Marlin_main.cpp 336 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. #define PRINTING_TYPE_SD 0
  118. #define PRINTING_TYPE_USB 1
  119. #define PRINTING_TYPE_NONE 2
  120. //filament types
  121. #define FILAMENT_DEFAULT 0
  122. #define FILAMENT_FLEX 1
  123. #define FILAMENT_PVA 2
  124. #define FILAMENT_UNDEFINED 255
  125. //Stepper Movement Variables
  126. //===========================================================================
  127. //=============================imported variables============================
  128. //===========================================================================
  129. //===========================================================================
  130. //=============================public variables=============================
  131. //===========================================================================
  132. #ifdef SDSUPPORT
  133. CardReader card;
  134. #endif
  135. unsigned long PingTime = _millis();
  136. unsigned long NcTime;
  137. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  138. //used for PINDA temp calibration and pause print
  139. #define DEFAULT_RETRACTION 1
  140. #define DEFAULT_RETRACTION_MM 4 //MM
  141. float default_retraction = DEFAULT_RETRACTION;
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. // Currently only the extruder axis may be switched to a relative mode.
  144. // Other axes are always absolute or relative based on the common relative_mode flag.
  145. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  146. int feedmultiply=100; //100->1 200->2
  147. int extrudemultiply=100; //100->1 200->2
  148. int extruder_multiply[EXTRUDERS] = {100
  149. #if EXTRUDERS > 1
  150. , 100
  151. #if EXTRUDERS > 2
  152. , 100
  153. #endif
  154. #endif
  155. };
  156. int bowden_length[4] = {385, 385, 385, 385};
  157. bool is_usb_printing = false;
  158. bool homing_flag = false;
  159. bool temp_cal_active = false;
  160. unsigned long kicktime = _millis()+100000;
  161. unsigned int usb_printing_counter;
  162. int8_t lcd_change_fil_state = 0;
  163. unsigned long pause_time = 0;
  164. unsigned long start_pause_print = _millis();
  165. unsigned long t_fan_rising_edge = _millis();
  166. LongTimer safetyTimer;
  167. static LongTimer crashDetTimer;
  168. //unsigned long load_filament_time;
  169. bool mesh_bed_leveling_flag = false;
  170. bool mesh_bed_run_from_menu = false;
  171. bool prusa_sd_card_upload = false;
  172. unsigned int status_number = 0;
  173. unsigned long total_filament_used;
  174. unsigned int heating_status;
  175. unsigned int heating_status_counter;
  176. bool loading_flag = false;
  177. char snmm_filaments_used = 0;
  178. bool fan_state[2];
  179. int fan_edge_counter[2];
  180. int fan_speed[2];
  181. char dir_names[3][9];
  182. bool sortAlpha = false;
  183. float extruder_multiplier[EXTRUDERS] = {1.0
  184. #if EXTRUDERS > 1
  185. , 1.0
  186. #if EXTRUDERS > 2
  187. , 1.0
  188. #endif
  189. #endif
  190. };
  191. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  192. //shortcuts for more readable code
  193. #define _x current_position[X_AXIS]
  194. #define _y current_position[Y_AXIS]
  195. #define _z current_position[Z_AXIS]
  196. #define _e current_position[E_AXIS]
  197. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  198. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  199. bool axis_known_position[3] = {false, false, false};
  200. // Extruder offset
  201. #if EXTRUDERS > 1
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  204. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  205. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  206. #endif
  207. };
  208. #endif
  209. uint8_t active_extruder = 0;
  210. int fanSpeed=0;
  211. #ifdef FWRETRACT
  212. bool retracted[EXTRUDERS]={false
  213. #if EXTRUDERS > 1
  214. , false
  215. #if EXTRUDERS > 2
  216. , false
  217. #endif
  218. #endif
  219. };
  220. bool retracted_swap[EXTRUDERS]={false
  221. #if EXTRUDERS > 1
  222. , false
  223. #if EXTRUDERS > 2
  224. , false
  225. #endif
  226. #endif
  227. };
  228. float retract_length_swap = RETRACT_LENGTH_SWAP;
  229. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  230. #endif
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. bool cancel_heatup = false ;
  237. int8_t busy_state = NOT_BUSY;
  238. static long prev_busy_signal_ms = -1;
  239. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. uint16_t gcode_in_progress = 0;
  312. uint16_t mcode_in_progress = 0;
  313. void serial_echopair_P(const char *s_P, float v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, double v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, unsigned long v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. #ifdef SDSUPPORT
  320. #include "SdFatUtil.h"
  321. int freeMemory() { return SdFatUtil::FreeRam(); }
  322. #else
  323. extern "C" {
  324. extern unsigned int __bss_end;
  325. extern unsigned int __heap_start;
  326. extern void *__brkval;
  327. int freeMemory() {
  328. int free_memory;
  329. if ((int)__brkval == 0)
  330. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  331. else
  332. free_memory = ((int)&free_memory) - ((int)__brkval);
  333. return free_memory;
  334. }
  335. }
  336. #endif //!SDSUPPORT
  337. void setup_killpin()
  338. {
  339. #if defined(KILL_PIN) && KILL_PIN > -1
  340. SET_INPUT(KILL_PIN);
  341. WRITE(KILL_PIN,HIGH);
  342. #endif
  343. }
  344. // Set home pin
  345. void setup_homepin(void)
  346. {
  347. #if defined(HOME_PIN) && HOME_PIN > -1
  348. SET_INPUT(HOME_PIN);
  349. WRITE(HOME_PIN,HIGH);
  350. #endif
  351. }
  352. void setup_photpin()
  353. {
  354. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  355. SET_OUTPUT(PHOTOGRAPH_PIN);
  356. WRITE(PHOTOGRAPH_PIN, LOW);
  357. #endif
  358. }
  359. void setup_powerhold()
  360. {
  361. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  362. SET_OUTPUT(SUICIDE_PIN);
  363. WRITE(SUICIDE_PIN, HIGH);
  364. #endif
  365. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  366. SET_OUTPUT(PS_ON_PIN);
  367. #if defined(PS_DEFAULT_OFF)
  368. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  369. #else
  370. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  371. #endif
  372. #endif
  373. }
  374. void suicide()
  375. {
  376. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  377. SET_OUTPUT(SUICIDE_PIN);
  378. WRITE(SUICIDE_PIN, LOW);
  379. #endif
  380. }
  381. void servo_init()
  382. {
  383. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  384. servos[0].attach(SERVO0_PIN);
  385. #endif
  386. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  387. servos[1].attach(SERVO1_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  390. servos[2].attach(SERVO2_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  393. servos[3].attach(SERVO3_PIN);
  394. #endif
  395. #if (NUM_SERVOS >= 5)
  396. #error "TODO: enter initalisation code for more servos"
  397. #endif
  398. }
  399. bool fans_check_enabled = true;
  400. #ifdef TMC2130
  401. extern int8_t CrashDetectMenu;
  402. void crashdet_enable()
  403. {
  404. tmc2130_sg_stop_on_crash = true;
  405. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  406. CrashDetectMenu = 1;
  407. }
  408. void crashdet_disable()
  409. {
  410. tmc2130_sg_stop_on_crash = false;
  411. tmc2130_sg_crash = 0;
  412. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  413. CrashDetectMenu = 0;
  414. }
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. Sound_MakeCustom(100,0,false);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. Sound_MakeCustom(100,0,false);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  548. lcd_menu_statistics();
  549. break;
  550. // Level 2: Prepare for shipping
  551. case 2:
  552. //lcd_puts_P(PSTR("Factory RESET"));
  553. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  554. // Force language selection at the next boot up.
  555. lang_reset();
  556. // Force the "Follow calibration flow" message at the next boot up.
  557. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  558. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  559. farm_no = 0;
  560. farm_mode = false;
  561. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  562. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  563. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  564. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  573. #ifdef FILAMENT_SENSOR
  574. fsensor_enable();
  575. fsensor_autoload_set(true);
  576. #endif //FILAMENT_SENSOR
  577. Sound_MakeCustom(100,0,false);
  578. //_delay_ms(2000);
  579. break;
  580. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  581. case 3:
  582. lcd_puts_P(PSTR("Factory RESET"));
  583. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  584. Sound_MakeCustom(100,0,false);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. lcd_clear(); // clears display and homes screen
  619. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if(eSoundMode!=e_SOUND_MODE_SILENT)
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. //! @brief try to check if firmware is on right type of printer
  673. static void check_if_fw_is_on_right_printer(){
  674. #ifdef FILAMENT_SENSOR
  675. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  676. #ifdef IR_SENSOR
  677. swi2c_init();
  678. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  679. if (pat9125_detected){
  680. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  681. #endif //IR_SENSOR
  682. #ifdef PAT9125
  683. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  684. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  685. if (ir_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  687. #endif //PAT9125
  688. }
  689. #endif //FILAMENT_SENSOR
  690. }
  691. uint8_t check_printer_version()
  692. {
  693. uint8_t version_changed = 0;
  694. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  695. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  696. if (printer_type != PRINTER_TYPE) {
  697. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  698. else version_changed |= 0b10;
  699. }
  700. if (motherboard != MOTHERBOARD) {
  701. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  702. else version_changed |= 0b01;
  703. }
  704. return version_changed;
  705. }
  706. #ifdef BOOTAPP
  707. #include "bootapp.h" //bootloader support
  708. #endif //BOOTAPP
  709. #if (LANG_MODE != 0) //secondary language support
  710. #ifdef W25X20CL
  711. // language update from external flash
  712. #define LANGBOOT_BLOCKSIZE 0x1000u
  713. #define LANGBOOT_RAMBUFFER 0x0800
  714. void update_sec_lang_from_external_flash()
  715. {
  716. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  717. {
  718. uint8_t lang = boot_reserved >> 4;
  719. uint8_t state = boot_reserved & 0xf;
  720. lang_table_header_t header;
  721. uint32_t src_addr;
  722. if (lang_get_header(lang, &header, &src_addr))
  723. {
  724. lcd_puts_at_P(1,3,PSTR("Language update."));
  725. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  726. _delay(100);
  727. boot_reserved = (state + 1) | (lang << 4);
  728. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  729. {
  730. cli();
  731. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  732. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  733. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  734. if (state == 0)
  735. {
  736. //TODO - check header integrity
  737. }
  738. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  739. }
  740. else
  741. {
  742. //TODO - check sec lang data integrity
  743. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  744. }
  745. }
  746. }
  747. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  748. }
  749. #ifdef DEBUG_W25X20CL
  750. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  751. {
  752. lang_table_header_t header;
  753. uint8_t count = 0;
  754. uint32_t addr = 0x00000;
  755. while (1)
  756. {
  757. printf_P(_n("LANGTABLE%d:"), count);
  758. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  759. if (header.magic != LANG_MAGIC)
  760. {
  761. printf_P(_n("NG!\n"));
  762. break;
  763. }
  764. printf_P(_n("OK\n"));
  765. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  766. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  767. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  768. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  769. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  770. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  771. addr += header.size;
  772. codes[count] = header.code;
  773. count ++;
  774. }
  775. return count;
  776. }
  777. void list_sec_lang_from_external_flash()
  778. {
  779. uint16_t codes[8];
  780. uint8_t count = lang_xflash_enum_codes(codes);
  781. printf_P(_n("XFlash lang count = %hhd\n"), count);
  782. }
  783. #endif //DEBUG_W25X20CL
  784. #endif //W25X20CL
  785. #endif //(LANG_MODE != 0)
  786. static void w25x20cl_err_msg()
  787. {
  788. lcd_clear();
  789. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. mmu_init();
  797. ultralcd_init();
  798. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  799. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  800. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  801. spi_init();
  802. lcd_splash();
  803. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  804. #ifdef W25X20CL
  805. bool w25x20cl_success = w25x20cl_init();
  806. if (w25x20cl_success)
  807. {
  808. optiboot_w25x20cl_enter();
  809. #if (LANG_MODE != 0) //secondary language support
  810. update_sec_lang_from_external_flash();
  811. #endif //(LANG_MODE != 0)
  812. }
  813. else
  814. {
  815. w25x20cl_err_msg();
  816. }
  817. #else
  818. const bool w25x20cl_success = true;
  819. #endif //W25X20CL
  820. setup_killpin();
  821. setup_powerhold();
  822. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  823. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  824. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  825. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  826. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  827. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  828. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  829. if (farm_mode)
  830. {
  831. no_response = true; //we need confirmation by recieving PRUSA thx
  832. important_status = 8;
  833. prusa_statistics(8);
  834. selectedSerialPort = 1;
  835. #ifdef TMC2130
  836. //increased extruder current (PFW363)
  837. tmc2130_current_h[E_AXIS] = 36;
  838. tmc2130_current_r[E_AXIS] = 36;
  839. #endif //TMC2130
  840. #ifdef FILAMENT_SENSOR
  841. //disabled filament autoload (PFW360)
  842. fsensor_autoload_set(false);
  843. #endif //FILAMENT_SENSOR
  844. // ~ FanCheck -> on
  845. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  846. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  847. }
  848. MYSERIAL.begin(BAUDRATE);
  849. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  850. #ifndef W25X20CL
  851. SERIAL_PROTOCOLLNPGM("start");
  852. #endif //W25X20CL
  853. stdout = uartout;
  854. SERIAL_ECHO_START;
  855. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  856. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  857. #ifdef DEBUG_SEC_LANG
  858. lang_table_header_t header;
  859. uint32_t src_addr = 0x00000;
  860. if (lang_get_header(1, &header, &src_addr))
  861. {
  862. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  863. #define LT_PRINT_TEST 2
  864. // flash usage
  865. // total p.test
  866. //0 252718 t+c text code
  867. //1 253142 424 170 254
  868. //2 253040 322 164 158
  869. //3 253248 530 135 395
  870. #if (LT_PRINT_TEST==1) //not optimized printf
  871. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  872. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  873. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  874. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  875. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  876. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  877. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  878. #elif (LT_PRINT_TEST==2) //optimized printf
  879. printf_P(
  880. _n(
  881. " _src_addr = 0x%08lx\n"
  882. " _lt_magic = 0x%08lx %S\n"
  883. " _lt_size = 0x%04x (%d)\n"
  884. " _lt_count = 0x%04x (%d)\n"
  885. " _lt_chsum = 0x%04x\n"
  886. " _lt_code = 0x%04x (%c%c)\n"
  887. " _lt_resv1 = 0x%08lx\n"
  888. ),
  889. src_addr,
  890. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  891. header.size, header.size,
  892. header.count, header.count,
  893. header.checksum,
  894. header.code, header.code >> 8, header.code & 0xff,
  895. header.signature
  896. );
  897. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  898. MYSERIAL.print(" _src_addr = 0x");
  899. MYSERIAL.println(src_addr, 16);
  900. MYSERIAL.print(" _lt_magic = 0x");
  901. MYSERIAL.print(header.magic, 16);
  902. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  903. MYSERIAL.print(" _lt_size = 0x");
  904. MYSERIAL.print(header.size, 16);
  905. MYSERIAL.print(" (");
  906. MYSERIAL.print(header.size, 10);
  907. MYSERIAL.println(")");
  908. MYSERIAL.print(" _lt_count = 0x");
  909. MYSERIAL.print(header.count, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.count, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_chsum = 0x");
  914. MYSERIAL.println(header.checksum, 16);
  915. MYSERIAL.print(" _lt_code = 0x");
  916. MYSERIAL.print(header.code, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print((char)(header.code >> 8), 0);
  919. MYSERIAL.print((char)(header.code & 0xff), 0);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_resv1 = 0x");
  922. MYSERIAL.println(header.signature, 16);
  923. #endif //(LT_PRINT_TEST==)
  924. #undef LT_PRINT_TEST
  925. #if 0
  926. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  927. for (uint16_t i = 0; i < 1024; i++)
  928. {
  929. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  930. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  931. if ((i % 16) == 15) putchar('\n');
  932. }
  933. #endif
  934. uint16_t sum = 0;
  935. for (uint16_t i = 0; i < header.size; i++)
  936. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum -= header.checksum; //subtract checksum
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  941. if (sum == header.checksum)
  942. printf_P(_n("Checksum OK\n"), sum);
  943. else
  944. printf_P(_n("Checksum NG\n"), sum);
  945. }
  946. else
  947. printf_P(_n("lang_get_header failed!\n"));
  948. #if 0
  949. for (uint16_t i = 0; i < 1024*10; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  952. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. #if 0
  957. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  958. for (int i = 0; i < 4096; ++i) {
  959. int b = eeprom_read_byte((unsigned char*)i);
  960. if (b != 255) {
  961. SERIAL_ECHO(i);
  962. SERIAL_ECHO(":");
  963. SERIAL_ECHO(b);
  964. SERIAL_ECHOLN("");
  965. }
  966. }
  967. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  968. #endif
  969. #endif //DEBUG_SEC_LANG
  970. // Check startup - does nothing if bootloader sets MCUSR to 0
  971. byte mcu = MCUSR;
  972. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  973. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  974. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  975. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  976. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  977. if (mcu & 1) puts_P(MSG_POWERUP);
  978. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  982. MCUSR = 0;
  983. //SERIAL_ECHORPGM(MSG_MARLIN);
  984. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  985. #ifdef STRING_VERSION_CONFIG_H
  986. #ifdef STRING_CONFIG_H_AUTHOR
  987. SERIAL_ECHO_START;
  988. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  989. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  990. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  991. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  992. SERIAL_ECHOPGM("Compiled: ");
  993. SERIAL_ECHOLNPGM(__DATE__);
  994. #endif
  995. #endif
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  998. SERIAL_ECHO(freeMemory());
  999. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1000. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1001. //lcd_update_enable(false); // why do we need this?? - andre
  1002. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1003. bool previous_settings_retrieved = false;
  1004. uint8_t hw_changed = check_printer_version();
  1005. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1006. previous_settings_retrieved = Config_RetrieveSettings();
  1007. }
  1008. else { //printer version was changed so use default settings
  1009. Config_ResetDefault();
  1010. }
  1011. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1012. tp_init(); // Initialize temperature loop
  1013. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1014. else
  1015. {
  1016. w25x20cl_err_msg();
  1017. printf_P(_n("W25X20CL not responding.\n"));
  1018. }
  1019. plan_init(); // Initialize planner;
  1020. factory_reset();
  1021. lcd_encoder_diff=0;
  1022. #ifdef TMC2130
  1023. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1024. if (silentMode == 0xff) silentMode = 0;
  1025. tmc2130_mode = TMC2130_MODE_NORMAL;
  1026. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1027. if (crashdet && !farm_mode)
  1028. {
  1029. crashdet_enable();
  1030. puts_P(_N("CrashDetect ENABLED!"));
  1031. }
  1032. else
  1033. {
  1034. crashdet_disable();
  1035. puts_P(_N("CrashDetect DISABLED"));
  1036. }
  1037. #ifdef TMC2130_LINEARITY_CORRECTION
  1038. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1039. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1040. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1041. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1042. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1043. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1044. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1045. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1046. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1047. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1048. #endif //TMC2130_LINEARITY_CORRECTION
  1049. #ifdef TMC2130_VARIABLE_RESOLUTION
  1050. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1051. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1052. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1053. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1054. #else //TMC2130_VARIABLE_RESOLUTION
  1055. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1056. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1057. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1058. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1059. #endif //TMC2130_VARIABLE_RESOLUTION
  1060. #endif //TMC2130
  1061. st_init(); // Initialize stepper, this enables interrupts!
  1062. #ifdef UVLO_SUPPORT
  1063. setup_uvlo_interrupt();
  1064. #endif //UVLO_SUPPORT
  1065. #ifdef TMC2130
  1066. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1067. update_mode_profile();
  1068. tmc2130_init();
  1069. #endif //TMC2130
  1070. #ifdef PSU_Delta
  1071. init_force_z(); // ! important for correct Z-axis initialization
  1072. #endif // PSU_Delta
  1073. setup_photpin();
  1074. servo_init();
  1075. // Reset the machine correction matrix.
  1076. // It does not make sense to load the correction matrix until the machine is homed.
  1077. world2machine_reset();
  1078. #ifdef FILAMENT_SENSOR
  1079. fsensor_init();
  1080. #endif //FILAMENT_SENSOR
  1081. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1082. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1083. #endif
  1084. setup_homepin();
  1085. #ifdef TMC2130
  1086. if (1) {
  1087. // try to run to zero phase before powering the Z motor.
  1088. // Move in negative direction
  1089. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1090. // Round the current micro-micro steps to micro steps.
  1091. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1092. // Until the phase counter is reset to zero.
  1093. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1094. _delay(2);
  1095. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1096. _delay(2);
  1097. }
  1098. }
  1099. #endif //TMC2130
  1100. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1101. enable_z();
  1102. #endif
  1103. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1104. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1105. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1106. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1107. if (farm_mode)
  1108. {
  1109. prusa_statistics(8);
  1110. }
  1111. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1112. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1113. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1114. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1115. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1116. // where all the EEPROM entries are set to 0x0ff.
  1117. // Once a firmware boots up, it forces at least a language selection, which changes
  1118. // EEPROM_LANG to number lower than 0x0ff.
  1119. // 1) Set a high power mode.
  1120. #ifdef TMC2130
  1121. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1122. tmc2130_mode = TMC2130_MODE_NORMAL;
  1123. #endif //TMC2130
  1124. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1125. }
  1126. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1127. // but this times out if a blocking dialog is shown in setup().
  1128. card.initsd();
  1129. #ifdef DEBUG_SD_SPEED_TEST
  1130. if (card.cardOK)
  1131. {
  1132. uint8_t* buff = (uint8_t*)block_buffer;
  1133. uint32_t block = 0;
  1134. uint32_t sumr = 0;
  1135. uint32_t sumw = 0;
  1136. for (int i = 0; i < 1024; i++)
  1137. {
  1138. uint32_t u = _micros();
  1139. bool res = card.card.readBlock(i, buff);
  1140. u = _micros() - u;
  1141. if (res)
  1142. {
  1143. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1144. sumr += u;
  1145. u = _micros();
  1146. res = card.card.writeBlock(i, buff);
  1147. u = _micros() - u;
  1148. if (res)
  1149. {
  1150. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1151. sumw += u;
  1152. }
  1153. else
  1154. {
  1155. printf_P(PSTR("writeBlock %4d error\n"), i);
  1156. break;
  1157. }
  1158. }
  1159. else
  1160. {
  1161. printf_P(PSTR("readBlock %4d error\n"), i);
  1162. break;
  1163. }
  1164. }
  1165. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1166. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1167. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1168. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1169. }
  1170. else
  1171. printf_P(PSTR("Card NG!\n"));
  1172. #endif //DEBUG_SD_SPEED_TEST
  1173. eeprom_init();
  1174. #ifdef SNMM
  1175. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1176. int _z = BOWDEN_LENGTH;
  1177. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1178. }
  1179. #endif
  1180. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1181. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1182. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1183. #if (LANG_MODE != 0) //secondary language support
  1184. #ifdef DEBUG_W25X20CL
  1185. W25X20CL_SPI_ENTER();
  1186. uint8_t uid[8]; // 64bit unique id
  1187. w25x20cl_rd_uid(uid);
  1188. puts_P(_n("W25X20CL UID="));
  1189. for (uint8_t i = 0; i < 8; i ++)
  1190. printf_P(PSTR("%02hhx"), uid[i]);
  1191. putchar('\n');
  1192. list_sec_lang_from_external_flash();
  1193. #endif //DEBUG_W25X20CL
  1194. // lang_reset();
  1195. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1196. lcd_language();
  1197. #ifdef DEBUG_SEC_LANG
  1198. uint16_t sec_lang_code = lang_get_code(1);
  1199. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1200. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1201. lang_print_sec_lang(uartout);
  1202. #endif //DEBUG_SEC_LANG
  1203. #endif //(LANG_MODE != 0)
  1204. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1205. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1206. temp_cal_active = false;
  1207. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1208. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1209. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1210. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1211. int16_t z_shift = 0;
  1212. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1213. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1214. temp_cal_active = false;
  1215. }
  1216. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1217. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1218. }
  1219. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1220. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1221. }
  1222. //mbl_mode_init();
  1223. mbl_settings_init();
  1224. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1225. if (SilentModeMenu_MMU == 255) {
  1226. SilentModeMenu_MMU = 1;
  1227. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1228. }
  1229. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1230. setup_fan_interrupt();
  1231. #endif //DEBUG_DISABLE_FANCHECK
  1232. #ifdef PAT9125
  1233. fsensor_setup_interrupt();
  1234. #endif //PAT9125
  1235. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1236. #ifndef DEBUG_DISABLE_STARTMSGS
  1237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1238. check_if_fw_is_on_right_printer();
  1239. show_fw_version_warnings();
  1240. switch (hw_changed) {
  1241. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1242. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1243. case(0b01):
  1244. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1245. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1246. break;
  1247. case(0b10):
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1249. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1250. break;
  1251. case(0b11):
  1252. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1253. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1254. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1255. break;
  1256. default: break; //no change, show no message
  1257. }
  1258. if (!previous_settings_retrieved) {
  1259. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1260. Config_StoreSettings();
  1261. }
  1262. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1263. lcd_wizard(WizState::Run);
  1264. }
  1265. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1266. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1267. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1268. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1269. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1270. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1271. // Show the message.
  1272. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1273. }
  1274. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1275. // Show the message.
  1276. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1277. lcd_update_enable(true);
  1278. }
  1279. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1280. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1281. lcd_update_enable(true);
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1284. // Show the message.
  1285. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1286. }
  1287. }
  1288. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1289. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1290. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1291. update_current_firmware_version_to_eeprom();
  1292. lcd_selftest();
  1293. }
  1294. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1295. KEEPALIVE_STATE(IN_PROCESS);
  1296. #endif //DEBUG_DISABLE_STARTMSGS
  1297. lcd_update_enable(true);
  1298. lcd_clear();
  1299. lcd_update(2);
  1300. // Store the currently running firmware into an eeprom,
  1301. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1302. update_current_firmware_version_to_eeprom();
  1303. #ifdef TMC2130
  1304. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1305. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1306. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1307. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1308. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1309. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1310. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1311. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1312. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1313. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1314. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1315. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1316. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1317. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1318. #endif //TMC2130
  1319. #ifdef UVLO_SUPPORT
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1321. /*
  1322. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1323. else {
  1324. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1325. lcd_update_enable(true);
  1326. lcd_update(2);
  1327. lcd_setstatuspgm(_T(WELCOME_MSG));
  1328. }
  1329. */
  1330. manage_heater(); // Update temperatures
  1331. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1332. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1333. #endif
  1334. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1335. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1336. puts_P(_N("Automatic recovery!"));
  1337. #endif
  1338. recover_print(1);
  1339. }
  1340. else{
  1341. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1342. puts_P(_N("Normal recovery!"));
  1343. #endif
  1344. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1345. else {
  1346. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1347. lcd_update_enable(true);
  1348. lcd_update(2);
  1349. lcd_setstatuspgm(_T(WELCOME_MSG));
  1350. }
  1351. }
  1352. }
  1353. #endif //UVLO_SUPPORT
  1354. fCheckModeInit();
  1355. fSetMmuMode(mmu_enabled);
  1356. KEEPALIVE_STATE(NOT_BUSY);
  1357. #ifdef WATCHDOG
  1358. wdt_enable(WDTO_4S);
  1359. #endif //WATCHDOG
  1360. }
  1361. void trace();
  1362. #define CHUNK_SIZE 64 // bytes
  1363. #define SAFETY_MARGIN 1
  1364. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1365. int chunkHead = 0;
  1366. void serial_read_stream() {
  1367. setAllTargetHotends(0);
  1368. setTargetBed(0);
  1369. lcd_clear();
  1370. lcd_puts_P(PSTR(" Upload in progress"));
  1371. // first wait for how many bytes we will receive
  1372. uint32_t bytesToReceive;
  1373. // receive the four bytes
  1374. char bytesToReceiveBuffer[4];
  1375. for (int i=0; i<4; i++) {
  1376. int data;
  1377. while ((data = MYSERIAL.read()) == -1) {};
  1378. bytesToReceiveBuffer[i] = data;
  1379. }
  1380. // make it a uint32
  1381. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1382. // we're ready, notify the sender
  1383. MYSERIAL.write('+');
  1384. // lock in the routine
  1385. uint32_t receivedBytes = 0;
  1386. while (prusa_sd_card_upload) {
  1387. int i;
  1388. for (i=0; i<CHUNK_SIZE; i++) {
  1389. int data;
  1390. // check if we're not done
  1391. if (receivedBytes == bytesToReceive) {
  1392. break;
  1393. }
  1394. // read the next byte
  1395. while ((data = MYSERIAL.read()) == -1) {};
  1396. receivedBytes++;
  1397. // save it to the chunk
  1398. chunk[i] = data;
  1399. }
  1400. // write the chunk to SD
  1401. card.write_command_no_newline(&chunk[0]);
  1402. // notify the sender we're ready for more data
  1403. MYSERIAL.write('+');
  1404. // for safety
  1405. manage_heater();
  1406. // check if we're done
  1407. if(receivedBytes == bytesToReceive) {
  1408. trace(); // beep
  1409. card.closefile();
  1410. prusa_sd_card_upload = false;
  1411. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1412. }
  1413. }
  1414. }
  1415. /**
  1416. * Output a "busy" message at regular intervals
  1417. * while the machine is not accepting commands.
  1418. */
  1419. void host_keepalive() {
  1420. #ifndef HOST_KEEPALIVE_FEATURE
  1421. return;
  1422. #endif //HOST_KEEPALIVE_FEATURE
  1423. if (farm_mode) return;
  1424. long ms = _millis();
  1425. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1426. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1427. switch (busy_state) {
  1428. case IN_HANDLER:
  1429. case IN_PROCESS:
  1430. SERIAL_ECHO_START;
  1431. SERIAL_ECHOLNPGM("busy: processing");
  1432. break;
  1433. case PAUSED_FOR_USER:
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM("busy: paused for user");
  1436. break;
  1437. case PAUSED_FOR_INPUT:
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM("busy: paused for input");
  1440. break;
  1441. default:
  1442. break;
  1443. }
  1444. }
  1445. prev_busy_signal_ms = ms;
  1446. }
  1447. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1448. // Before loop(), the setup() function is called by the main() routine.
  1449. void loop()
  1450. {
  1451. KEEPALIVE_STATE(NOT_BUSY);
  1452. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1453. {
  1454. is_usb_printing = true;
  1455. usb_printing_counter--;
  1456. _usb_timer = _millis();
  1457. }
  1458. if (usb_printing_counter == 0)
  1459. {
  1460. is_usb_printing = false;
  1461. }
  1462. if (prusa_sd_card_upload)
  1463. {
  1464. //we read byte-by byte
  1465. serial_read_stream();
  1466. } else
  1467. {
  1468. get_command();
  1469. #ifdef SDSUPPORT
  1470. card.checkautostart(false);
  1471. #endif
  1472. if(buflen)
  1473. {
  1474. cmdbuffer_front_already_processed = false;
  1475. #ifdef SDSUPPORT
  1476. if(card.saving)
  1477. {
  1478. // Saving a G-code file onto an SD-card is in progress.
  1479. // Saving starts with M28, saving until M29 is seen.
  1480. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1481. card.write_command(CMDBUFFER_CURRENT_STRING);
  1482. if(card.logging)
  1483. process_commands();
  1484. else
  1485. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1486. } else {
  1487. card.closefile();
  1488. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1489. }
  1490. } else {
  1491. process_commands();
  1492. }
  1493. #else
  1494. process_commands();
  1495. #endif //SDSUPPORT
  1496. if (! cmdbuffer_front_already_processed && buflen)
  1497. {
  1498. // ptr points to the start of the block currently being processed.
  1499. // The first character in the block is the block type.
