Marlin_main.cpp 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "Configuration_prusa.h"
  32. #include "planner.h"
  33. #include "stepper.h"
  34. #include "temperature.h"
  35. #include "motion_control.h"
  36. #include "cardreader.h"
  37. #include "watchdog.h"
  38. #include "ConfigurationStore.h"
  39. #include "language.h"
  40. #include "pins_arduino.h"
  41. #include "math.h"
  42. #ifdef BLINKM
  43. #include "BlinkM.h"
  44. #include "Wire.h"
  45. #endif
  46. #ifdef ULTRALCD
  47. #include "ultralcd.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  53. #include <SPI.h>
  54. #endif
  55. #define VERSION_STRING "1.0.2"
  56. #include "ultralcd.h"
  57. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  58. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. //Implemented Codes
  60. //-------------------
  61. // PRUSA CODES
  62. // P F - Returns FW versions
  63. // P R - Returns revision of printer
  64. // G0 -> G1
  65. // G1 - Coordinated Movement X Y Z E
  66. // G2 - CW ARC
  67. // G3 - CCW ARC
  68. // G4 - Dwell S<seconds> or P<milliseconds>
  69. // G10 - retract filament according to settings of M207
  70. // G11 - retract recover filament according to settings of M208
  71. // G28 - Home all Axis
  72. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  73. // G30 - Single Z Probe, probes bed at current XY location.
  74. // G31 - Dock sled (Z_PROBE_SLED only)
  75. // G32 - Undock sled (Z_PROBE_SLED only)
  76. // G90 - Use Absolute Coordinates
  77. // G91 - Use Relative Coordinates
  78. // G92 - Set current position to coordinates given
  79. // M Codes
  80. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  81. // M1 - Same as M0
  82. // M17 - Enable/Power all stepper motors
  83. // M18 - Disable all stepper motors; same as M84
  84. // M20 - List SD card
  85. // M21 - Init SD card
  86. // M22 - Release SD card
  87. // M23 - Select SD file (M23 filename.g)
  88. // M24 - Start/resume SD print
  89. // M25 - Pause SD print
  90. // M26 - Set SD position in bytes (M26 S12345)
  91. // M27 - Report SD print status
  92. // M28 - Start SD write (M28 filename.g)
  93. // M29 - Stop SD write
  94. // M30 - Delete file from SD (M30 filename.g)
  95. // M31 - Output time since last M109 or SD card start to serial
  96. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  97. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  98. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  99. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  100. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  101. // M80 - Turn on Power Supply
  102. // M81 - Turn off Power Supply
  103. // M82 - Set E codes absolute (default)
  104. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  105. // M84 - Disable steppers until next move,
  106. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  107. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  108. // M92 - Set axis_steps_per_unit - same syntax as G92
  109. // M104 - Set extruder target temp
  110. // M105 - Read current temp
  111. // M106 - Fan on
  112. // M107 - Fan off
  113. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  114. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  115. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  116. // M112 - Emergency stop
  117. // M114 - Output current position to serial port
  118. // M115 - Capabilities string
  119. // M117 - display message
  120. // M119 - Output Endstop status to serial port
  121. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  122. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  123. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  124. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  125. // M140 - Set bed target temp
  126. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  127. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  128. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  129. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  130. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  131. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  132. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  133. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  134. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  135. // M206 - set additional homing offset
  136. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  137. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  138. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  139. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  140. // M220 S<factor in percent>- set speed factor override percentage
  141. // M221 S<factor in percent>- set extrude factor override percentage
  142. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  143. // M240 - Trigger a camera to take a photograph
  144. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  145. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  146. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  147. // M301 - Set PID parameters P I and D
  148. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  149. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  150. // M304 - Set bed PID parameters P I and D
  151. // M400 - Finish all moves
  152. // M401 - Lower z-probe if present
  153. // M402 - Raise z-probe if present
  154. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  155. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  156. // M406 - Turn off Filament Sensor extrusion control
  157. // M407 - Displays measured filament diameter
  158. // M500 - stores parameters in EEPROM
  159. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  160. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  161. // M503 - print the current settings (from memory not from EEPROM)
  162. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  163. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  164. // M665 - set delta configurations
  165. // M666 - set delta endstop adjustment
  166. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  167. // M907 - Set digital trimpot motor current using axis codes.
  168. // M908 - Control digital trimpot directly.
  169. // M350 - Set microstepping mode.
  170. // M351 - Toggle MS1 MS2 pins directly.
  171. // ************ SCARA Specific - This can change to suit future G-code regulations
  172. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  173. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  174. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  175. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  176. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  177. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  178. //************* SCARA End ***************
  179. // M928 - Start SD logging (M928 filename.g) - ended by M29
  180. // M999 - Restart after being stopped by error
  181. //Stepper Movement Variables
  182. //===========================================================================
  183. //=============================imported variables============================
  184. //===========================================================================
  185. //===========================================================================
  186. //=============================public variables=============================
  187. //===========================================================================
  188. #ifdef SDSUPPORT
  189. CardReader card;
  190. #endif
  191. float homing_feedrate[] = HOMING_FEEDRATE;
  192. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  193. int feedmultiply=100; //100->1 200->2
  194. int saved_feedmultiply;
  195. int extrudemultiply=100; //100->1 200->2
  196. int extruder_multiply[EXTRUDERS] = {100
  197. #if EXTRUDERS > 1
  198. , 100
  199. #if EXTRUDERS > 2
  200. , 100
  201. #endif
  202. #endif
  203. };
  204. int lcd_change_fil_state = 0;
  205. int feedmultiplyBckp = 100;
  206. bool volumetric_enabled = false;
  207. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  208. #if EXTRUDERS > 1
  209. , DEFAULT_NOMINAL_FILAMENT_DIA
  210. #if EXTRUDERS > 2
  211. , DEFAULT_NOMINAL_FILAMENT_DIA
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #endif
  221. #endif
  222. };
  223. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  224. float add_homing[3]={0,0,0};
  225. #ifdef DELTA
  226. float endstop_adj[3]={0,0,0};
  227. #endif
  228. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  229. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  230. bool axis_known_position[3] = {false, false, false};
  231. float zprobe_zoffset;
  232. // Extruder offset
  233. #if EXTRUDERS > 1
  234. #ifndef DUAL_X_CARRIAGE
  235. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  236. #else
  237. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  238. #endif
  239. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  240. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  241. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  242. #endif
  243. };
  244. #endif
  245. uint8_t active_extruder = 0;
  246. int fanSpeed=0;
  247. #ifdef SERVO_ENDSTOPS
  248. int servo_endstops[] = SERVO_ENDSTOPS;
  249. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  250. #endif
  251. #ifdef BARICUDA
  252. int ValvePressure=0;
  253. int EtoPPressure=0;
  254. #endif
  255. #ifdef FWRETRACT
  256. bool autoretract_enabled=false;
  257. bool retracted[EXTRUDERS]={false
  258. #if EXTRUDERS > 1
  259. , false
  260. #if EXTRUDERS > 2
  261. , false
  262. #endif
  263. #endif
  264. };
  265. bool retracted_swap[EXTRUDERS]={false
  266. #if EXTRUDERS > 1
  267. , false
  268. #if EXTRUDERS > 2
  269. , false
  270. #endif
  271. #endif
  272. };
  273. float retract_length = RETRACT_LENGTH;
  274. float retract_length_swap = RETRACT_LENGTH_SWAP;
  275. float retract_feedrate = RETRACT_FEEDRATE;
  276. float retract_zlift = RETRACT_ZLIFT;
  277. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  278. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  279. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  280. #endif
  281. #ifdef ULTIPANEL
  282. #ifdef PS_DEFAULT_OFF
  283. bool powersupply = false;
  284. #else
  285. bool powersupply = true;
  286. #endif
  287. #endif
  288. #ifdef DELTA
  289. float delta[3] = {0.0, 0.0, 0.0};
  290. #define SIN_60 0.8660254037844386
  291. #define COS_60 0.5
  292. // these are the default values, can be overriden with M665
  293. float delta_radius= DELTA_RADIUS;
  294. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  295. float delta_tower1_y= -COS_60*delta_radius;
  296. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  297. float delta_tower2_y= -COS_60*delta_radius;
  298. float delta_tower3_x= 0.0; // back middle tower
  299. float delta_tower3_y= delta_radius;
  300. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  301. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  302. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  303. #endif
  304. #ifdef SCARA // Build size scaling
  305. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  306. #endif
  307. bool cancel_heatup = false ;
  308. #ifdef FILAMENT_SENSOR
  309. //Variables for Filament Sensor input
  310. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  311. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  312. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  313. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  314. int delay_index1=0; //index into ring buffer
  315. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  316. float delay_dist=0; //delay distance counter
  317. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  318. #endif
  319. const char errormagic[] PROGMEM = "Error:";
  320. const char echomagic[] PROGMEM = "echo:";
  321. //===========================================================================
  322. //=============================Private Variables=============================
  323. //===========================================================================
  324. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  325. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  326. #ifndef DELTA
  327. static float delta[3] = {0.0, 0.0, 0.0};
  328. #endif
  329. static float offset[3] = {0.0, 0.0, 0.0};
  330. static bool home_all_axis = true;
  331. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  332. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  333. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  334. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  335. static bool fromsd[BUFSIZE];
  336. static int bufindr = 0;
  337. static int bufindw = 0;
  338. static int buflen = 0;
  339. //static int i = 0;
  340. static char serial_char;
  341. static int serial_count = 0;
  342. static boolean comment_mode = false;
  343. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  344. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  345. //static float tt = 0;
  346. //static float bt = 0;
  347. //Inactivity shutdown variables
  348. static unsigned long previous_millis_cmd = 0;
  349. static unsigned long max_inactive_time = 0;
  350. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  351. unsigned long starttime=0;
  352. unsigned long stoptime=0;
  353. static uint8_t tmp_extruder;
  354. bool Stopped=false;
  355. #if NUM_SERVOS > 0
  356. Servo servos[NUM_SERVOS];
  357. #endif
  358. bool CooldownNoWait = true;
  359. bool target_direction;
  360. //Insert variables if CHDK is defined
  361. #ifdef CHDK
  362. unsigned long chdkHigh = 0;
  363. boolean chdkActive = false;
  364. #endif
  365. //===========================================================================
  366. //=============================Routines======================================
  367. //===========================================================================
  368. void get_arc_coordinates();
  369. bool setTargetedHotend(int code);
  370. void serial_echopair_P(const char *s_P, float v)
  371. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  372. void serial_echopair_P(const char *s_P, double v)
  373. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  374. void serial_echopair_P(const char *s_P, unsigned long v)
  375. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. #ifdef SDSUPPORT
  377. #include "SdFatUtil.h"
  378. int freeMemory() { return SdFatUtil::FreeRam(); }
  379. #else
  380. extern "C" {
  381. extern unsigned int __bss_end;
  382. extern unsigned int __heap_start;
  383. extern void *__brkval;
  384. int freeMemory() {
  385. int free_memory;
  386. if ((int)__brkval == 0)
  387. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  388. else
  389. free_memory = ((int)&free_memory) - ((int)__brkval);
  390. return free_memory;
  391. }
  392. }
  393. #endif //!SDSUPPORT
  394. //adds an command to the main command buffer
  395. //thats really done in a non-safe way.
  396. //needs overworking someday
  397. void enquecommand(const char *cmd)
  398. {
  399. if(buflen < BUFSIZE)
  400. {
  401. //this is dangerous if a mixing of serial and this happens
  402. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  403. SERIAL_ECHO_START;
  404. SERIAL_ECHOPGM(MSG_Enqueing);
  405. SERIAL_ECHO(cmdbuffer[bufindw]);
  406. SERIAL_ECHOLNPGM("\"");
  407. bufindw= (bufindw + 1)%BUFSIZE;
  408. buflen += 1;
  409. }
  410. }
  411. void enquecommand_P(const char *cmd)
  412. {
  413. if(buflen < BUFSIZE)
  414. {
  415. //this is dangerous if a mixing of serial and this happens
  416. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  417. SERIAL_ECHO_START;
  418. SERIAL_ECHOPGM(MSG_Enqueing);
  419. SERIAL_ECHO(cmdbuffer[bufindw]);
  420. SERIAL_ECHOLNPGM("\"");
  421. bufindw= (bufindw + 1)%BUFSIZE;
  422. buflen += 1;
  423. }
  424. }
  425. void setup_killpin()
  426. {
  427. #if defined(KILL_PIN) && KILL_PIN > -1
  428. SET_INPUT(KILL_PIN);
  429. WRITE(KILL_PIN,HIGH);
  430. #endif
  431. }
  432. // Set home pin
  433. void setup_homepin(void)
  434. {
  435. #if defined(HOME_PIN) && HOME_PIN > -1
  436. SET_INPUT(HOME_PIN);
  437. WRITE(HOME_PIN,HIGH);
  438. #endif
  439. }
  440. void setup_photpin()
  441. {
  442. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  443. SET_OUTPUT(PHOTOGRAPH_PIN);
  444. WRITE(PHOTOGRAPH_PIN, LOW);
  445. #endif
  446. }
  447. void setup_powerhold()
  448. {
  449. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  450. SET_OUTPUT(SUICIDE_PIN);
  451. WRITE(SUICIDE_PIN, HIGH);
  452. #endif
  453. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  454. SET_OUTPUT(PS_ON_PIN);
  455. #if defined(PS_DEFAULT_OFF)
  456. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  457. #else
  458. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  459. #endif
  460. #endif
  461. }
  462. void suicide()
  463. {
  464. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  465. SET_OUTPUT(SUICIDE_PIN);
  466. WRITE(SUICIDE_PIN, LOW);
  467. #endif
  468. }
  469. void servo_init()
  470. {
  471. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  472. servos[0].attach(SERVO0_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  475. servos[1].attach(SERVO1_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  478. servos[2].attach(SERVO2_PIN);
  479. #endif
  480. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  481. servos[3].attach(SERVO3_PIN);
  482. #endif
  483. #if (NUM_SERVOS >= 5)
  484. #error "TODO: enter initalisation code for more servos"
  485. #endif
  486. // Set position of Servo Endstops that are defined
  487. #ifdef SERVO_ENDSTOPS
  488. for(int8_t i = 0; i < 3; i++)
  489. {
  490. if(servo_endstops[i] > -1) {
  491. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  492. }
  493. }
  494. #endif
  495. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  496. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  497. servos[servo_endstops[Z_AXIS]].detach();
  498. #endif
  499. }
  500. void setup()
  501. {
  502. setup_killpin();
  503. setup_powerhold();
  504. MYSERIAL.begin(BAUDRATE);
  505. SERIAL_PROTOCOLLNPGM("start");
  506. SERIAL_ECHO_START;
  507. // Check startup - does nothing if bootloader sets MCUSR to 0
  508. byte mcu = MCUSR;
  509. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  510. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  511. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  512. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  513. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  514. MCUSR=0;
  515. SERIAL_ECHOPGM(MSG_MARLIN);
  516. SERIAL_ECHOLNPGM(VERSION_STRING);
  517. #ifdef STRING_VERSION_CONFIG_H
  518. #ifdef STRING_CONFIG_H_AUTHOR
  519. SERIAL_ECHO_START;
  520. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  521. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  522. SERIAL_ECHOPGM(MSG_AUTHOR);
  523. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  524. SERIAL_ECHOPGM("Compiled: ");
  525. SERIAL_ECHOLNPGM(__DATE__);
  526. #endif
  527. #endif
  528. SERIAL_ECHO_START;
  529. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  530. SERIAL_ECHO(freeMemory());
  531. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  532. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  533. for(int8_t i = 0; i < BUFSIZE; i++)
  534. {
  535. fromsd[i] = false;
  536. }
  537. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  538. Config_RetrieveSettings();
  539. tp_init(); // Initialize temperature loop
  540. plan_init(); // Initialize planner;
  541. watchdog_init();
  542. st_init(); // Initialize stepper, this enables interrupts!
