Marlin_main.cpp 251 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. bool volumetric_enabled = false;
  268. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  269. #if EXTRUDERS > 1
  270. , DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 2
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #endif
  274. #endif
  275. };
  276. float volumetric_multiplier[EXTRUDERS] = {1.0
  277. #if EXTRUDERS > 1
  278. , 1.0
  279. #if EXTRUDERS > 2
  280. , 1.0
  281. #endif
  282. #endif
  283. };
  284. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  285. float add_homing[3]={0,0,0};
  286. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  287. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  288. bool axis_known_position[3] = {false, false, false};
  289. float zprobe_zoffset;
  290. // Extruder offset
  291. #if EXTRUDERS > 1
  292. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  293. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  294. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  295. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  296. #endif
  297. };
  298. #endif
  299. uint8_t active_extruder = 0;
  300. int fanSpeed=0;
  301. #ifdef FWRETRACT
  302. bool autoretract_enabled=false;
  303. bool retracted[EXTRUDERS]={false
  304. #if EXTRUDERS > 1
  305. , false
  306. #if EXTRUDERS > 2
  307. , false
  308. #endif
  309. #endif
  310. };
  311. bool retracted_swap[EXTRUDERS]={false
  312. #if EXTRUDERS > 1
  313. , false
  314. #if EXTRUDERS > 2
  315. , false
  316. #endif
  317. #endif
  318. };
  319. float retract_length = RETRACT_LENGTH;
  320. float retract_length_swap = RETRACT_LENGTH_SWAP;
  321. float retract_feedrate = RETRACT_FEEDRATE;
  322. float retract_zlift = RETRACT_ZLIFT;
  323. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  324. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  325. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  326. #endif
  327. #ifdef ULTIPANEL
  328. #ifdef PS_DEFAULT_OFF
  329. bool powersupply = false;
  330. #else
  331. bool powersupply = true;
  332. #endif
  333. #endif
  334. bool cancel_heatup = false ;
  335. #ifdef HOST_KEEPALIVE_FEATURE
  336. MarlinBusyState busy_state = NOT_BUSY;
  337. static long prev_busy_signal_ms = -1;
  338. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  339. #else
  340. #define host_keepalive();
  341. #define KEEPALIVE_STATE(n);
  342. #endif
  343. #ifdef FILAMENT_SENSOR
  344. //Variables for Filament Sensor input
  345. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  346. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  347. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  348. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  349. int delay_index1=0; //index into ring buffer
  350. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  351. float delay_dist=0; //delay distance counter
  352. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  353. #endif
  354. const char errormagic[] PROGMEM = "Error:";
  355. const char echomagic[] PROGMEM = "echo:";
  356. //===========================================================================
  357. //=============================Private Variables=============================
  358. //===========================================================================
  359. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  360. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  361. static float delta[3] = {0.0, 0.0, 0.0};
  362. // For tracing an arc
  363. static float offset[3] = {0.0, 0.0, 0.0};
  364. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  365. // Determines Absolute or Relative Coordinates.
  366. // Also there is bool axis_relative_modes[] per axis flag.
  367. static bool relative_mode = false;
  368. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  369. //static float tt = 0;
  370. //static float bt = 0;
  371. //Inactivity shutdown variables
  372. static unsigned long previous_millis_cmd = 0;
  373. unsigned long max_inactive_time = 0;
  374. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  375. unsigned long starttime=0;
  376. unsigned long stoptime=0;
  377. unsigned long _usb_timer = 0;
  378. static uint8_t tmp_extruder;
  379. bool extruder_under_pressure = true;
  380. bool Stopped=false;
  381. #if NUM_SERVOS > 0
  382. Servo servos[NUM_SERVOS];
  383. #endif
  384. bool CooldownNoWait = true;
  385. bool target_direction;
  386. //Insert variables if CHDK is defined
  387. #ifdef CHDK
  388. unsigned long chdkHigh = 0;
  389. boolean chdkActive = false;
  390. #endif
  391. //===========================================================================
  392. //=============================Routines======================================
  393. //===========================================================================
  394. void get_arc_coordinates();
  395. bool setTargetedHotend(int code);
  396. void serial_echopair_P(const char *s_P, float v)
  397. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. void serial_echopair_P(const char *s_P, double v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. void serial_echopair_P(const char *s_P, unsigned long v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. #ifdef SDSUPPORT
  403. #include "SdFatUtil.h"
  404. int freeMemory() { return SdFatUtil::FreeRam(); }
  405. #else
  406. extern "C" {
  407. extern unsigned int __bss_end;
  408. extern unsigned int __heap_start;
  409. extern void *__brkval;
  410. int freeMemory() {
  411. int free_memory;
  412. if ((int)__brkval == 0)
  413. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  414. else
  415. free_memory = ((int)&free_memory) - ((int)__brkval);
  416. return free_memory;
  417. }
  418. }
  419. #endif //!SDSUPPORT
  420. void setup_killpin()
  421. {
  422. #if defined(KILL_PIN) && KILL_PIN > -1
  423. SET_INPUT(KILL_PIN);
  424. WRITE(KILL_PIN,HIGH);
  425. #endif
  426. }
  427. // Set home pin
  428. void setup_homepin(void)
  429. {
  430. #if defined(HOME_PIN) && HOME_PIN > -1
  431. SET_INPUT(HOME_PIN);
  432. WRITE(HOME_PIN,HIGH);
  433. #endif
  434. }
  435. void setup_photpin()
  436. {
  437. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  438. SET_OUTPUT(PHOTOGRAPH_PIN);
  439. WRITE(PHOTOGRAPH_PIN, LOW);
  440. #endif
  441. }
  442. void setup_powerhold()
  443. {
  444. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  445. SET_OUTPUT(SUICIDE_PIN);
  446. WRITE(SUICIDE_PIN, HIGH);
  447. #endif
  448. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  449. SET_OUTPUT(PS_ON_PIN);
  450. #if defined(PS_DEFAULT_OFF)
  451. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. SET_OUTPUT(SUICIDE_PIN);
  461. WRITE(SUICIDE_PIN, LOW);
  462. #endif
  463. }
  464. void servo_init()
  465. {
  466. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  467. servos[0].attach(SERVO0_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  470. servos[1].attach(SERVO1_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  473. servos[2].attach(SERVO2_PIN);
  474. #endif
  475. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  476. servos[3].attach(SERVO3_PIN);
  477. #endif
  478. #if (NUM_SERVOS >= 5)
  479. #error "TODO: enter initalisation code for more servos"
  480. #endif
  481. }
  482. static void lcd_language_menu();
  483. void stop_and_save_print_to_ram(float z_move, float e_move);
  484. void restore_print_from_ram_and_continue(float e_move);
  485. extern int8_t CrashDetectMenu;
  486. void crashdet_enable()
  487. {
  488. MYSERIAL.println("crashdet_enable");
  489. tmc2130_sg_stop_on_crash = true;
  490. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  491. CrashDetectMenu = 1;
  492. }
  493. void crashdet_disable()
  494. {
  495. MYSERIAL.println("crashdet_disable");
  496. tmc2130_sg_stop_on_crash = false;
  497. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  498. CrashDetectMenu = 0;
  499. }
  500. void crashdet_stop_and_save_print()
  501. {
  502. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  503. }
  504. void crashdet_restore_print_and_continue()
  505. {
  506. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  507. // babystep_apply();
  508. }
  509. void crashdet_stop_and_save_print2()
  510. {
  511. cli();
  512. planner_abort_hard(); //abort printing
  513. cmdqueue_reset(); //empty cmdqueue
  514. card.sdprinting = false;
  515. card.closefile();
  516. sei();
  517. }
  518. #ifdef MESH_BED_LEVELING
  519. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  520. #endif
  521. // Factory reset function
  522. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  523. // Level input parameter sets depth of reset
  524. // Quiet parameter masks all waitings for user interact.
  525. int er_progress = 0;
  526. void factory_reset(char level, bool quiet)
  527. {
  528. lcd_implementation_clear();
  529. int cursor_pos = 0;
  530. switch (level) {
  531. // Level 0: Language reset
  532. case 0:
  533. WRITE(BEEPER, HIGH);
  534. _delay_ms(100);
  535. WRITE(BEEPER, LOW);
  536. lcd_force_language_selection();
  537. break;
  538. //Level 1: Reset statistics
  539. case 1:
  540. WRITE(BEEPER, HIGH);
  541. _delay_ms(100);
  542. WRITE(BEEPER, LOW);
  543. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  544. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  545. lcd_menu_statistics();
  546. break;
  547. // Level 2: Prepare for shipping
  548. case 2:
  549. //lcd_printPGM(PSTR("Factory RESET"));
  550. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  551. // Force language selection at the next boot up.
  552. lcd_force_language_selection();
  553. // Force the "Follow calibration flow" message at the next boot up.
  554. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  555. farm_no = 0;
  556. farm_mode == false;
  557. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  558. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  559. WRITE(BEEPER, HIGH);
  560. _delay_ms(100);
  561. WRITE(BEEPER, LOW);
  562. //_delay_ms(2000);
  563. break;
  564. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  565. case 3:
  566. lcd_printPGM(PSTR("Factory RESET"));
  567. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  568. WRITE(BEEPER, HIGH);
  569. _delay_ms(100);
  570. WRITE(BEEPER, LOW);
  571. er_progress = 0;
  572. lcd_print_at_PGM(3, 3, PSTR(" "));
  573. lcd_implementation_print_at(3, 3, er_progress);
  574. // Erase EEPROM
  575. for (int i = 0; i < 4096; i++) {
  576. eeprom_write_byte((uint8_t*)i, 0xFF);
  577. if (i % 41 == 0) {
  578. er_progress++;
  579. lcd_print_at_PGM(3, 3, PSTR(" "));
  580. lcd_implementation_print_at(3, 3, er_progress);
  581. lcd_printPGM(PSTR("%"));
  582. }
  583. }
  584. break;
  585. case 4:
  586. bowden_menu();
  587. break;
  588. default:
  589. break;
  590. }
  591. }
  592. // "Setup" function is called by the Arduino framework on startup.
  593. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  594. // are initialized by the main() routine provided by the Arduino framework.
  595. void setup()
  596. {
  597. lcd_init();
  598. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  599. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  600. setup_killpin();
  601. setup_powerhold();
  602. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  603. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  604. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  605. if (farm_no == 0xFFFF) farm_no = 0;
  606. if (farm_mode)
  607. {
  608. prusa_statistics(8);
  609. selectedSerialPort = 1;
  610. }
  611. else
  612. selectedSerialPort = 0;
  613. MYSERIAL.begin(BAUDRATE);
  614. SERIAL_PROTOCOLLNPGM("start");
  615. SERIAL_ECHO_START;
  616. #if 0
  617. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  618. for (int i = 0; i < 4096; ++i) {
  619. int b = eeprom_read_byte((unsigned char*)i);
  620. if (b != 255) {
  621. SERIAL_ECHO(i);
  622. SERIAL_ECHO(":");
  623. SERIAL_ECHO(b);
  624. SERIAL_ECHOLN("");
  625. }
  626. }
  627. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  628. #endif
  629. // Check startup - does nothing if bootloader sets MCUSR to 0
  630. byte mcu = MCUSR;
  631. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  632. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  633. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  634. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  635. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  636. MCUSR = 0;
  637. //SERIAL_ECHORPGM(MSG_MARLIN);
  638. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  639. #ifdef STRING_VERSION_CONFIG_H
  640. #ifdef STRING_CONFIG_H_AUTHOR
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  643. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  644. SERIAL_ECHORPGM(MSG_AUTHOR);
  645. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  646. SERIAL_ECHOPGM("Compiled: ");
  647. SERIAL_ECHOLNPGM(__DATE__);
  648. #endif
  649. #endif
  650. SERIAL_ECHO_START;
  651. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  652. SERIAL_ECHO(freeMemory());
  653. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  654. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  655. //lcd_update_enable(false); // why do we need this?? - andre
  656. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  657. Config_RetrieveSettings(EEPROM_OFFSET);
  658. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  659. tp_init(); // Initialize temperature loop
  660. plan_init(); // Initialize planner;
  661. watchdog_init();
  662. #ifdef TMC2130
  663. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  664. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  665. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  666. if (crashdet)
  667. {
  668. crashdet_enable();
  669. MYSERIAL.println("CrashDetect ENABLED!");
  670. }
  671. else
  672. {
  673. crashdet_disable();
  674. MYSERIAL.println("CrashDetect DISABLED");
  675. }
  676. #endif //TMC2130
  677. #ifdef PAT9125
  678. MYSERIAL.print("PAT9125_init:");
  679. int pat9125 = pat9125_init(200, 200);
  680. MYSERIAL.println(pat9125);
  681. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  682. if (!pat9125) fsensor = 0; //disable sensor
  683. if (fsensor)
  684. {
  685. fsensor_enable();
  686. MYSERIAL.println("Filament Sensor ENABLED!");
  687. }
  688. else
  689. {
  690. fsensor_disable();
  691. MYSERIAL.println("Filament Sensor DISABLED");
  692. }
  693. #endif //PAT9125
  694. st_init(); // Initialize stepper, this enables interrupts!
  695. setup_photpin();
  696. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  697. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  698. servo_init();
  699. // Reset the machine correction matrix.
  700. // It does not make sense to load the correction matrix until the machine is homed.
  701. world2machine_reset();
  702. KEEPALIVE_STATE(PAUSED_FOR_USER);
  703. if (!READ(BTN_ENC))
  704. {
  705. _delay_ms(1000);
  706. if (!READ(BTN_ENC))
  707. {
  708. lcd_implementation_clear();
  709. lcd_printPGM(PSTR("Factory RESET"));
  710. SET_OUTPUT(BEEPER);
  711. WRITE(BEEPER, HIGH);
  712. while (!READ(BTN_ENC));
  713. WRITE(BEEPER, LOW);
  714. _delay_ms(2000);
  715. char level = reset_menu();
  716. factory_reset(level, false);
  717. switch (level) {
  718. case 0: _delay_ms(0); break;
  719. case 1: _delay_ms(0); break;
  720. case 2: _delay_ms(0); break;
  721. case 3: _delay_ms(0); break;
  722. }
  723. // _delay_ms(100);
  724. /*
  725. #ifdef MESH_BED_LEVELING
  726. _delay_ms(2000);
  727. if (!READ(BTN_ENC))
  728. {
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. _delay_ms(200);
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. int _z = 0;
  737. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  738. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  739. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  740. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  741. }
  742. else
  743. {
  744. WRITE(BEEPER, HIGH);
  745. _delay_ms(100);
  746. WRITE(BEEPER, LOW);
  747. }
  748. #endif // mesh */
  749. }
  750. }
  751. else
  752. {
  753. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  754. }
  755. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  756. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  757. #endif
  758. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  759. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  760. #endif
  761. #ifdef DIGIPOT_I2C
  762. digipot_i2c_init();
  763. #endif
  764. setup_homepin();
  765. if (1) {
  766. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  767. // try to run to zero phase before powering the Z motor.
  768. // Move in negative direction
  769. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  770. // Round the current micro-micro steps to micro steps.
  771. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  772. // Until the phase counter is reset to zero.
  773. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  774. delay(2);
  775. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  776. delay(2);
  777. }
  778. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  779. }
  780. #if defined(Z_AXIS_ALWAYS_ON)
  781. enable_z();
  782. #endif
  783. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  784. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  785. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  786. if (farm_no == 0xFFFF) farm_no = 0;
  787. if (farm_mode)
  788. {
  789. prusa_statistics(8);
  790. }
  791. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  792. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  793. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  794. // but this times out if a blocking dialog is shown in setup().
  795. card.initsd();
  796. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  797. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  798. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  799. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  800. // where all the EEPROM entries are set to 0x0ff.
  801. // Once a firmware boots up, it forces at least a language selection, which changes
  802. // EEPROM_LANG to number lower than 0x0ff.
  803. // 1) Set a high power mode.
  804. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  805. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  806. }
  807. #ifdef SNMM
  808. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  809. int _z = BOWDEN_LENGTH;
  810. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  811. }
  812. #endif
  813. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  814. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  815. // is being written into the EEPROM, so the update procedure will be triggered only once.
  816. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  817. if (lang_selected >= LANG_NUM){
  818. lcd_mylang();
  819. }
  820. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  821. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  822. temp_cal_active = false;
  823. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  824. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  825. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  826. }
  827. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  828. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  829. }
  830. check_babystep(); //checking if Z babystep is in allowed range
  831. setup_uvlo_interrupt();
  832. setup_fan_interrupt();
  833. fsensor_setup_interrupt();
  834. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  835. #ifndef DEBUG_DISABLE_STARTMSGS
  836. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  837. lcd_wizard(0);
  838. }
  839. else if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  840. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  841. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  842. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  843. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  844. // Show the message.
  845. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  846. }
  847. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  848. // Show the message.
  849. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  850. lcd_update_enable(true);
  851. }
  852. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  853. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  854. lcd_update_enable(true);
  855. }
  856. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  857. // Show the message.
  858. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  859. }
  860. }
  861. KEEPALIVE_STATE(IN_PROCESS);
  862. #endif //DEBUG_DISABLE_STARTMSGS
  863. lcd_update_enable(true);
  864. lcd_implementation_clear();
  865. lcd_update(2);
  866. // Store the currently running firmware into an eeprom,
  867. // so the next time the firmware gets updated, it will know from which version it has been updated.
  868. update_current_firmware_version_to_eeprom();
  869. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  870. /*
  871. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  872. else {
  873. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  874. lcd_update_enable(true);
  875. lcd_update(2);
  876. lcd_setstatuspgm(WELCOME_MSG);
  877. }
  878. */
  879. manage_heater(); // Update temperatures
  880. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  881. MYSERIAL.println("Power panic detected!");
  882. MYSERIAL.print("Current bed temp:");
  883. MYSERIAL.println(degBed());
  884. MYSERIAL.print("Saved bed temp:");
  885. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  886. #endif
  887. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  888. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  889. MYSERIAL.println("Automatic recovery!");
  890. #endif
  891. recover_print(1);
  892. }
  893. else{
  894. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  895. MYSERIAL.println("Normal recovery!");
  896. #endif
  897. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  898. else {
  899. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  900. lcd_update_enable(true);
  901. lcd_update(2);
  902. lcd_setstatuspgm(WELCOME_MSG);
  903. }
  904. }
  905. }
  906. KEEPALIVE_STATE(NOT_BUSY);
  907. }
  908. void trace();
  909. #define CHUNK_SIZE 64 // bytes
  910. #define SAFETY_MARGIN 1
  911. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  912. int chunkHead = 0;
  913. int serial_read_stream() {
  914. setTargetHotend(0, 0);
  915. setTargetBed(0);
  916. lcd_implementation_clear();
  917. lcd_printPGM(PSTR(" Upload in progress"));
  918. // first wait for how many bytes we will receive
  919. uint32_t bytesToReceive;
  920. // receive the four bytes
  921. char bytesToReceiveBuffer[4];
  922. for (int i=0; i<4; i++) {
  923. int data;
  924. while ((data = MYSERIAL.read()) == -1) {};
  925. bytesToReceiveBuffer[i] = data;
  926. }
  927. // make it a uint32
  928. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  929. // we're ready, notify the sender
  930. MYSERIAL.write('+');
  931. // lock in the routine
  932. uint32_t receivedBytes = 0;
  933. while (prusa_sd_card_upload) {
  934. int i;
  935. for (i=0; i<CHUNK_SIZE; i++) {
  936. int data;
  937. // check if we're not done
  938. if (receivedBytes == bytesToReceive) {
  939. break;
  940. }
  941. // read the next byte
  942. while ((data = MYSERIAL.read()) == -1) {};
  943. receivedBytes++;
  944. // save it to the chunk
  945. chunk[i] = data;
  946. }
  947. // write the chunk to SD
  948. card.write_command_no_newline(&chunk[0]);
  949. // notify the sender we're ready for more data
  950. MYSERIAL.write('+');
  951. // for safety
  952. manage_heater();
  953. // check if we're done
  954. if(receivedBytes == bytesToReceive) {
  955. trace(); // beep
  956. card.closefile();
  957. prusa_sd_card_upload = false;
  958. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  959. return 0;
  960. }
  961. }
  962. }
  963. #ifdef HOST_KEEPALIVE_FEATURE
  964. /**
  965. * Output a "busy" message at regular intervals
  966. * while the machine is not accepting commands.
  967. */
  968. void host_keepalive() {
  969. if (farm_mode) return;
  970. long ms = millis();
  971. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  972. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  973. switch (busy_state) {
  974. case IN_HANDLER:
  975. case IN_PROCESS:
  976. SERIAL_ECHO_START;
  977. SERIAL_ECHOLNPGM("busy: processing");
  978. break;
  979. case PAUSED_FOR_USER:
  980. SERIAL_ECHO_START;
  981. SERIAL_ECHOLNPGM("busy: paused for user");
  982. break;
  983. case PAUSED_FOR_INPUT:
  984. SERIAL_ECHO_START;
  985. SERIAL_ECHOLNPGM("busy: paused for input");
  986. break;
  987. default:
  988. break;
  989. }
  990. }
  991. prev_busy_signal_ms = ms;
  992. }
  993. #endif
  994. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  995. // Before loop(), the setup() function is called by the main() routine.
  996. void loop()
  997. {
  998. KEEPALIVE_STATE(NOT_BUSY);
  999. bool stack_integrity = true;
  1000. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1001. {
  1002. is_usb_printing = true;
  1003. usb_printing_counter--;
  1004. _usb_timer = millis();
  1005. }
  1006. if (usb_printing_counter == 0)
  1007. {
  1008. is_usb_printing = false;
  1009. }
  1010. if (prusa_sd_card_upload)
  1011. {
  1012. //we read byte-by byte
  1013. serial_read_stream();
  1014. } else
  1015. {
  1016. get_command();
  1017. #ifdef SDSUPPORT
  1018. card.checkautostart(false);
  1019. #endif
  1020. if(buflen)
  1021. {
  1022. cmdbuffer_front_already_processed = false;
  1023. #ifdef SDSUPPORT
  1024. if(card.saving)
  1025. {
  1026. // Saving a G-code file onto an SD-card is in progress.
  1027. // Saving starts with M28, saving until M29 is seen.
  1028. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1029. card.write_command(CMDBUFFER_CURRENT_STRING);
  1030. if(card.logging)
  1031. process_commands();
  1032. else
  1033. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1034. } else {
  1035. card.closefile();
  1036. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1037. }
  1038. } else {
  1039. process_commands();
  1040. }
  1041. #else
  1042. process_commands();
  1043. #endif //SDSUPPORT
  1044. if (! cmdbuffer_front_already_processed && buflen)
  1045. {
  1046. cli();
  1047. union {
  1048. struct {
  1049. char lo;
  1050. char hi;
  1051. } lohi;
  1052. uint16_t value;
  1053. } sdlen;
  1054. sdlen.value = 0;
  1055. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1056. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1057. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1058. }
  1059. cmdqueue_pop_front();
  1060. planner_add_sd_length(sdlen.value);
  1061. sei();
  1062. }
  1063. host_keepalive();
  1064. }
  1065. }
  1066. //check heater every n milliseconds
  1067. manage_heater();
  1068. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1069. checkHitEndstops();
  1070. lcd_update();
  1071. #ifdef PAT9125
  1072. fsensor_update();
  1073. #endif //PAT9125
  1074. #ifdef TMC2130
  1075. tmc2130_check_overtemp();
  1076. if (tmc2130_sg_crash)
  1077. {
  1078. tmc2130_sg_crash = false;
  1079. // crashdet_stop_and_save_print();
  1080. enquecommand_P((PSTR("D999")));
  1081. }
  1082. #endif //TMC2130
  1083. }
  1084. #define DEFINE_PGM_READ_ANY(type, reader) \
  1085. static inline type pgm_read_any(const type *p) \
  1086. { return pgm_read_##reader##_near(p); }
  1087. DEFINE_PGM_READ_ANY(float, float);
  1088. DEFINE_PGM_READ_ANY(signed char, byte);
  1089. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1090. static const PROGMEM type array##_P[3] = \
  1091. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1092. static inline type array(int axis) \
  1093. { return pgm_read_any(&array##_P[axis]); } \
  1094. type array##_ext(int axis) \
  1095. { return pgm_read_any(&array##_P[axis]); }
  1096. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1097. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1098. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1099. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1100. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1101. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1102. static void axis_is_at_home(int axis) {
  1103. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1104. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1105. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1106. }
  1107. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1108. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1109. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1110. saved_feedrate = feedrate;
  1111. saved_feedmultiply = feedmultiply;
  1112. feedmultiply = 100;
  1113. previous_millis_cmd = millis();
  1114. enable_endstops(enable_endstops_now);
  1115. }
  1116. static void clean_up_after_endstop_move() {
  1117. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1118. enable_endstops(false);
  1119. #endif
  1120. feedrate = saved_feedrate;
  1121. feedmultiply = saved_feedmultiply;
  1122. previous_millis_cmd = millis();
  1123. }
  1124. #ifdef ENABLE_AUTO_BED_LEVELING
  1125. #ifdef AUTO_BED_LEVELING_GRID
  1126. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1127. {
  1128. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1129. planeNormal.debug("planeNormal");
  1130. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1131. //bedLevel.debug("bedLevel");
  1132. //plan_bed_level_matrix.debug("bed level before");
  1133. //vector_3 uncorrected_position = plan_get_position_mm();
  1134. //uncorrected_position.debug("position before");
  1135. vector_3 corrected_position = plan_get_position();
  1136. // corrected_position.debug("position after");
  1137. current_position[X_AXIS] = corrected_position.x;
  1138. current_position[Y_AXIS] = corrected_position.y;
  1139. current_position[Z_AXIS] = corrected_position.z;
  1140. // put the bed at 0 so we don't go below it.