  1500. char *ptr = cmdbuffer + bufindr;
  1501. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1502. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1503. union {
  1504. struct {
  1505. char lo;
  1506. char hi;
  1507. } lohi;
  1508. uint16_t value;
  1509. } sdlen;
  1510. sdlen.value = 0;
  1511. {
  1512. // This block locks the interrupts globally for 3.25 us,
  1513. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1514. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1515. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1516. cli();
  1517. // Reset the command to something, which will be ignored by the power panic routine,
  1518. // so this buffer length will not be counted twice.
  1519. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1520. // Extract the current buffer length.
  1521. sdlen.lohi.lo = *ptr ++;
  1522. sdlen.lohi.hi = *ptr;
  1523. // and pass it to the planner queue.
  1524. planner_add_sd_length(sdlen.value);
  1525. sei();
  1526. }
  1527. }
  1528. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1529. cli();
  1530. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1531. // and one for each command to previous block in the planner queue.
  1532. planner_add_sd_length(1);
  1533. sei();
  1534. }
  1535. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1536. // this block's SD card length will not be counted twice as its command type has been replaced
  1537. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1538. cmdqueue_pop_front();
  1539. }
  1540. host_keepalive();
  1541. }
  1542. }
  1543. //check heater every n milliseconds
  1544. manage_heater();
  1545. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1546. checkHitEndstops();
  1547. lcd_update(0);
  1548. #ifdef TMC2130
  1549. tmc2130_check_overtemp();
  1550. if (tmc2130_sg_crash)
  1551. {
  1552. uint8_t crash = tmc2130_sg_crash;
  1553. tmc2130_sg_crash = 0;
  1554. // crashdet_stop_and_save_print();
  1555. switch (crash)
  1556. {
  1557. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1558. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1559. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1560. }
  1561. }
  1562. #endif //TMC2130
  1563. mmu_loop();
  1564. }
  1565. #define DEFINE_PGM_READ_ANY(type, reader) \
  1566. static inline type pgm_read_any(const type *p) \
  1567. { return pgm_read_##reader##_near(p); }
  1568. DEFINE_PGM_READ_ANY(float, float);
  1569. DEFINE_PGM_READ_ANY(signed char, byte);
  1570. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1571. static const PROGMEM type array##_P[3] = \
  1572. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1573. static inline type array(int axis) \
  1574. { return pgm_read_any(&array##_P[axis]); } \
  1575. type array##_ext(int axis) \
  1576. { return pgm_read_any(&array##_P[axis]); }
  1577. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1578. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1579. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1580. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1581. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1582. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1583. static void axis_is_at_home(int axis) {
  1584. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1585. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1586. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1587. }
  1588. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1589. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1590. //! @return original feedmultiply
  1591. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1592. saved_feedrate = feedrate;
  1593. int l_feedmultiply = feedmultiply;
  1594. feedmultiply = 100;
  1595. previous_millis_cmd = _millis();
  1596. enable_endstops(enable_endstops_now);
  1597. return l_feedmultiply;
  1598. }
  1599. //! @param original_feedmultiply feedmultiply to restore
  1600. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1601. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1602. enable_endstops(false);
  1603. #endif
  1604. feedrate = saved_feedrate;
  1605. feedmultiply = original_feedmultiply;
  1606. previous_millis_cmd = _millis();
  1607. }
  1608. #ifdef ENABLE_AUTO_BED_LEVELING
  1609. #ifdef AUTO_BED_LEVELING_GRID
  1610. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1611. {
  1612. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1613. planeNormal.debug("planeNormal");
  1614. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1615. //bedLevel.debug("bedLevel");
  1616. //plan_bed_level_matrix.debug("bed level before");
  1617. //vector_3 uncorrected_position = plan_get_position_mm();
  1618. //uncorrected_position.debug("position before");
  1619. vector_3 corrected_position = plan_get_position();
  1620. // corrected_position.debug("position after");
  1621. current_position[X_AXIS] = corrected_position.x;
  1622. current_position[Y_AXIS] = corrected_position.y;
  1623. current_position[Z_AXIS] = corrected_position.z;
  1624. // put the bed at 0 so we don't go below it.
  1625. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1626. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1627. }
  1628. #else // not AUTO_BED_LEVELING_GRID
  1629. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1630. plan_bed_level_matrix.set_to_identity();
  1631. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1632. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1633. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1634. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1635. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1636. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1637. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1638. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1639. vector_3 corrected_position = plan_get_position();
  1640. current_position[X_AXIS] = corrected_position.x;
  1641. current_position[Y_AXIS] = corrected_position.y;
  1642. current_position[Z_AXIS] = corrected_position.z;
  1643. // put the bed at 0 so we don't go below it.
  1644. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1645. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1646. }
  1647. #endif // AUTO_BED_LEVELING_GRID
  1648. static void run_z_probe() {
  1649. plan_bed_level_matrix.set_to_identity();
  1650. feedrate = homing_feedrate[Z_AXIS];
  1651. // move down until you find the bed
  1652. float zPosition = -10;
  1653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1654. st_synchronize();
  1655. // we have to let the planner know where we are right now as it is not where we said to go.
  1656. zPosition = st_get_position_mm(Z_AXIS);
  1657. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1658. // move up the retract distance
  1659. zPosition += home_retract_mm(Z_AXIS);
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1661. st_synchronize();
  1662. // move back down slowly to find bed
  1663. feedrate = homing_feedrate[Z_AXIS]/4;
  1664. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1666. st_synchronize();
  1667. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1668. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1669. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1670. }
  1671. static void do_blocking_move_to(float x, float y, float z) {
  1672. float oldFeedRate = feedrate;
  1673. feedrate = homing_feedrate[Z_AXIS];
  1674. current_position[Z_AXIS] = z;
  1675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1676. st_synchronize();
  1677. feedrate = XY_TRAVEL_SPEED;
  1678. current_position[X_AXIS] = x;
  1679. current_position[Y_AXIS] = y;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. feedrate = oldFeedRate;
  1683. }
  1684. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1685. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1686. }
  1687. /// Probe bed height at position (x,y), returns the measured z value
  1688. static float probe_pt(float x, float y, float z_before) {
  1689. // move to right place
  1690. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1691. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1692. run_z_probe();
  1693. float measured_z = current_position[Z_AXIS];
  1694. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1695. SERIAL_PROTOCOLPGM(" x: ");
  1696. SERIAL_PROTOCOL(x);
  1697. SERIAL_PROTOCOLPGM(" y: ");
  1698. SERIAL_PROTOCOL(y);
  1699. SERIAL_PROTOCOLPGM(" z: ");
  1700. SERIAL_PROTOCOL(measured_z);
  1701. SERIAL_PROTOCOLPGM("\n");
  1702. return measured_z;
  1703. }
  1704. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1705. #ifdef LIN_ADVANCE
  1706. /**
  1707. * M900: Set and/or Get advance K factor and WH/D ratio
  1708. *
  1709. * K<factor> Set advance K factor
  1710. * R<ratio> Set ratio directly (overrides WH/D)
  1711. * W<width> H<height> D<diam> Set ratio from WH/D
  1712. */
  1713. inline void gcode_M900() {
  1714. st_synchronize();
  1715. const float newK = code_seen('K') ? code_value_float() : -1;
  1716. if (newK >= 0) extruder_advance_k = newK;
  1717. float newR = code_seen('R') ? code_value_float() : -1;
  1718. if (newR < 0) {
  1719. const float newD = code_seen('D') ? code_value_float() : -1,
  1720. newW = code_seen('W') ? code_value_float() : -1,
  1721. newH = code_seen('H') ? code_value_float() : -1;
  1722. if (newD >= 0 && newW >= 0 && newH >= 0)
  1723. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1724. }
  1725. if (newR >= 0) advance_ed_ratio = newR;
  1726. SERIAL_ECHO_START;
  1727. SERIAL_ECHOPGM("Advance K=");
  1728. SERIAL_ECHOLN(extruder_advance_k);
  1729. SERIAL_ECHOPGM(" E/D=");
  1730. const float ratio = advance_ed_ratio;
  1731. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1732. }
  1733. #endif // LIN_ADVANCE
  1734. bool check_commands() {
  1735. bool end_command_found = false;
  1736. while (buflen)
  1737. {
  1738. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1739. if (!cmdbuffer_front_already_processed)
  1740. cmdqueue_pop_front();
  1741. cmdbuffer_front_already_processed = false;
  1742. }
  1743. return end_command_found;
  1744. }
  1745. #ifdef TMC2130
  1746. bool calibrate_z_auto()
  1747. {
  1748. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1749. lcd_clear();
  1750. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1751. bool endstops_enabled = enable_endstops(true);
  1752. int axis_up_dir = -home_dir(Z_AXIS);
  1753. tmc2130_home_enter(Z_AXIS_MASK);
  1754. current_position[Z_AXIS] = 0;
  1755. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1756. set_destination_to_current();
  1757. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1758. feedrate = homing_feedrate[Z_AXIS];
  1759. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1760. st_synchronize();
  1761. // current_position[axis] = 0;
  1762. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1763. tmc2130_home_exit();
  1764. enable_endstops(false);
  1765. current_position[Z_AXIS] = 0;
  1766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1767. set_destination_to_current();
  1768. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1769. feedrate = homing_feedrate[Z_AXIS] / 2;
  1770. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1771. st_synchronize();
  1772. enable_endstops(endstops_enabled);
  1773. if (PRINTER_TYPE == PRINTER_MK3) {
  1774. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1775. }
  1776. else {
  1777. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1778. }
  1779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. return true;
  1781. }
  1782. #endif //TMC2130
  1783. #ifdef TMC2130
  1784. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1785. #else
  1786. void homeaxis(int axis, uint8_t cnt)
  1787. #endif //TMC2130
  1788. {
  1789. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1790. #define HOMEAXIS_DO(LETTER) \
  1791. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1792. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1793. {
  1794. int axis_home_dir = home_dir(axis);
  1795. feedrate = homing_feedrate[axis];
  1796. #ifdef TMC2130
  1797. tmc2130_home_enter(X_AXIS_MASK << axis);
  1798. #endif //TMC2130
  1799. // Move away a bit, so that the print head does not touch the end position,
  1800. // and the following movement to endstop has a chance to achieve the required velocity
  1801. // for the stall guard to work.
  1802. current_position[axis] = 0;
  1803. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1804. set_destination_to_current();
  1805. // destination[axis] = 11.f;
  1806. destination[axis] = -3.f * axis_home_dir;
  1807. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1810. endstops_hit_on_purpose();
  1811. enable_endstops(false);
  1812. current_position[axis] = 0;
  1813. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1814. destination[axis] = 1. * axis_home_dir;
  1815. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1816. st_synchronize();
  1817. // Now continue to move up to the left end stop with the collision detection enabled.
  1818. enable_endstops(true);
  1819. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1820. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1821. st_synchronize();
  1822. for (uint8_t i = 0; i < cnt; i++)
  1823. {
  1824. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1825. endstops_hit_on_purpose();
  1826. enable_endstops(false);
  1827. current_position[axis] = 0;
  1828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1829. destination[axis] = -10.f * axis_home_dir;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1831. st_synchronize();
  1832. endstops_hit_on_purpose();
  1833. // Now move left up to the collision, this time with a repeatable velocity.
  1834. enable_endstops(true);
  1835. destination[axis] = 11.f * axis_home_dir;
  1836. #ifdef TMC2130
  1837. feedrate = homing_feedrate[axis];
  1838. #else //TMC2130
  1839. feedrate = homing_feedrate[axis] / 2;
  1840. #endif //TMC2130
  1841. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1842. st_synchronize();
  1843. #ifdef TMC2130
  1844. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1845. if (pstep) pstep[i] = mscnt >> 4;
  1846. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1847. #endif //TMC2130
  1848. }
  1849. endstops_hit_on_purpose();
  1850. enable_endstops(false);
  1851. #ifdef TMC2130
  1852. uint8_t orig = tmc2130_home_origin[axis];
  1853. uint8_t back = tmc2130_home_bsteps[axis];
  1854. if (tmc2130_home_enabled && (orig <= 63))
  1855. {
  1856. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1857. if (back > 0)
  1858. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1859. }
  1860. else
  1861. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1862. tmc2130_home_exit();
  1863. #endif //TMC2130
  1864. axis_is_at_home(axis);
  1865. axis_known_position[axis] = true;
  1866. // Move from minimum
  1867. #ifdef TMC2130
  1868. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1869. #else //TMC2130
  1870. float dist = - axis_home_dir * 0.01f * 64;
  1871. #endif //TMC2130
  1872. current_position[axis] -= dist;
  1873. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1874. current_position[axis] += dist;
  1875. destination[axis] = current_position[axis];
  1876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1877. st_synchronize();
  1878. feedrate = 0.0;
  1879. }
  1880. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1881. {
  1882. #ifdef TMC2130
  1883. FORCE_HIGH_POWER_START;
  1884. #endif
  1885. int axis_home_dir = home_dir(axis);
  1886. current_position[axis] = 0;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1889. feedrate = homing_feedrate[axis];
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. #ifdef TMC2130
  1893. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1894. FORCE_HIGH_POWER_END;
  1895. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1896. return;
  1897. }
  1898. #endif //TMC2130
  1899. current_position[axis] = 0;
  1900. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1901. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1903. st_synchronize();
  1904. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1905. feedrate = homing_feedrate[axis]/2 ;
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. #ifdef TMC2130
  1909. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1910. FORCE_HIGH_POWER_END;
  1911. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1912. return;
  1913. }
  1914. #endif //TMC2130
  1915. axis_is_at_home(axis);
  1916. destination[axis] = current_position[axis];
  1917. feedrate = 0.0;
  1918. endstops_hit_on_purpose();
  1919. axis_known_position[axis] = true;
  1920. #ifdef TMC2130
  1921. FORCE_HIGH_POWER_END;
  1922. #endif
  1923. }
  1924. enable_endstops(endstops_enabled);
  1925. }
  1926. /**/
  1927. void home_xy()
  1928. {
  1929. set_destination_to_current();
  1930. homeaxis(X_AXIS);
  1931. homeaxis(Y_AXIS);
  1932. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1933. endstops_hit_on_purpose();
  1934. }
  1935. void refresh_cmd_timeout(void)
  1936. {
  1937. previous_millis_cmd = _millis();
  1938. }
  1939. #ifdef FWRETRACT
  1940. void retract(bool retracting, bool swapretract = false) {
  1941. if(retracting && !retracted[active_extruder]) {
  1942. destination[X_AXIS]=current_position[X_AXIS];
  1943. destination[Y_AXIS]=current_position[Y_AXIS];
  1944. destination[Z_AXIS]=current_position[Z_AXIS];
  1945. destination[E_AXIS]=current_position[E_AXIS];
  1946. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1947. plan_set_e_position(current_position[E_AXIS]);
  1948. float oldFeedrate = feedrate;
  1949. feedrate=cs.retract_feedrate*60;
  1950. retracted[active_extruder]=true;
  1951. prepare_move();
  1952. current_position[Z_AXIS]-=cs.retract_zlift;
  1953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1954. prepare_move();
  1955. feedrate = oldFeedrate;
  1956. } else if(!retracting && retracted[active_extruder]) {
  1957. destination[X_AXIS]=current_position[X_AXIS];
  1958. destination[Y_AXIS]=current_position[Y_AXIS];
  1959. destination[Z_AXIS]=current_position[Z_AXIS];
  1960. destination[E_AXIS]=current_position[E_AXIS];
  1961. current_position[Z_AXIS]+=cs.retract_zlift;
  1962. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1963. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1964. plan_set_e_position(current_position[E_AXIS]);
  1965. float oldFeedrate = feedrate;
  1966. feedrate=cs.retract_recover_feedrate*60;
  1967. retracted[active_extruder]=false;
  1968. prepare_move();
  1969. feedrate = oldFeedrate;
  1970. }
  1971. } //retract
  1972. #endif //FWRETRACT
  1973. void trace() {
  1974. Sound_MakeCustom(25,440,true);
  1975. }
  1976. /*
  1977. void ramming() {
  1978. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1979. if (current_temperature[0] < 230) {
  1980. //PLA
  1981. max_feedrate[E_AXIS] = 50;
  1982. //current_position[E_AXIS] -= 8;
  1983. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1984. //current_position[E_AXIS] += 8;
  1985. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1986. current_position[E_AXIS] += 5.4;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1988. current_position[E_AXIS] += 3.2;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1990. current_position[E_AXIS] += 3;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1992. st_synchronize();
  1993. max_feedrate[E_AXIS] = 80;
  1994. current_position[E_AXIS] -= 82;
  1995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1996. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1997. current_position[E_AXIS] -= 20;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1999. current_position[E_AXIS] += 5;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2001. current_position[E_AXIS] += 5;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2003. current_position[E_AXIS] -= 10;
  2004. st_synchronize();
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2006. current_position[E_AXIS] += 10;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2008. current_position[E_AXIS] -= 10;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2010. current_position[E_AXIS] += 10;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2012. current_position[E_AXIS] -= 10;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2014. st_synchronize();
  2015. }
  2016. else {
  2017. //ABS
  2018. max_feedrate[E_AXIS] = 50;
  2019. //current_position[E_AXIS] -= 8;
  2020. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2021. //current_position[E_AXIS] += 8;
  2022. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2023. current_position[E_AXIS] += 3.1;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2025. current_position[E_AXIS] += 3.1;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2027. current_position[E_AXIS] += 4;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2029. st_synchronize();
  2030. //current_position[X_AXIS] += 23; //delay
  2031. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2032. //current_position[X_AXIS] -= 23; //delay
  2033. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2034. _delay(4700);
  2035. max_feedrate[E_AXIS] = 80;
  2036. current_position[E_AXIS] -= 92;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2038. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2039. current_position[E_AXIS] -= 5;
  2040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2041. current_position[E_AXIS] += 5;
  2042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2043. current_position[E_AXIS] -= 5;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2045. st_synchronize();
  2046. current_position[E_AXIS] += 5;
  2047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2048. current_position[E_AXIS] -= 5;
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2050. current_position[E_AXIS] += 5;
  2051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2052. current_position[E_AXIS] -= 5;
  2053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2054. st_synchronize();
  2055. }
  2056. }
  2057. */
  2058. #ifdef TMC2130
  2059. void force_high_power_mode(bool start_high_power_section) {
  2060. uint8_t silent;
  2061. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2062. if (silent == 1) {
  2063. //we are in silent mode, set to normal mode to enable crash detection
  2064. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2065. st_synchronize();
  2066. cli();
  2067. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2068. update_mode_profile();
  2069. tmc2130_init();
  2070. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2071. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2072. st_reset_timer();
  2073. sei();
  2074. }
  2075. }
  2076. #endif //TMC2130
  2077. #ifdef TMC2130
  2078. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2079. #else
  2080. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2081. #endif //TMC2130
  2082. {
  2083. st_synchronize();
  2084. #if 0
  2085. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2086. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2087. #endif
  2088. // Flag for the display update routine and to disable the print cancelation during homing.
  2089. homing_flag = true;
  2090. // Which axes should be homed?
  2091. bool home_x = home_x_axis;
  2092. bool home_y = home_y_axis;
  2093. bool home_z = home_z_axis;
  2094. // Either all X,Y,Z codes are present, or none of them.
  2095. bool home_all_axes = home_x == home_y && home_x == home_z;
  2096. if (home_all_axes)
  2097. // No X/Y/Z code provided means to home all axes.
  2098. home_x = home_y = home_z = true;
  2099. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2100. if (home_all_axes) {
  2101. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2102. feedrate = homing_feedrate[Z_AXIS];
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2104. st_synchronize();
  2105. }
  2106. #ifdef ENABLE_AUTO_BED_LEVELING
  2107. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2108. #endif //ENABLE_AUTO_BED_LEVELING
  2109. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2110. // the planner will not perform any adjustments in the XY plane.
  2111. // Wait for the motors to stop and update the current position with the absolute values.
  2112. world2machine_revert_to_uncorrected();
  2113. // For mesh bed leveling deactivate the matrix temporarily.
  2114. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2115. // in a single axis only.
  2116. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2117. #ifdef MESH_BED_LEVELING
  2118. uint8_t mbl_was_active = mbl.active;
  2119. mbl.active = 0;
  2120. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2121. #endif
  2122. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2123. // consumed during the first movements following this statement.
  2124. if (home_z)
  2125. babystep_undo();
  2126. saved_feedrate = feedrate;
  2127. int l_feedmultiply = feedmultiply;
  2128. feedmultiply = 100;
  2129. previous_millis_cmd = _millis();
  2130. enable_endstops(true);
  2131. memcpy(destination, current_position, sizeof(destination));
  2132. feedrate = 0.0;
  2133. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2134. if(home_z)
  2135. homeaxis(Z_AXIS);
  2136. #endif
  2137. #ifdef QUICK_HOME
  2138. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2139. if(home_x && home_y) //first diagonal move
  2140. {
  2141. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2142. int x_axis_home_dir = home_dir(X_AXIS);
  2143. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2144. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2145. feedrate = homing_feedrate[X_AXIS];
  2146. if(homing_feedrate[Y_AXIS]<feedrate)
  2147. feedrate = homing_feedrate[Y_AXIS];
  2148. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2149. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2150. } else {
  2151. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2152. }
  2153. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2154. st_synchronize();
  2155. axis_is_at_home(X_AXIS);
  2156. axis_is_at_home(Y_AXIS);
  2157. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2158. destination[X_AXIS] = current_position[X_AXIS];
  2159. destination[Y_AXIS] = current_position[Y_AXIS];
  2160. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2161. feedrate = 0.0;
  2162. st_synchronize();
  2163. endstops_hit_on_purpose();
  2164. current_position[X_AXIS] = destination[X_AXIS];
  2165. current_position[Y_AXIS] = destination[Y_AXIS];
  2166. current_position[Z_AXIS] = destination[Z_AXIS];
  2167. }
  2168. #endif /* QUICK_HOME */
  2169. #ifdef TMC2130
  2170. if(home_x)
  2171. {
  2172. if (!calib)
  2173. homeaxis(X_AXIS);
  2174. else
  2175. tmc2130_home_calibrate(X_AXIS);
  2176. }
  2177. if(home_y)
  2178. {
  2179. if (!calib)
  2180. homeaxis(Y_AXIS);
  2181. else
  2182. tmc2130_home_calibrate(Y_AXIS);
  2183. }
  2184. #else //TMC2130
  2185. if(home_x) homeaxis(X_AXIS);
  2186. if(home_y) homeaxis(Y_AXIS);
  2187. #endif //TMC2130
  2188. if(home_x_axis && home_x_value != 0)
  2189. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2190. if(home_y_axis && home_y_value != 0)
  2191. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2192. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2193. #ifndef Z_SAFE_HOMING
  2194. if(home_z) {
  2195. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2196. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2197. feedrate = max_feedrate[Z_AXIS];
  2198. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2199. st_synchronize();
  2200. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2201. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2202. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2203. {
  2204. homeaxis(X_AXIS);
  2205. homeaxis(Y_AXIS);
  2206. }
  2207. // 1st mesh bed leveling measurement point, corrected.
  2208. world2machine_initialize();
  2209. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2210. world2machine_reset();
  2211. if (destination[Y_AXIS] < Y_MIN_POS)
  2212. destination[Y_AXIS] = Y_MIN_POS;
  2213. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2214. feedrate = homing_feedrate[Z_AXIS]/10;
  2215. current_position[Z_AXIS] = 0;
  2216. enable_endstops(false);
  2217. #ifdef DEBUG_BUILD
  2218. SERIAL_ECHOLNPGM("plan_set_position()");
  2219. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2220. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2221. #endif
  2222. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2223. #ifdef DEBUG_BUILD
  2224. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2225. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2226. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2227. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2228. #endif
  2229. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2230. st_synchronize();
  2231. current_position[X_AXIS] = destination[X_AXIS];
  2232. current_position[Y_AXIS] = destination[Y_AXIS];
  2233. enable_endstops(true);
  2234. endstops_hit_on_purpose();
  2235. homeaxis(Z_AXIS);
  2236. #else // MESH_BED_LEVELING
  2237. homeaxis(Z_AXIS);
  2238. #endif // MESH_BED_LEVELING
  2239. }
  2240. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2241. if(home_all_axes) {
  2242. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2243. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2244. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2245. feedrate = XY_TRAVEL_SPEED/60;
  2246. current_position[Z_AXIS] = 0;
  2247. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2248. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2249. st_synchronize();
  2250. current_position[X_AXIS] = destination[X_AXIS];
  2251. current_position[Y_AXIS] = destination[Y_AXIS];
  2252. homeaxis(Z_AXIS);
  2253. }
  2254. // Let's see if X and Y are homed and probe is inside bed area.
  2255. if(home_z) {
  2256. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2257. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2258. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2259. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2260. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2261. current_position[Z_AXIS] = 0;
  2262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2263. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2264. feedrate = max_feedrate[Z_AXIS];
  2265. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2266. st_synchronize();
  2267. homeaxis(Z_AXIS);
  2268. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2269. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2270. SERIAL_ECHO_START;
  2271. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2272. } else {
  2273. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2274. SERIAL_ECHO_START;
  2275. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2276. }
  2277. }
  2278. #endif // Z_SAFE_HOMING
  2279. #endif // Z_HOME_DIR < 0
  2280. if(home_z_axis && home_z_value != 0)
  2281. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2282. #ifdef ENABLE_AUTO_BED_LEVELING
  2283. if(home_z)
  2284. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2285. #endif
  2286. // Set the planner and stepper routine positions.
  2287. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2288. // contains the machine coordinates.
  2289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2290. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2291. enable_endstops(false);
  2292. #endif
  2293. feedrate = saved_feedrate;
  2294. feedmultiply = l_feedmultiply;
  2295. previous_millis_cmd = _millis();
  2296. endstops_hit_on_purpose();
  2297. #ifndef MESH_BED_LEVELING
  2298. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2299. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2300. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2301. lcd_adjust_z();
  2302. #endif
  2303. // Load the machine correction matrix
  2304. world2machine_initialize();
  2305. // and correct the current_position XY axes to match the transformed coordinate system.
  2306. world2machine_update_current();
  2307. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2308. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2309. {
  2310. if (! home_z && mbl_was_active) {
  2311. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2312. mbl.active = true;
  2313. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2314. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2315. }
  2316. }
  2317. else
  2318. {
  2319. st_synchronize();
  2320. homing_flag = false;
  2321. }
  2322. #endif
  2323. if (farm_mode) { prusa_statistics(20); };
  2324. homing_flag = false;
  2325. #if 0
  2326. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2327. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2328. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2329. #endif
  2330. }
  2331. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2332. {
  2333. #ifdef TMC2130
  2334. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2335. #else
  2336. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2337. #endif //TMC2130
  2338. }
  2339. void adjust_bed_reset()
  2340. {
  2341. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2342. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2343. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2344. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2345. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2346. }
  2347. //! @brief Calibrate XYZ
  2348. //! @param onlyZ if true, calibrate only Z axis
  2349. //! @param verbosity_level
  2350. //! @retval true Succeeded
  2351. //! @retval false Failed
  2352. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2353. {
  2354. bool final_result = false;
  2355. #ifdef TMC2130
  2356. FORCE_HIGH_POWER_START;
  2357. #endif // TMC2130
  2358. // Only Z calibration?
  2359. if (!onlyZ)
  2360. {
  2361. setTargetBed(0);
  2362. setAllTargetHotends(0);
  2363. adjust_bed_reset(); //reset bed level correction
  2364. }
  2365. // Disable the default update procedure of the display. We will do a modal dialog.
  2366. lcd_update_enable(false);
  2367. // Let the planner use the uncorrected coordinates.
  2368. mbl.reset();
  2369. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2370. // the planner will not perform any adjustments in the XY plane.
  2371. // Wait for the motors to stop and update the current position with the absolute values.
  2372. world2machine_revert_to_uncorrected();
  2373. // Reset the baby step value applied without moving the axes.
  2374. babystep_reset();
  2375. // Mark all axes as in a need for homing.
  2376. memset(axis_known_position, 0, sizeof(axis_known_position));
  2377. // Home in the XY plane.
  2378. //set_destination_to_current();
  2379. int l_feedmultiply = setup_for_endstop_move();
  2380. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2381. home_xy();
  2382. enable_endstops(false);
  2383. current_position[X_AXIS] += 5;
  2384. current_position[Y_AXIS] += 5;
  2385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2386. st_synchronize();
  2387. // Let the user move the Z axes up to the end stoppers.
  2388. #ifdef TMC2130
  2389. if (calibrate_z_auto())
  2390. {
  2391. #else //TMC2130
  2392. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2393. {
  2394. #endif //TMC2130
  2395. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2396. if(onlyZ){
  2397. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2398. lcd_set_cursor(0, 3);
  2399. lcd_print(1);
  2400. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2401. }else{
  2402. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2403. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2404. lcd_set_cursor(0, 2);
  2405. lcd_print(1);
  2406. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2407. }
  2408. refresh_cmd_timeout();
  2409. #ifndef STEEL_SHEET
  2410. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2411. {
  2412. lcd_wait_for_cool_down();
  2413. }
  2414. #endif //STEEL_SHEET
  2415. if(!onlyZ)
  2416. {
  2417. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2418. #ifdef STEEL_SHEET
  2419. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2420. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2421. #endif //STEEL_SHEET
  2422. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2423. KEEPALIVE_STATE(IN_HANDLER);
  2424. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2425. lcd_set_cursor(0, 2);
  2426. lcd_print(1);
  2427. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2428. }
  2429. bool endstops_enabled = enable_endstops(false);
  2430. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2432. st_synchronize();
  2433. // Move the print head close to the bed.
  2434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2435. enable_endstops(true);
  2436. #ifdef TMC2130
  2437. tmc2130_home_enter(Z_AXIS_MASK);
  2438. #endif //TMC2130
  2439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2440. st_synchronize();
  2441. #ifdef TMC2130
  2442. tmc2130_home_exit();
  2443. #endif //TMC2130
  2444. enable_endstops(endstops_enabled);
  2445. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2446. {
  2447. if (onlyZ)
  2448. {
  2449. clean_up_after_endstop_move(l_feedmultiply);
  2450. // Z only calibration.
  2451. // Load the machine correction matrix
  2452. world2machine_initialize();
  2453. // and correct the current_position to match the transformed coordinate system.
  2454. world2machine_update_current();
  2455. //FIXME
  2456. bool result = sample_mesh_and_store_reference();
  2457. if (result)
  2458. {
  2459. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2460. // Shipped, the nozzle height has been set already. The user can start printing now.
  2461. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2462. final_result = true;
  2463. // babystep_apply();
  2464. }
  2465. }
  2466. else
  2467. {
  2468. // Reset the baby step value and the baby step applied flag.
  2469. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2470. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2471. // Complete XYZ calibration.
  2472. uint8_t point_too_far_mask = 0;
  2473. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2474. clean_up_after_endstop_move(l_feedmultiply);
  2475. // Print head up.
  2476. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2478. st_synchronize();
  2479. //#ifndef NEW_XYZCAL
  2480. if (result >= 0)
  2481. {
  2482. #ifdef HEATBED_V2
  2483. sample_z();
  2484. #else //HEATBED_V2
  2485. point_too_far_mask = 0;
  2486. // Second half: The fine adjustment.
  2487. // Let the planner use the uncorrected coordinates.
  2488. mbl.reset();
  2489. world2machine_reset();
  2490. // Home in the XY plane.
  2491. int l_feedmultiply = setup_for_endstop_move();
  2492. home_xy();
  2493. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2494. clean_up_after_endstop_move(l_feedmultiply);
  2495. // Print head up.
  2496. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2498. st_synchronize();
  2499. // if (result >= 0) babystep_apply();
  2500. #endif //HEATBED_V2
  2501. }
  2502. //#endif //NEW_XYZCAL
  2503. lcd_update_enable(true);
  2504. lcd_update(2);
  2505. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2506. if (result >= 0)
  2507. {
  2508. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2509. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2510. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2511. final_result = true;
  2512. }
  2513. }
  2514. #ifdef TMC2130
  2515. tmc2130_home_exit();
  2516. #endif
  2517. }
  2518. else
  2519. {
  2520. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2521. final_result = false;
  2522. }
  2523. }
  2524. else
  2525. {
  2526. // Timeouted.
