3231. st_synchronize();
  3232. plan_bed_level_matrix.set_to_identity();
  3233. plan_buffer_line( X_current, Y_current, Z_start_location,
  3234. ext_position,
  3235. homing_feedrate[Z_AXIS]/60,
  3236. active_extruder);
  3237. st_synchronize();
  3238. //
  3239. // Now get everything to the specified probe point So we can safely do a probe to
  3240. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3241. // use that as a starting point for each probe.
  3242. //
  3243. if (verbose_level > 2)
  3244. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3245. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3246. ext_position,
  3247. homing_feedrate[X_AXIS]/60,
  3248. active_extruder);
  3249. st_synchronize();
  3250. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3251. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3252. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3253. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3254. //
  3255. // OK, do the inital probe to get us close to the bed.
  3256. // Then retrace the right amount and use that in subsequent probes
  3257. //
  3258. setup_for_endstop_move();
  3259. run_z_probe();
  3260. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3261. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3262. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3263. ext_position,
  3264. homing_feedrate[X_AXIS]/60,
  3265. active_extruder);
  3266. st_synchronize();
  3267. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3268. for( n=0; n<n_samples; n++) {
  3269. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3270. if ( n_legs) {
  3271. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3272. int rotational_direction, l;
  3273. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3274. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3275. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3276. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3277. //SERIAL_ECHOPAIR(" theta: ",theta);
  3278. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3279. //SERIAL_PROTOCOLLNPGM("");
  3280. for( l=0; l<n_legs-1; l++) {
  3281. if (rotational_direction==1)
  3282. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3283. else
  3284. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3285. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3286. if ( radius<0.0 )
  3287. radius = -radius;
  3288. X_current = X_probe_location + cos(theta) * radius;
  3289. Y_current = Y_probe_location + sin(theta) * radius;
  3290. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3291. X_current = X_MIN_POS;
  3292. if ( X_current>X_MAX_POS)
  3293. X_current = X_MAX_POS;
  3294. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3295. Y_current = Y_MIN_POS;
  3296. if ( Y_current>Y_MAX_POS)
  3297. Y_current = Y_MAX_POS;
  3298. if (verbose_level>3 ) {
  3299. SERIAL_ECHOPAIR("x: ", X_current);
  3300. SERIAL_ECHOPAIR("y: ", Y_current);
  3301. SERIAL_PROTOCOLLNPGM("");
  3302. }
  3303. do_blocking_move_to( X_current, Y_current, Z_current );
  3304. }
  3305. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3306. }
  3307. setup_for_endstop_move();
  3308. run_z_probe();
  3309. sample_set[n] = current_position[Z_AXIS];
  3310. //
  3311. // Get the current mean for the data points we have so far
  3312. //
  3313. sum=0.0;
  3314. for( j=0; j<=n; j++) {
  3315. sum = sum + sample_set[j];
  3316. }
  3317. mean = sum / (double (n+1));
  3318. //
  3319. // Now, use that mean to calculate the standard deviation for the
  3320. // data points we have so far
  3321. //
  3322. sum=0.0;
  3323. for( j=0; j<=n; j++) {
  3324. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3325. }
  3326. sigma = sqrt( sum / (double (n+1)) );
  3327. if (verbose_level > 1) {
  3328. SERIAL_PROTOCOL(n+1);
  3329. SERIAL_PROTOCOL(" of ");
  3330. SERIAL_PROTOCOL(n_samples);
  3331. SERIAL_PROTOCOLPGM(" z: ");
  3332. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3333. }
  3334. if (verbose_level > 2) {
  3335. SERIAL_PROTOCOL(" mean: ");
  3336. SERIAL_PROTOCOL_F(mean,6);
  3337. SERIAL_PROTOCOL(" sigma: ");
  3338. SERIAL_PROTOCOL_F(sigma,6);
  3339. }
  3340. if (verbose_level > 0)
  3341. SERIAL_PROTOCOLPGM("\n");
  3342. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3343. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3344. st_synchronize();
  3345. }
  3346. delay(1000);
  3347. clean_up_after_endstop_move();
  3348. // enable_endstops(true);
  3349. if (verbose_level > 0) {
  3350. SERIAL_PROTOCOLPGM("Mean: ");
  3351. SERIAL_PROTOCOL_F(mean, 6);
  3352. SERIAL_PROTOCOLPGM("\n");
  3353. }
  3354. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3355. SERIAL_PROTOCOL_F(sigma, 6);
  3356. SERIAL_PROTOCOLPGM("\n\n");
  3357. Sigma_Exit:
  3358. break;
  3359. }
  3360. #endif // Z_PROBE_REPEATABILITY_TEST
  3361. #endif // ENABLE_AUTO_BED_LEVELING
  3362. case 104: // M104
  3363. if(setTargetedHotend(104)){
  3364. break;
  3365. }
  3366. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3367. setWatch();
  3368. break;
  3369. case 112: // M112 -Emergency Stop
  3370. kill();
  3371. break;
  3372. case 140: // M140 set bed temp
  3373. if (code_seen('S')) setTargetBed(code_value());
  3374. break;
  3375. case 105 : // M105
  3376. if(setTargetedHotend(105)){
  3377. break;
  3378. }
  3379. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3380. SERIAL_PROTOCOLPGM("ok T:");
  3381. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3382. SERIAL_PROTOCOLPGM(" /");
  3383. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3384. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3385. SERIAL_PROTOCOLPGM(" B:");
  3386. SERIAL_PROTOCOL_F(degBed(),1);
  3387. SERIAL_PROTOCOLPGM(" /");
  3388. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3389. #endif //TEMP_BED_PIN
  3390. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3391. SERIAL_PROTOCOLPGM(" T");
  3392. SERIAL_PROTOCOL(cur_extruder);
  3393. SERIAL_PROTOCOLPGM(":");
  3394. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3395. SERIAL_PROTOCOLPGM(" /");
  3396. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3397. }
  3398. #else
  3399. SERIAL_ERROR_START;
  3400. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3401. #endif
  3402. SERIAL_PROTOCOLPGM(" @:");
  3403. #ifdef EXTRUDER_WATTS
  3404. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3405. SERIAL_PROTOCOLPGM("W");
  3406. #else
  3407. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3408. #endif
  3409. SERIAL_PROTOCOLPGM(" B@:");
  3410. #ifdef BED_WATTS
  3411. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3412. SERIAL_PROTOCOLPGM("W");
  3413. #else
  3414. SERIAL_PROTOCOL(getHeaterPower(-1));
  3415. #endif
  3416. #ifdef SHOW_TEMP_ADC_VALUES
  3417. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3418. SERIAL_PROTOCOLPGM(" ADC B:");
  3419. SERIAL_PROTOCOL_F(degBed(),1);
  3420. SERIAL_PROTOCOLPGM("C->");
  3421. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3422. #endif
  3423. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3424. SERIAL_PROTOCOLPGM(" T");
  3425. SERIAL_PROTOCOL(cur_extruder);
  3426. SERIAL_PROTOCOLPGM(":");
  3427. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3428. SERIAL_PROTOCOLPGM("C->");
  3429. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3430. }
  3431. #endif
  3432. SERIAL_PROTOCOLLN("");
  3433. return;
  3434. break;
  3435. case 109:
  3436. {// M109 - Wait for extruder heater to reach target.
  3437. if(setTargetedHotend(109)){
  3438. break;
  3439. }
  3440. LCD_MESSAGERPGM(MSG_HEATING);
  3441. heating_status = 1;
  3442. if (farm_mode) { prusa_statistics(1); };
  3443. #ifdef AUTOTEMP
  3444. autotemp_enabled=false;
  3445. #endif
  3446. if (code_seen('S')) {
  3447. setTargetHotend(code_value(), tmp_extruder);
  3448. CooldownNoWait = true;
  3449. } else if (code_seen('R')) {
  3450. setTargetHotend(code_value(), tmp_extruder);
  3451. CooldownNoWait = false;
  3452. }
  3453. #ifdef AUTOTEMP
  3454. if (code_seen('S')) autotemp_min=code_value();
  3455. if (code_seen('B')) autotemp_max=code_value();
  3456. if (code_seen('F'))
  3457. {
  3458. autotemp_factor=code_value();
  3459. autotemp_enabled=true;
  3460. }
  3461. #endif
  3462. setWatch();
  3463. codenum = millis();
  3464. /* See if we are heating up or cooling down */
  3465. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3466. cancel_heatup = false;
  3467. #ifdef TEMP_RESIDENCY_TIME
  3468. long residencyStart;
  3469. residencyStart = -1;
  3470. /* continue to loop until we have reached the target temp
  3471. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3472. while((!cancel_heatup)&&((residencyStart == -1) ||
  3473. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3474. #else
  3475. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3476. #endif //TEMP_RESIDENCY_TIME
  3477. if( (millis() - codenum) > 1000UL )
  3478. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3479. SERIAL_PROTOCOLPGM("T:");
  3480. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3481. SERIAL_PROTOCOLPGM(" E:");
  3482. SERIAL_PROTOCOL((int)tmp_extruder);
  3483. #ifdef TEMP_RESIDENCY_TIME
  3484. SERIAL_PROTOCOLPGM(" W:");
  3485. if(residencyStart > -1)
  3486. {
  3487. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3488. SERIAL_PROTOCOLLN( codenum );
  3489. }
  3490. else
  3491. {
  3492. SERIAL_PROTOCOLLN( "?" );
  3493. }
  3494. #else
  3495. SERIAL_PROTOCOLLN("");
  3496. #endif
  3497. codenum = millis();
  3498. }
  3499. manage_heater();
  3500. manage_inactivity();
  3501. lcd_update();
  3502. #ifdef TEMP_RESIDENCY_TIME
  3503. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3504. or when current temp falls outside the hysteresis after target temp was reached */
  3505. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3506. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3507. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3508. {
  3509. residencyStart = millis();
  3510. }
  3511. #endif //TEMP_RESIDENCY_TIME
  3512. }
  3513. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3514. heating_status = 2;
  3515. if (farm_mode) { prusa_statistics(2); };
  3516. starttime=millis();
  3517. previous_millis_cmd = millis();
  3518. }
  3519. break;
  3520. case 190: // M190 - Wait for bed heater to reach target.