  1141. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1143. }
  1144. #else // not AUTO_BED_LEVELING_GRID
  1145. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1146. plan_bed_level_matrix.set_to_identity();
  1147. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1148. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1149. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1150. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1151. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1152. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1153. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1154. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1155. vector_3 corrected_position = plan_get_position();
  1156. current_position[X_AXIS] = corrected_position.x;
  1157. current_position[Y_AXIS] = corrected_position.y;
  1158. current_position[Z_AXIS] = corrected_position.z;
  1159. // put the bed at 0 so we don't go below it.
  1160. current_position[Z_AXIS] = zprobe_zoffset;
  1161. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1162. }
  1163. #endif // AUTO_BED_LEVELING_GRID
  1164. static void run_z_probe() {
  1165. plan_bed_level_matrix.set_to_identity();
  1166. feedrate = homing_feedrate[Z_AXIS];
  1167. // move down until you find the bed
  1168. float zPosition = -10;
  1169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1170. st_synchronize();
  1171. // we have to let the planner know where we are right now as it is not where we said to go.
  1172. zPosition = st_get_position_mm(Z_AXIS);
  1173. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1174. // move up the retract distance
  1175. zPosition += home_retract_mm(Z_AXIS);
  1176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1177. st_synchronize();
  1178. // move back down slowly to find bed
  1179. feedrate = homing_feedrate[Z_AXIS]/4;
  1180. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1182. st_synchronize();
  1183. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1184. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1185. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1186. }
  1187. static void do_blocking_move_to(float x, float y, float z) {
  1188. float oldFeedRate = feedrate;
  1189. feedrate = homing_feedrate[Z_AXIS];
  1190. current_position[Z_AXIS] = z;
  1191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1192. st_synchronize();
  1193. feedrate = XY_TRAVEL_SPEED;
  1194. current_position[X_AXIS] = x;
  1195. current_position[Y_AXIS] = y;
  1196. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1197. st_synchronize();
  1198. feedrate = oldFeedRate;
  1199. }
  1200. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1201. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1202. }
  1203. /// Probe bed height at position (x,y), returns the measured z value
  1204. static float probe_pt(float x, float y, float z_before) {
  1205. // move to right place
  1206. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1207. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1208. run_z_probe();
  1209. float measured_z = current_position[Z_AXIS];
  1210. SERIAL_PROTOCOLRPGM(MSG_BED);
  1211. SERIAL_PROTOCOLPGM(" x: ");
  1212. SERIAL_PROTOCOL(x);
  1213. SERIAL_PROTOCOLPGM(" y: ");
  1214. SERIAL_PROTOCOL(y);
  1215. SERIAL_PROTOCOLPGM(" z: ");
  1216. SERIAL_PROTOCOL(measured_z);
  1217. SERIAL_PROTOCOLPGM("\n");
  1218. return measured_z;
  1219. }
  1220. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1221. #ifdef LIN_ADVANCE
  1222. /**
  1223. * M900: Set and/or Get advance K factor and WH/D ratio
  1224. *
  1225. * K<factor> Set advance K factor
  1226. * R<ratio> Set ratio directly (overrides WH/D)
  1227. * W<width> H<height> D<diam> Set ratio from WH/D
  1228. */
  1229. inline void gcode_M900() {
  1230. st_synchronize();
  1231. const float newK = code_seen('K') ? code_value_float() : -1;
  1232. if (newK >= 0) extruder_advance_k = newK;
  1233. float newR = code_seen('R') ? code_value_float() : -1;
  1234. if (newR < 0) {
  1235. const float newD = code_seen('D') ? code_value_float() : -1,
  1236. newW = code_seen('W') ? code_value_float() : -1,
  1237. newH = code_seen('H') ? code_value_float() : -1;
  1238. if (newD >= 0 && newW >= 0 && newH >= 0)
  1239. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1240. }
  1241. if (newR >= 0) advance_ed_ratio = newR;
  1242. SERIAL_ECHO_START;
  1243. SERIAL_ECHOPGM("Advance K=");
  1244. SERIAL_ECHOLN(extruder_advance_k);
  1245. SERIAL_ECHOPGM(" E/D=");
  1246. const float ratio = advance_ed_ratio;
  1247. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1248. }
  1249. #endif // LIN_ADVANCE
  1250. #ifdef TMC2130
  1251. bool calibrate_z_auto()
  1252. {
  1253. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1254. lcd_implementation_clear();
  1255. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1256. bool endstops_enabled = enable_endstops(true);
  1257. int axis_up_dir = -home_dir(Z_AXIS);
  1258. tmc2130_home_enter(Z_AXIS_MASK);
  1259. current_position[Z_AXIS] = 0;
  1260. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1261. set_destination_to_current();
  1262. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1263. feedrate = homing_feedrate[Z_AXIS];
  1264. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1265. tmc2130_home_restart(Z_AXIS);
  1266. st_synchronize();
  1267. // current_position[axis] = 0;
  1268. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1269. tmc2130_home_exit();
  1270. enable_endstops(false);
  1271. current_position[Z_AXIS] = 0;
  1272. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1273. set_destination_to_current();
  1274. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1275. feedrate = homing_feedrate[Z_AXIS] / 2;
  1276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1277. st_synchronize();
  1278. enable_endstops(endstops_enabled);
  1279. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1281. return true;
  1282. }
  1283. #endif //TMC2130
  1284. void homeaxis(int axis)
  1285. {
  1286. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1287. #define HOMEAXIS_DO(LETTER) \
  1288. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1289. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1290. {
  1291. int axis_home_dir = home_dir(axis);
  1292. feedrate = homing_feedrate[axis];
  1293. #ifdef TMC2130
  1294. tmc2130_home_enter(X_AXIS_MASK << axis);
  1295. #endif
  1296. // Move right a bit, so that the print head does not touch the left end position,
  1297. // and the following left movement has a chance to achieve the required velocity
  1298. // for the stall guard to work.
  1299. current_position[axis] = 0;
  1300. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1301. // destination[axis] = 11.f;
  1302. destination[axis] = 3.f;
  1303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1304. st_synchronize();
  1305. // Move left away from the possible collision with the collision detection disabled.
  1306. endstops_hit_on_purpose();
  1307. enable_endstops(false);
  1308. current_position[axis] = 0;
  1309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1310. destination[axis] = - 1.;
  1311. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1312. st_synchronize();
  1313. // Now continue to move up to the left end stop with the collision detection enabled.
  1314. enable_endstops(true);
  1315. destination[axis] = - 1.1 * max_length(axis);
  1316. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1317. st_synchronize();
  1318. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1319. endstops_hit_on_purpose();
  1320. enable_endstops(false);
  1321. current_position[axis] = 0;
  1322. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1323. destination[axis] = 10.f;
  1324. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1325. st_synchronize();
  1326. endstops_hit_on_purpose();
  1327. // Now move left up to the collision, this time with a repeatable velocity.
  1328. enable_endstops(true);
  1329. destination[axis] = - 15.f;
  1330. feedrate = homing_feedrate[axis]/2;
  1331. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1332. st_synchronize();
  1333. axis_is_at_home(axis);
  1334. axis_known_position[axis] = true;
  1335. #ifdef TMC2130
  1336. tmc2130_home_exit();
  1337. #endif
  1338. // Move the X carriage away from the collision.
  1339. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1340. endstops_hit_on_purpose();
  1341. enable_endstops(false);
  1342. {
  1343. // Two full periods (4 full steps).
  1344. float gap = 0.32f * 2.f;
  1345. current_position[axis] -= gap;
  1346. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1347. current_position[axis] += gap;
  1348. }
  1349. destination[axis] = current_position[axis];
  1350. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1351. st_synchronize();
  1352. feedrate = 0.0;
  1353. }
  1354. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1355. {
  1356. int axis_home_dir = home_dir(axis);
  1357. current_position[axis] = 0;
  1358. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1359. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1360. feedrate = homing_feedrate[axis];
  1361. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1362. st_synchronize();
  1363. current_position[axis] = 0;
  1364. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1365. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1366. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1367. st_synchronize();
  1368. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1369. feedrate = homing_feedrate[axis]/2 ;
  1370. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1371. st_synchronize();
  1372. axis_is_at_home(axis);
  1373. destination[axis] = current_position[axis];
  1374. feedrate = 0.0;
  1375. endstops_hit_on_purpose();
  1376. axis_known_position[axis] = true;
  1377. }
  1378. enable_endstops(endstops_enabled);
  1379. }
  1380. /**/
  1381. void home_xy()
  1382. {
  1383. set_destination_to_current();
  1384. homeaxis(X_AXIS);
  1385. homeaxis(Y_AXIS);
  1386. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1387. endstops_hit_on_purpose();
  1388. }
  1389. void refresh_cmd_timeout(void)
  1390. {
  1391. previous_millis_cmd = millis();
  1392. }
  1393. #ifdef FWRETRACT
  1394. void retract(bool retracting, bool swapretract = false) {
  1395. if(retracting && !retracted[active_extruder]) {
  1396. destination[X_AXIS]=current_position[X_AXIS];
  1397. destination[Y_AXIS]=current_position[Y_AXIS];
  1398. destination[Z_AXIS]=current_position[Z_AXIS];
  1399. destination[E_AXIS]=current_position[E_AXIS];
  1400. if (swapretract) {
  1401. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1402. } else {
  1403. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1404. }
  1405. plan_set_e_position(current_position[E_AXIS]);
  1406. float oldFeedrate = feedrate;
  1407. feedrate=retract_feedrate*60;
  1408. retracted[active_extruder]=true;
  1409. prepare_move();
  1410. current_position[Z_AXIS]-=retract_zlift;
  1411. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1412. prepare_move();
  1413. feedrate = oldFeedrate;
  1414. } else if(!retracting && retracted[active_extruder]) {
  1415. destination[X_AXIS]=current_position[X_AXIS];
  1416. destination[Y_AXIS]=current_position[Y_AXIS];
  1417. destination[Z_AXIS]=current_position[Z_AXIS];
  1418. destination[E_AXIS]=current_position[E_AXIS];
  1419. current_position[Z_AXIS]+=retract_zlift;
  1420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1421. //prepare_move();
  1422. if (swapretract) {
  1423. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1424. } else {
  1425. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1426. }
  1427. plan_set_e_position(current_position[E_AXIS]);
  1428. float oldFeedrate = feedrate;
  1429. feedrate=retract_recover_feedrate*60;
  1430. retracted[active_extruder]=false;
  1431. prepare_move();
  1432. feedrate = oldFeedrate;
  1433. }
  1434. } //retract
  1435. #endif //FWRETRACT
  1436. void trace() {
  1437. tone(BEEPER, 440);
  1438. delay(25);
  1439. noTone(BEEPER);
  1440. delay(20);
  1441. }
  1442. /*
  1443. void ramming() {
  1444. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1445. if (current_temperature[0] < 230) {
  1446. //PLA
  1447. max_feedrate[E_AXIS] = 50;
  1448. //current_position[E_AXIS] -= 8;
  1449. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1450. //current_position[E_AXIS] += 8;
  1451. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1452. current_position[E_AXIS] += 5.4;
  1453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1454. current_position[E_AXIS] += 3.2;
  1455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1456. current_position[E_AXIS] += 3;
  1457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1458. st_synchronize();
  1459. max_feedrate[E_AXIS] = 80;
  1460. current_position[E_AXIS] -= 82;
  1461. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1462. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1463. current_position[E_AXIS] -= 20;
  1464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1465. current_position[E_AXIS] += 5;
  1466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1467. current_position[E_AXIS] += 5;
  1468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1469. current_position[E_AXIS] -= 10;
  1470. st_synchronize();
  1471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1472. current_position[E_AXIS] += 10;
  1473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1474. current_position[E_AXIS] -= 10;
  1475. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1476. current_position[E_AXIS] += 10;
  1477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1478. current_position[E_AXIS] -= 10;
  1479. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1480. st_synchronize();
  1481. }
  1482. else {
  1483. //ABS
  1484. max_feedrate[E_AXIS] = 50;
  1485. //current_position[E_AXIS] -= 8;
  1486. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1487. //current_position[E_AXIS] += 8;
  1488. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1489. current_position[E_AXIS] += 3.1;
  1490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1491. current_position[E_AXIS] += 3.1;
  1492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1493. current_position[E_AXIS] += 4;
  1494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1495. st_synchronize();
  1496. //current_position[X_AXIS] += 23; //delay
  1497. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1498. //current_position[X_AXIS] -= 23; //delay
  1499. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1500. delay(4700);
  1501. max_feedrate[E_AXIS] = 80;
  1502. current_position[E_AXIS] -= 92;
  1503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1504. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1505. current_position[E_AXIS] -= 5;
  1506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1507. current_position[E_AXIS] += 5;
  1508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1509. current_position[E_AXIS] -= 5;
  1510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1511. st_synchronize();
  1512. current_position[E_AXIS] += 5;
  1513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1514. current_position[E_AXIS] -= 5;
  1515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1516. current_position[E_AXIS] += 5;
  1517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1518. current_position[E_AXIS] -= 5;
  1519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1520. st_synchronize();
  1521. }
  1522. }
  1523. */
  1524. bool gcode_M45(bool onlyZ) {
  1525. bool final_result = false;
  1526. // Only Z calibration?
  1527. if (!onlyZ) {
  1528. setTargetBed(0);
  1529. setTargetHotend(0, 0);
  1530. setTargetHotend(0, 1);
  1531. setTargetHotend(0, 2);
  1532. adjust_bed_reset(); //reset bed level correction
  1533. }
  1534. // Disable the default update procedure of the display. We will do a modal dialog.
  1535. lcd_update_enable(false);
  1536. // Let the planner use the uncorrected coordinates.
  1537. mbl.reset();
  1538. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1539. // the planner will not perform any adjustments in the XY plane.
  1540. // Wait for the motors to stop and update the current position with the absolute values.
  1541. world2machine_revert_to_uncorrected();
  1542. // Reset the baby step value applied without moving the axes.
  1543. babystep_reset();
  1544. // Mark all axes as in a need for homing.
  1545. memset(axis_known_position, 0, sizeof(axis_known_position));
  1546. // Home in the XY plane.
  1547. //set_destination_to_current();
  1548. setup_for_endstop_move();
  1549. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1550. home_xy();
  1551. // Let the user move the Z axes up to the end stoppers.
  1552. #ifdef TMC2130
  1553. if (calibrate_z_auto()) {
  1554. #else //TMC2130
  1555. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1556. #endif //TMC2130
  1557. refresh_cmd_timeout();
  1558. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1559. // lcd_wait_for_cool_down();
  1560. //}
  1561. if(!onlyZ){
  1562. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1563. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1564. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1565. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1566. KEEPALIVE_STATE(IN_HANDLER);
  1567. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1568. lcd_implementation_print_at(0, 2, 1);
  1569. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1570. }
  1571. // Move the print head close to the bed.
  1572. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1574. st_synchronize();
  1575. //#ifdef TMC2130
  1576. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1577. //#endif
  1578. int8_t verbosity_level = 0;
  1579. if (code_seen('V')) {
  1580. // Just 'V' without a number counts as V1.
  1581. char c = strchr_pointer[1];
  1582. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1583. }
  1584. if (onlyZ) {
  1585. clean_up_after_endstop_move();
  1586. // Z only calibration.
  1587. // Load the machine correction matrix
  1588. world2machine_initialize();
  1589. // and correct the current_position to match the transformed coordinate system.
  1590. world2machine_update_current();
  1591. //FIXME
  1592. bool result = sample_mesh_and_store_reference();
  1593. if (result) {
  1594. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1595. // Shipped, the nozzle height has been set already. The user can start printing now.
  1596. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1597. // babystep_apply();
  1598. }
  1599. }
  1600. else {
  1601. // Reset the baby step value and the baby step applied flag.
  1602. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1603. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1604. // Complete XYZ calibration.
  1605. uint8_t point_too_far_mask = 0;
  1606. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1607. clean_up_after_endstop_move();
  1608. // Print head up.
  1609. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1611. st_synchronize();
  1612. if (result >= 0) {
  1613. point_too_far_mask = 0;
  1614. // Second half: The fine adjustment.
  1615. // Let the planner use the uncorrected coordinates.
  1616. mbl.reset();
  1617. world2machine_reset();
  1618. // Home in the XY plane.
  1619. setup_for_endstop_move();
  1620. home_xy();
  1621. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1622. clean_up_after_endstop_move();
  1623. // Print head up.
  1624. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1626. st_synchronize();
  1627. // if (result >= 0) babystep_apply();
  1628. }
  1629. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1630. if (result >= 0) {
  1631. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1632. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1633. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1634. final_result = true;
  1635. }
  1636. }
  1637. #ifdef TMC2130
  1638. tmc2130_home_exit();
  1639. #endif
  1640. }
  1641. else {
  1642. // Timeouted.
  1643. }
  1644. lcd_update_enable(true);
  1645. return final_result;
  1646. }
  1647. void gcode_M701() {
  1648. #ifdef SNMM
  1649. extr_adj(snmm_extruder);//loads current extruder
  1650. #else
  1651. enable_z();
  1652. custom_message = true;
  1653. custom_message_type = 2;
  1654. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1655. current_position[E_AXIS] += 70;
  1656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1657. current_position[E_AXIS] += 25;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1659. st_synchronize();
  1660. if (!farm_mode && loading_flag) {
  1661. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1662. while (!clean) {
  1663. lcd_update_enable(true);
  1664. lcd_update(2);
  1665. current_position[E_AXIS] += 25;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1667. st_synchronize();
  1668. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1669. }
  1670. }
  1671. lcd_update_enable(true);
  1672. lcd_update(2);
  1673. lcd_setstatuspgm(WELCOME_MSG);
  1674. disable_z();
  1675. loading_flag = false;
  1676. custom_message = false;
  1677. custom_message_type = 0;
  1678. #endif
  1679. }
  1680. void process_commands()
  1681. {
  1682. #ifdef FILAMENT_RUNOUT_SUPPORT
  1683. SET_INPUT(FR_SENS);
  1684. #endif
  1685. #ifdef CMDBUFFER_DEBUG
  1686. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1687. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1688. SERIAL_ECHOLNPGM("");
  1689. SERIAL_ECHOPGM("In cmdqueue: ");
  1690. SERIAL_ECHO(buflen);
  1691. SERIAL_ECHOLNPGM("");
  1692. #endif /* CMDBUFFER_DEBUG */
  1693. unsigned long codenum; //throw away variable
  1694. char *starpos = NULL;
  1695. #ifdef ENABLE_AUTO_BED_LEVELING
  1696. float x_tmp, y_tmp, z_tmp, real_z;
  1697. #endif
  1698. // PRUSA GCODES
  1699. KEEPALIVE_STATE(IN_HANDLER);
  1700. #ifdef SNMM
  1701. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1702. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1703. int8_t SilentMode;
  1704. #endif
  1705. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1706. starpos = (strchr(strchr_pointer + 5, '*'));
  1707. if (starpos != NULL)
  1708. *(starpos) = '\0';
  1709. lcd_setstatus(strchr_pointer + 5);
  1710. }
  1711. else if(code_seen("PRUSA")){
  1712. if (code_seen("Ping")) { //PRUSA Ping
  1713. if (farm_mode) {
  1714. PingTime = millis();
  1715. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1716. }
  1717. }
  1718. else if (code_seen("PRN")) {
  1719. MYSERIAL.println(status_number);
  1720. }else if (code_seen("FAN")) {
  1721. MYSERIAL.print("E0:");
  1722. MYSERIAL.print(60*fan_speed[0]);
  1723. MYSERIAL.println(" RPM");
  1724. MYSERIAL.print("PRN0:");
  1725. MYSERIAL.print(60*fan_speed[1]);
  1726. MYSERIAL.println(" RPM");
  1727. }else if (code_seen("fn")) {
  1728. if (farm_mode) {
  1729. MYSERIAL.println(farm_no);
  1730. }
  1731. else {
  1732. MYSERIAL.println("Not in farm mode.");
  1733. }
  1734. }else if (code_seen("fv")) {
  1735. // get file version
  1736. #ifdef SDSUPPORT
  1737. card.openFile(strchr_pointer + 3,true);
  1738. while (true) {
  1739. uint16_t readByte = card.get();
  1740. MYSERIAL.write(readByte);
  1741. if (readByte=='\n') {
  1742. break;
  1743. }
  1744. }
  1745. card.closefile();
  1746. #endif // SDSUPPORT
  1747. } else if (code_seen("M28")) {
  1748. trace();
  1749. prusa_sd_card_upload = true;
  1750. card.openFile(strchr_pointer+4,false);
  1751. } else if (code_seen("SN")) {
  1752. if (farm_mode) {
  1753. selectedSerialPort = 0;
  1754. MSerial.write(";S");
  1755. // S/N is:CZPX0917X003XC13518
  1756. int numbersRead = 0;
  1757. while (numbersRead < 19) {
  1758. while (MSerial.available() > 0) {
  1759. uint8_t serial_char = MSerial.read();
  1760. selectedSerialPort = 1;
  1761. MSerial.write(serial_char);
  1762. numbersRead++;
  1763. selectedSerialPort = 0;
  1764. }
  1765. }
  1766. selectedSerialPort = 1;
  1767. MSerial.write('\n');
  1768. /*for (int b = 0; b < 3; b++) {
  1769. tone(BEEPER, 110);
  1770. delay(50);
  1771. noTone(BEEPER);
  1772. delay(50);
  1773. }*/
  1774. } else {
  1775. MYSERIAL.println("Not in farm mode.");
  1776. }
  1777. } else if(code_seen("Fir")){
  1778. SERIAL_PROTOCOLLN(FW_version);
  1779. } else if(code_seen("Rev")){
  1780. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1781. } else if(code_seen("Lang")) {
  1782. lcd_force_language_selection();
  1783. } else if(code_seen("Lz")) {
  1784. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1785. } else if (code_seen("SERIAL LOW")) {
  1786. MYSERIAL.println("SERIAL LOW");
  1787. MYSERIAL.begin(BAUDRATE);
  1788. return;
  1789. } else if (code_seen("SERIAL HIGH")) {
  1790. MYSERIAL.println("SERIAL HIGH");
  1791. MYSERIAL.begin(1152000);
  1792. return;
  1793. } else if(code_seen("Beat")) {
  1794. // Kick farm link timer
  1795. kicktime = millis();
  1796. } else if(code_seen("FR")) {
  1797. // Factory full reset
  1798. factory_reset(0,true);
  1799. }
  1800. //else if (code_seen('Cal')) {
  1801. // lcd_calibration();
  1802. // }
  1803. }
  1804. else if (code_seen('^')) {
  1805. // nothing, this is a version line
  1806. } else if(code_seen('G'))
  1807. {
  1808. switch((int)code_value())
  1809. {
  1810. case 0: // G0 -> G1
  1811. case 1: // G1
  1812. if(Stopped == false) {
  1813. #ifdef FILAMENT_RUNOUT_SUPPORT
  1814. if(READ(FR_SENS)){
  1815. feedmultiplyBckp=feedmultiply;
  1816. float target[4];
  1817. float lastpos[4];
  1818. target[X_AXIS]=current_position[X_AXIS];
  1819. target[Y_AXIS]=current_position[Y_AXIS];
  1820. target[Z_AXIS]=current_position[Z_AXIS];
  1821. target[E_AXIS]=current_position[E_AXIS];
  1822. lastpos[X_AXIS]=current_position[X_AXIS];
  1823. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1824. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1825. lastpos[E_AXIS]=current_position[E_AXIS];
  1826. //retract by E
  1827. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1829. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1831. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1832. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1833. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1834. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1836. //finish moves
  1837. st_synchronize();
  1838. //disable extruder steppers so filament can be removed
  1839. disable_e0();
  1840. disable_e1();
  1841. disable_e2();
  1842. delay(100);
  1843. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1844. uint8_t cnt=0;
  1845. int counterBeep = 0;
  1846. lcd_wait_interact();
  1847. while(!lcd_clicked()){
  1848. cnt++;
  1849. manage_heater();
  1850. manage_inactivity(true);
  1851. //lcd_update();
  1852. if(cnt==0)
  1853. {
  1854. #if BEEPER > 0
  1855. if (counterBeep== 500){
  1856. counterBeep = 0;
  1857. }
  1858. SET_OUTPUT(BEEPER);
  1859. if (counterBeep== 0){
  1860. WRITE(BEEPER,HIGH);
  1861. }
  1862. if (counterBeep== 20){
  1863. WRITE(BEEPER,LOW);
  1864. }
  1865. counterBeep++;
  1866. #else
  1867. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1868. lcd_buzz(1000/6,100);
  1869. #else
  1870. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1871. #endif
  1872. #endif
  1873. }
  1874. }
  1875. WRITE(BEEPER,LOW);
  1876. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1877. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1878. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1879. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1880. lcd_change_fil_state = 0;
  1881. lcd_loading_filament();
  1882. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1883. lcd_change_fil_state = 0;
  1884. lcd_alright();
  1885. switch(lcd_change_fil_state){
  1886. case 2:
  1887. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1888. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1889. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1891. lcd_loading_filament();
  1892. break;
  1893. case 3:
  1894. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1895. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1896. lcd_loading_color();
  1897. break;
  1898. default:
  1899. lcd_change_success();
  1900. break;
  1901. }
  1902. }
  1903. target[E_AXIS]+= 5;
  1904. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1905. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1906. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1907. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1908. //plan_set_e_position(current_position[E_AXIS]);
  1909. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1910. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1911. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1912. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1913. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1914. plan_set_e_position(lastpos[E_AXIS]);
  1915. feedmultiply=feedmultiplyBckp;
  1916. char cmd[9];
  1917. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1918. enquecommand(cmd);
  1919. }
  1920. #endif
  1921. get_coordinates(); // For X Y Z E F
  1922. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1923. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1924. }
  1925. #ifdef FWRETRACT
  1926. if(autoretract_enabled)
  1927. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1928. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1929. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1930. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1931. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1932. retract(!retracted);
  1933. return;
  1934. }
  1935. }
  1936. #endif //FWRETRACT
  1937. prepare_move();
  1938. //ClearToSend();
  1939. }
  1940. break;
  1941. case 2: // G2 - CW ARC
  1942. if(Stopped == false) {
  1943. get_arc_coordinates();
  1944. prepare_arc_move(true);
  1945. }
  1946. break;
  1947. case 3: // G3 - CCW ARC
  1948. if(Stopped == false) {
  1949. get_arc_coordinates();
  1950. prepare_arc_move(false);
  1951. }
  1952. break;
  1953. case 4: // G4 dwell
  1954. codenum = 0;
  1955. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1956. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1957. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1958. st_synchronize();
  1959. codenum += millis(); // keep track of when we started waiting
  1960. previous_millis_cmd = millis();
  1961. while(millis() < codenum) {
  1962. manage_heater();
  1963. manage_inactivity();
  1964. lcd_update();
  1965. }
  1966. break;
  1967. #ifdef FWRETRACT
  1968. case 10: // G10 retract
  1969. #if EXTRUDERS > 1
  1970. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1971. retract(true,retracted_swap[active_extruder]);
  1972. #else
  1973. retract(true);
  1974. #endif
  1975. break;
  1976. case 11: // G11 retract_recover
  1977. #if EXTRUDERS > 1
  1978. retract(false,retracted_swap[active_extruder]);
  1979. #else
  1980. retract(false);
  1981. #endif
  1982. break;
  1983. #endif //FWRETRACT
  1984. case 28: //G28 Home all Axis one at a time
  1985. {
  1986. st_synchronize();
  1987. #if 1
  1988. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1989. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1990. #endif
  1991. // Flag for the display update routine and to disable the print cancelation during homing.
