Marlin_main.cpp 303 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  120. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  121. //Implemented Codes
  122. //-------------------
  123. // PRUSA CODES
  124. // P F - Returns FW versions
  125. // P R - Returns revision of printer
  126. // G0 -> G1
  127. // G1 - Coordinated Movement X Y Z E
  128. // G2 - CW ARC
  129. // G3 - CCW ARC
  130. // G4 - Dwell S<seconds> or P<milliseconds>
  131. // G10 - retract filament according to settings of M207
  132. // G11 - retract recover filament according to settings of M208
  133. // G28 - Home all Axis
  134. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  135. // G30 - Single Z Probe, probes bed at current XY location.
  136. // G31 - Dock sled (Z_PROBE_SLED only)
  137. // G32 - Undock sled (Z_PROBE_SLED only)
  138. // G80 - Automatic mesh bed leveling
  139. // G81 - Print bed profile
  140. // G90 - Use Absolute Coordinates
  141. // G91 - Use Relative Coordinates
  142. // G92 - Set current position to coordinates given
  143. // M Codes
  144. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  145. // M1 - Same as M0
  146. // M17 - Enable/Power all stepper motors
  147. // M18 - Disable all stepper motors; same as M84
  148. // M20 - List SD card
  149. // M21 - Init SD card
  150. // M22 - Release SD card
  151. // M23 - Select SD file (M23 filename.g)
  152. // M24 - Start/resume SD print
  153. // M25 - Pause SD print
  154. // M26 - Set SD position in bytes (M26 S12345)
  155. // M27 - Report SD print status
  156. // M28 - Start SD write (M28 filename.g)
  157. // M29 - Stop SD write
  158. // M30 - Delete file from SD (M30 filename.g)
  159. // M31 - Output time since last M109 or SD card start to serial
  160. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  161. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  162. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  163. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  164. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  165. // M73 - Show percent done and print time remaining
  166. // M80 - Turn on Power Supply
  167. // M81 - Turn off Power Supply
  168. // M82 - Set E codes absolute (default)
  169. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  170. // M84 - Disable steppers until next move,
  171. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  172. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  173. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  174. // M92 - Set axis_steps_per_unit - same syntax as G92
  175. // M104 - Set extruder target temp
  176. // M105 - Read current temp
  177. // M106 - Fan on
  178. // M107 - Fan off
  179. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  180. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  181. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  182. // M112 - Emergency stop
  183. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  184. // M114 - Output current position to serial port
  185. // M115 - Capabilities string
  186. // M117 - display message
  187. // M119 - Output Endstop status to serial port
  188. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  189. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  190. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  191. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M140 - Set bed target temp
  193. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  194. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  195. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  196. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  197. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  198. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  199. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  200. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  201. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  202. // M206 - set additional homing offset
  203. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  204. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  205. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  206. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  207. // M220 S<factor in percent>- set speed factor override percentage
  208. // M221 S<factor in percent>- set extrude factor override percentage
  209. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  210. // M240 - Trigger a camera to take a photograph
  211. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  212. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  213. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  214. // M301 - Set PID parameters P I and D
  215. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  216. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  217. // M304 - Set bed PID parameters P I and D
  218. // M400 - Finish all moves
  219. // M401 - Lower z-probe if present
  220. // M402 - Raise z-probe if present
  221. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  222. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  223. // M406 - Turn off Filament Sensor extrusion control
  224. // M407 - Displays measured filament diameter
  225. // M500 - stores parameters in EEPROM
  226. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  227. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  228. // M503 - print the current settings (from memory not from EEPROM)
  229. // M509 - force language selection on next restart
  230. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  231. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  232. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  233. // M860 - Wait for PINDA thermistor to reach target temperature.
  234. // M861 - Set / Read PINDA temperature compensation offsets
  235. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  236. // M907 - Set digital trimpot motor current using axis codes.
  237. // M908 - Control digital trimpot directly.
  238. // M350 - Set microstepping mode.
  239. // M351 - Toggle MS1 MS2 pins directly.