  3521. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3522. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3523. heating_status = 3;
  3524. if (farm_mode) { prusa_statistics(1); };
  3525. if (code_seen('S'))
  3526. {
  3527. setTargetBed(code_value());
  3528. CooldownNoWait = true;
  3529. }
  3530. else if (code_seen('R'))
  3531. {
  3532. setTargetBed(code_value());
  3533. CooldownNoWait = false;
  3534. }
  3535. codenum = millis();
  3536. cancel_heatup = false;
  3537. target_direction = isHeatingBed(); // true if heating, false if cooling
  3538. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3539. {
  3540. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3541. {
  3542. float tt=degHotend(active_extruder);
  3543. SERIAL_PROTOCOLPGM("T:");
  3544. SERIAL_PROTOCOL(tt);
  3545. SERIAL_PROTOCOLPGM(" E:");
  3546. SERIAL_PROTOCOL((int)active_extruder);
  3547. SERIAL_PROTOCOLPGM(" B:");
  3548. SERIAL_PROTOCOL_F(degBed(),1);
  3549. SERIAL_PROTOCOLLN("");
  3550. codenum = millis();
  3551. }
  3552. manage_heater();
  3553. manage_inactivity();
  3554. lcd_update();
  3555. }
  3556. LCD_MESSAGERPGM(MSG_BED_DONE);
  3557. heating_status = 4;
  3558. previous_millis_cmd = millis();
  3559. #endif
  3560. break;
  3561. #if defined(FAN_PIN) && FAN_PIN > -1
  3562. case 106: //M106 Fan On
  3563. if (code_seen('S')){
  3564. fanSpeed=constrain(code_value(),0,255);
  3565. }
  3566. else {
  3567. fanSpeed=255;
  3568. }
  3569. break;
  3570. case 107: //M107 Fan Off
  3571. fanSpeed = 0;
  3572. break;
  3573. #endif //FAN_PIN
  3574. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3575. case 80: // M80 - Turn on Power Supply
  3576. SET_OUTPUT(PS_ON_PIN); //GND
  3577. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3578. // If you have a switch on suicide pin, this is useful
  3579. // if you want to start another print with suicide feature after
  3580. // a print without suicide...
  3581. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3582. SET_OUTPUT(SUICIDE_PIN);
  3583. WRITE(SUICIDE_PIN, HIGH);
  3584. #endif
  3585. #ifdef ULTIPANEL
  3586. powersupply = true;
  3587. LCD_MESSAGERPGM(WELCOME_MSG);
  3588. lcd_update();
  3589. #endif
  3590. break;
  3591. #endif
  3592. case 81: // M81 - Turn off Power Supply
  3593. disable_heater();
  3594. st_synchronize();
  3595. disable_e0();
  3596. disable_e1();
  3597. disable_e2();
  3598. finishAndDisableSteppers();
  3599. fanSpeed = 0;
  3600. delay(1000); // Wait a little before to switch off
  3601. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3602. st_synchronize();
  3603. suicide();
  3604. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3605. SET_OUTPUT(PS_ON_PIN);
  3606. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3607. #endif
  3608. #ifdef ULTIPANEL
  3609. powersupply = false;
  3610. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3611. /*
  3612. MACHNAME = "Prusa i3"
  3613. MSGOFF = "Vypnuto"
  3614. "Prusai3"" ""vypnuto""."
  3615. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3616. */
  3617. lcd_update();
  3618. #endif
  3619. break;
  3620. case 82:
  3621. axis_relative_modes[3] = false;
  3622. break;
  3623. case 83:
  3624. axis_relative_modes[3] = true;
  3625. break;
  3626. case 18: //compatibility
  3627. case 84: // M84
  3628. if(code_seen('S')){
  3629. stepper_inactive_time = code_value() * 1000;
  3630. }
  3631. else
  3632. {
  3633. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3634. if(all_axis)
  3635. {
  3636. st_synchronize();
  3637. disable_e0();
  3638. disable_e1();
  3639. disable_e2();
  3640. finishAndDisableSteppers();
  3641. }
  3642. else
  3643. {
  3644. st_synchronize();
  3645. if(code_seen('X')) disable_x();
  3646. if(code_seen('Y')) disable_y();
  3647. if(code_seen('Z')) disable_z();
  3648. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3649. if(code_seen('E')) {
  3650. disable_e0();
  3651. disable_e1();
  3652. disable_e2();
  3653. }
  3654. #endif
  3655. }
  3656. }
  3657. break;
  3658. case 85: // M85
  3659. if(code_seen('S')) {
  3660. max_inactive_time = code_value() * 1000;
  3661. }
  3662. break;
  3663. case 92: // M92
  3664. for(int8_t i=0; i < NUM_AXIS; i++)
  3665. {
  3666. if(code_seen(axis_codes[i]))
  3667. {
  3668. if(i == 3) { // E
  3669. float value = code_value();
  3670. if(value < 20.0) {
  3671. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3672. max_jerk[E_AXIS] *= factor;
  3673. max_feedrate[i] *= factor;
  3674. axis_steps_per_sqr_second[i] *= factor;
  3675. }
  3676. axis_steps_per_unit[i] = value;
  3677. }
  3678. else {
  3679. axis_steps_per_unit[i] = code_value();
  3680. }
  3681. }
  3682. }
  3683. break;
  3684. case 115: // M115
  3685. if (code_seen('V')) {
  3686. // Report the Prusa version number.
  3687. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3688. } else if (code_seen('U')) {
  3689. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3690. // pause the print and ask the user to upgrade the firmware.