  1992. homing_flag = true;
  1993. // Which axes should be homed?
  1994. bool home_x = code_seen(axis_codes[X_AXIS]);
  1995. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1996. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1997. // Either all X,Y,Z codes are present, or none of them.
  1998. bool home_all_axes = home_x == home_y && home_x == home_z;
  1999. if (home_all_axes)
  2000. // No X/Y/Z code provided means to home all axes.
  2001. home_x = home_y = home_z = true;
  2002. #ifdef ENABLE_AUTO_BED_LEVELING
  2003. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2004. #endif //ENABLE_AUTO_BED_LEVELING
  2005. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2006. // the planner will not perform any adjustments in the XY plane.
  2007. // Wait for the motors to stop and update the current position with the absolute values.
  2008. world2machine_revert_to_uncorrected();
  2009. // For mesh bed leveling deactivate the matrix temporarily.
  2010. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2011. // in a single axis only.
  2012. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2013. #ifdef MESH_BED_LEVELING
  2014. uint8_t mbl_was_active = mbl.active;
  2015. mbl.active = 0;
  2016. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2017. #endif
  2018. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2019. // consumed during the first movements following this statement.
  2020. if (home_z)
  2021. babystep_undo();
  2022. saved_feedrate = feedrate;
  2023. saved_feedmultiply = feedmultiply;
  2024. feedmultiply = 100;
  2025. previous_millis_cmd = millis();
  2026. enable_endstops(true);
  2027. memcpy(destination, current_position, sizeof(destination));
  2028. feedrate = 0.0;
  2029. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2030. if(home_z)
  2031. homeaxis(Z_AXIS);
  2032. #endif
  2033. #ifdef QUICK_HOME
  2034. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2035. if(home_x && home_y) //first diagonal move
  2036. {
  2037. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2038. int x_axis_home_dir = home_dir(X_AXIS);
  2039. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2040. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2041. feedrate = homing_feedrate[X_AXIS];
  2042. if(homing_feedrate[Y_AXIS]<feedrate)
  2043. feedrate = homing_feedrate[Y_AXIS];
  2044. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2045. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2046. } else {
  2047. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2048. }
  2049. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2050. st_synchronize();
  2051. axis_is_at_home(X_AXIS);
  2052. axis_is_at_home(Y_AXIS);
  2053. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2054. destination[X_AXIS] = current_position[X_AXIS];
  2055. destination[Y_AXIS] = current_position[Y_AXIS];
  2056. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2057. feedrate = 0.0;
  2058. st_synchronize();
  2059. endstops_hit_on_purpose();
  2060. current_position[X_AXIS] = destination[X_AXIS];
  2061. current_position[Y_AXIS] = destination[Y_AXIS];
  2062. current_position[Z_AXIS] = destination[Z_AXIS];
  2063. }
  2064. #endif /* QUICK_HOME */
  2065. if(home_x)
  2066. homeaxis(X_AXIS);
  2067. if(home_y)
  2068. homeaxis(Y_AXIS);
  2069. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2070. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2071. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2072. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2073. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2074. #ifndef Z_SAFE_HOMING
  2075. if(home_z) {
  2076. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2077. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2078. feedrate = max_feedrate[Z_AXIS];
  2079. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2080. st_synchronize();
  2081. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2082. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2083. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2084. {
  2085. homeaxis(X_AXIS);
  2086. homeaxis(Y_AXIS);
  2087. }
  2088. // 1st mesh bed leveling measurement point, corrected.
  2089. world2machine_initialize();
  2090. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2091. world2machine_reset();
  2092. if (destination[Y_AXIS] < Y_MIN_POS)
  2093. destination[Y_AXIS] = Y_MIN_POS;
  2094. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2095. feedrate = homing_feedrate[Z_AXIS]/10;
  2096. current_position[Z_AXIS] = 0;
  2097. enable_endstops(false);
  2098. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2099. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2100. st_synchronize();
  2101. current_position[X_AXIS] = destination[X_AXIS];
  2102. current_position[Y_AXIS] = destination[Y_AXIS];
  2103. enable_endstops(true);
  2104. endstops_hit_on_purpose();
  2105. homeaxis(Z_AXIS);
  2106. #else // MESH_BED_LEVELING
  2107. homeaxis(Z_AXIS);
  2108. #endif // MESH_BED_LEVELING
  2109. }
  2110. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2111. if(home_all_axes) {
  2112. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2113. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2114. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2115. feedrate = XY_TRAVEL_SPEED/60;
  2116. current_position[Z_AXIS] = 0;
  2117. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2118. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2119. st_synchronize();
  2120. current_position[X_AXIS] = destination[X_AXIS];
  2121. current_position[Y_AXIS] = destination[Y_AXIS];
  2122. homeaxis(Z_AXIS);
  2123. }
  2124. // Let's see if X and Y are homed and probe is inside bed area.
  2125. if(home_z) {
  2126. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2127. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2128. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2129. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2130. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2131. current_position[Z_AXIS] = 0;
  2132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2133. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2134. feedrate = max_feedrate[Z_AXIS];
  2135. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2136. st_synchronize();
  2137. homeaxis(Z_AXIS);
  2138. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2139. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2140. SERIAL_ECHO_START;
  2141. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2142. } else {
  2143. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2144. SERIAL_ECHO_START;
  2145. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2146. }
  2147. }
  2148. #endif // Z_SAFE_HOMING
  2149. #endif // Z_HOME_DIR < 0
  2150. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2151. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2152. #ifdef ENABLE_AUTO_BED_LEVELING
  2153. if(home_z)
  2154. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2155. #endif
  2156. // Set the planner and stepper routine positions.
  2157. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2158. // contains the machine coordinates.
  2159. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2160. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2161. enable_endstops(false);
  2162. #endif
  2163. feedrate = saved_feedrate;
  2164. feedmultiply = saved_feedmultiply;
  2165. previous_millis_cmd = millis();
  2166. endstops_hit_on_purpose();
  2167. #ifndef MESH_BED_LEVELING
  2168. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2169. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2170. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2171. lcd_adjust_z();
  2172. #endif
  2173. // Load the machine correction matrix
  2174. world2machine_initialize();
  2175. // and correct the current_position XY axes to match the transformed coordinate system.
  2176. world2machine_update_current();
  2177. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2178. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2179. {
  2180. if (! home_z && mbl_was_active) {
  2181. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2182. mbl.active = true;
  2183. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2184. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2185. }
  2186. }
  2187. else
  2188. {
  2189. st_synchronize();
  2190. homing_flag = false;
  2191. // Push the commands to the front of the message queue in the reverse order!
  2192. // There shall be always enough space reserved for these commands.
  2193. // enquecommand_front_P((PSTR("G80")));
  2194. goto case_G80;
  2195. }
  2196. #endif
  2197. if (farm_mode) { prusa_statistics(20); };
  2198. homing_flag = false;
  2199. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2200. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2201. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2202. break;
  2203. }
  2204. #ifdef ENABLE_AUTO_BED_LEVELING
  2205. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2206. {
  2207. #if Z_MIN_PIN == -1
  2208. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2209. #endif
  2210. // Prevent user from running a G29 without first homing in X and Y
  2211. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2212. {
  2213. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2214. SERIAL_ECHO_START;
  2215. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2216. break; // abort G29, since we don't know where we are
  2217. }
  2218. st_synchronize();
  2219. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2220. //vector_3 corrected_position = plan_get_position_mm();
  2221. //corrected_position.debug("position before G29");
  2222. plan_bed_level_matrix.set_to_identity();
  2223. vector_3 uncorrected_position = plan_get_position();
  2224. //uncorrected_position.debug("position durring G29");
  2225. current_position[X_AXIS] = uncorrected_position.x;
  2226. current_position[Y_AXIS] = uncorrected_position.y;
  2227. current_position[Z_AXIS] = uncorrected_position.z;
  2228. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2229. setup_for_endstop_move();
  2230. feedrate = homing_feedrate[Z_AXIS];
  2231. #ifdef AUTO_BED_LEVELING_GRID
  2232. // probe at the points of a lattice grid
  2233. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2234. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2235. // solve the plane equation ax + by + d = z
  2236. // A is the matrix with rows [x y 1] for all the probed points
  2237. // B is the vector of the Z positions
  2238. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2239. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2240. // "A" matrix of the linear system of equations
  2241. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2242. // "B" vector of Z points
  2243. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2244. int probePointCounter = 0;
  2245. bool zig = true;
  2246. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2247. {
  2248. int xProbe, xInc;
  2249. if (zig)
  2250. {
  2251. xProbe = LEFT_PROBE_BED_POSITION;
  2252. //xEnd = RIGHT_PROBE_BED_POSITION;
  2253. xInc = xGridSpacing;
  2254. zig = false;
  2255. } else // zag
  2256. {
  2257. xProbe = RIGHT_PROBE_BED_POSITION;
  2258. //xEnd = LEFT_PROBE_BED_POSITION;
  2259. xInc = -xGridSpacing;
  2260. zig = true;
  2261. }
  2262. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2263. {
  2264. float z_before;
  2265. if (probePointCounter == 0)
  2266. {
  2267. // raise before probing
  2268. z_before = Z_RAISE_BEFORE_PROBING;
  2269. } else
  2270. {
  2271. // raise extruder
  2272. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2273. }
  2274. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2275. eqnBVector[probePointCounter] = measured_z;
  2276. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2277. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2278. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2279. probePointCounter++;
  2280. xProbe += xInc;
  2281. }
  2282. }
  2283. clean_up_after_endstop_move();
  2284. // solve lsq problem
  2285. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2286. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2287. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2288. SERIAL_PROTOCOLPGM(" b: ");
  2289. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2290. SERIAL_PROTOCOLPGM(" d: ");
  2291. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2292. set_bed_level_equation_lsq(plane_equation_coefficients);
  2293. free(plane_equation_coefficients);
  2294. #else // AUTO_BED_LEVELING_GRID not defined
  2295. // Probe at 3 arbitrary points
  2296. // probe 1
  2297. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2298. // probe 2
  2299. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2300. // probe 3
  2301. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2302. clean_up_after_endstop_move();
  2303. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2304. #endif // AUTO_BED_LEVELING_GRID
  2305. st_synchronize();
  2306. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2307. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2308. // When the bed is uneven, this height must be corrected.
  2309. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2310. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2311. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2312. z_tmp = current_position[Z_AXIS];
  2313. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2314. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2315. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2316. }
  2317. break;
  2318. #ifndef Z_PROBE_SLED
  2319. case 30: // G30 Single Z Probe
  2320. {
  2321. st_synchronize();
  2322. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2323. setup_for_endstop_move();
  2324. feedrate = homing_feedrate[Z_AXIS];
  2325. run_z_probe();
  2326. SERIAL_PROTOCOLPGM(MSG_BED);
  2327. SERIAL_PROTOCOLPGM(" X: ");
  2328. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2329. SERIAL_PROTOCOLPGM(" Y: ");
  2330. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2331. SERIAL_PROTOCOLPGM(" Z: ");
  2332. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2333. SERIAL_PROTOCOLPGM("\n");
  2334. clean_up_after_endstop_move();
  2335. }
  2336. break;
  2337. #else
  2338. case 31: // dock the sled
  2339. dock_sled(true);
  2340. break;
  2341. case 32: // undock the sled
  2342. dock_sled(false);
  2343. break;
  2344. #endif // Z_PROBE_SLED
  2345. #endif // ENABLE_AUTO_BED_LEVELING
  2346. #ifdef MESH_BED_LEVELING
  2347. case 30: // G30 Single Z Probe
  2348. {
  2349. st_synchronize();
  2350. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2351. setup_for_endstop_move();
  2352. feedrate = homing_feedrate[Z_AXIS];
  2353. find_bed_induction_sensor_point_z(-10.f, 3);
  2354. SERIAL_PROTOCOLRPGM(MSG_BED);
  2355. SERIAL_PROTOCOLPGM(" X: ");
  2356. MYSERIAL.print(current_position[X_AXIS], 5);
  2357. SERIAL_PROTOCOLPGM(" Y: ");
  2358. MYSERIAL.print(current_position[Y_AXIS], 5);
  2359. SERIAL_PROTOCOLPGM(" Z: ");
  2360. MYSERIAL.print(current_position[Z_AXIS], 5);
  2361. SERIAL_PROTOCOLPGM("\n");
  2362. clean_up_after_endstop_move();
  2363. }
  2364. break;
  2365. case 75:
  2366. {
  2367. for (int i = 40; i <= 110; i++) {
  2368. MYSERIAL.print(i);
  2369. MYSERIAL.print(" ");
  2370. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2371. }
  2372. }
  2373. break;
  2374. case 76: //PINDA probe temperature calibration
  2375. {
  2376. #ifdef PINDA_THERMISTOR
  2377. if (true)
  2378. {
  2379. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2380. // We don't know where we are! HOME!
  2381. // Push the commands to the front of the message queue in the reverse order!
  2382. // There shall be always enough space reserved for these commands.
  2383. repeatcommand_front(); // repeat G76 with all its parameters
  2384. enquecommand_front_P((PSTR("G28 W0")));
  2385. break;
  2386. }
  2387. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2388. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2389. float zero_z;
  2390. int z_shift = 0; //unit: steps
  2391. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2392. if (start_temp < 35) start_temp = 35;
  2393. if (start_temp < current_temperature_pinda) start_temp += 5;
  2394. SERIAL_ECHOPGM("start temperature: ");
  2395. MYSERIAL.println(start_temp);
  2396. // setTargetHotend(200, 0);
  2397. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2398. custom_message = true;
  2399. custom_message_type = 4;
  2400. custom_message_state = 1;
  2401. custom_message = MSG_TEMP_CALIBRATION;
  2402. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2403. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2404. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2406. st_synchronize();
  2407. while (current_temperature_pinda < start_temp)
  2408. {
  2409. delay_keep_alive(1000);
  2410. serialecho_temperatures();
  2411. }
  2412. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2413. current_position[Z_AXIS] = 5;
  2414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2415. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2416. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2418. st_synchronize();
  2419. find_bed_induction_sensor_point_z(-1.f);
  2420. zero_z = current_position[Z_AXIS];
  2421. //current_position[Z_AXIS]
  2422. SERIAL_ECHOLNPGM("");
  2423. SERIAL_ECHOPGM("ZERO: ");
  2424. MYSERIAL.print(current_position[Z_AXIS]);
  2425. SERIAL_ECHOLNPGM("");
  2426. int i = -1; for (; i < 5; i++)
  2427. {
  2428. float temp = (40 + i * 5);
  2429. SERIAL_ECHOPGM("Step: ");
  2430. MYSERIAL.print(i + 2);
  2431. SERIAL_ECHOLNPGM("/6 (skipped)");
  2432. SERIAL_ECHOPGM("PINDA temperature: ");
  2433. MYSERIAL.print((40 + i*5));
  2434. SERIAL_ECHOPGM(" Z shift (mm):");
  2435. MYSERIAL.print(0);
  2436. SERIAL_ECHOLNPGM("");
  2437. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2438. if (start_temp <= temp) break;
  2439. }
  2440. for (i++; i < 5; i++)
  2441. {
  2442. float temp = (40 + i * 5);
  2443. SERIAL_ECHOPGM("Step: ");
  2444. MYSERIAL.print(i + 2);
  2445. SERIAL_ECHOLNPGM("/6");
  2446. custom_message_state = i + 2;
  2447. setTargetBed(50 + 10 * (temp - 30) / 5);
  2448. // setTargetHotend(255, 0);
  2449. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2450. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2451. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2453. st_synchronize();
  2454. while (current_temperature_pinda < temp)
  2455. {
  2456. delay_keep_alive(1000);
  2457. serialecho_temperatures();
  2458. }
  2459. current_position[Z_AXIS] = 5;
  2460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2461. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2462. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2464. st_synchronize();
  2465. find_bed_induction_sensor_point_z(-1.f);
  2466. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2467. SERIAL_ECHOLNPGM("");
  2468. SERIAL_ECHOPGM("PINDA temperature: ");
  2469. MYSERIAL.print(current_temperature_pinda);
  2470. SERIAL_ECHOPGM(" Z shift (mm):");
  2471. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2472. SERIAL_ECHOLNPGM("");
  2473. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2474. }
  2475. custom_message_type = 0;
  2476. custom_message = false;
  2477. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2478. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2479. disable_x();
  2480. disable_y();
  2481. disable_z();
  2482. disable_e0();
  2483. disable_e1();
  2484. disable_e2();
  2485. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2486. lcd_update_enable(true);
  2487. lcd_update(2);
  2488. setTargetBed(0); //set bed target temperature back to 0
  2489. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2490. break;
  2491. }
  2492. #endif //PINDA_THERMISTOR
  2493. setTargetBed(PINDA_MIN_T);
  2494. float zero_z;
  2495. int z_shift = 0; //unit: steps
  2496. int t_c; // temperature
  2497. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2498. // We don't know where we are! HOME!
  2499. // Push the commands to the front of the message queue in the reverse order!
  2500. // There shall be always enough space reserved for these commands.
  2501. repeatcommand_front(); // repeat G76 with all its parameters
  2502. enquecommand_front_P((PSTR("G28 W0")));
  2503. break;
  2504. }
  2505. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2506. custom_message = true;
  2507. custom_message_type = 4;
  2508. custom_message_state = 1;
  2509. custom_message = MSG_TEMP_CALIBRATION;
  2510. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2511. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2512. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2514. st_synchronize();
  2515. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2516. delay_keep_alive(1000);
  2517. serialecho_temperatures();
  2518. }
  2519. //enquecommand_P(PSTR("M190 S50"));
  2520. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2521. delay_keep_alive(1000);
  2522. serialecho_temperatures();
  2523. }
  2524. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2525. current_position[Z_AXIS] = 5;
  2526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2527. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2528. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2530. st_synchronize();
  2531. find_bed_induction_sensor_point_z(-1.f);
  2532. zero_z = current_position[Z_AXIS];
  2533. //current_position[Z_AXIS]
  2534. SERIAL_ECHOLNPGM("");
  2535. SERIAL_ECHOPGM("ZERO: ");
  2536. MYSERIAL.print(current_position[Z_AXIS]);
  2537. SERIAL_ECHOLNPGM("");
  2538. for (int i = 0; i<5; i++) {
  2539. SERIAL_ECHOPGM("Step: ");
  2540. MYSERIAL.print(i+2);
  2541. SERIAL_ECHOLNPGM("/6");
  2542. custom_message_state = i + 2;
  2543. t_c = 60 + i * 10;
  2544. setTargetBed(t_c);
  2545. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2546. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2547. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2549. st_synchronize();
  2550. while (degBed() < t_c) {
  2551. delay_keep_alive(1000);
  2552. serialecho_temperatures();
  2553. }
  2554. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2555. delay_keep_alive(1000);
  2556. serialecho_temperatures();
  2557. }
  2558. current_position[Z_AXIS] = 5;
  2559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2560. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2561. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2563. st_synchronize();
  2564. find_bed_induction_sensor_point_z(-1.f);
  2565. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2566. SERIAL_ECHOLNPGM("");
  2567. SERIAL_ECHOPGM("Temperature: ");
  2568. MYSERIAL.print(t_c);
  2569. SERIAL_ECHOPGM(" Z shift (mm):");
  2570. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2571. SERIAL_ECHOLNPGM("");
  2572. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2573. }
  2574. custom_message_type = 0;
  2575. custom_message = false;
  2576. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2577. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2578. disable_x();
  2579. disable_y();
  2580. disable_z();
  2581. disable_e0();
  2582. disable_e1();
  2583. disable_e2();
  2584. setTargetBed(0); //set bed target temperature back to 0
  2585. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2586. lcd_update_enable(true);
  2587. lcd_update(2);
  2588. }
  2589. break;
  2590. #ifdef DIS
  2591. case 77:
  2592. {
  2593. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2594. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2595. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2596. float dimension_x = 40;
  2597. float dimension_y = 40;
  2598. int points_x = 40;
  2599. int points_y = 40;
  2600. float offset_x = 74;
  2601. float offset_y = 33;
  2602. if (code_seen('X')) dimension_x = code_value();
  2603. if (code_seen('Y')) dimension_y = code_value();
  2604. if (code_seen('XP')) points_x = code_value();
  2605. if (code_seen('YP')) points_y = code_value();
  2606. if (code_seen('XO')) offset_x = code_value();
  2607. if (code_seen('YO')) offset_y = code_value();
  2608. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2609. } break;
  2610. #endif
  2611. case 79: {
  2612. for (int i = 255; i > 0; i = i - 5) {
  2613. fanSpeed = i;
  2614. //delay_keep_alive(2000);
  2615. for (int j = 0; j < 100; j++) {
  2616. delay_keep_alive(100);
  2617. }
  2618. fan_speed[1];
  2619. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2620. }
  2621. }break;
  2622. /**
  2623. * G80: Mesh-based Z probe, probes a grid and produces a
  2624. * mesh to compensate for variable bed height
  2625. *
  2626. * The S0 report the points as below
  2627. *
  2628. * +----> X-axis
  2629. * |
  2630. * |
  2631. * v Y-axis
  2632. *
  2633. */
  2634. case 80:
  2635. #ifdef MK1BP
  2636. break;
  2637. #endif //MK1BP
  2638. case_G80:
  2639. {
  2640. mesh_bed_leveling_flag = true;
  2641. int8_t verbosity_level = 0;
  2642. static bool run = false;
  2643. if (code_seen('V')) {
  2644. // Just 'V' without a number counts as V1.