  240. // M928 - Start SD logging (M928 filename.g) - ended by M29
  241. // M999 - Restart after being stopped by error
  242. //Stepper Movement Variables
  243. //===========================================================================
  244. //=============================imported variables============================
  245. //===========================================================================
  246. //===========================================================================
  247. //=============================public variables=============================
  248. //===========================================================================
  249. #ifdef SDSUPPORT
  250. CardReader card;
  251. #endif
  252. unsigned long PingTime = millis();
  253. unsigned long NcTime;
  254. //used for PINDA temp calibration and pause print
  255. #define DEFAULT_RETRACTION 1
  256. #define DEFAULT_RETRACTION_MM 4 //MM
  257. float default_retraction = DEFAULT_RETRACTION;
  258. float homing_feedrate[] = HOMING_FEEDRATE;
  259. // Currently only the extruder axis may be switched to a relative mode.
  260. // Other axes are always absolute or relative based on the common relative_mode flag.
  261. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  262. int feedmultiply=100; //100->1 200->2
  263. int saved_feedmultiply;
  264. int extrudemultiply=100; //100->1 200->2
  265. int extruder_multiply[EXTRUDERS] = {100
  266. #if EXTRUDERS > 1
  267. , 100
  268. #if EXTRUDERS > 2
  269. , 100
  270. #endif
  271. #endif
  272. };
  273. int bowden_length[4] = {385, 385, 385, 385};
  274. bool is_usb_printing = false;
  275. bool homing_flag = false;
  276. bool temp_cal_active = false;
  277. unsigned long kicktime = millis()+100000;
  278. unsigned int usb_printing_counter;
  279. int8_t lcd_change_fil_state = 0;
  280. int feedmultiplyBckp = 100;
  281. float HotendTempBckp = 0;
  282. int fanSpeedBckp = 0;
  283. float pause_lastpos[4];
  284. unsigned long pause_time = 0;
  285. unsigned long start_pause_print = millis();
  286. unsigned long t_fan_rising_edge = millis();
  287. LongTimer safetyTimer;
  288. LongTimer crashDetTimer;
  289. //unsigned long load_filament_time;
  290. bool mesh_bed_leveling_flag = false;
  291. bool mesh_bed_run_from_menu = false;
  292. int8_t FarmMode = 0;
  293. bool prusa_sd_card_upload = false;
  294. unsigned int status_number = 0;
  295. unsigned long total_filament_used;
  296. unsigned int heating_status;
  297. unsigned int heating_status_counter;
  298. bool custom_message;
  299. bool loading_flag = false;
  300. unsigned int custom_message_type;
  301. unsigned int custom_message_state;
  302. char snmm_filaments_used = 0;
  303. bool fan_state[2];
  304. int fan_edge_counter[2];
  305. int fan_speed[2];
  306. char dir_names[3][9];
  307. bool sortAlpha = false;
  308. bool volumetric_enabled = false;
  309. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  310. #if EXTRUDERS > 1
  311. , DEFAULT_NOMINAL_FILAMENT_DIA
  312. #if EXTRUDERS > 2
  313. , DEFAULT_NOMINAL_FILAMENT_DIA
  314. #endif
  315. #endif
  316. };
  317. float extruder_multiplier[EXTRUDERS] = {1.0
  318. #if EXTRUDERS > 1
  319. , 1.0
  320. #if EXTRUDERS > 2
  321. , 1.0
  322. #endif
  323. #endif
  324. };
  325. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  326. //shortcuts for more readable code
  327. #define _x current_position[X_AXIS]
  328. #define _y current_position[Y_AXIS]
  329. #define _z current_position[Z_AXIS]
  330. #define _e current_position[E_AXIS]
  331. float add_homing[3]={0,0,0};
  332. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  333. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  334. bool axis_known_position[3] = {false, false, false};
  335. float zprobe_zoffset;
  336. // Extruder offset
  337. #if EXTRUDERS > 1
  338. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  339. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  340. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  341. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  342. #endif