  3691. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3692. } else {
  3693. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3694. }
  3695. break;
  3696. case 117: // M117 display message
  3697. starpos = (strchr(strchr_pointer + 5,'*'));
  3698. if(starpos!=NULL)
  3699. *(starpos)='\0';
  3700. lcd_setstatus(strchr_pointer + 5);
  3701. break;
  3702. case 114: // M114
  3703. SERIAL_PROTOCOLPGM("X:");
  3704. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3705. SERIAL_PROTOCOLPGM(" Y:");
  3706. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3707. SERIAL_PROTOCOLPGM(" Z:");
  3708. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3709. SERIAL_PROTOCOLPGM(" E:");
  3710. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3711. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3712. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3713. SERIAL_PROTOCOLPGM(" Y:");
  3714. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3715. SERIAL_PROTOCOLPGM(" Z:");
  3716. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3717. SERIAL_PROTOCOLLN("");
  3718. break;
  3719. case 120: // M120
  3720. enable_endstops(false) ;
  3721. break;
  3722. case 121: // M121
  3723. enable_endstops(true) ;
  3724. break;
  3725. case 119: // M119
  3726. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3727. SERIAL_PROTOCOLLN("");
  3728. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3729. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3730. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3731. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3732. }else{
  3733. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3734. }
  3735. SERIAL_PROTOCOLLN("");
  3736. #endif
  3737. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3738. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3739. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3740. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3741. }else{
  3742. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3743. }
  3744. SERIAL_PROTOCOLLN("");
  3745. #endif
  3746. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3747. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3748. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3749. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3750. }else{
  3751. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3752. }
  3753. SERIAL_PROTOCOLLN("");
  3754. #endif
  3755. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3756. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3757. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3758. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3759. }else{
  3760. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3761. }
  3762. SERIAL_PROTOCOLLN("");
  3763. #endif
  3764. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3765. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3766. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3767. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3768. }else{
  3769. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3770. }
  3771. SERIAL_PROTOCOLLN("");
  3772. #endif
  3773. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3774. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3775. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3776. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3777. }else{
  3778. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3779. }
  3780. SERIAL_PROTOCOLLN("");
  3781. #endif
  3782. break;
  3783. //TODO: update for all axis, use for loop
  3784. #ifdef BLINKM
  3785. case 150: // M150
  3786. {
  3787. byte red;
  3788. byte grn;
  3789. byte blu;
  3790. if(code_seen('R')) red = code_value();
  3791. if(code_seen('U')) grn = code_value();
  3792. if(code_seen('B')) blu = code_value();
  3793. SendColors(red,grn,blu);
  3794. }
  3795. break;
  3796. #endif //BLINKM
  3797. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3798. {
  3799. tmp_extruder = active_extruder;
  3800. if(code_seen('T')) {
  3801. tmp_extruder = code_value();
  3802. if(tmp_extruder >= EXTRUDERS) {
  3803. SERIAL_ECHO_START;
  3804. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3805. break;
  3806. }
  3807. }
  3808. float area = .0;
  3809. if(code_seen('D')) {
  3810. float diameter = (float)code_value();
  3811. if (diameter == 0.0) {
  3812. // setting any extruder filament size disables volumetric on the assumption that
  3813. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3814. // for all extruders
  3815. volumetric_enabled = false;
  3816. } else {
  3817. filament_size[tmp_extruder] = (float)code_value();
  3818. // make sure all extruders have some sane value for the filament size
  3819. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3820. #if EXTRUDERS > 1
  3821. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3822. #if EXTRUDERS > 2
  3823. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3824. #endif
  3825. #endif
  3826. volumetric_enabled = true;
  3827. }
  3828. } else {
  3829. //reserved for setting filament diameter via UFID or filament measuring device
  3830. break;
  3831. }
  3832. calculate_volumetric_multipliers();
  3833. }
  3834. break;
  3835. case 201: // M201
  3836. for(int8_t i=0; i < NUM_AXIS; i++)
  3837. {
  3838. if(code_seen(axis_codes[i]))
  3839. {
  3840. max_acceleration_units_per_sq_second[i] = code_value();
  3841. }
  3842. }
  3843. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3844. reset_acceleration_rates();
  3845. break;
  3846. #if 0 // Not used for Sprinter/grbl gen6
  3847. case 202: // M202
  3848. for(int8_t i=0; i < NUM_AXIS; i++) {
  3849. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3850. }
  3851. break;
  3852. #endif
  3853. case 203: // M203 max feedrate mm/sec
  3854. for(int8_t i=0; i < NUM_AXIS; i++) {
  3855. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3856. }
  3857. break;
  3858. case 204: // M204 acclereration S normal moves T filmanent only moves
  3859. {
  3860. if(code_seen('S')) acceleration = code_value() ;
  3861. if(code_seen('T')) retract_acceleration = code_value() ;
  3862. }
  3863. break;
  3864. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3865. {
  3866. if(code_seen('S')) minimumfeedrate = code_value();
  3867. if(code_seen('T')) mintravelfeedrate = code_value();
  3868. if(code_seen('B')) minsegmenttime = code_value() ;
  3869. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3870. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3871. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3872. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3873. }
  3874. break;
  3875. case 206: // M206 additional homing offset
  3876. for(int8_t i=0; i < 3; i++)
  3877. {
  3878. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3879. }
  3880. break;
  3881. #ifdef FWRETRACT
  3882. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3883. {
  3884. if(code_seen('S'))
  3885. {
  3886. retract_length = code_value() ;
  3887. }
  3888. if(code_seen('F'))
  3889. {
  3890. retract_feedrate = code_value()/60 ;
  3891. }
  3892. if(code_seen('Z'))
  3893. {
  3894. retract_zlift = code_value() ;
  3895. }
  3896. }break;
  3897. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3898. {
  3899. if(code_seen('S'))
  3900. {
  3901. retract_recover_length = code_value() ;
  3902. }
  3903. if(code_seen('F'))
  3904. {
  3905. retract_recover_feedrate = code_value()/60 ;
  3906. }
  3907. }break;
  3908. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3909. {
  3910. if(code_seen('S'))
  3911. {
  3912. int t= code_value() ;
  3913. switch(t)
  3914. {
  3915. case 0:
  3916. {
  3917. autoretract_enabled=false;
  3918. retracted[0]=false;
  3919. #if EXTRUDERS > 1
  3920. retracted[1]=false;
  3921. #endif
  3922. #if EXTRUDERS > 2
  3923. retracted[2]=false;
  3924. #endif
  3925. }break;
  3926. case 1:
  3927. {
  3928. autoretract_enabled=true;
  3929. retracted[0]=false;
  3930. #if EXTRUDERS > 1
  3931. retracted[1]=false;
  3932. #endif
  3933. #if EXTRUDERS > 2
  3934. retracted[2]=false;
  3935. #endif
  3936. }break;
  3937. default:
  3938. SERIAL_ECHO_START;
  3939. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3940. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3941. SERIAL_ECHOLNPGM("\"");
  3942. }
  3943. }
  3944. }break;
  3945. #endif // FWRETRACT
  3946. #if EXTRUDERS > 1
  3947. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3948. {
  3949. if(setTargetedHotend(218)){
  3950. break;
  3951. }
  3952. if(code_seen('X'))
  3953. {
  3954. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3955. }
  3956. if(code_seen('Y'))
  3957. {
  3958. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3959. }
  3960. SERIAL_ECHO_START;
  3961. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3962. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3963. {
  3964. SERIAL_ECHO(" ");
  3965. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3966. SERIAL_ECHO(",");
  3967. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3968. }
  3969. SERIAL_ECHOLN("");
  3970. }break;
  3971. #endif
  3972. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3973. {
  3974. if(code_seen('S'))
  3975. {
  3976. feedmultiply = code_value() ;
  3977. }
  3978. }
  3979. break;
  3980. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3981. {
  3982. if(code_seen('S'))
  3983. {
  3984. int tmp_code = code_value();
  3985. if (code_seen('T'))
  3986. {
  3987. if(setTargetedHotend(221)){
  3988. break;
  3989. }
  3990. extruder_multiply[tmp_extruder] = tmp_code;
  3991. }
  3992. else
  3993. {
  3994. extrudemultiply = tmp_code ;
  3995. }
  3996. }
  3997. }
  3998. break;
  3999. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4000. {
  4001. if(code_seen('P')){
  4002. int pin_number = code_value(); // pin number
  4003. int pin_state = -1; // required pin state - default is inverted
  4004. if(code_seen('S')) pin_state = code_value(); // required pin state
  4005. if(pin_state >= -1 && pin_state <= 1){
  4006. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4007. {
  4008. if (sensitive_pins[i] == pin_number)
  4009. {
  4010. pin_number = -1;
  4011. break;
  4012. }
  4013. }
  4014. if (pin_number > -1)
  4015. {
  4016. int target = LOW;
  4017. st_synchronize();
  4018. pinMode(pin_number, INPUT);
  4019. switch(pin_state){
  4020. case 1:
  4021. target = HIGH;
  4022. break;
  4023. case 0:
  4024. target = LOW;
  4025. break;
  4026. case -1:
  4027. target = !digitalRead(pin_number);
  4028. break;
  4029. }
  4030. while(digitalRead(pin_number) != target){
  4031. manage_heater();