  2645. char c = strchr_pointer[1];
  2646. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2647. }
  2648. // Firstly check if we know where we are
  2649. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2650. // We don't know where we are! HOME!
  2651. // Push the commands to the front of the message queue in the reverse order!
  2652. // There shall be always enough space reserved for these commands.
  2653. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2654. repeatcommand_front(); // repeat G80 with all its parameters
  2655. enquecommand_front_P((PSTR("G28 W0")));
  2656. }
  2657. else {
  2658. mesh_bed_leveling_flag = false;
  2659. }
  2660. break;
  2661. }
  2662. bool temp_comp_start = true;
  2663. #ifdef PINDA_THERMISTOR
  2664. temp_comp_start = false;
  2665. #endif //PINDA_THERMISTOR
  2666. if (temp_comp_start)
  2667. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2668. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2669. temp_compensation_start();
  2670. run = true;
  2671. repeatcommand_front(); // repeat G80 with all its parameters
  2672. enquecommand_front_P((PSTR("G28 W0")));
  2673. }
  2674. else {
  2675. mesh_bed_leveling_flag = false;
  2676. }
  2677. break;
  2678. }
  2679. run = false;
  2680. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2681. mesh_bed_leveling_flag = false;
  2682. break;
  2683. }
  2684. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2685. bool custom_message_old = custom_message;
  2686. unsigned int custom_message_type_old = custom_message_type;
  2687. unsigned int custom_message_state_old = custom_message_state;
  2688. custom_message = true;
  2689. custom_message_type = 1;
  2690. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2691. lcd_update(1);
  2692. mbl.reset(); //reset mesh bed leveling
  2693. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2694. // consumed during the first movements following this statement.
  2695. babystep_undo();
  2696. // Cycle through all points and probe them
  2697. // First move up. During this first movement, the babystepping will be reverted.
  2698. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2700. // The move to the first calibration point.
  2701. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2702. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2703. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2704. #ifdef SUPPORT_VERBOSITY
  2705. if (verbosity_level >= 1) {
  2706. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2707. }
  2708. #endif //SUPPORT_VERBOSITY
  2709. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2711. // Wait until the move is finished.
  2712. st_synchronize();
  2713. int mesh_point = 0; //index number of calibration point
  2714. int ix = 0;
  2715. int iy = 0;
  2716. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2717. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2718. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2719. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2720. #ifdef SUPPORT_VERBOSITY
  2721. if (verbosity_level >= 1) {
  2722. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2723. }
  2724. #endif // SUPPORT_VERBOSITY
  2725. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2726. const char *kill_message = NULL;
  2727. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2728. // Get coords of a measuring point.
  2729. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2730. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2731. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2732. float z0 = 0.f;
  2733. if (has_z && mesh_point > 0) {
  2734. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2735. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2736. //#if 0
  2737. #ifdef SUPPORT_VERBOSITY
  2738. if (verbosity_level >= 1) {
  2739. SERIAL_ECHOLNPGM("");
  2740. SERIAL_ECHOPGM("Bed leveling, point: ");
  2741. MYSERIAL.print(mesh_point);
  2742. SERIAL_ECHOPGM(", calibration z: ");
  2743. MYSERIAL.print(z0, 5);
  2744. SERIAL_ECHOLNPGM("");
  2745. }
  2746. #endif // SUPPORT_VERBOSITY
  2747. //#endif
  2748. }
  2749. // Move Z up to MESH_HOME_Z_SEARCH.
  2750. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2752. st_synchronize();
  2753. // Move to XY position of the sensor point.
  2754. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2755. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2756. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2757. #ifdef SUPPORT_VERBOSITY
  2758. if (verbosity_level >= 1) {
  2759. SERIAL_PROTOCOL(mesh_point);
  2760. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2761. }
  2762. #endif // SUPPORT_VERBOSITY
  2763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2764. st_synchronize();
  2765. // Go down until endstop is hit
  2766. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2767. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2768. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2769. break;
  2770. }
  2771. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2772. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2773. break;
  2774. }
  2775. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2776. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2777. break;
  2778. }
  2779. #ifdef SUPPORT_VERBOSITY
  2780. if (verbosity_level >= 10) {
  2781. SERIAL_ECHOPGM("X: ");
  2782. MYSERIAL.print(current_position[X_AXIS], 5);
  2783. SERIAL_ECHOLNPGM("");
  2784. SERIAL_ECHOPGM("Y: ");
  2785. MYSERIAL.print(current_position[Y_AXIS], 5);
  2786. SERIAL_PROTOCOLPGM("\n");
  2787. }
  2788. #endif // SUPPORT_VERBOSITY
  2789. float offset_z = 0;
  2790. #ifdef PINDA_THERMISTOR
  2791. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2792. #endif //PINDA_THERMISTOR
  2793. // #ifdef SUPPORT_VERBOSITY
  2794. // if (verbosity_level >= 1)
  2795. {
  2796. SERIAL_ECHOPGM("mesh bed leveling: ");
  2797. MYSERIAL.print(current_position[Z_AXIS], 5);
  2798. SERIAL_ECHOPGM(" offset: ");
  2799. MYSERIAL.print(offset_z, 5);
  2800. SERIAL_ECHOLNPGM("");
  2801. }
  2802. // #endif // SUPPORT_VERBOSITY
  2803. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2804. custom_message_state--;
  2805. mesh_point++;
  2806. lcd_update(1);
  2807. }
  2808. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2809. #ifdef SUPPORT_VERBOSITY
  2810. if (verbosity_level >= 20) {
  2811. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2812. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2813. MYSERIAL.print(current_position[Z_AXIS], 5);
  2814. }
  2815. #endif // SUPPORT_VERBOSITY
  2816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2817. st_synchronize();
  2818. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2819. kill(kill_message);
  2820. SERIAL_ECHOLNPGM("killed");
  2821. }
  2822. clean_up_after_endstop_move();
  2823. SERIAL_ECHOLNPGM("clean up finished ");
  2824. bool apply_temp_comp = true;
  2825. #ifdef PINDA_THERMISTOR
  2826. apply_temp_comp = false;
  2827. #endif
  2828. if (apply_temp_comp)
  2829. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2830. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2831. SERIAL_ECHOLNPGM("babystep applied");
  2832. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2833. #ifdef SUPPORT_VERBOSITY
  2834. if (verbosity_level >= 1) {
  2835. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2836. }
  2837. #endif // SUPPORT_VERBOSITY
  2838. for (uint8_t i = 0; i < 4; ++i) {
  2839. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2840. long correction = 0;
  2841. if (code_seen(codes[i]))
  2842. correction = code_value_long();
  2843. else if (eeprom_bed_correction_valid) {
  2844. unsigned char *addr = (i < 2) ?
  2845. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2846. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2847. correction = eeprom_read_int8(addr);
  2848. }
  2849. if (correction == 0)
  2850. continue;
  2851. float offset = float(correction) * 0.001f;
  2852. if (fabs(offset) > 0.101f) {
  2853. SERIAL_ERROR_START;
  2854. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2855. SERIAL_ECHO(offset);
  2856. SERIAL_ECHOLNPGM(" microns");
  2857. }
  2858. else {
  2859. switch (i) {
  2860. case 0:
  2861. for (uint8_t row = 0; row < 3; ++row) {
  2862. mbl.z_values[row][1] += 0.5f * offset;
  2863. mbl.z_values[row][0] += offset;
  2864. }
  2865. break;
  2866. case 1:
  2867. for (uint8_t row = 0; row < 3; ++row) {
  2868. mbl.z_values[row][1] += 0.5f * offset;
  2869. mbl.z_values[row][2] += offset;
  2870. }
  2871. break;
  2872. case 2:
  2873. for (uint8_t col = 0; col < 3; ++col) {
  2874. mbl.z_values[1][col] += 0.5f * offset;
  2875. mbl.z_values[0][col] += offset;
  2876. }
  2877. break;
  2878. case 3:
  2879. for (uint8_t col = 0; col < 3; ++col) {
  2880. mbl.z_values[1][col] += 0.5f * offset;
  2881. mbl.z_values[2][col] += offset;
  2882. }
  2883. break;
  2884. }
  2885. }
  2886. }
  2887. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2888. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2889. SERIAL_ECHOLNPGM("Upsample finished");
  2890. mbl.active = 1; //activate mesh bed leveling
  2891. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2892. go_home_with_z_lift();
  2893. SERIAL_ECHOLNPGM("Go home finished");
  2894. //unretract (after PINDA preheat retraction)
  2895. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2896. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2898. }
  2899. KEEPALIVE_STATE(NOT_BUSY);
  2900. // Restore custom message state
  2901. custom_message = custom_message_old;
  2902. custom_message_type = custom_message_type_old;
  2903. custom_message_state = custom_message_state_old;
  2904. mesh_bed_leveling_flag = false;
  2905. mesh_bed_run_from_menu = false;
  2906. lcd_update(2);
  2907. }
  2908. break;
  2909. /**
  2910. * G81: Print mesh bed leveling status and bed profile if activated
  2911. */
  2912. case 81:
  2913. if (mbl.active) {
  2914. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2915. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2916. SERIAL_PROTOCOLPGM(",");
  2917. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2918. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2919. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2920. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2921. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2922. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2923. SERIAL_PROTOCOLPGM(" ");
  2924. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2925. }
  2926. SERIAL_PROTOCOLPGM("\n");
  2927. }
  2928. }
  2929. else
  2930. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2931. break;
  2932. #if 0
  2933. /**
  2934. * G82: Single Z probe at current location
  2935. *
  2936. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2937. *
  2938. */
  2939. case 82:
  2940. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2941. setup_for_endstop_move();
  2942. find_bed_induction_sensor_point_z();
  2943. clean_up_after_endstop_move();
  2944. SERIAL_PROTOCOLPGM("Bed found at: ");
  2945. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2946. SERIAL_PROTOCOLPGM("\n");
  2947. break;
  2948. /**
  2949. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2950. */
  2951. case 83:
  2952. {
  2953. int babystepz = code_seen('S') ? code_value() : 0;
  2954. int BabyPosition = code_seen('P') ? code_value() : 0;
  2955. if (babystepz != 0) {
  2956. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2957. // Is the axis indexed starting with zero or one?
  2958. if (BabyPosition > 4) {
  2959. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2960. }else{
  2961. // Save it to the eeprom
  2962. babystepLoadZ = babystepz;
  2963. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2964. // adjust the Z
  2965. babystepsTodoZadd(babystepLoadZ);
  2966. }
  2967. }
  2968. }
  2969. break;
  2970. /**
  2971. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2972. */
  2973. case 84:
  2974. babystepsTodoZsubtract(babystepLoadZ);
  2975. // babystepLoadZ = 0;
  2976. break;
  2977. /**
  2978. * G85: Prusa3D specific: Pick best babystep
  2979. */
  2980. case 85:
  2981. lcd_pick_babystep();
  2982. break;
  2983. #endif
  2984. /**
  2985. * G86: Prusa3D specific: Disable babystep correction after home.
  2986. * This G-code will be performed at the start of a calibration script.
  2987. */
  2988. case 86:
  2989. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2990. break;
  2991. /**
  2992. * G87: Prusa3D specific: Enable babystep correction after home
  2993. * This G-code will be performed at the end of a calibration script.
  2994. */
  2995. case 87:
  2996. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2997. break;
  2998. /**
  2999. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3000. */
  3001. case 88:
  3002. break;
  3003. #endif // ENABLE_MESH_BED_LEVELING
  3004. case 90: // G90
  3005. relative_mode = false;
  3006. break;
  3007. case 91: // G91
  3008. relative_mode = true;
  3009. break;
  3010. case 92: // G92
  3011. if(!code_seen(axis_codes[E_AXIS]))
  3012. st_synchronize();
  3013. for(int8_t i=0; i < NUM_AXIS; i++) {
  3014. if(code_seen(axis_codes[i])) {
  3015. if(i == E_AXIS) {
  3016. current_position[i] = code_value();
  3017. plan_set_e_position(current_position[E_AXIS]);
  3018. }
  3019. else {
  3020. current_position[i] = code_value()+add_homing[i];
  3021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3022. }
  3023. }
  3024. }
  3025. break;
  3026. case 98: //activate farm mode
  3027. farm_mode = 1;
  3028. PingTime = millis();
  3029. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3030. break;
  3031. case 99: //deactivate farm mode
  3032. farm_mode = 0;
  3033. lcd_printer_connected();
  3034. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3035. lcd_update(2);
  3036. break;
  3037. }
  3038. } // end if(code_seen('G'))
  3039. else if(code_seen('M'))
  3040. {
  3041. int index;
  3042. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3043. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3044. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3045. SERIAL_ECHOLNPGM("Invalid M code");
  3046. } else
  3047. switch((int)code_value())
  3048. {
  3049. #ifdef ULTIPANEL
  3050. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3051. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3052. {
  3053. char *src = strchr_pointer + 2;
  3054. codenum = 0;
  3055. bool hasP = false, hasS = false;
  3056. if (code_seen('P')) {
  3057. codenum = code_value(); // milliseconds to wait
  3058. hasP = codenum > 0;
  3059. }
  3060. if (code_seen('S')) {
  3061. codenum = code_value() * 1000; // seconds to wait
  3062. hasS = codenum > 0;
  3063. }
  3064. starpos = strchr(src, '*');
  3065. if (starpos != NULL) *(starpos) = '\0';
  3066. while (*src == ' ') ++src;
  3067. if (!hasP && !hasS && *src != '\0') {
  3068. lcd_setstatus(src);
  3069. } else {
  3070. LCD_MESSAGERPGM(MSG_USERWAIT);
  3071. }
  3072. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3073. st_synchronize();
  3074. previous_millis_cmd = millis();
  3075. if (codenum > 0){
  3076. codenum += millis(); // keep track of when we started waiting
  3077. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3078. while(millis() < codenum && !lcd_clicked()){
  3079. manage_heater();
  3080. manage_inactivity(true);
  3081. lcd_update();
  3082. }
  3083. KEEPALIVE_STATE(IN_HANDLER);
  3084. lcd_ignore_click(false);
  3085. }else{
  3086. if (!lcd_detected())
  3087. break;
  3088. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3089. while(!lcd_clicked()){
  3090. manage_heater();
  3091. manage_inactivity(true);
  3092. lcd_update();
  3093. }
  3094. KEEPALIVE_STATE(IN_HANDLER);
  3095. }
  3096. if (IS_SD_PRINTING)
  3097. LCD_MESSAGERPGM(MSG_RESUMING);
  3098. else
  3099. LCD_MESSAGERPGM(WELCOME_MSG);
  3100. }
  3101. break;
  3102. #endif
  3103. case 17:
  3104. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3105. enable_x();
  3106. enable_y();
  3107. enable_z();
  3108. enable_e0();
  3109. enable_e1();
  3110. enable_e2();
  3111. break;
  3112. #ifdef SDSUPPORT
  3113. case 20: // M20 - list SD card
  3114. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3115. card.ls();
  3116. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3117. break;
  3118. case 21: // M21 - init SD card
  3119. card.initsd();
  3120. break;
  3121. case 22: //M22 - release SD card
  3122. card.release();
  3123. break;
  3124. case 23: //M23 - Select file
  3125. starpos = (strchr(strchr_pointer + 4,'*'));
  3126. if(starpos!=NULL)
  3127. *(starpos)='\0';
  3128. card.openFile(strchr_pointer + 4,true);
  3129. break;
  3130. case 24: //M24 - Start SD print
  3131. card.startFileprint();
  3132. starttime=millis();
  3133. break;
  3134. case 25: //M25 - Pause SD print
  3135. card.pauseSDPrint();
  3136. break;
  3137. case 26: //M26 - Set SD index
  3138. if(card.cardOK && code_seen('S')) {
  3139. card.setIndex(code_value_long());
  3140. }
  3141. break;
  3142. case 27: //M27 - Get SD status
  3143. card.getStatus();
  3144. break;
  3145. case 28: //M28 - Start SD write
  3146. starpos = (strchr(strchr_pointer + 4,'*'));
  3147. if(starpos != NULL){
  3148. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3149. strchr_pointer = strchr(npos,' ') + 1;
  3150. *(starpos) = '\0';
  3151. }
  3152. card.openFile(strchr_pointer+4,false);
  3153. break;
  3154. case 29: //M29 - Stop SD write
  3155. //processed in write to file routine above
  3156. //card,saving = false;
  3157. break;
  3158. case 30: //M30 <filename> Delete File
  3159. if (card.cardOK){
  3160. card.closefile();
  3161. starpos = (strchr(strchr_pointer + 4,'*'));
  3162. if(starpos != NULL){
  3163. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3164. strchr_pointer = strchr(npos,' ') + 1;
  3165. *(starpos) = '\0';
  3166. }
  3167. card.removeFile(strchr_pointer + 4);
  3168. }
  3169. break;
  3170. case 32: //M32 - Select file and start SD print
  3171. {
  3172. if(card.sdprinting) {
  3173. st_synchronize();
  3174. }
  3175. starpos = (strchr(strchr_pointer + 4,'*'));
  3176. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3177. if(namestartpos==NULL)
  3178. {
  3179. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3180. }
  3181. else
  3182. namestartpos++; //to skip the '!'
  3183. if(starpos!=NULL)
  3184. *(starpos)='\0';
  3185. bool call_procedure=(code_seen('P'));
  3186. if(strchr_pointer>namestartpos)
  3187. call_procedure=false; //false alert, 'P' found within filename
  3188. if( card.cardOK )
  3189. {
  3190. card.openFile(namestartpos,true,!call_procedure);
  3191. if(code_seen('S'))
  3192. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3193. card.setIndex(code_value_long());
  3194. card.startFileprint();
  3195. if(!call_procedure)
  3196. starttime=millis(); //procedure calls count as normal print time.
  3197. }
  3198. } break;
  3199. case 928: //M928 - Start SD write
  3200. starpos = (strchr(strchr_pointer + 5,'*'));
  3201. if(starpos != NULL){
  3202. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3203. strchr_pointer = strchr(npos,' ') + 1;
  3204. *(starpos) = '\0';
  3205. }
  3206. card.openLogFile(strchr_pointer+5);
  3207. break;
  3208. #endif //SDSUPPORT
  3209. case 31: //M31 take time since the start of the SD print or an M109 command
  3210. {
  3211. stoptime=millis();
  3212. char time[30];
  3213. unsigned long t=(stoptime-starttime)/1000;
  3214. int sec,min;
  3215. min=t/60;
  3216. sec=t%60;
  3217. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3218. SERIAL_ECHO_START;
  3219. SERIAL_ECHOLN(time);
  3220. lcd_setstatus(time);
  3221. autotempShutdown();
  3222. }
  3223. break;
  3224. case 42: //M42 -Change pin status via gcode
  3225. if (code_seen('S'))
  3226. {
  3227. int pin_status = code_value();
  3228. int pin_number = LED_PIN;
  3229. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3230. pin_number = code_value();
  3231. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3232. {
  3233. if (sensitive_pins[i] == pin_number)
  3234. {
  3235. pin_number = -1;
  3236. break;
  3237. }
  3238. }
  3239. #if defined(FAN_PIN) && FAN_PIN > -1
  3240. if (pin_number == FAN_PIN)
  3241. fanSpeed = pin_status;
  3242. #endif
  3243. if (pin_number > -1)
  3244. {
  3245. pinMode(pin_number, OUTPUT);
  3246. digitalWrite(pin_number, pin_status);
  3247. analogWrite(pin_number, pin_status);
  3248. }
  3249. }
  3250. break;
  3251. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3252. // Reset the baby step value and the baby step applied flag.
  3253. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3254. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3255. // Reset the skew and offset in both RAM and EEPROM.
  3256. reset_bed_offset_and_skew();
  3257. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3258. // the planner will not perform any adjustments in the XY plane.
  3259. // Wait for the motors to stop and update the current position with the absolute values.
  3260. world2machine_revert_to_uncorrected();
  3261. break;
  3262. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3263. {
  3264. bool only_Z = code_seen('Z');
  3265. gcode_M45(only_Z);
  3266. }
  3267. break;
  3268. /*
  3269. case 46:
  3270. {
  3271. // M46: Prusa3D: Show the assigned IP address.
  3272. uint8_t ip[4];
  3273. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3274. if (hasIP) {
  3275. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3276. SERIAL_ECHO(int(ip[0]));
  3277. SERIAL_ECHOPGM(".");
  3278. SERIAL_ECHO(int(ip[1]));
  3279. SERIAL_ECHOPGM(".");
  3280. SERIAL_ECHO(int(ip[2]));
  3281. SERIAL_ECHOPGM(".");
  3282. SERIAL_ECHO(int(ip[3]));
  3283. SERIAL_ECHOLNPGM("");
  3284. } else {
  3285. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3286. }
  3287. break;
  3288. }
  3289. */
  3290. case 47:
  3291. // M47: Prusa3D: Show end stops dialog on the display.
  3292. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3293. lcd_diag_show_end_stops();
  3294. KEEPALIVE_STATE(IN_HANDLER);
  3295. break;
  3296. #if 0
  3297. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3298. {
  3299. // Disable the default update procedure of the display. We will do a modal dialog.
  3300. lcd_update_enable(false);
  3301. // Let the planner use the uncorrected coordinates.
  3302. mbl.reset();
  3303. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3304. // the planner will not perform any adjustments in the XY plane.
  3305. // Wait for the motors to stop and update the current position with the absolute values.
  3306. world2machine_revert_to_uncorrected();
  3307. // Move the print head close to the bed.
  3308. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3309. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3310. st_synchronize();
  3311. // Home in the XY plane.
  3312. set_destination_to_current();
  3313. setup_for_endstop_move();
  3314. home_xy();
  3315. int8_t verbosity_level = 0;
  3316. if (code_seen('V')) {
  3317. // Just 'V' without a number counts as V1.
  3318. char c = strchr_pointer[1];
  3319. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3320. }
  3321. bool success = scan_bed_induction_points(verbosity_level);
  3322. clean_up_after_endstop_move();
  3323. // Print head up.
  3324. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3326. st_synchronize();
  3327. lcd_update_enable(true);
  3328. break;
  3329. }
  3330. #endif
  3331. // M48 Z-Probe repeatability measurement function.
  3332. //
  3333. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3334. //
  3335. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3336. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3337. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3338. // regenerated.
  3339. //
  3340. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3341. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3342. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3343. //
  3344. #ifdef ENABLE_AUTO_BED_LEVELING
  3345. #ifdef Z_PROBE_REPEATABILITY_TEST
  3346. case 48: // M48 Z-Probe repeatability
  3347. {
  3348. #if Z_MIN_PIN == -1
  3349. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3350. #endif
  3351. double sum=0.0;
  3352. double mean=0.0;
  3353. double sigma=0.0;
  3354. double sample_set[50];
  3355. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3356. double X_current, Y_current, Z_current;
  3357. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3358. if (code_seen('V') || code_seen('v')) {
  3359. verbose_level = code_value();
  3360. if (verbose_level<0 || verbose_level>4 ) {
  3361. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3362. goto Sigma_Exit;
  3363. }
  3364. }
  3365. if (verbose_level > 0) {
  3366. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3367. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3368. }
  3369. if (code_seen('n')) {
  3370. n_samples = code_value();
  3371. if (n_samples<4 || n_samples>50 ) {
  3372. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3373. goto Sigma_Exit;
  3374. }
  3375. }
  3376. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3377. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3378. Z_current = st_get_position_mm(Z_AXIS);
  3379. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3380. ext_position = st_get_position_mm(E_AXIS);
  3381. if (code_seen('X') || code_seen('x') ) {
  3382. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3383. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3384. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3385. goto Sigma_Exit;
  3386. }
  3387. }
  3388. if (code_seen('Y') || code_seen('y') ) {
  3389. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3390. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3391. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3392. goto Sigma_Exit;
  3393. }
  3394. }
  3395. if (code_seen('L') || code_seen('l') ) {
  3396. n_legs = code_value();
  3397. if ( n_legs==1 )
  3398. n_legs = 2;
  3399. if ( n_legs<0 || n_legs>15 ) {
  3400. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3401. goto Sigma_Exit;
  3402. }
  3403. }
  3404. //
  3405. // Do all the preliminary setup work. First raise the probe.