  543. setup_photpin();
  544. servo_init();
  545. lcd_init();
  546. _delay_ms(1000); // wait 1sec to display the splash screen
  547. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  548. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  549. #endif
  550. #ifdef DIGIPOT_I2C
  551. digipot_i2c_init();
  552. #endif
  553. #ifdef Z_PROBE_SLED
  554. pinMode(SERVO0_PIN, OUTPUT);
  555. digitalWrite(SERVO0_PIN, LOW); // turn it off
  556. #endif // Z_PROBE_SLED
  557. setup_homepin();
  558. }
  559. void loop()
  560. {
  561. if(buflen < (BUFSIZE-1))
  562. get_command();
  563. #ifdef SDSUPPORT
  564. card.checkautostart(false);
  565. #endif
  566. if(buflen)
  567. {
  568. #ifdef SDSUPPORT
  569. if(card.saving)
  570. {
  571. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  572. {
  573. card.write_command(cmdbuffer[bufindr]);
  574. if(card.logging)
  575. {
  576. process_commands();
  577. }
  578. else
  579. {
  580. SERIAL_PROTOCOLLNPGM(MSG_OK);
  581. }
  582. }
  583. else
  584. {
  585. card.closefile();
  586. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  587. }
  588. }
  589. else
  590. {
  591. process_commands();
  592. }
  593. #else
  594. process_commands();
  595. #endif //SDSUPPORT
  596. buflen = (buflen-1);
  597. bufindr = (bufindr + 1)%BUFSIZE;
  598. }
  599. //check heater every n milliseconds
  600. manage_heater();
  601. manage_inactivity();
  602. checkHitEndstops();
  603. lcd_update();
  604. }
  605. void get_command()
  606. {
  607. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  608. serial_char = MYSERIAL.read();
  609. if(serial_char == '\n' ||
  610. serial_char == '\r' ||
  611. (serial_char == ':' && comment_mode == false) ||
  612. serial_count >= (MAX_CMD_SIZE - 1) )
  613. {
  614. if(!serial_count) { //if empty line
  615. comment_mode = false; //for new command
  616. return;
  617. }
  618. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  619. if(!comment_mode){
  620. comment_mode = false; //for new command
  621. fromsd[bufindw] = false;
  622. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  623. {
  624. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  625. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  626. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  627. SERIAL_ERROR_START;
  628. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  629. SERIAL_ERRORLN(gcode_LastN);
  630. //Serial.println(gcode_N);
  631. FlushSerialRequestResend();
  632. serial_count = 0;
  633. return;
  634. }
  635. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  636. {
  637. byte checksum = 0;
  638. byte count = 0;
  639. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  640. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  641. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  642. SERIAL_ERROR_START;
  643. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  644. SERIAL_ERRORLN(gcode_LastN);
  645. FlushSerialRequestResend();
  646. serial_count = 0;
  647. return;
  648. }
  649. //if no errors, continue parsing
  650. }
  651. else
  652. {
  653. SERIAL_ERROR_START;
  654. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  655. SERIAL_ERRORLN(gcode_LastN);
  656. FlushSerialRequestResend();
  657. serial_count = 0;
  658. return;
  659. }
  660. gcode_LastN = gcode_N;
  661. //if no errors, continue parsing
  662. }
  663. else // if we don't receive 'N' but still see '*'
  664. {
  665. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  666. {
  667. SERIAL_ERROR_START;
  668. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  669. SERIAL_ERRORLN(gcode_LastN);
  670. serial_count = 0;
  671. return;
  672. }
  673. }
  674. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  675. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  676. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  677. case 0:
  678. case 1:
  679. case 2:
  680. case 3:
  681. if (Stopped == true) {
  682. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  683. LCD_MESSAGEPGM(MSG_STOPPED);
  684. }
  685. break;
  686. default:
  687. break;
  688. }
  689. }
  690. //If command was e-stop process now
  691. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  692. kill();
  693. bufindw = (bufindw + 1)%BUFSIZE;
  694. buflen += 1;
  695. }
  696. serial_count = 0; //clear buffer
  697. }
  698. else
  699. {
  700. if(serial_char == ';') comment_mode = true;
  701. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  702. }
  703. }
  704. #ifdef SDSUPPORT
  705. if(!card.sdprinting || serial_count!=0){
  706. return;
  707. }
  708. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  709. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  710. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  711. static bool stop_buffering=false;
  712. if(buflen==0) stop_buffering=false;
  713. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  714. int16_t n=card.get();
  715. serial_char = (char)n;
  716. if(serial_char == '\n' ||
  717. serial_char == '\r' ||
  718. (serial_char == '#' && comment_mode == false) ||
  719. (serial_char == ':' && comment_mode == false) ||
  720. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  721. {
  722. if(card.eof()){
  723. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  724. stoptime=millis();
  725. char time[30];
  726. unsigned long t=(stoptime-starttime)/1000;
  727. int hours, minutes;
  728. minutes=(t/60)%60;
  729. hours=t/60/60;
  730. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  731. SERIAL_ECHO_START;
  732. SERIAL_ECHOLN(time);
  733. lcd_setstatus(time);
  734. card.printingHasFinished();
  735. card.checkautostart(true);
  736. }
  737. if(serial_char=='#')
  738. stop_buffering=true;
  739. if(!serial_count)
  740. {
  741. comment_mode = false; //for new command
  742. return; //if empty line
  743. }
  744. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  745. // if(!comment_mode){
  746. fromsd[bufindw] = true;
  747. buflen += 1;
  748. bufindw = (bufindw + 1)%BUFSIZE;
  749. // }
  750. comment_mode = false; //for new command
  751. serial_count = 0; //clear buffer
  752. }
  753. else
  754. {
  755. if(serial_char == ';') comment_mode = true;
  756. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  757. }
  758. }
  759. #endif //SDSUPPORT
  760. }
  761. float code_value()
  762. {
  763. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  764. }
  765. long code_value_long()
  766. {
  767. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  768. }
  769. bool code_seen(char code)
  770. {
  771. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  772. return (strchr_pointer != NULL); //Return True if a character was found
  773. }
  774. #define DEFINE_PGM_READ_ANY(type, reader) \
  775. static inline type pgm_read_any(const type *p) \
  776. { return pgm_read_##reader##_near(p); }
  777. DEFINE_PGM_READ_ANY(float, float);
  778. DEFINE_PGM_READ_ANY(signed char, byte);
  779. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  780. static const PROGMEM type array##_P[3] = \
  781. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  782. static inline type array(int axis) \
  783. { return pgm_read_any(&array##_P[axis]); }
  784. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  785. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  786. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  787. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  788. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  789. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  790. #ifdef DUAL_X_CARRIAGE
  791. #if EXTRUDERS == 1 || defined(COREXY) \
  792. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  793. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  794. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  795. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  796. #endif
  797. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  798. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  799. #endif
  800. #define DXC_FULL_CONTROL_MODE 0
  801. #define DXC_AUTO_PARK_MODE 1
  802. #define DXC_DUPLICATION_MODE 2
  803. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  804. static float x_home_pos(int extruder) {
  805. if (extruder == 0)
  806. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  807. else
  808. // In dual carriage mode the extruder offset provides an override of the
  809. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  810. // This allow soft recalibration of the second extruder offset position without firmware reflash
  811. // (through the M218 command).
  812. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  813. }
  814. static int x_home_dir(int extruder) {
  815. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  816. }
  817. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  818. static bool active_extruder_parked = false; // used in mode 1 & 2
  819. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  820. static unsigned long delayed_move_time = 0; // used in mode 1
  821. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  822. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  823. bool extruder_duplication_enabled = false; // used in mode 2
  824. #endif //DUAL_X_CARRIAGE
  825. static void axis_is_at_home(int axis) {
  826. #ifdef DUAL_X_CARRIAGE
  827. if (axis == X_AXIS) {
  828. if (active_extruder != 0) {
  829. current_position[X_AXIS] = x_home_pos(active_extruder);
  830. min_pos[X_AXIS] = X2_MIN_POS;
  831. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  832. return;
  833. }
  834. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  835. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  836. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  837. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  838. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  839. return;
  840. }
  841. }
  842. #endif
  843. #ifdef SCARA
  844. float homeposition[3];
  845. char i;
  846. if (axis < 2)
  847. {
  848. for (i=0; i<3; i++)
  849. {
  850. homeposition[i] = base_home_pos(i);
  851. }
  852. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  853. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  854. // Works out real Homeposition angles using inverse kinematics,
  855. // and calculates homing offset using forward kinematics
  856. calculate_delta(homeposition);
  857. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  858. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  859. for (i=0; i<2; i++)
  860. {
  861. delta[i] -= add_homing[i];
  862. }
  863. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  864. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  867. calculate_SCARA_forward_Transform(delta);
  868. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  869. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  870. current_position[axis] = delta[axis];
  871. // SCARA home positions are based on configuration since the actual limits are determined by the
  872. // inverse kinematic transform.
  873. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  874. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. }
  876. else
  877. {
  878. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  879. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  880. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  884. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  885. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  886. #endif
  887. }
  888. #ifdef ENABLE_AUTO_BED_LEVELING
  889. #ifdef AUTO_BED_LEVELING_GRID
  890. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  891. {
  892. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  893. planeNormal.debug("planeNormal");
  894. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  895. //bedLevel.debug("bedLevel");
  896. //plan_bed_level_matrix.debug("bed level before");
  897. //vector_3 uncorrected_position = plan_get_position_mm();
  898. //uncorrected_position.debug("position before");
  899. vector_3 corrected_position = plan_get_position();
  900. // corrected_position.debug("position after");
  901. current_position[X_AXIS] = corrected_position.x;
  902. current_position[Y_AXIS] = corrected_position.y;
  903. current_position[Z_AXIS] = corrected_position.z;
  904. // put the bed at 0 so we don't go below it.
  905. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  906. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  907. }
  908. #else // not AUTO_BED_LEVELING_GRID
  909. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  910. plan_bed_level_matrix.set_to_identity();
  911. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  912. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  913. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  914. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  915. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  916. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  917. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  918. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  919. vector_3 corrected_position = plan_get_position();
  920. current_position[X_AXIS] = corrected_position.x;
  921. current_position[Y_AXIS] = corrected_position.y;
  922. current_position[Z_AXIS] = corrected_position.z;
  923. // put the bed at 0 so we don't go below it.
  924. current_position[Z_AXIS] = zprobe_zoffset;
  925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  926. }
  927. #endif // AUTO_BED_LEVELING_GRID
  928. static void run_z_probe() {
  929. plan_bed_level_matrix.set_to_identity();
  930. feedrate = homing_feedrate[Z_AXIS];
  931. // move down until you find the bed
  932. float zPosition = -10;
  933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  934. st_synchronize();
  935. // we have to let the planner know where we are right now as it is not where we said to go.
  936. zPosition = st_get_position_mm(Z_AXIS);
  937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  938. // move up the retract distance
  939. zPosition += home_retract_mm(Z_AXIS);
  940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  941. st_synchronize();
  942. // move back down slowly to find bed
  943. feedrate = homing_feedrate[Z_AXIS]/4;
  944. zPosition -= home_retract_mm(Z_AXIS) * 2;
  945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  946. st_synchronize();
  947. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  948. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  950. }
  951. static void do_blocking_move_to(float x, float y, float z) {
  952. float oldFeedRate = feedrate;
  953. feedrate = homing_feedrate[Z_AXIS];
  954. current_position[Z_AXIS] = z;
  955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  956. st_synchronize();
  957. feedrate = XY_TRAVEL_SPEED;
  958. current_position[X_AXIS] = x;
  959. current_position[Y_AXIS] = y;
  960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  961. st_synchronize();
  962. feedrate = oldFeedRate;
  963. }
  964. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  965. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  966. }
  967. static void setup_for_endstop_move() {
  968. saved_feedrate = feedrate;
  969. saved_feedmultiply = feedmultiply;
  970. feedmultiply = 100;
  971. previous_millis_cmd = millis();
  972. enable_endstops(true);
  973. }
  974. static void clean_up_after_endstop_move() {
  975. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  976. enable_endstops(false);
  977. #endif
  978. feedrate = saved_feedrate;
  979. feedmultiply = saved_feedmultiply;
  980. previous_millis_cmd = millis();
  981. }
  982. static void engage_z_probe() {
  983. // Engage Z Servo endstop if enabled
  984. #ifdef SERVO_ENDSTOPS
  985. if (servo_endstops[Z_AXIS] > -1) {
  986. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  987. servos[servo_endstops[Z_AXIS]].attach(0);
  988. #endif
  989. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  990. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  991. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  992. servos[servo_endstops[Z_AXIS]].detach();
  993. #endif
  994. }
  995. #endif
  996. }
  997. static void retract_z_probe() {
  998. // Retract Z Servo endstop if enabled
  999. #ifdef SERVO_ENDSTOPS
  1000. if (servo_endstops[Z_AXIS] > -1) {
  1001. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1002. servos[servo_endstops[Z_AXIS]].attach(0);
  1003. #endif
  1004. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1005. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1006. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1007. servos[servo_endstops[Z_AXIS]].detach();
  1008. #endif
  1009. }
  1010. #endif
  1011. }
  1012. /// Probe bed height at position (x,y), returns the measured z value
  1013. static float probe_pt(float x, float y, float z_before) {
  1014. // move to right place
  1015. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1016. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1017. #ifndef Z_PROBE_SLED
  1018. engage_z_probe(); // Engage Z Servo endstop if available
  1019. #endif // Z_PROBE_SLED
  1020. run_z_probe();
  1021. float measured_z = current_position[Z_AXIS];
  1022. #ifndef Z_PROBE_SLED
  1023. retract_z_probe();
  1024. #endif // Z_PROBE_SLED
  1025. SERIAL_PROTOCOLPGM(MSG_BED);
  1026. SERIAL_PROTOCOLPGM(" x: ");
  1027. SERIAL_PROTOCOL(x);
  1028. SERIAL_PROTOCOLPGM(" y: ");
  1029. SERIAL_PROTOCOL(y);
  1030. SERIAL_PROTOCOLPGM(" z: ");
  1031. SERIAL_PROTOCOL(measured_z);
  1032. SERIAL_PROTOCOLPGM("\n");
  1033. return measured_z;
  1034. }
  1035. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1036. static void homeaxis(int axis) {
  1037. #define HOMEAXIS_DO(LETTER) \
  1038. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1039. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1040. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1041. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1042. 0) {
  1043. int axis_home_dir = home_dir(axis);
  1044. #ifdef DUAL_X_CARRIAGE
  1045. if (axis == X_AXIS)
  1046. axis_home_dir = x_home_dir(active_extruder);
  1047. #endif
  1048. current_position[axis] = 0;
  1049. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1050. #ifndef Z_PROBE_SLED
  1051. // Engage Servo endstop if enabled
  1052. #ifdef SERVO_ENDSTOPS
  1053. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1054. if (axis==Z_AXIS) {
  1055. engage_z_probe();
  1056. }
  1057. else
  1058. #endif
  1059. if (servo_endstops[axis] > -1) {
  1060. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1061. }
  1062. #endif
  1063. #endif // Z_PROBE_SLED
  1064. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1065. feedrate = homing_feedrate[axis];
  1066. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1067. st_synchronize();
  1068. current_position[axis] = 0;
  1069. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1070. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1071. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1072. st_synchronize();
  1073. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1074. #ifdef DELTA
  1075. feedrate = homing_feedrate[axis]/10;
  1076. #else
  1077. feedrate = homing_feedrate[axis]/2 ;
  1078. #endif
  1079. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1080. st_synchronize();
  1081. #ifdef DELTA
  1082. // retrace by the amount specified in endstop_adj
  1083. if (endstop_adj[axis] * axis_home_dir < 0) {
  1084. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1085. destination[axis] = endstop_adj[axis];
  1086. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1087. st_synchronize();
  1088. }
  1089. #endif
  1090. axis_is_at_home(axis);
  1091. destination[axis] = current_position[axis];
  1092. feedrate = 0.0;
  1093. endstops_hit_on_purpose();
  1094. axis_known_position[axis] = true;
  1095. // Retract Servo endstop if enabled
  1096. #ifdef SERVO_ENDSTOPS
  1097. if (servo_endstops[axis] > -1) {
  1098. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1099. }
  1100. #endif
  1101. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1102. #ifndef Z_PROBE_SLED
  1103. if (axis==Z_AXIS) retract_z_probe();
  1104. #endif
  1105. #endif
  1106. }
  1107. }
  1108. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1109. void refresh_cmd_timeout(void)
  1110. {
  1111. previous_millis_cmd = millis();
  1112. }
  1113. #ifdef FWRETRACT
  1114. void retract(bool retracting, bool swapretract = false) {
  1115. if(retracting && !retracted[active_extruder]) {
  1116. destination[X_AXIS]=current_position[X_AXIS];
  1117. destination[Y_AXIS]=current_position[Y_AXIS];
  1118. destination[Z_AXIS]=current_position[Z_AXIS];
  1119. destination[E_AXIS]=current_position[E_AXIS];
  1120. if (swapretract) {
  1121. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1122. } else {
  1123. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1124. }
  1125. plan_set_e_position(current_position[E_AXIS]);
  1126. float oldFeedrate = feedrate;
  1127. feedrate=retract_feedrate*60;
  1128. retracted[active_extruder]=true;
  1129. prepare_move();
  1130. current_position[Z_AXIS]-=retract_zlift;
  1131. #ifdef DELTA
  1132. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1133. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1134. #else
  1135. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1136. #endif
  1137. prepare_move();
  1138. feedrate = oldFeedrate;
  1139. } else if(!retracting && retracted[active_extruder]) {
  1140. destination[X_AXIS]=current_position[X_AXIS];
  1141. destination[Y_AXIS]=current_position[Y_AXIS];
  1142. destination[Z_AXIS]=current_position[Z_AXIS];
  1143. destination[E_AXIS]=current_position[E_AXIS];
  1144. current_position[Z_AXIS]+=retract_zlift;
  1145. #ifdef DELTA
  1146. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1147. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1148. #else
  1149. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1150. #endif
  1151. //prepare_move();
  1152. if (swapretract) {
  1153. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1154. } else {
  1155. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1156. }
  1157. plan_set_e_position(current_position[E_AXIS]);
  1158. float oldFeedrate = feedrate;
  1159. feedrate=retract_recover_feedrate*60;
  1160. retracted[active_extruder]=false;
  1161. prepare_move();
  1162. feedrate = oldFeedrate;
  1163. }
  1164. } //retract
  1165. #endif //FWRETRACT
  1166. #ifdef Z_PROBE_SLED
  1167. //
  1168. // Method to dock/undock a sled designed by Charles Bell.