  4032. manage_inactivity();
  4033. lcd_update();
  4034. }
  4035. }
  4036. }
  4037. }
  4038. }
  4039. break;
  4040. #if NUM_SERVOS > 0
  4041. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4042. {
  4043. int servo_index = -1;
  4044. int servo_position = 0;
  4045. if (code_seen('P'))
  4046. servo_index = code_value();
  4047. if (code_seen('S')) {
  4048. servo_position = code_value();
  4049. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4050. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4051. servos[servo_index].attach(0);
  4052. #endif
  4053. servos[servo_index].write(servo_position);
  4054. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4055. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4056. servos[servo_index].detach();
  4057. #endif
  4058. }
  4059. else {
  4060. SERIAL_ECHO_START;
  4061. SERIAL_ECHO("Servo ");
  4062. SERIAL_ECHO(servo_index);
  4063. SERIAL_ECHOLN(" out of range");
  4064. }
  4065. }
  4066. else if (servo_index >= 0) {
  4067. SERIAL_PROTOCOL(MSG_OK);
  4068. SERIAL_PROTOCOL(" Servo ");
  4069. SERIAL_PROTOCOL(servo_index);
  4070. SERIAL_PROTOCOL(": ");
  4071. SERIAL_PROTOCOL(servos[servo_index].read());
  4072. SERIAL_PROTOCOLLN("");
  4073. }
  4074. }
  4075. break;
  4076. #endif // NUM_SERVOS > 0
  4077. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4078. case 300: // M300
  4079. {
  4080. int beepS = code_seen('S') ? code_value() : 110;
  4081. int beepP = code_seen('P') ? code_value() : 1000;
  4082. if (beepS > 0)
  4083. {
  4084. #if BEEPER > 0
  4085. tone(BEEPER, beepS);
  4086. delay(beepP);
  4087. noTone(BEEPER);
  4088. #elif defined(ULTRALCD)
  4089. lcd_buzz(beepS, beepP);
  4090. #elif defined(LCD_USE_I2C_BUZZER)
  4091. lcd_buzz(beepP, beepS);
  4092. #endif
  4093. }
  4094. else
  4095. {
  4096. delay(beepP);
  4097. }
  4098. }
  4099. break;
  4100. #endif // M300
  4101. #ifdef PIDTEMP
  4102. case 301: // M301
  4103. {
  4104. if(code_seen('P')) Kp = code_value();
  4105. if(code_seen('I')) Ki = scalePID_i(code_value());
  4106. if(code_seen('D')) Kd = scalePID_d(code_value());
  4107. #ifdef PID_ADD_EXTRUSION_RATE
  4108. if(code_seen('C')) Kc = code_value();
  4109. #endif
  4110. updatePID();
  4111. SERIAL_PROTOCOLRPGM(MSG_OK);
  4112. SERIAL_PROTOCOL(" p:");
  4113. SERIAL_PROTOCOL(Kp);
  4114. SERIAL_PROTOCOL(" i:");
  4115. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4116. SERIAL_PROTOCOL(" d:");
  4117. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4118. #ifdef PID_ADD_EXTRUSION_RATE
  4119. SERIAL_PROTOCOL(" c:");
  4120. //Kc does not have scaling applied above, or in resetting defaults
  4121. SERIAL_PROTOCOL(Kc);
  4122. #endif
  4123. SERIAL_PROTOCOLLN("");
  4124. }
  4125. break;
  4126. #endif //PIDTEMP
  4127. #ifdef PIDTEMPBED
  4128. case 304: // M304
  4129. {
  4130. if(code_seen('P')) bedKp = code_value();
  4131. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4132. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4133. updatePID();
  4134. SERIAL_PROTOCOLRPGM(MSG_OK);
  4135. SERIAL_PROTOCOL(" p:");
  4136. SERIAL_PROTOCOL(bedKp);
  4137. SERIAL_PROTOCOL(" i:");
  4138. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4139. SERIAL_PROTOCOL(" d:");
  4140. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4141. SERIAL_PROTOCOLLN("");
  4142. }
  4143. break;
  4144. #endif //PIDTEMP
  4145. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4146. {
  4147. #ifdef CHDK
  4148. SET_OUTPUT(CHDK);
  4149. WRITE(CHDK, HIGH);
  4150. chdkHigh = millis();
  4151. chdkActive = true;
  4152. #else
  4153. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4154. const uint8_t NUM_PULSES=16;
  4155. const float PULSE_LENGTH=0.01524;
  4156. for(int i=0; i < NUM_PULSES; i++) {
  4157. WRITE(PHOTOGRAPH_PIN, HIGH);
  4158. _delay_ms(PULSE_LENGTH);
  4159. WRITE(PHOTOGRAPH_PIN, LOW);
  4160. _delay_ms(PULSE_LENGTH);
  4161. }
  4162. delay(7.33);
  4163. for(int i=0; i < NUM_PULSES; i++) {
  4164. WRITE(PHOTOGRAPH_PIN, HIGH);
  4165. _delay_ms(PULSE_LENGTH);
  4166. WRITE(PHOTOGRAPH_PIN, LOW);
  4167. _delay_ms(PULSE_LENGTH);
  4168. }
  4169. #endif
  4170. #endif //chdk end if
  4171. }
  4172. break;
  4173. #ifdef DOGLCD
  4174. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4175. {
  4176. if (code_seen('C')) {
  4177. lcd_setcontrast( ((int)code_value())&63 );
  4178. }
  4179. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4180. SERIAL_PROTOCOL(lcd_contrast);
  4181. SERIAL_PROTOCOLLN("");
  4182. }
  4183. break;
  4184. #endif
  4185. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4186. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4187. {
  4188. float temp = .0;
  4189. if (code_seen('S')) temp=code_value();
  4190. set_extrude_min_temp(temp);
  4191. }
  4192. break;
  4193. #endif
  4194. case 303: // M303 PID autotune
  4195. {
  4196. float temp = 150.0;
  4197. int e=0;
  4198. int c=5;
  4199. if (code_seen('E')) e=code_value();
  4200. if (e<0)
  4201. temp=70;
  4202. if (code_seen('S')) temp=code_value();
  4203. if (code_seen('C')) c=code_value();
  4204. PID_autotune(temp, e, c);
  4205. }
  4206. break;
  4207. case 400: // M400 finish all moves
  4208. {
  4209. st_synchronize();
  4210. }
  4211. break;
  4212. #ifdef FILAMENT_SENSOR
  4213. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4214. {
  4215. #if (FILWIDTH_PIN > -1)
  4216. if(code_seen('N')) filament_width_nominal=code_value();
  4217. else{
  4218. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4219. SERIAL_PROTOCOLLN(filament_width_nominal);
  4220. }
  4221. #endif
  4222. }
  4223. break;
  4224. case 405: //M405 Turn on filament sensor for control
  4225. {
  4226. if(code_seen('D')) meas_delay_cm=code_value();
  4227. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4228. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4229. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4230. {
  4231. int temp_ratio = widthFil_to_size_ratio();
  4232. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4233. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4234. }
  4235. delay_index1=0;
  4236. delay_index2=0;
  4237. }
  4238. filament_sensor = true ;
  4239. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4240. //SERIAL_PROTOCOL(filament_width_meas);
  4241. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4242. //SERIAL_PROTOCOL(extrudemultiply);
  4243. }
  4244. break;
  4245. case 406: //M406 Turn off filament sensor for control
  4246. {
  4247. filament_sensor = false ;
  4248. }
  4249. break;
  4250. case 407: //M407 Display measured filament diameter
  4251. {
  4252. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4253. SERIAL_PROTOCOLLN(filament_width_meas);
  4254. }
  4255. break;
  4256. #endif
  4257. case 500: // M500 Store settings in EEPROM
  4258. {
  4259. Config_StoreSettings();
  4260. }
  4261. break;
  4262. case 501: // M501 Read settings from EEPROM
  4263. {
  4264. Config_RetrieveSettings();
  4265. }
  4266. break;
  4267. case 502: // M502 Revert to default settings
  4268. {
  4269. Config_ResetDefault();
  4270. }
  4271. break;
  4272. case 503: // M503 print settings currently in memory
  4273. {
  4274. Config_PrintSettings();
  4275. }
  4276. break;
  4277. case 509: //M509 Force language selection
  4278. {
  4279. lcd_force_language_selection();
  4280. SERIAL_ECHO_START;
  4281. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4282. }
  4283. break;
  4284. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4285. case 540:
  4286. {
  4287. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4288. }
  4289. break;
  4290. #endif
  4291. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4292. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4293. {
  4294. float value;
  4295. if (code_seen('Z'))
  4296. {
  4297. value = code_value();
  4298. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4299. {
  4300. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4301. SERIAL_ECHO_START;
  4302. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4303. SERIAL_PROTOCOLLN("");
  4304. }
  4305. else
  4306. {
  4307. SERIAL_ECHO_START;
  4308. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4309. SERIAL_ECHORPGM(MSG_Z_MIN);
  4310. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4311. SERIAL_ECHORPGM(MSG_Z_MAX);
  4312. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4313. SERIAL_PROTOCOLLN("");
  4314. }
  4315. }
  4316. else
  4317. {
  4318. SERIAL_ECHO_START;
  4319. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4320. SERIAL_ECHO(-zprobe_zoffset);
  4321. SERIAL_PROTOCOLLN("");
  4322. }
  4323. break;
  4324. }
  4325. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4326. #ifdef FILAMENTCHANGEENABLE
  4327. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4328. {
  4329. st_synchronize();
  4330. if (farm_mode)
  4331. {
  4332. prusa_statistics(22);
  4333. }
  4334. feedmultiplyBckp=feedmultiply;
  4335. int8_t TooLowZ = 0;
  4336. float target[4];
  4337. float lastpos[4];
  4338. target[X_AXIS]=current_position[X_AXIS];
  4339. target[Y_AXIS]=current_position[Y_AXIS];
  4340. target[Z_AXIS]=current_position[Z_AXIS];
  4341. target[E_AXIS]=current_position[E_AXIS];
  4342. lastpos[X_AXIS]=current_position[X_AXIS];
  4343. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4344. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4345. lastpos[E_AXIS]=current_position[E_AXIS];
  4346. //Restract extruder
  4347. if(code_seen('E'))
  4348. {
  4349. target[E_AXIS]+= code_value();
  4350. }
  4351. else
  4352. {
  4353. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4354. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4355. #endif
  4356. }
  4357. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4358. //Lift Z
  4359. if(code_seen('Z'))
  4360. {
  4361. target[Z_AXIS]+= code_value();
  4362. }
  4363. else
  4364. {
  4365. #ifdef FILAMENTCHANGE_ZADD
  4366. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4367. if(target[Z_AXIS] < 10){
  4368. target[Z_AXIS]+= 10 ;
  4369. TooLowZ = 1;
  4370. }else{
  4371. TooLowZ = 0;
  4372. }
  4373. #endif
  4374. }
  4375. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4376. //Move XY to side
  4377. if(code_seen('X'))
  4378. {
  4379. target[X_AXIS]+= code_value();
  4380. }
  4381. else
  4382. {
  4383. #ifdef FILAMENTCHANGE_XPOS
  4384. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4385. #endif
  4386. }
  4387. if(code_seen('Y'))
  4388. {
  4389. target[Y_AXIS]= code_value();
  4390. }
  4391. else
  4392. {
  4393. #ifdef FILAMENTCHANGE_YPOS
  4394. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4395. #endif