  3406. //
  3407. st_synchronize();
  3408. plan_bed_level_matrix.set_to_identity();
  3409. plan_buffer_line( X_current, Y_current, Z_start_location,
  3410. ext_position,
  3411. homing_feedrate[Z_AXIS]/60,
  3412. active_extruder);
  3413. st_synchronize();
  3414. //
  3415. // Now get everything to the specified probe point So we can safely do a probe to
  3416. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3417. // use that as a starting point for each probe.
  3418. //
  3419. if (verbose_level > 2)
  3420. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3421. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3422. ext_position,
  3423. homing_feedrate[X_AXIS]/60,
  3424. active_extruder);
  3425. st_synchronize();
  3426. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3427. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3428. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3429. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3430. //
  3431. // OK, do the inital probe to get us close to the bed.
  3432. // Then retrace the right amount and use that in subsequent probes
  3433. //
  3434. setup_for_endstop_move();
  3435. run_z_probe();
  3436. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3437. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3438. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3439. ext_position,
  3440. homing_feedrate[X_AXIS]/60,
  3441. active_extruder);
  3442. st_synchronize();
  3443. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3444. for( n=0; n<n_samples; n++) {
  3445. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3446. if ( n_legs) {
  3447. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3448. int rotational_direction, l;
  3449. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3450. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3451. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3452. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3453. //SERIAL_ECHOPAIR(" theta: ",theta);
  3454. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3455. //SERIAL_PROTOCOLLNPGM("");
  3456. for( l=0; l<n_legs-1; l++) {
  3457. if (rotational_direction==1)
  3458. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3459. else
  3460. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3461. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3462. if ( radius<0.0 )
  3463. radius = -radius;
  3464. X_current = X_probe_location + cos(theta) * radius;
  3465. Y_current = Y_probe_location + sin(theta) * radius;
  3466. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3467. X_current = X_MIN_POS;
  3468. if ( X_current>X_MAX_POS)
  3469. X_current = X_MAX_POS;
  3470. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3471. Y_current = Y_MIN_POS;
  3472. if ( Y_current>Y_MAX_POS)
  3473. Y_current = Y_MAX_POS;
  3474. if (verbose_level>3 ) {
  3475. SERIAL_ECHOPAIR("x: ", X_current);
  3476. SERIAL_ECHOPAIR("y: ", Y_current);
  3477. SERIAL_PROTOCOLLNPGM("");
  3478. }
  3479. do_blocking_move_to( X_current, Y_current, Z_current );
  3480. }
  3481. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3482. }
  3483. setup_for_endstop_move();
  3484. run_z_probe();
  3485. sample_set[n] = current_position[Z_AXIS];
  3486. //
  3487. // Get the current mean for the data points we have so far
  3488. //
  3489. sum=0.0;
  3490. for( j=0; j<=n; j++) {
  3491. sum = sum + sample_set[j];
  3492. }
  3493. mean = sum / (double (n+1));
  3494. //
  3495. // Now, use that mean to calculate the standard deviation for the
  3496. // data points we have so far
  3497. //
  3498. sum=0.0;
  3499. for( j=0; j<=n; j++) {
  3500. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3501. }
  3502. sigma = sqrt( sum / (double (n+1)) );
  3503. if (verbose_level > 1) {
  3504. SERIAL_PROTOCOL(n+1);
  3505. SERIAL_PROTOCOL(" of ");
  3506. SERIAL_PROTOCOL(n_samples);
  3507. SERIAL_PROTOCOLPGM(" z: ");
  3508. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3509. }
  3510. if (verbose_level > 2) {
  3511. SERIAL_PROTOCOL(" mean: ");
  3512. SERIAL_PROTOCOL_F(mean,6);
  3513. SERIAL_PROTOCOL(" sigma: ");
  3514. SERIAL_PROTOCOL_F(sigma,6);
  3515. }
  3516. if (verbose_level > 0)
  3517. SERIAL_PROTOCOLPGM("\n");
  3518. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3519. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3520. st_synchronize();
  3521. }
  3522. delay(1000);
  3523. clean_up_after_endstop_move();
  3524. // enable_endstops(true);
  3525. if (verbose_level > 0) {
  3526. SERIAL_PROTOCOLPGM("Mean: ");
  3527. SERIAL_PROTOCOL_F(mean, 6);
  3528. SERIAL_PROTOCOLPGM("\n");
  3529. }
  3530. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3531. SERIAL_PROTOCOL_F(sigma, 6);
  3532. SERIAL_PROTOCOLPGM("\n\n");
  3533. Sigma_Exit:
  3534. break;
  3535. }
  3536. #endif // Z_PROBE_REPEATABILITY_TEST
  3537. #endif // ENABLE_AUTO_BED_LEVELING
  3538. case 104: // M104
  3539. if(setTargetedHotend(104)){
  3540. break;
  3541. }
  3542. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3543. setWatch();
  3544. break;
  3545. case 112: // M112 -Emergency Stop
  3546. kill("", 3);
  3547. break;
  3548. case 140: // M140 set bed temp
  3549. if (code_seen('S')) setTargetBed(code_value());
  3550. break;
  3551. case 105 : // M105
  3552. if(setTargetedHotend(105)){
  3553. break;
  3554. }
  3555. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3556. SERIAL_PROTOCOLPGM("ok T:");
  3557. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3558. SERIAL_PROTOCOLPGM(" /");
  3559. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3560. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3561. SERIAL_PROTOCOLPGM(" B:");
  3562. SERIAL_PROTOCOL_F(degBed(),1);
  3563. SERIAL_PROTOCOLPGM(" /");
  3564. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3565. #endif //TEMP_BED_PIN
  3566. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3567. SERIAL_PROTOCOLPGM(" T");
  3568. SERIAL_PROTOCOL(cur_extruder);
  3569. SERIAL_PROTOCOLPGM(":");
  3570. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3571. SERIAL_PROTOCOLPGM(" /");
  3572. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3573. }
  3574. #else
  3575. SERIAL_ERROR_START;
  3576. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3577. #endif
  3578. SERIAL_PROTOCOLPGM(" @:");
  3579. #ifdef EXTRUDER_WATTS
  3580. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3581. SERIAL_PROTOCOLPGM("W");
  3582. #else
  3583. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3584. #endif
  3585. SERIAL_PROTOCOLPGM(" B@:");
  3586. #ifdef BED_WATTS
  3587. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3588. SERIAL_PROTOCOLPGM("W");
  3589. #else
  3590. SERIAL_PROTOCOL(getHeaterPower(-1));
  3591. #endif
  3592. #ifdef PINDA_THERMISTOR
  3593. SERIAL_PROTOCOLPGM(" P:");
  3594. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3595. #endif //PINDA_THERMISTOR
  3596. #ifdef AMBIENT_THERMISTOR
  3597. SERIAL_PROTOCOLPGM(" A:");
  3598. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3599. #endif //AMBIENT_THERMISTOR
  3600. #ifdef SHOW_TEMP_ADC_VALUES
  3601. {float raw = 0.0;
  3602. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3603. SERIAL_PROTOCOLPGM(" ADC B:");
  3604. SERIAL_PROTOCOL_F(degBed(),1);
  3605. SERIAL_PROTOCOLPGM("C->");
  3606. raw = rawBedTemp();
  3607. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3608. SERIAL_PROTOCOLPGM(" Rb->");
  3609. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3610. SERIAL_PROTOCOLPGM(" Rxb->");
  3611. SERIAL_PROTOCOL_F(raw, 5);
  3612. #endif
  3613. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3614. SERIAL_PROTOCOLPGM(" T");
  3615. SERIAL_PROTOCOL(cur_extruder);
  3616. SERIAL_PROTOCOLPGM(":");
  3617. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3618. SERIAL_PROTOCOLPGM("C->");
  3619. raw = rawHotendTemp(cur_extruder);
  3620. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3621. SERIAL_PROTOCOLPGM(" Rt");
  3622. SERIAL_PROTOCOL(cur_extruder);
  3623. SERIAL_PROTOCOLPGM("->");
  3624. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3625. SERIAL_PROTOCOLPGM(" Rx");
  3626. SERIAL_PROTOCOL(cur_extruder);
  3627. SERIAL_PROTOCOLPGM("->");
  3628. SERIAL_PROTOCOL_F(raw, 5);
  3629. }}
  3630. #endif
  3631. SERIAL_PROTOCOLLN("");
  3632. KEEPALIVE_STATE(NOT_BUSY);
  3633. return;
  3634. break;
  3635. case 109:
  3636. {// M109 - Wait for extruder heater to reach target.
  3637. if(setTargetedHotend(109)){
  3638. break;
  3639. }
  3640. LCD_MESSAGERPGM(MSG_HEATING);
  3641. heating_status = 1;
  3642. if (farm_mode) { prusa_statistics(1); };
  3643. #ifdef AUTOTEMP
  3644. autotemp_enabled=false;
  3645. #endif
  3646. if (code_seen('S')) {
  3647. setTargetHotend(code_value(), tmp_extruder);
  3648. CooldownNoWait = true;
  3649. } else if (code_seen('R')) {
  3650. setTargetHotend(code_value(), tmp_extruder);
  3651. CooldownNoWait = false;
  3652. }
  3653. #ifdef AUTOTEMP
  3654. if (code_seen('S')) autotemp_min=code_value();
  3655. if (code_seen('B')) autotemp_max=code_value();
  3656. if (code_seen('F'))
  3657. {
  3658. autotemp_factor=code_value();
  3659. autotemp_enabled=true;
  3660. }
  3661. #endif
  3662. setWatch();
  3663. codenum = millis();
  3664. /* See if we are heating up or cooling down */
  3665. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3666. KEEPALIVE_STATE(NOT_BUSY);
  3667. cancel_heatup = false;
  3668. wait_for_heater(codenum); //loops until target temperature is reached
  3669. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3670. KEEPALIVE_STATE(IN_HANDLER);
  3671. heating_status = 2;
  3672. if (farm_mode) { prusa_statistics(2); };
  3673. //starttime=millis();
  3674. previous_millis_cmd = millis();
  3675. }
  3676. break;
  3677. case 190: // M190 - Wait for bed heater to reach target.
  3678. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3679. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3680. heating_status = 3;
  3681. if (farm_mode) { prusa_statistics(1); };
  3682. if (code_seen('S'))
  3683. {
  3684. setTargetBed(code_value());
  3685. CooldownNoWait = true;
  3686. }
  3687. else if (code_seen('R'))
  3688. {
  3689. setTargetBed(code_value());
  3690. CooldownNoWait = false;
  3691. }
  3692. codenum = millis();
  3693. cancel_heatup = false;
  3694. target_direction = isHeatingBed(); // true if heating, false if cooling
  3695. KEEPALIVE_STATE(NOT_BUSY);
  3696. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3697. {
  3698. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3699. {
  3700. if (!farm_mode) {
  3701. float tt = degHotend(active_extruder);
  3702. SERIAL_PROTOCOLPGM("T:");
  3703. SERIAL_PROTOCOL(tt);
  3704. SERIAL_PROTOCOLPGM(" E:");
  3705. SERIAL_PROTOCOL((int)active_extruder);
  3706. SERIAL_PROTOCOLPGM(" B:");
  3707. SERIAL_PROTOCOL_F(degBed(), 1);
  3708. SERIAL_PROTOCOLLN("");
  3709. }
  3710. codenum = millis();
  3711. }
  3712. manage_heater();
  3713. manage_inactivity();
  3714. lcd_update();
  3715. }
  3716. LCD_MESSAGERPGM(MSG_BED_DONE);
  3717. KEEPALIVE_STATE(IN_HANDLER);
  3718. heating_status = 4;
  3719. previous_millis_cmd = millis();
  3720. #endif
  3721. break;
  3722. #if defined(FAN_PIN) && FAN_PIN > -1
  3723. case 106: //M106 Fan On
  3724. if (code_seen('S')){
  3725. fanSpeed=constrain(code_value(),0,255);
  3726. }
  3727. else {
  3728. fanSpeed=255;
  3729. }
  3730. break;
  3731. case 107: //M107 Fan Off
  3732. fanSpeed = 0;
  3733. break;
  3734. #endif //FAN_PIN
  3735. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3736. case 80: // M80 - Turn on Power Supply
  3737. SET_OUTPUT(PS_ON_PIN); //GND
  3738. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3739. // If you have a switch on suicide pin, this is useful
  3740. // if you want to start another print with suicide feature after
  3741. // a print without suicide...
  3742. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3743. SET_OUTPUT(SUICIDE_PIN);
  3744. WRITE(SUICIDE_PIN, HIGH);
  3745. #endif
  3746. #ifdef ULTIPANEL
  3747. powersupply = true;
  3748. LCD_MESSAGERPGM(WELCOME_MSG);
  3749. lcd_update();
  3750. #endif
  3751. break;
  3752. #endif
  3753. case 81: // M81 - Turn off Power Supply
  3754. disable_heater();
  3755. st_synchronize();
  3756. disable_e0();
  3757. disable_e1();
  3758. disable_e2();
  3759. finishAndDisableSteppers();
  3760. fanSpeed = 0;
  3761. delay(1000); // Wait a little before to switch off
  3762. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3763. st_synchronize();
  3764. suicide();
  3765. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3766. SET_OUTPUT(PS_ON_PIN);
  3767. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3768. #endif
  3769. #ifdef ULTIPANEL
  3770. powersupply = false;
  3771. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3772. /*
  3773. MACHNAME = "Prusa i3"
  3774. MSGOFF = "Vypnuto"
  3775. "Prusai3"" ""vypnuto""."
  3776. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3777. */
  3778. lcd_update();
  3779. #endif
  3780. break;
  3781. case 82:
  3782. axis_relative_modes[3] = false;
  3783. break;
  3784. case 83:
  3785. axis_relative_modes[3] = true;
  3786. break;
  3787. case 18: //compatibility
  3788. case 84: // M84
  3789. if(code_seen('S')){
  3790. stepper_inactive_time = code_value() * 1000;
  3791. }
  3792. else
  3793. {
  3794. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3795. if(all_axis)
  3796. {
  3797. st_synchronize();
  3798. disable_e0();
  3799. disable_e1();
  3800. disable_e2();
  3801. finishAndDisableSteppers();
  3802. }
  3803. else
  3804. {
  3805. st_synchronize();
  3806. if (code_seen('X')) disable_x();
  3807. if (code_seen('Y')) disable_y();
  3808. if (code_seen('Z')) disable_z();
  3809. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3810. if (code_seen('E')) {
  3811. disable_e0();
  3812. disable_e1();
  3813. disable_e2();
  3814. }
  3815. #endif
  3816. }
  3817. }
  3818. snmm_filaments_used = 0;
  3819. break;
  3820. case 85: // M85
  3821. if(code_seen('S')) {
  3822. max_inactive_time = code_value() * 1000;
  3823. }
  3824. break;
  3825. case 92: // M92
  3826. for(int8_t i=0; i < NUM_AXIS; i++)
  3827. {
  3828. if(code_seen(axis_codes[i]))
  3829. {
  3830. if(i == 3) { // E
  3831. float value = code_value();
  3832. if(value < 20.0) {
  3833. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3834. max_jerk[E_AXIS] *= factor;
  3835. max_feedrate[i] *= factor;
  3836. axis_steps_per_sqr_second[i] *= factor;
  3837. }
  3838. axis_steps_per_unit[i] = value;
  3839. }
  3840. else {
  3841. axis_steps_per_unit[i] = code_value();
  3842. }
  3843. }
  3844. }
  3845. break;
  3846. #ifdef HOST_KEEPALIVE_FEATURE
  3847. case 113: // M113 - Get or set Host Keepalive interval
  3848. if (code_seen('S')) {
  3849. host_keepalive_interval = (uint8_t)code_value_short();
  3850. NOMORE(host_keepalive_interval, 60);
  3851. }
  3852. else {
  3853. SERIAL_ECHO_START;
  3854. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3855. SERIAL_PROTOCOLLN("");
  3856. }
  3857. break;
  3858. #endif
  3859. case 115: // M115
  3860. if (code_seen('V')) {
  3861. // Report the Prusa version number.
  3862. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3863. } else if (code_seen('U')) {
  3864. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3865. // pause the print and ask the user to upgrade the firmware.
  3866. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3867. } else {
  3868. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3869. }
  3870. break;
  3871. /* case 117: // M117 display message
  3872. starpos = (strchr(strchr_pointer + 5,'*'));
  3873. if(starpos!=NULL)
  3874. *(starpos)='\0';
  3875. lcd_setstatus(strchr_pointer + 5);
  3876. break;*/
  3877. case 114: // M114
  3878. SERIAL_PROTOCOLPGM("X:");
  3879. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3880. SERIAL_PROTOCOLPGM(" Y:");
  3881. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3882. SERIAL_PROTOCOLPGM(" Z:");
  3883. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3884. SERIAL_PROTOCOLPGM(" E:");
  3885. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3886. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3887. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3888. SERIAL_PROTOCOLPGM(" Y:");
  3889. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3890. SERIAL_PROTOCOLPGM(" Z:");
  3891. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3892. SERIAL_PROTOCOLPGM(" E:");
  3893. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3894. SERIAL_PROTOCOLLN("");
  3895. break;
  3896. case 120: // M120
  3897. enable_endstops(false) ;
  3898. break;
  3899. case 121: // M121
  3900. enable_endstops(true) ;
  3901. break;
  3902. case 119: // M119
  3903. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3904. SERIAL_PROTOCOLLN("");
  3905. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3906. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3907. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3908. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3909. }else{
  3910. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3911. }
  3912. SERIAL_PROTOCOLLN("");
  3913. #endif
  3914. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3915. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3916. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3917. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3918. }else{
  3919. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3920. }
  3921. SERIAL_PROTOCOLLN("");
  3922. #endif
  3923. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3924. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3925. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3926. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3927. }else{
  3928. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3929. }
  3930. SERIAL_PROTOCOLLN("");
  3931. #endif
  3932. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3933. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3934. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3935. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3936. }else{
  3937. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3938. }
  3939. SERIAL_PROTOCOLLN("");
  3940. #endif
  3941. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3942. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3943. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3944. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3945. }else{
  3946. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3947. }
  3948. SERIAL_PROTOCOLLN("");
  3949. #endif
  3950. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3951. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3952. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3953. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3954. }else{
  3955. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3956. }
  3957. SERIAL_PROTOCOLLN("");
  3958. #endif
  3959. break;
  3960. //TODO: update for all axis, use for loop
  3961. #ifdef BLINKM
  3962. case 150: // M150
  3963. {
  3964. byte red;
  3965. byte grn;
  3966. byte blu;
  3967. if(code_seen('R')) red = code_value();
  3968. if(code_seen('U')) grn = code_value();
  3969. if(code_seen('B')) blu = code_value();
  3970. SendColors(red,grn,blu);
  3971. }
  3972. break;
  3973. #endif //BLINKM
  3974. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3975. {
  3976. tmp_extruder = active_extruder;
  3977. if(code_seen('T')) {
  3978. tmp_extruder = code_value();
  3979. if(tmp_extruder >= EXTRUDERS) {
  3980. SERIAL_ECHO_START;
  3981. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3982. break;
  3983. }
  3984. }
  3985. float area = .0;
  3986. if(code_seen('D')) {
  3987. float diameter = (float)code_value();
  3988. if (diameter == 0.0) {
  3989. // setting any extruder filament size disables volumetric on the assumption that
  3990. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3991. // for all extruders
  3992. volumetric_enabled = false;
  3993. } else {
  3994. filament_size[tmp_extruder] = (float)code_value();
  3995. // make sure all extruders have some sane value for the filament size
  3996. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3997. #if EXTRUDERS > 1
  3998. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3999. #if EXTRUDERS > 2
  4000. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4001. #endif
  4002. #endif
  4003. volumetric_enabled = true;
  4004. }
  4005. } else {
  4006. //reserved for setting filament diameter via UFID or filament measuring device
  4007. break;
  4008. }
  4009. calculate_volumetric_multipliers();
  4010. }
  4011. break;
  4012. case 201: // M201
  4013. for(int8_t i=0; i < NUM_AXIS; i++)
  4014. {
  4015. if(code_seen(axis_codes[i]))
  4016. {
  4017. max_acceleration_units_per_sq_second[i] = code_value();
  4018. }
  4019. }
  4020. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4021. reset_acceleration_rates();
  4022. break;
  4023. #if 0 // Not used for Sprinter/grbl gen6
  4024. case 202: // M202
  4025. for(int8_t i=0; i < NUM_AXIS; i++) {
  4026. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4027. }
  4028. break;
  4029. #endif
  4030. case 203: // M203 max feedrate mm/sec
  4031. for(int8_t i=0; i < NUM_AXIS; i++) {
  4032. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4033. }
  4034. break;
  4035. case 204: // M204 acclereration S normal moves T filmanent only moves
  4036. {
  4037. if(code_seen('S')) acceleration = code_value() ;
  4038. if(code_seen('T')) retract_acceleration = code_value() ;
  4039. }
  4040. break;
  4041. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4042. {
  4043. if(code_seen('S')) minimumfeedrate = code_value();
  4044. if(code_seen('T')) mintravelfeedrate = code_value();
  4045. if(code_seen('B')) minsegmenttime = code_value() ;
  4046. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4047. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4048. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4049. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4050. }
  4051. break;
  4052. case 206: // M206 additional homing offset
  4053. for(int8_t i=0; i < 3; i++)
  4054. {
  4055. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4056. }
  4057. break;
  4058. #ifdef FWRETRACT
  4059. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4060. {
  4061. if(code_seen('S'))
  4062. {
  4063. retract_length = code_value() ;
  4064. }
  4065. if(code_seen('F'))
  4066. {
  4067. retract_feedrate = code_value()/60 ;
  4068. }
  4069. if(code_seen('Z'))