  2527. }
  2528. lcd_update_enable(true);
  2529. #ifdef TMC2130
  2530. FORCE_HIGH_POWER_END;
  2531. #endif // TMC2130
  2532. return final_result;
  2533. }
  2534. void gcode_M114()
  2535. {
  2536. SERIAL_PROTOCOLPGM("X:");
  2537. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2538. SERIAL_PROTOCOLPGM(" Y:");
  2539. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2540. SERIAL_PROTOCOLPGM(" Z:");
  2541. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2542. SERIAL_PROTOCOLPGM(" E:");
  2543. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2544. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2545. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2546. SERIAL_PROTOCOLPGM(" Y:");
  2547. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2548. SERIAL_PROTOCOLPGM(" Z:");
  2549. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2550. SERIAL_PROTOCOLPGM(" E:");
  2551. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2552. SERIAL_PROTOCOLLN("");
  2553. }
  2554. //! extracted code to compute z_shift for M600 in case of filament change operation
  2555. //! requested from fsensors.
  2556. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2557. //! unlike the previous implementation, which was adding 25mm even when the head was
  2558. //! printing at e.g. 24mm height.
  2559. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2560. //! the printout.
  2561. //! This function is templated to enable fast change of computation data type.
  2562. //! @return new z_shift value
  2563. template<typename T>
  2564. static T gcode_M600_filament_change_z_shift()
  2565. {
  2566. #ifdef FILAMENTCHANGE_ZADD
  2567. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2568. // avoid floating point arithmetics when not necessary - results in shorter code
  2569. T ztmp = T( current_position[Z_AXIS] );
  2570. T z_shift = 0;
  2571. if(ztmp < T(25)){
  2572. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2573. }
  2574. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2575. #else
  2576. return T(0);
  2577. #endif
  2578. }
  2579. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2580. {
  2581. st_synchronize();
  2582. float lastpos[4];
  2583. if (farm_mode)
  2584. {
  2585. prusa_statistics(22);
  2586. }
  2587. //First backup current position and settings
  2588. int feedmultiplyBckp = feedmultiply;
  2589. float HotendTempBckp = degTargetHotend(active_extruder);
  2590. int fanSpeedBckp = fanSpeed;
  2591. lastpos[X_AXIS] = current_position[X_AXIS];
  2592. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2593. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2594. lastpos[E_AXIS] = current_position[E_AXIS];
  2595. //Retract E
  2596. current_position[E_AXIS] += e_shift;
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2598. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2599. st_synchronize();
  2600. //Lift Z
  2601. current_position[Z_AXIS] += z_shift;
  2602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2603. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2604. st_synchronize();
  2605. //Move XY to side
  2606. current_position[X_AXIS] = x_position;
  2607. current_position[Y_AXIS] = y_position;
  2608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2609. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2610. st_synchronize();
  2611. //Beep, manage nozzle heater and wait for user to start unload filament
  2612. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2613. lcd_change_fil_state = 0;
  2614. // Unload filament
  2615. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2616. else unload_filament(); //unload filament for single material (used also in M702)
  2617. //finish moves
  2618. st_synchronize();
  2619. if (!mmu_enabled)
  2620. {
  2621. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2622. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2623. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2624. if (lcd_change_fil_state == 0)
  2625. {
  2626. lcd_clear();
  2627. lcd_set_cursor(0, 2);
  2628. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2629. current_position[X_AXIS] -= 100;
  2630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2631. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2632. st_synchronize();
  2633. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2634. }
  2635. }
  2636. if (mmu_enabled)
  2637. {
  2638. if (!automatic) {
  2639. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2640. mmu_M600_wait_and_beep();
  2641. if (saved_printing) {
  2642. lcd_clear();
  2643. lcd_set_cursor(0, 2);
  2644. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2645. mmu_command(MmuCmd::R0);
  2646. manage_response(false, false);
  2647. }
  2648. }
  2649. mmu_M600_load_filament(automatic, HotendTempBckp);
  2650. }
  2651. else
  2652. M600_load_filament();
  2653. if (!automatic) M600_check_state(HotendTempBckp);
  2654. lcd_update_enable(true);
  2655. //Not let's go back to print
  2656. fanSpeed = fanSpeedBckp;
  2657. //Feed a little of filament to stabilize pressure
  2658. if (!automatic)
  2659. {
  2660. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2662. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2663. }
  2664. //Move XY back
  2665. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2666. FILAMENTCHANGE_XYFEED, active_extruder);
  2667. st_synchronize();
  2668. //Move Z back
  2669. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2670. FILAMENTCHANGE_ZFEED, active_extruder);
  2671. st_synchronize();
  2672. //Set E position to original
  2673. plan_set_e_position(lastpos[E_AXIS]);
  2674. memcpy(current_position, lastpos, sizeof(lastpos));
  2675. memcpy(destination, current_position, sizeof(current_position));
  2676. //Recover feed rate
  2677. feedmultiply = feedmultiplyBckp;
  2678. char cmd[9];
  2679. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2680. enquecommand(cmd);
  2681. #ifdef IR_SENSOR
  2682. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2683. fsensor_check_autoload();
  2684. #endif //IR_SENSOR
  2685. lcd_setstatuspgm(_T(WELCOME_MSG));
  2686. custom_message_type = CustomMsg::Status;
  2687. }
  2688. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2689. //!
  2690. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2691. //! during extruding (loading) filament.
  2692. void marlin_rise_z(void)
  2693. {
  2694. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2695. }
  2696. void gcode_M701()
  2697. {
  2698. printf_P(PSTR("gcode_M701 begin\n"));
  2699. if (farm_mode)
  2700. {
  2701. prusa_statistics(22);
  2702. }
  2703. if (mmu_enabled)
  2704. {
  2705. extr_adj(tmp_extruder);//loads current extruder
  2706. mmu_extruder = tmp_extruder;
  2707. }
  2708. else
  2709. {
  2710. enable_z();
  2711. custom_message_type = CustomMsg::FilamentLoading;
  2712. #ifdef FSENSOR_QUALITY
  2713. fsensor_oq_meassure_start(40);
  2714. #endif //FSENSOR_QUALITY
  2715. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2716. current_position[E_AXIS] += 40;
  2717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2718. st_synchronize();
  2719. marlin_rise_z();
  2720. current_position[E_AXIS] += 30;
  2721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2722. load_filament_final_feed(); //slow sequence
  2723. st_synchronize();
  2724. Sound_MakeCustom(50,500,false);
  2725. if (!farm_mode && loading_flag) {
  2726. lcd_load_filament_color_check();
  2727. }
  2728. lcd_update_enable(true);
  2729. lcd_update(2);
  2730. lcd_setstatuspgm(_T(WELCOME_MSG));
  2731. disable_z();
  2732. loading_flag = false;
  2733. custom_message_type = CustomMsg::Status;
  2734. #ifdef FSENSOR_QUALITY
  2735. fsensor_oq_meassure_stop();
  2736. if (!fsensor_oq_result())
  2737. {
  2738. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2739. lcd_update_enable(true);
  2740. lcd_update(2);
  2741. if (disable)
  2742. fsensor_disable();
  2743. }
  2744. #endif //FSENSOR_QUALITY
  2745. }
  2746. }
  2747. /**
  2748. * @brief Get serial number from 32U2 processor
  2749. *
  2750. * Typical format of S/N is:CZPX0917X003XC13518
  2751. *
  2752. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2753. *
  2754. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2755. * reply is transmitted to serial port 1 character by character.
  2756. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2757. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2758. * in any case.
  2759. */
  2760. static void gcode_PRUSA_SN()
  2761. {
  2762. if (farm_mode) {
  2763. selectedSerialPort = 0;
  2764. putchar(';');
  2765. putchar('S');
  2766. int numbersRead = 0;
  2767. ShortTimer timeout;
  2768. timeout.start();
  2769. while (numbersRead < 19) {
  2770. while (MSerial.available() > 0) {
  2771. uint8_t serial_char = MSerial.read();
  2772. selectedSerialPort = 1;
  2773. putchar(serial_char);
  2774. numbersRead++;
  2775. selectedSerialPort = 0;
  2776. }
  2777. if (timeout.expired(100u)) break;
  2778. }
  2779. selectedSerialPort = 1;
  2780. putchar('\n');
  2781. #if 0
  2782. for (int b = 0; b < 3; b++) {
  2783. _tone(BEEPER, 110);
  2784. _delay(50);
  2785. _noTone(BEEPER);
  2786. _delay(50);
  2787. }
  2788. #endif
  2789. } else {
  2790. puts_P(_N("Not in farm mode."));
  2791. }
  2792. }
  2793. #ifdef BACKLASH_X
  2794. extern uint8_t st_backlash_x;
  2795. #endif //BACKLASH_X
  2796. #ifdef BACKLASH_Y
  2797. extern uint8_t st_backlash_y;
  2798. #endif //BACKLASH_Y
  2799. //! @brief Parse and process commands
  2800. //!
  2801. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2802. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2803. //!
  2804. //! Implemented Codes
  2805. //! -------------------
  2806. //!
  2807. //!@n PRUSA CODES
  2808. //!@n P F - Returns FW versions
  2809. //!@n P R - Returns revision of printer
  2810. //!
  2811. //!@n G0 -> G1
  2812. //!@n G1 - Coordinated Movement X Y Z E
  2813. //!@n G2 - CW ARC
  2814. //!@n G3 - CCW ARC
  2815. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2816. //!@n G10 - retract filament according to settings of M207
  2817. //!@n G11 - retract recover filament according to settings of M208
  2818. //!@n G28 - Home all Axis
  2819. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2820. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2821. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2822. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2823. //!@n G80 - Automatic mesh bed leveling
  2824. //!@n G81 - Print bed profile
  2825. //!@n G90 - Use Absolute Coordinates
  2826. //!@n G91 - Use Relative Coordinates
  2827. //!@n G92 - Set current position to coordinates given
  2828. //!
  2829. //!@n M Codes
  2830. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2831. //!@n M1 - Same as M0
  2832. //!@n M17 - Enable/Power all stepper motors
  2833. //!@n M18 - Disable all stepper motors; same as M84
  2834. //!@n M20 - List SD card
  2835. //!@n M21 - Init SD card
  2836. //!@n M22 - Release SD card
  2837. //!@n M23 - Select SD file (M23 filename.g)
  2838. //!@n M24 - Start/resume SD print
  2839. //!@n M25 - Pause SD print
  2840. //!@n M26 - Set SD position in bytes (M26 S12345)
  2841. //!@n M27 - Report SD print status
  2842. //!@n M28 - Start SD write (M28 filename.g)
  2843. //!@n M29 - Stop SD write
  2844. //!@n M30 - Delete file from SD (M30 filename.g)
  2845. //!@n M31 - Output time since last M109 or SD card start to serial
  2846. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2847. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2848. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2849. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2850. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2851. //!@n M73 - Show percent done and print time remaining
  2852. //!@n M80 - Turn on Power Supply
  2853. //!@n M81 - Turn off Power Supply
  2854. //!@n M82 - Set E codes absolute (default)
  2855. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2856. //!@n M84 - Disable steppers until next move,
  2857. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2858. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2859. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2860. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2861. //!@n M104 - Set extruder target temp
  2862. //!@n M105 - Read current temp
  2863. //!@n M106 - Fan on
  2864. //!@n M107 - Fan off
  2865. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2866. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2867. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2868. //!@n M112 - Emergency stop
  2869. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2870. //!@n M114 - Output current position to serial port
  2871. //!@n M115 - Capabilities string
  2872. //!@n M117 - display message
  2873. //!@n M119 - Output Endstop status to serial port
  2874. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2875. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2876. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2877. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2878. //!@n M140 - Set bed target temp
  2879. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2880. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2881. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2882. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2883. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2884. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2885. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2886. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2887. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2888. //!@n M206 - set additional homing offset
  2889. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2890. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2891. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2892. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2893. //!@n M220 S<factor in percent>- set speed factor override percentage
  2894. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2895. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2896. //!@n M240 - Trigger a camera to take a photograph
  2897. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2898. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2899. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2900. //!@n M301 - Set PID parameters P I and D
  2901. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2902. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2903. //!@n M304 - Set bed PID parameters P I and D
  2904. //!@n M400 - Finish all moves
  2905. //!@n M401 - Lower z-probe if present
  2906. //!@n M402 - Raise z-probe if present
  2907. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2908. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2909. //!@n M406 - Turn off Filament Sensor extrusion control
  2910. //!@n M407 - Displays measured filament diameter
  2911. //!@n M500 - stores parameters in EEPROM
  2912. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2913. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2914. //!@n M503 - print the current settings (from memory not from EEPROM)
  2915. //!@n M509 - force language selection on next restart
  2916. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2917. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2918. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2919. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2920. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2921. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2922. //!@n M907 - Set digital trimpot motor current using axis codes.
  2923. //!@n M908 - Control digital trimpot directly.
  2924. //!@n M350 - Set microstepping mode.
  2925. //!@n M351 - Toggle MS1 MS2 pins directly.
  2926. //!
  2927. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2928. //!@n M999 - Restart after being stopped by error
  2929. void process_commands()
  2930. {
  2931. #ifdef FANCHECK
  2932. if (fan_check_error){
  2933. if( fan_check_error == EFCE_DETECTED ){
  2934. fan_check_error = EFCE_REPORTED;
  2935. if(is_usb_printing){
  2936. SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSE);
  2937. }
  2938. else{
  2939. lcd_pause_print();
  2940. }
  2941. } // otherwise it has already been reported, so just ignore further processing
  2942. return;
  2943. }
  2944. #endif
  2945. if (!buflen) return; //empty command
  2946. #ifdef FILAMENT_RUNOUT_SUPPORT
  2947. SET_INPUT(FR_SENS);
  2948. #endif
  2949. #ifdef CMDBUFFER_DEBUG
  2950. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2951. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2952. SERIAL_ECHOLNPGM("");
  2953. SERIAL_ECHOPGM("In cmdqueue: ");
  2954. SERIAL_ECHO(buflen);
  2955. SERIAL_ECHOLNPGM("");
  2956. #endif /* CMDBUFFER_DEBUG */
  2957. unsigned long codenum; //throw away variable
  2958. char *starpos = NULL;
  2959. #ifdef ENABLE_AUTO_BED_LEVELING
  2960. float x_tmp, y_tmp, z_tmp, real_z;
  2961. #endif
  2962. // PRUSA GCODES
  2963. KEEPALIVE_STATE(IN_HANDLER);
  2964. #ifdef SNMM
  2965. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2966. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2967. int8_t SilentMode;
  2968. #endif
  2969. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2970. starpos = (strchr(strchr_pointer + 5, '*'));
  2971. if (starpos != NULL)
  2972. *(starpos) = '\0';
  2973. lcd_setstatus(strchr_pointer + 5);
  2974. }
  2975. #ifdef TMC2130
  2976. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2977. {
  2978. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2979. {
  2980. uint8_t mask = 0;
  2981. if (code_seen('X')) mask |= X_AXIS_MASK;
  2982. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2983. crashdet_detected(mask);
  2984. }
  2985. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2986. crashdet_recover();
  2987. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2988. crashdet_cancel();
  2989. }
  2990. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2991. {
  2992. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2993. {
  2994. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2995. axis = (axis == 'E')?3:(axis - 'X');
  2996. if (axis < 4)
  2997. {
  2998. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2999. tmc2130_set_wave(axis, 247, fac);
  3000. }
  3001. }
  3002. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  3003. {
  3004. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3005. axis = (axis == 'E')?3:(axis - 'X');
  3006. if (axis < 4)
  3007. {
  3008. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3009. uint16_t res = tmc2130_get_res(axis);
  3010. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3011. }
  3012. }
  3013. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3014. {
  3015. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3016. axis = (axis == 'E')?3:(axis - 'X');
  3017. if (axis < 4)
  3018. {
  3019. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3020. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3021. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3022. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3023. char* str_end = 0;
  3024. if (CMDBUFFER_CURRENT_STRING[14])
  3025. {
  3026. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3027. if (str_end && *str_end)
  3028. {
  3029. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3030. if (str_end && *str_end)
  3031. {
  3032. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3033. if (str_end && *str_end)
  3034. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3035. }
  3036. }
  3037. }
  3038. tmc2130_chopper_config[axis].toff = chop0;
  3039. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3040. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3041. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3042. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3043. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3044. }
  3045. }
  3046. }
  3047. #ifdef BACKLASH_X
  3048. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3049. {
  3050. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3051. st_backlash_x = bl;
  3052. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3053. }
  3054. #endif //BACKLASH_X
  3055. #ifdef BACKLASH_Y
  3056. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3057. {
  3058. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3059. st_backlash_y = bl;
  3060. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3061. }
  3062. #endif //BACKLASH_Y
  3063. #endif //TMC2130
  3064. else if(code_seen("PRUSA")){
  3065. if (code_seen("Ping")) { //! PRUSA Ping
  3066. if (farm_mode) {
  3067. PingTime = _millis();
  3068. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3069. }
  3070. }
  3071. else if (code_seen("PRN")) { //! PRUSA PRN
  3072. printf_P(_N("%d"), status_number);
  3073. }else if (code_seen("FAN")) { //! PRUSA FAN
  3074. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3075. }else if (code_seen("fn")) { //! PRUSA fn
  3076. if (farm_mode) {
  3077. printf_P(_N("%d"), farm_no);
  3078. }
  3079. else {
  3080. puts_P(_N("Not in farm mode."));
  3081. }
  3082. }
  3083. else if (code_seen("thx")) //! PRUSA thx
  3084. {
  3085. no_response = false;
  3086. }
  3087. else if (code_seen("uvlo")) //! PRUSA uvlo
  3088. {
  3089. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3090. enquecommand_P(PSTR("M24"));
  3091. }
  3092. #ifdef FILAMENT_SENSOR
  3093. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3094. {
  3095. fsensor_restore_print_and_continue();
  3096. }
  3097. #endif //FILAMENT_SENSOR
  3098. else if (code_seen("MMURES")) //! PRUSA MMURES
  3099. {
  3100. mmu_reset();
  3101. }
  3102. else if (code_seen("RESET")) { //! PRUSA RESET
  3103. // careful!
  3104. if (farm_mode) {
  3105. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3106. boot_app_magic = BOOT_APP_MAGIC;
  3107. boot_app_flags = BOOT_APP_FLG_RUN;
  3108. wdt_enable(WDTO_15MS);
  3109. cli();
  3110. while(1);
  3111. #else //WATCHDOG
  3112. asm volatile("jmp 0x3E000");
  3113. #endif //WATCHDOG
  3114. }
  3115. else {
  3116. MYSERIAL.println("Not in farm mode.");
  3117. }
  3118. }else if (code_seen("fv")) { //! PRUSA fv
  3119. // get file version
  3120. #ifdef SDSUPPORT
  3121. card.openFile(strchr_pointer + 3,true);
  3122. while (true) {
  3123. uint16_t readByte = card.get();
  3124. MYSERIAL.write(readByte);
  3125. if (readByte=='\n') {
  3126. break;
  3127. }
  3128. }
  3129. card.closefile();
  3130. #endif // SDSUPPORT
  3131. } else if (code_seen("M28")) { //! PRUSA M28
  3132. trace();
  3133. prusa_sd_card_upload = true;
  3134. card.openFile(strchr_pointer+4,false);
  3135. } else if (code_seen("SN")) { //! PRUSA SN
  3136. gcode_PRUSA_SN();
  3137. } else if(code_seen("Fir")){ //! PRUSA Fir
  3138. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3139. } else if(code_seen("Rev")){ //! PRUSA Rev
  3140. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3141. } else if(code_seen("Lang")) { //! PRUSA Lang
  3142. lang_reset();
  3143. } else if(code_seen("Lz")) { //! PRUSA Lz
  3144. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3145. } else if(code_seen("Beat")) { //! PRUSA Beat
  3146. // Kick farm link timer
  3147. kicktime = _millis();
  3148. } else if(code_seen("FR")) { //! PRUSA FR
  3149. // Factory full reset
  3150. factory_reset(0);
  3151. //-//
  3152. /*
  3153. } else if(code_seen("rrr")) {
  3154. MYSERIAL.println("=== checking ===");
  3155. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3156. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3157. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3158. MYSERIAL.println(farm_mode,DEC);
  3159. MYSERIAL.println(eCheckMode,DEC);
  3160. } else if(code_seen("www")) {
  3161. MYSERIAL.println("=== @ FF ===");
  3162. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3163. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3164. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3165. */
  3166. } else if (code_seen("nozzle")) { //! PRUSA nozzle
  3167. uint16_t nDiameter;
  3168. if(code_seen('D'))
  3169. {
  3170. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3171. nozzle_diameter_check(nDiameter);
  3172. }
  3173. else if(code_seen("set") && farm_mode)
  3174. {
  3175. strchr_pointer++; // skip 1st char (~ 's')
  3176. strchr_pointer++; // skip 2nd char (~ 'e')
  3177. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3178. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3179. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3180. }
  3181. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3182. //-// !!! SupportMenu
  3183. /*
  3184. // musi byt PRED "PRUSA model"
  3185. } else if (code_seen("smodel")) { //! PRUSA smodel
  3186. size_t nOffset;
  3187. // ! -> "l"
  3188. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3189. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3190. if(*(strchr_pointer+1+nOffset))
  3191. printer_smodel_check(strchr_pointer);
  3192. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3193. } else if (code_seen("model")) { //! PRUSA model
  3194. uint16_t nPrinterModel;
  3195. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3196. nPrinterModel=(uint16_t)code_value_long();
  3197. if(nPrinterModel!=0)
  3198. printer_model_check(nPrinterModel);
  3199. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3200. } else if (code_seen("version")) { //! PRUSA version
  3201. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3202. while(*strchr_pointer==' ') // skip leading spaces
  3203. strchr_pointer++;
  3204. if(*strchr_pointer!=0)
  3205. fw_version_check(strchr_pointer);
  3206. else SERIAL_PROTOCOLLN(FW_VERSION);
  3207. } else if (code_seen("gcode")) { //! PRUSA gcode
  3208. uint16_t nGcodeLevel;
  3209. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3210. nGcodeLevel=(uint16_t)code_value_long();
  3211. if(nGcodeLevel!=0)
  3212. gcode_level_check(nGcodeLevel);
  3213. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3214. */
  3215. }
  3216. //else if (code_seen('Cal')) {
  3217. // lcd_calibration();
  3218. // }
  3219. }
  3220. else if (code_seen('^')) {
  3221. // nothing, this is a version line
  3222. } else if(code_seen('G'))
  3223. {
  3224. gcode_in_progress = (int)code_value();
  3225. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3226. switch (gcode_in_progress)
  3227. {
  3228. case 0: // G0 -> G1
  3229. case 1: // G1
  3230. if(Stopped == false) {
  3231. #ifdef FILAMENT_RUNOUT_SUPPORT
  3232. if(READ(FR_SENS)){
  3233. int feedmultiplyBckp=feedmultiply;
  3234. float target[4];
  3235. float lastpos[4];
  3236. target[X_AXIS]=current_position[X_AXIS];
  3237. target[Y_AXIS]=current_position[Y_AXIS];
  3238. target[Z_AXIS]=current_position[Z_AXIS];
  3239. target[E_AXIS]=current_position[E_AXIS];
  3240. lastpos[X_AXIS]=current_position[X_AXIS];
  3241. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3242. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3243. lastpos[E_AXIS]=current_position[E_AXIS];
  3244. //retract by E
  3245. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3246. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3247. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3248. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3249. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3250. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3251. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3252. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3253. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3254. //finish moves
  3255. st_synchronize();
  3256. //disable extruder steppers so filament can be removed
  3257. disable_e0();
  3258. disable_e1();
  3259. disable_e2();
  3260. _delay(100);
  3261. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3262. uint8_t cnt=0;
  3263. int counterBeep = 0;
  3264. lcd_wait_interact();
  3265. while(!lcd_clicked()){
  3266. cnt++;
  3267. manage_heater();
  3268. manage_inactivity(true);
  3269. //lcd_update(0);
  3270. if(cnt==0)
  3271. {
  3272. #if BEEPER > 0
  3273. if (counterBeep== 500){
  3274. counterBeep = 0;
  3275. }
  3276. SET_OUTPUT(BEEPER);
  3277. if (counterBeep== 0){
  3278. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3279. WRITE(BEEPER,HIGH);
  3280. }
  3281. if (counterBeep== 20){
  3282. WRITE(BEEPER,LOW);
  3283. }
  3284. counterBeep++;
  3285. #else
  3286. #endif
  3287. }
  3288. }
  3289. WRITE(BEEPER,LOW);
  3290. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3291. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3292. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3293. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3294. lcd_change_fil_state = 0;
  3295. lcd_loading_filament();
  3296. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3297. lcd_change_fil_state = 0;
  3298. lcd_alright();
  3299. switch(lcd_change_fil_state){
  3300. case 2:
  3301. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3302. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3303. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3304. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3305. lcd_loading_filament();
  3306. break;
  3307. case 3:
  3308. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3309. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3310. lcd_loading_color();
  3311. break;
  3312. default:
  3313. lcd_change_success();
  3314. break;
  3315. }
  3316. }
  3317. target[E_AXIS]+= 5;
  3318. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3319. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3320. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3321. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3322. //plan_set_e_position(current_position[E_AXIS]);
  3323. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3324. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3325. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3326. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3327. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3328. plan_set_e_position(lastpos[E_AXIS]);
  3329. feedmultiply=feedmultiplyBckp;
  3330. char cmd[9];
  3331. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3332. enquecommand(cmd);
  3333. }
  3334. #endif
  3335. get_coordinates(); // For X Y Z E F
  3336. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3337. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3338. }
  3339. #ifdef FWRETRACT
  3340. if(cs.autoretract_enabled)
  3341. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3342. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3343. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3344. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3345. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3346. retract(!retracted[active_extruder]);
  3347. return;
  3348. }
  3349. }
  3350. #endif //FWRETRACT
  3351. prepare_move();
  3352. //ClearToSend();
  3353. }
  3354. break;
  3355. case 2: // G2 - CW ARC
  3356. if(Stopped == false) {
  3357. get_arc_coordinates();
  3358. prepare_arc_move(true);
  3359. }
  3360. break;
  3361. case 3: // G3 - CCW ARC
  3362. if(Stopped == false) {
  3363. get_arc_coordinates();
  3364. prepare_arc_move(false);
  3365. }
  3366. break;
  3367. case 4: // G4 dwell
  3368. codenum = 0;
  3369. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3370. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3371. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3372. st_synchronize();
  3373. codenum += _millis(); // keep track of when we started waiting
  3374. previous_millis_cmd = _millis();
  3375. while(_millis() < codenum) {
  3376. manage_heater();
  3377. manage_inactivity();
  3378. lcd_update(0);
  3379. }
  3380. break;
  3381. #ifdef FWRETRACT
  3382. case 10: // G10 retract
  3383. #if EXTRUDERS > 1
  3384. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3385. retract(true,retracted_swap[active_extruder]);
  3386. #else
  3387. retract(true);
  3388. #endif
  3389. break;
  3390. case 11: // G11 retract_recover
  3391. #if EXTRUDERS > 1
  3392. retract(false,retracted_swap[active_extruder]);
  3393. #else
  3394. retract(false);
  3395. #endif
  3396. break;
  3397. #endif //FWRETRACT
  3398. case 28: //G28 Home all Axis one at a time
  3399. {
  3400. long home_x_value = 0;
  3401. long home_y_value = 0;
  3402. long home_z_value = 0;
  3403. // Which axes should be homed?
  3404. bool home_x = code_seen(axis_codes[X_AXIS]);
  3405. home_x_value = code_value_long();
  3406. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3407. home_y_value = code_value_long();
  3408. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3409. home_z_value = code_value_long();
  3410. bool without_mbl = code_seen('W');
  3411. // calibrate?
  3412. #ifdef TMC2130
  3413. bool calib = code_seen('C');
  3414. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3415. #else
  3416. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3417. #endif //TMC2130
  3418. if ((home_x || home_y || without_mbl || home_z) == false) {
  3419. // Push the commands to the front of the message queue in the reverse order!
  3420. // There shall be always enough space reserved for these commands.
  3421. goto case_G80;
  3422. }
  3423. break;
  3424. }
  3425. #ifdef ENABLE_AUTO_BED_LEVELING
  3426. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3427. {
  3428. #if Z_MIN_PIN == -1
  3429. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3430. #endif
  3431. // Prevent user from running a G29 without first homing in X and Y
  3432. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3433. {
  3434. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3435. SERIAL_ECHO_START;
  3436. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3437. break; // abort G29, since we don't know where we are
  3438. }
  3439. st_synchronize();
  3440. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3441. //vector_3 corrected_position = plan_get_position_mm();
  3442. //corrected_position.debug("position before G29");
  3443. plan_bed_level_matrix.set_to_identity();
  3444. vector_3 uncorrected_position = plan_get_position();
  3445. //uncorrected_position.debug("position durring G29");
  3446. current_position[X_AXIS] = uncorrected_position.x;
  3447. current_position[Y_AXIS] = uncorrected_position.y;
  3448. current_position[Z_AXIS] = uncorrected_position.z;
  3449. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3450. int l_feedmultiply = setup_for_endstop_move();
  3451. feedrate = homing_feedrate[Z_AXIS];
  3452. #ifdef AUTO_BED_LEVELING_GRID
  3453. // probe at the points of a lattice grid
  3454. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3455. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3456. // solve the plane equation ax + by + d = z
  3457. // A is the matrix with rows [x y 1] for all the probed points
  3458. // B is the vector of the Z positions
  3459. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3460. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3461. // "A" matrix of the linear system of equations
  3462. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3463. // "B" vector of Z points
  3464. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3465. int probePointCounter = 0;
  3466. bool zig = true;
  3467. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3468. {
  3469. int xProbe, xInc;
  3470. if (zig)
  3471. {
  3472. xProbe = LEFT_PROBE_BED_POSITION;
  3473. //xEnd = RIGHT_PROBE_BED_POSITION;
  3474. xInc = xGridSpacing;
  3475. zig = false;
  3476. } else // zag
  3477. {
  3478. xProbe = RIGHT_PROBE_BED_POSITION;
  3479. //xEnd = LEFT_PROBE_BED_POSITION;
  3480. xInc = -xGridSpacing;
  3481. zig = true;
  3482. }
  3483. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3484. {
  3485. float z_before;
  3486. if (probePointCounter == 0)
  3487. {
  3488. // raise before probing
  3489. z_before = Z_RAISE_BEFORE_PROBING;
  3490. } else
  3491. {
  3492. // raise extruder
  3493. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3494. }
  3495. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3496. eqnBVector[probePointCounter] = measured_z;
  3497. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3498. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3499. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3500. probePointCounter++;
  3501. xProbe += xInc;
  3502. }
  3503. }
  3504. clean_up_after_endstop_move(l_feedmultiply);
  3505. // solve lsq problem
  3506. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3507. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3508. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3509. SERIAL_PROTOCOLPGM(" b: ");
  3510. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3511. SERIAL_PROTOCOLPGM(" d: ");
  3512. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3513. set_bed_level_equation_lsq(plane_equation_coefficients);
  3514. free(plane_equation_coefficients);
  3515. #else // AUTO_BED_LEVELING_GRID not defined
  3516. // Probe at 3 arbitrary points
  3517. // probe 1
  3518. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3519. // probe 2
  3520. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3521. // probe 3
  3522. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3523. clean_up_after_endstop_move(l_feedmultiply);
  3524. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3525. #endif // AUTO_BED_LEVELING_GRID
  3526. st_synchronize();
  3527. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3528. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3529. // When the bed is uneven, this height must be corrected.