  343. };
  344. #endif
  345. uint8_t active_extruder = 0;
  346. int fanSpeed=0;
  347. #ifdef FWRETRACT
  348. bool autoretract_enabled=false;
  349. bool retracted[EXTRUDERS]={false
  350. #if EXTRUDERS > 1
  351. , false
  352. #if EXTRUDERS > 2
  353. , false
  354. #endif
  355. #endif
  356. };
  357. bool retracted_swap[EXTRUDERS]={false
  358. #if EXTRUDERS > 1
  359. , false
  360. #if EXTRUDERS > 2
  361. , false
  362. #endif
  363. #endif
  364. };
  365. float retract_length = RETRACT_LENGTH;
  366. float retract_length_swap = RETRACT_LENGTH_SWAP;
  367. float retract_feedrate = RETRACT_FEEDRATE;
  368. float retract_zlift = RETRACT_ZLIFT;
  369. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  370. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  371. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  372. #endif
  373. #ifdef PS_DEFAULT_OFF
  374. bool powersupply = false;
  375. #else
  376. bool powersupply = true;
  377. #endif
  378. bool cancel_heatup = false ;
  379. #ifdef HOST_KEEPALIVE_FEATURE
  380. int busy_state = NOT_BUSY;
  381. static long prev_busy_signal_ms = -1;
  382. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  383. #else
  384. #define host_keepalive();
  385. #define KEEPALIVE_STATE(n);
  386. #endif
  387. const char errormagic[] PROGMEM = "Error:";
  388. const char echomagic[] PROGMEM = "echo:";
  389. bool no_response = false;
  390. uint8_t important_status;
  391. uint8_t saved_filament_type;
  392. // save/restore printing
  393. bool saved_printing = false;
  394. // save/restore printing in case that mmu was not responding
  395. bool mmu_print_saved = false;
  396. // storing estimated time to end of print counted by slicer
  397. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  398. uint32_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  399. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  400. uint32_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  401. //===========================================================================
  402. //=============================Private Variables=============================
  403. //===========================================================================
  404. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  405. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  406. // For tracing an arc
  407. static float offset[3] = {0.0, 0.0, 0.0};
  408. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  409. // Determines Absolute or Relative Coordinates.
  410. // Also there is bool axis_relative_modes[] per axis flag.
  411. static bool relative_mode = false;
  412. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  413. //static float tt = 0;
  414. //static float bt = 0;
  415. //Inactivity shutdown variables
  416. static unsigned long previous_millis_cmd = 0;
  417. unsigned long max_inactive_time = 0;
  418. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  419. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  420. unsigned long starttime=0;
  421. unsigned long stoptime=0;
  422. unsigned long _usb_timer = 0;
  423. bool extruder_under_pressure = true;
  424. bool Stopped=false;
  425. #if NUM_SERVOS > 0
  426. Servo servos[NUM_SERVOS];
  427. #endif
  428. bool CooldownNoWait = true;
  429. bool target_direction;
  430. //Insert variables if CHDK is defined
  431. #ifdef CHDK
  432. unsigned long chdkHigh = 0;
  433. boolean chdkActive = false;
  434. #endif
  435. // save/restore printing
  436. static uint32_t saved_sdpos = 0;
  437. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  438. static float saved_pos[4] = { 0, 0, 0, 0 };
  439. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  440. static float saved_feedrate2 = 0;
  441. static uint8_t saved_active_extruder = 0;
  442. static bool saved_extruder_under_pressure = false;
  443. static bool saved_extruder_relative_mode = false;
  444. //===========================================================================
  445. //=============================Routines======================================