  4070. {
  4071. retract_zlift = code_value() ;
  4072. }
  4073. }break;
  4074. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4075. {
  4076. if(code_seen('S'))
  4077. {
  4078. retract_recover_length = code_value() ;
  4079. }
  4080. if(code_seen('F'))
  4081. {
  4082. retract_recover_feedrate = code_value()/60 ;
  4083. }
  4084. }break;
  4085. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4086. {
  4087. if(code_seen('S'))
  4088. {
  4089. int t= code_value() ;
  4090. switch(t)
  4091. {
  4092. case 0:
  4093. {
  4094. autoretract_enabled=false;
  4095. retracted[0]=false;
  4096. #if EXTRUDERS > 1
  4097. retracted[1]=false;
  4098. #endif
  4099. #if EXTRUDERS > 2
  4100. retracted[2]=false;
  4101. #endif
  4102. }break;
  4103. case 1:
  4104. {
  4105. autoretract_enabled=true;
  4106. retracted[0]=false;
  4107. #if EXTRUDERS > 1
  4108. retracted[1]=false;
  4109. #endif
  4110. #if EXTRUDERS > 2
  4111. retracted[2]=false;
  4112. #endif
  4113. }break;
  4114. default:
  4115. SERIAL_ECHO_START;
  4116. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4117. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4118. SERIAL_ECHOLNPGM("\"(1)");
  4119. }
  4120. }
  4121. }break;
  4122. #endif // FWRETRACT
  4123. #if EXTRUDERS > 1
  4124. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4125. {
  4126. if(setTargetedHotend(218)){
  4127. break;
  4128. }
  4129. if(code_seen('X'))
  4130. {
  4131. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4132. }
  4133. if(code_seen('Y'))
  4134. {
  4135. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4136. }
  4137. SERIAL_ECHO_START;
  4138. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4139. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4140. {
  4141. SERIAL_ECHO(" ");
  4142. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4143. SERIAL_ECHO(",");
  4144. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4145. }
  4146. SERIAL_ECHOLN("");
  4147. }break;
  4148. #endif
  4149. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4150. {
  4151. if(code_seen('S'))
  4152. {
  4153. feedmultiply = code_value() ;
  4154. }
  4155. }
  4156. break;
  4157. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4158. {
  4159. if(code_seen('S'))
  4160. {
  4161. int tmp_code = code_value();
  4162. if (code_seen('T'))
  4163. {
  4164. if(setTargetedHotend(221)){
  4165. break;
  4166. }
  4167. extruder_multiply[tmp_extruder] = tmp_code;
  4168. }
  4169. else
  4170. {
  4171. extrudemultiply = tmp_code ;
  4172. }
  4173. }
  4174. }
  4175. break;
  4176. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4177. {
  4178. if(code_seen('P')){
  4179. int pin_number = code_value(); // pin number
  4180. int pin_state = -1; // required pin state - default is inverted
  4181. if(code_seen('S')) pin_state = code_value(); // required pin state
  4182. if(pin_state >= -1 && pin_state <= 1){
  4183. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4184. {
  4185. if (sensitive_pins[i] == pin_number)
  4186. {
  4187. pin_number = -1;
  4188. break;
  4189. }
  4190. }
  4191. if (pin_number > -1)
  4192. {
  4193. int target = LOW;
  4194. st_synchronize();
  4195. pinMode(pin_number, INPUT);
  4196. switch(pin_state){
  4197. case 1:
  4198. target = HIGH;
  4199. break;
  4200. case 0:
  4201. target = LOW;
  4202. break;
  4203. case -1:
  4204. target = !digitalRead(pin_number);
  4205. break;
  4206. }
  4207. while(digitalRead(pin_number) != target){
  4208. manage_heater();
  4209. manage_inactivity();
  4210. lcd_update();
  4211. }
  4212. }
  4213. }
  4214. }
  4215. }
  4216. break;
  4217. #if NUM_SERVOS > 0
  4218. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4219. {
  4220. int servo_index = -1;
  4221. int servo_position = 0;
  4222. if (code_seen('P'))
  4223. servo_index = code_value();
  4224. if (code_seen('S')) {
  4225. servo_position = code_value();
  4226. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4227. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4228. servos[servo_index].attach(0);
  4229. #endif
  4230. servos[servo_index].write(servo_position);
  4231. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4232. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4233. servos[servo_index].detach();
  4234. #endif
  4235. }
  4236. else {
  4237. SERIAL_ECHO_START;
  4238. SERIAL_ECHO("Servo ");
  4239. SERIAL_ECHO(servo_index);
  4240. SERIAL_ECHOLN(" out of range");
  4241. }
  4242. }
  4243. else if (servo_index >= 0) {
  4244. SERIAL_PROTOCOL(MSG_OK);
  4245. SERIAL_PROTOCOL(" Servo ");
  4246. SERIAL_PROTOCOL(servo_index);
  4247. SERIAL_PROTOCOL(": ");
  4248. SERIAL_PROTOCOL(servos[servo_index].read());
  4249. SERIAL_PROTOCOLLN("");
  4250. }
  4251. }
  4252. break;
  4253. #endif // NUM_SERVOS > 0
  4254. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4255. case 300: // M300
  4256. {
  4257. int beepS = code_seen('S') ? code_value() : 110;
  4258. int beepP = code_seen('P') ? code_value() : 1000;
  4259. if (beepS > 0)
  4260. {
  4261. #if BEEPER > 0
  4262. tone(BEEPER, beepS);
  4263. delay(beepP);
  4264. noTone(BEEPER);
  4265. #elif defined(ULTRALCD)
  4266. lcd_buzz(beepS, beepP);
  4267. #elif defined(LCD_USE_I2C_BUZZER)
  4268. lcd_buzz(beepP, beepS);
  4269. #endif
  4270. }
  4271. else
  4272. {
  4273. delay(beepP);
  4274. }
  4275. }
  4276. break;
  4277. #endif // M300
  4278. #ifdef PIDTEMP
  4279. case 301: // M301
  4280. {
  4281. if(code_seen('P')) Kp = code_value();
  4282. if(code_seen('I')) Ki = scalePID_i(code_value());
  4283. if(code_seen('D')) Kd = scalePID_d(code_value());
  4284. #ifdef PID_ADD_EXTRUSION_RATE
  4285. if(code_seen('C')) Kc = code_value();
  4286. #endif
  4287. updatePID();
  4288. SERIAL_PROTOCOLRPGM(MSG_OK);
  4289. SERIAL_PROTOCOL(" p:");
  4290. SERIAL_PROTOCOL(Kp);
  4291. SERIAL_PROTOCOL(" i:");
  4292. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4293. SERIAL_PROTOCOL(" d:");
  4294. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4295. #ifdef PID_ADD_EXTRUSION_RATE
  4296. SERIAL_PROTOCOL(" c:");
  4297. //Kc does not have scaling applied above, or in resetting defaults
  4298. SERIAL_PROTOCOL(Kc);
  4299. #endif
  4300. SERIAL_PROTOCOLLN("");
  4301. }
  4302. break;
  4303. #endif //PIDTEMP
  4304. #ifdef PIDTEMPBED
  4305. case 304: // M304
  4306. {
  4307. if(code_seen('P')) bedKp = code_value();
  4308. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4309. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4310. updatePID();
  4311. SERIAL_PROTOCOLRPGM(MSG_OK);
  4312. SERIAL_PROTOCOL(" p:");
  4313. SERIAL_PROTOCOL(bedKp);
  4314. SERIAL_PROTOCOL(" i:");
  4315. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4316. SERIAL_PROTOCOL(" d:");
  4317. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4318. SERIAL_PROTOCOLLN("");
  4319. }
  4320. break;
  4321. #endif //PIDTEMP
  4322. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4323. {
  4324. #ifdef CHDK
  4325. SET_OUTPUT(CHDK);
  4326. WRITE(CHDK, HIGH);
  4327. chdkHigh = millis();
  4328. chdkActive = true;
  4329. #else
  4330. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4331. const uint8_t NUM_PULSES=16;
  4332. const float PULSE_LENGTH=0.01524;
  4333. for(int i=0; i < NUM_PULSES; i++) {
  4334. WRITE(PHOTOGRAPH_PIN, HIGH);
  4335. _delay_ms(PULSE_LENGTH);
  4336. WRITE(PHOTOGRAPH_PIN, LOW);
  4337. _delay_ms(PULSE_LENGTH);
  4338. }
  4339. delay(7.33);
  4340. for(int i=0; i < NUM_PULSES; i++) {
  4341. WRITE(PHOTOGRAPH_PIN, HIGH);
  4342. _delay_ms(PULSE_LENGTH);
  4343. WRITE(PHOTOGRAPH_PIN, LOW);
  4344. _delay_ms(PULSE_LENGTH);
  4345. }
  4346. #endif
  4347. #endif //chdk end if
  4348. }
  4349. break;
  4350. #ifdef DOGLCD
  4351. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4352. {
  4353. if (code_seen('C')) {
  4354. lcd_setcontrast( ((int)code_value())&63 );
  4355. }
  4356. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4357. SERIAL_PROTOCOL(lcd_contrast);
  4358. SERIAL_PROTOCOLLN("");
  4359. }
  4360. break;
  4361. #endif
  4362. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4363. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4364. {
  4365. float temp = .0;
  4366. if (code_seen('S')) temp=code_value();
  4367. set_extrude_min_temp(temp);
  4368. }
  4369. break;
  4370. #endif
  4371. case 303: // M303 PID autotune
  4372. {
  4373. float temp = 150.0;
  4374. int e=0;
  4375. int c=5;
  4376. if (code_seen('E')) e=code_value();
  4377. if (e<0)
  4378. temp=70;
  4379. if (code_seen('S')) temp=code_value();
  4380. if (code_seen('C')) c=code_value();
  4381. PID_autotune(temp, e, c);
  4382. }
  4383. break;
  4384. case 400: // M400 finish all moves
  4385. {
  4386. st_synchronize();
  4387. }
  4388. break;
  4389. #ifdef FILAMENT_SENSOR
  4390. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4391. {
  4392. #if (FILWIDTH_PIN > -1)
  4393. if(code_seen('N')) filament_width_nominal=code_value();
  4394. else{
  4395. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4396. SERIAL_PROTOCOLLN(filament_width_nominal);
  4397. }
  4398. #endif
  4399. }
  4400. break;
  4401. case 405: //M405 Turn on filament sensor for control
  4402. {
  4403. if(code_seen('D')) meas_delay_cm=code_value();
  4404. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4405. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4406. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4407. {
  4408. int temp_ratio = widthFil_to_size_ratio();
  4409. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4410. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4411. }
  4412. delay_index1=0;
  4413. delay_index2=0;
  4414. }
  4415. filament_sensor = true ;
  4416. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4417. //SERIAL_PROTOCOL(filament_width_meas);
  4418. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4419. //SERIAL_PROTOCOL(extrudemultiply);
  4420. }
  4421. break;
  4422. case 406: //M406 Turn off filament sensor for control
  4423. {
  4424. filament_sensor = false ;
  4425. }
  4426. break;
  4427. case 407: //M407 Display measured filament diameter
  4428. {
  4429. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4430. SERIAL_PROTOCOLLN(filament_width_meas);
  4431. }
  4432. break;
  4433. #endif
  4434. case 500: // M500 Store settings in EEPROM
  4435. {
  4436. Config_StoreSettings(EEPROM_OFFSET);
  4437. }
  4438. break;
  4439. case 501: // M501 Read settings from EEPROM
  4440. {
  4441. Config_RetrieveSettings(EEPROM_OFFSET);
  4442. }
  4443. break;
  4444. case 502: // M502 Revert to default settings
  4445. {
  4446. Config_ResetDefault();
  4447. }
  4448. break;
  4449. case 503: // M503 print settings currently in memory
  4450. {
  4451. Config_PrintSettings();
  4452. }
  4453. break;
  4454. case 509: //M509 Force language selection
  4455. {
  4456. lcd_force_language_selection();
  4457. SERIAL_ECHO_START;
  4458. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4459. }
  4460. break;
  4461. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4462. case 540:
  4463. {
  4464. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4465. }
  4466. break;
  4467. #endif
  4468. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4469. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4470. {
  4471. float value;
  4472. if (code_seen('Z'))
  4473. {
  4474. value = code_value();
  4475. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4476. {
  4477. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4478. SERIAL_ECHO_START;
  4479. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4480. SERIAL_PROTOCOLLN("");
  4481. }
  4482. else
  4483. {
  4484. SERIAL_ECHO_START;
  4485. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4486. SERIAL_ECHORPGM(MSG_Z_MIN);
  4487. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4488. SERIAL_ECHORPGM(MSG_Z_MAX);
  4489. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4490. SERIAL_PROTOCOLLN("");
  4491. }
  4492. }
  4493. else
  4494. {
  4495. SERIAL_ECHO_START;
  4496. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4497. SERIAL_ECHO(-zprobe_zoffset);
  4498. SERIAL_PROTOCOLLN("");
  4499. }
  4500. break;
  4501. }
  4502. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4503. #ifdef FILAMENTCHANGEENABLE
  4504. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4505. {
  4506. MYSERIAL.println("!!!!M600!!!!");
  4507. st_synchronize();
  4508. float target[4];
  4509. float lastpos[4];
  4510. if (farm_mode)
  4511. {
  4512. prusa_statistics(22);
  4513. }
  4514. feedmultiplyBckp=feedmultiply;
  4515. int8_t TooLowZ = 0;
  4516. target[X_AXIS]=current_position[X_AXIS];
  4517. target[Y_AXIS]=current_position[Y_AXIS];
  4518. target[Z_AXIS]=current_position[Z_AXIS];
  4519. target[E_AXIS]=current_position[E_AXIS];
  4520. lastpos[X_AXIS]=current_position[X_AXIS];
  4521. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4522. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4523. lastpos[E_AXIS]=current_position[E_AXIS];
  4524. //Restract extruder
  4525. if(code_seen('E'))
  4526. {
  4527. target[E_AXIS]+= code_value();
  4528. }
  4529. else
  4530. {
  4531. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4532. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4533. #endif
  4534. }
  4535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4536. //Lift Z
  4537. if(code_seen('Z'))
  4538. {
  4539. target[Z_AXIS]+= code_value();
  4540. }
  4541. else
  4542. {
  4543. #ifdef FILAMENTCHANGE_ZADD
  4544. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4545. if(target[Z_AXIS] < 10){
  4546. target[Z_AXIS]+= 10 ;
  4547. TooLowZ = 1;
  4548. }else{
  4549. TooLowZ = 0;
  4550. }
  4551. #endif
  4552. }
  4553. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4554. //Move XY to side
  4555. if(code_seen('X'))
  4556. {
  4557. target[X_AXIS]+= code_value();
  4558. }
  4559. else
  4560. {
  4561. #ifdef FILAMENTCHANGE_XPOS
  4562. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4563. #endif
  4564. }
  4565. if(code_seen('Y'))
  4566. {
  4567. target[Y_AXIS]= code_value();
  4568. }
  4569. else
  4570. {
  4571. #ifdef FILAMENTCHANGE_YPOS
  4572. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4573. #endif
  4574. }
  4575. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4576. st_synchronize();
  4577. custom_message = true;
  4578. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4579. // Unload filament
  4580. if(code_seen('L'))
  4581. {
  4582. target[E_AXIS]+= code_value();
  4583. }
  4584. else
  4585. {
  4586. #ifdef SNMM
  4587. #else
  4588. #ifdef FILAMENTCHANGE_FINALRETRACT
  4589. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4590. #endif
  4591. #endif // SNMM
  4592. }
  4593. #ifdef SNMM
  4594. target[E_AXIS] += 12;
  4595. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4596. target[E_AXIS] += 6;
  4597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4598. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4599. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4600. st_synchronize();
  4601. target[E_AXIS] += (FIL_COOLING);
  4602. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4603. target[E_AXIS] += (FIL_COOLING*-1);
  4604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4605. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4607. st_synchronize();
  4608. #else
  4609. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500/60, active_extruder);
  4611. #endif // SNMM
  4612. //finish moves
  4613. st_synchronize();
  4614. //disable extruder steppers so filament can be removed
  4615. disable_e0();
  4616. disable_e1();
  4617. disable_e2();
  4618. delay(100);
  4619. //Wait for user to insert filament
  4620. uint8_t cnt=0;
  4621. int counterBeep = 0;
  4622. lcd_wait_interact();
  4623. load_filament_time = millis();
  4624. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4625. while(!lcd_clicked()){
  4626. cnt++;
  4627. manage_heater();
  4628. manage_inactivity(true);
  4629. /*#ifdef SNMM
  4630. target[E_AXIS] += 0.002;
  4631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4632. #endif // SNMM*/
  4633. if(cnt==0)
  4634. {
  4635. #if BEEPER > 0
  4636. if (counterBeep== 500){
  4637. counterBeep = 0;
  4638. }
  4639. SET_OUTPUT(BEEPER);
  4640. if (counterBeep== 0){
  4641. WRITE(BEEPER,HIGH);
  4642. }
  4643. if (counterBeep== 20){
  4644. WRITE(BEEPER,LOW);
  4645. }
  4646. counterBeep++;
  4647. #else
  4648. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4649. lcd_buzz(1000/6,100);
  4650. #else
  4651. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4652. #endif
  4653. #endif
  4654. }
  4655. }
  4656. WRITE(BEEPER, LOW);
  4657. KEEPALIVE_STATE(IN_HANDLER);
  4658. #ifdef SNMM
  4659. display_loading();
  4660. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4661. do {
  4662. target[E_AXIS] += 0.002;
  4663. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4664. delay_keep_alive(2);
  4665. } while (!lcd_clicked());
  4666. KEEPALIVE_STATE(IN_HANDLER);
  4667. /*if (millis() - load_filament_time > 2) {
  4668. load_filament_time = millis();
  4669. target[E_AXIS] += 0.001;
  4670. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4671. }*/
  4672. //Filament inserted
  4673. //Feed the filament to the end of nozzle quickly
  4674. st_synchronize();
  4675. target[E_AXIS] += bowden_length[snmm_extruder];
  4676. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4677. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4678. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4679. target[E_AXIS] += 40;
  4680. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4681. target[E_AXIS] += 10;
  4682. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4683. #else
  4684. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4686. #endif // SNMM
  4687. //Extrude some filament
  4688. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4689. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4690. //Wait for user to check the state
  4691. lcd_change_fil_state = 0;
  4692. lcd_loading_filament();
  4693. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4694. lcd_change_fil_state = 0;
  4695. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4696. lcd_alright();
  4697. KEEPALIVE_STATE(IN_HANDLER);
  4698. switch(lcd_change_fil_state){
  4699. // Filament failed to load so load it again
  4700. case 2:
  4701. #ifdef SNMM
  4702. display_loading();
  4703. do {
  4704. target[E_AXIS] += 0.002;
  4705. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4706. delay_keep_alive(2);
  4707. } while (!lcd_clicked());
  4708. st_synchronize();
  4709. target[E_AXIS] += bowden_length[snmm_extruder];
  4710. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4711. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4712. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4713. target[E_AXIS] += 40;
  4714. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4715. target[E_AXIS] += 10;
  4716. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4717. #else
  4718. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4719. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4720. #endif
  4721. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4722. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4723. lcd_loading_filament();
  4724. break;
  4725. // Filament loaded properly but color is not clear
  4726. case 3:
  4727. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4728. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4729. lcd_loading_color();
  4730. break;
  4731. // Everything good
  4732. default:
  4733. lcd_change_success();
  4734. lcd_update_enable(true);
  4735. break;
  4736. }
  4737. }
  4738. //Not let's go back to print
  4739. //Feed a little of filament to stabilize pressure
  4740. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4741. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4742. //Retract
  4743. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4744. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4745. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4746. //Move XY back
  4747. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4748. //Move Z back
  4749. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4750. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4751. //Unretract
  4752. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4753. //Set E position to original
  4754. plan_set_e_position(lastpos[E_AXIS]);
  4755. //Recover feed rate
  4756. feedmultiply=feedmultiplyBckp;
  4757. char cmd[9];
  4758. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4759. enquecommand(cmd);
  4760. lcd_setstatuspgm(WELCOME_MSG);
  4761. custom_message = false;
  4762. custom_message_type = 0;
  4763. #ifdef PAT9125
  4764. if (fsensor_M600)
  4765. {
  4766. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4767. st_synchronize();
  4768. while (!is_buffer_empty())
  4769. {
  4770. process_commands();
  4771. cmdqueue_pop_front();
  4772. }
  4773. fsensor_enable();
  4774. fsensor_restore_print_and_continue();
  4775. }
  4776. #endif //PAT9125
  4777. }
  4778. break;
  4779. #endif //FILAMENTCHANGEENABLE
  4780. case 601: {
  4781. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4782. }
  4783. break;
  4784. case 602: {
  4785. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4786. }
  4787. break;
  4788. #ifdef LIN_ADVANCE
  4789. case 900: // M900: Set LIN_ADVANCE options.
  4790. gcode_M900();
  4791. break;
  4792. #endif
  4793. case 907: // M907 Set digital trimpot motor current using axis codes.
  4794. {
  4795. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4796. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4797. if(code_seen('B')) digipot_current(4,code_value());
  4798. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4799. #endif
  4800. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4801. if(code_seen('X')) digipot_current(0, code_value());
  4802. #endif
  4803. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4804. if(code_seen('Z')) digipot_current(1, code_value());
  4805. #endif
  4806. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4807. if(code_seen('E')) digipot_current(2, code_value());
  4808. #endif
  4809. #ifdef DIGIPOT_I2C
  4810. // this one uses actual amps in floating point
  4811. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4812. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4813. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4814. #endif
  4815. }
  4816. break;
  4817. case 908: // M908 Control digital trimpot directly.