  1169. //
  1170. // dock[in] If true, move to MAX_X and engage the electromagnet
  1171. // offset[in] The additional distance to move to adjust docking location
  1172. //
  1173. static void dock_sled(bool dock, int offset=0) {
  1174. int z_loc;
  1175. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1176. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1177. SERIAL_ECHO_START;
  1178. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1179. return;
  1180. }
  1181. if (dock) {
  1182. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1183. current_position[Y_AXIS],
  1184. current_position[Z_AXIS]);
  1185. // turn off magnet
  1186. digitalWrite(SERVO0_PIN, LOW);
  1187. } else {
  1188. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1189. z_loc = Z_RAISE_BEFORE_PROBING;
  1190. else
  1191. z_loc = current_position[Z_AXIS];
  1192. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1193. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1194. // turn on magnet
  1195. digitalWrite(SERVO0_PIN, HIGH);
  1196. }
  1197. }
  1198. #endif
  1199. void process_commands()
  1200. {
  1201. #ifdef FILAMENT_RUNOUT_SUPPORT
  1202. SET_INPUT(FR_SENS);
  1203. #endif
  1204. unsigned long codenum; //throw away variable
  1205. char *starpos = NULL;
  1206. #ifdef ENABLE_AUTO_BED_LEVELING
  1207. float x_tmp, y_tmp, z_tmp, real_z;
  1208. #endif
  1209. // PRUSA GCODES
  1210. if(code_seen('P')){
  1211. if(code_seen('F')){
  1212. SERIAL_PROTOCOLLN(FW_version);
  1213. } else if(code_seen('R')){
  1214. SERIAL_PROTOCOLLN(REVISION);
  1215. }
  1216. }
  1217. else if(code_seen('G'))
  1218. {
  1219. switch((int)code_value())
  1220. {
  1221. case 0: // G0 -> G1
  1222. case 1: // G1
  1223. if(Stopped == false) {
  1224. #ifdef FILAMENT_RUNOUT_SUPPORT
  1225. if(READ(FR_SENS)){
  1226. feedmultiplyBckp=feedmultiply;
  1227. float target[4];
  1228. float lastpos[4];
  1229. target[X_AXIS]=current_position[X_AXIS];
  1230. target[Y_AXIS]=current_position[Y_AXIS];
  1231. target[Z_AXIS]=current_position[Z_AXIS];
  1232. target[E_AXIS]=current_position[E_AXIS];
  1233. lastpos[X_AXIS]=current_position[X_AXIS];
  1234. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1235. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1236. lastpos[E_AXIS]=current_position[E_AXIS];
  1237. //retract by E
  1238. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1239. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1240. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1241. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1242. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1243. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1244. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1245. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1246. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1247. //finish moves
  1248. st_synchronize();
  1249. //disable extruder steppers so filament can be removed
  1250. disable_e0();
  1251. disable_e1();
  1252. disable_e2();
  1253. delay(100);
  1254. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1255. uint8_t cnt=0;
  1256. int counterBeep = 0;
  1257. lcd_wait_interact();
  1258. while(!lcd_clicked()){
  1259. cnt++;
  1260. manage_heater();
  1261. manage_inactivity(true);
  1262. //lcd_update();
  1263. if(cnt==0)
  1264. {
  1265. #if BEEPER > 0
  1266. if (counterBeep== 500){
  1267. counterBeep = 0;
  1268. }
  1269. SET_OUTPUT(BEEPER);
  1270. if (counterBeep== 0){
  1271. WRITE(BEEPER,HIGH);
  1272. }
  1273. if (counterBeep== 20){
  1274. WRITE(BEEPER,LOW);
  1275. }
  1276. counterBeep++;
  1277. #else
  1278. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1279. lcd_buzz(1000/6,100);
  1280. #else
  1281. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1282. #endif
  1283. #endif
  1284. }
  1285. }
  1286. WRITE(BEEPER,LOW);
  1287. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1288. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1289. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1290. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1291. lcd_change_fil_state = 0;
  1292. lcd_loading_filament();
  1293. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1294. lcd_change_fil_state = 0;
  1295. lcd_alright();
  1296. switch(lcd_change_fil_state){
  1297. case 2:
  1298. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1299. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1300. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1301. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1302. lcd_loading_filament();
  1303. break;
  1304. case 3:
  1305. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1306. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1307. lcd_loading_color();
  1308. break;
  1309. default:
  1310. lcd_change_success();
  1311. break;
  1312. }
  1313. }
  1314. target[E_AXIS]+= 5;
  1315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1316. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1317. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1318. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1319. //plan_set_e_position(current_position[E_AXIS]);
  1320. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1321. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1322. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1323. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1324. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1325. plan_set_e_position(lastpos[E_AXIS]);
  1326. feedmultiply=feedmultiplyBckp;
  1327. char cmd[9];
  1328. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1329. enquecommand(cmd);
  1330. }
  1331. #endif
  1332. get_coordinates(); // For X Y Z E F
  1333. #ifdef FWRETRACT
  1334. if(autoretract_enabled)
  1335. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1336. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1337. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1338. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1339. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1340. retract(!retracted);
  1341. return;
  1342. }
  1343. }
  1344. #endif //FWRETRACT
  1345. prepare_move();
  1346. //ClearToSend();
  1347. }
  1348. break;
  1349. #ifndef SCARA //disable arc support
  1350. case 2: // G2 - CW ARC
  1351. if(Stopped == false) {
  1352. get_arc_coordinates();
  1353. prepare_arc_move(true);
  1354. }
  1355. break;
  1356. case 3: // G3 - CCW ARC
  1357. if(Stopped == false) {
  1358. get_arc_coordinates();
  1359. prepare_arc_move(false);
  1360. }
  1361. break;
  1362. #endif
  1363. case 4: // G4 dwell
  1364. LCD_MESSAGEPGM(MSG_DWELL);
  1365. codenum = 0;
  1366. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1367. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1368. st_synchronize();
  1369. codenum += millis(); // keep track of when we started waiting
  1370. previous_millis_cmd = millis();
  1371. while(millis() < codenum) {
  1372. manage_heater();
  1373. manage_inactivity();
  1374. lcd_update();
  1375. }
  1376. break;
  1377. #ifdef FWRETRACT
  1378. case 10: // G10 retract
  1379. #if EXTRUDERS > 1
  1380. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1381. retract(true,retracted_swap[active_extruder]);
  1382. #else
  1383. retract(true);
  1384. #endif
  1385. break;
  1386. case 11: // G11 retract_recover
  1387. #if EXTRUDERS > 1
  1388. retract(false,retracted_swap[active_extruder]);
  1389. #else
  1390. retract(false);
  1391. #endif
  1392. break;
  1393. #endif //FWRETRACT
  1394. case 28: //G28 Home all Axis one at a time
  1395. #ifdef ENABLE_AUTO_BED_LEVELING
  1396. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1397. #endif //ENABLE_AUTO_BED_LEVELING
  1398. saved_feedrate = feedrate;
  1399. saved_feedmultiply = feedmultiply;
  1400. feedmultiply = 100;
  1401. previous_millis_cmd = millis();
  1402. enable_endstops(true);
  1403. for(int8_t i=0; i < NUM_AXIS; i++) {
  1404. destination[i] = current_position[i];
  1405. }
  1406. feedrate = 0.0;
  1407. #ifdef DELTA
  1408. // A delta can only safely home all axis at the same time
  1409. // all axis have to home at the same time
  1410. // Move all carriages up together until the first endstop is hit.
  1411. current_position[X_AXIS] = 0;
  1412. current_position[Y_AXIS] = 0;
  1413. current_position[Z_AXIS] = 0;
  1414. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1415. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1416. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1417. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1418. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1419. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1420. st_synchronize();
  1421. endstops_hit_on_purpose();
  1422. current_position[X_AXIS] = destination[X_AXIS];
  1423. current_position[Y_AXIS] = destination[Y_AXIS];
  1424. current_position[Z_AXIS] = destination[Z_AXIS];
  1425. // take care of back off and rehome now we are all at the top
  1426. HOMEAXIS(X);
  1427. HOMEAXIS(Y);
  1428. HOMEAXIS(Z);
  1429. calculate_delta(current_position);
  1430. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1431. #else // NOT DELTA
  1432. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1433. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1434. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1435. HOMEAXIS(Z);
  1436. }
  1437. #endif
  1438. #ifdef QUICK_HOME
  1439. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1440. {
  1441. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1442. #ifndef DUAL_X_CARRIAGE
  1443. int x_axis_home_dir = home_dir(X_AXIS);
  1444. #else
  1445. int x_axis_home_dir = x_home_dir(active_extruder);
  1446. extruder_duplication_enabled = false;
  1447. #endif
  1448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1449. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1450. feedrate = homing_feedrate[X_AXIS];
  1451. if(homing_feedrate[Y_AXIS]<feedrate)
  1452. feedrate = homing_feedrate[Y_AXIS];
  1453. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1454. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1455. } else {
  1456. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1457. }
  1458. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1459. st_synchronize();
  1460. axis_is_at_home(X_AXIS);
  1461. axis_is_at_home(Y_AXIS);
  1462. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1463. destination[X_AXIS] = current_position[X_AXIS];
  1464. destination[Y_AXIS] = current_position[Y_AXIS];
  1465. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1466. feedrate = 0.0;
  1467. st_synchronize();
  1468. endstops_hit_on_purpose();
  1469. current_position[X_AXIS] = destination[X_AXIS];
  1470. current_position[Y_AXIS] = destination[Y_AXIS];
  1471. #ifndef SCARA
  1472. current_position[Z_AXIS] = destination[Z_AXIS];
  1473. #endif
  1474. }
  1475. #endif
  1476. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1477. {
  1478. #ifdef DUAL_X_CARRIAGE
  1479. int tmp_extruder = active_extruder;
  1480. extruder_duplication_enabled = false;
  1481. active_extruder = !active_extruder;
  1482. HOMEAXIS(X);
  1483. inactive_extruder_x_pos = current_position[X_AXIS];
  1484. active_extruder = tmp_extruder;
  1485. HOMEAXIS(X);
  1486. // reset state used by the different modes
  1487. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1488. delayed_move_time = 0;
  1489. active_extruder_parked = true;
  1490. #else
  1491. HOMEAXIS(X);
  1492. #endif
  1493. }
  1494. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1495. HOMEAXIS(Y);
  1496. }
  1497. if(code_seen(axis_codes[X_AXIS]))
  1498. {
  1499. if(code_value_long() != 0) {
  1500. #ifdef SCARA
  1501. current_position[X_AXIS]=code_value();
  1502. #else
  1503. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1504. #endif
  1505. }
  1506. }
  1507. if(code_seen(axis_codes[Y_AXIS])) {
  1508. if(code_value_long() != 0) {
  1509. #ifdef SCARA
  1510. current_position[Y_AXIS]=code_value();
  1511. #else
  1512. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1513. #endif
  1514. }
  1515. }
  1516. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1517. #ifndef Z_SAFE_HOMING
  1518. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1519. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1520. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1521. feedrate = max_feedrate[Z_AXIS];
  1522. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1523. st_synchronize();
  1524. #endif
  1525. HOMEAXIS(Z);
  1526. }
  1527. #else // Z Safe mode activated.
  1528. if(home_all_axis) {
  1529. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1530. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1531. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1532. feedrate = XY_TRAVEL_SPEED/60;
  1533. current_position[Z_AXIS] = 0;
  1534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1535. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1536. st_synchronize();
  1537. current_position[X_AXIS] = destination[X_AXIS];
  1538. current_position[Y_AXIS] = destination[Y_AXIS];
  1539. HOMEAXIS(Z);
  1540. }
  1541. // Let's see if X and Y are homed and probe is inside bed area.
  1542. if(code_seen(axis_codes[Z_AXIS])) {
  1543. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1544. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1545. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1546. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1547. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1548. current_position[Z_AXIS] = 0;
  1549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1550. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1551. feedrate = max_feedrate[Z_AXIS];
  1552. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1553. st_synchronize();
  1554. HOMEAXIS(Z);
  1555. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1556. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1557. SERIAL_ECHO_START;
  1558. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1559. } else {
  1560. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1561. SERIAL_ECHO_START;
  1562. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1563. }
  1564. }
  1565. #endif
  1566. #endif
  1567. if(code_seen(axis_codes[Z_AXIS])) {
  1568. if(code_value_long() != 0) {
  1569. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1570. }
  1571. }
  1572. #ifdef ENABLE_AUTO_BED_LEVELING
  1573. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1574. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1575. }
  1576. #endif
  1577. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1578. #endif // else DELTA
  1579. #ifdef SCARA
  1580. calculate_delta(current_position);
  1581. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1582. #endif // SCARA
  1583. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1584. enable_endstops(false);
  1585. #endif
  1586. feedrate = saved_feedrate;
  1587. feedmultiply = saved_feedmultiply;
  1588. previous_millis_cmd = millis();
  1589. endstops_hit_on_purpose();
  1590. break;
  1591. #ifdef ENABLE_AUTO_BED_LEVELING
  1592. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1593. {
  1594. #if Z_MIN_PIN == -1
  1595. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1596. #endif
  1597. // Prevent user from running a G29 without first homing in X and Y
  1598. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1599. {
  1600. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1601. SERIAL_ECHO_START;
  1602. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1603. break; // abort G29, since we don't know where we are
  1604. }
  1605. #ifdef Z_PROBE_SLED
  1606. dock_sled(false);
  1607. #endif // Z_PROBE_SLED
  1608. st_synchronize();
  1609. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1610. //vector_3 corrected_position = plan_get_position_mm();
  1611. //corrected_position.debug("position before G29");
  1612. plan_bed_level_matrix.set_to_identity();
  1613. vector_3 uncorrected_position = plan_get_position();
  1614. //uncorrected_position.debug("position durring G29");
  1615. current_position[X_AXIS] = uncorrected_position.x;
  1616. current_position[Y_AXIS] = uncorrected_position.y;
  1617. current_position[Z_AXIS] = uncorrected_position.z;
  1618. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1619. setup_for_endstop_move();
  1620. feedrate = homing_feedrate[Z_AXIS];
  1621. #ifdef AUTO_BED_LEVELING_GRID
  1622. // probe at the points of a lattice grid
  1623. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1624. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1625. // solve the plane equation ax + by + d = z
  1626. // A is the matrix with rows [x y 1] for all the probed points
  1627. // B is the vector of the Z positions
  1628. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1629. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1630. // "A" matrix of the linear system of equations
  1631. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1632. // "B" vector of Z points
  1633. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1634. int probePointCounter = 0;
  1635. bool zig = true;
  1636. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1637. {
  1638. int xProbe, xInc;
  1639. if (zig)
  1640. {
  1641. xProbe = LEFT_PROBE_BED_POSITION;
  1642. //xEnd = RIGHT_PROBE_BED_POSITION;
  1643. xInc = xGridSpacing;
  1644. zig = false;
  1645. } else // zag
  1646. {
  1647. xProbe = RIGHT_PROBE_BED_POSITION;
  1648. //xEnd = LEFT_PROBE_BED_POSITION;
  1649. xInc = -xGridSpacing;
  1650. zig = true;
  1651. }
  1652. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1653. {
  1654. float z_before;
  1655. if (probePointCounter == 0)
  1656. {
  1657. // raise before probing
  1658. z_before = Z_RAISE_BEFORE_PROBING;
  1659. } else
  1660. {
  1661. // raise extruder
  1662. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1663. }
  1664. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1665. eqnBVector[probePointCounter] = measured_z;
  1666. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1667. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1668. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1669. probePointCounter++;
  1670. xProbe += xInc;
  1671. }
  1672. }
  1673. clean_up_after_endstop_move();
  1674. // solve lsq problem
  1675. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1676. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1677. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1678. SERIAL_PROTOCOLPGM(" b: ");
  1679. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1680. SERIAL_PROTOCOLPGM(" d: ");
  1681. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1682. set_bed_level_equation_lsq(plane_equation_coefficients);
  1683. free(plane_equation_coefficients);
  1684. #else // AUTO_BED_LEVELING_GRID not defined
  1685. // Probe at 3 arbitrary points
  1686. // probe 1
  1687. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1688. // probe 2
  1689. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1690. // probe 3
  1691. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1692. clean_up_after_endstop_move();
  1693. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1694. #endif // AUTO_BED_LEVELING_GRID
  1695. st_synchronize();
  1696. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1697. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1698. // When the bed is uneven, this height must be corrected.