  3530. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3531. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3532. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3533. z_tmp = current_position[Z_AXIS];
  3534. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3535. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3536. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3537. }
  3538. break;
  3539. #ifndef Z_PROBE_SLED
  3540. case 30: // G30 Single Z Probe
  3541. {
  3542. st_synchronize();
  3543. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3544. int l_feedmultiply = setup_for_endstop_move();
  3545. feedrate = homing_feedrate[Z_AXIS];
  3546. run_z_probe();
  3547. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3548. SERIAL_PROTOCOLPGM(" X: ");
  3549. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3550. SERIAL_PROTOCOLPGM(" Y: ");
  3551. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3552. SERIAL_PROTOCOLPGM(" Z: ");
  3553. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3554. SERIAL_PROTOCOLPGM("\n");
  3555. clean_up_after_endstop_move(l_feedmultiply);
  3556. }
  3557. break;
  3558. #else
  3559. case 31: // dock the sled
  3560. dock_sled(true);
  3561. break;
  3562. case 32: // undock the sled
  3563. dock_sled(false);
  3564. break;
  3565. #endif // Z_PROBE_SLED
  3566. #endif // ENABLE_AUTO_BED_LEVELING
  3567. #ifdef MESH_BED_LEVELING
  3568. case 30: // G30 Single Z Probe
  3569. {
  3570. st_synchronize();
  3571. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3572. int l_feedmultiply = setup_for_endstop_move();
  3573. feedrate = homing_feedrate[Z_AXIS];
  3574. find_bed_induction_sensor_point_z(-10.f, 3);
  3575. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3576. clean_up_after_endstop_move(l_feedmultiply);
  3577. }
  3578. break;
  3579. case 75:
  3580. {
  3581. for (int i = 40; i <= 110; i++)
  3582. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3583. }
  3584. break;
  3585. case 76: //! G76 - PINDA probe temperature calibration
  3586. {
  3587. #ifdef PINDA_THERMISTOR
  3588. if (true)
  3589. {
  3590. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3591. //we need to know accurate position of first calibration point
  3592. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3593. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3594. break;
  3595. }
  3596. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3597. {
  3598. // We don't know where we are! HOME!
  3599. // Push the commands to the front of the message queue in the reverse order!
  3600. // There shall be always enough space reserved for these commands.
  3601. repeatcommand_front(); // repeat G76 with all its parameters
  3602. enquecommand_front_P((PSTR("G28 W0")));
  3603. break;
  3604. }
  3605. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3606. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3607. if (result)
  3608. {
  3609. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3611. current_position[Z_AXIS] = 50;
  3612. current_position[Y_AXIS] = 180;
  3613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3614. st_synchronize();
  3615. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3616. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3617. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3619. st_synchronize();
  3620. gcode_G28(false, false, true);
  3621. }
  3622. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3623. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3624. current_position[Z_AXIS] = 100;
  3625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3626. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3627. lcd_temp_cal_show_result(false);
  3628. break;
  3629. }
  3630. }
  3631. lcd_update_enable(true);
  3632. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3633. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3634. float zero_z;
  3635. int z_shift = 0; //unit: steps
  3636. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3637. if (start_temp < 35) start_temp = 35;
  3638. if (start_temp < current_temperature_pinda) start_temp += 5;
  3639. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3640. // setTargetHotend(200, 0);
  3641. setTargetBed(70 + (start_temp - 30));
  3642. custom_message_type = CustomMsg::TempCal;
  3643. custom_message_state = 1;
  3644. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3645. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3647. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3648. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3650. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3652. st_synchronize();
  3653. while (current_temperature_pinda < start_temp)
  3654. {
  3655. delay_keep_alive(1000);
  3656. serialecho_temperatures();
  3657. }
  3658. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3659. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3661. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3662. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3664. st_synchronize();
  3665. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3666. if (find_z_result == false) {
  3667. lcd_temp_cal_show_result(find_z_result);
  3668. break;
  3669. }
  3670. zero_z = current_position[Z_AXIS];
  3671. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3672. int i = -1; for (; i < 5; i++)
  3673. {
  3674. float temp = (40 + i * 5);
  3675. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3676. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3677. if (start_temp <= temp) break;
  3678. }
  3679. for (i++; i < 5; i++)
  3680. {
  3681. float temp = (40 + i * 5);
  3682. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3683. custom_message_state = i + 2;
  3684. setTargetBed(50 + 10 * (temp - 30) / 5);
  3685. // setTargetHotend(255, 0);
  3686. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3688. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3689. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3691. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3693. st_synchronize();
  3694. while (current_temperature_pinda < temp)
  3695. {
  3696. delay_keep_alive(1000);
  3697. serialecho_temperatures();
  3698. }
  3699. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3701. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3702. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3704. st_synchronize();
  3705. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3706. if (find_z_result == false) {
  3707. lcd_temp_cal_show_result(find_z_result);
  3708. break;
  3709. }
  3710. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3711. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3712. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3713. }
  3714. lcd_temp_cal_show_result(true);
  3715. break;
  3716. }
  3717. #endif //PINDA_THERMISTOR
  3718. setTargetBed(PINDA_MIN_T);
  3719. float zero_z;
  3720. int z_shift = 0; //unit: steps
  3721. int t_c; // temperature
  3722. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3723. // We don't know where we are! HOME!
  3724. // Push the commands to the front of the message queue in the reverse order!
  3725. // There shall be always enough space reserved for these commands.
  3726. repeatcommand_front(); // repeat G76 with all its parameters
  3727. enquecommand_front_P((PSTR("G28 W0")));
  3728. break;
  3729. }
  3730. puts_P(_N("PINDA probe calibration start"));
  3731. custom_message_type = CustomMsg::TempCal;
  3732. custom_message_state = 1;
  3733. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3734. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3735. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3736. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3738. st_synchronize();
  3739. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3740. delay_keep_alive(1000);
  3741. serialecho_temperatures();
  3742. }
  3743. //enquecommand_P(PSTR("M190 S50"));
  3744. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3745. delay_keep_alive(1000);
  3746. serialecho_temperatures();
  3747. }
  3748. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3749. current_position[Z_AXIS] = 5;
  3750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3751. current_position[X_AXIS] = BED_X0;
  3752. current_position[Y_AXIS] = BED_Y0;
  3753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3754. st_synchronize();
  3755. find_bed_induction_sensor_point_z(-1.f);
  3756. zero_z = current_position[Z_AXIS];
  3757. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3758. for (int i = 0; i<5; i++) {
  3759. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3760. custom_message_state = i + 2;
  3761. t_c = 60 + i * 10;
  3762. setTargetBed(t_c);
  3763. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3764. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3765. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3767. st_synchronize();
  3768. while (degBed() < t_c) {
  3769. delay_keep_alive(1000);
  3770. serialecho_temperatures();
  3771. }
  3772. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3773. delay_keep_alive(1000);
  3774. serialecho_temperatures();
  3775. }
  3776. current_position[Z_AXIS] = 5;
  3777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3778. current_position[X_AXIS] = BED_X0;
  3779. current_position[Y_AXIS] = BED_Y0;
  3780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3781. st_synchronize();
  3782. find_bed_induction_sensor_point_z(-1.f);
  3783. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3784. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3785. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3786. }
  3787. custom_message_type = CustomMsg::Status;
  3788. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3789. puts_P(_N("Temperature calibration done."));
  3790. disable_x();
  3791. disable_y();
  3792. disable_z();
  3793. disable_e0();
  3794. disable_e1();
  3795. disable_e2();
  3796. setTargetBed(0); //set bed target temperature back to 0
  3797. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3798. temp_cal_active = true;
  3799. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3800. lcd_update_enable(true);
  3801. lcd_update(2);
  3802. }
  3803. break;
  3804. /**
  3805. * G80: Mesh-based Z probe, probes a grid and produces a
  3806. * mesh to compensate for variable bed height
  3807. *
  3808. * The S0 report the points as below
  3809. * @code{.unparsed}
  3810. * +----> X-axis
  3811. * |
  3812. * |
  3813. * v Y-axis
  3814. * @endcode
  3815. */
  3816. case 80:
  3817. #ifdef MK1BP
  3818. break;
  3819. #endif //MK1BP
  3820. case_G80:
  3821. {
  3822. mesh_bed_leveling_flag = true;
  3823. static bool run = false;
  3824. #ifdef SUPPORT_VERBOSITY
  3825. int8_t verbosity_level = 0;
  3826. if (code_seen('V')) {
  3827. // Just 'V' without a number counts as V1.
  3828. char c = strchr_pointer[1];
  3829. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3830. }
  3831. #endif //SUPPORT_VERBOSITY
  3832. // Firstly check if we know where we are
  3833. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3834. // We don't know where we are! HOME!
  3835. // Push the commands to the front of the message queue in the reverse order!
  3836. // There shall be always enough space reserved for these commands.
  3837. if (lcd_commands_type != LcdCommands::StopPrint) {
  3838. repeatcommand_front(); // repeat G80 with all its parameters
  3839. enquecommand_front_P((PSTR("G28 W0")));
  3840. }
  3841. else {
  3842. mesh_bed_leveling_flag = false;
  3843. }
  3844. break;
  3845. }
  3846. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3847. if (code_seen('N')) {
  3848. nMeasPoints = code_value_uint8();
  3849. if (nMeasPoints != 7) {
  3850. nMeasPoints = 3;
  3851. }
  3852. }
  3853. else {
  3854. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3855. }
  3856. uint8_t nProbeRetry = 3;
  3857. if (code_seen('R')) {
  3858. nProbeRetry = code_value_uint8();
  3859. if (nProbeRetry > 10) {
  3860. nProbeRetry = 10;
  3861. }
  3862. }
  3863. else {
  3864. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3865. }
  3866. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3867. bool temp_comp_start = true;
  3868. #ifdef PINDA_THERMISTOR
  3869. temp_comp_start = false;
  3870. #endif //PINDA_THERMISTOR
  3871. if (temp_comp_start)
  3872. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3873. if (lcd_commands_type != LcdCommands::StopPrint) {
  3874. temp_compensation_start();
  3875. run = true;
  3876. repeatcommand_front(); // repeat G80 with all its parameters
  3877. enquecommand_front_P((PSTR("G28 W0")));
  3878. }
  3879. else {
  3880. mesh_bed_leveling_flag = false;
  3881. }
  3882. break;
  3883. }
  3884. run = false;
  3885. if (lcd_commands_type == LcdCommands::StopPrint) {
  3886. mesh_bed_leveling_flag = false;
  3887. break;
  3888. }
  3889. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3890. CustomMsg custom_message_type_old = custom_message_type;
  3891. unsigned int custom_message_state_old = custom_message_state;
  3892. custom_message_type = CustomMsg::MeshBedLeveling;
  3893. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3894. lcd_update(1);
  3895. mbl.reset(); //reset mesh bed leveling
  3896. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3897. // consumed during the first movements following this statement.
  3898. babystep_undo();
  3899. // Cycle through all points and probe them
  3900. // First move up. During this first movement, the babystepping will be reverted.
  3901. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3903. // The move to the first calibration point.
  3904. current_position[X_AXIS] = BED_X0;
  3905. current_position[Y_AXIS] = BED_Y0;
  3906. #ifdef SUPPORT_VERBOSITY
  3907. if (verbosity_level >= 1)
  3908. {
  3909. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3910. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3911. }
  3912. #else //SUPPORT_VERBOSITY
  3913. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3914. #endif //SUPPORT_VERBOSITY
  3915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3916. // Wait until the move is finished.
  3917. st_synchronize();
  3918. uint8_t mesh_point = 0; //index number of calibration point
  3919. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3920. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3921. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3922. #ifdef SUPPORT_VERBOSITY
  3923. if (verbosity_level >= 1) {
  3924. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3925. }
  3926. #endif // SUPPORT_VERBOSITY
  3927. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3928. const char *kill_message = NULL;
  3929. while (mesh_point != nMeasPoints * nMeasPoints) {
  3930. // Get coords of a measuring point.
  3931. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3932. uint8_t iy = mesh_point / nMeasPoints;
  3933. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3934. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3935. custom_message_state--;
  3936. mesh_point++;
  3937. continue; //skip
  3938. }*/
  3939. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3940. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3941. {
  3942. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3943. }
  3944. float z0 = 0.f;
  3945. if (has_z && (mesh_point > 0)) {
  3946. uint16_t z_offset_u = 0;
  3947. if (nMeasPoints == 7) {
  3948. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3949. }
  3950. else {
  3951. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3952. }
  3953. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3954. #ifdef SUPPORT_VERBOSITY
  3955. if (verbosity_level >= 1) {
  3956. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3957. }
  3958. #endif // SUPPORT_VERBOSITY
  3959. }
  3960. // Move Z up to MESH_HOME_Z_SEARCH.
  3961. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3962. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3963. float init_z_bckp = current_position[Z_AXIS];
  3964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3965. st_synchronize();
  3966. // Move to XY position of the sensor point.
  3967. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3968. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3969. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3970. #ifdef SUPPORT_VERBOSITY
  3971. if (verbosity_level >= 1) {
  3972. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3973. SERIAL_PROTOCOL(mesh_point);
  3974. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3975. }
  3976. #else //SUPPORT_VERBOSITY
  3977. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3978. #endif // SUPPORT_VERBOSITY
  3979. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3981. st_synchronize();
  3982. // Go down until endstop is hit
  3983. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3984. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3985. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3986. break;
  3987. }
  3988. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3989. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3990. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3992. st_synchronize();
  3993. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3994. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3995. break;
  3996. }
  3997. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3998. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3999. break;
  4000. }
  4001. }
  4002. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4003. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4004. break;
  4005. }
  4006. #ifdef SUPPORT_VERBOSITY
  4007. if (verbosity_level >= 10) {
  4008. SERIAL_ECHOPGM("X: ");
  4009. MYSERIAL.print(current_position[X_AXIS], 5);
  4010. SERIAL_ECHOLNPGM("");
  4011. SERIAL_ECHOPGM("Y: ");
  4012. MYSERIAL.print(current_position[Y_AXIS], 5);
  4013. SERIAL_PROTOCOLPGM("\n");
  4014. }
  4015. #endif // SUPPORT_VERBOSITY
  4016. float offset_z = 0;
  4017. #ifdef PINDA_THERMISTOR
  4018. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4019. #endif //PINDA_THERMISTOR
  4020. // #ifdef SUPPORT_VERBOSITY
  4021. /* if (verbosity_level >= 1)
  4022. {
  4023. SERIAL_ECHOPGM("mesh bed leveling: ");
  4024. MYSERIAL.print(current_position[Z_AXIS], 5);
  4025. SERIAL_ECHOPGM(" offset: ");
  4026. MYSERIAL.print(offset_z, 5);
  4027. SERIAL_ECHOLNPGM("");
  4028. }*/
  4029. // #endif // SUPPORT_VERBOSITY
  4030. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4031. custom_message_state--;
  4032. mesh_point++;
  4033. lcd_update(1);
  4034. }
  4035. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4036. #ifdef SUPPORT_VERBOSITY
  4037. if (verbosity_level >= 20) {
  4038. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4039. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4040. MYSERIAL.print(current_position[Z_AXIS], 5);
  4041. }
  4042. #endif // SUPPORT_VERBOSITY
  4043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4044. st_synchronize();
  4045. if (mesh_point != nMeasPoints * nMeasPoints) {
  4046. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4047. bool bState;
  4048. do { // repeat until Z-leveling o.k.
  4049. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4050. #ifdef TMC2130
  4051. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4052. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4053. #else // TMC2130
  4054. lcd_wait_for_click_delay(0); // ~ no timeout
  4055. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4056. #endif // TMC2130
  4057. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4058. bState=enable_z_endstop(false);
  4059. current_position[Z_AXIS] -= 1;
  4060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4061. st_synchronize();
  4062. enable_z_endstop(true);
  4063. #ifdef TMC2130
  4064. tmc2130_home_enter(Z_AXIS_MASK);
  4065. #endif // TMC2130
  4066. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4068. st_synchronize();
  4069. #ifdef TMC2130
  4070. tmc2130_home_exit();
  4071. #endif // TMC2130
  4072. enable_z_endstop(bState);
  4073. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4074. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4075. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4076. lcd_update_enable(true); // display / status-line recovery
  4077. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4078. repeatcommand_front(); // re-run (i.e. of "G80")
  4079. break;
  4080. }
  4081. clean_up_after_endstop_move(l_feedmultiply);
  4082. // SERIAL_ECHOLNPGM("clean up finished ");
  4083. bool apply_temp_comp = true;
  4084. #ifdef PINDA_THERMISTOR
  4085. apply_temp_comp = false;
  4086. #endif
  4087. if (apply_temp_comp)
  4088. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4089. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4090. // SERIAL_ECHOLNPGM("babystep applied");
  4091. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4092. #ifdef SUPPORT_VERBOSITY
  4093. if (verbosity_level >= 1) {
  4094. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4095. }
  4096. #endif // SUPPORT_VERBOSITY
  4097. for (uint8_t i = 0; i < 4; ++i) {
  4098. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4099. long correction = 0;
  4100. if (code_seen(codes[i]))
  4101. correction = code_value_long();
  4102. else if (eeprom_bed_correction_valid) {
  4103. unsigned char *addr = (i < 2) ?
  4104. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4105. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4106. correction = eeprom_read_int8(addr);
  4107. }
  4108. if (correction == 0)
  4109. continue;
  4110. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4111. SERIAL_ERROR_START;
  4112. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4113. SERIAL_ECHO(correction);
  4114. SERIAL_ECHOLNPGM(" microns");
  4115. }
  4116. else {
  4117. float offset = float(correction) * 0.001f;
  4118. switch (i) {
  4119. case 0:
  4120. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4121. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4122. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4123. }
  4124. }
  4125. break;
  4126. case 1:
  4127. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4128. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4129. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4130. }
  4131. }
  4132. break;
  4133. case 2:
  4134. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4135. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4136. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4137. }
  4138. }
  4139. break;
  4140. case 3:
  4141. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4142. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4143. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4144. }
  4145. }
  4146. break;
  4147. }
  4148. }
  4149. }
  4150. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4151. if (nMeasPoints == 3) {
  4152. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4153. }
  4154. /*
  4155. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4156. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4157. SERIAL_PROTOCOLPGM(",");
  4158. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4159. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4160. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4161. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4162. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4163. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4164. SERIAL_PROTOCOLPGM(" ");
  4165. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4166. }
  4167. SERIAL_PROTOCOLPGM("\n");
  4168. }
  4169. */
  4170. if (nMeasPoints == 7 && magnet_elimination) {
  4171. mbl_interpolation(nMeasPoints);
  4172. }
  4173. /*
  4174. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4175. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4176. SERIAL_PROTOCOLPGM(",");
  4177. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4178. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4179. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4180. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4181. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4182. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4183. SERIAL_PROTOCOLPGM(" ");
  4184. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4185. }
  4186. SERIAL_PROTOCOLPGM("\n");
  4187. }
  4188. */
  4189. // SERIAL_ECHOLNPGM("Upsample finished");
  4190. mbl.active = 1; //activate mesh bed leveling
  4191. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4192. go_home_with_z_lift();
  4193. // SERIAL_ECHOLNPGM("Go home finished");
  4194. //unretract (after PINDA preheat retraction)
  4195. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4196. current_position[E_AXIS] += default_retraction;
  4197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4198. }
  4199. KEEPALIVE_STATE(NOT_BUSY);
  4200. // Restore custom message state
  4201. lcd_setstatuspgm(_T(WELCOME_MSG));
  4202. custom_message_type = custom_message_type_old;
  4203. custom_message_state = custom_message_state_old;
  4204. mesh_bed_leveling_flag = false;
  4205. mesh_bed_run_from_menu = false;
  4206. lcd_update(2);
  4207. }
  4208. break;
  4209. /**
  4210. * G81: Print mesh bed leveling status and bed profile if activated
  4211. */
  4212. case 81:
  4213. if (mbl.active) {
  4214. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4215. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4216. SERIAL_PROTOCOLPGM(",");
  4217. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4218. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4219. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4220. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4221. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4222. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4223. SERIAL_PROTOCOLPGM(" ");
  4224. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4225. }
  4226. SERIAL_PROTOCOLPGM("\n");
  4227. }
  4228. }
  4229. else
  4230. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4231. break;
  4232. #if 0
  4233. /**
  4234. * G82: Single Z probe at current location
  4235. *
  4236. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4237. *
  4238. */
  4239. case 82:
  4240. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4241. int l_feedmultiply = setup_for_endstop_move();
  4242. find_bed_induction_sensor_point_z();
  4243. clean_up_after_endstop_move(l_feedmultiply);
  4244. SERIAL_PROTOCOLPGM("Bed found at: ");
  4245. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4246. SERIAL_PROTOCOLPGM("\n");
  4247. break;
  4248. /**
  4249. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4250. */
  4251. case 83:
  4252. {
  4253. int babystepz = code_seen('S') ? code_value() : 0;
  4254. int BabyPosition = code_seen('P') ? code_value() : 0;
  4255. if (babystepz != 0) {
  4256. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4257. // Is the axis indexed starting with zero or one?
  4258. if (BabyPosition > 4) {
  4259. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4260. }else{
  4261. // Save it to the eeprom
  4262. babystepLoadZ = babystepz;
  4263. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4264. // adjust the Z
  4265. babystepsTodoZadd(babystepLoadZ);
  4266. }
  4267. }
  4268. }
  4269. break;
  4270. /**
  4271. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4272. */
  4273. case 84:
  4274. babystepsTodoZsubtract(babystepLoadZ);
  4275. // babystepLoadZ = 0;
  4276. break;
  4277. /**
  4278. * G85: Prusa3D specific: Pick best babystep
  4279. */
  4280. case 85:
  4281. lcd_pick_babystep();
  4282. break;
  4283. #endif
  4284. /**
  4285. * G86: Prusa3D specific: Disable babystep correction after home.
  4286. * This G-code will be performed at the start of a calibration script.
  4287. */
  4288. case 86:
  4289. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4290. break;
  4291. /**
  4292. * G87: Prusa3D specific: Enable babystep correction after home
  4293. * This G-code will be performed at the end of a calibration script.
  4294. */
  4295. case 87:
  4296. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4297. break;
  4298. /**
  4299. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4300. */
  4301. case 88:
  4302. break;
  4303. #endif // ENABLE_MESH_BED_LEVELING
  4304. case 90: // G90
  4305. relative_mode = false;
  4306. break;
  4307. case 91: // G91
  4308. relative_mode = true;
  4309. break;
  4310. case 92: // G92
  4311. if(!code_seen(axis_codes[E_AXIS]))
  4312. st_synchronize();
  4313. for(int8_t i=0; i < NUM_AXIS; i++) {
  4314. if(code_seen(axis_codes[i])) {
  4315. if(i == E_AXIS) {
  4316. current_position[i] = code_value();
  4317. plan_set_e_position(current_position[E_AXIS]);
  4318. }
  4319. else {
  4320. current_position[i] = code_value()+cs.add_homing[i];
  4321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4322. }
  4323. }
  4324. }
  4325. break;
  4326. case 98: //! G98 (activate farm mode)
  4327. farm_mode = 1;
  4328. PingTime = _millis();
  4329. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4330. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4331. SilentModeMenu = SILENT_MODE_OFF;
  4332. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4333. fCheckModeInit(); // alternatively invoke printer reset
  4334. break;
  4335. case 99: //! G99 (deactivate farm mode)
  4336. farm_mode = 0;
  4337. lcd_printer_connected();
  4338. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4339. lcd_update(2);
  4340. fCheckModeInit(); // alternatively invoke printer reset
  4341. break;
  4342. default:
  4343. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4344. }
  4345. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4346. gcode_in_progress = 0;
  4347. } // end if(code_seen('G'))
  4348. else if(code_seen('M'))
  4349. {
  4350. int index;
  4351. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4352. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4353. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4354. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4355. } else
  4356. {
  4357. mcode_in_progress = (int)code_value();
  4358. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4359. switch(mcode_in_progress)
  4360. {
  4361. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4362. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4363. {
  4364. char *src = strchr_pointer + 2;
  4365. codenum = 0;
  4366. bool hasP = false, hasS = false;
  4367. if (code_seen('P')) {
  4368. codenum = code_value(); // milliseconds to wait
  4369. hasP = codenum > 0;
  4370. }
  4371. if (code_seen('S')) {
  4372. codenum = code_value() * 1000; // seconds to wait
  4373. hasS = codenum > 0;
  4374. }
  4375. starpos = strchr(src, '*');
  4376. if (starpos != NULL) *(starpos) = '\0';
  4377. while (*src == ' ') ++src;
  4378. if (!hasP && !hasS && *src != '\0') {
  4379. lcd_setstatus(src);
  4380. } else {
  4381. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4382. }
  4383. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4384. st_synchronize();
  4385. previous_millis_cmd = _millis();
  4386. if (codenum > 0){
  4387. codenum += _millis(); // keep track of when we started waiting
  4388. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4389. while(_millis() < codenum && !lcd_clicked()){
  4390. manage_heater();
  4391. manage_inactivity(true);
  4392. lcd_update(0);
  4393. }
  4394. KEEPALIVE_STATE(IN_HANDLER);
  4395. lcd_ignore_click(false);
  4396. }else{
  4397. marlin_wait_for_click();
  4398. }
  4399. if (IS_SD_PRINTING)
  4400. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4401. else
  4402. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4403. }
  4404. break;
  4405. case 17:
  4406. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4407. enable_x();
  4408. enable_y();
  4409. enable_z();
  4410. enable_e0();
  4411. enable_e1();
  4412. enable_e2();
  4413. break;
  4414. #ifdef SDSUPPORT
  4415. case 20: // M20 - list SD card
  4416. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4417. card.ls();
  4418. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4419. break;
  4420. case 21: // M21 - init SD card
  4421. card.initsd();
  4422. break;
  4423. case 22: //M22 - release SD card
  4424. card.release();
  4425. break;
  4426. case 23: //M23 - Select file
  4427. starpos = (strchr(strchr_pointer + 4,'*'));
  4428. if(starpos!=NULL)
  4429. *(starpos)='\0';
  4430. card.openFile(strchr_pointer + 4,true);
  4431. break;
  4432. case 24: //M24 - Start SD print
  4433. if (!card.paused)
  4434. failstats_reset_print();
  4435. card.startFileprint();
  4436. starttime=_millis();
  4437. break;
  4438. case 25: //M25 - Pause SD print
  4439. card.pauseSDPrint();
  4440. break;
  4441. case 26: //M26 - Set SD index
  4442. if(card.cardOK && code_seen('S')) {
  4443. card.setIndex(code_value_long());
  4444. }
  4445. break;
  4446. case 27: //M27 - Get SD status
  4447. card.getStatus();
  4448. break;
  4449. case 28: //M28 - Start SD write
  4450. starpos = (strchr(strchr_pointer + 4,'*'));
  4451. if(starpos != NULL){
  4452. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4453. strchr_pointer = strchr(npos,' ') + 1;
  4454. *(starpos) = '\0';
  4455. }
  4456. card.openFile(strchr_pointer+4,false);
  4457. break;
  4458. case 29: //M29 - Stop SD write
  4459. //processed in write to file routine above
  4460. //card,saving = false;
  4461. break;
  4462. case 30: //M30 <filename> Delete File
  4463. if (card.cardOK){
  4464. card.closefile();
  4465. starpos = (strchr(strchr_pointer + 4,'*'));
  4466. if(starpos != NULL){
  4467. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4468. strchr_pointer = strchr(npos,' ') + 1;
  4469. *(starpos) = '\0';
  4470. }
  4471. card.removeFile(strchr_pointer + 4);
  4472. }
  4473. break;
  4474. case 32: //M32 - Select file and start SD print
  4475. {
  4476. if(card.sdprinting) {
  4477. st_synchronize();
  4478. }
  4479. starpos = (strchr(strchr_pointer + 4,'*'));
  4480. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4481. if(namestartpos==NULL)
  4482. {
  4483. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4484. }
  4485. else
  4486. namestartpos++; //to skip the '!'
  4487. if(starpos!=NULL)
  4488. *(starpos)='\0';
  4489. bool call_procedure=(code_seen('P'));
  4490. if(strchr_pointer>namestartpos)
  4491. call_procedure=false; //false alert, 'P' found within filename
  4492. if( card.cardOK )
  4493. {
  4494. card.openFile(namestartpos,true,!call_procedure);
  4495. if(code_seen('S'))
  4496. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4497. card.setIndex(code_value_long());
  4498. card.startFileprint();
  4499. if(!call_procedure)
  4500. starttime=_millis(); //procedure calls count as normal print time.
  4501. }
  4502. } break;
  4503. case 928: //M928 - Start SD write
  4504. starpos = (strchr(strchr_pointer + 5,'*'));
  4505. if(starpos != NULL){
  4506. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4507. strchr_pointer = strchr(npos,' ') + 1;
  4508. *(starpos) = '\0';
  4509. }
  4510. card.openLogFile(strchr_pointer+5);
  4511. break;
  4512. #endif //SDSUPPORT
  4513. case 31: //M31 take time since the start of the SD print or an M109 command
  4514. {
  4515. stoptime=_millis();
  4516. char time[30];
  4517. unsigned long t=(stoptime-starttime)/1000;
  4518. int sec,min;
  4519. min=t/60;
  4520. sec=t%60;
  4521. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4522. SERIAL_ECHO_START;
  4523. SERIAL_ECHOLN(time);
  4524. lcd_setstatus(time);
  4525. autotempShutdown();
  4526. }
  4527. break;
  4528. case 42: //M42 -Change pin status via gcode
  4529. if (code_seen('S'))
  4530. {
  4531. int pin_status = code_value();
  4532. int pin_number = LED_PIN;
  4533. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4534. pin_number = code_value();
  4535. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4536. {
  4537. if (sensitive_pins[i] == pin_number)
  4538. {
  4539. pin_number = -1;
  4540. break;
  4541. }
  4542. }
  4543. #if defined(FAN_PIN) && FAN_PIN > -1
  4544. if (pin_number == FAN_PIN)
  4545. fanSpeed = pin_status;
  4546. #endif
  4547. if (pin_number > -1)
  4548. {
  4549. pinMode(pin_number, OUTPUT);
  4550. digitalWrite(pin_number, pin_status);
  4551. analogWrite(pin_number, pin_status);
  4552. }
  4553. }
  4554. break;
  4555. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4556. // Reset the baby step value and the baby step applied flag.
  4557. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4558. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4559. // Reset the skew and offset in both RAM and EEPROM.
  4560. reset_bed_offset_and_skew();
  4561. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4562. // the planner will not perform any adjustments in the XY plane.
  4563. // Wait for the motors to stop and update the current position with the absolute values.
  4564. world2machine_revert_to_uncorrected();
  4565. break;
  4566. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4567. {
  4568. int8_t verbosity_level = 0;
  4569. bool only_Z = code_seen('Z');
  4570. #ifdef SUPPORT_VERBOSITY
  4571. if (code_seen('V'))
  4572. {
  4573. // Just 'V' without a number counts as V1.
  4574. char c = strchr_pointer[1];
  4575. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4576. }
  4577. #endif //SUPPORT_VERBOSITY
  4578. gcode_M45(only_Z, verbosity_level);
  4579. }
  4580. break;
  4581. /*
  4582. case 46:
  4583. {
  4584. // M46: Prusa3D: Show the assigned IP address.
  4585. uint8_t ip[4];
  4586. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4587. if (hasIP) {
  4588. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4589. SERIAL_ECHO(int(ip[0]));
  4590. SERIAL_ECHOPGM(".");
  4591. SERIAL_ECHO(int(ip[1]));
  4592. SERIAL_ECHOPGM(".");
  4593. SERIAL_ECHO(int(ip[2]));
  4594. SERIAL_ECHOPGM(".");
  4595. SERIAL_ECHO(int(ip[3]));
  4596. SERIAL_ECHOLNPGM("");
  4597. } else {
  4598. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4599. }
  4600. break;
  4601. }
  4602. */
  4603. case 47:
  4604. //! M47: Prusa3D: Show end stops dialog on the display.
  4605. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4606. lcd_diag_show_end_stops();
  4607. KEEPALIVE_STATE(IN_HANDLER);
  4608. break;
  4609. #if 0
  4610. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4611. {
  4612. // Disable the default update procedure of the display. We will do a modal dialog.