  446. //===========================================================================
  447. static void get_arc_coordinates();
  448. static bool setTargetedHotend(int code);
  449. static void print_time_remaining_init();
  450. uint16_t gcode_in_progress = 0;
  451. uint16_t mcode_in_progress = 0;
  452. void serial_echopair_P(const char *s_P, float v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. void serial_echopair_P(const char *s_P, double v)
  455. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. void serial_echopair_P(const char *s_P, unsigned long v)
  457. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  458. #ifdef SDSUPPORT
  459. #include "SdFatUtil.h"
  460. int freeMemory() { return SdFatUtil::FreeRam(); }
  461. #else
  462. extern "C" {
  463. extern unsigned int __bss_end;
  464. extern unsigned int __heap_start;
  465. extern void *__brkval;
  466. int freeMemory() {
  467. int free_memory;
  468. if ((int)__brkval == 0)
  469. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  470. else
  471. free_memory = ((int)&free_memory) - ((int)__brkval);
  472. return free_memory;
  473. }
  474. }
  475. #endif //!SDSUPPORT
  476. void setup_killpin()
  477. {
  478. #if defined(KILL_PIN) && KILL_PIN > -1
  479. SET_INPUT(KILL_PIN);
  480. WRITE(KILL_PIN,HIGH);
  481. #endif
  482. }
  483. // Set home pin
  484. void setup_homepin(void)
  485. {
  486. #if defined(HOME_PIN) && HOME_PIN > -1
  487. SET_INPUT(HOME_PIN);
  488. WRITE(HOME_PIN,HIGH);
  489. #endif
  490. }
  491. void setup_photpin()
  492. {
  493. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  494. SET_OUTPUT(PHOTOGRAPH_PIN);
  495. WRITE(PHOTOGRAPH_PIN, LOW);
  496. #endif
  497. }
  498. void setup_powerhold()
  499. {
  500. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  501. SET_OUTPUT(SUICIDE_PIN);
  502. WRITE(SUICIDE_PIN, HIGH);
  503. #endif
  504. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  505. SET_OUTPUT(PS_ON_PIN);
  506. #if defined(PS_DEFAULT_OFF)
  507. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  508. #else
  509. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  510. #endif
  511. #endif
  512. }
  513. void suicide()
  514. {
  515. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  516. SET_OUTPUT(SUICIDE_PIN);
  517. WRITE(SUICIDE_PIN, LOW);
  518. #endif
  519. }
  520. void servo_init()
  521. {
  522. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  523. servos[0].attach(SERVO0_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  526. servos[1].attach(SERVO1_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  529. servos[2].attach(SERVO2_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  532. servos[3].attach(SERVO3_PIN);
  533. #endif
  534. #if (NUM_SERVOS >= 5)
  535. #error "TODO: enter initalisation code for more servos"
  536. #endif
  537. }
  538. void stop_and_save_print_to_ram(float z_move, float e_move);
  539. void restore_print_from_ram_and_continue(float e_move);
  540. bool fans_check_enabled = true;
  541. #ifdef TMC2130
  542. extern int8_t CrashDetectMenu;
  543. void crashdet_enable()
  544. {
  545. tmc2130_sg_stop_on_crash = true;
  546. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  547. CrashDetectMenu = 1;
  548. }
  549. void crashdet_disable()
  550. {
  551. tmc2130_sg_stop_on_crash = false;
  552. tmc2130_sg_crash = 0;
  553. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  554. CrashDetectMenu = 0;
  555. }
  556. void crashdet_stop_and_save_print()
  557. {
  558. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  559. }
  560. void crashdet_restore_print_and_continue()
  561. {
  562. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  563. // babystep_apply();
  564. }
  565. void crashdet_stop_and_save_print2()
  566. {
  567. cli();
  568. planner_abort_hard(); //abort printing
  569. cmdqueue_reset(); //empty cmdqueue
  570. card.sdprinting = false;
  571. card.closefile();
  572. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  573. st_reset_timer();
  574. sei();
  575. }
  576. void crashdet_detected(uint8_t mask)
  577. {