  4396. }
  4397. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4398. // Unload filament
  4399. if(code_seen('L'))
  4400. {
  4401. target[E_AXIS]+= code_value();
  4402. }
  4403. else
  4404. {
  4405. #ifdef FILAMENTCHANGE_FINALRETRACT
  4406. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4407. #endif
  4408. }
  4409. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4410. //finish moves
  4411. st_synchronize();
  4412. //disable extruder steppers so filament can be removed
  4413. disable_e0();
  4414. disable_e1();
  4415. disable_e2();
  4416. delay(100);
  4417. //Wait for user to insert filament
  4418. uint8_t cnt=0;
  4419. int counterBeep = 0;
  4420. lcd_wait_interact();
  4421. while(!lcd_clicked()){
  4422. cnt++;
  4423. manage_heater();
  4424. manage_inactivity(true);
  4425. if(cnt==0)
  4426. {
  4427. #if BEEPER > 0
  4428. if (counterBeep== 500){
  4429. counterBeep = 0;
  4430. }
  4431. SET_OUTPUT(BEEPER);
  4432. if (counterBeep== 0){
  4433. WRITE(BEEPER,HIGH);
  4434. }
  4435. if (counterBeep== 20){
  4436. WRITE(BEEPER,LOW);
  4437. }
  4438. counterBeep++;
  4439. #else
  4440. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4441. lcd_buzz(1000/6,100);
  4442. #else
  4443. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4444. #endif
  4445. #endif
  4446. }
  4447. }
  4448. //Filament inserted
  4449. WRITE(BEEPER,LOW);
  4450. //Feed the filament to the end of nozzle quickly
  4451. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4453. //Extrude some filament
  4454. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4455. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4456. //Wait for user to check the state
  4457. lcd_change_fil_state = 0;
  4458. lcd_loading_filament();
  4459. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4460. lcd_change_fil_state = 0;
  4461. lcd_alright();
  4462. switch(lcd_change_fil_state){
  4463. // Filament failed to load so load it again
  4464. case 2:
  4465. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4467. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4469. lcd_loading_filament();
  4470. break;
  4471. // Filament loaded properly but color is not clear
  4472. case 3:
  4473. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4474. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4475. lcd_loading_color();
  4476. break;
  4477. // Everything good
  4478. default:
  4479. lcd_change_success();
  4480. break;
  4481. }
  4482. }
  4483. //Not let's go back to print
  4484. //Feed a little of filament to stabilize pressure
  4485. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4487. //Retract
  4488. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4490. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4491. //Move XY back
  4492. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4493. //Move Z back
  4494. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4495. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4496. //Unretract
  4497. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4498. //Set E position to original
  4499. plan_set_e_position(lastpos[E_AXIS]);
  4500. //Recover feed rate
  4501. feedmultiply=feedmultiplyBckp;
  4502. char cmd[9];
  4503. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4504. enquecommand(cmd);
  4505. }
  4506. break;
  4507. #endif //FILAMENTCHANGEENABLE
  4508. case 907: // M907 Set digital trimpot motor current using axis codes.
  4509. {
  4510. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4511. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4512. if(code_seen('B')) digipot_current(4,code_value());
  4513. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4514. #endif
  4515. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4516. if(code_seen('X')) digipot_current(0, code_value());
  4517. #endif
  4518. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4519. if(code_seen('Z')) digipot_current(1, code_value());
  4520. #endif
  4521. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4522. if(code_seen('E')) digipot_current(2, code_value());
  4523. #endif
  4524. #ifdef DIGIPOT_I2C
  4525. // this one uses actual amps in floating point
  4526. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4527. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4528. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4529. #endif
  4530. }
  4531. break;
  4532. case 908: // M908 Control digital trimpot directly.
  4533. {
  4534. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4535. uint8_t channel,current;
  4536. if(code_seen('P')) channel=code_value();
  4537. if(code_seen('S')) current=code_value();
  4538. digitalPotWrite(channel, current);
  4539. #endif
  4540. }
  4541. break;
  4542. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4543. {
  4544. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4545. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4546. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4547. if(code_seen('B')) microstep_mode(4,code_value());
  4548. microstep_readings();
  4549. #endif
  4550. }
  4551. break;
  4552. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4553. {
  4554. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4555. if(code_seen('S')) switch((int)code_value())
  4556. {
  4557. case 1:
  4558. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4559. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4560. break;
  4561. case 2:
  4562. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4563. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4564. break;
  4565. }
  4566. microstep_readings();
  4567. #endif
  4568. }
  4569. break;
  4570. case 701: //M701: load filament
  4571. {
  4572. enable_z();
  4573. custom_message = true;
  4574. custom_message_type = 2;
  4575. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4576. current_position[E_AXIS] += 65;
  4577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4578. current_position[E_AXIS] += 40;
  4579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4580. st_synchronize();
  4581. if (!farm_mode && loading_flag) {
  4582. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4583. while (!clean) {
  4584. lcd_update_enable(true);
  4585. lcd_update(2);
  4586. current_position[E_AXIS] += 40;
  4587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4588. st_synchronize();
  4589. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4590. }
  4591. }
  4592. lcd_update_enable(true);
  4593. lcd_update(2);
  4594. lcd_setstatuspgm(WELCOME_MSG);
  4595. disable_z();
  4596. loading_flag = false;
  4597. custom_message = false;
  4598. custom_message_type = 0;
  4599. }
  4600. break;
  4601. case 702:
  4602. {
  4603. custom_message = true;
  4604. custom_message_type = 2;
  4605. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4606. current_position[E_AXIS] -= 80;
  4607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4608. st_synchronize();
  4609. lcd_setstatuspgm(WELCOME_MSG);
  4610. custom_message = false;
  4611. custom_message_type = 0;
  4612. }
  4613. break;
  4614. case 999: // M999: Restart after being stopped
  4615. Stopped = false;
  4616. lcd_reset_alert_level();
  4617. gcode_LastN = Stopped_gcode_LastN;
  4618. FlushSerialRequestResend();
  4619. break;
  4620. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4621. }
  4622. } // end if(code_seen('M')) (end of M codes)
  4623. else if(code_seen('T'))
  4624. {
  4625. int index;
  4626. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4627. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4628. SERIAL_ECHOLNPGM("Invalid T code.");
  4629. }
  4630. else {
  4631. tmp_extruder = code_value();
  4632. #ifdef SNMM
  4633. st_synchronize();
  4634. delay(100);
  4635. disable_e0();
  4636. disable_e1();
  4637. disable_e2();
  4638. pinMode(E_MUX0_PIN, OUTPUT);
  4639. pinMode(E_MUX1_PIN, OUTPUT);
  4640. pinMode(E_MUX2_PIN, OUTPUT);
  4641. delay(100);
  4642. SERIAL_ECHO_START;
  4643. SERIAL_ECHO("T:");
  4644. SERIAL_ECHOLN((int)tmp_extruder);
  4645. switch (tmp_extruder) {
  4646. case 1:
  4647. WRITE(E_MUX0_PIN, HIGH);
  4648. WRITE(E_MUX1_PIN, LOW);
  4649. WRITE(E_MUX2_PIN, LOW);
  4650. break;
  4651. case 2:
  4652. WRITE(E_MUX0_PIN, LOW);
  4653. WRITE(E_MUX1_PIN, HIGH);
  4654. WRITE(E_MUX2_PIN, LOW);
  4655. break;
  4656. case 3:
  4657. WRITE(E_MUX0_PIN, HIGH);
  4658. WRITE(E_MUX1_PIN, HIGH);
  4659. WRITE(E_MUX2_PIN, LOW);
  4660. break;
  4661. default:
  4662. WRITE(E_MUX0_PIN, LOW);
  4663. WRITE(E_MUX1_PIN, LOW);
  4664. WRITE(E_MUX2_PIN, LOW);
  4665. break;
  4666. }
  4667. delay(100);
  4668. #else
  4669. if (tmp_extruder >= EXTRUDERS) {
  4670. SERIAL_ECHO_START;
  4671. SERIAL_ECHOPGM("T");
  4672. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4673. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4674. }
  4675. else {
  4676. boolean make_move = false;
  4677. if (code_seen('F')) {
  4678. make_move = true;
  4679. next_feedrate = code_value();
  4680. if (next_feedrate > 0.0) {
  4681. feedrate = next_feedrate;
  4682. }
  4683. }
  4684. #if EXTRUDERS > 1
  4685. if (tmp_extruder != active_extruder) {
  4686. // Save current position to return to after applying extruder offset
  4687. memcpy(destination, current_position, sizeof(destination));
  4688. // Offset extruder (only by XY)
  4689. int i;
  4690. for (i = 0; i < 2; i++) {
  4691. current_position[i] = current_position[i] -
  4692. extruder_offset[i][active_extruder] +
  4693. extruder_offset[i][tmp_extruder];
  4694. }
  4695. // Set the new active extruder and position
  4696. active_extruder = tmp_extruder;
  4697. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4698. // Move to the old position if 'F' was in the parameters
  4699. if (make_move && Stopped == false) {
  4700. prepare_move();
  4701. }
  4702. }
  4703. #endif
  4704. SERIAL_ECHO_START;
  4705. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4706. SERIAL_PROTOCOLLN((int)active_extruder);
  4707. }
  4708. #endif
  4709. }
  4710. } // end if(code_seen('T')) (end of T codes)
  4711. else
  4712. {
  4713. SERIAL_ECHO_START;
  4714. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4715. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4716. SERIAL_ECHOLNPGM("\"");
  4717. }
  4718. ClearToSend();
  4719. }
  4720. void FlushSerialRequestResend()
  4721. {
  4722. //char cmdbuffer[bufindr][100]="Resend:";
  4723. MYSERIAL.flush();
  4724. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4725. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4726. ClearToSend();
  4727. }
  4728. // Confirm the execution of a command, if sent from a serial line.