  4613. lcd_update_enable(false);
  4614. // Let the planner use the uncorrected coordinates.
  4615. mbl.reset();
  4616. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4617. // the planner will not perform any adjustments in the XY plane.
  4618. // Wait for the motors to stop and update the current position with the absolute values.
  4619. world2machine_revert_to_uncorrected();
  4620. // Move the print head close to the bed.
  4621. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4623. st_synchronize();
  4624. // Home in the XY plane.
  4625. set_destination_to_current();
  4626. int l_feedmultiply = setup_for_endstop_move();
  4627. home_xy();
  4628. int8_t verbosity_level = 0;
  4629. if (code_seen('V')) {
  4630. // Just 'V' without a number counts as V1.
  4631. char c = strchr_pointer[1];
  4632. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4633. }
  4634. bool success = scan_bed_induction_points(verbosity_level);
  4635. clean_up_after_endstop_move(l_feedmultiply);
  4636. // Print head up.
  4637. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4639. st_synchronize();
  4640. lcd_update_enable(true);
  4641. break;
  4642. }
  4643. #endif
  4644. #ifdef ENABLE_AUTO_BED_LEVELING
  4645. #ifdef Z_PROBE_REPEATABILITY_TEST
  4646. //! M48 Z-Probe repeatability measurement function.
  4647. //!
  4648. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4649. //!
  4650. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4651. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4652. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4653. //! regenerated.
  4654. //!
  4655. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4656. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4657. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4658. //!
  4659. case 48: // M48 Z-Probe repeatability
  4660. {
  4661. #if Z_MIN_PIN == -1
  4662. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4663. #endif
  4664. double sum=0.0;
  4665. double mean=0.0;
  4666. double sigma=0.0;
  4667. double sample_set[50];
  4668. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4669. double X_current, Y_current, Z_current;
  4670. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4671. if (code_seen('V') || code_seen('v')) {
  4672. verbose_level = code_value();
  4673. if (verbose_level<0 || verbose_level>4 ) {
  4674. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4675. goto Sigma_Exit;
  4676. }
  4677. }
  4678. if (verbose_level > 0) {
  4679. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4680. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4681. }
  4682. if (code_seen('n')) {
  4683. n_samples = code_value();
  4684. if (n_samples<4 || n_samples>50 ) {
  4685. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4686. goto Sigma_Exit;
  4687. }
  4688. }
  4689. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4690. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4691. Z_current = st_get_position_mm(Z_AXIS);
  4692. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4693. ext_position = st_get_position_mm(E_AXIS);
  4694. if (code_seen('X') || code_seen('x') ) {
  4695. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4696. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4697. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4698. goto Sigma_Exit;
  4699. }
  4700. }
  4701. if (code_seen('Y') || code_seen('y') ) {
  4702. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4703. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4704. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4705. goto Sigma_Exit;
  4706. }
  4707. }
  4708. if (code_seen('L') || code_seen('l') ) {
  4709. n_legs = code_value();
  4710. if ( n_legs==1 )
  4711. n_legs = 2;
  4712. if ( n_legs<0 || n_legs>15 ) {
  4713. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4714. goto Sigma_Exit;
  4715. }
  4716. }
  4717. //
  4718. // Do all the preliminary setup work. First raise the probe.
  4719. //
  4720. st_synchronize();
  4721. plan_bed_level_matrix.set_to_identity();
  4722. plan_buffer_line( X_current, Y_current, Z_start_location,
  4723. ext_position,
  4724. homing_feedrate[Z_AXIS]/60,
  4725. active_extruder);
  4726. st_synchronize();
  4727. //
  4728. // Now get everything to the specified probe point So we can safely do a probe to
  4729. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4730. // use that as a starting point for each probe.
  4731. //
  4732. if (verbose_level > 2)
  4733. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4734. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4735. ext_position,
  4736. homing_feedrate[X_AXIS]/60,
  4737. active_extruder);
  4738. st_synchronize();
  4739. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4740. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4741. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4742. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4743. //
  4744. // OK, do the inital probe to get us close to the bed.
  4745. // Then retrace the right amount and use that in subsequent probes
  4746. //
  4747. int l_feedmultiply = setup_for_endstop_move();
  4748. run_z_probe();
  4749. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4750. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4751. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4752. ext_position,
  4753. homing_feedrate[X_AXIS]/60,
  4754. active_extruder);
  4755. st_synchronize();
  4756. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4757. for( n=0; n<n_samples; n++) {
  4758. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4759. if ( n_legs) {
  4760. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4761. int rotational_direction, l;
  4762. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4763. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4764. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4765. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4766. //SERIAL_ECHOPAIR(" theta: ",theta);
  4767. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4768. //SERIAL_PROTOCOLLNPGM("");
  4769. for( l=0; l<n_legs-1; l++) {
  4770. if (rotational_direction==1)
  4771. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4772. else
  4773. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4774. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4775. if ( radius<0.0 )
  4776. radius = -radius;
  4777. X_current = X_probe_location + cos(theta) * radius;
  4778. Y_current = Y_probe_location + sin(theta) * radius;
  4779. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4780. X_current = X_MIN_POS;
  4781. if ( X_current>X_MAX_POS)
  4782. X_current = X_MAX_POS;
  4783. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4784. Y_current = Y_MIN_POS;
  4785. if ( Y_current>Y_MAX_POS)
  4786. Y_current = Y_MAX_POS;
  4787. if (verbose_level>3 ) {
  4788. SERIAL_ECHOPAIR("x: ", X_current);
  4789. SERIAL_ECHOPAIR("y: ", Y_current);
  4790. SERIAL_PROTOCOLLNPGM("");
  4791. }
  4792. do_blocking_move_to( X_current, Y_current, Z_current );
  4793. }
  4794. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4795. }
  4796. int l_feedmultiply = setup_for_endstop_move();
  4797. run_z_probe();
  4798. sample_set[n] = current_position[Z_AXIS];
  4799. //
  4800. // Get the current mean for the data points we have so far
  4801. //
  4802. sum=0.0;
  4803. for( j=0; j<=n; j++) {
  4804. sum = sum + sample_set[j];
  4805. }
  4806. mean = sum / (double (n+1));
  4807. //
  4808. // Now, use that mean to calculate the standard deviation for the
  4809. // data points we have so far
  4810. //
  4811. sum=0.0;
  4812. for( j=0; j<=n; j++) {
  4813. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4814. }
  4815. sigma = sqrt( sum / (double (n+1)) );
  4816. if (verbose_level > 1) {
  4817. SERIAL_PROTOCOL(n+1);
  4818. SERIAL_PROTOCOL(" of ");
  4819. SERIAL_PROTOCOL(n_samples);
  4820. SERIAL_PROTOCOLPGM(" z: ");
  4821. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4822. }
  4823. if (verbose_level > 2) {
  4824. SERIAL_PROTOCOL(" mean: ");
  4825. SERIAL_PROTOCOL_F(mean,6);
  4826. SERIAL_PROTOCOL(" sigma: ");
  4827. SERIAL_PROTOCOL_F(sigma,6);
  4828. }
  4829. if (verbose_level > 0)
  4830. SERIAL_PROTOCOLPGM("\n");
  4831. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4832. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4833. st_synchronize();
  4834. }
  4835. _delay(1000);
  4836. clean_up_after_endstop_move(l_feedmultiply);
  4837. // enable_endstops(true);
  4838. if (verbose_level > 0) {
  4839. SERIAL_PROTOCOLPGM("Mean: ");
  4840. SERIAL_PROTOCOL_F(mean, 6);
  4841. SERIAL_PROTOCOLPGM("\n");
  4842. }
  4843. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4844. SERIAL_PROTOCOL_F(sigma, 6);
  4845. SERIAL_PROTOCOLPGM("\n\n");
  4846. Sigma_Exit:
  4847. break;
  4848. }
  4849. #endif // Z_PROBE_REPEATABILITY_TEST
  4850. #endif // ENABLE_AUTO_BED_LEVELING
  4851. case 73: //M73 show percent done and time remaining
  4852. if(code_seen('P')) print_percent_done_normal = code_value();
  4853. if(code_seen('R')) print_time_remaining_normal = code_value();
  4854. if(code_seen('Q')) print_percent_done_silent = code_value();
  4855. if(code_seen('S')) print_time_remaining_silent = code_value();
  4856. {
  4857. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4858. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4859. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4860. }
  4861. break;
  4862. case 104: // M104
  4863. {
  4864. uint8_t extruder;
  4865. if(setTargetedHotend(104,extruder)){
  4866. break;
  4867. }
  4868. if (code_seen('S'))
  4869. {
  4870. setTargetHotendSafe(code_value(), extruder);
  4871. }
  4872. setWatch();
  4873. break;
  4874. }
  4875. case 112: // M112 -Emergency Stop
  4876. kill(_n(""), 3);
  4877. break;
  4878. case 140: // M140 set bed temp
  4879. if (code_seen('S')) setTargetBed(code_value());
  4880. break;
  4881. case 105 : // M105
  4882. {
  4883. uint8_t extruder;
  4884. if(setTargetedHotend(105, extruder)){
  4885. break;
  4886. }
  4887. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4888. SERIAL_PROTOCOLPGM("ok T:");
  4889. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4890. SERIAL_PROTOCOLPGM(" /");
  4891. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4892. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4893. SERIAL_PROTOCOLPGM(" B:");
  4894. SERIAL_PROTOCOL_F(degBed(),1);
  4895. SERIAL_PROTOCOLPGM(" /");
  4896. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4897. #endif //TEMP_BED_PIN
  4898. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4899. SERIAL_PROTOCOLPGM(" T");
  4900. SERIAL_PROTOCOL(cur_extruder);
  4901. SERIAL_PROTOCOLPGM(":");
  4902. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4903. SERIAL_PROTOCOLPGM(" /");
  4904. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4905. }
  4906. #else
  4907. SERIAL_ERROR_START;
  4908. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4909. #endif
  4910. SERIAL_PROTOCOLPGM(" @:");
  4911. #ifdef EXTRUDER_WATTS
  4912. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4913. SERIAL_PROTOCOLPGM("W");
  4914. #else
  4915. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4916. #endif
  4917. SERIAL_PROTOCOLPGM(" B@:");
  4918. #ifdef BED_WATTS
  4919. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4920. SERIAL_PROTOCOLPGM("W");
  4921. #else
  4922. SERIAL_PROTOCOL(getHeaterPower(-1));
  4923. #endif
  4924. #ifdef PINDA_THERMISTOR
  4925. SERIAL_PROTOCOLPGM(" P:");
  4926. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4927. #endif //PINDA_THERMISTOR
  4928. #ifdef AMBIENT_THERMISTOR
  4929. SERIAL_PROTOCOLPGM(" A:");
  4930. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4931. #endif //AMBIENT_THERMISTOR
  4932. #ifdef SHOW_TEMP_ADC_VALUES
  4933. {float raw = 0.0;
  4934. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4935. SERIAL_PROTOCOLPGM(" ADC B:");
  4936. SERIAL_PROTOCOL_F(degBed(),1);
  4937. SERIAL_PROTOCOLPGM("C->");
  4938. raw = rawBedTemp();
  4939. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4940. SERIAL_PROTOCOLPGM(" Rb->");
  4941. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4942. SERIAL_PROTOCOLPGM(" Rxb->");
  4943. SERIAL_PROTOCOL_F(raw, 5);
  4944. #endif
  4945. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4946. SERIAL_PROTOCOLPGM(" T");
  4947. SERIAL_PROTOCOL(cur_extruder);
  4948. SERIAL_PROTOCOLPGM(":");
  4949. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4950. SERIAL_PROTOCOLPGM("C->");
  4951. raw = rawHotendTemp(cur_extruder);
  4952. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4953. SERIAL_PROTOCOLPGM(" Rt");
  4954. SERIAL_PROTOCOL(cur_extruder);
  4955. SERIAL_PROTOCOLPGM("->");
  4956. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4957. SERIAL_PROTOCOLPGM(" Rx");
  4958. SERIAL_PROTOCOL(cur_extruder);
  4959. SERIAL_PROTOCOLPGM("->");
  4960. SERIAL_PROTOCOL_F(raw, 5);
  4961. }}
  4962. #endif
  4963. SERIAL_PROTOCOLLN("");
  4964. KEEPALIVE_STATE(NOT_BUSY);
  4965. return;
  4966. break;
  4967. }
  4968. case 109:
  4969. {// M109 - Wait for extruder heater to reach target.
  4970. uint8_t extruder;
  4971. if(setTargetedHotend(109, extruder)){
  4972. break;
  4973. }
  4974. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4975. heating_status = 1;
  4976. if (farm_mode) { prusa_statistics(1); };
  4977. #ifdef AUTOTEMP
  4978. autotemp_enabled=false;
  4979. #endif
  4980. if (code_seen('S')) {
  4981. setTargetHotendSafe(code_value(), extruder);
  4982. CooldownNoWait = true;
  4983. } else if (code_seen('R')) {
  4984. setTargetHotendSafe(code_value(), extruder);
  4985. CooldownNoWait = false;
  4986. }
  4987. #ifdef AUTOTEMP
  4988. if (code_seen('S')) autotemp_min=code_value();
  4989. if (code_seen('B')) autotemp_max=code_value();
  4990. if (code_seen('F'))
  4991. {
  4992. autotemp_factor=code_value();
  4993. autotemp_enabled=true;
  4994. }
  4995. #endif
  4996. setWatch();
  4997. codenum = _millis();
  4998. /* See if we are heating up or cooling down */
  4999. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5000. KEEPALIVE_STATE(NOT_BUSY);
  5001. cancel_heatup = false;
  5002. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5003. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5004. KEEPALIVE_STATE(IN_HANDLER);
  5005. heating_status = 2;
  5006. if (farm_mode) { prusa_statistics(2); };
  5007. //starttime=_millis();
  5008. previous_millis_cmd = _millis();
  5009. }
  5010. break;
  5011. case 190: // M190 - Wait for bed heater to reach target.
  5012. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5013. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5014. heating_status = 3;
  5015. if (farm_mode) { prusa_statistics(1); };
  5016. if (code_seen('S'))
  5017. {
  5018. setTargetBed(code_value());
  5019. CooldownNoWait = true;
  5020. }
  5021. else if (code_seen('R'))
  5022. {
  5023. setTargetBed(code_value());
  5024. CooldownNoWait = false;
  5025. }
  5026. codenum = _millis();
  5027. cancel_heatup = false;
  5028. target_direction = isHeatingBed(); // true if heating, false if cooling
  5029. KEEPALIVE_STATE(NOT_BUSY);
  5030. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5031. {
  5032. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5033. {
  5034. if (!farm_mode) {
  5035. float tt = degHotend(active_extruder);
  5036. SERIAL_PROTOCOLPGM("T:");
  5037. SERIAL_PROTOCOL(tt);
  5038. SERIAL_PROTOCOLPGM(" E:");
  5039. SERIAL_PROTOCOL((int)active_extruder);
  5040. SERIAL_PROTOCOLPGM(" B:");
  5041. SERIAL_PROTOCOL_F(degBed(), 1);
  5042. SERIAL_PROTOCOLLN("");
  5043. }
  5044. codenum = _millis();
  5045. }
  5046. manage_heater();
  5047. manage_inactivity();
  5048. lcd_update(0);
  5049. }
  5050. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5051. KEEPALIVE_STATE(IN_HANDLER);
  5052. heating_status = 4;
  5053. previous_millis_cmd = _millis();
  5054. #endif
  5055. break;
  5056. #if defined(FAN_PIN) && FAN_PIN > -1
  5057. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5058. if (code_seen('S')){
  5059. fanSpeed=constrain(code_value(),0,255);
  5060. }
  5061. else {
  5062. fanSpeed=255;
  5063. }
  5064. break;
  5065. case 107: //M107 Fan Off
  5066. fanSpeed = 0;
  5067. break;
  5068. #endif //FAN_PIN
  5069. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5070. case 80: // M80 - Turn on Power Supply
  5071. SET_OUTPUT(PS_ON_PIN); //GND
  5072. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5073. // If you have a switch on suicide pin, this is useful
  5074. // if you want to start another print with suicide feature after
  5075. // a print without suicide...
  5076. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5077. SET_OUTPUT(SUICIDE_PIN);
  5078. WRITE(SUICIDE_PIN, HIGH);
  5079. #endif
  5080. powersupply = true;
  5081. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5082. lcd_update(0);
  5083. break;
  5084. #endif
  5085. case 81: // M81 - Turn off Power Supply
  5086. disable_heater();
  5087. st_synchronize();
  5088. disable_e0();
  5089. disable_e1();
  5090. disable_e2();
  5091. finishAndDisableSteppers();
  5092. fanSpeed = 0;
  5093. _delay(1000); // Wait a little before to switch off
  5094. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5095. st_synchronize();
  5096. suicide();
  5097. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5098. SET_OUTPUT(PS_ON_PIN);
  5099. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5100. #endif
  5101. powersupply = false;
  5102. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5103. lcd_update(0);
  5104. break;
  5105. case 82:
  5106. axis_relative_modes[3] = false;
  5107. break;
  5108. case 83:
  5109. axis_relative_modes[3] = true;
  5110. break;
  5111. case 18: //compatibility
  5112. case 84: // M84
  5113. if(code_seen('S')){
  5114. stepper_inactive_time = code_value() * 1000;
  5115. }
  5116. else
  5117. {
  5118. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5119. if(all_axis)
  5120. {
  5121. st_synchronize();
  5122. disable_e0();
  5123. disable_e1();
  5124. disable_e2();
  5125. finishAndDisableSteppers();
  5126. }
  5127. else
  5128. {
  5129. st_synchronize();
  5130. if (code_seen('X')) disable_x();
  5131. if (code_seen('Y')) disable_y();
  5132. if (code_seen('Z')) disable_z();
  5133. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5134. if (code_seen('E')) {
  5135. disable_e0();
  5136. disable_e1();
  5137. disable_e2();
  5138. }
  5139. #endif
  5140. }
  5141. }
  5142. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5143. print_time_remaining_init();
  5144. snmm_filaments_used = 0;
  5145. break;
  5146. case 85: // M85
  5147. if(code_seen('S')) {
  5148. max_inactive_time = code_value() * 1000;
  5149. }
  5150. break;
  5151. #ifdef SAFETYTIMER
  5152. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5153. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5154. if (code_seen('S')) {
  5155. safetytimer_inactive_time = code_value() * 1000;
  5156. safetyTimer.start();
  5157. }
  5158. break;
  5159. #endif
  5160. case 92: // M92
  5161. for(int8_t i=0; i < NUM_AXIS; i++)
  5162. {
  5163. if(code_seen(axis_codes[i]))
  5164. {
  5165. if(i == 3) { // E
  5166. float value = code_value();
  5167. if(value < 20.0) {
  5168. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5169. cs.max_jerk[E_AXIS] *= factor;
  5170. max_feedrate[i] *= factor;
  5171. axis_steps_per_sqr_second[i] *= factor;
  5172. }
  5173. cs.axis_steps_per_unit[i] = value;
  5174. }
  5175. else {
  5176. cs.axis_steps_per_unit[i] = code_value();
  5177. }
  5178. }
  5179. }
  5180. break;
  5181. case 110: //! M110 N<line number> - reset line pos
  5182. if (code_seen('N'))
  5183. gcode_LastN = code_value_long();
  5184. break;
  5185. case 113: // M113 - Get or set Host Keepalive interval
  5186. if (code_seen('S')) {
  5187. host_keepalive_interval = (uint8_t)code_value_short();
  5188. // NOMORE(host_keepalive_interval, 60);
  5189. }
  5190. else {
  5191. SERIAL_ECHO_START;
  5192. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5193. SERIAL_PROTOCOLLN("");
  5194. }
  5195. break;
  5196. case 115: // M115
  5197. if (code_seen('V')) {
  5198. // Report the Prusa version number.
  5199. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5200. } else if (code_seen('U')) {
  5201. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5202. // pause the print for 30s and ask the user to upgrade the firmware.
  5203. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5204. } else {
  5205. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5206. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5207. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5208. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5209. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5210. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5211. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5212. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5213. SERIAL_ECHOPGM(" UUID:");
  5214. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5215. }
  5216. break;
  5217. /* case 117: // M117 display message
  5218. starpos = (strchr(strchr_pointer + 5,'*'));
  5219. if(starpos!=NULL)
  5220. *(starpos)='\0';
  5221. lcd_setstatus(strchr_pointer + 5);
  5222. break;*/
  5223. case 114: // M114
  5224. gcode_M114();
  5225. break;
  5226. case 120: //! M120 - Disable endstops
  5227. enable_endstops(false) ;
  5228. break;
  5229. case 121: //! M121 - Enable endstops
  5230. enable_endstops(true) ;
  5231. break;
  5232. case 119: // M119
  5233. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5234. SERIAL_PROTOCOLLN("");
  5235. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5236. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5237. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5238. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5239. }else{
  5240. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5241. }
  5242. SERIAL_PROTOCOLLN("");
  5243. #endif
  5244. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5245. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5246. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5247. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5248. }else{
  5249. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5250. }
  5251. SERIAL_PROTOCOLLN("");
  5252. #endif
  5253. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5254. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5255. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5256. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5257. }else{
  5258. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5259. }
  5260. SERIAL_PROTOCOLLN("");
  5261. #endif
  5262. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5263. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5264. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5265. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5266. }else{
  5267. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5268. }
  5269. SERIAL_PROTOCOLLN("");
  5270. #endif
  5271. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5272. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5273. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5274. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5275. }else{
  5276. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5277. }
  5278. SERIAL_PROTOCOLLN("");
  5279. #endif
  5280. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5281. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5282. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5283. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5284. }else{
  5285. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5286. }
  5287. SERIAL_PROTOCOLLN("");
  5288. #endif
  5289. break;
  5290. //TODO: update for all axis, use for loop
  5291. #ifdef BLINKM
  5292. case 150: // M150
  5293. {
  5294. byte red;
  5295. byte grn;
  5296. byte blu;
  5297. if(code_seen('R')) red = code_value();
  5298. if(code_seen('U')) grn = code_value();
  5299. if(code_seen('B')) blu = code_value();
  5300. SendColors(red,grn,blu);
  5301. }
  5302. break;
  5303. #endif //BLINKM
  5304. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5305. {
  5306. uint8_t extruder = active_extruder;
  5307. if(code_seen('T')) {
  5308. extruder = code_value();
  5309. if(extruder >= EXTRUDERS) {
  5310. SERIAL_ECHO_START;
  5311. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5312. break;
  5313. }
  5314. }
  5315. if(code_seen('D')) {
  5316. float diameter = (float)code_value();
  5317. if (diameter == 0.0) {
  5318. // setting any extruder filament size disables volumetric on the assumption that
  5319. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5320. // for all extruders
  5321. cs.volumetric_enabled = false;
  5322. } else {
  5323. cs.filament_size[extruder] = (float)code_value();
  5324. // make sure all extruders have some sane value for the filament size
  5325. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5326. #if EXTRUDERS > 1
  5327. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5328. #if EXTRUDERS > 2
  5329. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5330. #endif
  5331. #endif
  5332. cs.volumetric_enabled = true;
  5333. }
  5334. } else {
  5335. //reserved for setting filament diameter via UFID or filament measuring device
  5336. break;
  5337. }
  5338. calculate_extruder_multipliers();
  5339. }
  5340. break;
  5341. case 201: // M201
  5342. for (int8_t i = 0; i < NUM_AXIS; i++)
  5343. {
  5344. if (code_seen(axis_codes[i]))
  5345. {
  5346. unsigned long val = code_value();
  5347. #ifdef TMC2130
  5348. unsigned long val_silent = val;
  5349. if ((i == X_AXIS) || (i == Y_AXIS))
  5350. {
  5351. if (val > NORMAL_MAX_ACCEL_XY)
  5352. val = NORMAL_MAX_ACCEL_XY;
  5353. if (val_silent > SILENT_MAX_ACCEL_XY)
  5354. val_silent = SILENT_MAX_ACCEL_XY;
  5355. }
  5356. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5357. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5358. #else //TMC2130
  5359. max_acceleration_units_per_sq_second[i] = val;
  5360. #endif //TMC2130
  5361. }
  5362. }
  5363. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5364. reset_acceleration_rates();
  5365. break;
  5366. #if 0 // Not used for Sprinter/grbl gen6
  5367. case 202: // M202
  5368. for(int8_t i=0; i < NUM_AXIS; i++) {
  5369. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5370. }
  5371. break;
  5372. #endif
  5373. case 203: // M203 max feedrate mm/sec
  5374. for (int8_t i = 0; i < NUM_AXIS; i++)
  5375. {
  5376. if (code_seen(axis_codes[i]))
  5377. {
  5378. float val = code_value();
  5379. #ifdef TMC2130
  5380. float val_silent = val;
  5381. if ((i == X_AXIS) || (i == Y_AXIS))
  5382. {
  5383. if (val > NORMAL_MAX_FEEDRATE_XY)
  5384. val = NORMAL_MAX_FEEDRATE_XY;
  5385. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5386. val_silent = SILENT_MAX_FEEDRATE_XY;
  5387. }
  5388. cs.max_feedrate_normal[i] = val;
  5389. cs.max_feedrate_silent[i] = val_silent;
  5390. #else //TMC2130
  5391. max_feedrate[i] = val;
  5392. #endif //TMC2130
  5393. }
  5394. }
  5395. break;
  5396. case 204:
  5397. //! M204 acclereration settings.
  5398. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5399. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5400. {
  5401. if(code_seen('S')) {
  5402. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5403. // and it is also generated by Slic3r to control acceleration per extrusion type
  5404. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5405. cs.acceleration = code_value();
  5406. // Interpret the T value as retract acceleration in the old Marlin format.
  5407. if(code_seen('T'))
  5408. cs.retract_acceleration = code_value();
  5409. } else {
  5410. // New acceleration format, compatible with the upstream Marlin.
  5411. if(code_seen('P'))
  5412. cs.acceleration = code_value();
  5413. if(code_seen('R'))
  5414. cs.retract_acceleration = code_value();
  5415. if(code_seen('T')) {
  5416. // Interpret the T value as the travel acceleration in the new Marlin format.