  578. st_synchronize();
  579. static uint8_t crashDet_counter = 0;
  580. bool automatic_recovery_after_crash = true;
  581. if (crashDet_counter++ == 0) {
  582. crashDetTimer.start();
  583. }
  584. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  585. crashDetTimer.stop();
  586. crashDet_counter = 0;
  587. }
  588. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  589. automatic_recovery_after_crash = false;
  590. crashDetTimer.stop();
  591. crashDet_counter = 0;
  592. }
  593. else {
  594. crashDetTimer.start();
  595. }
  596. lcd_update_enable(true);
  597. lcd_clear();
  598. lcd_update(2);
  599. if (mask & X_AXIS_MASK)
  600. {
  601. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  602. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  603. }
  604. if (mask & Y_AXIS_MASK)
  605. {
  606. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  607. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  608. }
  609. lcd_update_enable(true);
  610. lcd_update(2);
  611. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  612. gcode_G28(true, true, false); //home X and Y
  613. st_synchronize();
  614. if (automatic_recovery_after_crash) {
  615. enquecommand_P(PSTR("CRASH_RECOVER"));
  616. }else{
  617. HotendTempBckp = degTargetHotend(active_extruder);
  618. setTargetHotend(0, active_extruder);
  619. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  620. lcd_update_enable(true);
  621. if (yesno)
  622. {
  623. char cmd1[10];
  624. strcpy(cmd1, "M109 S");
  625. strcat(cmd1, ftostr3(HotendTempBckp));
  626. enquecommand(cmd1);
  627. enquecommand_P(PSTR("CRASH_RECOVER"));
  628. }
  629. else
  630. {
  631. enquecommand_P(PSTR("CRASH_CANCEL"));
  632. }
  633. }
  634. }
  635. void crashdet_recover()
  636. {
  637. crashdet_restore_print_and_continue();
  638. tmc2130_sg_stop_on_crash = true;
  639. }
  640. void crashdet_cancel()
  641. {
  642. tmc2130_sg_stop_on_crash = true;
  643. if (saved_printing_type == PRINTING_TYPE_SD) {
  644. lcd_print_stop();
  645. }else if(saved_printing_type == PRINTING_TYPE_USB){
  646. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  647. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  648. }
  649. }
  650. #endif //TMC2130
  651. void failstats_reset_print()
  652. {
  653. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  654. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  655. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  656. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  657. }
  658. #ifdef MESH_BED_LEVELING
  659. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  660. #endif
  661. // Factory reset function
  662. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  663. // Level input parameter sets depth of reset
  664. // Quiet parameter masks all waitings for user interact.
  665. int er_progress = 0;
  666. void factory_reset(char level, bool quiet)
  667. {
  668. lcd_clear();
  669. switch (level) {
  670. // Level 0: Language reset
  671. case 0:
  672. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  673. WRITE(BEEPER, HIGH);
  674. _delay_ms(100);
  675. WRITE(BEEPER, LOW);
  676. lang_reset();
  677. break;
  678. //Level 1: Reset statistics
  679. case 1:
  680. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  681. WRITE(BEEPER, HIGH);
  682. _delay_ms(100);
  683. WRITE(BEEPER, LOW);
  684. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  685. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  686. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  687. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  690. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  691. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  694. lcd_menu_statistics();
  695. break;
  696. // Level 2: Prepare for shipping
  697. case 2:
  698. //lcd_puts_P(PSTR("Factory RESET"));
  699. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  700. // Force language selection at the next boot up.
  701. lang_reset();
  702. // Force the "Follow calibration flow" message at the next boot up.