  4729. // Execution of a command from a SD card will not be confirmed.
  4730. void ClearToSend()
  4731. {
  4732. previous_millis_cmd = millis();
  4733. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4734. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4735. }
  4736. void get_coordinates()
  4737. {
  4738. bool seen[4]={false,false,false,false};
  4739. for(int8_t i=0; i < NUM_AXIS; i++) {
  4740. if(code_seen(axis_codes[i]))
  4741. {
  4742. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4743. seen[i]=true;
  4744. }
  4745. else destination[i] = current_position[i]; //Are these else lines really needed?
  4746. }
  4747. if(code_seen('F')) {
  4748. next_feedrate = code_value();
  4749. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4750. }
  4751. }
  4752. void get_arc_coordinates()
  4753. {
  4754. #ifdef SF_ARC_FIX
  4755. bool relative_mode_backup = relative_mode;
  4756. relative_mode = true;
  4757. #endif
  4758. get_coordinates();
  4759. #ifdef SF_ARC_FIX
  4760. relative_mode=relative_mode_backup;
  4761. #endif
  4762. if(code_seen('I')) {
  4763. offset[0] = code_value();
  4764. }
  4765. else {
  4766. offset[0] = 0.0;
  4767. }
  4768. if(code_seen('J')) {
  4769. offset[1] = code_value();
  4770. }
  4771. else {
  4772. offset[1] = 0.0;
  4773. }
  4774. }
  4775. void clamp_to_software_endstops(float target[3])
  4776. {
  4777. world2machine_clamp(target[0], target[1]);
  4778. // Clamp the Z coordinate.
  4779. if (min_software_endstops) {
  4780. float negative_z_offset = 0;
  4781. #ifdef ENABLE_AUTO_BED_LEVELING
  4782. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4783. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4784. #endif
  4785. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4786. }
  4787. if (max_software_endstops) {
  4788. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4789. }
  4790. }
  4791. #ifdef MESH_BED_LEVELING
  4792. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4793. float dx = x - current_position[X_AXIS];
  4794. float dy = y - current_position[Y_AXIS];
  4795. float dz = z - current_position[Z_AXIS];
  4796. int n_segments = 0;
  4797. if (mbl.active) {
  4798. float len = abs(dx) + abs(dy);
  4799. if (len > 0)
  4800. // Split to 3cm segments or shorter.
  4801. n_segments = int(ceil(len / 30.f));
  4802. }
  4803. if (n_segments > 1) {
  4804. float de = e - current_position[E_AXIS];
  4805. for (int i = 1; i < n_segments; ++ i) {
  4806. float t = float(i) / float(n_segments);
  4807. plan_buffer_line(
  4808. current_position[X_AXIS] + t * dx,
  4809. current_position[Y_AXIS] + t * dy,
  4810. current_position[Z_AXIS] + t * dz,
  4811. current_position[E_AXIS] + t * de,
  4812. feed_rate, extruder);
  4813. }
  4814. }
  4815. // The rest of the path.
  4816. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4817. current_position[X_AXIS] = x;
  4818. current_position[Y_AXIS] = y;
  4819. current_position[Z_AXIS] = z;
  4820. current_position[E_AXIS] = e;
  4821. }
  4822. #endif // MESH_BED_LEVELING
  4823. void prepare_move()
  4824. {
  4825. clamp_to_software_endstops(destination);
  4826. previous_millis_cmd = millis();
  4827. // Do not use feedmultiply for E or Z only moves
  4828. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4829. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4830. }
  4831. else {
  4832. #ifdef MESH_BED_LEVELING
  4833. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4834. #else
  4835. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4836. #endif
  4837. }
  4838. for(int8_t i=0; i < NUM_AXIS; i++) {
  4839. current_position[i] = destination[i];
  4840. }
  4841. }
  4842. void prepare_arc_move(char isclockwise) {
  4843. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4844. // Trace the arc
  4845. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4846. // As far as the parser is concerned, the position is now == target. In reality the
  4847. // motion control system might still be processing the action and the real tool position
  4848. // in any intermediate location.