  5417. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5418. // travel_acceleration = code_value();
  5419. }
  5420. }
  5421. }
  5422. break;
  5423. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5424. {
  5425. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5426. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5427. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5428. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5429. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5430. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5431. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5432. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5433. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5434. }
  5435. break;
  5436. case 206: // M206 additional homing offset
  5437. for(int8_t i=0; i < 3; i++)
  5438. {
  5439. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5440. }
  5441. break;
  5442. #ifdef FWRETRACT
  5443. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5444. {
  5445. if(code_seen('S'))
  5446. {
  5447. cs.retract_length = code_value() ;
  5448. }
  5449. if(code_seen('F'))
  5450. {
  5451. cs.retract_feedrate = code_value()/60 ;
  5452. }
  5453. if(code_seen('Z'))
  5454. {
  5455. cs.retract_zlift = code_value() ;
  5456. }
  5457. }break;
  5458. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5459. {
  5460. if(code_seen('S'))
  5461. {
  5462. cs.retract_recover_length = code_value() ;
  5463. }
  5464. if(code_seen('F'))
  5465. {
  5466. cs.retract_recover_feedrate = code_value()/60 ;
  5467. }
  5468. }break;
  5469. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5470. {
  5471. if(code_seen('S'))
  5472. {
  5473. int t= code_value() ;
  5474. switch(t)
  5475. {
  5476. case 0:
  5477. {
  5478. cs.autoretract_enabled=false;
  5479. retracted[0]=false;
  5480. #if EXTRUDERS > 1
  5481. retracted[1]=false;
  5482. #endif
  5483. #if EXTRUDERS > 2
  5484. retracted[2]=false;
  5485. #endif
  5486. }break;
  5487. case 1:
  5488. {
  5489. cs.autoretract_enabled=true;
  5490. retracted[0]=false;
  5491. #if EXTRUDERS > 1
  5492. retracted[1]=false;
  5493. #endif
  5494. #if EXTRUDERS > 2
  5495. retracted[2]=false;
  5496. #endif
  5497. }break;
  5498. default:
  5499. SERIAL_ECHO_START;
  5500. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5501. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5502. SERIAL_ECHOLNPGM("\"(1)");
  5503. }
  5504. }
  5505. }break;
  5506. #endif // FWRETRACT
  5507. #if EXTRUDERS > 1
  5508. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5509. {
  5510. uint8_t extruder;
  5511. if(setTargetedHotend(218, extruder)){
  5512. break;
  5513. }
  5514. if(code_seen('X'))
  5515. {
  5516. extruder_offset[X_AXIS][extruder] = code_value();
  5517. }
  5518. if(code_seen('Y'))
  5519. {
  5520. extruder_offset[Y_AXIS][extruder] = code_value();
  5521. }
  5522. SERIAL_ECHO_START;
  5523. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5524. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5525. {
  5526. SERIAL_ECHO(" ");
  5527. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5528. SERIAL_ECHO(",");
  5529. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5530. }
  5531. SERIAL_ECHOLN("");
  5532. }break;
  5533. #endif
  5534. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5535. {
  5536. if (code_seen('B')) //backup current speed factor
  5537. {
  5538. saved_feedmultiply_mm = feedmultiply;
  5539. }
  5540. if(code_seen('S'))
  5541. {
  5542. feedmultiply = code_value() ;
  5543. }
  5544. if (code_seen('R')) { //restore previous feedmultiply
  5545. feedmultiply = saved_feedmultiply_mm;
  5546. }
  5547. }
  5548. break;
  5549. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5550. {
  5551. if(code_seen('S'))
  5552. {
  5553. int tmp_code = code_value();
  5554. if (code_seen('T'))
  5555. {
  5556. uint8_t extruder;
  5557. if(setTargetedHotend(221, extruder)){
  5558. break;
  5559. }
  5560. extruder_multiply[extruder] = tmp_code;
  5561. }
  5562. else
  5563. {
  5564. extrudemultiply = tmp_code ;
  5565. }
  5566. }
  5567. calculate_extruder_multipliers();
  5568. }
  5569. break;
  5570. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5571. {
  5572. if(code_seen('P')){
  5573. int pin_number = code_value(); // pin number
  5574. int pin_state = -1; // required pin state - default is inverted
  5575. if(code_seen('S')) pin_state = code_value(); // required pin state
  5576. if(pin_state >= -1 && pin_state <= 1){
  5577. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5578. {
  5579. if (sensitive_pins[i] == pin_number)
  5580. {
  5581. pin_number = -1;
  5582. break;
  5583. }
  5584. }
  5585. if (pin_number > -1)
  5586. {
  5587. int target = LOW;
  5588. st_synchronize();
  5589. pinMode(pin_number, INPUT);
  5590. switch(pin_state){
  5591. case 1:
  5592. target = HIGH;
  5593. break;
  5594. case 0:
  5595. target = LOW;
  5596. break;
  5597. case -1:
  5598. target = !digitalRead(pin_number);
  5599. break;
  5600. }
  5601. while(digitalRead(pin_number) != target){
  5602. manage_heater();
  5603. manage_inactivity();
  5604. lcd_update(0);
  5605. }
  5606. }
  5607. }
  5608. }
  5609. }
  5610. break;
  5611. #if NUM_SERVOS > 0
  5612. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5613. {
  5614. int servo_index = -1;
  5615. int servo_position = 0;
  5616. if (code_seen('P'))
  5617. servo_index = code_value();
  5618. if (code_seen('S')) {
  5619. servo_position = code_value();
  5620. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5621. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5622. servos[servo_index].attach(0);
  5623. #endif
  5624. servos[servo_index].write(servo_position);
  5625. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5626. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5627. servos[servo_index].detach();
  5628. #endif
  5629. }
  5630. else {
  5631. SERIAL_ECHO_START;
  5632. SERIAL_ECHO("Servo ");
  5633. SERIAL_ECHO(servo_index);
  5634. SERIAL_ECHOLN(" out of range");
  5635. }
  5636. }
  5637. else if (servo_index >= 0) {
  5638. SERIAL_PROTOCOL(MSG_OK);
  5639. SERIAL_PROTOCOL(" Servo ");
  5640. SERIAL_PROTOCOL(servo_index);
  5641. SERIAL_PROTOCOL(": ");
  5642. SERIAL_PROTOCOL(servos[servo_index].read());
  5643. SERIAL_PROTOCOLLN("");
  5644. }
  5645. }
  5646. break;
  5647. #endif // NUM_SERVOS > 0
  5648. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5649. case 300: // M300
  5650. {
  5651. int beepS = code_seen('S') ? code_value() : 110;
  5652. int beepP = code_seen('P') ? code_value() : 1000;
  5653. if (beepS > 0)
  5654. {
  5655. #if BEEPER > 0
  5656. Sound_MakeCustom(beepP,beepS,false);
  5657. #endif
  5658. }
  5659. else
  5660. {
  5661. _delay(beepP);
  5662. }
  5663. }
  5664. break;
  5665. #endif // M300
  5666. #ifdef PIDTEMP
  5667. case 301: // M301
  5668. {
  5669. if(code_seen('P')) cs.Kp = code_value();
  5670. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5671. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5672. #ifdef PID_ADD_EXTRUSION_RATE
  5673. if(code_seen('C')) Kc = code_value();
  5674. #endif
  5675. updatePID();
  5676. SERIAL_PROTOCOLRPGM(MSG_OK);
  5677. SERIAL_PROTOCOL(" p:");
  5678. SERIAL_PROTOCOL(cs.Kp);
  5679. SERIAL_PROTOCOL(" i:");
  5680. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5681. SERIAL_PROTOCOL(" d:");
  5682. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5683. #ifdef PID_ADD_EXTRUSION_RATE
  5684. SERIAL_PROTOCOL(" c:");
  5685. //Kc does not have scaling applied above, or in resetting defaults
  5686. SERIAL_PROTOCOL(Kc);
  5687. #endif
  5688. SERIAL_PROTOCOLLN("");
  5689. }
  5690. break;
  5691. #endif //PIDTEMP
  5692. #ifdef PIDTEMPBED
  5693. case 304: // M304
  5694. {
  5695. if(code_seen('P')) cs.bedKp = code_value();
  5696. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5697. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5698. updatePID();
  5699. SERIAL_PROTOCOLRPGM(MSG_OK);
  5700. SERIAL_PROTOCOL(" p:");
  5701. SERIAL_PROTOCOL(cs.bedKp);
  5702. SERIAL_PROTOCOL(" i:");
  5703. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5704. SERIAL_PROTOCOL(" d:");
  5705. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5706. SERIAL_PROTOCOLLN("");
  5707. }
  5708. break;
  5709. #endif //PIDTEMP
  5710. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5711. {
  5712. #ifdef CHDK
  5713. SET_OUTPUT(CHDK);
  5714. WRITE(CHDK, HIGH);
  5715. chdkHigh = _millis();
  5716. chdkActive = true;
  5717. #else
  5718. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5719. const uint8_t NUM_PULSES=16;
  5720. const float PULSE_LENGTH=0.01524;
  5721. for(int i=0; i < NUM_PULSES; i++) {
  5722. WRITE(PHOTOGRAPH_PIN, HIGH);
  5723. _delay_ms(PULSE_LENGTH);
  5724. WRITE(PHOTOGRAPH_PIN, LOW);
  5725. _delay_ms(PULSE_LENGTH);
  5726. }
  5727. _delay(7.33);
  5728. for(int i=0; i < NUM_PULSES; i++) {
  5729. WRITE(PHOTOGRAPH_PIN, HIGH);
  5730. _delay_ms(PULSE_LENGTH);
  5731. WRITE(PHOTOGRAPH_PIN, LOW);
  5732. _delay_ms(PULSE_LENGTH);
  5733. }
  5734. #endif
  5735. #endif //chdk end if
  5736. }
  5737. break;
  5738. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5739. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5740. {
  5741. float temp = .0;
  5742. if (code_seen('S')) temp=code_value();
  5743. set_extrude_min_temp(temp);
  5744. }
  5745. break;
  5746. #endif
  5747. case 303: // M303 PID autotune
  5748. {
  5749. float temp = 150.0;
  5750. int e=0;
  5751. int c=5;
  5752. if (code_seen('E')) e=code_value();
  5753. if (e<0)
  5754. temp=70;
  5755. if (code_seen('S')) temp=code_value();
  5756. if (code_seen('C')) c=code_value();
  5757. PID_autotune(temp, e, c);
  5758. }
  5759. break;
  5760. case 400: // M400 finish all moves
  5761. {
  5762. st_synchronize();
  5763. }
  5764. break;
  5765. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5766. {
  5767. //! currently three different materials are needed (default, flex and PVA)
  5768. //! add storing this information for different load/unload profiles etc. in the future
  5769. //!firmware does not wait for "ok" from mmu
  5770. if (mmu_enabled)
  5771. {
  5772. uint8_t extruder = 255;
  5773. uint8_t filament = FILAMENT_UNDEFINED;
  5774. if(code_seen('E')) extruder = code_value();
  5775. if(code_seen('F')) filament = code_value();
  5776. mmu_set_filament_type(extruder, filament);
  5777. }
  5778. }
  5779. break;
  5780. case 500: // M500 Store settings in EEPROM
  5781. {
  5782. Config_StoreSettings();
  5783. }
  5784. break;
  5785. case 501: // M501 Read settings from EEPROM
  5786. {
  5787. Config_RetrieveSettings();
  5788. }
  5789. break;
  5790. case 502: // M502 Revert to default settings
  5791. {
  5792. Config_ResetDefault();
  5793. }
  5794. break;
  5795. case 503: // M503 print settings currently in memory
  5796. {
  5797. Config_PrintSettings();
  5798. }
  5799. break;
  5800. case 509: //M509 Force language selection
  5801. {
  5802. lang_reset();
  5803. SERIAL_ECHO_START;
  5804. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5805. }
  5806. break;
  5807. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5808. case 540:
  5809. {
  5810. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5811. }
  5812. break;
  5813. #endif
  5814. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5815. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5816. {
  5817. float value;
  5818. if (code_seen('Z'))
  5819. {
  5820. value = code_value();
  5821. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5822. {
  5823. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5824. SERIAL_ECHO_START;
  5825. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5826. SERIAL_PROTOCOLLN("");
  5827. }
  5828. else
  5829. {
  5830. SERIAL_ECHO_START;
  5831. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5832. SERIAL_ECHORPGM(MSG_Z_MIN);
  5833. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5834. SERIAL_ECHORPGM(MSG_Z_MAX);
  5835. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5836. SERIAL_PROTOCOLLN("");
  5837. }
  5838. }
  5839. else
  5840. {
  5841. SERIAL_ECHO_START;
  5842. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5843. SERIAL_ECHO(-cs.zprobe_zoffset);
  5844. SERIAL_PROTOCOLLN("");
  5845. }
  5846. break;
  5847. }
  5848. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5849. #ifdef FILAMENTCHANGEENABLE
  5850. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5851. {
  5852. st_synchronize();
  5853. float x_position = current_position[X_AXIS];
  5854. float y_position = current_position[Y_AXIS];
  5855. float z_shift = 0; // is it necessary to be a float?
  5856. float e_shift_init = 0;
  5857. float e_shift_late = 0;
  5858. bool automatic = false;
  5859. //Retract extruder
  5860. if(code_seen('E'))
  5861. {
  5862. e_shift_init = code_value();
  5863. }
  5864. else
  5865. {
  5866. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5867. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5868. #endif
  5869. }
  5870. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5871. if (code_seen('L'))
  5872. {
  5873. e_shift_late = code_value();
  5874. }
  5875. else
  5876. {
  5877. #ifdef FILAMENTCHANGE_FINALRETRACT
  5878. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5879. #endif
  5880. }
  5881. //Lift Z
  5882. if(code_seen('Z'))
  5883. {
  5884. z_shift = code_value();
  5885. }
  5886. else
  5887. {
  5888. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5889. }
  5890. //Move XY to side
  5891. if(code_seen('X'))
  5892. {
  5893. x_position = code_value();
  5894. }
  5895. else
  5896. {
  5897. #ifdef FILAMENTCHANGE_XPOS
  5898. x_position = FILAMENTCHANGE_XPOS;
  5899. #endif
  5900. }
  5901. if(code_seen('Y'))
  5902. {
  5903. y_position = code_value();
  5904. }
  5905. else
  5906. {
  5907. #ifdef FILAMENTCHANGE_YPOS
  5908. y_position = FILAMENTCHANGE_YPOS ;
  5909. #endif
  5910. }
  5911. if (mmu_enabled && code_seen("AUTO"))
  5912. automatic = true;
  5913. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5914. }
  5915. break;
  5916. #endif //FILAMENTCHANGEENABLE
  5917. case 601: //! M601 - Pause print
  5918. {
  5919. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5920. lcd_pause_print();
  5921. }
  5922. break;
  5923. case 602: { //! M602 - Resume print
  5924. lcd_resume_print();
  5925. }
  5926. break;
  5927. case 603: { //! M603 - Stop print
  5928. lcd_print_stop();
  5929. }
  5930. #ifdef PINDA_THERMISTOR
  5931. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5932. {
  5933. int set_target_pinda = 0;
  5934. if (code_seen('S')) {
  5935. set_target_pinda = code_value();
  5936. }
  5937. else {
  5938. break;
  5939. }
  5940. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5941. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5942. SERIAL_PROTOCOL(set_target_pinda);
  5943. SERIAL_PROTOCOLLN("");
  5944. codenum = _millis();
  5945. cancel_heatup = false;
  5946. bool is_pinda_cooling = false;
  5947. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5948. is_pinda_cooling = true;
  5949. }
  5950. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5951. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5952. {
  5953. SERIAL_PROTOCOLPGM("P:");
  5954. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5955. SERIAL_PROTOCOLPGM("/");
  5956. SERIAL_PROTOCOL(set_target_pinda);
  5957. SERIAL_PROTOCOLLN("");
  5958. codenum = _millis();
  5959. }
  5960. manage_heater();
  5961. manage_inactivity();
  5962. lcd_update(0);
  5963. }
  5964. LCD_MESSAGERPGM(MSG_OK);
  5965. break;
  5966. }
  5967. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5968. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5969. uint8_t cal_status = calibration_status_pinda();
  5970. int16_t usteps = 0;
  5971. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5972. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5973. for (uint8_t i = 0; i < 6; i++)
  5974. {
  5975. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5976. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5977. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5978. SERIAL_PROTOCOLPGM(", ");
  5979. SERIAL_PROTOCOL(35 + (i * 5));
  5980. SERIAL_PROTOCOLPGM(", ");
  5981. SERIAL_PROTOCOL(usteps);
  5982. SERIAL_PROTOCOLPGM(", ");
  5983. SERIAL_PROTOCOL(mm * 1000);
  5984. SERIAL_PROTOCOLLN("");
  5985. }
  5986. }
  5987. else if (code_seen('!')) { // ! - Set factory default values
  5988. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5989. int16_t z_shift = 8; //40C - 20um - 8usteps
  5990. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5991. z_shift = 24; //45C - 60um - 24usteps
  5992. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5993. z_shift = 48; //50C - 120um - 48usteps
  5994. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5995. z_shift = 80; //55C - 200um - 80usteps
  5996. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5997. z_shift = 120; //60C - 300um - 120usteps
  5998. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5999. SERIAL_PROTOCOLLN("factory restored");
  6000. }
  6001. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6002. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6003. int16_t z_shift = 0;
  6004. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6005. SERIAL_PROTOCOLLN("zerorized");
  6006. }
  6007. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6008. int16_t usteps = code_value();
  6009. if (code_seen('I')) {
  6010. uint8_t index = code_value();
  6011. if (index < 5) {
  6012. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6013. SERIAL_PROTOCOLLN("OK");
  6014. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6015. for (uint8_t i = 0; i < 6; i++)
  6016. {
  6017. usteps = 0;
  6018. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6019. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6020. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6021. SERIAL_PROTOCOLPGM(", ");
  6022. SERIAL_PROTOCOL(35 + (i * 5));
  6023. SERIAL_PROTOCOLPGM(", ");
  6024. SERIAL_PROTOCOL(usteps);
  6025. SERIAL_PROTOCOLPGM(", ");
  6026. SERIAL_PROTOCOL(mm * 1000);
  6027. SERIAL_PROTOCOLLN("");
  6028. }
  6029. }
  6030. }
  6031. }
  6032. else {
  6033. SERIAL_PROTOCOLPGM("no valid command");
  6034. }
  6035. break;
  6036. #endif //PINDA_THERMISTOR
  6037. case 862: // M862: print checking
  6038. float nDummy;
  6039. uint8_t nCommand;
  6040. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6041. switch((ClPrintChecking)nCommand)
  6042. {
  6043. case ClPrintChecking::_Nozzle: // ~ .1
  6044. uint16_t nDiameter;
  6045. if(code_seen('P'))
  6046. {
  6047. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6048. nozzle_diameter_check(nDiameter);
  6049. }
  6050. /*
  6051. else if(code_seen('S')&&farm_mode)
  6052. {
  6053. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6054. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6055. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6056. }
  6057. */
  6058. else if(code_seen('Q'))
  6059. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6060. break;
  6061. case ClPrintChecking::_Model: // ~ .2
  6062. if(code_seen('P'))
  6063. {
  6064. uint16_t nPrinterModel;
  6065. nPrinterModel=(uint16_t)code_value_long();
  6066. printer_model_check(nPrinterModel);
  6067. }
  6068. else if(code_seen('Q'))
  6069. SERIAL_PROTOCOLLN(nPrinterType);
  6070. break;
  6071. case ClPrintChecking::_Smodel: // ~ .3
  6072. if(code_seen('P'))
  6073. printer_smodel_check(strchr_pointer);
  6074. else if(code_seen('Q'))
  6075. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6076. break;
  6077. case ClPrintChecking::_Version: // ~ .4
  6078. if(code_seen('P'))
  6079. fw_version_check(++strchr_pointer);
  6080. else if(code_seen('Q'))
  6081. SERIAL_PROTOCOLLN(FW_VERSION);
  6082. break;
  6083. case ClPrintChecking::_Gcode: // ~ .5
  6084. if(code_seen('P'))
  6085. {
  6086. uint16_t nGcodeLevel;
  6087. nGcodeLevel=(uint16_t)code_value_long();
  6088. gcode_level_check(nGcodeLevel);
  6089. }
  6090. else if(code_seen('Q'))
  6091. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6092. break;
  6093. }
  6094. break;
  6095. #ifdef LIN_ADVANCE
  6096. case 900: // M900: Set LIN_ADVANCE options.
  6097. gcode_M900();
  6098. break;
  6099. #endif
  6100. case 907: // M907 Set digital trimpot motor current using axis codes.
  6101. {
  6102. #ifdef TMC2130
  6103. for (int i = 0; i < NUM_AXIS; i++)
  6104. if(code_seen(axis_codes[i]))
  6105. {
  6106. long cur_mA = code_value_long();
  6107. uint8_t val = tmc2130_cur2val(cur_mA);
  6108. tmc2130_set_current_h(i, val);
  6109. tmc2130_set_current_r(i, val);
  6110. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6111. }
  6112. #else //TMC2130
  6113. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6114. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6115. if(code_seen('B')) st_current_set(4,code_value());
  6116. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6117. #endif
  6118. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6119. if(code_seen('X')) st_current_set(0, code_value());
  6120. #endif
  6121. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6122. if(code_seen('Z')) st_current_set(1, code_value());
  6123. #endif
  6124. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6125. if(code_seen('E')) st_current_set(2, code_value());
  6126. #endif
  6127. #endif //TMC2130
  6128. }
  6129. break;
  6130. case 908: // M908 Control digital trimpot directly.
  6131. {
  6132. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6133. uint8_t channel,current;
  6134. if(code_seen('P')) channel=code_value();
  6135. if(code_seen('S')) current=code_value();
  6136. digitalPotWrite(channel, current);
  6137. #endif
  6138. }
  6139. break;
  6140. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6141. case 910: //! M910 - TMC2130 init
  6142. {
  6143. tmc2130_init();
  6144. }
  6145. break;
  6146. case 911: //! M911 - Set TMC2130 holding currents
  6147. {
  6148. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6149. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6150. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6151. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6152. }
  6153. break;
  6154. case 912: //! M912 - Set TMC2130 running currents
  6155. {
  6156. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6157. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6158. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6159. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6160. }
  6161. break;
  6162. case 913: //! M913 - Print TMC2130 currents
  6163. {
  6164. tmc2130_print_currents();
  6165. }
  6166. break;
  6167. case 914: //! M914 - Set normal mode
  6168. {
  6169. tmc2130_mode = TMC2130_MODE_NORMAL;
  6170. update_mode_profile();
  6171. tmc2130_init();
  6172. }
  6173. break;
  6174. case 915: //! M915 - Set silent mode
  6175. {
  6176. tmc2130_mode = TMC2130_MODE_SILENT;
  6177. update_mode_profile();
  6178. tmc2130_init();
  6179. }
  6180. break;
  6181. case 916: //! M916 - Set sg_thrs
  6182. {
  6183. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6184. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6185. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6186. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6187. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6188. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6189. }
  6190. break;
  6191. case 917: //! M917 - Set TMC2130 pwm_ampl
  6192. {
  6193. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6194. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6195. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6196. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6197. }
  6198. break;
  6199. case 918: //! M918 - Set TMC2130 pwm_grad
  6200. {
  6201. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6202. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6203. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6204. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6205. }
  6206. break;
  6207. #endif //TMC2130_SERVICE_CODES_M910_M918
  6208. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6209. {
  6210. #ifdef TMC2130
  6211. if(code_seen('E'))
  6212. {
  6213. uint16_t res_new = code_value();
  6214. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6215. {
  6216. st_synchronize();
  6217. uint8_t axis = E_AXIS;
  6218. uint16_t res = tmc2130_get_res(axis);
  6219. tmc2130_set_res(axis, res_new);
  6220. cs.axis_ustep_resolution[axis] = res_new;
  6221. if (res_new > res)
  6222. {
  6223. uint16_t fac = (res_new / res);
  6224. cs.axis_steps_per_unit[axis] *= fac;
  6225. position[E_AXIS] *= fac;
  6226. }
  6227. else
  6228. {
  6229. uint16_t fac = (res / res_new);
  6230. cs.axis_steps_per_unit[axis] /= fac;
  6231. position[E_AXIS] /= fac;
  6232. }
  6233. }
  6234. }
  6235. #else //TMC2130
  6236. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6237. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6238. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6239. if(code_seen('B')) microstep_mode(4,code_value());
  6240. microstep_readings();
  6241. #endif
  6242. #endif //TMC2130
  6243. }
  6244. break;
  6245. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6246. {
  6247. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6248. if(code_seen('S')) switch((int)code_value())
  6249. {
  6250. case 1:
  6251. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6252. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6253. break;
  6254. case 2:
  6255. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6256. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6257. break;
  6258. }
  6259. microstep_readings();
  6260. #endif
  6261. }
  6262. break;
  6263. case 701: //! M701 - load filament
  6264. {
  6265. if (mmu_enabled && code_seen('E'))
  6266. tmp_extruder = code_value();
  6267. gcode_M701();
  6268. }
  6269. break;
  6270. case 702: //! M702 [U C] -
  6271. {
  6272. #ifdef SNMM
  6273. if (code_seen('U'))
  6274. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6275. else if (code_seen('C'))
  6276. extr_unload(); //! if "C" unload just current filament
  6277. else
  6278. extr_unload_all(); //! otherwise unload all filaments
  6279. #else
  6280. if (code_seen('C')) {
  6281. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6282. }
  6283. else {
  6284. if(mmu_enabled) extr_unload(); //! unload current filament
  6285. else unload_filament();
  6286. }
  6287. #endif //SNMM
  6288. }
  6289. break;
  6290. case 999: // M999: Restart after being stopped
  6291. Stopped = false;
  6292. lcd_reset_alert_level();
  6293. gcode_LastN = Stopped_gcode_LastN;
  6294. FlushSerialRequestResend();
  6295. break;
  6296. default:
  6297. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6298. }
  6299. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6300. mcode_in_progress = 0;
  6301. }
  6302. }
  6303. // end if(code_seen('M')) (end of M codes)
  6304. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6305. //! select filament in case of MMU_V2
  6306. //! if extruder is "?", open menu to let the user select extruder/filament
  6307. //!
  6308. //! For MMU_V2:
  6309. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6310. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6311. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6312. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6313. else if(code_seen('T'))
  6314. {
  6315. int index;
  6316. bool load_to_nozzle = false;
  6317. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6318. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6319. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6320. SERIAL_ECHOLNPGM("Invalid T code.");
  6321. }
  6322. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6323. if (mmu_enabled)
  6324. {
  6325. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6326. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6327. {
  6328. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6329. }
  6330. else
  6331. {
  6332. st_synchronize();
  6333. mmu_command(MmuCmd::T0 + tmp_extruder);
  6334. manage_response(true, true, MMU_TCODE_MOVE);
  6335. }
  6336. }
  6337. }
  6338. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6339. if (mmu_enabled)
  6340. {
  6341. st_synchronize();
  6342. mmu_continue_loading(is_usb_printing);
  6343. mmu_extruder = tmp_extruder; //filament change is finished
  6344. mmu_load_to_nozzle();
  6345. }
  6346. }
  6347. else {
  6348. if (*(strchr_pointer + index) == '?')
  6349. {
  6350. if(mmu_enabled)
  6351. {
  6352. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6353. load_to_nozzle = true;
  6354. } else
  6355. {
  6356. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6357. }
  6358. }
  6359. else {
  6360. tmp_extruder = code_value();
  6361. if (mmu_enabled && lcd_autoDepleteEnabled())
  6362. {
  6363. tmp_extruder = ad_getAlternative(tmp_extruder);
  6364. }
  6365. }
  6366. st_synchronize();
  6367. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6368. if (mmu_enabled)
  6369. {
  6370. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6371. {
  6372. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6373. }
  6374. else
  6375. {
  6376. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6377. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6378. {
  6379. mmu_command(MmuCmd::K0 + tmp_extruder);
  6380. manage_response(true, true, MMU_UNLOAD_MOVE);
  6381. }
  6382. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6383. mmu_command(MmuCmd::T0 + tmp_extruder);
  6384. manage_response(true, true, MMU_TCODE_MOVE);
  6385. mmu_continue_loading(is_usb_printing);
  6386. mmu_extruder = tmp_extruder; //filament change is finished
  6387. if (load_to_nozzle)// for single material usage with mmu
  6388. {
  6389. mmu_load_to_nozzle();
  6390. }
  6391. }
  6392. }
  6393. else
  6394. {
  6395. #ifdef SNMM
  6396. #ifdef LIN_ADVANCE
  6397. if (mmu_extruder != tmp_extruder)
  6398. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6399. #endif
  6400. mmu_extruder = tmp_extruder;
  6401. _delay(100);
  6402. disable_e0();
  6403. disable_e1();
  6404. disable_e2();
  6405. pinMode(E_MUX0_PIN, OUTPUT);
  6406. pinMode(E_MUX1_PIN, OUTPUT);
  6407. _delay(100);
  6408. SERIAL_ECHO_START;
  6409. SERIAL_ECHO("T:");
  6410. SERIAL_ECHOLN((int)tmp_extruder);
  6411. switch (tmp_extruder) {
  6412. case 1:
  6413. WRITE(E_MUX0_PIN, HIGH);
  6414. WRITE(E_MUX1_PIN, LOW);
  6415. break;
  6416. case 2:
  6417. WRITE(E_MUX0_PIN, LOW);
  6418. WRITE(E_MUX1_PIN, HIGH);
  6419. break;
  6420. case 3:
  6421. WRITE(E_MUX0_PIN, HIGH);
  6422. WRITE(E_MUX1_PIN, HIGH);
  6423. break;
  6424. default:
  6425. WRITE(E_MUX0_PIN, LOW);
  6426. WRITE(E_MUX1_PIN, LOW);
  6427. break;
  6428. }
  6429. _delay(100);
  6430. #else //SNMM
  6431. if (tmp_extruder >= EXTRUDERS) {
  6432. SERIAL_ECHO_START;
  6433. SERIAL_ECHOPGM("T");
  6434. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6435. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6436. }
  6437. else {
  6438. #if EXTRUDERS > 1
  6439. boolean make_move = false;
  6440. #endif
  6441. if (code_seen('F')) {
  6442. #if EXTRUDERS > 1
  6443. make_move = true;
  6444. #endif
  6445. next_feedrate = code_value();
  6446. if (next_feedrate > 0.0) {
  6447. feedrate = next_feedrate;
  6448. }
  6449. }
  6450. #if EXTRUDERS > 1
  6451. if (tmp_extruder != active_extruder) {
  6452. // Save current position to return to after applying extruder offset
  6453. memcpy(destination, current_position, sizeof(destination));
  6454. // Offset extruder (only by XY)
  6455. int i;
  6456. for (i = 0; i < 2; i++) {
  6457. current_position[i] = current_position[i] -
  6458. extruder_offset[i][active_extruder] +
  6459. extruder_offset[i][tmp_extruder];
  6460. }
  6461. // Set the new active extruder and position
  6462. active_extruder = tmp_extruder;
  6463. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6464. // Move to the old position if 'F' was in the parameters
  6465. if (make_move && Stopped == false) {
  6466. prepare_move();
  6467. }
  6468. }
  6469. #endif
  6470. SERIAL_ECHO_START;
  6471. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6472. SERIAL_PROTOCOLLN((int)active_extruder);
  6473. }
  6474. #endif //SNMM
  6475. }
  6476. }
  6477. } // end if(code_seen('T')) (end of T codes)
  6478. else if (code_seen('D')) // D codes (debug)
  6479. {
  6480. switch((int)code_value())
  6481. {
  6482. case -1: //! D-1 - Endless loop
  6483. dcode__1(); break;
  6484. #ifdef DEBUG_DCODES
  6485. case 0: //! D0 - Reset
  6486. dcode_0(); break;
  6487. case 1: //! D1 - Clear EEPROM
  6488. dcode_1(); break;
  6489. case 2: //! D2 - Read/Write RAM
  6490. dcode_2(); break;
  6491. #endif //DEBUG_DCODES
  6492. #ifdef DEBUG_DCODE3
  6493. case 3: //! D3 - Read/Write EEPROM
  6494. dcode_3(); break;
  6495. #endif //DEBUG_DCODE3
  6496. #ifdef DEBUG_DCODES
  6497. case 4: //! D4 - Read/Write PIN
  6498. dcode_4(); break;
  6499. #endif //DEBUG_DCODES
  6500. #ifdef DEBUG_DCODE5
  6501. case 5: // D5 - Read/Write FLASH
  6502. dcode_5(); break;
  6503. break;
  6504. #endif //DEBUG_DCODE5
  6505. #ifdef DEBUG_DCODES
  6506. case 6: // D6 - Read/Write external FLASH
  6507. dcode_6(); break;
  6508. case 7: //! D7 - Read/Write Bootloader
  6509. dcode_7(); break;
  6510. case 8: //! D8 - Read/Write PINDA
  6511. dcode_8(); break;
  6512. case 9: //! D9 - Read/Write ADC
  6513. dcode_9(); break;
  6514. case 10: //! D10 - XYZ calibration = OK
  6515. dcode_10(); break;
  6516. #endif //DEBUG_DCODES
  6517. #ifdef HEATBED_ANALYSIS
  6518. case 80:
  6519. {
  6520. float dimension_x = 40;
  6521. float dimension_y = 40;
  6522. int points_x = 40;
  6523. int points_y = 40;
  6524. float offset_x = 74;
  6525. float offset_y = 33;
  6526. if (code_seen('E')) dimension_x = code_value();
  6527. if (code_seen('F')) dimension_y = code_value();
  6528. if (code_seen('G')) {points_x = code_value(); }
  6529. if (code_seen('H')) {points_y = code_value(); }
  6530. if (code_seen('I')) {offset_x = code_value(); }
  6531. if (code_seen('J')) {offset_y = code_value(); }
  6532. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6533. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6534. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6535. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6536. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6537. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6538. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6539. }break;
  6540. case 81:
  6541. {
  6542. float dimension_x = 40;
  6543. float dimension_y = 40;
  6544. int points_x = 40;
  6545. int points_y = 40;
  6546. float offset_x = 74;
  6547. float offset_y = 33;
  6548. if (code_seen('E')) dimension_x = code_value();
  6549. if (code_seen('F')) dimension_y = code_value();
  6550. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6551. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6552. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6553. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6554. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6555. } break;
  6556. #endif //HEATBED_ANALYSIS
  6557. #ifdef DEBUG_DCODES
  6558. case 106: //D106 print measured fan speed for different pwm values
  6559. {
  6560. for (int i = 255; i > 0; i = i - 5) {
  6561. fanSpeed = i;
  6562. //delay_keep_alive(2000);
  6563. for (int j = 0; j < 100; j++) {
  6564. delay_keep_alive(100);
  6565. }
  6566. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6567. }
  6568. }break;
  6569. #ifdef TMC2130
  6570. case 2130: //! D2130 - TMC2130
  6571. dcode_2130(); break;
  6572. #endif //TMC2130
  6573. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6574. case 9125: //! D9125 - FILAMENT_SENSOR
  6575. dcode_9125(); break;
  6576. #endif //FILAMENT_SENSOR
  6577. #endif //DEBUG_DCODES
  6578. }
  6579. }
  6580. else
  6581. {
  6582. SERIAL_ECHO_START;
  6583. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6584. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6585. SERIAL_ECHOLNPGM("\"(2)");
  6586. }
  6587. KEEPALIVE_STATE(NOT_BUSY);
  6588. ClearToSend();
  6589. }
  6590. void FlushSerialRequestResend()
  6591. {
  6592. //char cmdbuffer[bufindr][100]="Resend:";
  6593. MYSERIAL.flush();
  6594. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6595. }
  6596. // Confirm the execution of a command, if sent from a serial line.
  6597. // Execution of a command from a SD card will not be confirmed.
  6598. void ClearToSend()
  6599. {
  6600. previous_millis_cmd = _millis();
  6601. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6602. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6603. }
  6604. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6605. void update_currents() {
  6606. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6607. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6608. float tmp_motor[3];
  6609. //SERIAL_ECHOLNPGM("Currents updated: ");
  6610. if (destination[Z_AXIS] < Z_SILENT) {
  6611. //SERIAL_ECHOLNPGM("LOW");
  6612. for (uint8_t i = 0; i < 3; i++) {
  6613. st_current_set(i, current_low[i]);
  6614. /*MYSERIAL.print(int(i));
  6615. SERIAL_ECHOPGM(": ");
  6616. MYSERIAL.println(current_low[i]);*/
  6617. }
  6618. }
  6619. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6620. //SERIAL_ECHOLNPGM("HIGH");
  6621. for (uint8_t i = 0; i < 3; i++) {
  6622. st_current_set(i, current_high[i]);
  6623. /*MYSERIAL.print(int(i));
  6624. SERIAL_ECHOPGM(": ");
  6625. MYSERIAL.println(current_high[i]);*/
  6626. }
  6627. }
  6628. else {
  6629. for (uint8_t i = 0; i < 3; i++) {
  6630. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6631. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6632. st_current_set(i, tmp_motor[i]);
  6633. /*MYSERIAL.print(int(i));
  6634. SERIAL_ECHOPGM(": ");
  6635. MYSERIAL.println(tmp_motor[i]);*/
  6636. }
  6637. }
  6638. }
  6639. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6640. void get_coordinates()
  6641. {
  6642. bool seen[4]={false,false,false,false};
  6643. for(int8_t i=0; i < NUM_AXIS; i++) {
  6644. if(code_seen(axis_codes[i]))
  6645. {
  6646. bool relative = axis_relative_modes[i] || relative_mode;
  6647. destination[i] = (float)code_value();
  6648. if (i == E_AXIS) {
  6649. float emult = extruder_multiplier[active_extruder];
  6650. if (emult != 1.) {
  6651. if (! relative) {
  6652. destination[i] -= current_position[i];
  6653. relative = true;
  6654. }
  6655. destination[i] *= emult;
  6656. }
  6657. }
  6658. if (relative)
  6659. destination[i] += current_position[i];
  6660. seen[i]=true;
  6661. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6662. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6663. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6664. }
  6665. else destination[i] = current_position[i]; //Are these else lines really needed?