  1699. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1700. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1701. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1702. z_tmp = current_position[Z_AXIS];
  1703. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1704. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1706. #ifdef Z_PROBE_SLED
  1707. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1708. #endif // Z_PROBE_SLED
  1709. }
  1710. break;
  1711. #ifndef Z_PROBE_SLED
  1712. case 30: // G30 Single Z Probe
  1713. {
  1714. engage_z_probe(); // Engage Z Servo endstop if available
  1715. st_synchronize();
  1716. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1717. setup_for_endstop_move();
  1718. feedrate = homing_feedrate[Z_AXIS];
  1719. run_z_probe();
  1720. SERIAL_PROTOCOLPGM(MSG_BED);
  1721. SERIAL_PROTOCOLPGM(" X: ");
  1722. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1723. SERIAL_PROTOCOLPGM(" Y: ");
  1724. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1725. SERIAL_PROTOCOLPGM(" Z: ");
  1726. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1727. SERIAL_PROTOCOLPGM("\n");
  1728. clean_up_after_endstop_move();
  1729. retract_z_probe(); // Retract Z Servo endstop if available
  1730. }
  1731. break;
  1732. #else
  1733. case 31: // dock the sled
  1734. dock_sled(true);
  1735. break;
  1736. case 32: // undock the sled
  1737. dock_sled(false);
  1738. break;
  1739. #endif // Z_PROBE_SLED
  1740. #endif // ENABLE_AUTO_BED_LEVELING
  1741. case 90: // G90
  1742. relative_mode = false;
  1743. break;
  1744. case 91: // G91
  1745. relative_mode = true;
  1746. break;
  1747. case 92: // G92
  1748. if(!code_seen(axis_codes[E_AXIS]))
  1749. st_synchronize();
  1750. for(int8_t i=0; i < NUM_AXIS; i++) {
  1751. if(code_seen(axis_codes[i])) {
  1752. if(i == E_AXIS) {
  1753. current_position[i] = code_value();
  1754. plan_set_e_position(current_position[E_AXIS]);
  1755. }
  1756. else {
  1757. #ifdef SCARA
  1758. if (i == X_AXIS || i == Y_AXIS) {
  1759. current_position[i] = code_value();
  1760. }
  1761. else {
  1762. current_position[i] = code_value()+add_homing[i];
  1763. }
  1764. #else
  1765. current_position[i] = code_value()+add_homing[i];
  1766. #endif
  1767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1768. }
  1769. }
  1770. }
  1771. break;
  1772. }
  1773. }
  1774. else if(code_seen('M'))
  1775. {
  1776. switch( (int)code_value() )
  1777. {
  1778. #ifdef ULTIPANEL
  1779. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1780. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1781. {
  1782. char *src = strchr_pointer + 2;
  1783. codenum = 0;
  1784. bool hasP = false, hasS = false;
  1785. if (code_seen('P')) {
  1786. codenum = code_value(); // milliseconds to wait
  1787. hasP = codenum > 0;
  1788. }
  1789. if (code_seen('S')) {
  1790. codenum = code_value() * 1000; // seconds to wait
  1791. hasS = codenum > 0;
  1792. }
  1793. starpos = strchr(src, '*');
  1794. if (starpos != NULL) *(starpos) = '\0';
  1795. while (*src == ' ') ++src;
  1796. if (!hasP && !hasS && *src != '\0') {
  1797. lcd_setstatus(src);
  1798. } else {
  1799. LCD_MESSAGEPGM(MSG_USERWAIT);
  1800. }
  1801. lcd_ignore_click();
  1802. st_synchronize();
  1803. previous_millis_cmd = millis();
  1804. if (codenum > 0){
  1805. codenum += millis(); // keep track of when we started waiting
  1806. while(millis() < codenum && !lcd_clicked()){
  1807. manage_heater();
  1808. manage_inactivity();
  1809. lcd_update();
  1810. }
  1811. lcd_ignore_click(false);
  1812. }else{
  1813. if (!lcd_detected())
  1814. break;
  1815. while(!lcd_clicked()){
  1816. manage_heater();
  1817. manage_inactivity();
  1818. lcd_update();
  1819. }
  1820. }
  1821. if (IS_SD_PRINTING)
  1822. LCD_MESSAGEPGM(MSG_RESUMING);
  1823. else
  1824. LCD_MESSAGEPGM(WELCOME_MSG);
  1825. }
  1826. break;
  1827. #endif
  1828. case 17:
  1829. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1830. enable_x();
  1831. enable_y();
  1832. enable_z();
  1833. enable_e0();
  1834. enable_e1();
  1835. enable_e2();
  1836. break;
  1837. #ifdef SDSUPPORT
  1838. case 20: // M20 - list SD card
  1839. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1840. card.ls();
  1841. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1842. break;
  1843. case 21: // M21 - init SD card
  1844. card.initsd();
  1845. break;
  1846. case 22: //M22 - release SD card
  1847. card.release();
  1848. break;
  1849. case 23: //M23 - Select file
  1850. starpos = (strchr(strchr_pointer + 4,'*'));
  1851. if(starpos!=NULL)
  1852. *(starpos)='\0';
  1853. card.openFile(strchr_pointer + 4,true);
  1854. break;
  1855. case 24: //M24 - Start SD print
  1856. card.startFileprint();
  1857. starttime=millis();
  1858. break;
  1859. case 25: //M25 - Pause SD print
  1860. card.pauseSDPrint();
  1861. break;
  1862. case 26: //M26 - Set SD index
  1863. if(card.cardOK && code_seen('S')) {
  1864. card.setIndex(code_value_long());
  1865. }
  1866. break;
  1867. case 27: //M27 - Get SD status
  1868. card.getStatus();
  1869. break;
  1870. case 28: //M28 - Start SD write
  1871. starpos = (strchr(strchr_pointer + 4,'*'));
  1872. if(starpos != NULL){
  1873. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1874. strchr_pointer = strchr(npos,' ') + 1;
  1875. *(starpos) = '\0';
  1876. }
  1877. card.openFile(strchr_pointer+4,false);
  1878. break;
  1879. case 29: //M29 - Stop SD write
  1880. //processed in write to file routine above
  1881. //card,saving = false;
  1882. break;
  1883. case 30: //M30 <filename> Delete File
  1884. if (card.cardOK){
  1885. card.closefile();
  1886. starpos = (strchr(strchr_pointer + 4,'*'));
  1887. if(starpos != NULL){
  1888. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1889. strchr_pointer = strchr(npos,' ') + 1;
  1890. *(starpos) = '\0';
  1891. }
  1892. card.removeFile(strchr_pointer + 4);
  1893. }
  1894. break;
  1895. case 32: //M32 - Select file and start SD print
  1896. {
  1897. if(card.sdprinting) {
  1898. st_synchronize();
  1899. }
  1900. starpos = (strchr(strchr_pointer + 4,'*'));
  1901. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1902. if(namestartpos==NULL)
  1903. {
  1904. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1905. }
  1906. else
  1907. namestartpos++; //to skip the '!'
  1908. if(starpos!=NULL)
  1909. *(starpos)='\0';
  1910. bool call_procedure=(code_seen('P'));
  1911. if(strchr_pointer>namestartpos)
  1912. call_procedure=false; //false alert, 'P' found within filename
  1913. if( card.cardOK )
  1914. {
  1915. card.openFile(namestartpos,true,!call_procedure);
  1916. if(code_seen('S'))
  1917. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1918. card.setIndex(code_value_long());
  1919. card.startFileprint();
  1920. if(!call_procedure)
  1921. starttime=millis(); //procedure calls count as normal print time.
  1922. }
  1923. } break;
  1924. case 928: //M928 - Start SD write
  1925. starpos = (strchr(strchr_pointer + 5,'*'));
  1926. if(starpos != NULL){
  1927. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1928. strchr_pointer = strchr(npos,' ') + 1;
  1929. *(starpos) = '\0';
  1930. }
  1931. card.openLogFile(strchr_pointer+5);
  1932. break;
  1933. #endif //SDSUPPORT
  1934. case 31: //M31 take time since the start of the SD print or an M109 command
  1935. {
  1936. stoptime=millis();
  1937. char time[30];
  1938. unsigned long t=(stoptime-starttime)/1000;
  1939. int sec,min;
  1940. min=t/60;
  1941. sec=t%60;
  1942. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1943. SERIAL_ECHO_START;
  1944. SERIAL_ECHOLN(time);
  1945. lcd_setstatus(time);
  1946. autotempShutdown();
  1947. }
  1948. break;
  1949. case 42: //M42 -Change pin status via gcode
  1950. if (code_seen('S'))
  1951. {
  1952. int pin_status = code_value();
  1953. int pin_number = LED_PIN;
  1954. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1955. pin_number = code_value();
  1956. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1957. {
  1958. if (sensitive_pins[i] == pin_number)
  1959. {
  1960. pin_number = -1;
  1961. break;
  1962. }
  1963. }
  1964. #if defined(FAN_PIN) && FAN_PIN > -1
  1965. if (pin_number == FAN_PIN)
  1966. fanSpeed = pin_status;
  1967. #endif
  1968. if (pin_number > -1)
  1969. {
  1970. pinMode(pin_number, OUTPUT);
  1971. digitalWrite(pin_number, pin_status);
  1972. analogWrite(pin_number, pin_status);
  1973. }
  1974. }
  1975. break;
  1976. // M48 Z-Probe repeatability measurement function.
  1977. //
  1978. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1979. //
  1980. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1981. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1982. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1983. // regenerated.
  1984. //
  1985. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1986. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1987. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1988. //
  1989. #ifdef ENABLE_AUTO_BED_LEVELING
  1990. #ifdef Z_PROBE_REPEATABILITY_TEST
  1991. case 48: // M48 Z-Probe repeatability
  1992. {
  1993. #if Z_MIN_PIN == -1
  1994. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1995. #endif
  1996. double sum=0.0;
  1997. double mean=0.0;
  1998. double sigma=0.0;
  1999. double sample_set[50];
  2000. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  2001. double X_current, Y_current, Z_current;
  2002. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2003. if (code_seen('V') || code_seen('v')) {
  2004. verbose_level = code_value();
  2005. if (verbose_level<0 || verbose_level>4 ) {
  2006. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2007. goto Sigma_Exit;
  2008. }
  2009. }
  2010. if (verbose_level > 0) {
  2011. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2012. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2013. }
  2014. if (code_seen('n')) {
  2015. n_samples = code_value();
  2016. if (n_samples<4 || n_samples>50 ) {
  2017. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2018. goto Sigma_Exit;
  2019. }
  2020. }
  2021. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2022. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2023. Z_current = st_get_position_mm(Z_AXIS);
  2024. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2025. ext_position = st_get_position_mm(E_AXIS);
  2026. if (code_seen('E') || code_seen('e') )
  2027. engage_probe_for_each_reading++;
  2028. if (code_seen('X') || code_seen('x') ) {
  2029. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2030. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2031. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2032. goto Sigma_Exit;
  2033. }
  2034. }
  2035. if (code_seen('Y') || code_seen('y') ) {
  2036. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2037. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2038. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2039. goto Sigma_Exit;
  2040. }
  2041. }
  2042. if (code_seen('L') || code_seen('l') ) {
  2043. n_legs = code_value();
  2044. if ( n_legs==1 )
  2045. n_legs = 2;
  2046. if ( n_legs<0 || n_legs>15 ) {
  2047. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2048. goto Sigma_Exit;
  2049. }
  2050. }
  2051. //
  2052. // Do all the preliminary setup work. First raise the probe.
  2053. //
  2054. st_synchronize();
  2055. plan_bed_level_matrix.set_to_identity();
  2056. plan_buffer_line( X_current, Y_current, Z_start_location,
  2057. ext_position,
  2058. homing_feedrate[Z_AXIS]/60,
  2059. active_extruder);
  2060. st_synchronize();
  2061. //
  2062. // Now get everything to the specified probe point So we can safely do a probe to
  2063. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2064. // use that as a starting point for each probe.
  2065. //
  2066. if (verbose_level > 2)
  2067. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2068. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2069. ext_position,
  2070. homing_feedrate[X_AXIS]/60,
  2071. active_extruder);
  2072. st_synchronize();
  2073. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2074. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2075. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2076. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2077. //
  2078. // OK, do the inital probe to get us close to the bed.