  4849. for(int8_t i=0; i < NUM_AXIS; i++) {
  4850. current_position[i] = destination[i];
  4851. }
  4852. previous_millis_cmd = millis();
  4853. }
  4854. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4855. #if defined(FAN_PIN)
  4856. #if CONTROLLERFAN_PIN == FAN_PIN
  4857. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4858. #endif
  4859. #endif
  4860. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4861. unsigned long lastMotorCheck = 0;
  4862. void controllerFan()
  4863. {
  4864. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4865. {
  4866. lastMotorCheck = millis();
  4867. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4868. #if EXTRUDERS > 2
  4869. || !READ(E2_ENABLE_PIN)
  4870. #endif
  4871. #if EXTRUDER > 1
  4872. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4873. || !READ(X2_ENABLE_PIN)
  4874. #endif
  4875. || !READ(E1_ENABLE_PIN)
  4876. #endif
  4877. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4878. {
  4879. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4880. }
  4881. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4882. {
  4883. digitalWrite(CONTROLLERFAN_PIN, 0);
  4884. analogWrite(CONTROLLERFAN_PIN, 0);
  4885. }
  4886. else
  4887. {
  4888. // allows digital or PWM fan output to be used (see M42 handling)
  4889. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4890. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4891. }
  4892. }
  4893. }
  4894. #endif
  4895. #ifdef TEMP_STAT_LEDS
  4896. static bool blue_led = false;
  4897. static bool red_led = false;
  4898. static uint32_t stat_update = 0;
  4899. void handle_status_leds(void) {
  4900. float max_temp = 0.0;
  4901. if(millis() > stat_update) {
  4902. stat_update += 500; // Update every 0.5s
  4903. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4904. max_temp = max(max_temp, degHotend(cur_extruder));
  4905. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4906. }
  4907. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4908. max_temp = max(max_temp, degTargetBed());
  4909. max_temp = max(max_temp, degBed());
  4910. #endif
  4911. if((max_temp > 55.0) && (red_led == false)) {
  4912. digitalWrite(STAT_LED_RED, 1);
  4913. digitalWrite(STAT_LED_BLUE, 0);
  4914. red_led = true;
  4915. blue_led = false;
  4916. }
  4917. if((max_temp < 54.0) && (blue_led == false)) {
  4918. digitalWrite(STAT_LED_RED, 0);
  4919. digitalWrite(STAT_LED_BLUE, 1);
  4920. red_led = false;
  4921. blue_led = true;
  4922. }
  4923. }
  4924. }
  4925. #endif
  4926. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4927. {
  4928. #if defined(KILL_PIN) && KILL_PIN > -1
  4929. static int killCount = 0; // make the inactivity button a bit less responsive
  4930. const int KILL_DELAY = 10000;
  4931. #endif
  4932. if(buflen < (BUFSIZE-1)){
  4933. get_command();
  4934. }
  4935. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4936. if(max_inactive_time)
  4937. kill();
  4938. if(stepper_inactive_time) {
  4939. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4940. {
  4941. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4942. disable_x();
  4943. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4944. disable_y();
  4945. disable_z();
  4946. disable_e0();
  4947. disable_e1();
  4948. disable_e2();
  4949. }
  4950. }
  4951. }
  4952. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4953. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4954. {
  4955. chdkActive = false;
  4956. WRITE(CHDK, LOW);
  4957. }
  4958. #endif
  4959. #if defined(KILL_PIN) && KILL_PIN > -1
  4960. // Check if the kill button was pressed and wait just in case it was an accidental
  4961. // key kill key press
  4962. // -------------------------------------------------------------------------------
  4963. if( 0 == READ(KILL_PIN) )
  4964. {
  4965. killCount++;
  4966. }
  4967. else if (killCount > 0)
  4968. {
  4969. killCount--;
  4970. }
  4971. // Exceeded threshold and we can confirm that it was not accidental
  4972. // KILL the machine
  4973. // ----------------------------------------------------------------
  4974. if ( killCount >= KILL_DELAY)
  4975. {
  4976. kill();
  4977. }
  4978. #endif
  4979. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4980. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4981. #endif
  4982. #ifdef EXTRUDER_RUNOUT_PREVENT
  4983. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4984. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4985. {
  4986. bool oldstatus=READ(E0_ENABLE_PIN);
  4987. enable_e0();
  4988. float oldepos=current_position[E_AXIS];
  4989. float oldedes=destination[E_AXIS];
  4990. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4991. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4992. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4993. current_position[E_AXIS]=oldepos;
  4994. destination[E_AXIS]=oldedes;
  4995. plan_set_e_position(oldepos);
  4996. previous_millis_cmd=millis();
  4997. st_synchronize();
  4998. WRITE(E0_ENABLE_PIN,oldstatus);
  4999. }
  5000. #endif
  5001. #ifdef TEMP_STAT_LEDS
  5002. handle_status_leds();
  5003. #endif
  5004. check_axes_activity();
  5005. }
  5006. void kill(const char *full_screen_message)
  5007. {
  5008. cli(); // Stop interrupts
  5009. disable_heater();
  5010. disable_x();
  5011. // SERIAL_ECHOLNPGM("kill - disable Y");
  5012. disable_y();
  5013. disable_z();
  5014. disable_e0();
  5015. disable_e1();
  5016. disable_e2();
  5017. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5018. pinMode(PS_ON_PIN,INPUT);
  5019. #endif
  5020. SERIAL_ERROR_START;
  5021. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5022. if (full_screen_message != NULL) {
  5023. SERIAL_ERRORLNRPGM(full_screen_message);
  5024. lcd_display_message_fullscreen_P(full_screen_message);
  5025. } else {
  5026. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5027. }
  5028. // FMC small patch to update the LCD before ending
  5029. sei(); // enable interrupts
  5030. for ( int i=5; i--; lcd_update())
  5031. {
  5032. delay(200);
  5033. }
  5034. cli(); // disable interrupts
  5035. suicide();
  5036. while(1) { /* Intentionally left empty */ } // Wait for reset
  5037. }
  5038. void Stop()
  5039. {
  5040. disable_heater();
  5041. if(Stopped == false) {
  5042. Stopped = true;
  5043. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5044. SERIAL_ERROR_START;
  5045. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5046. LCD_MESSAGERPGM(MSG_STOPPED);
  5047. }
  5048. }
  5049. bool IsStopped() { return Stopped; };
  5050. #ifdef FAST_PWM_FAN
  5051. void setPwmFrequency(uint8_t pin, int val)
  5052. {
  5053. val &= 0x07;
  5054. switch(digitalPinToTimer(pin))
  5055. {
  5056. #if defined(TCCR0A)
  5057. case TIMER0A:
  5058. case TIMER0B:
  5059. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5060. // TCCR0B |= val;
  5061. break;
  5062. #endif
  5063. #if defined(TCCR1A)
  5064. case TIMER1A:
  5065. case TIMER1B:
  5066. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5067. // TCCR1B |= val;
  5068. break;
  5069. #endif
  5070. #if defined(TCCR2)
  5071. case TIMER2:
  5072. case TIMER2:
  5073. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5074. TCCR2 |= val;
  5075. break;
  5076. #endif
  5077. #if defined(TCCR2A)
  5078. case TIMER2A:
  5079. case TIMER2B:
  5080. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5081. TCCR2B |= val;
  5082. break;
  5083. #endif
  5084. #if defined(TCCR3A)
  5085. case TIMER3A:
  5086. case TIMER3B:
  5087. case TIMER3C:
  5088. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5089. TCCR3B |= val;
  5090. break;
  5091. #endif
  5092. #if defined(TCCR4A)
  5093. case TIMER4A:
  5094. case TIMER4B:
  5095. case TIMER4C:
  5096. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5097. TCCR4B |= val;
  5098. break;
  5099. #endif
  5100. #if defined(TCCR5A)
  5101. case TIMER5A:
  5102. case TIMER5B:
  5103. case TIMER5C:
  5104. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5105. TCCR5B |= val;
  5106. break;
  5107. #endif
  5108. }
  5109. }
  5110. #endif //FAST_PWM_FAN
  5111. bool setTargetedHotend(int code){
  5112. tmp_extruder = active_extruder;
  5113. if(code_seen('T')) {
  5114. tmp_extruder = code_value();
  5115. if(tmp_extruder >= EXTRUDERS) {
  5116. SERIAL_ECHO_START;
  5117. switch(code){
  5118. case 104:
  5119. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5120. break;
  5121. case 105:
  5122. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5123. break;
  5124. case 109:
  5125. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5126. break;
  5127. case 218:
  5128. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5129. break;
  5130. case 221:
  5131. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5132. break;
  5133. }
  5134. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5135. return true;
  5136. }
  5137. }
  5138. return false;
  5139. }
  5140. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5141. {
  5142. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5143. {
  5144. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5145. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5146. }
  5147. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5148. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5149. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5150. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5151. total_filament_used = 0;
  5152. }
  5153. float calculate_volumetric_multiplier(float diameter) {
  5154. float area = .0;
  5155. float radius = .0;
  5156. radius = diameter * .5;
  5157. if (! volumetric_enabled || radius == 0) {
  5158. area = 1;
  5159. }
  5160. else {
  5161. area = M_PI * pow(radius, 2);
  5162. }
  5163. return 1.0 / area;
  5164. }
  5165. void calculate_volumetric_multipliers() {
  5166. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5167. #if EXTRUDERS > 1
  5168. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5169. #if EXTRUDERS > 2
  5170. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5171. #endif
  5172. #endif
  5173. }
  5174. void delay_keep_alive(unsigned int ms)
  5175. {
  5176. for (;;) {
  5177. manage_heater();
  5178. // Manage inactivity, but don't disable steppers on timeout.
  5179. manage_inactivity(true);
  5180. lcd_update();
  5181. if (ms == 0)
  5182. break;
  5183. else if (ms >= 50) {
  5184. delay(50);
  5185. ms -= 50;
  5186. } else {
  5187. delay(ms);
  5188. ms = 0;
  5189. }
  5190. }
  5191. }
  5192. void check_babystep() {
  5193. int babystep_z;
  5194. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5195. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5196. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5197. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5198. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5199. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5200. lcd_update_enable(true);
  5201. }
  5202. }
  5203. #ifdef DIS
  5204. void d_setup()
  5205. {
  5206. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5207. pinMode(D_DATA, INPUT_PULLUP);
  5208. pinMode(D_REQUIRE, OUTPUT);
  5209. digitalWrite(D_REQUIRE, HIGH);
  5210. }
  5211. float d_ReadData()
  5212. {
  5213. int digit[13];
  5214. String mergeOutput;
  5215. float output;
  5216. digitalWrite(D_REQUIRE, HIGH);
  5217. for (int i = 0; i<13; i++)
  5218. {
  5219. for (int j = 0; j < 4; j++)
  5220. {
  5221. while (digitalRead(D_DATACLOCK) == LOW) {}
  5222. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5223. bitWrite(digit[i], j, digitalRead(D_DATA));
  5224. }
  5225. }
  5226. digitalWrite(D_REQUIRE, LOW);
  5227. mergeOutput = "";
  5228. output = 0;
  5229. for (int r = 5; r <= 10; r++) //Merge digits
  5230. {
  5231. mergeOutput += digit[r];
  5232. }
  5233. output = mergeOutput.toFloat();
  5234. if (digit[4] == 8) //Handle sign
  5235. {
  5236. output *= -1;
  5237. }
  5238. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5239. {
  5240. output /= 10;
  5241. }
  5242. return output;
  5243. }
  5244. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5245. int t1 = 0;
  5246. int t_delay = 0;
  5247. int digit[13];
  5248. int m;
  5249. char str[3];
  5250. //String mergeOutput;
  5251. char mergeOutput[15];
  5252. float output;
  5253. int mesh_point = 0; //index number of calibration point
  5254. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5255. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5256. float mesh_home_z_search = 4;
  5257. float row[x_points_num];
  5258. int ix = 0;
  5259. int iy = 0;
  5260. char* filename_wldsd = "wldsd.txt";
  5261. char data_wldsd[70];
  5262. char numb_wldsd[10];
  5263. d_setup();
  5264. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5265. // We don't know where we are! HOME!