  4818. {
  4819. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4820. uint8_t channel,current;
  4821. if(code_seen('P')) channel=code_value();
  4822. if(code_seen('S')) current=code_value();
  4823. digitalPotWrite(channel, current);
  4824. #endif
  4825. }
  4826. break;
  4827. case 910: // M910 TMC2130 init
  4828. {
  4829. tmc2130_init();
  4830. }
  4831. break;
  4832. case 911: // M911 Set TMC2130 holding currents
  4833. {
  4834. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4835. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4836. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4837. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4838. }
  4839. break;
  4840. case 912: // M912 Set TMC2130 running currents
  4841. {
  4842. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4843. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4844. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4845. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4846. }
  4847. break;
  4848. case 913: // M913 Print TMC2130 currents
  4849. {
  4850. tmc2130_print_currents();
  4851. }
  4852. break;
  4853. case 914: // M914 Set normal mode
  4854. {
  4855. tmc2130_mode = TMC2130_MODE_NORMAL;
  4856. tmc2130_init();
  4857. }
  4858. break;
  4859. case 915: // M915 Set silent mode
  4860. {
  4861. tmc2130_mode = TMC2130_MODE_SILENT;
  4862. tmc2130_init();
  4863. }
  4864. break;
  4865. case 916: // M916 Set sg_thrs
  4866. {
  4867. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4868. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4869. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4870. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4871. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4872. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4873. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4874. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4875. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4876. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4877. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4878. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4879. }
  4880. break;
  4881. case 917: // M917 Set TMC2130 pwm_ampl
  4882. {
  4883. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4884. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4885. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4886. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4887. }
  4888. break;
  4889. case 918: // M918 Set TMC2130 pwm_grad
  4890. {
  4891. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4892. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4893. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4894. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4895. }
  4896. break;
  4897. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4898. {
  4899. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4900. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4901. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4902. if(code_seen('B')) microstep_mode(4,code_value());
  4903. microstep_readings();
  4904. #endif
  4905. }
  4906. break;
  4907. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4908. {
  4909. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4910. if(code_seen('S')) switch((int)code_value())
  4911. {
  4912. case 1:
  4913. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4914. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4915. break;
  4916. case 2:
  4917. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4918. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4919. break;
  4920. }
  4921. microstep_readings();
  4922. #endif
  4923. }
  4924. break;
  4925. case 701: //M701: load filament
  4926. {
  4927. gcode_M701();
  4928. }
  4929. break;
  4930. case 702:
  4931. {
  4932. #ifdef SNMM
  4933. if (code_seen('U')) {
  4934. extr_unload_used(); //unload all filaments which were used in current print
  4935. }
  4936. else if (code_seen('C')) {
  4937. extr_unload(); //unload just current filament
  4938. }
  4939. else {
  4940. extr_unload_all(); //unload all filaments
  4941. }
  4942. #else
  4943. custom_message = true;
  4944. custom_message_type = 2;
  4945. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4946. current_position[E_AXIS] -= 80;
  4947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4948. st_synchronize();
  4949. lcd_setstatuspgm(WELCOME_MSG);
  4950. custom_message = false;
  4951. custom_message_type = 0;
  4952. #endif
  4953. }
  4954. break;
  4955. case 999: // M999: Restart after being stopped
  4956. Stopped = false;
  4957. lcd_reset_alert_level();
  4958. gcode_LastN = Stopped_gcode_LastN;
  4959. FlushSerialRequestResend();
  4960. break;
  4961. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4962. }
  4963. } // end if(code_seen('M')) (end of M codes)
  4964. else if(code_seen('T'))
  4965. {
  4966. int index;
  4967. st_synchronize();
  4968. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4969. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4970. SERIAL_ECHOLNPGM("Invalid T code.");
  4971. }
  4972. else {
  4973. if (*(strchr_pointer + index) == '?') {
  4974. tmp_extruder = choose_extruder_menu();
  4975. }
  4976. else {
  4977. tmp_extruder = code_value();
  4978. }
  4979. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4980. #ifdef SNMM
  4981. #ifdef LIN_ADVANCE
  4982. if (snmm_extruder != tmp_extruder)
  4983. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4984. #endif
  4985. snmm_extruder = tmp_extruder;
  4986. delay(100);
  4987. disable_e0();
  4988. disable_e1();
  4989. disable_e2();
  4990. pinMode(E_MUX0_PIN, OUTPUT);
  4991. pinMode(E_MUX1_PIN, OUTPUT);
  4992. pinMode(E_MUX2_PIN, OUTPUT);
  4993. delay(100);
  4994. SERIAL_ECHO_START;
  4995. SERIAL_ECHO("T:");
  4996. SERIAL_ECHOLN((int)tmp_extruder);
  4997. switch (tmp_extruder) {
  4998. case 1:
  4999. WRITE(E_MUX0_PIN, HIGH);
  5000. WRITE(E_MUX1_PIN, LOW);
  5001. WRITE(E_MUX2_PIN, LOW);
  5002. break;
  5003. case 2:
  5004. WRITE(E_MUX0_PIN, LOW);
  5005. WRITE(E_MUX1_PIN, HIGH);
  5006. WRITE(E_MUX2_PIN, LOW);
  5007. break;
  5008. case 3:
  5009. WRITE(E_MUX0_PIN, HIGH);
  5010. WRITE(E_MUX1_PIN, HIGH);
  5011. WRITE(E_MUX2_PIN, LOW);
  5012. break;
  5013. default:
  5014. WRITE(E_MUX0_PIN, LOW);
  5015. WRITE(E_MUX1_PIN, LOW);
  5016. WRITE(E_MUX2_PIN, LOW);
  5017. break;
  5018. }
  5019. delay(100);
  5020. #else
  5021. if (tmp_extruder >= EXTRUDERS) {
  5022. SERIAL_ECHO_START;
  5023. SERIAL_ECHOPGM("T");
  5024. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5025. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5026. }
  5027. else {
  5028. boolean make_move = false;
  5029. if (code_seen('F')) {
  5030. make_move = true;
  5031. next_feedrate = code_value();
  5032. if (next_feedrate > 0.0) {
  5033. feedrate = next_feedrate;
  5034. }
  5035. }
  5036. #if EXTRUDERS > 1
  5037. if (tmp_extruder != active_extruder) {
  5038. // Save current position to return to after applying extruder offset
  5039. memcpy(destination, current_position, sizeof(destination));
  5040. // Offset extruder (only by XY)
  5041. int i;
  5042. for (i = 0; i < 2; i++) {
  5043. current_position[i] = current_position[i] -
  5044. extruder_offset[i][active_extruder] +
  5045. extruder_offset[i][tmp_extruder];
  5046. }
  5047. // Set the new active extruder and position
  5048. active_extruder = tmp_extruder;
  5049. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5050. // Move to the old position if 'F' was in the parameters
  5051. if (make_move && Stopped == false) {
  5052. prepare_move();
  5053. }
  5054. }
  5055. #endif
  5056. SERIAL_ECHO_START;
  5057. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5058. SERIAL_PROTOCOLLN((int)active_extruder);
  5059. }
  5060. #endif
  5061. }
  5062. } // end if(code_seen('T')) (end of T codes)
  5063. #ifdef DEBUG_DCODES
  5064. else if (code_seen('D')) // D codes (debug)
  5065. {
  5066. switch((int)code_value())
  5067. {
  5068. case 0: // D0 - Reset
  5069. dcode_0(); break;
  5070. case 1: // D1 - Clear EEPROM
  5071. dcode_1(); break;
  5072. case 2: // D2 - Read/Write RAM
  5073. dcode_2(); break;
  5074. case 3: // D3 - Read/Write EEPROM
  5075. dcode_3(); break;
  5076. case 4: // D4 - Read/Write PIN
  5077. dcode_4(); break;
  5078. case 5: // D5 - Read/Write FLASH
  5079. dcode_5(); break;
  5080. case 6: // D6 - Read/Write external FLASH
  5081. dcode_6(); break;
  5082. case 7: // D7 - Read/Write Bootloader
  5083. dcode_7(); break;
  5084. case 8: // D8 - Read/Write PINDA
  5085. dcode_8(); break;
  5086. case 10: // D10 - XYZ calibration = OK
  5087. dcode_10(); break;
  5088. case 12: //D12 - Reset failstat counters
  5089. dcode_12(); break;
  5090. case 2130: // D9125 - TMC2130
  5091. dcode_2130(); break;
  5092. case 9125: // D9125 - PAT9125
  5093. dcode_9125(); break;
  5094. case 999:
  5095. {
  5096. MYSERIAL.println("D999 - crash");
  5097. /* while (!is_buffer_empty())
  5098. {
  5099. process_commands();
  5100. cmdqueue_pop_front();
  5101. }*/
  5102. st_synchronize();
  5103. lcd_update_enable(true);
  5104. lcd_implementation_clear();
  5105. lcd_update(2);
  5106. // Increment crash counter
  5107. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  5108. crash_count++;
  5109. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  5110. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  5111. bool yesno = true;
  5112. #else
  5113. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  5114. #endif
  5115. lcd_update_enable(true);
  5116. lcd_update(2);
  5117. lcd_setstatuspgm(WELCOME_MSG);
  5118. if (yesno)
  5119. {
  5120. enquecommand_P(PSTR("G28 X"));
  5121. enquecommand_P(PSTR("G28 Y"));
  5122. enquecommand_P(PSTR("D1000"));
  5123. }
  5124. else
  5125. {
  5126. enquecommand_P(PSTR("D1001"));
  5127. }
  5128. }
  5129. break;
  5130. case 1000:
  5131. crashdet_restore_print_and_continue();
  5132. tmc2130_sg_stop_on_crash = true;
  5133. break;
  5134. case 1001:
  5135. card.sdprinting = false;
  5136. card.closefile();
  5137. tmc2130_sg_stop_on_crash = true;
  5138. break;
  5139. /* case 4:
  5140. {
  5141. MYSERIAL.println("D4 - Test");
  5142. uint8_t data[16];
  5143. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5144. MYSERIAL.println(cnt, DEC);
  5145. for (int i = 0; i < cnt; i++)
  5146. {
  5147. serial_print_hex_byte(data[i]);
  5148. MYSERIAL.write(' ');
  5149. }
  5150. MYSERIAL.write('\n');
  5151. }
  5152. break;
  5153. /* case 3:
  5154. if (code_seen('L')) // lcd pwm (0-255)
  5155. {
  5156. lcdSoftPwm = (int)code_value();
  5157. }
  5158. if (code_seen('B')) // lcd blink delay (0-255)
  5159. {
  5160. lcdBlinkDelay = (int)code_value();
  5161. }
  5162. // calibrate_z_auto();
  5163. /* MYSERIAL.print("fsensor_enable()");
  5164. #ifdef PAT9125
  5165. fsensor_enable();
  5166. #endif*/
  5167. break;
  5168. // case 4:
  5169. // lcdBlinkDelay = 10;
  5170. /* MYSERIAL.print("fsensor_disable()");
  5171. #ifdef PAT9125
  5172. fsensor_disable();
  5173. #endif
  5174. break;*/
  5175. // break;
  5176. /* case 5:
  5177. {
  5178. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5179. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5180. MYSERIAL.println(val);
  5181. homeaxis(0);
  5182. }
  5183. break;*/
  5184. /* case 6:
  5185. {
  5186. MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5187. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5188. MYSERIAL.println(val);
  5189. homeaxis(1);
  5190. }
  5191. break;
  5192. case 7:
  5193. {
  5194. MYSERIAL.print("pat9125_init=");
  5195. MYSERIAL.println(pat9125_init(200, 200));
  5196. }
  5197. break;
  5198. case 8:
  5199. {
  5200. MYSERIAL.print("swi2c_check=");
  5201. MYSERIAL.println(swi2c_check(0x75));
  5202. }
  5203. break;*/
  5204. }
  5205. }
  5206. #endif //DEBUG_DCODES
  5207. else
  5208. {
  5209. SERIAL_ECHO_START;
  5210. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5211. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5212. SERIAL_ECHOLNPGM("\"(2)");
  5213. }
  5214. KEEPALIVE_STATE(NOT_BUSY);
  5215. ClearToSend();
  5216. }
  5217. void FlushSerialRequestResend()
  5218. {
  5219. //char cmdbuffer[bufindr][100]="Resend:";
  5220. MYSERIAL.flush();
  5221. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5222. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5223. ClearToSend();
  5224. }
  5225. // Confirm the execution of a command, if sent from a serial line.
  5226. // Execution of a command from a SD card will not be confirmed.
  5227. void ClearToSend()
  5228. {
  5229. previous_millis_cmd = millis();
  5230. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5231. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5232. }
  5233. void get_coordinates()
  5234. {
  5235. bool seen[4]={false,false,false,false};
  5236. for(int8_t i=0; i < NUM_AXIS; i++) {
  5237. if(code_seen(axis_codes[i]))
  5238. {
  5239. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5240. seen[i]=true;
  5241. }
  5242. else destination[i] = current_position[i]; //Are these else lines really needed?
  5243. }
  5244. if(code_seen('F')) {
  5245. next_feedrate = code_value();
  5246. #ifdef MAX_SILENT_FEEDRATE
  5247. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5248. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5249. #endif //MAX_SILENT_FEEDRATE
  5250. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5251. }
  5252. }
  5253. void get_arc_coordinates()
  5254. {
  5255. #ifdef SF_ARC_FIX
  5256. bool relative_mode_backup = relative_mode;
  5257. relative_mode = true;
  5258. #endif
  5259. get_coordinates();
  5260. #ifdef SF_ARC_FIX
  5261. relative_mode=relative_mode_backup;
  5262. #endif
  5263. if(code_seen('I')) {
  5264. offset[0] = code_value();
  5265. }
  5266. else {
  5267. offset[0] = 0.0;
  5268. }
  5269. if(code_seen('J')) {
  5270. offset[1] = code_value();
  5271. }
  5272. else {
  5273. offset[1] = 0.0;
  5274. }
  5275. }
  5276. void clamp_to_software_endstops(float target[3])
  5277. {
  5278. #ifdef DEBUG_DISABLE_SWLIMITS
  5279. return;
  5280. #endif //DEBUG_DISABLE_SWLIMITS
  5281. world2machine_clamp(target[0], target[1]);
  5282. // Clamp the Z coordinate.
  5283. if (min_software_endstops) {
  5284. float negative_z_offset = 0;
  5285. #ifdef ENABLE_AUTO_BED_LEVELING
  5286. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5287. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5288. #endif
  5289. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5290. }
  5291. if (max_software_endstops) {
  5292. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5293. }
  5294. }
  5295. #ifdef MESH_BED_LEVELING
  5296. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5297. float dx = x - current_position[X_AXIS];
  5298. float dy = y - current_position[Y_AXIS];
  5299. float dz = z - current_position[Z_AXIS];
  5300. int n_segments = 0;
  5301. if (mbl.active) {
  5302. float len = abs(dx) + abs(dy);
  5303. if (len > 0)
  5304. // Split to 3cm segments or shorter.
  5305. n_segments = int(ceil(len / 30.f));
  5306. }
  5307. if (n_segments > 1) {
  5308. float de = e - current_position[E_AXIS];
  5309. for (int i = 1; i < n_segments; ++ i) {
  5310. float t = float(i) / float(n_segments);
  5311. plan_buffer_line(
  5312. current_position[X_AXIS] + t * dx,
  5313. current_position[Y_AXIS] + t * dy,
  5314. current_position[Z_AXIS] + t * dz,
  5315. current_position[E_AXIS] + t * de,
  5316. feed_rate, extruder);
  5317. }
  5318. }
  5319. // The rest of the path.
  5320. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5321. current_position[X_AXIS] = x;
  5322. current_position[Y_AXIS] = y;
  5323. current_position[Z_AXIS] = z;
  5324. current_position[E_AXIS] = e;
  5325. }
  5326. #endif // MESH_BED_LEVELING
  5327. void prepare_move()
  5328. {
  5329. clamp_to_software_endstops(destination);
  5330. previous_millis_cmd = millis();
  5331. // Do not use feedmultiply for E or Z only moves
  5332. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5333. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5334. }
  5335. else {
  5336. #ifdef MESH_BED_LEVELING
  5337. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5338. #else
  5339. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5340. #endif
  5341. }
  5342. for(int8_t i=0; i < NUM_AXIS; i++) {
  5343. current_position[i] = destination[i];
  5344. }
  5345. }
  5346. void prepare_arc_move(char isclockwise) {
  5347. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5348. // Trace the arc
  5349. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5350. // As far as the parser is concerned, the position is now == target. In reality the
  5351. // motion control system might still be processing the action and the real tool position
  5352. // in any intermediate location.
  5353. for(int8_t i=0; i < NUM_AXIS; i++) {
  5354. current_position[i] = destination[i];
  5355. }
  5356. previous_millis_cmd = millis();
  5357. }
  5358. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5359. #if defined(FAN_PIN)
  5360. #if CONTROLLERFAN_PIN == FAN_PIN
  5361. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5362. #endif
  5363. #endif
  5364. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5365. unsigned long lastMotorCheck = 0;
  5366. void controllerFan()
  5367. {
  5368. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5369. {
  5370. lastMotorCheck = millis();
  5371. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5372. #if EXTRUDERS > 2
  5373. || !READ(E2_ENABLE_PIN)
  5374. #endif
  5375. #if EXTRUDER > 1
  5376. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5377. || !READ(X2_ENABLE_PIN)
  5378. #endif
  5379. || !READ(E1_ENABLE_PIN)
  5380. #endif
  5381. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5382. {
  5383. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5384. }
  5385. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5386. {
  5387. digitalWrite(CONTROLLERFAN_PIN, 0);
  5388. analogWrite(CONTROLLERFAN_PIN, 0);
  5389. }
  5390. else
  5391. {
  5392. // allows digital or PWM fan output to be used (see M42 handling)
  5393. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5394. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5395. }
  5396. }
  5397. }
  5398. #endif
  5399. #ifdef TEMP_STAT_LEDS
  5400. static bool blue_led = false;
  5401. static bool red_led = false;
  5402. static uint32_t stat_update = 0;
  5403. void handle_status_leds(void) {
  5404. float max_temp = 0.0;
  5405. if(millis() > stat_update) {
  5406. stat_update += 500; // Update every 0.5s
  5407. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5408. max_temp = max(max_temp, degHotend(cur_extruder));
  5409. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5410. }
  5411. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5412. max_temp = max(max_temp, degTargetBed());
  5413. max_temp = max(max_temp, degBed());
  5414. #endif
  5415. if((max_temp > 55.0) && (red_led == false)) {
  5416. digitalWrite(STAT_LED_RED, 1);
  5417. digitalWrite(STAT_LED_BLUE, 0);
  5418. red_led = true;
  5419. blue_led = false;
  5420. }
  5421. if((max_temp < 54.0) && (blue_led == false)) {
  5422. digitalWrite(STAT_LED_RED, 0);
  5423. digitalWrite(STAT_LED_BLUE, 1);
  5424. red_led = false;
  5425. blue_led = true;
  5426. }
  5427. }
  5428. }
  5429. #endif
  5430. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5431. {
  5432. #if defined(KILL_PIN) && KILL_PIN > -1
  5433. static int killCount = 0; // make the inactivity button a bit less responsive
  5434. const int KILL_DELAY = 10000;
  5435. #endif
  5436. if(buflen < (BUFSIZE-1)){
  5437. get_command();
  5438. }
  5439. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5440. if(max_inactive_time)
  5441. kill("", 4);
  5442. if(stepper_inactive_time) {
  5443. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5444. {
  5445. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5446. disable_x();
  5447. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5448. disable_y();
  5449. disable_z();
  5450. disable_e0();
  5451. disable_e1();
  5452. disable_e2();
  5453. }
  5454. }
  5455. }
  5456. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5457. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5458. {
  5459. chdkActive = false;
  5460. WRITE(CHDK, LOW);
  5461. }
  5462. #endif
  5463. #if defined(KILL_PIN) && KILL_PIN > -1
  5464. // Check if the kill button was pressed and wait just in case it was an accidental
  5465. // key kill key press
  5466. // -------------------------------------------------------------------------------
  5467. if( 0 == READ(KILL_PIN) )
  5468. {
  5469. killCount++;
  5470. }
  5471. else if (killCount > 0)
  5472. {
  5473. killCount--;
  5474. }
  5475. // Exceeded threshold and we can confirm that it was not accidental
  5476. // KILL the machine
  5477. // ----------------------------------------------------------------
  5478. if ( killCount >= KILL_DELAY)
  5479. {
  5480. kill("", 5);
  5481. }
  5482. #endif
  5483. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5484. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5485. #endif
  5486. #ifdef EXTRUDER_RUNOUT_PREVENT
  5487. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5488. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5489. {
  5490. bool oldstatus=READ(E0_ENABLE_PIN);
  5491. enable_e0();
  5492. float oldepos=current_position[E_AXIS];
  5493. float oldedes=destination[E_AXIS];
  5494. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5495. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5496. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5497. current_position[E_AXIS]=oldepos;
  5498. destination[E_AXIS]=oldedes;
  5499. plan_set_e_position(oldepos);
  5500. previous_millis_cmd=millis();
  5501. st_synchronize();
  5502. WRITE(E0_ENABLE_PIN,oldstatus);
  5503. }
  5504. #endif
  5505. #ifdef TEMP_STAT_LEDS
  5506. handle_status_leds();
  5507. #endif
  5508. check_axes_activity();
  5509. }
  5510. void kill(const char *full_screen_message, unsigned char id)
  5511. {
  5512. SERIAL_ECHOPGM("KILL: ");
  5513. MYSERIAL.println(int(id));
  5514. //return;
  5515. cli(); // Stop interrupts
  5516. disable_heater();
  5517. disable_x();
  5518. // SERIAL_ECHOLNPGM("kill - disable Y");
  5519. disable_y();
  5520. disable_z();
  5521. disable_e0();
  5522. disable_e1();
  5523. disable_e2();
  5524. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5525. pinMode(PS_ON_PIN,INPUT);
  5526. #endif
  5527. SERIAL_ERROR_START;
  5528. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5529. if (full_screen_message != NULL) {
  5530. SERIAL_ERRORLNRPGM(full_screen_message);
  5531. lcd_display_message_fullscreen_P(full_screen_message);
  5532. } else {
  5533. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5534. }
  5535. // FMC small patch to update the LCD before ending
  5536. sei(); // enable interrupts
  5537. for ( int i=5; i--; lcd_update())
  5538. {
  5539. delay(200);
  5540. }
  5541. cli(); // disable interrupts
  5542. suicide();
  5543. while(1) { /* Intentionally left empty */ } // Wait for reset
  5544. }
  5545. void Stop()
  5546. {
  5547. disable_heater();
  5548. if(Stopped == false) {
  5549. Stopped = true;
  5550. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5551. SERIAL_ERROR_START;
  5552. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5553. LCD_MESSAGERPGM(MSG_STOPPED);
  5554. }
  5555. }
  5556. bool IsStopped() { return Stopped; };
  5557. #ifdef FAST_PWM_FAN
  5558. void setPwmFrequency(uint8_t pin, int val)
  5559. {
  5560. val &= 0x07;
  5561. switch(digitalPinToTimer(pin))
  5562. {
  5563. #if defined(TCCR0A)
  5564. case TIMER0A:
  5565. case TIMER0B:
  5566. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5567. // TCCR0B |= val;
  5568. break;
  5569. #endif
  5570. #if defined(TCCR1A)
  5571. case TIMER1A:
  5572. case TIMER1B:
  5573. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5574. // TCCR1B |= val;
  5575. break;
  5576. #endif
  5577. #if defined(TCCR2)
  5578. case TIMER2:
  5579. case TIMER2:
  5580. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5581. TCCR2 |= val;
  5582. break;
  5583. #endif
  5584. #if defined(TCCR2A)
  5585. case TIMER2A:
  5586. case TIMER2B:
  5587. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5588. TCCR2B |= val;
  5589. break;
  5590. #endif
  5591. #if defined(TCCR3A)
  5592. case TIMER3A:
  5593. case TIMER3B:
  5594. case TIMER3C:
  5595. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5596. TCCR3B |= val;
  5597. break;
  5598. #endif
  5599. #if defined(TCCR4A)
  5600. case TIMER4A:
  5601. case TIMER4B:
  5602. case TIMER4C:
  5603. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5604. TCCR4B |= val;
  5605. break;
  5606. #endif
  5607. #if defined(TCCR5A)
  5608. case TIMER5A:
  5609. case TIMER5B:
  5610. case TIMER5C:
  5611. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5612. TCCR5B |= val;
  5613. break;
  5614. #endif
  5615. }
  5616. }
  5617. #endif //FAST_PWM_FAN
  5618. bool setTargetedHotend(int code){
  5619. tmp_extruder = active_extruder;
  5620. if(code_seen('T')) {
  5621. tmp_extruder = code_value();
  5622. if(tmp_extruder >= EXTRUDERS) {
  5623. SERIAL_ECHO_START;
  5624. switch(code){
  5625. case 104:
  5626. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5627. break;
  5628. case 105:
  5629. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5630. break;
  5631. case 109:
  5632. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5633. break;
  5634. case 218:
  5635. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5636. break;
  5637. case 221:
  5638. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5639. break;
  5640. }
  5641. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5642. return true;
  5643. }
  5644. }
  5645. return false;
  5646. }
  5647. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5648. {
  5649. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5650. {
  5651. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5652. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5653. }
  5654. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5655. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5656. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5657. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5658. total_filament_used = 0;
  5659. }
  5660. float calculate_volumetric_multiplier(float diameter) {
  5661. float area = .0;
  5662. float radius = .0;
  5663. radius = diameter * .5;
  5664. if (! volumetric_enabled || radius == 0) {
  5665. area = 1;
  5666. }
  5667. else {
  5668. area = M_PI * pow(radius, 2);
  5669. }
  5670. return 1.0 / area;
  5671. }
  5672. void calculate_volumetric_multipliers() {
  5673. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5674. #if EXTRUDERS > 1
  5675. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5676. #if EXTRUDERS > 2
  5677. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5678. #endif
  5679. #endif
  5680. }
  5681. void delay_keep_alive(unsigned int ms)
  5682. {
  5683. for (;;) {
  5684. manage_heater();
  5685. // Manage inactivity, but don't disable steppers on timeout.
  5686. manage_inactivity(true);
  5687. lcd_update();
  5688. if (ms == 0)
  5689. break;
  5690. else if (ms >= 50) {
  5691. delay(50);
  5692. ms -= 50;
  5693. } else {
  5694. delay(ms);
  5695. ms = 0;
  5696. }
  5697. }
  5698. }
  5699. void wait_for_heater(long codenum) {
  5700. #ifdef TEMP_RESIDENCY_TIME
  5701. long residencyStart;
  5702. residencyStart = -1;
  5703. /* continue to loop until we have reached the target temp
  5704. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5705. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5706. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5707. #else
  5708. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5709. #endif //TEMP_RESIDENCY_TIME
  5710. if ((millis() - codenum) > 1000UL)
  5711. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5712. if (!farm_mode) {
  5713. SERIAL_PROTOCOLPGM("T:");
  5714. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5715. SERIAL_PROTOCOLPGM(" E:");
  5716. SERIAL_PROTOCOL((int)tmp_extruder);
  5717. #ifdef TEMP_RESIDENCY_TIME
  5718. SERIAL_PROTOCOLPGM(" W:");
  5719. if (residencyStart > -1)
  5720. {
  5721. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5722. SERIAL_PROTOCOLLN(codenum);
  5723. }
  5724. else
  5725. {
  5726. SERIAL_PROTOCOLLN("?");
  5727. }
  5728. }
  5729. #else
  5730. SERIAL_PROTOCOLLN("");
  5731. #endif
  5732. codenum = millis();
  5733. }
  5734. manage_heater();
  5735. manage_inactivity();
  5736. lcd_update();
  5737. #ifdef TEMP_RESIDENCY_TIME
  5738. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5739. or when current temp falls outside the hysteresis after target temp was reached */
  5740. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5741. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5742. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5743. {
  5744. residencyStart = millis();
  5745. }
  5746. #endif //TEMP_RESIDENCY_TIME
  5747. }
  5748. }
  5749. void check_babystep() {
  5750. int babystep_z;
  5751. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5752. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5753. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5754. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5755. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5756. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5757. lcd_update_enable(true);
  5758. }
  5759. }
  5760. #ifdef DIS
  5761. void d_setup()
  5762. {
  5763. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5764. pinMode(D_DATA, INPUT_PULLUP);
  5765. pinMode(D_REQUIRE, OUTPUT);
  5766. digitalWrite(D_REQUIRE, HIGH);
  5767. }
  5768. float d_ReadData()
  5769. {
  5770. int digit[13];
  5771. String mergeOutput;
  5772. float output;
  5773. digitalWrite(D_REQUIRE, HIGH);
  5774. for (int i = 0; i<13; i++)
  5775. {
  5776. for (int j = 0; j < 4; j++)
  5777. {
  5778. while (digitalRead(D_DATACLOCK) == LOW) {}
  5779. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5780. bitWrite(digit[i], j, digitalRead(D_DATA));
  5781. }
  5782. }
  5783. digitalWrite(D_REQUIRE, LOW);
  5784. mergeOutput = "";
  5785. output = 0;
  5786. for (int r = 5; r <= 10; r++) //Merge digits
  5787. {
  5788. mergeOutput += digit[r];
  5789. }
  5790. output = mergeOutput.toFloat();
  5791. if (digit[4] == 8) //Handle sign
  5792. {
  5793. output *= -1;
  5794. }
  5795. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5796. {
  5797. output /= 10;
  5798. }
  5799. return output;
  5800. }
  5801. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5802. int t1 = 0;
  5803. int t_delay = 0;
  5804. int digit[13];
  5805. int m;
  5806. char str[3];
  5807. //String mergeOutput;
  5808. char mergeOutput[15];
  5809. float output;
  5810. int mesh_point = 0; //index number of calibration point
  5811. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5812. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5813. float mesh_home_z_search = 4;
  5814. float row[x_points_num];
  5815. int ix = 0;
  5816. int iy = 0;
  5817. char* filename_wldsd = "wldsd.txt";
  5818. char data_wldsd[70];
  5819. char numb_wldsd[10];
  5820. d_setup();
  5821. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5822. // We don't know where we are! HOME!