  6666. }
  6667. if(code_seen('F')) {
  6668. next_feedrate = code_value();
  6669. #ifdef MAX_SILENT_FEEDRATE
  6670. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6671. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6672. #endif //MAX_SILENT_FEEDRATE
  6673. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6674. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6675. {
  6676. // float e_max_speed =
  6677. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6678. }
  6679. }
  6680. }
  6681. void get_arc_coordinates()
  6682. {
  6683. #ifdef SF_ARC_FIX
  6684. bool relative_mode_backup = relative_mode;
  6685. relative_mode = true;
  6686. #endif
  6687. get_coordinates();
  6688. #ifdef SF_ARC_FIX
  6689. relative_mode=relative_mode_backup;
  6690. #endif
  6691. if(code_seen('I')) {
  6692. offset[0] = code_value();
  6693. }
  6694. else {
  6695. offset[0] = 0.0;
  6696. }
  6697. if(code_seen('J')) {
  6698. offset[1] = code_value();
  6699. }
  6700. else {
  6701. offset[1] = 0.0;
  6702. }
  6703. }
  6704. void clamp_to_software_endstops(float target[3])
  6705. {
  6706. #ifdef DEBUG_DISABLE_SWLIMITS
  6707. return;
  6708. #endif //DEBUG_DISABLE_SWLIMITS
  6709. world2machine_clamp(target[0], target[1]);
  6710. // Clamp the Z coordinate.
  6711. if (min_software_endstops) {
  6712. float negative_z_offset = 0;
  6713. #ifdef ENABLE_AUTO_BED_LEVELING
  6714. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6715. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6716. #endif
  6717. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6718. }
  6719. if (max_software_endstops) {
  6720. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6721. }
  6722. }
  6723. #ifdef MESH_BED_LEVELING
  6724. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6725. float dx = x - current_position[X_AXIS];
  6726. float dy = y - current_position[Y_AXIS];
  6727. float dz = z - current_position[Z_AXIS];
  6728. int n_segments = 0;
  6729. if (mbl.active) {
  6730. float len = abs(dx) + abs(dy);
  6731. if (len > 0)
  6732. // Split to 3cm segments or shorter.
  6733. n_segments = int(ceil(len / 30.f));
  6734. }
  6735. if (n_segments > 1) {
  6736. float de = e - current_position[E_AXIS];
  6737. for (int i = 1; i < n_segments; ++ i) {
  6738. float t = float(i) / float(n_segments);
  6739. if (saved_printing || (mbl.active == false)) return;
  6740. plan_buffer_line(
  6741. current_position[X_AXIS] + t * dx,
  6742. current_position[Y_AXIS] + t * dy,
  6743. current_position[Z_AXIS] + t * dz,
  6744. current_position[E_AXIS] + t * de,
  6745. feed_rate, extruder);
  6746. }
  6747. }
  6748. // The rest of the path.
  6749. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6750. current_position[X_AXIS] = x;
  6751. current_position[Y_AXIS] = y;
  6752. current_position[Z_AXIS] = z;
  6753. current_position[E_AXIS] = e;
  6754. }
  6755. #endif // MESH_BED_LEVELING
  6756. void prepare_move()
  6757. {
  6758. clamp_to_software_endstops(destination);
  6759. previous_millis_cmd = _millis();
  6760. // Do not use feedmultiply for E or Z only moves
  6761. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6762. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6763. }
  6764. else {
  6765. #ifdef MESH_BED_LEVELING
  6766. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6767. #else
  6768. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6769. #endif
  6770. }
  6771. for(int8_t i=0; i < NUM_AXIS; i++) {
  6772. current_position[i] = destination[i];
  6773. }
  6774. }
  6775. void prepare_arc_move(char isclockwise) {
  6776. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6777. // Trace the arc
  6778. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6779. // As far as the parser is concerned, the position is now == target. In reality the
  6780. // motion control system might still be processing the action and the real tool position
  6781. // in any intermediate location.
  6782. for(int8_t i=0; i < NUM_AXIS; i++) {
  6783. current_position[i] = destination[i];
  6784. }
  6785. previous_millis_cmd = _millis();
  6786. }
  6787. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6788. #if defined(FAN_PIN)
  6789. #if CONTROLLERFAN_PIN == FAN_PIN
  6790. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6791. #endif
  6792. #endif
  6793. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6794. unsigned long lastMotorCheck = 0;
  6795. void controllerFan()
  6796. {
  6797. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6798. {
  6799. lastMotorCheck = _millis();
  6800. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6801. #if EXTRUDERS > 2
  6802. || !READ(E2_ENABLE_PIN)
  6803. #endif
  6804. #if EXTRUDER > 1
  6805. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6806. || !READ(X2_ENABLE_PIN)
  6807. #endif
  6808. || !READ(E1_ENABLE_PIN)
  6809. #endif
  6810. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6811. {
  6812. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6813. }
  6814. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6815. {
  6816. digitalWrite(CONTROLLERFAN_PIN, 0);
  6817. analogWrite(CONTROLLERFAN_PIN, 0);
  6818. }
  6819. else
  6820. {
  6821. // allows digital or PWM fan output to be used (see M42 handling)
  6822. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6823. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6824. }
  6825. }
  6826. }
  6827. #endif
  6828. #ifdef TEMP_STAT_LEDS
  6829. static bool blue_led = false;
  6830. static bool red_led = false;
  6831. static uint32_t stat_update = 0;
  6832. void handle_status_leds(void) {
  6833. float max_temp = 0.0;
  6834. if(_millis() > stat_update) {
  6835. stat_update += 500; // Update every 0.5s
  6836. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6837. max_temp = max(max_temp, degHotend(cur_extruder));
  6838. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6839. }
  6840. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6841. max_temp = max(max_temp, degTargetBed());
  6842. max_temp = max(max_temp, degBed());
  6843. #endif
  6844. if((max_temp > 55.0) && (red_led == false)) {
  6845. digitalWrite(STAT_LED_RED, 1);
  6846. digitalWrite(STAT_LED_BLUE, 0);
  6847. red_led = true;
  6848. blue_led = false;
  6849. }
  6850. if((max_temp < 54.0) && (blue_led == false)) {
  6851. digitalWrite(STAT_LED_RED, 0);
  6852. digitalWrite(STAT_LED_BLUE, 1);
  6853. red_led = false;
  6854. blue_led = true;
  6855. }
  6856. }
  6857. }
  6858. #endif
  6859. #ifdef SAFETYTIMER
  6860. /**
  6861. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6862. *
  6863. * Full screen blocking notification message is shown after heater turning off.
  6864. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6865. * damage print.
  6866. *
  6867. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6868. */
  6869. static void handleSafetyTimer()
  6870. {
  6871. #if (EXTRUDERS > 1)
  6872. #error Implemented only for one extruder.
  6873. #endif //(EXTRUDERS > 1)
  6874. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6875. {
  6876. safetyTimer.stop();
  6877. }
  6878. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6879. {
  6880. safetyTimer.start();
  6881. }
  6882. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  6883. {
  6884. setTargetBed(0);
  6885. setAllTargetHotends(0);
  6886. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6887. }
  6888. }
  6889. #endif //SAFETYTIMER
  6890. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6891. {
  6892. bool bInhibitFlag;
  6893. #ifdef FILAMENT_SENSOR
  6894. if (mmu_enabled == false)
  6895. {
  6896. //-// if (mcode_in_progress != 600) //M600 not in progress
  6897. #ifdef PAT9125
  6898. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6899. #endif // PAT9125
  6900. #ifdef IR_SENSOR
  6901. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6902. #endif // IR_SENSOR
  6903. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6904. {
  6905. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  6906. {
  6907. if (fsensor_check_autoload())
  6908. {
  6909. #ifdef PAT9125
  6910. fsensor_autoload_check_stop();
  6911. #endif //PAT9125
  6912. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6913. if(0)
  6914. {
  6915. Sound_MakeCustom(50,1000,false);
  6916. loading_flag = true;
  6917. enquecommand_front_P((PSTR("M701")));
  6918. }
  6919. else
  6920. {
  6921. /*
  6922. lcd_update_enable(false);
  6923. show_preheat_nozzle_warning();
  6924. lcd_update_enable(true);
  6925. */
  6926. eFilamentAction=FilamentAction::AutoLoad;
  6927. bFilamentFirstRun=false;
  6928. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6929. {
  6930. bFilamentPreheatState=true;
  6931. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6932. menu_submenu(mFilamentItemForce);
  6933. }
  6934. else
  6935. {
  6936. menu_submenu(mFilamentMenu);
  6937. lcd_timeoutToStatus.start();
  6938. }
  6939. }
  6940. }
  6941. }
  6942. else
  6943. {
  6944. #ifdef PAT9125
  6945. fsensor_autoload_check_stop();
  6946. #endif //PAT9125
  6947. fsensor_update();
  6948. }
  6949. }
  6950. }
  6951. #endif //FILAMENT_SENSOR
  6952. #ifdef SAFETYTIMER
  6953. handleSafetyTimer();
  6954. #endif //SAFETYTIMER
  6955. #if defined(KILL_PIN) && KILL_PIN > -1
  6956. static int killCount = 0; // make the inactivity button a bit less responsive
  6957. const int KILL_DELAY = 10000;
  6958. #endif
  6959. if(buflen < (BUFSIZE-1)){
  6960. get_command();
  6961. }
  6962. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6963. if(max_inactive_time)
  6964. kill(_n(""), 4);
  6965. if(stepper_inactive_time) {
  6966. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6967. {
  6968. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6969. disable_x();
  6970. disable_y();
  6971. disable_z();
  6972. disable_e0();
  6973. disable_e1();
  6974. disable_e2();
  6975. }
  6976. }
  6977. }
  6978. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6979. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6980. {
  6981. chdkActive = false;
  6982. WRITE(CHDK, LOW);
  6983. }
  6984. #endif
  6985. #if defined(KILL_PIN) && KILL_PIN > -1
  6986. // Check if the kill button was pressed and wait just in case it was an accidental
  6987. // key kill key press
  6988. // -------------------------------------------------------------------------------
  6989. if( 0 == READ(KILL_PIN) )
  6990. {
  6991. killCount++;
  6992. }
  6993. else if (killCount > 0)
  6994. {
  6995. killCount--;
  6996. }
  6997. // Exceeded threshold and we can confirm that it was not accidental
  6998. // KILL the machine
  6999. // ----------------------------------------------------------------
  7000. if ( killCount >= KILL_DELAY)
  7001. {
  7002. kill("", 5);
  7003. }
  7004. #endif
  7005. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7006. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7007. #endif
  7008. #ifdef EXTRUDER_RUNOUT_PREVENT
  7009. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7010. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7011. {
  7012. bool oldstatus=READ(E0_ENABLE_PIN);
  7013. enable_e0();
  7014. float oldepos=current_position[E_AXIS];
  7015. float oldedes=destination[E_AXIS];
  7016. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7017. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7018. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7019. current_position[E_AXIS]=oldepos;
  7020. destination[E_AXIS]=oldedes;
  7021. plan_set_e_position(oldepos);
  7022. previous_millis_cmd=_millis();
  7023. st_synchronize();
  7024. WRITE(E0_ENABLE_PIN,oldstatus);
  7025. }
  7026. #endif
  7027. #ifdef TEMP_STAT_LEDS
  7028. handle_status_leds();
  7029. #endif
  7030. check_axes_activity();
  7031. mmu_loop();
  7032. }
  7033. void kill(const char *full_screen_message, unsigned char id)
  7034. {
  7035. printf_P(_N("KILL: %d\n"), id);
  7036. //return;
  7037. cli(); // Stop interrupts
  7038. disable_heater();
  7039. disable_x();
  7040. // SERIAL_ECHOLNPGM("kill - disable Y");
  7041. disable_y();
  7042. disable_z();
  7043. disable_e0();
  7044. disable_e1();
  7045. disable_e2();
  7046. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7047. pinMode(PS_ON_PIN,INPUT);
  7048. #endif
  7049. SERIAL_ERROR_START;
  7050. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7051. if (full_screen_message != NULL) {
  7052. SERIAL_ERRORLNRPGM(full_screen_message);
  7053. lcd_display_message_fullscreen_P(full_screen_message);
  7054. } else {
  7055. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7056. }
  7057. // FMC small patch to update the LCD before ending
  7058. sei(); // enable interrupts
  7059. for ( int i=5; i--; lcd_update(0))
  7060. {
  7061. _delay(200);
  7062. }
  7063. cli(); // disable interrupts
  7064. suicide();
  7065. while(1)
  7066. {
  7067. #ifdef WATCHDOG
  7068. wdt_reset();
  7069. #endif //WATCHDOG
  7070. /* Intentionally left empty */
  7071. } // Wait for reset
  7072. }
  7073. void Stop()
  7074. {
  7075. disable_heater();
  7076. if(Stopped == false) {
  7077. Stopped = true;
  7078. lcd_print_stop();
  7079. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7080. SERIAL_ERROR_START;
  7081. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7082. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7083. }
  7084. }
  7085. bool IsStopped() { return Stopped; };
  7086. #ifdef FAST_PWM_FAN
  7087. void setPwmFrequency(uint8_t pin, int val)
  7088. {
  7089. val &= 0x07;
  7090. switch(digitalPinToTimer(pin))
  7091. {
  7092. #if defined(TCCR0A)
  7093. case TIMER0A:
  7094. case TIMER0B:
  7095. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7096. // TCCR0B |= val;
  7097. break;
  7098. #endif
  7099. #if defined(TCCR1A)
  7100. case TIMER1A:
  7101. case TIMER1B:
  7102. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7103. // TCCR1B |= val;
  7104. break;
  7105. #endif
  7106. #if defined(TCCR2)
  7107. case TIMER2:
  7108. case TIMER2:
  7109. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7110. TCCR2 |= val;
  7111. break;
  7112. #endif
  7113. #if defined(TCCR2A)
  7114. case TIMER2A:
  7115. case TIMER2B:
  7116. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7117. TCCR2B |= val;
  7118. break;
  7119. #endif
  7120. #if defined(TCCR3A)
  7121. case TIMER3A:
  7122. case TIMER3B:
  7123. case TIMER3C:
  7124. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7125. TCCR3B |= val;
  7126. break;
  7127. #endif
  7128. #if defined(TCCR4A)
  7129. case TIMER4A:
  7130. case TIMER4B:
  7131. case TIMER4C:
  7132. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7133. TCCR4B |= val;
  7134. break;
  7135. #endif
  7136. #if defined(TCCR5A)
  7137. case TIMER5A:
  7138. case TIMER5B:
  7139. case TIMER5C:
  7140. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7141. TCCR5B |= val;
  7142. break;
  7143. #endif
  7144. }
  7145. }
  7146. #endif //FAST_PWM_FAN
  7147. //! @brief Get and validate extruder number
  7148. //!
  7149. //! If it is not specified, active_extruder is returned in parameter extruder.
  7150. //! @param [in] code M code number
  7151. //! @param [out] extruder
  7152. //! @return error
  7153. //! @retval true Invalid extruder specified in T code
  7154. //! @retval false Valid extruder specified in T code, or not specifiead
  7155. bool setTargetedHotend(int code, uint8_t &extruder)
  7156. {
  7157. extruder = active_extruder;
  7158. if(code_seen('T')) {
  7159. extruder = code_value();
  7160. if(extruder >= EXTRUDERS) {
  7161. SERIAL_ECHO_START;
  7162. switch(code){
  7163. case 104:
  7164. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7165. break;
  7166. case 105:
  7167. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7168. break;
  7169. case 109:
  7170. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7171. break;
  7172. case 218:
  7173. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7174. break;
  7175. case 221:
  7176. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7177. break;
  7178. }
  7179. SERIAL_PROTOCOLLN((int)extruder);
  7180. return true;
  7181. }
  7182. }
  7183. return false;
  7184. }
  7185. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7186. {
  7187. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7188. {
  7189. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7190. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7191. }
  7192. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7193. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7194. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7195. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7196. total_filament_used = 0;
  7197. }
  7198. float calculate_extruder_multiplier(float diameter) {
  7199. float out = 1.f;
  7200. if (cs.volumetric_enabled && diameter > 0.f) {
  7201. float area = M_PI * diameter * diameter * 0.25;
  7202. out = 1.f / area;
  7203. }
  7204. if (extrudemultiply != 100)
  7205. out *= float(extrudemultiply) * 0.01f;
  7206. return out;
  7207. }
  7208. void calculate_extruder_multipliers() {
  7209. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7210. #if EXTRUDERS > 1
  7211. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7212. #if EXTRUDERS > 2
  7213. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7214. #endif
  7215. #endif
  7216. }
  7217. void delay_keep_alive(unsigned int ms)
  7218. {
  7219. for (;;) {
  7220. manage_heater();
  7221. // Manage inactivity, but don't disable steppers on timeout.
  7222. manage_inactivity(true);
  7223. lcd_update(0);
  7224. if (ms == 0)
  7225. break;
  7226. else if (ms >= 50) {
  7227. _delay(50);
  7228. ms -= 50;
  7229. } else {
  7230. _delay(ms);
  7231. ms = 0;
  7232. }
  7233. }
  7234. }
  7235. static void wait_for_heater(long codenum, uint8_t extruder) {
  7236. #ifdef TEMP_RESIDENCY_TIME
  7237. long residencyStart;
  7238. residencyStart = -1;
  7239. /* continue to loop until we have reached the target temp
  7240. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7241. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7242. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7243. #else
  7244. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7245. #endif //TEMP_RESIDENCY_TIME
  7246. if ((_millis() - codenum) > 1000UL)
  7247. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7248. if (!farm_mode) {
  7249. SERIAL_PROTOCOLPGM("T:");
  7250. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7251. SERIAL_PROTOCOLPGM(" E:");
  7252. SERIAL_PROTOCOL((int)extruder);
  7253. #ifdef TEMP_RESIDENCY_TIME
  7254. SERIAL_PROTOCOLPGM(" W:");
  7255. if (residencyStart > -1)
  7256. {
  7257. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7258. SERIAL_PROTOCOLLN(codenum);
  7259. }
  7260. else
  7261. {
  7262. SERIAL_PROTOCOLLN("?");
  7263. }
  7264. }
  7265. #else
  7266. SERIAL_PROTOCOLLN("");
  7267. #endif
  7268. codenum = _millis();
  7269. }
  7270. manage_heater();
  7271. manage_inactivity(true); //do not disable steppers
  7272. lcd_update(0);
  7273. #ifdef TEMP_RESIDENCY_TIME
  7274. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7275. or when current temp falls outside the hysteresis after target temp was reached */
  7276. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7277. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7278. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7279. {
  7280. residencyStart = _millis();
  7281. }
  7282. #endif //TEMP_RESIDENCY_TIME
  7283. }
  7284. }
  7285. void check_babystep()
  7286. {
  7287. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7288. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7289. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7290. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7291. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7292. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7293. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7294. babystep_z);
  7295. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7296. lcd_update_enable(true);
  7297. }
  7298. }
  7299. #ifdef HEATBED_ANALYSIS
  7300. void d_setup()
  7301. {
  7302. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7303. pinMode(D_DATA, INPUT_PULLUP);
  7304. pinMode(D_REQUIRE, OUTPUT);
  7305. digitalWrite(D_REQUIRE, HIGH);
  7306. }
  7307. float d_ReadData()
  7308. {
  7309. int digit[13];
  7310. String mergeOutput;
  7311. float output;
  7312. digitalWrite(D_REQUIRE, HIGH);
  7313. for (int i = 0; i<13; i++)
  7314. {
  7315. for (int j = 0; j < 4; j++)
  7316. {
  7317. while (digitalRead(D_DATACLOCK) == LOW) {}
  7318. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7319. bitWrite(digit[i], j, digitalRead(D_DATA));
  7320. }
  7321. }
  7322. digitalWrite(D_REQUIRE, LOW);
  7323. mergeOutput = "";
  7324. output = 0;
  7325. for (int r = 5; r <= 10; r++) //Merge digits
  7326. {
  7327. mergeOutput += digit[r];
  7328. }
  7329. output = mergeOutput.toFloat();
  7330. if (digit[4] == 8) //Handle sign
  7331. {
  7332. output *= -1;
  7333. }
  7334. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7335. {
  7336. output /= 10;
  7337. }
  7338. return output;
  7339. }
  7340. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7341. int t1 = 0;
  7342. int t_delay = 0;
  7343. int digit[13];
  7344. int m;
  7345. char str[3];
  7346. //String mergeOutput;
  7347. char mergeOutput[15];
  7348. float output;
  7349. int mesh_point = 0; //index number of calibration point
  7350. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7351. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7352. float mesh_home_z_search = 4;
  7353. float measure_z_height = 0.2f;
  7354. float row[x_points_num];
  7355. int ix = 0;
  7356. int iy = 0;
  7357. const char* filename_wldsd = "mesh.txt";
  7358. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7359. char numb_wldsd[8]; // (" -A.BCD" + null)
  7360. #ifdef MICROMETER_LOGGING
  7361. d_setup();
  7362. #endif //MICROMETER_LOGGING
  7363. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7364. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7365. unsigned int custom_message_type_old = custom_message_type;
  7366. unsigned int custom_message_state_old = custom_message_state;
  7367. custom_message_type = CustomMsg::MeshBedLeveling;
  7368. custom_message_state = (x_points_num * y_points_num) + 10;
  7369. lcd_update(1);
  7370. //mbl.reset();
  7371. babystep_undo();
  7372. card.openFile(filename_wldsd, false);
  7373. /*destination[Z_AXIS] = mesh_home_z_search;
  7374. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7375. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7376. for(int8_t i=0; i < NUM_AXIS; i++) {
  7377. current_position[i] = destination[i];
  7378. }
  7379. st_synchronize();
  7380. */
  7381. destination[Z_AXIS] = measure_z_height;
  7382. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7383. for(int8_t i=0; i < NUM_AXIS; i++) {
  7384. current_position[i] = destination[i];
  7385. }
  7386. st_synchronize();
  7387. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7388. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7389. SERIAL_PROTOCOL(x_points_num);
  7390. SERIAL_PROTOCOLPGM(",");
  7391. SERIAL_PROTOCOL(y_points_num);
  7392. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7393. SERIAL_PROTOCOL(mesh_home_z_search);
  7394. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7395. SERIAL_PROTOCOL(x_dimension);
  7396. SERIAL_PROTOCOLPGM(",");
  7397. SERIAL_PROTOCOL(y_dimension);
  7398. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7399. while (mesh_point != x_points_num * y_points_num) {
  7400. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7401. iy = mesh_point / x_points_num;
  7402. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7403. float z0 = 0.f;
  7404. /*destination[Z_AXIS] = mesh_home_z_search;
  7405. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7406. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7407. for(int8_t i=0; i < NUM_AXIS; i++) {
  7408. current_position[i] = destination[i];
  7409. }
  7410. st_synchronize();*/
  7411. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7412. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7413. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7414. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7415. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7416. for(int8_t i=0; i < NUM_AXIS; i++) {
  7417. current_position[i] = destination[i];
  7418. }
  7419. st_synchronize();
  7420. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7421. delay_keep_alive(1000);
  7422. #ifdef MICROMETER_LOGGING
  7423. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7424. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7425. //strcat(data_wldsd, numb_wldsd);
  7426. //MYSERIAL.println(data_wldsd);
  7427. //delay(1000);
  7428. //delay(3000);
  7429. //t1 = millis();
  7430. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7431. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7432. memset(digit, 0, sizeof(digit));
  7433. //cli();
  7434. digitalWrite(D_REQUIRE, LOW);
  7435. for (int i = 0; i<13; i++)
  7436. {
  7437. //t1 = millis();
  7438. for (int j = 0; j < 4; j++)
  7439. {
  7440. while (digitalRead(D_DATACLOCK) == LOW) {}
  7441. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7442. //printf_P(PSTR("Done %d\n"), j);
  7443. bitWrite(digit[i], j, digitalRead(D_DATA));
  7444. }
  7445. //t_delay = (millis() - t1);
  7446. //SERIAL_PROTOCOLPGM(" ");
  7447. //SERIAL_PROTOCOL_F(t_delay, 5);
  7448. //SERIAL_PROTOCOLPGM(" ");
  7449. }
  7450. //sei();
  7451. digitalWrite(D_REQUIRE, HIGH);
  7452. mergeOutput[0] = '\0';
  7453. output = 0;
  7454. for (int r = 5; r <= 10; r++) //Merge digits
  7455. {
  7456. sprintf(str, "%d", digit[r]);
  7457. strcat(mergeOutput, str);
  7458. }
  7459. output = atof(mergeOutput);
  7460. if (digit[4] == 8) //Handle sign
  7461. {
  7462. output *= -1;
  7463. }
  7464. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7465. {
  7466. output *= 0.1;
  7467. }
  7468. //output = d_ReadData();
  7469. //row[ix] = current_position[Z_AXIS];
  7470. //row[ix] = d_ReadData();
  7471. row[ix] = output;
  7472. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7473. memset(data_wldsd, 0, sizeof(data_wldsd));
  7474. for (int i = 0; i < x_points_num; i++) {
  7475. SERIAL_PROTOCOLPGM(" ");
  7476. SERIAL_PROTOCOL_F(row[i], 5);
  7477. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7478. dtostrf(row[i], 7, 3, numb_wldsd);
  7479. strcat(data_wldsd, numb_wldsd);
  7480. }
  7481. card.write_command(data_wldsd);
  7482. SERIAL_PROTOCOLPGM("\n");
  7483. }
  7484. custom_message_state--;
  7485. mesh_point++;
  7486. lcd_update(1);
  7487. }
  7488. #endif //MICROMETER_LOGGING
  7489. card.closefile();
  7490. //clean_up_after_endstop_move(l_feedmultiply);
  7491. }
  7492. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7493. int t1 = 0;
  7494. int t_delay = 0;
  7495. int digit[13];
  7496. int m;
  7497. char str[3];
  7498. //String mergeOutput;
  7499. char mergeOutput[15];
  7500. float output;
  7501. int mesh_point = 0; //index number of calibration point
  7502. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7503. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7504. float mesh_home_z_search = 4;
  7505. float row[x_points_num];
  7506. int ix = 0;
  7507. int iy = 0;
  7508. const char* filename_wldsd = "wldsd.txt";
  7509. char data_wldsd[70];
  7510. char numb_wldsd[10];
  7511. d_setup();
  7512. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7513. // We don't know where we are! HOME!
  7514. // Push the commands to the front of the message queue in the reverse order!
  7515. // There shall be always enough space reserved for these commands.
  7516. repeatcommand_front(); // repeat G80 with all its parameters
  7517. enquecommand_front_P((PSTR("G28 W0")));
  7518. enquecommand_front_P((PSTR("G1 Z5")));
  7519. return;
  7520. }
  7521. unsigned int custom_message_type_old = custom_message_type;
  7522. unsigned int custom_message_state_old = custom_message_state;
  7523. custom_message_type = CustomMsg::MeshBedLeveling;
  7524. custom_message_state = (x_points_num * y_points_num) + 10;
  7525. lcd_update(1);
  7526. mbl.reset();
  7527. babystep_undo();
  7528. card.openFile(filename_wldsd, false);
  7529. current_position[Z_AXIS] = mesh_home_z_search;
  7530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7531. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7532. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7533. int l_feedmultiply = setup_for_endstop_move(false);
  7534. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7535. SERIAL_PROTOCOL(x_points_num);
  7536. SERIAL_PROTOCOLPGM(",");
  7537. SERIAL_PROTOCOL(y_points_num);
  7538. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7539. SERIAL_PROTOCOL(mesh_home_z_search);
  7540. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7541. SERIAL_PROTOCOL(x_dimension);
  7542. SERIAL_PROTOCOLPGM(",");
  7543. SERIAL_PROTOCOL(y_dimension);
  7544. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7545. while (mesh_point != x_points_num * y_points_num) {
  7546. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7547. iy = mesh_point / x_points_num;
  7548. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7549. float z0 = 0.f;
  7550. current_position[Z_AXIS] = mesh_home_z_search;
  7551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7552. st_synchronize();
  7553. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7554. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7556. st_synchronize();
  7557. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7558. break;
  7559. card.closefile();
  7560. }
  7561. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7562. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7563. //strcat(data_wldsd, numb_wldsd);
  7564. //MYSERIAL.println(data_wldsd);
  7565. //_delay(1000);
  7566. //_delay(3000);
  7567. //t1 = _millis();
  7568. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7569. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7570. memset(digit, 0, sizeof(digit));
  7571. //cli();
  7572. digitalWrite(D_REQUIRE, LOW);
  7573. for (int i = 0; i<13; i++)
  7574. {
  7575. //t1 = _millis();
  7576. for (int j = 0; j < 4; j++)
  7577. {
  7578. while (digitalRead(D_DATACLOCK) == LOW) {}
  7579. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7580. bitWrite(digit[i], j, digitalRead(D_DATA));
  7581. }
  7582. //t_delay = (_millis() - t1);
  7583. //SERIAL_PROTOCOLPGM(" ");
  7584. //SERIAL_PROTOCOL_F(t_delay, 5);
  7585. //SERIAL_PROTOCOLPGM(" ");
  7586. }
  7587. //sei();
  7588. digitalWrite(D_REQUIRE, HIGH);
  7589. mergeOutput[0] = '\0';
  7590. output = 0;
  7591. for (int r = 5; r <= 10; r++) //Merge digits
  7592. {
  7593. sprintf(str, "%d", digit[r]);
  7594. strcat(mergeOutput, str);
  7595. }
  7596. output = atof(mergeOutput);
  7597. if (digit[4] == 8) //Handle sign
  7598. {
  7599. output *= -1;
  7600. }
  7601. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7602. {
  7603. output *= 0.1;
  7604. }
  7605. //output = d_ReadData();
  7606. //row[ix] = current_position[Z_AXIS];
  7607. memset(data_wldsd, 0, sizeof(data_wldsd));
  7608. for (int i = 0; i <3; i++) {
  7609. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7610. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7611. strcat(data_wldsd, numb_wldsd);
  7612. strcat(data_wldsd, ";");
  7613. }
  7614. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7615. dtostrf(output, 8, 5, numb_wldsd);
  7616. strcat(data_wldsd, numb_wldsd);
  7617. //strcat(data_wldsd, ";");
  7618. card.write_command(data_wldsd);
  7619. //row[ix] = d_ReadData();
  7620. row[ix] = output; // current_position[Z_AXIS];
  7621. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7622. for (int i = 0; i < x_points_num; i++) {
  7623. SERIAL_PROTOCOLPGM(" ");
  7624. SERIAL_PROTOCOL_F(row[i], 5);
  7625. }
  7626. SERIAL_PROTOCOLPGM("\n");
  7627. }
  7628. custom_message_state--;
  7629. mesh_point++;
  7630. lcd_update(1);
  7631. }
  7632. card.closefile();
  7633. clean_up_after_endstop_move(l_feedmultiply);
  7634. }
  7635. #endif //HEATBED_ANALYSIS
  7636. void temp_compensation_start() {
  7637. custom_message_type = CustomMsg::TempCompPreheat;
  7638. custom_message_state = PINDA_HEAT_T + 1;
  7639. lcd_update(2);
  7640. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7641. current_position[E_AXIS] -= default_retraction;
  7642. }
  7643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7644. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7645. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7646. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7648. st_synchronize();
  7649. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7650. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7651. delay_keep_alive(1000);
  7652. custom_message_state = PINDA_HEAT_T - i;
  7653. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7654. else lcd_update(1);
  7655. }
  7656. custom_message_type = CustomMsg::Status;
  7657. custom_message_state = 0;
  7658. }
  7659. void temp_compensation_apply() {
  7660. int i_add;
  7661. int z_shift = 0;
  7662. float z_shift_mm;
  7663. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7664. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7665. i_add = (target_temperature_bed - 60) / 10;
  7666. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7667. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7668. }else {
  7669. //interpolation
  7670. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7671. }
  7672. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7674. st_synchronize();
  7675. plan_set_z_position(current_position[Z_AXIS]);
  7676. }
  7677. else {
  7678. //we have no temp compensation data
  7679. }
  7680. }
  7681. float temp_comp_interpolation(float inp_temperature) {
  7682. //cubic spline interpolation
  7683. int n, i, j;
  7684. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7685. int shift[10];
  7686. int temp_C[10];
  7687. n = 6; //number of measured points
  7688. shift[0] = 0;
  7689. for (i = 0; i < n; i++) {
  7690. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7691. temp_C[i] = 50 + i * 10; //temperature in C
  7692. #ifdef PINDA_THERMISTOR
  7693. temp_C[i] = 35 + i * 5; //temperature in C
  7694. #else
  7695. temp_C[i] = 50 + i * 10; //temperature in C
  7696. #endif
  7697. x[i] = (float)temp_C[i];
  7698. f[i] = (float)shift[i];
  7699. }
  7700. if (inp_temperature < x[0]) return 0;
  7701. for (i = n - 1; i>0; i--) {
  7702. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7703. h[i - 1] = x[i] - x[i - 1];
  7704. }
  7705. //*********** formation of h, s , f matrix **************
  7706. for (i = 1; i<n - 1; i++) {
  7707. m[i][i] = 2 * (h[i - 1] + h[i]);
  7708. if (i != 1) {
  7709. m[i][i - 1] = h[i - 1];
  7710. m[i - 1][i] = h[i - 1];
  7711. }
  7712. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7713. }
  7714. //*********** forward elimination **************
  7715. for (i = 1; i<n - 2; i++) {
  7716. temp = (m[i + 1][i] / m[i][i]);
  7717. for (j = 1; j <= n - 1; j++)
  7718. m[i + 1][j] -= temp*m[i][j];
  7719. }
  7720. //*********** backward substitution *********
  7721. for (i = n - 2; i>0; i--) {
  7722. sum = 0;
  7723. for (j = i; j <= n - 2; j++)
  7724. sum += m[i][j] * s[j];
  7725. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7726. }
  7727. for (i = 0; i<n - 1; i++)
  7728. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7729. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7730. b = s[i] / 2;
  7731. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7732. d = f[i];
  7733. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7734. }
  7735. return sum;
  7736. }
  7737. #ifdef PINDA_THERMISTOR
  7738. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7739. {
  7740. if (!temp_cal_active) return 0;
  7741. if (!calibration_status_pinda()) return 0;
  7742. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7743. }
  7744. #endif //PINDA_THERMISTOR
  7745. void long_pause() //long pause print
  7746. {
  7747. st_synchronize();
  7748. start_pause_print = _millis();
  7749. //retract
  7750. current_position[E_AXIS] -= default_retraction;
  7751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7752. //lift z
  7753. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7754. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7756. //Move XY to side
  7757. current_position[X_AXIS] = X_PAUSE_POS;
  7758. current_position[Y_AXIS] = Y_PAUSE_POS;
  7759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7760. // Turn off the print fan
  7761. fanSpeed = 0;
  7762. st_synchronize();
  7763. }
  7764. void serialecho_temperatures() {
  7765. float tt = degHotend(active_extruder);
  7766. SERIAL_PROTOCOLPGM("T:");
  7767. SERIAL_PROTOCOL(tt);
  7768. SERIAL_PROTOCOLPGM(" E:");
  7769. SERIAL_PROTOCOL((int)active_extruder);
  7770. SERIAL_PROTOCOLPGM(" B:");
  7771. SERIAL_PROTOCOL_F(degBed(), 1);
  7772. SERIAL_PROTOCOLLN("");
  7773. }
  7774. extern uint32_t sdpos_atomic;
  7775. #ifdef UVLO_SUPPORT
  7776. void uvlo_()
  7777. {
  7778. unsigned long time_start = _millis();
  7779. bool sd_print = card.sdprinting;
  7780. // Conserve power as soon as possible.