  2079. // Then retrace the right amount and use that in subsequent probes
  2080. //
  2081. engage_z_probe();
  2082. setup_for_endstop_move();
  2083. run_z_probe();
  2084. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2085. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2086. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2087. ext_position,
  2088. homing_feedrate[X_AXIS]/60,
  2089. active_extruder);
  2090. st_synchronize();
  2091. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2092. if (engage_probe_for_each_reading)
  2093. retract_z_probe();
  2094. for( n=0; n<n_samples; n++) {
  2095. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2096. if ( n_legs) {
  2097. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2098. int rotational_direction, l;
  2099. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2100. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2101. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2102. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2103. //SERIAL_ECHOPAIR(" theta: ",theta);
  2104. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2105. //SERIAL_PROTOCOLLNPGM("");
  2106. for( l=0; l<n_legs-1; l++) {
  2107. if (rotational_direction==1)
  2108. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2109. else
  2110. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2111. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2112. if ( radius<0.0 )
  2113. radius = -radius;
  2114. X_current = X_probe_location + cos(theta) * radius;
  2115. Y_current = Y_probe_location + sin(theta) * radius;
  2116. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2117. X_current = X_MIN_POS;
  2118. if ( X_current>X_MAX_POS)
  2119. X_current = X_MAX_POS;
  2120. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2121. Y_current = Y_MIN_POS;
  2122. if ( Y_current>Y_MAX_POS)
  2123. Y_current = Y_MAX_POS;
  2124. if (verbose_level>3 ) {
  2125. SERIAL_ECHOPAIR("x: ", X_current);
  2126. SERIAL_ECHOPAIR("y: ", Y_current);
  2127. SERIAL_PROTOCOLLNPGM("");
  2128. }
  2129. do_blocking_move_to( X_current, Y_current, Z_current );
  2130. }
  2131. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2132. }
  2133. if (engage_probe_for_each_reading) {
  2134. engage_z_probe();
  2135. delay(1000);
  2136. }
  2137. setup_for_endstop_move();
  2138. run_z_probe();
  2139. sample_set[n] = current_position[Z_AXIS];
  2140. //
  2141. // Get the current mean for the data points we have so far
  2142. //
  2143. sum=0.0;
  2144. for( j=0; j<=n; j++) {
  2145. sum = sum + sample_set[j];
  2146. }
  2147. mean = sum / (double (n+1));
  2148. //
  2149. // Now, use that mean to calculate the standard deviation for the
  2150. // data points we have so far
  2151. //
  2152. sum=0.0;
  2153. for( j=0; j<=n; j++) {
  2154. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2155. }
  2156. sigma = sqrt( sum / (double (n+1)) );
  2157. if (verbose_level > 1) {
  2158. SERIAL_PROTOCOL(n+1);
  2159. SERIAL_PROTOCOL(" of ");
  2160. SERIAL_PROTOCOL(n_samples);
  2161. SERIAL_PROTOCOLPGM(" z: ");
  2162. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2163. }
  2164. if (verbose_level > 2) {
  2165. SERIAL_PROTOCOL(" mean: ");
  2166. SERIAL_PROTOCOL_F(mean,6);
  2167. SERIAL_PROTOCOL(" sigma: ");
  2168. SERIAL_PROTOCOL_F(sigma,6);
  2169. }
  2170. if (verbose_level > 0)
  2171. SERIAL_PROTOCOLPGM("\n");
  2172. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2173. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2174. st_synchronize();
  2175. if (engage_probe_for_each_reading) {
  2176. retract_z_probe();
  2177. delay(1000);
  2178. }
  2179. }
  2180. retract_z_probe();
  2181. delay(1000);
  2182. clean_up_after_endstop_move();
  2183. // enable_endstops(true);
  2184. if (verbose_level > 0) {
  2185. SERIAL_PROTOCOLPGM("Mean: ");
  2186. SERIAL_PROTOCOL_F(mean, 6);
  2187. SERIAL_PROTOCOLPGM("\n");
  2188. }
  2189. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2190. SERIAL_PROTOCOL_F(sigma, 6);
  2191. SERIAL_PROTOCOLPGM("\n\n");
  2192. Sigma_Exit:
  2193. break;
  2194. }
  2195. #endif // Z_PROBE_REPEATABILITY_TEST
  2196. #endif // ENABLE_AUTO_BED_LEVELING
  2197. case 104: // M104
  2198. if(setTargetedHotend(104)){
  2199. break;
  2200. }
  2201. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2202. #ifdef DUAL_X_CARRIAGE
  2203. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2204. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2205. #endif
  2206. setWatch();
  2207. break;
  2208. case 112: // M112 -Emergency Stop
  2209. kill();
  2210. break;
  2211. case 140: // M140 set bed temp
  2212. if (code_seen('S')) setTargetBed(code_value());
  2213. break;
  2214. case 105 : // M105
  2215. if(setTargetedHotend(105)){
  2216. break;
  2217. }
  2218. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2219. SERIAL_PROTOCOLPGM("ok T:");
  2220. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2221. SERIAL_PROTOCOLPGM(" /");
  2222. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2223. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2224. SERIAL_PROTOCOLPGM(" B:");
  2225. SERIAL_PROTOCOL_F(degBed(),1);
  2226. SERIAL_PROTOCOLPGM(" /");
  2227. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2228. #endif //TEMP_BED_PIN
  2229. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2230. SERIAL_PROTOCOLPGM(" T");
  2231. SERIAL_PROTOCOL(cur_extruder);
  2232. SERIAL_PROTOCOLPGM(":");
  2233. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2234. SERIAL_PROTOCOLPGM(" /");
  2235. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2236. }
  2237. #else
  2238. SERIAL_ERROR_START;
  2239. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2240. #endif
  2241. SERIAL_PROTOCOLPGM(" @:");
  2242. #ifdef EXTRUDER_WATTS
  2243. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2244. SERIAL_PROTOCOLPGM("W");
  2245. #else
  2246. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2247. #endif
  2248. SERIAL_PROTOCOLPGM(" B@:");
  2249. #ifdef BED_WATTS
  2250. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2251. SERIAL_PROTOCOLPGM("W");
  2252. #else
  2253. SERIAL_PROTOCOL(getHeaterPower(-1));
  2254. #endif
  2255. #ifdef SHOW_TEMP_ADC_VALUES
  2256. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2257. SERIAL_PROTOCOLPGM(" ADC B:");
  2258. SERIAL_PROTOCOL_F(degBed(),1);
  2259. SERIAL_PROTOCOLPGM("C->");
  2260. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2261. #endif
  2262. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2263. SERIAL_PROTOCOLPGM(" T");
  2264. SERIAL_PROTOCOL(cur_extruder);
  2265. SERIAL_PROTOCOLPGM(":");
  2266. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2267. SERIAL_PROTOCOLPGM("C->");
  2268. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2269. }
  2270. #endif
  2271. SERIAL_PROTOCOLLN("");
  2272. return;
  2273. break;
  2274. case 109:
  2275. {// M109 - Wait for extruder heater to reach target.
  2276. if(setTargetedHotend(109)){
  2277. break;
  2278. }
  2279. LCD_MESSAGEPGM(MSG_HEATING);
  2280. #ifdef AUTOTEMP
  2281. autotemp_enabled=false;
  2282. #endif
  2283. if (code_seen('S')) {
  2284. setTargetHotend(code_value(), tmp_extruder);
  2285. #ifdef DUAL_X_CARRIAGE
  2286. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2287. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2288. #endif
  2289. CooldownNoWait = true;
  2290. } else if (code_seen('R')) {
  2291. setTargetHotend(code_value(), tmp_extruder);
  2292. #ifdef DUAL_X_CARRIAGE
  2293. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2294. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2295. #endif
  2296. CooldownNoWait = false;
  2297. }
  2298. #ifdef AUTOTEMP
  2299. if (code_seen('S')) autotemp_min=code_value();
  2300. if (code_seen('B')) autotemp_max=code_value();
  2301. if (code_seen('F'))
  2302. {
  2303. autotemp_factor=code_value();
  2304. autotemp_enabled=true;
  2305. }
  2306. #endif
  2307. setWatch();
  2308. codenum = millis();
  2309. /* See if we are heating up or cooling down */
  2310. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2311. cancel_heatup = false;
  2312. #ifdef TEMP_RESIDENCY_TIME
  2313. long residencyStart;
  2314. residencyStart = -1;
  2315. /* continue to loop until we have reached the target temp
  2316. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2317. while((!cancel_heatup)&&((residencyStart == -1) ||
  2318. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2319. #else
  2320. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2321. #endif //TEMP_RESIDENCY_TIME
  2322. if( (millis() - codenum) > 1000UL )
  2323. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2324. SERIAL_PROTOCOLPGM("T:");
  2325. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2326. SERIAL_PROTOCOLPGM(" E:");
  2327. SERIAL_PROTOCOL((int)tmp_extruder);
  2328. #ifdef TEMP_RESIDENCY_TIME
  2329. SERIAL_PROTOCOLPGM(" W:");
  2330. if(residencyStart > -1)
  2331. {
  2332. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2333. SERIAL_PROTOCOLLN( codenum );
  2334. }
  2335. else
  2336. {
  2337. SERIAL_PROTOCOLLN( "?" );
  2338. }
  2339. #else
  2340. SERIAL_PROTOCOLLN("");
  2341. #endif
  2342. codenum = millis();
  2343. }
  2344. manage_heater();
  2345. manage_inactivity();
  2346. lcd_update();
  2347. #ifdef TEMP_RESIDENCY_TIME
  2348. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2349. or when current temp falls outside the hysteresis after target temp was reached */
  2350. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2351. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2352. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2353. {
  2354. residencyStart = millis();
  2355. }
  2356. #endif //TEMP_RESIDENCY_TIME
  2357. }
  2358. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2359. if(IS_SD_PRINTING){
  2360. lcd_setstatus("SD-PRINTING ");
  2361. }
  2362. starttime=millis();
  2363. previous_millis_cmd = millis();
  2364. }
  2365. break;
  2366. case 190: // M190 - Wait for bed heater to reach target.
  2367. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2368. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2369. if (code_seen('S')) {
  2370. setTargetBed(code_value());
  2371. CooldownNoWait = true;
  2372. } else if (code_seen('R')) {
  2373. setTargetBed(code_value());
  2374. CooldownNoWait = false;
  2375. }
  2376. codenum = millis();
  2377. cancel_heatup = false;
  2378. target_direction = isHeatingBed(); // true if heating, false if cooling
  2379. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2380. {
  2381. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2382. {
  2383. float tt=degHotend(active_extruder);
  2384. SERIAL_PROTOCOLPGM("T:");
  2385. SERIAL_PROTOCOL(tt);
  2386. SERIAL_PROTOCOLPGM(" E:");
  2387. SERIAL_PROTOCOL((int)active_extruder);
  2388. SERIAL_PROTOCOLPGM(" B:");
  2389. SERIAL_PROTOCOL_F(degBed(),1);
  2390. SERIAL_PROTOCOLLN("");
  2391. codenum = millis();
  2392. }
  2393. manage_heater();
  2394. manage_inactivity();
  2395. lcd_update();
  2396. }
  2397. LCD_MESSAGEPGM(MSG_BED_DONE);
  2398. if(IS_SD_PRINTING){
  2399. lcd_setstatus("SD-PRINTING ");
  2400. }
  2401. previous_millis_cmd = millis();
  2402. #endif
  2403. break;
  2404. #if defined(FAN_PIN) && FAN_PIN > -1
  2405. case 106: //M106 Fan On
  2406. if (code_seen('S')){
  2407. fanSpeed=constrain(code_value(),0,255);
  2408. }
  2409. else {
  2410. fanSpeed=255;
  2411. }
  2412. break;
  2413. case 107: //M107 Fan Off
  2414. fanSpeed = 0;
  2415. break;
  2416. #endif //FAN_PIN
  2417. #ifdef BARICUDA
  2418. // PWM for HEATER_1_PIN
  2419. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2420. case 126: //M126 valve open
  2421. if (code_seen('S')){
  2422. ValvePressure=constrain(code_value(),0,255);
  2423. }
  2424. else {
  2425. ValvePressure=255;
  2426. }
  2427. break;
  2428. case 127: //M127 valve closed
  2429. ValvePressure = 0;
  2430. break;
  2431. #endif //HEATER_1_PIN
  2432. // PWM for HEATER_2_PIN
  2433. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2434. case 128: //M128 valve open
  2435. if (code_seen('S')){
  2436. EtoPPressure=constrain(code_value(),0,255);
  2437. }
  2438. else {
  2439. EtoPPressure=255;
  2440. }
  2441. break;
  2442. case 129: //M129 valve closed
  2443. EtoPPressure = 0;
  2444. break;
  2445. #endif //HEATER_2_PIN
  2446. #endif
  2447. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2448. case 80: // M80 - Turn on Power Supply
  2449. SET_OUTPUT(PS_ON_PIN); //GND
  2450. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2451. // If you have a switch on suicide pin, this is useful
  2452. // if you want to start another print with suicide feature after
  2453. // a print without suicide...
  2454. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2455. SET_OUTPUT(SUICIDE_PIN);
  2456. WRITE(SUICIDE_PIN, HIGH);
  2457. #endif
  2458. #ifdef ULTIPANEL
  2459. powersupply = true;
  2460. LCD_MESSAGEPGM(WELCOME_MSG);
  2461. lcd_update();
  2462. #endif
  2463. break;
  2464. #endif
  2465. case 81: // M81 - Turn off Power Supply
  2466. disable_heater();
  2467. st_synchronize();
  2468. disable_e0();
  2469. disable_e1();
  2470. disable_e2();
  2471. finishAndDisableSteppers();
  2472. fanSpeed = 0;
  2473. delay(1000); // Wait a little before to switch off
  2474. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2475. st_synchronize();
  2476. suicide();
  2477. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2478. SET_OUTPUT(PS_ON_PIN);
  2479. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2480. #endif
  2481. #ifdef ULTIPANEL
  2482. powersupply = false;
  2483. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2484. lcd_update();
  2485. #endif
  2486. break;
  2487. case 82:
  2488. axis_relative_modes[3] = false;
  2489. break;
  2490. case 83:
  2491. axis_relative_modes[3] = true;
  2492. break;
  2493. case 18: //compatibility
  2494. case 84: // M84
  2495. if(code_seen('S')){
  2496. stepper_inactive_time = code_value() * 1000;
  2497. }
  2498. else
  2499. {
  2500. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2501. if(all_axis)
  2502. {
  2503. st_synchronize();
  2504. disable_e0();
  2505. disable_e1();
  2506. disable_e2();
  2507. finishAndDisableSteppers();
  2508. }
  2509. else
  2510. {
  2511. st_synchronize();
  2512. if(code_seen('X')) disable_x();
  2513. if(code_seen('Y')) disable_y();
  2514. if(code_seen('Z')) disable_z();
  2515. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2516. if(code_seen('E')) {
  2517. disable_e0();
  2518. disable_e1();
  2519. disable_e2();
  2520. }
  2521. #endif
  2522. }
  2523. }
  2524. break;
  2525. case 85: // M85
  2526. if(code_seen('S')) {
  2527. max_inactive_time = code_value() * 1000;
  2528. }
  2529. break;
  2530. case 92: // M92
  2531. for(int8_t i=0; i < NUM_AXIS; i++)
  2532. {
  2533. if(code_seen(axis_codes[i]))
  2534. {
  2535. if(i == 3) { // E
  2536. float value = code_value();
  2537. if(value < 20.0) {
  2538. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2539. max_e_jerk *= factor;
  2540. max_feedrate[i] *= factor;
  2541. axis_steps_per_sqr_second[i] *= factor;
  2542. }
  2543. axis_steps_per_unit[i] = value;
  2544. }
  2545. else {
  2546. axis_steps_per_unit[i] = code_value();
  2547. }
  2548. }
  2549. }
  2550. break;
  2551. case 115: // M115
  2552. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2553. break;
  2554. case 117: // M117 display message
  2555. starpos = (strchr(strchr_pointer + 5,'*'));
  2556. if(starpos!=NULL)
  2557. *(starpos)='\0';
  2558. lcd_setstatus(strchr_pointer + 5);
  2559. break;
  2560. case 114: // M114
  2561. SERIAL_PROTOCOLPGM("X:");
  2562. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2563. SERIAL_PROTOCOLPGM(" Y:");
  2564. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2565. SERIAL_PROTOCOLPGM(" Z:");
  2566. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2567. SERIAL_PROTOCOLPGM(" E:");
  2568. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2569. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2570. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2571. SERIAL_PROTOCOLPGM(" Y:");
  2572. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2573. SERIAL_PROTOCOLPGM(" Z:");
  2574. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2575. SERIAL_PROTOCOLLN("");
  2576. #ifdef SCARA
  2577. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2578. SERIAL_PROTOCOL(delta[X_AXIS]);
  2579. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2580. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2581. SERIAL_PROTOCOLLN("");
  2582. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2583. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2584. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2585. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2586. SERIAL_PROTOCOLLN("");
  2587. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2588. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2589. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2590. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2591. SERIAL_PROTOCOLLN("");
  2592. SERIAL_PROTOCOLLN("");
  2593. #endif
  2594. break;
  2595. case 120: // M120
  2596. enable_endstops(false) ;
  2597. break;
  2598. case 121: // M121
  2599. enable_endstops(true) ;
  2600. break;
  2601. case 119: // M119
  2602. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2603. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2604. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2605. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2606. #endif