  5266. // Push the commands to the front of the message queue in the reverse order!
  5267. // There shall be always enough space reserved for these commands.
  5268. repeatcommand_front(); // repeat G80 with all its parameters
  5269. enquecommand_front_P((PSTR("G28 W0")));
  5270. enquecommand_front_P((PSTR("G1 Z5")));
  5271. return;
  5272. }
  5273. bool custom_message_old = custom_message;
  5274. unsigned int custom_message_type_old = custom_message_type;
  5275. unsigned int custom_message_state_old = custom_message_state;
  5276. custom_message = true;
  5277. custom_message_type = 1;
  5278. custom_message_state = (x_points_num * y_points_num) + 10;
  5279. lcd_update(1);
  5280. mbl.reset();
  5281. babystep_undo();
  5282. card.openFile(filename_wldsd, false);
  5283. current_position[Z_AXIS] = mesh_home_z_search;
  5284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5285. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5286. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5287. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5288. setup_for_endstop_move(false);
  5289. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5290. SERIAL_PROTOCOL(x_points_num);
  5291. SERIAL_PROTOCOLPGM(",");
  5292. SERIAL_PROTOCOL(y_points_num);
  5293. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5294. SERIAL_PROTOCOL(mesh_home_z_search);
  5295. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5296. SERIAL_PROTOCOL(x_dimension);
  5297. SERIAL_PROTOCOLPGM(",");
  5298. SERIAL_PROTOCOL(y_dimension);
  5299. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5300. while (mesh_point != x_points_num * y_points_num) {
  5301. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5302. iy = mesh_point / x_points_num;
  5303. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5304. float z0 = 0.f;
  5305. current_position[Z_AXIS] = mesh_home_z_search;
  5306. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5307. st_synchronize();
  5308. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5309. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5311. st_synchronize();
  5312. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5313. break;
  5314. card.closefile();
  5315. }
  5316. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5317. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5318. //strcat(data_wldsd, numb_wldsd);
  5319. //MYSERIAL.println(data_wldsd);
  5320. //delay(1000);
  5321. //delay(3000);
  5322. //t1 = millis();
  5323. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5324. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5325. memset(digit, 0, sizeof(digit));
  5326. //cli();
  5327. digitalWrite(D_REQUIRE, LOW);
  5328. for (int i = 0; i<13; i++)
  5329. {
  5330. //t1 = millis();
  5331. for (int j = 0; j < 4; j++)
  5332. {
  5333. while (digitalRead(D_DATACLOCK) == LOW) {}
  5334. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5335. bitWrite(digit[i], j, digitalRead(D_DATA));
  5336. }
  5337. //t_delay = (millis() - t1);
  5338. //SERIAL_PROTOCOLPGM(" ");
  5339. //SERIAL_PROTOCOL_F(t_delay, 5);
  5340. //SERIAL_PROTOCOLPGM(" ");
  5341. }
  5342. //sei();
  5343. digitalWrite(D_REQUIRE, HIGH);
  5344. mergeOutput[0] = '\0';
  5345. output = 0;
  5346. for (int r = 5; r <= 10; r++) //Merge digits
  5347. {
  5348. sprintf(str, "%d", digit[r]);
  5349. strcat(mergeOutput, str);
  5350. }
  5351. output = atof(mergeOutput);
  5352. if (digit[4] == 8) //Handle sign
  5353. {
  5354. output *= -1;
  5355. }
  5356. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5357. {
  5358. output *= 0.1;
  5359. }
  5360. //output = d_ReadData();
  5361. //row[ix] = current_position[Z_AXIS];
  5362. memset(data_wldsd, 0, sizeof(data_wldsd));
  5363. for (int i = 0; i <3; i++) {
  5364. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5365. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5366. strcat(data_wldsd, numb_wldsd);
  5367. strcat(data_wldsd, ";");
  5368. }
  5369. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5370. dtostrf(output, 8, 5, numb_wldsd);
  5371. strcat(data_wldsd, numb_wldsd);
  5372. //strcat(data_wldsd, ";");
  5373. card.write_command(data_wldsd);
  5374. //row[ix] = d_ReadData();
  5375. row[ix] = output; // current_position[Z_AXIS];
  5376. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5377. for (int i = 0; i < x_points_num; i++) {
  5378. SERIAL_PROTOCOLPGM(" ");
  5379. SERIAL_PROTOCOL_F(row[i], 5);
  5380. }
  5381. SERIAL_PROTOCOLPGM("\n");
  5382. }
  5383. custom_message_state--;
  5384. mesh_point++;
  5385. lcd_update(1);
  5386. }
  5387. card.closefile();
  5388. }
  5389. #endif
  5390. void temp_compensation_start() {
  5391. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5392. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5393. current_position[Z_AXIS] = 0;
  5394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5395. st_synchronize();
  5396. while (fabs(degBed() - target_temperature_bed) > 3) delay_keep_alive(1000);
  5397. for(int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  5398. }
  5399. void temp_compensation_apply() {
  5400. int i_add;
  5401. int compensation_value;
  5402. int z_shift = 0;
  5403. float z_shift_mm;
  5404. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5405. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 50 && target_temperature_bed <= 100) {
  5406. i_add = (target_temperature_bed - 60) / 10;
  5407. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5408. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5409. }
  5410. else {
  5411. //interpolation
  5412. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5413. }
  5414. SERIAL_PROTOCOLPGM("\n");
  5415. SERIAL_PROTOCOLPGM("Z shift applied:");
  5416. MYSERIAL.print(z_shift_mm);
  5417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5418. st_synchronize();
  5419. plan_set_z_position(current_position[Z_AXIS]);
  5420. }
  5421. else {
  5422. //message that we have no temp compensation data
  5423. }
  5424. }
  5425. float temp_comp_interpolation(float inp_temperature) {
  5426. //cubic spline interpolation
  5427. int n, i, j, k;
  5428. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], p, m[10][10] = { 0 }, temp;
  5429. int shift[10];
  5430. int temp_C[10];
  5431. p = inp_temperature;
  5432. n = 6; //number of measured points
  5433. shift[0] = 0;
  5434. for (i = 0; i < n; i++) {
  5435. //scanf_s("%f%f", &x[i], &f[i]);
  5436. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5437. temp_C[i] = 50 + i * 10; //temperature in C
  5438. x[i] = (float)temp_C[i];
  5439. f[i] = (float)shift[i];
  5440. }
  5441. for (i = n - 1; i>0; i--) {
  5442. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5443. h[i - 1] = x[i] - x[i - 1];
  5444. }
  5445. //*********** formation of h, s , f matrix **************
  5446. for (i = 1; i<n - 1; i++) {
  5447. m[i][i] = 2 * (h[i - 1] + h[i]);
  5448. if (i != 1) {
  5449. m[i][i - 1] = h[i - 1];
  5450. m[i - 1][i] = h[i - 1];
  5451. }
  5452. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5453. }
  5454. //*********** forward elimination **************
  5455. for (i = 1; i<n - 2; i++) {
  5456. temp = (m[i + 1][i] / m[i][i]);
  5457. for (j = 1; j <= n - 1; j++)
  5458. m[i + 1][j] -= temp*m[i][j];
  5459. }
  5460. //*********** backward substitution *********
  5461. for (i = n - 2; i>0; i--) {
  5462. sum = 0;
  5463. for (j = i; j <= n - 2; j++)
  5464. sum += m[i][j] * s[j];
  5465. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5466. }
  5467. for (i = 0; i<n - 1; i++)
  5468. if (x[i] <= p&&p <= x[i + 1]) {
  5469. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5470. b = s[i] / 2;
  5471. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5472. d = f[i];
  5473. sum = a*pow((p - x[i]), 3) + b*pow((p - x[i]), 2) + c*(p - x[i]) + d;
  5474. }
  5475. return sum;
  5476. }