  5823. // Push the commands to the front of the message queue in the reverse order!
  5824. // There shall be always enough space reserved for these commands.
  5825. repeatcommand_front(); // repeat G80 with all its parameters
  5826. enquecommand_front_P((PSTR("G28 W0")));
  5827. enquecommand_front_P((PSTR("G1 Z5")));
  5828. return;
  5829. }
  5830. bool custom_message_old = custom_message;
  5831. unsigned int custom_message_type_old = custom_message_type;
  5832. unsigned int custom_message_state_old = custom_message_state;
  5833. custom_message = true;
  5834. custom_message_type = 1;
  5835. custom_message_state = (x_points_num * y_points_num) + 10;
  5836. lcd_update(1);
  5837. mbl.reset();
  5838. babystep_undo();
  5839. card.openFile(filename_wldsd, false);
  5840. current_position[Z_AXIS] = mesh_home_z_search;
  5841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5842. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5843. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5844. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5845. setup_for_endstop_move(false);
  5846. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5847. SERIAL_PROTOCOL(x_points_num);
  5848. SERIAL_PROTOCOLPGM(",");
  5849. SERIAL_PROTOCOL(y_points_num);
  5850. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5851. SERIAL_PROTOCOL(mesh_home_z_search);
  5852. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5853. SERIAL_PROTOCOL(x_dimension);
  5854. SERIAL_PROTOCOLPGM(",");
  5855. SERIAL_PROTOCOL(y_dimension);
  5856. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5857. while (mesh_point != x_points_num * y_points_num) {
  5858. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5859. iy = mesh_point / x_points_num;
  5860. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5861. float z0 = 0.f;
  5862. current_position[Z_AXIS] = mesh_home_z_search;
  5863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5864. st_synchronize();
  5865. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5866. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5868. st_synchronize();
  5869. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5870. break;
  5871. card.closefile();
  5872. }
  5873. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5874. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5875. //strcat(data_wldsd, numb_wldsd);
  5876. //MYSERIAL.println(data_wldsd);
  5877. //delay(1000);
  5878. //delay(3000);
  5879. //t1 = millis();
  5880. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5881. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5882. memset(digit, 0, sizeof(digit));
  5883. //cli();
  5884. digitalWrite(D_REQUIRE, LOW);
  5885. for (int i = 0; i<13; i++)
  5886. {
  5887. //t1 = millis();
  5888. for (int j = 0; j < 4; j++)
  5889. {
  5890. while (digitalRead(D_DATACLOCK) == LOW) {}
  5891. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5892. bitWrite(digit[i], j, digitalRead(D_DATA));
  5893. }
  5894. //t_delay = (millis() - t1);
  5895. //SERIAL_PROTOCOLPGM(" ");
  5896. //SERIAL_PROTOCOL_F(t_delay, 5);
  5897. //SERIAL_PROTOCOLPGM(" ");
  5898. }
  5899. //sei();
  5900. digitalWrite(D_REQUIRE, HIGH);
  5901. mergeOutput[0] = '\0';
  5902. output = 0;
  5903. for (int r = 5; r <= 10; r++) //Merge digits
  5904. {
  5905. sprintf(str, "%d", digit[r]);
  5906. strcat(mergeOutput, str);
  5907. }
  5908. output = atof(mergeOutput);
  5909. if (digit[4] == 8) //Handle sign
  5910. {
  5911. output *= -1;
  5912. }
  5913. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5914. {
  5915. output *= 0.1;
  5916. }
  5917. //output = d_ReadData();
  5918. //row[ix] = current_position[Z_AXIS];
  5919. memset(data_wldsd, 0, sizeof(data_wldsd));
  5920. for (int i = 0; i <3; i++) {
  5921. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5922. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5923. strcat(data_wldsd, numb_wldsd);
  5924. strcat(data_wldsd, ";");
  5925. }
  5926. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5927. dtostrf(output, 8, 5, numb_wldsd);
  5928. strcat(data_wldsd, numb_wldsd);
  5929. //strcat(data_wldsd, ";");
  5930. card.write_command(data_wldsd);
  5931. //row[ix] = d_ReadData();
  5932. row[ix] = output; // current_position[Z_AXIS];
  5933. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5934. for (int i = 0; i < x_points_num; i++) {
  5935. SERIAL_PROTOCOLPGM(" ");
  5936. SERIAL_PROTOCOL_F(row[i], 5);
  5937. }
  5938. SERIAL_PROTOCOLPGM("\n");
  5939. }
  5940. custom_message_state--;
  5941. mesh_point++;
  5942. lcd_update(1);
  5943. }
  5944. card.closefile();
  5945. }
  5946. #endif
  5947. void temp_compensation_start() {
  5948. custom_message = true;
  5949. custom_message_type = 5;
  5950. custom_message_state = PINDA_HEAT_T + 1;
  5951. lcd_update(2);
  5952. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5953. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5954. }
  5955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5956. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5957. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5958. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5960. st_synchronize();
  5961. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5962. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5963. delay_keep_alive(1000);
  5964. custom_message_state = PINDA_HEAT_T - i;
  5965. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5966. else lcd_update(1);
  5967. }
  5968. custom_message_type = 0;
  5969. custom_message_state = 0;
  5970. custom_message = false;
  5971. }
  5972. void temp_compensation_apply() {
  5973. int i_add;
  5974. int compensation_value;
  5975. int z_shift = 0;
  5976. float z_shift_mm;
  5977. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5978. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5979. i_add = (target_temperature_bed - 60) / 10;
  5980. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5981. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5982. }else {
  5983. //interpolation
  5984. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5985. }
  5986. SERIAL_PROTOCOLPGM("\n");
  5987. SERIAL_PROTOCOLPGM("Z shift applied:");
  5988. MYSERIAL.print(z_shift_mm);
  5989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5990. st_synchronize();
  5991. plan_set_z_position(current_position[Z_AXIS]);
  5992. }
  5993. else {
  5994. //we have no temp compensation data
  5995. }
  5996. }
  5997. float temp_comp_interpolation(float inp_temperature) {
  5998. //cubic spline interpolation
  5999. int n, i, j, k;
  6000. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6001. int shift[10];
  6002. int temp_C[10];
  6003. n = 6; //number of measured points
  6004. shift[0] = 0;
  6005. for (i = 0; i < n; i++) {
  6006. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6007. temp_C[i] = 50 + i * 10; //temperature in C
  6008. #ifdef PINDA_THERMISTOR
  6009. temp_C[i] = 35 + i * 5; //temperature in C
  6010. #else
  6011. temp_C[i] = 50 + i * 10; //temperature in C
  6012. #endif
  6013. x[i] = (float)temp_C[i];
  6014. f[i] = (float)shift[i];
  6015. }
  6016. if (inp_temperature < x[0]) return 0;
  6017. for (i = n - 1; i>0; i--) {
  6018. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6019. h[i - 1] = x[i] - x[i - 1];
  6020. }
  6021. //*********** formation of h, s , f matrix **************
  6022. for (i = 1; i<n - 1; i++) {
  6023. m[i][i] = 2 * (h[i - 1] + h[i]);
  6024. if (i != 1) {
  6025. m[i][i - 1] = h[i - 1];
  6026. m[i - 1][i] = h[i - 1];
  6027. }
  6028. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6029. }
  6030. //*********** forward elimination **************
  6031. for (i = 1; i<n - 2; i++) {
  6032. temp = (m[i + 1][i] / m[i][i]);
  6033. for (j = 1; j <= n - 1; j++)
  6034. m[i + 1][j] -= temp*m[i][j];
  6035. }
  6036. //*********** backward substitution *********
  6037. for (i = n - 2; i>0; i--) {
  6038. sum = 0;
  6039. for (j = i; j <= n - 2; j++)
  6040. sum += m[i][j] * s[j];
  6041. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6042. }
  6043. for (i = 0; i<n - 1; i++)
  6044. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6045. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6046. b = s[i] / 2;
  6047. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6048. d = f[i];
  6049. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6050. }
  6051. return sum;
  6052. }
  6053. #ifdef PINDA_THERMISTOR
  6054. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6055. {
  6056. if (!temp_cal_active) return 0;
  6057. if (!calibration_status_pinda()) return 0;
  6058. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6059. }
  6060. #endif //PINDA_THERMISTOR
  6061. void long_pause() //long pause print
  6062. {
  6063. st_synchronize();
  6064. //save currently set parameters to global variables
  6065. saved_feedmultiply = feedmultiply;
  6066. HotendTempBckp = degTargetHotend(active_extruder);
  6067. fanSpeedBckp = fanSpeed;
  6068. start_pause_print = millis();
  6069. //save position
  6070. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6071. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6072. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6073. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6074. //retract
  6075. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6077. //lift z
  6078. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6079. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6081. //set nozzle target temperature to 0
  6082. setTargetHotend(0, 0);
  6083. setTargetHotend(0, 1);
  6084. setTargetHotend(0, 2);
  6085. //Move XY to side
  6086. current_position[X_AXIS] = X_PAUSE_POS;
  6087. current_position[Y_AXIS] = Y_PAUSE_POS;
  6088. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6089. // Turn off the print fan
  6090. fanSpeed = 0;
  6091. st_synchronize();
  6092. }
  6093. void serialecho_temperatures() {
  6094. float tt = degHotend(active_extruder);
  6095. SERIAL_PROTOCOLPGM("T:");
  6096. SERIAL_PROTOCOL(tt);
  6097. SERIAL_PROTOCOLPGM(" E:");
  6098. SERIAL_PROTOCOL((int)active_extruder);
  6099. SERIAL_PROTOCOLPGM(" B:");
  6100. SERIAL_PROTOCOL_F(degBed(), 1);
  6101. SERIAL_PROTOCOLLN("");
  6102. }
  6103. extern uint32_t sdpos_atomic;
  6104. void uvlo_()
  6105. {
  6106. unsigned long time_start = millis();
  6107. // Conserve power as soon as possible.
  6108. disable_x();
  6109. disable_y();
  6110. // Indicate that the interrupt has been triggered.
  6111. SERIAL_ECHOLNPGM("UVLO");
  6112. // Read out the current Z motor microstep counter. This will be later used
  6113. // for reaching the zero full step before powering off.
  6114. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6115. // Calculate the file position, from which to resume this print.
  6116. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6117. {
  6118. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6119. sd_position -= sdlen_planner;
  6120. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6121. sd_position -= sdlen_cmdqueue;
  6122. if (sd_position < 0) sd_position = 0;
  6123. }
  6124. // Backup the feedrate in mm/min.
  6125. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6126. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6127. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6128. // are in action.
  6129. planner_abort_hard();
  6130. // Clean the input command queue.
  6131. cmdqueue_reset();
  6132. card.sdprinting = false;
  6133. // card.closefile();
  6134. // Enable stepper driver interrupt to move Z axis.
  6135. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6136. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6137. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6138. sei();
  6139. plan_buffer_line(
  6140. current_position[X_AXIS],
  6141. current_position[Y_AXIS],
  6142. current_position[Z_AXIS],
  6143. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6144. 400, active_extruder);
  6145. plan_buffer_line(
  6146. current_position[X_AXIS],
  6147. current_position[Y_AXIS],
  6148. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6149. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6150. 40, active_extruder);
  6151. // Move Z up to the next 0th full step.
  6152. // Write the file position.
  6153. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6154. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6155. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6156. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6157. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6158. // Scale the z value to 1u resolution.
  6159. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6160. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6161. }
  6162. // Read out the current Z motor microstep counter. This will be later used
  6163. // for reaching the zero full step before powering off.
  6164. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6165. // Store the current position.
  6166. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6167. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6168. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6169. // Store the current feed rate, temperatures and fan speed.
  6170. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6171. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6172. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6173. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6174. // Finaly store the "power outage" flag.
  6175. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6176. st_synchronize();
  6177. SERIAL_ECHOPGM("stps");
  6178. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6179. #if 0
  6180. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6181. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6183. st_synchronize();
  6184. #endif
  6185. disable_z();
  6186. // Increment power failure counter
  6187. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6188. power_count++;
  6189. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6190. SERIAL_ECHOLNPGM("UVLO - end");
  6191. MYSERIAL.println(millis() - time_start);
  6192. cli();
  6193. while(1);
  6194. }
  6195. void setup_fan_interrupt() {
  6196. //INT7
  6197. DDRE &= ~(1 << 7); //input pin
  6198. PORTE &= ~(1 << 7); //no internal pull-up
  6199. //start with sensing rising edge
  6200. EICRB &= ~(1 << 6);
  6201. EICRB |= (1 << 7);
  6202. //enable INT7 interrupt
  6203. EIMSK |= (1 << 7);
  6204. }
  6205. ISR(INT7_vect) {
  6206. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6207. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6208. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6209. t_fan_rising_edge = millis();
  6210. }
  6211. else { //interrupt was triggered by falling edge
  6212. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6213. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6214. }
  6215. }
  6216. EICRB ^= (1 << 6); //change edge
  6217. }
  6218. void setup_uvlo_interrupt() {
  6219. DDRE &= ~(1 << 4); //input pin
  6220. PORTE &= ~(1 << 4); //no internal pull-up
  6221. //sensing falling edge
  6222. EICRB |= (1 << 0);
  6223. EICRB &= ~(1 << 1);
  6224. //enable INT4 interrupt
  6225. EIMSK |= (1 << 4);
  6226. }
  6227. ISR(INT4_vect) {
  6228. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6229. SERIAL_ECHOLNPGM("INT4");
  6230. if (IS_SD_PRINTING) uvlo_();
  6231. }
  6232. void recover_print(uint8_t automatic) {
  6233. char cmd[30];
  6234. lcd_update_enable(true);
  6235. lcd_update(2);
  6236. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6237. recover_machine_state_after_power_panic();
  6238. // Set the target bed and nozzle temperatures.
  6239. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6240. enquecommand(cmd);
  6241. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6242. enquecommand(cmd);
  6243. // Lift the print head, so one may remove the excess priming material.
  6244. if (current_position[Z_AXIS] < 25)
  6245. enquecommand_P(PSTR("G1 Z25 F800"));
  6246. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6247. enquecommand_P(PSTR("G28 X Y"));
  6248. // Set the target bed and nozzle temperatures and wait.
  6249. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6250. enquecommand(cmd);
  6251. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6252. enquecommand(cmd);
  6253. enquecommand_P(PSTR("M83")); //E axis relative mode
  6254. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6255. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6256. if(automatic == 0){
  6257. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6258. }
  6259. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6260. // Mark the power panic status as inactive.
  6261. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6262. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6263. delay_keep_alive(1000);
  6264. }*/
  6265. SERIAL_ECHOPGM("After waiting for temp:");
  6266. SERIAL_ECHOPGM("Current position X_AXIS:");
  6267. MYSERIAL.println(current_position[X_AXIS]);
  6268. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6269. MYSERIAL.println(current_position[Y_AXIS]);
  6270. // Restart the print.
  6271. restore_print_from_eeprom();
  6272. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6273. MYSERIAL.print(current_position[Z_AXIS]);
  6274. }
  6275. void recover_machine_state_after_power_panic()
  6276. {
  6277. // 1) Recover the logical cordinates at the time of the power panic.
  6278. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6279. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6280. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6281. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6282. // The current position after power panic is moved to the next closest 0th full step.
  6283. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6284. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6285. memcpy(destination, current_position, sizeof(destination));
  6286. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6287. print_world_coordinates();
  6288. // 2) Initialize the logical to physical coordinate system transformation.
  6289. world2machine_initialize();
  6290. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6291. mbl.active = false;
  6292. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6293. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6294. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6295. // Scale the z value to 10u resolution.
  6296. int16_t v;
  6297. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6298. if (v != 0)
  6299. mbl.active = true;
  6300. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6301. }
  6302. if (mbl.active)
  6303. mbl.upsample_3x3();
  6304. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6305. print_mesh_bed_leveling_table();
  6306. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6307. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6308. babystep_load();
  6309. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6310. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6311. // 6) Power up the motors, mark their positions as known.
  6312. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6313. axis_known_position[X_AXIS] = true; enable_x();
  6314. axis_known_position[Y_AXIS] = true; enable_y();
  6315. axis_known_position[Z_AXIS] = true; enable_z();
  6316. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6317. print_physical_coordinates();
  6318. // 7) Recover the target temperatures.
  6319. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6320. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6321. }
  6322. void restore_print_from_eeprom() {
  6323. float x_rec, y_rec, z_pos;
  6324. int feedrate_rec;
  6325. uint8_t fan_speed_rec;
  6326. char cmd[30];
  6327. char* c;
  6328. char filename[13];
  6329. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6330. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6331. SERIAL_ECHOPGM("Feedrate:");
  6332. MYSERIAL.println(feedrate_rec);
  6333. for (int i = 0; i < 8; i++) {
  6334. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6335. }
  6336. filename[8] = '\0';
  6337. MYSERIAL.print(filename);
  6338. strcat_P(filename, PSTR(".gco"));
  6339. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6340. for (c = &cmd[4]; *c; c++)
  6341. *c = tolower(*c);
  6342. enquecommand(cmd);
  6343. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6344. SERIAL_ECHOPGM("Position read from eeprom:");
  6345. MYSERIAL.println(position);
  6346. // E axis relative mode.
  6347. enquecommand_P(PSTR("M83"));
  6348. // Move to the XY print position in logical coordinates, where the print has been killed.
  6349. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6350. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6351. strcat_P(cmd, PSTR(" F2000"));
  6352. enquecommand(cmd);
  6353. // Move the Z axis down to the print, in logical coordinates.
  6354. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6355. enquecommand(cmd);
  6356. // Unretract.
  6357. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6358. // Set the feedrate saved at the power panic.
  6359. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6360. enquecommand(cmd);
  6361. // Set the fan speed saved at the power panic.
  6362. strcpy_P(cmd, PSTR("M106 S"));
  6363. strcat(cmd, itostr3(int(fan_speed_rec)));
  6364. enquecommand(cmd);
  6365. // Set a position in the file.
  6366. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6367. enquecommand(cmd);
  6368. // Start SD print.
  6369. enquecommand_P(PSTR("M24"));
  6370. }
  6371. ////////////////////////////////////////////////////////////////////////////////
  6372. // new save/restore printing
  6373. //extern uint32_t sdpos_atomic;
  6374. bool saved_printing = false;
  6375. uint32_t saved_sdpos = 0;
  6376. float saved_pos[4] = {0, 0, 0, 0};
  6377. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6378. float saved_feedrate2 = 0;
  6379. uint8_t saved_active_extruder = 0;
  6380. bool saved_extruder_under_pressure = false;
  6381. void stop_and_save_print_to_ram(float z_move, float e_move)
  6382. {
  6383. if (saved_printing) return;
  6384. cli();
  6385. unsigned char nplanner_blocks = number_of_blocks();
  6386. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6387. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6388. saved_sdpos -= sdlen_planner;
  6389. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6390. saved_sdpos -= sdlen_cmdqueue;
  6391. #if 0
  6392. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6393. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6394. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6395. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6396. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6397. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6398. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6399. {
  6400. card.setIndex(saved_sdpos);
  6401. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6402. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6403. MYSERIAL.print(char(card.get()));
  6404. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6405. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6406. MYSERIAL.print(char(card.get()));
  6407. SERIAL_ECHOLNPGM("End of command buffer");
  6408. }
  6409. {
  6410. // Print the content of the planner buffer, line by line:
  6411. card.setIndex(saved_sdpos);
  6412. int8_t iline = 0;
  6413. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6414. SERIAL_ECHOPGM("Planner line (from file): ");
  6415. MYSERIAL.print(int(iline), DEC);
  6416. SERIAL_ECHOPGM(", length: ");
  6417. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6418. SERIAL_ECHOPGM(", steps: (");
  6419. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6420. SERIAL_ECHOPGM(",");
  6421. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6422. SERIAL_ECHOPGM(",");
  6423. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6424. SERIAL_ECHOPGM(",");
  6425. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6426. SERIAL_ECHOPGM("), events: ");
  6427. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6428. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6429. MYSERIAL.print(char(card.get()));
  6430. }
  6431. }
  6432. {
  6433. // Print the content of the command buffer, line by line:
  6434. int8_t iline = 0;
  6435. union {
  6436. struct {
  6437. char lo;
  6438. char hi;
  6439. } lohi;
  6440. uint16_t value;
  6441. } sdlen_single;
  6442. int _bufindr = bufindr;
  6443. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6444. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6445. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6446. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6447. }
  6448. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6449. MYSERIAL.print(int(iline), DEC);
  6450. SERIAL_ECHOPGM(", type: ");
  6451. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6452. SERIAL_ECHOPGM(", len: ");
  6453. MYSERIAL.println(sdlen_single.value, DEC);
  6454. // Print the content of the buffer line.
  6455. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6456. SERIAL_ECHOPGM("Buffer line (from file): ");
  6457. MYSERIAL.print(int(iline), DEC);
  6458. MYSERIAL.println(int(iline), DEC);
  6459. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6460. MYSERIAL.print(char(card.get()));
  6461. if (-- _buflen == 0)
  6462. break;
  6463. // First skip the current command ID and iterate up to the end of the string.
  6464. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6465. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6466. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6467. // If the end of the buffer was empty,
  6468. if (_bufindr == sizeof(cmdbuffer)) {
  6469. // skip to the start and find the nonzero command.
  6470. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6471. }
  6472. }
  6473. }
  6474. #endif
  6475. #if 0
  6476. saved_feedrate2 = feedrate; //save feedrate
  6477. #else
  6478. // Try to deduce the feedrate from the first block of the planner.
  6479. // Speed is in mm/min.
  6480. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6481. #endif
  6482. planner_abort_hard(); //abort printing
  6483. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6484. saved_active_extruder = active_extruder; //save active_extruder
  6485. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6486. cmdqueue_reset(); //empty cmdqueue
  6487. card.sdprinting = false;
  6488. // card.closefile();
  6489. saved_printing = true;
  6490. sei();
  6491. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6492. #if 1
  6493. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6494. char buf[48];
  6495. strcpy_P(buf, PSTR("G1 Z"));
  6496. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6497. strcat_P(buf, PSTR(" E"));
  6498. // Relative extrusion
  6499. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6500. strcat_P(buf, PSTR(" F"));
  6501. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6502. // At this point the command queue is empty.
  6503. enquecommand(buf, false);
  6504. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6505. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6506. repeatcommand_front();
  6507. #else
  6508. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6509. st_synchronize(); //wait moving
  6510. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6511. memcpy(destination, current_position, sizeof(destination));
  6512. #endif
  6513. }
  6514. }
  6515. void restore_print_from_ram_and_continue(float e_move)
  6516. {
  6517. if (!saved_printing) return;
  6518. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6519. // current_position[axis] = st_get_position_mm(axis);
  6520. active_extruder = saved_active_extruder; //restore active_extruder
  6521. feedrate = saved_feedrate2; //restore feedrate
  6522. float e = saved_pos[E_AXIS] - e_move;
  6523. plan_set_e_position(e);
  6524. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6525. st_synchronize();
  6526. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6527. memcpy(destination, current_position, sizeof(destination));
  6528. card.setIndex(saved_sdpos);
  6529. sdpos_atomic = saved_sdpos;
  6530. card.sdprinting = true;
  6531. saved_printing = false;
  6532. }
  6533. void print_world_coordinates()
  6534. {
  6535. SERIAL_ECHOPGM("world coordinates: (");
  6536. MYSERIAL.print(current_position[X_AXIS], 3);
  6537. SERIAL_ECHOPGM(", ");
  6538. MYSERIAL.print(current_position[Y_AXIS], 3);
  6539. SERIAL_ECHOPGM(", ");
  6540. MYSERIAL.print(current_position[Z_AXIS], 3);
  6541. SERIAL_ECHOLNPGM(")");
  6542. }
  6543. void print_physical_coordinates()
  6544. {
  6545. SERIAL_ECHOPGM("physical coordinates: (");
  6546. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6547. SERIAL_ECHOPGM(", ");
  6548. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6549. SERIAL_ECHOPGM(", ");
  6550. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6551. SERIAL_ECHOLNPGM(")");
  6552. }
  6553. void print_mesh_bed_leveling_table()
  6554. {
  6555. SERIAL_ECHOPGM("mesh bed leveling: ");
  6556. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6557. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6558. MYSERIAL.print(mbl.z_values[y][x], 3);
  6559. SERIAL_ECHOPGM(" ");
  6560. }
  6561. SERIAL_ECHOLNPGM("");
  6562. }