  2607. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2608. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2609. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2610. #endif
  2611. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2612. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2613. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2614. #endif
  2615. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2616. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2617. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2618. #endif
  2619. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2620. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2621. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2622. #endif
  2623. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2624. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2625. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2626. #endif
  2627. break;
  2628. //TODO: update for all axis, use for loop
  2629. #ifdef BLINKM
  2630. case 150: // M150
  2631. {
  2632. byte red;
  2633. byte grn;
  2634. byte blu;
  2635. if(code_seen('R')) red = code_value();
  2636. if(code_seen('U')) grn = code_value();
  2637. if(code_seen('B')) blu = code_value();
  2638. SendColors(red,grn,blu);
  2639. }
  2640. break;
  2641. #endif //BLINKM
  2642. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2643. {
  2644. tmp_extruder = active_extruder;
  2645. if(code_seen('T')) {
  2646. tmp_extruder = code_value();
  2647. if(tmp_extruder >= EXTRUDERS) {
  2648. SERIAL_ECHO_START;
  2649. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2650. break;
  2651. }
  2652. }
  2653. float area = .0;
  2654. if(code_seen('D')) {
  2655. float diameter = (float)code_value();
  2656. if (diameter == 0.0) {
  2657. // setting any extruder filament size disables volumetric on the assumption that
  2658. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2659. // for all extruders
  2660. volumetric_enabled = false;
  2661. } else {
  2662. filament_size[tmp_extruder] = (float)code_value();
  2663. // make sure all extruders have some sane value for the filament size
  2664. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2665. #if EXTRUDERS > 1
  2666. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2667. #if EXTRUDERS > 2
  2668. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2669. #endif
  2670. #endif
  2671. volumetric_enabled = true;
  2672. }
  2673. } else {
  2674. //reserved for setting filament diameter via UFID or filament measuring device
  2675. break;
  2676. }
  2677. calculate_volumetric_multipliers();
  2678. }
  2679. break;
  2680. case 201: // M201
  2681. for(int8_t i=0; i < NUM_AXIS; i++)
  2682. {
  2683. if(code_seen(axis_codes[i]))
  2684. {
  2685. max_acceleration_units_per_sq_second[i] = code_value();
  2686. }
  2687. }
  2688. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2689. reset_acceleration_rates();
  2690. break;
  2691. #if 0 // Not used for Sprinter/grbl gen6
  2692. case 202: // M202
  2693. for(int8_t i=0; i < NUM_AXIS; i++) {
  2694. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2695. }
  2696. break;
  2697. #endif
  2698. case 203: // M203 max feedrate mm/sec
  2699. for(int8_t i=0; i < NUM_AXIS; i++) {
  2700. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2701. }
  2702. break;
  2703. case 204: // M204 acclereration S normal moves T filmanent only moves
  2704. {
  2705. if(code_seen('S')) acceleration = code_value() ;
  2706. if(code_seen('T')) retract_acceleration = code_value() ;
  2707. }
  2708. break;
  2709. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2710. {
  2711. if(code_seen('S')) minimumfeedrate = code_value();
  2712. if(code_seen('T')) mintravelfeedrate = code_value();
  2713. if(code_seen('B')) minsegmenttime = code_value() ;
  2714. if(code_seen('X')) max_xy_jerk = code_value() ;
  2715. if(code_seen('Z')) max_z_jerk = code_value() ;
  2716. if(code_seen('E')) max_e_jerk = code_value() ;
  2717. }
  2718. break;
  2719. case 206: // M206 additional homing offset
  2720. for(int8_t i=0; i < 3; i++)
  2721. {
  2722. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2723. }
  2724. #ifdef SCARA
  2725. if(code_seen('T')) // Theta
  2726. {
  2727. add_homing[X_AXIS] = code_value() ;
  2728. }
  2729. if(code_seen('P')) // Psi
  2730. {
  2731. add_homing[Y_AXIS] = code_value() ;
  2732. }
  2733. #endif
  2734. break;
  2735. #ifdef DELTA
  2736. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2737. if(code_seen('L')) {
  2738. delta_diagonal_rod= code_value();
  2739. }
  2740. if(code_seen('R')) {
  2741. delta_radius= code_value();
  2742. }
  2743. if(code_seen('S')) {
  2744. delta_segments_per_second= code_value();
  2745. }
  2746. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2747. break;
  2748. case 666: // M666 set delta endstop adjustemnt
  2749. for(int8_t i=0; i < 3; i++)
  2750. {
  2751. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2752. }
  2753. break;
  2754. #endif
  2755. #ifdef FWRETRACT
  2756. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2757. {
  2758. if(code_seen('S'))
  2759. {
  2760. retract_length = code_value() ;
  2761. }
  2762. if(code_seen('F'))
  2763. {
  2764. retract_feedrate = code_value()/60 ;
  2765. }
  2766. if(code_seen('Z'))
  2767. {
  2768. retract_zlift = code_value() ;
  2769. }
  2770. }break;
  2771. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2772. {
  2773. if(code_seen('S'))
  2774. {
  2775. retract_recover_length = code_value() ;
  2776. }
  2777. if(code_seen('F'))
  2778. {
  2779. retract_recover_feedrate = code_value()/60 ;
  2780. }
  2781. }break;
  2782. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2783. {
  2784. if(code_seen('S'))
  2785. {
  2786. int t= code_value() ;
  2787. switch(t)
  2788. {
  2789. case 0:
  2790. {
  2791. autoretract_enabled=false;
  2792. retracted[0]=false;
  2793. #if EXTRUDERS > 1
  2794. retracted[1]=false;
  2795. #endif
  2796. #if EXTRUDERS > 2
  2797. retracted[2]=false;
  2798. #endif
  2799. }break;
  2800. case 1:
  2801. {
  2802. autoretract_enabled=true;
  2803. retracted[0]=false;
  2804. #if EXTRUDERS > 1
  2805. retracted[1]=false;
  2806. #endif
  2807. #if EXTRUDERS > 2
  2808. retracted[2]=false;
  2809. #endif
  2810. }break;
  2811. default:
  2812. SERIAL_ECHO_START;
  2813. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2814. SERIAL_ECHO(cmdbuffer[bufindr]);
  2815. SERIAL_ECHOLNPGM("\"");
  2816. }
  2817. }
  2818. }break;
  2819. #endif // FWRETRACT
  2820. #if EXTRUDERS > 1
  2821. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2822. {
  2823. if(setTargetedHotend(218)){
  2824. break;
  2825. }
  2826. if(code_seen('X'))
  2827. {
  2828. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2829. }
  2830. if(code_seen('Y'))
  2831. {
  2832. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2833. }
  2834. #ifdef DUAL_X_CARRIAGE
  2835. if(code_seen('Z'))
  2836. {
  2837. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2838. }
  2839. #endif
  2840. SERIAL_ECHO_START;
  2841. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2842. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2843. {
  2844. SERIAL_ECHO(" ");
  2845. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2846. SERIAL_ECHO(",");
  2847. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2848. #ifdef DUAL_X_CARRIAGE
  2849. SERIAL_ECHO(",");
  2850. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2851. #endif
  2852. }
  2853. SERIAL_ECHOLN("");
  2854. }break;
  2855. #endif
  2856. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2857. {
  2858. if(code_seen('S'))
  2859. {
  2860. feedmultiply = code_value() ;
  2861. }
  2862. }
  2863. break;
  2864. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2865. {
  2866. if(code_seen('S'))
  2867. {
  2868. int tmp_code = code_value();
  2869. if (code_seen('T'))
  2870. {
  2871. if(setTargetedHotend(221)){
  2872. break;
  2873. }
  2874. extruder_multiply[tmp_extruder] = tmp_code;
  2875. }
  2876. else
  2877. {
  2878. extrudemultiply = tmp_code ;
  2879. }
  2880. }
  2881. }
  2882. break;
  2883. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2884. {
  2885. if(code_seen('P')){
  2886. int pin_number = code_value(); // pin number
  2887. int pin_state = -1; // required pin state - default is inverted
  2888. if(code_seen('S')) pin_state = code_value(); // required pin state
  2889. if(pin_state >= -1 && pin_state <= 1){
  2890. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2891. {
  2892. if (sensitive_pins[i] == pin_number)
  2893. {
  2894. pin_number = -1;
  2895. break;
  2896. }
  2897. }
  2898. if (pin_number > -1)
  2899. {
  2900. int target = LOW;
  2901. st_synchronize();
  2902. pinMode(pin_number, INPUT);
  2903. switch(pin_state){
  2904. case 1:
  2905. target = HIGH;
  2906. break;
  2907. case 0:
  2908. target = LOW;
  2909. break;
  2910. case -1:
  2911. target = !digitalRead(pin_number);
  2912. break;
  2913. }
  2914. while(digitalRead(pin_number) != target){
  2915. manage_heater();
  2916. manage_inactivity();
  2917. lcd_update();
  2918. }
  2919. }
  2920. }
  2921. }
  2922. }
  2923. break;
  2924. #if NUM_SERVOS > 0
  2925. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2926. {
  2927. int servo_index = -1;
  2928. int servo_position = 0;
  2929. if (code_seen('P'))
  2930. servo_index = code_value();
  2931. if (code_seen('S')) {
  2932. servo_position = code_value();
  2933. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2934. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2935. servos[servo_index].attach(0);
  2936. #endif
  2937. servos[servo_index].write(servo_position);
  2938. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2939. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2940. servos[servo_index].detach();
  2941. #endif
  2942. }
  2943. else {
  2944. SERIAL_ECHO_START;
  2945. SERIAL_ECHO("Servo ");
  2946. SERIAL_ECHO(servo_index);
  2947. SERIAL_ECHOLN(" out of range");
  2948. }
  2949. }
  2950. else if (servo_index >= 0) {
  2951. SERIAL_PROTOCOL(MSG_OK);
  2952. SERIAL_PROTOCOL(" Servo ");
  2953. SERIAL_PROTOCOL(servo_index);
  2954. SERIAL_PROTOCOL(": ");
  2955. SERIAL_PROTOCOL(servos[servo_index].read());
  2956. SERIAL_PROTOCOLLN("");
  2957. }
  2958. }
  2959. break;
  2960. #endif // NUM_SERVOS > 0
  2961. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2962. case 300: // M300
  2963. {
  2964. int beepS = code_seen('S') ? code_value() : 110;
  2965. int beepP = code_seen('P') ? code_value() : 1000;
  2966. if (beepS > 0)
  2967. {
  2968. #if BEEPER > 0
  2969. tone(BEEPER, beepS);
  2970. delay(beepP);
  2971. noTone(BEEPER);
  2972. #elif defined(ULTRALCD)
  2973. lcd_buzz(beepS, beepP);
  2974. #elif defined(LCD_USE_I2C_BUZZER)
  2975. lcd_buzz(beepP, beepS);
  2976. #endif
  2977. }
  2978. else
  2979. {
  2980. delay(beepP);
  2981. }
  2982. }
  2983. break;
  2984. #endif // M300
  2985. #ifdef PIDTEMP
  2986. case 301: // M301
  2987. {
  2988. if(code_seen('P')) Kp = code_value();
  2989. if(code_seen('I')) Ki = scalePID_i(code_value());
  2990. if(code_seen('D')) Kd = scalePID_d(code_value());
  2991. #ifdef PID_ADD_EXTRUSION_RATE
  2992. if(code_seen('C')) Kc = code_value();
  2993. #endif
  2994. updatePID();
  2995. SERIAL_PROTOCOL(MSG_OK);
  2996. SERIAL_PROTOCOL(" p:");
  2997. SERIAL_PROTOCOL(Kp);
  2998. SERIAL_PROTOCOL(" i:");
  2999. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3000. SERIAL_PROTOCOL(" d:");
  3001. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3002. #ifdef PID_ADD_EXTRUSION_RATE
  3003. SERIAL_PROTOCOL(" c:");
  3004. //Kc does not have scaling applied above, or in resetting defaults
  3005. SERIAL_PROTOCOL(Kc);
  3006. #endif
  3007. SERIAL_PROTOCOLLN("");
  3008. }
  3009. break;
  3010. #endif //PIDTEMP
  3011. #ifdef PIDTEMPBED
  3012. case 304: // M304
  3013. {
  3014. if(code_seen('P')) bedKp = code_value();
  3015. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3016. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3017. updatePID();
  3018. SERIAL_PROTOCOL(MSG_OK);
  3019. SERIAL_PROTOCOL(" p:");
  3020. SERIAL_PROTOCOL(bedKp);
  3021. SERIAL_PROTOCOL(" i:");
  3022. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3023. SERIAL_PROTOCOL(" d:");
  3024. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3025. SERIAL_PROTOCOLLN("");
  3026. }
  3027. break;
  3028. #endif //PIDTEMP
  3029. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3030. {
  3031. #ifdef CHDK
  3032. SET_OUTPUT(CHDK);
  3033. WRITE(CHDK, HIGH);
  3034. chdkHigh = millis();
  3035. chdkActive = true;
  3036. #else
  3037. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3038. const uint8_t NUM_PULSES=16;
  3039. const float PULSE_LENGTH=0.01524;
  3040. for(int i=0; i < NUM_PULSES; i++) {
  3041. WRITE(PHOTOGRAPH_PIN, HIGH);
  3042. _delay_ms(PULSE_LENGTH);
  3043. WRITE(PHOTOGRAPH_PIN, LOW);
  3044. _delay_ms(PULSE_LENGTH);
  3045. }
  3046. delay(7.33);
  3047. for(int i=0; i < NUM_PULSES; i++) {
  3048. WRITE(PHOTOGRAPH_PIN, HIGH);
  3049. _delay_ms(PULSE_LENGTH);
  3050. WRITE(PHOTOGRAPH_PIN, LOW);
  3051. _delay_ms(PULSE_LENGTH);
  3052. }
  3053. #endif
  3054. #endif //chdk end if
  3055. }
  3056. break;
  3057. #ifdef DOGLCD
  3058. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3059. {
  3060. if (code_seen('C')) {
  3061. lcd_setcontrast( ((int)code_value())&63 );
  3062. }
  3063. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3064. SERIAL_PROTOCOL(lcd_contrast);
  3065. SERIAL_PROTOCOLLN("");
  3066. }
  3067. break;
  3068. #endif
  3069. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3070. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3071. {
  3072. float temp = .0;
  3073. if (code_seen('S')) temp=code_value();
  3074. set_extrude_min_temp(temp);
  3075. }
  3076. break;
  3077. #endif
  3078. case 303: // M303 PID autotune
  3079. {
  3080. float temp = 150.0;
  3081. int e=0;
  3082. int c=5;
  3083. if (code_seen('E')) e=code_value();
  3084. if (e<0)
  3085. temp=70;
  3086. if (code_seen('S')) temp=code_value();
  3087. if (code_seen('C')) c=code_value();
  3088. PID_autotune(temp, e, c);
  3089. }
  3090. break;
  3091. #ifdef SCARA
  3092. case 360: // M360 SCARA Theta pos1
  3093. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3094. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3095. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3096. if(Stopped == false) {
  3097. //get_coordinates(); // For X Y Z E F
  3098. delta[X_AXIS] = 0;
  3099. delta[Y_AXIS] = 120;
  3100. calculate_SCARA_forward_Transform(delta);
  3101. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3102. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3103. prepare_move();
  3104. //ClearToSend();
  3105. return;
  3106. }
  3107. break;
  3108. case 361: // SCARA Theta pos2
  3109. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3110. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3111. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3112. if(Stopped == false) {
  3113. //get_coordinates(); // For X Y Z E F
  3114. delta[X_AXIS] = 90;
  3115. delta[Y_AXIS] = 130;
  3116. calculate_SCARA_forward_Transform(delta);
  3117. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3118. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3119. prepare_move();
  3120. //ClearToSend();
  3121. return;
  3122. }
  3123. break;
  3124. case 362: // SCARA Psi pos1
  3125. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3126. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3127. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3128. if(Stopped == false) {
  3129. //get_coordinates(); // For X Y Z E F
  3130. delta[X_AXIS] = 60;
  3131. delta[Y_AXIS] = 180;
  3132. calculate_SCARA_forward_Transform(delta);
  3133. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3134. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3135. prepare_move();
  3136. //ClearToSend();
  3137. return;
  3138. }
  3139. break;
  3140. case 363: // SCARA Psi pos2
  3141. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3142. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3143. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3144. if(Stopped == false) {
  3145. //get_coordinates(); // For X Y Z E F
  3146. delta[X_AXIS] = 50;
  3147. delta[Y_AXIS] = 90;
  3148. calculate_SCARA_forward_Transform(delta);
  3149. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3150. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3151. prepare_move();
  3152. //ClearToSend();
  3153. return;
  3154. }
  3155. break;
  3156. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3157. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3158. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3159. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3160. if(Stopped == false) {
  3161. //get_coordinates(); // For X Y Z E F
  3162. delta[X_AXIS] = 45;
  3163. delta[Y_AXIS] = 135;
  3164. calculate_SCARA_forward_Transform(delta);
  3165. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3166. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3167. prepare_move();
  3168. //ClearToSend();
  3169. return;
  3170. }
  3171. break;
  3172. case 365: // M364 Set SCARA scaling for X Y Z
  3173. for(int8_t i=0; i < 3; i++)
  3174. {
  3175. if(code_seen(axis_codes[i]))