  7781. disable_x();
  7782. disable_y();
  7783. #ifdef TMC2130
  7784. tmc2130_set_current_h(Z_AXIS, 20);
  7785. tmc2130_set_current_r(Z_AXIS, 20);
  7786. tmc2130_set_current_h(E_AXIS, 20);
  7787. tmc2130_set_current_r(E_AXIS, 20);
  7788. #endif //TMC2130
  7789. // Indicate that the interrupt has been triggered.
  7790. // SERIAL_ECHOLNPGM("UVLO");
  7791. // Read out the current Z motor microstep counter. This will be later used
  7792. // for reaching the zero full step before powering off.
  7793. uint16_t z_microsteps = 0;
  7794. #ifdef TMC2130
  7795. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7796. #endif //TMC2130
  7797. // Calculate the file position, from which to resume this print.
  7798. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7799. {
  7800. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7801. sd_position -= sdlen_planner;
  7802. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7803. sd_position -= sdlen_cmdqueue;
  7804. if (sd_position < 0) sd_position = 0;
  7805. }
  7806. // Backup the feedrate in mm/min.
  7807. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7808. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7809. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7810. // are in action.
  7811. planner_abort_hard();
  7812. // Store the current extruder position.
  7813. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7814. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7815. // Clean the input command queue.
  7816. cmdqueue_reset();
  7817. card.sdprinting = false;
  7818. // card.closefile();
  7819. // Enable stepper driver interrupt to move Z axis.
  7820. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7821. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7822. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7823. sei();
  7824. plan_buffer_line(
  7825. current_position[X_AXIS],
  7826. current_position[Y_AXIS],
  7827. current_position[Z_AXIS],
  7828. current_position[E_AXIS] - default_retraction,
  7829. 95, active_extruder);
  7830. st_synchronize();
  7831. disable_e0();
  7832. plan_buffer_line(
  7833. current_position[X_AXIS],
  7834. current_position[Y_AXIS],
  7835. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7836. current_position[E_AXIS] - default_retraction,
  7837. 40, active_extruder);
  7838. st_synchronize();
  7839. disable_e0();
  7840. plan_buffer_line(
  7841. current_position[X_AXIS],
  7842. current_position[Y_AXIS],
  7843. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7844. current_position[E_AXIS] - default_retraction,
  7845. 40, active_extruder);
  7846. st_synchronize();
  7847. disable_e0();
  7848. disable_z();
  7849. // Move Z up to the next 0th full step.
  7850. // Write the file position.
  7851. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7852. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7853. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7854. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7855. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7856. // Scale the z value to 1u resolution.
  7857. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7858. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7859. }
  7860. // Read out the current Z motor microstep counter. This will be later used
  7861. // for reaching the zero full step before powering off.
  7862. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7863. // Store the current position.
  7864. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7865. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7866. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7867. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7868. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7869. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7870. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7871. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7872. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7873. #if EXTRUDERS > 1
  7874. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7875. #if EXTRUDERS > 2
  7876. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7877. #endif
  7878. #endif
  7879. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7880. // Finaly store the "power outage" flag.
  7881. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7882. st_synchronize();
  7883. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7884. disable_z();
  7885. // Increment power failure counter
  7886. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7887. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7888. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7889. #if 0
  7890. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7891. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7893. st_synchronize();
  7894. #endif
  7895. wdt_enable(WDTO_500MS);
  7896. WRITE(BEEPER,HIGH);
  7897. while(1)
  7898. ;
  7899. }
  7900. void uvlo_tiny()
  7901. {
  7902. uint16_t z_microsteps=0;
  7903. // Conserve power as soon as possible.
  7904. disable_x();
  7905. disable_y();
  7906. disable_e0();
  7907. #ifdef TMC2130
  7908. tmc2130_set_current_h(Z_AXIS, 20);
  7909. tmc2130_set_current_r(Z_AXIS, 20);
  7910. #endif //TMC2130
  7911. // Read out the current Z motor microstep counter
  7912. #ifdef TMC2130
  7913. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7914. #endif //TMC2130
  7915. planner_abort_hard();
  7916. disable_z();
  7917. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7918. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7919. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7920. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7921. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7922. }
  7923. //after multiple power panics current Z axis is unknow
  7924. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7925. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7926. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7927. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7928. }
  7929. // Finaly store the "power outage" flag.
  7930. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7931. // Increment power failure counter
  7932. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7933. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7934. wdt_enable(WDTO_500MS);
  7935. WRITE(BEEPER,HIGH);
  7936. while(1)
  7937. ;
  7938. }
  7939. #endif //UVLO_SUPPORT
  7940. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7941. void setup_fan_interrupt() {
  7942. //INT7
  7943. DDRE &= ~(1 << 7); //input pin
  7944. PORTE &= ~(1 << 7); //no internal pull-up
  7945. //start with sensing rising edge
  7946. EICRB &= ~(1 << 6);
  7947. EICRB |= (1 << 7);
  7948. //enable INT7 interrupt
  7949. EIMSK |= (1 << 7);
  7950. }
  7951. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7952. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7953. ISR(INT7_vect) {
  7954. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7955. #ifdef FAN_SOFT_PWM
  7956. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7957. #else //FAN_SOFT_PWM
  7958. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7959. #endif //FAN_SOFT_PWM
  7960. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7961. t_fan_rising_edge = millis_nc();
  7962. }
  7963. else { //interrupt was triggered by falling edge
  7964. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7965. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7966. }
  7967. }
  7968. EICRB ^= (1 << 6); //change edge
  7969. }
  7970. #endif
  7971. #ifdef UVLO_SUPPORT
  7972. void setup_uvlo_interrupt() {
  7973. DDRE &= ~(1 << 4); //input pin
  7974. PORTE &= ~(1 << 4); //no internal pull-up
  7975. //sensing falling edge
  7976. EICRB |= (1 << 0);
  7977. EICRB &= ~(1 << 1);
  7978. //enable INT4 interrupt
  7979. EIMSK |= (1 << 4);
  7980. }
  7981. ISR(INT4_vect) {
  7982. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7983. SERIAL_ECHOLNPGM("INT4");
  7984. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  7985. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  7986. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7987. }
  7988. void recover_print(uint8_t automatic) {
  7989. char cmd[30];
  7990. lcd_update_enable(true);
  7991. lcd_update(2);
  7992. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7993. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7994. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7995. // Lift the print head, so one may remove the excess priming material.
  7996. if(!bTiny&&(current_position[Z_AXIS]<25))
  7997. enquecommand_P(PSTR("G1 Z25 F800"));
  7998. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7999. enquecommand_P(PSTR("G28 X Y"));
  8000. // Set the target bed and nozzle temperatures and wait.
  8001. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8002. enquecommand(cmd);
  8003. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8004. enquecommand(cmd);
  8005. enquecommand_P(PSTR("M83")); //E axis relative mode
  8006. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8007. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8008. if(automatic == 0){
  8009. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8010. }
  8011. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8012. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8013. // Restart the print.
  8014. restore_print_from_eeprom();
  8015. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8016. }
  8017. void recover_machine_state_after_power_panic(bool bTiny)
  8018. {
  8019. char cmd[30];
  8020. // 1) Recover the logical cordinates at the time of the power panic.
  8021. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8022. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8023. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8024. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8025. mbl.active = false;
  8026. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8027. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8028. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8029. // Scale the z value to 10u resolution.
  8030. int16_t v;
  8031. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8032. if (v != 0)
  8033. mbl.active = true;
  8034. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8035. }
  8036. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8037. // The current position after power panic is moved to the next closest 0th full step.
  8038. if(bTiny){
  8039. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8040. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8041. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8042. //after multiple power panics the print is slightly in the air so get it little bit down.
  8043. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8044. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8045. }
  8046. else{
  8047. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8048. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8049. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8050. }
  8051. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8052. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8053. sprintf_P(cmd, PSTR("G92 E"));
  8054. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8055. enquecommand(cmd);
  8056. }
  8057. memcpy(destination, current_position, sizeof(destination));
  8058. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8059. print_world_coordinates();
  8060. // 3) Initialize the logical to physical coordinate system transformation.
  8061. world2machine_initialize();
  8062. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8063. // print_mesh_bed_leveling_table();
  8064. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8065. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8066. babystep_load();
  8067. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8068. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8069. // 6) Power up the motors, mark their positions as known.
  8070. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8071. axis_known_position[X_AXIS] = true; enable_x();
  8072. axis_known_position[Y_AXIS] = true; enable_y();
  8073. axis_known_position[Z_AXIS] = true; enable_z();
  8074. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8075. print_physical_coordinates();
  8076. // 7) Recover the target temperatures.
  8077. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8078. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8079. // 8) Recover extruder multipilers
  8080. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8081. #if EXTRUDERS > 1
  8082. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8083. #if EXTRUDERS > 2
  8084. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8085. #endif
  8086. #endif
  8087. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8088. }
  8089. void restore_print_from_eeprom() {
  8090. int feedrate_rec;
  8091. uint8_t fan_speed_rec;
  8092. char cmd[30];
  8093. char filename[13];
  8094. uint8_t depth = 0;
  8095. char dir_name[9];
  8096. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8097. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8098. SERIAL_ECHOPGM("Feedrate:");
  8099. MYSERIAL.println(feedrate_rec);
  8100. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8101. MYSERIAL.println(int(depth));
  8102. for (int i = 0; i < depth; i++) {
  8103. for (int j = 0; j < 8; j++) {
  8104. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8105. }
  8106. dir_name[8] = '\0';
  8107. MYSERIAL.println(dir_name);
  8108. strcpy(dir_names[i], dir_name);
  8109. card.chdir(dir_name);
  8110. }
  8111. for (int i = 0; i < 8; i++) {
  8112. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8113. }
  8114. filename[8] = '\0';
  8115. MYSERIAL.print(filename);
  8116. strcat_P(filename, PSTR(".gco"));
  8117. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8118. enquecommand(cmd);
  8119. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8120. SERIAL_ECHOPGM("Position read from eeprom:");
  8121. MYSERIAL.println(position);
  8122. // E axis relative mode.
  8123. enquecommand_P(PSTR("M83"));
  8124. // Move to the XY print position in logical coordinates, where the print has been killed.
  8125. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8126. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8127. strcat_P(cmd, PSTR(" F2000"));
  8128. enquecommand(cmd);
  8129. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8130. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8131. // Move the Z axis down to the print, in logical coordinates.
  8132. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8133. enquecommand(cmd);
  8134. // Unretract.
  8135. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8136. // Set the feedrate saved at the power panic.
  8137. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8138. enquecommand(cmd);
  8139. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8140. {
  8141. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8142. }
  8143. // Set the fan speed saved at the power panic.
  8144. strcpy_P(cmd, PSTR("M106 S"));
  8145. strcat(cmd, itostr3(int(fan_speed_rec)));
  8146. enquecommand(cmd);
  8147. // Set a position in the file.
  8148. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8149. enquecommand(cmd);
  8150. enquecommand_P(PSTR("G4 S0"));
  8151. enquecommand_P(PSTR("PRUSA uvlo"));
  8152. }
  8153. #endif //UVLO_SUPPORT
  8154. //! @brief Immediately stop print moves
  8155. //!
  8156. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8157. //! If printing from sd card, position in file is saved.
  8158. //! If printing from USB, line number is saved.
  8159. //!
  8160. //! @param z_move
  8161. //! @param e_move
  8162. void stop_and_save_print_to_ram(float z_move, float e_move)
  8163. {
  8164. if (saved_printing) return;
  8165. #if 0
  8166. unsigned char nplanner_blocks;
  8167. #endif
  8168. unsigned char nlines;
  8169. uint16_t sdlen_planner;
  8170. uint16_t sdlen_cmdqueue;
  8171. cli();
  8172. if (card.sdprinting) {
  8173. #if 0
  8174. nplanner_blocks = number_of_blocks();
  8175. #endif
  8176. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8177. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8178. saved_sdpos -= sdlen_planner;
  8179. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8180. saved_sdpos -= sdlen_cmdqueue;
  8181. saved_printing_type = PRINTING_TYPE_SD;
  8182. }
  8183. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8184. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8185. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8186. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8187. saved_sdpos -= nlines;
  8188. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8189. saved_printing_type = PRINTING_TYPE_USB;
  8190. }
  8191. else {
  8192. saved_printing_type = PRINTING_TYPE_NONE;
  8193. //not sd printing nor usb printing
  8194. }
  8195. #if 0
  8196. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8197. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8198. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8199. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8200. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8201. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8202. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8203. {
  8204. card.setIndex(saved_sdpos);
  8205. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8206. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8207. MYSERIAL.print(char(card.get()));
  8208. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8209. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8210. MYSERIAL.print(char(card.get()));
  8211. SERIAL_ECHOLNPGM("End of command buffer");
  8212. }
  8213. {
  8214. // Print the content of the planner buffer, line by line:
  8215. card.setIndex(saved_sdpos);
  8216. int8_t iline = 0;
  8217. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8218. SERIAL_ECHOPGM("Planner line (from file): ");
  8219. MYSERIAL.print(int(iline), DEC);
  8220. SERIAL_ECHOPGM(", length: ");
  8221. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8222. SERIAL_ECHOPGM(", steps: (");
  8223. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8224. SERIAL_ECHOPGM(",");
  8225. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8226. SERIAL_ECHOPGM(",");
  8227. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8228. SERIAL_ECHOPGM(",");
  8229. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8230. SERIAL_ECHOPGM("), events: ");
  8231. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8232. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8233. MYSERIAL.print(char(card.get()));
  8234. }
  8235. }
  8236. {
  8237. // Print the content of the command buffer, line by line:
  8238. int8_t iline = 0;
  8239. union {
  8240. struct {
  8241. char lo;
  8242. char hi;
  8243. } lohi;
  8244. uint16_t value;
  8245. } sdlen_single;
  8246. int _bufindr = bufindr;
  8247. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8248. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8249. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8250. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8251. }
  8252. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8253. MYSERIAL.print(int(iline), DEC);
  8254. SERIAL_ECHOPGM(", type: ");
  8255. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8256. SERIAL_ECHOPGM(", len: ");
  8257. MYSERIAL.println(sdlen_single.value, DEC);
  8258. // Print the content of the buffer line.
  8259. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8260. SERIAL_ECHOPGM("Buffer line (from file): ");
  8261. MYSERIAL.println(int(iline), DEC);
  8262. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8263. MYSERIAL.print(char(card.get()));
  8264. if (-- _buflen == 0)
  8265. break;
  8266. // First skip the current command ID and iterate up to the end of the string.
  8267. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8268. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8269. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8270. // If the end of the buffer was empty,
  8271. if (_bufindr == sizeof(cmdbuffer)) {
  8272. // skip to the start and find the nonzero command.
  8273. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8274. }
  8275. }
  8276. }
  8277. #endif
  8278. #if 0
  8279. saved_feedrate2 = feedrate; //save feedrate
  8280. #else
  8281. // Try to deduce the feedrate from the first block of the planner.
  8282. // Speed is in mm/min.
  8283. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8284. #endif
  8285. planner_abort_hard(); //abort printing
  8286. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8287. saved_active_extruder = active_extruder; //save active_extruder
  8288. saved_extruder_temperature = degTargetHotend(active_extruder);
  8289. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8290. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8291. saved_fanSpeed = fanSpeed;
  8292. cmdqueue_reset(); //empty cmdqueue
  8293. card.sdprinting = false;
  8294. // card.closefile();
  8295. saved_printing = true;
  8296. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8297. st_reset_timer();
  8298. sei();
  8299. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8300. #if 1
  8301. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8302. char buf[48];
  8303. // First unretract (relative extrusion)
  8304. if(!saved_extruder_relative_mode){
  8305. enquecommand(PSTR("M83"), true);
  8306. }
  8307. //retract 45mm/s
  8308. // A single sprintf may not be faster, but is definitely 20B shorter
  8309. // than a sequence of commands building the string piece by piece
  8310. // A snprintf would have been a safer call, but since it is not used
  8311. // in the whole program, its implementation would bring more bytes to the total size
  8312. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8313. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8314. enquecommand(buf, false);
  8315. // Then lift Z axis
  8316. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8317. // At this point the command queue is empty.
  8318. enquecommand(buf, false);
  8319. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8320. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8321. repeatcommand_front();
  8322. #else
  8323. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8324. st_synchronize(); //wait moving
  8325. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8326. memcpy(destination, current_position, sizeof(destination));
  8327. #endif
  8328. }
  8329. }
  8330. //! @brief Restore print from ram
  8331. //!
  8332. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8333. //! print fan speed, waits for extruder temperature restore, then restores
  8334. //! position and continues print moves.
  8335. //!
  8336. //! Internally lcd_update() is called by wait_for_heater().
  8337. //!
  8338. //! @param e_move
  8339. void restore_print_from_ram_and_continue(float e_move)
  8340. {
  8341. if (!saved_printing) return;
  8342. #ifdef FANCHECK
  8343. // Do not allow resume printing if fans are still not ok
  8344. if( fan_check_error != EFCE_OK )return;
  8345. #endif
  8346. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8347. // current_position[axis] = st_get_position_mm(axis);
  8348. active_extruder = saved_active_extruder; //restore active_extruder
  8349. fanSpeed = saved_fanSpeed;
  8350. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8351. {
  8352. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8353. heating_status = 1;
  8354. wait_for_heater(_millis(), saved_active_extruder);
  8355. heating_status = 2;
  8356. }
  8357. feedrate = saved_feedrate2; //restore feedrate
  8358. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8359. float e = saved_pos[E_AXIS] - e_move;
  8360. plan_set_e_position(e);
  8361. #ifdef FANCHECK
  8362. fans_check_enabled = false;
  8363. #endif
  8364. //first move print head in XY to the saved position:
  8365. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8366. st_synchronize();
  8367. //then move Z
  8368. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8369. st_synchronize();
  8370. //and finaly unretract (35mm/s)
  8371. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8372. st_synchronize();
  8373. #ifdef FANCHECK
  8374. fans_check_enabled = true;
  8375. #endif
  8376. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8377. memcpy(destination, current_position, sizeof(destination));
  8378. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8379. card.setIndex(saved_sdpos);
  8380. sdpos_atomic = saved_sdpos;
  8381. card.sdprinting = true;
  8382. }
  8383. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8384. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8385. serial_count = 0;
  8386. FlushSerialRequestResend();
  8387. }
  8388. else {
  8389. //not sd printing nor usb printing
  8390. }
  8391. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8392. lcd_setstatuspgm(_T(WELCOME_MSG));
  8393. saved_printing = false;
  8394. }
  8395. void print_world_coordinates()
  8396. {
  8397. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8398. }
  8399. void print_physical_coordinates()
  8400. {
  8401. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8402. }
  8403. void print_mesh_bed_leveling_table()
  8404. {
  8405. SERIAL_ECHOPGM("mesh bed leveling: ");
  8406. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8407. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8408. MYSERIAL.print(mbl.z_values[y][x], 3);
  8409. SERIAL_ECHOPGM(" ");
  8410. }
  8411. SERIAL_ECHOLNPGM("");
  8412. }
  8413. uint16_t print_time_remaining() {
  8414. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8415. #ifdef TMC2130
  8416. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8417. else print_t = print_time_remaining_silent;
  8418. #else
  8419. print_t = print_time_remaining_normal;
  8420. #endif //TMC2130
  8421. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8422. return print_t;
  8423. }
  8424. uint8_t calc_percent_done()
  8425. {
  8426. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8427. uint8_t percent_done = 0;
  8428. #ifdef TMC2130
  8429. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8430. percent_done = print_percent_done_normal;
  8431. }
  8432. else if (print_percent_done_silent <= 100) {
  8433. percent_done = print_percent_done_silent;
  8434. }
  8435. #else
  8436. if (print_percent_done_normal <= 100) {
  8437. percent_done = print_percent_done_normal;
  8438. }
  8439. #endif //TMC2130
  8440. else {
  8441. percent_done = card.percentDone();
  8442. }
  8443. return percent_done;
  8444. }
  8445. static void print_time_remaining_init()
  8446. {
  8447. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8448. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8449. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8450. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8451. }
  8452. void load_filament_final_feed()
  8453. {
  8454. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8456. }
  8457. //! @brief Wait for user to check the state
  8458. //! @par nozzle_temp nozzle temperature to load filament
  8459. void M600_check_state(float nozzle_temp)
  8460. {
  8461. lcd_change_fil_state = 0;
  8462. while (lcd_change_fil_state != 1)
  8463. {
  8464. lcd_change_fil_state = 0;
  8465. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8466. lcd_alright();
  8467. KEEPALIVE_STATE(IN_HANDLER);
  8468. switch(lcd_change_fil_state)
  8469. {
  8470. // Filament failed to load so load it again
  8471. case 2:
  8472. if (mmu_enabled)
  8473. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8474. else
  8475. M600_load_filament_movements();
  8476. break;
  8477. // Filament loaded properly but color is not clear
  8478. case 3:
  8479. st_synchronize();
  8480. load_filament_final_feed();
  8481. lcd_loading_color();
  8482. st_synchronize();
  8483. break;
  8484. // Everything good
  8485. default:
  8486. lcd_change_success();
  8487. break;
  8488. }
  8489. }
  8490. }
  8491. //! @brief Wait for user action
  8492. //!
  8493. //! Beep, manage nozzle heater and wait for user to start unload filament
  8494. //! If times out, active extruder temperature is set to 0.
  8495. //!
  8496. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8497. void M600_wait_for_user(float HotendTempBckp) {
  8498. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8499. int counterBeep = 0;
  8500. unsigned long waiting_start_time = _millis();
  8501. uint8_t wait_for_user_state = 0;
  8502. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8503. bool bFirst=true;
  8504. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8505. manage_heater();
  8506. manage_inactivity(true);
  8507. #if BEEPER > 0
  8508. if (counterBeep == 500) {
  8509. counterBeep = 0;
  8510. }
  8511. SET_OUTPUT(BEEPER);
  8512. if (counterBeep == 0) {
  8513. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8514. {
  8515. bFirst=false;
  8516. WRITE(BEEPER, HIGH);
  8517. }
  8518. }
  8519. if (counterBeep == 20) {
  8520. WRITE(BEEPER, LOW);
  8521. }
  8522. counterBeep++;
  8523. #endif //BEEPER > 0
  8524. switch (wait_for_user_state) {
  8525. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8526. delay_keep_alive(4);
  8527. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8528. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8529. wait_for_user_state = 1;
  8530. setAllTargetHotends(0);
  8531. st_synchronize();
  8532. disable_e0();
  8533. disable_e1();
  8534. disable_e2();
  8535. }
  8536. break;
  8537. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8538. delay_keep_alive(4);
  8539. if (lcd_clicked()) {
  8540. setTargetHotend(HotendTempBckp, active_extruder);
  8541. lcd_wait_for_heater();
  8542. wait_for_user_state = 2;
  8543. }
  8544. break;
  8545. case 2: //waiting for nozzle to reach target temperature
  8546. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8547. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8548. waiting_start_time = _millis();
  8549. wait_for_user_state = 0;
  8550. }
  8551. else {
  8552. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8553. lcd_set_cursor(1, 4);
  8554. lcd_print(ftostr3(degHotend(active_extruder)));
  8555. }
  8556. break;
  8557. }
  8558. }
  8559. WRITE(BEEPER, LOW);
  8560. }
  8561. void M600_load_filament_movements()
  8562. {
  8563. #ifdef SNMM
  8564. display_loading();
  8565. do
  8566. {
  8567. current_position[E_AXIS] += 0.002;
  8568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8569. delay_keep_alive(2);
  8570. }
  8571. while (!lcd_clicked());
  8572. st_synchronize();
  8573. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8575. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8577. current_position[E_AXIS] += 40;
  8578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8579. current_position[E_AXIS] += 10;
  8580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8581. #else
  8582. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8584. #endif
  8585. load_filament_final_feed();
  8586. lcd_loading_filament();
  8587. st_synchronize();
  8588. }
  8589. void M600_load_filament() {
  8590. //load filament for single material and SNMM
  8591. lcd_wait_interact();
  8592. //load_filament_time = _millis();
  8593. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8594. #ifdef PAT9125
  8595. fsensor_autoload_check_start();
  8596. #endif //PAT9125
  8597. while(!lcd_clicked())
  8598. {
  8599. manage_heater();
  8600. manage_inactivity(true);
  8601. #ifdef FILAMENT_SENSOR
  8602. if (fsensor_check_autoload())
  8603. {
  8604. Sound_MakeCustom(50,1000,false);
  8605. break;
  8606. }
  8607. #endif //FILAMENT_SENSOR
  8608. }
  8609. #ifdef PAT9125
  8610. fsensor_autoload_check_stop();
  8611. #endif //PAT9125
  8612. KEEPALIVE_STATE(IN_HANDLER);
  8613. #ifdef FSENSOR_QUALITY
  8614. fsensor_oq_meassure_start(70);
  8615. #endif //FSENSOR_QUALITY
  8616. M600_load_filament_movements();
  8617. Sound_MakeCustom(50,1000,false);
  8618. #ifdef FSENSOR_QUALITY
  8619. fsensor_oq_meassure_stop();
  8620. if (!fsensor_oq_result())
  8621. {
  8622. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8623. lcd_update_enable(true);
  8624. lcd_update(2);
  8625. if (disable)
  8626. fsensor_disable();
  8627. }
  8628. #endif //FSENSOR_QUALITY
  8629. lcd_update_enable(false);
  8630. }
  8631. //! @brief Wait for click
  8632. //!
  8633. //! Set
  8634. void marlin_wait_for_click()
  8635. {
  8636. int8_t busy_state_backup = busy_state;
  8637. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8638. lcd_consume_click();
  8639. while(!lcd_clicked())
  8640. {
  8641. manage_heater();
  8642. manage_inactivity(true);
  8643. lcd_update(0);
  8644. }
  8645. KEEPALIVE_STATE(busy_state_backup);
  8646. }
  8647. #define FIL_LOAD_LENGTH 60
  8648. #ifdef PSU_Delta
  8649. bool bEnableForce_z;
  8650. void init_force_z()
  8651. {
  8652. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  8653. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  8654. disable_force_z();
  8655. }
  8656. void check_force_z()
  8657. {
  8658. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  8659. init_force_z(); // causes enforced switching into disable-state
  8660. }
  8661. void disable_force_z()
  8662. {
  8663. uint16_t z_microsteps=0;
  8664. if(!bEnableForce_z)
  8665. return; // motor already disabled (may be ;-p )
  8666. bEnableForce_z=false;
  8667. // alignment to full-step
  8668. #ifdef TMC2130
  8669. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8670. #endif // TMC2130
  8671. planner_abort_hard();
  8672. sei();
  8673. plan_buffer_line(
  8674. current_position[X_AXIS],
  8675. current_position[Y_AXIS],
  8676. current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  8677. current_position[E_AXIS],
  8678. 40, active_extruder);
  8679. st_synchronize();
  8680. // switching to silent mode
  8681. #ifdef TMC2130
  8682. tmc2130_mode=TMC2130_MODE_SILENT;
  8683. update_mode_profile();
  8684. tmc2130_init(true);
  8685. #endif // TMC2130
  8686. axis_known_position[Z_AXIS]=false;
  8687. }
  8688. void enable_force_z()
  8689. {
  8690. if(bEnableForce_z)
  8691. return; // motor already enabled (may be ;-p )
  8692. bEnableForce_z=true;
  8693. // mode recovering
  8694. #ifdef TMC2130
  8695. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  8696. update_mode_profile();
  8697. tmc2130_init(true);
  8698. #endif // TMC2130
  8699. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  8700. }
  8701. #endif // PSU_Delta