  3176. {
  3177. axis_scaling[i] = code_value();
  3178. }
  3179. }
  3180. break;
  3181. #endif
  3182. case 400: // M400 finish all moves
  3183. {
  3184. st_synchronize();
  3185. }
  3186. break;
  3187. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3188. case 401:
  3189. {
  3190. engage_z_probe(); // Engage Z Servo endstop if available
  3191. }
  3192. break;
  3193. case 402:
  3194. {
  3195. retract_z_probe(); // Retract Z Servo endstop if enabled
  3196. }
  3197. break;
  3198. #endif
  3199. #ifdef FILAMENT_SENSOR
  3200. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3201. {
  3202. #if (FILWIDTH_PIN > -1)
  3203. if(code_seen('N')) filament_width_nominal=code_value();
  3204. else{
  3205. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3206. SERIAL_PROTOCOLLN(filament_width_nominal);
  3207. }
  3208. #endif
  3209. }
  3210. break;
  3211. case 405: //M405 Turn on filament sensor for control
  3212. {
  3213. if(code_seen('D')) meas_delay_cm=code_value();
  3214. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3215. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3216. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3217. {
  3218. int temp_ratio = widthFil_to_size_ratio();
  3219. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3220. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3221. }
  3222. delay_index1=0;
  3223. delay_index2=0;
  3224. }
  3225. filament_sensor = true ;
  3226. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3227. //SERIAL_PROTOCOL(filament_width_meas);
  3228. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3229. //SERIAL_PROTOCOL(extrudemultiply);
  3230. }
  3231. break;
  3232. case 406: //M406 Turn off filament sensor for control
  3233. {
  3234. filament_sensor = false ;
  3235. }
  3236. break;
  3237. case 407: //M407 Display measured filament diameter
  3238. {
  3239. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3240. SERIAL_PROTOCOLLN(filament_width_meas);
  3241. }
  3242. break;
  3243. #endif
  3244. case 500: // M500 Store settings in EEPROM
  3245. {
  3246. Config_StoreSettings();
  3247. }
  3248. break;
  3249. case 501: // M501 Read settings from EEPROM
  3250. {
  3251. Config_RetrieveSettings();
  3252. }
  3253. break;
  3254. case 502: // M502 Revert to default settings
  3255. {
  3256. Config_ResetDefault();
  3257. }
  3258. break;
  3259. case 503: // M503 print settings currently in memory
  3260. {
  3261. Config_PrintSettings();
  3262. }
  3263. break;
  3264. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3265. case 540:
  3266. {
  3267. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3268. }
  3269. break;
  3270. #endif
  3271. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3272. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3273. {
  3274. float value;
  3275. if (code_seen('Z'))
  3276. {
  3277. value = code_value();
  3278. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3279. {
  3280. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3281. SERIAL_ECHO_START;
  3282. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3283. SERIAL_PROTOCOLLN("");
  3284. }
  3285. else
  3286. {
  3287. SERIAL_ECHO_START;
  3288. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3289. SERIAL_ECHOPGM(MSG_Z_MIN);
  3290. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3291. SERIAL_ECHOPGM(MSG_Z_MAX);
  3292. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3293. SERIAL_PROTOCOLLN("");
  3294. }
  3295. }
  3296. else
  3297. {
  3298. SERIAL_ECHO_START;
  3299. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3300. SERIAL_ECHO(-zprobe_zoffset);
  3301. SERIAL_PROTOCOLLN("");
  3302. }
  3303. break;
  3304. }
  3305. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3306. #ifdef FILAMENTCHANGEENABLE
  3307. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3308. {
  3309. feedmultiplyBckp=feedmultiply;
  3310. float target[4];
  3311. float lastpos[4];
  3312. target[X_AXIS]=current_position[X_AXIS];
  3313. target[Y_AXIS]=current_position[Y_AXIS];
  3314. target[Z_AXIS]=current_position[Z_AXIS];
  3315. target[E_AXIS]=current_position[E_AXIS];
  3316. lastpos[X_AXIS]=current_position[X_AXIS];
  3317. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3318. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3319. lastpos[E_AXIS]=current_position[E_AXIS];
  3320. //retract by E
  3321. if(code_seen('E'))
  3322. {
  3323. target[E_AXIS]+= code_value();
  3324. }
  3325. else
  3326. {
  3327. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3328. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3329. #endif
  3330. }
  3331. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3332. //lift Z
  3333. if(code_seen('Z'))
  3334. {
  3335. target[Z_AXIS]+= code_value();
  3336. }
  3337. else
  3338. {
  3339. #ifdef FILAMENTCHANGE_ZADD
  3340. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3341. #endif
  3342. if(target[Z_AXIS] < 10){
  3343. target[Z_AXIS]+= 10 ;
  3344. }
  3345. }
  3346. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3347. //move xy
  3348. if(code_seen('X'))
  3349. {
  3350. target[X_AXIS]+= code_value();
  3351. }
  3352. else
  3353. {
  3354. #ifdef FILAMENTCHANGE_XPOS
  3355. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3356. #endif
  3357. }
  3358. if(code_seen('Y'))
  3359. {
  3360. target[Y_AXIS]= code_value();
  3361. }
  3362. else
  3363. {
  3364. #ifdef FILAMENTCHANGE_YPOS
  3365. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3366. #endif
  3367. }
  3368. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3369. if(code_seen('L'))
  3370. {
  3371. target[E_AXIS]+= code_value();
  3372. }
  3373. else
  3374. {
  3375. #ifdef FILAMENTCHANGE_FINALRETRACT
  3376. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3377. #endif
  3378. }
  3379. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3380. //finish moves
  3381. st_synchronize();
  3382. //disable extruder steppers so filament can be removed
  3383. disable_e0();
  3384. disable_e1();
  3385. disable_e2();
  3386. delay(100);
  3387. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3388. uint8_t cnt=0;
  3389. int counterBeep = 0;
  3390. lcd_wait_interact();
  3391. while(!lcd_clicked()){
  3392. cnt++;
  3393. manage_heater();
  3394. manage_inactivity(true);
  3395. //lcd_update();
  3396. if(cnt==0)
  3397. {
  3398. #if BEEPER > 0
  3399. if (counterBeep== 500){
  3400. counterBeep = 0;
  3401. }
  3402. SET_OUTPUT(BEEPER);
  3403. if (counterBeep== 0){
  3404. WRITE(BEEPER,HIGH);
  3405. }
  3406. if (counterBeep== 20){
  3407. WRITE(BEEPER,LOW);
  3408. }
  3409. counterBeep++;
  3410. #else
  3411. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3412. lcd_buzz(1000/6,100);
  3413. #else
  3414. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3415. #endif
  3416. #endif
  3417. }
  3418. }
  3419. WRITE(BEEPER,LOW);
  3420. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3422. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3423. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3424. lcd_change_fil_state = 0;
  3425. lcd_loading_filament();
  3426. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3427. lcd_change_fil_state = 0;
  3428. lcd_alright();
  3429. switch(lcd_change_fil_state){
  3430. case 2:
  3431. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3432. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3433. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3434. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3435. lcd_loading_filament();
  3436. break;
  3437. case 3:
  3438. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3440. lcd_loading_color();
  3441. break;
  3442. default:
  3443. lcd_change_success();
  3444. break;
  3445. }
  3446. }
  3447. target[E_AXIS]+= 5;
  3448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3449. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3451. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3452. //plan_set_e_position(current_position[E_AXIS]);
  3453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3454. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3455. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3456. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3457. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3458. plan_set_e_position(lastpos[E_AXIS]);
  3459. feedmultiply=feedmultiplyBckp;
  3460. char cmd[9];
  3461. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3462. enquecommand(cmd);
  3463. }
  3464. break;
  3465. #endif //FILAMENTCHANGEENABLE
  3466. #ifdef DUAL_X_CARRIAGE
  3467. case 605: // Set dual x-carriage movement mode:
  3468. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3469. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3470. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3471. // millimeters x-offset and an optional differential hotend temperature of
  3472. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3473. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3474. //
  3475. // Note: the X axis should be homed after changing dual x-carriage mode.
  3476. {
  3477. st_synchronize();
  3478. if (code_seen('S'))
  3479. dual_x_carriage_mode = code_value();
  3480. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3481. {
  3482. if (code_seen('X'))
  3483. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3484. if (code_seen('R'))
  3485. duplicate_extruder_temp_offset = code_value();
  3486. SERIAL_ECHO_START;
  3487. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3488. SERIAL_ECHO(" ");
  3489. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3490. SERIAL_ECHO(",");
  3491. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3492. SERIAL_ECHO(" ");
  3493. SERIAL_ECHO(duplicate_extruder_x_offset);
  3494. SERIAL_ECHO(",");
  3495. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3496. }
  3497. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3498. {
  3499. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3500. }
  3501. active_extruder_parked = false;
  3502. extruder_duplication_enabled = false;
  3503. delayed_move_time = 0;
  3504. }
  3505. break;
  3506. #endif //DUAL_X_CARRIAGE
  3507. case 907: // M907 Set digital trimpot motor current using axis codes.
  3508. {
  3509. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3510. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3511. if(code_seen('B')) digipot_current(4,code_value());
  3512. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3513. #endif
  3514. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3515. if(code_seen('X')) digipot_current(0, code_value());
  3516. #endif
  3517. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3518. if(code_seen('Z')) digipot_current(1, code_value());
  3519. #endif
  3520. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3521. if(code_seen('E')) digipot_current(2, code_value());
  3522. #endif
  3523. #ifdef DIGIPOT_I2C
  3524. // this one uses actual amps in floating point
  3525. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3526. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3527. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3528. #endif
  3529. }
  3530. break;
  3531. case 908: // M908 Control digital trimpot directly.
  3532. {
  3533. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3534. uint8_t channel,current;
  3535. if(code_seen('P')) channel=code_value();
  3536. if(code_seen('S')) current=code_value();
  3537. digitalPotWrite(channel, current);
  3538. #endif
  3539. }
  3540. break;
  3541. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3542. {
  3543. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3544. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3545. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3546. if(code_seen('B')) microstep_mode(4,code_value());
  3547. microstep_readings();
  3548. #endif
  3549. }
  3550. break;
  3551. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3552. {
  3553. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3554. if(code_seen('S')) switch((int)code_value())
  3555. {
  3556. case 1:
  3557. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3558. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3559. break;
  3560. case 2:
  3561. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3562. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3563. break;
  3564. }
  3565. microstep_readings();
  3566. #endif
  3567. }
  3568. break;
  3569. case 999: // M999: Restart after being stopped
  3570. Stopped = false;
  3571. lcd_reset_alert_level();
  3572. gcode_LastN = Stopped_gcode_LastN;
  3573. FlushSerialRequestResend();
  3574. break;
  3575. }
  3576. }
  3577. else if(code_seen('T'))
  3578. {
  3579. tmp_extruder = code_value();
  3580. if(tmp_extruder >= EXTRUDERS) {
  3581. SERIAL_ECHO_START;
  3582. SERIAL_ECHO("T");
  3583. SERIAL_ECHO(tmp_extruder);
  3584. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3585. }
  3586. else {
  3587. boolean make_move = false;
  3588. if(code_seen('F')) {
  3589. make_move = true;
  3590. next_feedrate = code_value();
  3591. if(next_feedrate > 0.0) {
  3592. feedrate = next_feedrate;
  3593. }
  3594. }
  3595. #if EXTRUDERS > 1
  3596. if(tmp_extruder != active_extruder) {
  3597. // Save current position to return to after applying extruder offset
  3598. memcpy(destination, current_position, sizeof(destination));
  3599. #ifdef DUAL_X_CARRIAGE
  3600. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3601. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3602. {
  3603. // Park old head: 1) raise 2) move to park position 3) lower
  3604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3605. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3606. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3607. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3608. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3609. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3610. st_synchronize();
  3611. }
  3612. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3613. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3614. extruder_offset[Y_AXIS][active_extruder] +
  3615. extruder_offset[Y_AXIS][tmp_extruder];
  3616. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3617. extruder_offset[Z_AXIS][active_extruder] +
  3618. extruder_offset[Z_AXIS][tmp_extruder];
  3619. active_extruder = tmp_extruder;
  3620. // This function resets the max/min values - the current position may be overwritten below.
  3621. axis_is_at_home(X_AXIS);
  3622. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3623. {
  3624. current_position[X_AXIS] = inactive_extruder_x_pos;
  3625. inactive_extruder_x_pos = destination[X_AXIS];
  3626. }
  3627. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3628. {
  3629. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3630. if (active_extruder == 0 || active_extruder_parked)
  3631. current_position[X_AXIS] = inactive_extruder_x_pos;
  3632. else
  3633. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3634. inactive_extruder_x_pos = destination[X_AXIS];
  3635. extruder_duplication_enabled = false;
  3636. }
  3637. else
  3638. {
  3639. // record raised toolhead position for use by unpark
  3640. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3641. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3642. active_extruder_parked = true;
  3643. delayed_move_time = 0;
  3644. }
  3645. #else
  3646. // Offset extruder (only by XY)
  3647. int i;
  3648. for(i = 0; i < 2; i++) {
  3649. current_position[i] = current_position[i] -
  3650. extruder_offset[i][active_extruder] +
  3651. extruder_offset[i][tmp_extruder];
  3652. }
  3653. // Set the new active extruder and position
  3654. active_extruder = tmp_extruder;
  3655. #endif //else DUAL_X_CARRIAGE
  3656. #ifdef DELTA
  3657. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3658. //sent position to plan_set_position();
  3659. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3660. #else
  3661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3662. #endif
  3663. // Move to the old position if 'F' was in the parameters
  3664. if(make_move && Stopped == false) {
  3665. prepare_move();
  3666. }
  3667. }
  3668. #endif
  3669. SERIAL_ECHO_START;
  3670. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3671. SERIAL_PROTOCOLLN((int)active_extruder);
  3672. }
  3673. }
  3674. else
  3675. {
  3676. SERIAL_ECHO_START;
  3677. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3678. SERIAL_ECHO(cmdbuffer[bufindr]);
  3679. SERIAL_ECHOLNPGM("\"");
  3680. }
  3681. ClearToSend();
  3682. }
  3683. void FlushSerialRequestResend()
  3684. {
  3685. //char cmdbuffer[bufindr][100]="Resend:";
  3686. MYSERIAL.flush();
  3687. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3688. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3689. ClearToSend();
  3690. }
  3691. void ClearToSend()
  3692. {
  3693. previous_millis_cmd = millis();
  3694. #ifdef SDSUPPORT
  3695. if(fromsd[bufindr])
  3696. return;
  3697. #endif //SDSUPPORT
  3698. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3699. }
  3700. void get_coordinates()
  3701. {
  3702. bool seen[4]={false,false,false,false};
  3703. for(int8_t i=0; i < NUM_AXIS; i++) {
  3704. if(code_seen(axis_codes[i]))
  3705. {
  3706. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3707. seen[i]=true;
  3708. }
  3709. else destination[i] = current_position[i]; //Are these else lines really needed?
  3710. }
  3711. if(code_seen('F')) {
  3712. next_feedrate = code_value();
  3713. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3714. }
  3715. }
  3716. void get_arc_coordinates()
  3717. {
  3718. #ifdef SF_ARC_FIX
  3719. bool relative_mode_backup = relative_mode;
  3720. relative_mode = true;
  3721. #endif
  3722. get_coordinates();
  3723. #ifdef SF_ARC_FIX
  3724. relative_mode=relative_mode_backup;
  3725. #endif
  3726. if(code_seen('I')) {
  3727. offset[0] = code_value();
  3728. }
  3729. else {
  3730. offset[0] = 0.0;
  3731. }
  3732. if(code_seen('J')) {
  3733. offset[1] = code_value();
  3734. }
  3735. else {
  3736. offset[1] = 0.0;
  3737. }
  3738. }
  3739. void clamp_to_software_endstops(float target[3])
  3740. {
  3741. if (min_software_endstops) {
  3742. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3743. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3744. float negative_z_offset = 0;
  3745. #ifdef ENABLE_AUTO_BED_LEVELING
  3746. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3747. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3748. #endif
  3749. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3750. }
  3751. if (max_software_endstops) {
  3752. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3753. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3754. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3755. }
  3756. }
  3757. #ifdef DELTA
  3758. void recalc_delta_settings(float radius, float diagonal_rod)
  3759. {
  3760. delta_tower1_x= -SIN_60*radius; // front left tower
  3761. delta_tower1_y= -COS_60*radius;
  3762. delta_tower2_x= SIN_60*radius; // front right tower
  3763. delta_tower2_y= -COS_60*radius;
  3764. delta_tower3_x= 0.0; // back middle tower
  3765. delta_tower3_y= radius;
  3766. delta_diagonal_rod_2= sq(diagonal_rod);
  3767. }
  3768. void calculate_delta(float cartesian[3])
  3769. {
  3770. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3771. - sq(delta_tower1_x-cartesian[X_AXIS])
  3772. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3773. ) + cartesian[Z_AXIS];
  3774. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3775. - sq(delta_tower2_x-cartesian[X_AXIS])
  3776. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3777. ) + cartesian[Z_AXIS];
  3778. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3779. - sq(delta_tower3_x-cartesian[X_AXIS])
  3780. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3781. ) + cartesian[Z_AXIS];
  3782. /*
  3783. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3784. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3785. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3786. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3787. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3788. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3789. */
  3790. }
  3791. #endif
  3792. void prepare_move()
  3793. {
  3794. clamp_to_software_endstops(destination);
  3795. previous_millis_cmd = millis();
  3796. #ifdef SCARA //for now same as delta-code
  3797. float difference[NUM_AXIS];
  3798. for (int8_t i=0; i < NUM_AXIS; i++) {
  3799. difference[i] = destination[i] - current_position[i];
  3800. }
  3801. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3802. sq(difference[Y_AXIS]) +
  3803. sq(difference[Z_AXIS]));
  3804. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3805. if (cartesian_mm < 0.000001) { return; }
  3806. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3807. int steps = max(1, int(scara_segments_per_second * seconds));
  3808. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3809. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3810. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3811. for (int s = 1; s <= steps; s++) {
  3812. float fraction = float(s) / float(steps);
  3813. for(int8_t i=0; i < NUM_AXIS; i++) {
  3814. destination[i] = current_position[i] + difference[i] * fraction;
  3815. }
  3816. calculate_delta(destination);
  3817. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3818. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3819. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3820. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3821. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3822. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3823. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3824. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3825. active_extruder);
  3826. }
  3827. #endif // SCARA
  3828. #ifdef DELTA
  3829. float difference[NUM_AXIS];
  3830. for (int8_t i=0; i < NUM_AXIS; i++) {
  3831. difference[i] = destination[i] - current_position[i];
  3832. }
  3833. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3834. sq(difference[Y_AXIS]) +
  3835. sq(difference[Z_AXIS]));
  3836. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3837. if (cartesian_mm < 0.000001) { return; }
  3838. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3839. int steps = max(1, int(delta_segments_per_second * seconds));
  3840. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3841. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3842. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3843. for (int s = 1; s <= steps; s++) {
  3844. float fraction = float(s) / float(steps);
  3845. for(int8_t i=0; i < NUM_AXIS; i++) {
  3846. destination[i] = current_position[i] + difference[i] * fraction;
  3847. }
  3848. calculate_delta(destination);
  3849. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3850. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3851. active_extruder);
  3852. }
  3853. #endif // DELTA
  3854. #ifdef DUAL_X_CARRIAGE
  3855. if (active_extruder_parked)
  3856. {
  3857. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3858. {
  3859. // move duplicate extruder into correct duplication position.
  3860. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3861. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3862. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3864. st_synchronize();
  3865. extruder_duplication_enabled = true;
  3866. active_extruder_parked = false;
  3867. }
  3868. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3869. {
  3870. if (current_position[E_AXIS] == destination[E_AXIS])
  3871. {
  3872. // this is a travel move - skit it but keep track of current position (so that it can later
  3873. // be used as start of first non-travel move)
  3874. if (delayed_move_time != 0xFFFFFFFFUL)
  3875. {
  3876. memcpy(current_position, destination, sizeof(current_position));
  3877. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3878. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3879. delayed_move_time = millis();
  3880. return;
  3881. }
  3882. }
  3883. delayed_move_time = 0;
  3884. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3885. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3886. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3887. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3889. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3890. active_extruder_parked = false;
  3891. }
  3892. }
  3893. #endif //DUAL_X_CARRIAGE
  3894. #if ! (defined DELTA || defined SCARA)
  3895. // Do not use feedmultiply for E or Z only moves
  3896. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3897. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3898. }
  3899. else {
  3900. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3901. }
  3902. #endif // !(DELTA || SCARA)
  3903. for(int8_t i=0; i < NUM_AXIS; i++) {
  3904. current_position[i] = destination[i];
  3905. }
  3906. }
  3907. void prepare_arc_move(char isclockwise) {
  3908. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3909. // Trace the arc
  3910. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3911. // As far as the parser is concerned, the position is now == target. In reality the
  3912. // motion control system might still be processing the action and the real tool position
  3913. // in any intermediate location.
  3914. for(int8_t i=0; i < NUM_AXIS; i++) {
  3915. current_position[i] = destination[i];
  3916. }
  3917. previous_millis_cmd = millis();
  3918. }
  3919. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3920. #if defined(FAN_PIN)
  3921. #if CONTROLLERFAN_PIN == FAN_PIN
  3922. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3923. #endif
  3924. #endif
  3925. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3926. unsigned long lastMotorCheck = 0;
  3927. void controllerFan()
  3928. {
  3929. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3930. {
  3931. lastMotorCheck = millis();
  3932. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3933. #if EXTRUDERS > 2
  3934. || !READ(E2_ENABLE_PIN)
  3935. #endif
  3936. #if EXTRUDER > 1
  3937. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3938. || !READ(X2_ENABLE_PIN)
  3939. #endif
  3940. || !READ(E1_ENABLE_PIN)
  3941. #endif
  3942. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3943. {
  3944. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3945. }
  3946. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3947. {
  3948. digitalWrite(CONTROLLERFAN_PIN, 0);
  3949. analogWrite(CONTROLLERFAN_PIN, 0);
  3950. }
  3951. else
  3952. {
  3953. // allows digital or PWM fan output to be used (see M42 handling)
  3954. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3955. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3956. }
  3957. }
  3958. }
  3959. #endif
  3960. #ifdef SCARA
  3961. void calculate_SCARA_forward_Transform(float f_scara[3])
  3962. {
  3963. // Perform forward kinematics, and place results in delta[3]
  3964. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3965. float x_sin, x_cos, y_sin, y_cos;
  3966. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3967. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3968. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3969. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3970. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3971. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3972. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3973. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3974. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3975. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3976. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3977. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3978. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3979. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3980. }
  3981. void calculate_delta(float cartesian[3]){
  3982. //reverse kinematics.
  3983. // Perform reversed kinematics, and place results in delta[3]
  3984. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3985. float SCARA_pos[2];
  3986. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3987. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3988. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3989. #if (Linkage_1 == Linkage_2)
  3990. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3991. #else
  3992. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3993. #endif
  3994. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3995. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3996. SCARA_K2 = Linkage_2 * SCARA_S2;
  3997. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3998. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3999. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4000. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4001. delta[Z_AXIS] = cartesian[Z_AXIS];
  4002. /*
  4003. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4004. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4005. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4006. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4007. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4008. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4009. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4010. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4011. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4012. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4013. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4014. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4015. SERIAL_ECHOLN(" ");*/
  4016. }
  4017. #endif
  4018. #ifdef TEMP_STAT_LEDS
  4019. static bool blue_led = false;
  4020. static bool red_led = false;
  4021. static uint32_t stat_update = 0;
  4022. void handle_status_leds(void) {
  4023. float max_temp = 0.0;
  4024. if(millis() > stat_update) {
  4025. stat_update += 500; // Update every 0.5s
  4026. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4027. max_temp = max(max_temp, degHotend(cur_extruder));
  4028. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4029. }
  4030. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4031. max_temp = max(max_temp, degTargetBed());
  4032. max_temp = max(max_temp, degBed());
  4033. #endif
  4034. if((max_temp > 55.0) && (red_led == false)) {
  4035. digitalWrite(STAT_LED_RED, 1);
  4036. digitalWrite(STAT_LED_BLUE, 0);
  4037. red_led = true;
  4038. blue_led = false;
  4039. }
  4040. if((max_temp < 54.0) && (blue_led == false)) {
  4041. digitalWrite(STAT_LED_RED, 0);
  4042. digitalWrite(STAT_LED_BLUE, 1);
  4043. red_led = false;
  4044. blue_led = true;
  4045. }
  4046. }
  4047. }
  4048. #endif
  4049. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4050. {
  4051. #if defined(KILL_PIN) && KILL_PIN > -1
  4052. static int killCount = 0; // make the inactivity button a bit less responsive
  4053. const int KILL_DELAY = 10000;
  4054. #endif
  4055. #if defined(HOME_PIN) && HOME_PIN > -1
  4056. static int homeDebounceCount = 0; // poor man's debouncing count
  4057. const int HOME_DEBOUNCE_DELAY = 10000;
  4058. #endif
  4059. if(buflen < (BUFSIZE-1))
  4060. get_command();
  4061. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4062. if(max_inactive_time)
  4063. kill();
  4064. if(stepper_inactive_time) {
  4065. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4066. {
  4067. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4068. disable_x();
  4069. disable_y();
  4070. disable_z();
  4071. disable_e0();
  4072. disable_e1();
  4073. disable_e2();
  4074. }
  4075. }
  4076. }
  4077. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4078. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4079. {
  4080. chdkActive = false;
  4081. WRITE(CHDK, LOW);
  4082. }
  4083. #endif
  4084. #if defined(KILL_PIN) && KILL_PIN > -1
  4085. // Check if the kill button was pressed and wait just in case it was an accidental
  4086. // key kill key press
  4087. // -------------------------------------------------------------------------------
  4088. if( 0 == READ(KILL_PIN) )
  4089. {
  4090. killCount++;
  4091. }
  4092. else if (killCount > 0)
  4093. {
  4094. killCount--;
  4095. }
  4096. // Exceeded threshold and we can confirm that it was not accidental
  4097. // KILL the machine
  4098. // ----------------------------------------------------------------
  4099. if ( killCount >= KILL_DELAY)
  4100. {
  4101. kill();
  4102. }
  4103. #endif
  4104. #if defined(HOME_PIN) && HOME_PIN > -1
  4105. // Check to see if we have to home, use poor man's debouncer
  4106. // ---------------------------------------------------------
  4107. if ( 0 == READ(HOME_PIN) )
  4108. {
  4109. if (homeDebounceCount == 0)
  4110. {
  4111. enquecommand_P((PSTR("G28")));
  4112. homeDebounceCount++;
  4113. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4114. }
  4115. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4116. {
  4117. homeDebounceCount++;
  4118. }
  4119. else
  4120. {
  4121. homeDebounceCount = 0;
  4122. }
  4123. }
  4124. #endif
  4125. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4126. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4127. #endif
  4128. #ifdef EXTRUDER_RUNOUT_PREVENT
  4129. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4130. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4131. {
  4132. bool oldstatus=READ(E0_ENABLE_PIN);
  4133. enable_e0();
  4134. float oldepos=current_position[E_AXIS];
  4135. float oldedes=destination[E_AXIS];
  4136. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4137. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4138. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4139. current_position[E_AXIS]=oldepos;
  4140. destination[E_AXIS]=oldedes;
  4141. plan_set_e_position(oldepos);
  4142. previous_millis_cmd=millis();
  4143. st_synchronize();
  4144. WRITE(E0_ENABLE_PIN,oldstatus);
  4145. }
  4146. #endif
  4147. #if defined(DUAL_X_CARRIAGE)
  4148. // handle delayed move timeout
  4149. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4150. {
  4151. // travel moves have been received so enact them
  4152. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4153. memcpy(destination,current_position,sizeof(destination));
  4154. prepare_move();
  4155. }
  4156. #endif
  4157. #ifdef TEMP_STAT_LEDS
  4158. handle_status_leds();
  4159. #endif
  4160. check_axes_activity();
  4161. }
  4162. void kill()
  4163. {
  4164. cli(); // Stop interrupts
  4165. disable_heater();
  4166. disable_x();
  4167. disable_y();
  4168. disable_z();
  4169. disable_e0();
  4170. disable_e1();
  4171. disable_e2();
  4172. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4173. pinMode(PS_ON_PIN,INPUT);
  4174. #endif
  4175. SERIAL_ERROR_START;
  4176. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4177. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4178. // FMC small patch to update the LCD before ending
  4179. sei(); // enable interrupts
  4180. for ( int i=5; i--; lcd_update())
  4181. {
  4182. delay(200);
  4183. }
  4184. cli(); // disable interrupts
  4185. suicide();
  4186. while(1) { /* Intentionally left empty */ } // Wait for reset
  4187. }
  4188. void Stop()
  4189. {
  4190. disable_heater();
  4191. if(Stopped == false) {
  4192. Stopped = true;
  4193. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4194. SERIAL_ERROR_START;
  4195. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4196. LCD_MESSAGEPGM(MSG_STOPPED);
  4197. }
  4198. }
  4199. bool IsStopped() { return Stopped; };
  4200. #ifdef FAST_PWM_FAN
  4201. void setPwmFrequency(uint8_t pin, int val)
  4202. {
  4203. val &= 0x07;
  4204. switch(digitalPinToTimer(pin))
  4205. {
  4206. #if defined(TCCR0A)
  4207. case TIMER0A:
  4208. case TIMER0B:
  4209. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4210. // TCCR0B |= val;
  4211. break;
  4212. #endif
  4213. #if defined(TCCR1A)
  4214. case TIMER1A:
  4215. case TIMER1B:
  4216. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4217. // TCCR1B |= val;
  4218. break;
  4219. #endif
  4220. #if defined(TCCR2)
  4221. case TIMER2:
  4222. case TIMER2:
  4223. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4224. TCCR2 |= val;
  4225. break;
  4226. #endif
  4227. #if defined(TCCR2A)
  4228. case TIMER2A:
  4229. case TIMER2B:
  4230. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4231. TCCR2B |= val;
  4232. break;
  4233. #endif
  4234. #if defined(TCCR3A)
  4235. case TIMER3A:
  4236. case TIMER3B:
  4237. case TIMER3C:
  4238. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4239. TCCR3B |= val;
  4240. break;
  4241. #endif
  4242. #if defined(TCCR4A)
  4243. case TIMER4A:
  4244. case TIMER4B:
  4245. case TIMER4C:
  4246. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4247. TCCR4B |= val;
  4248. break;
  4249. #endif
  4250. #if defined(TCCR5A)
  4251. case TIMER5A:
  4252. case TIMER5B:
  4253. case TIMER5C:
  4254. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4255. TCCR5B |= val;
  4256. break;
  4257. #endif
  4258. }
  4259. }
  4260. #endif //FAST_PWM_FAN
  4261. bool setTargetedHotend(int code){
  4262. tmp_extruder = active_extruder;
  4263. if(code_seen('T')) {
  4264. tmp_extruder = code_value();
  4265. if(tmp_extruder >= EXTRUDERS) {
  4266. SERIAL_ECHO_START;
  4267. switch(code){
  4268. case 104:
  4269. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4270. break;
  4271. case 105:
  4272. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4273. break;
  4274. case 109:
  4275. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4276. break;
  4277. case 218:
  4278. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4279. break;
  4280. case 221:
  4281. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4282. break;
  4283. }
  4284. SERIAL_ECHOLN(tmp_extruder);
  4285. return true;
  4286. }
  4287. }
  4288. return false;
  4289. }
  4290. float calculate_volumetric_multiplier(float diameter) {
  4291. float area = .0;
  4292. float radius = .0;
  4293. radius = diameter * .5;
  4294. if (! volumetric_enabled || radius == 0) {
  4295. area = 1;
  4296. }
  4297. else {
  4298. area = M_PI * pow(radius, 2);
  4299. }
  4300. return 1.0 / area;
  4301. }
  4302. void calculate_volumetric_multipliers() {
  4303. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4304. #if EXTRUDERS > 1
  4305. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4306. #if EXTRUDERS > 2
  4307. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4308. #endif
  4309. #endif
  4310. }