  703. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  704. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  705. farm_no = 0;
  706. farm_mode = false;
  707. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  708. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  709. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  710. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  711. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  712. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  713. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  714. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  715. #ifdef FILAMENT_SENSOR
  716. fsensor_enable();
  717. fsensor_autoload_set(true);
  718. #endif //FILAMENT_SENSOR
  719. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. //_delay_ms(2000);
  724. break;
  725. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  726. case 3:
  727. lcd_puts_P(PSTR("Factory RESET"));
  728. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  729. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  730. WRITE(BEEPER, HIGH);
  731. _delay_ms(100);
  732. WRITE(BEEPER, LOW);
  733. er_progress = 0;
  734. lcd_puts_at_P(3, 3, PSTR(" "));
  735. lcd_set_cursor(3, 3);
  736. lcd_print(er_progress);
  737. // Erase EEPROM
  738. for (int i = 0; i < 4096; i++) {
  739. eeprom_write_byte((uint8_t*)i, 0xFF);
  740. if (i % 41 == 0) {
  741. er_progress++;
  742. lcd_puts_at_P(3, 3, PSTR(" "));
  743. lcd_set_cursor(3, 3);
  744. lcd_print(er_progress);
  745. lcd_puts_P(PSTR("%"));
  746. }
  747. }
  748. break;
  749. case 4:
  750. bowden_menu();
  751. break;
  752. default:
  753. break;
  754. }
  755. }
  756. FILE _uartout = {0};
  757. int uart_putchar(char c, FILE *stream)
  758. {
  759. MYSERIAL.write(c);
  760. return 0;
  761. }
  762. void lcd_splash()
  763. {
  764. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  765. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  766. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  767. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  768. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  769. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  770. }
  771. void factory_reset()
  772. {
  773. KEEPALIVE_STATE(PAUSED_FOR_USER);
  774. if (!READ(BTN_ENC))
  775. {
  776. _delay_ms(1000);
  777. if (!READ(BTN_ENC))
  778. {
  779. lcd_clear();
  780. lcd_puts_P(PSTR("Factory RESET"));
  781. SET_OUTPUT(BEEPER);
  782. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  783. WRITE(BEEPER, HIGH);
  784. while (!READ(BTN_ENC));
  785. WRITE(BEEPER, LOW);
  786. _delay_ms(2000);
  787. char level = reset_menu();
  788. factory_reset(level, false);
  789. switch (level) {
  790. case 0: _delay_ms(0); break;
  791. case 1: _delay_ms(0); break;
  792. case 2: _delay_ms(0); break;
  793. case 3: _delay_ms(0); break;
  794. }
  795. }
  796. }
  797. KEEPALIVE_STATE(IN_HANDLER);
  798. }
  799. void show_fw_version_warnings() {
  800. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  801. switch (FW_DEV_VERSION) {
  802. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  803. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  804. case(FW_VERSION_DEVEL):
  805. case(FW_VERSION_DEBUG):
  806. lcd_update_enable(false);
  807. lcd_clear();
  808. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  809. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  810. #else
  811. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  812. #endif
  813. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  814. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  815. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  816. lcd_wait_for_click();
  817. break;
  818. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  819. }
  820. lcd_update_enable(true);
  821. }
  822. uint8_t check_printer_version()
  823. {
  824. uint8_t version_changed = 0;
  825. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  826. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  827. if (printer_type != PRINTER_TYPE) {
  828. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  829. else version_changed |= 0b10;
  830. }
  831. if (motherboard != MOTHERBOARD) {
  832. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  833. else version_changed |= 0b01;
  834. }
  835. return version_changed;
  836. }
  837. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  838. {
  839. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  840. }
  841. #ifdef BOOTAPP
  842. #include "bootapp.h" //bootloader support
  843. #endif //BOOTAPP
  844. #if (LANG_MODE != 0) //secondary language support
  845. #ifdef W25X20CL
  846. // language update from external flash
  847. #define LANGBOOT_BLOCKSIZE 0x1000u
  848. #define LANGBOOT_RAMBUFFER 0x0800
  849. void update_sec_lang_from_external_flash()
  850. {
  851. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  852. {
  853. uint8_t lang = boot_reserved >> 4;
  854. uint8_t state = boot_reserved & 0xf;
  855. lang_table_header_t header;
  856. uint32_t src_addr;
  857. if (lang_get_header(lang, &header, &src_addr))
  858. {
  859. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  860. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  861. delay(100);
  862. boot_reserved = (state + 1) | (lang << 4);
  863. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  864. {
  865. cli();
  866. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  867. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  868. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  869. if (state == 0)
  870. {
  871. //TODO - check header integrity
  872. }
  873. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  874. }
  875. else
  876. {
  877. //TODO - check sec lang data integrity
  878. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  879. }
  880. }
  881. }
  882. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  883. }
  884. #ifdef DEBUG_W25X20CL
  885. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  886. {
  887. lang_table_header_t header;
  888. uint8_t count = 0;
  889. uint32_t addr = 0x00000;
  890. while (1)
  891. {
  892. printf_P(_n("LANGTABLE%d:"), count);
  893. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  894. if (header.magic != LANG_MAGIC)
  895. {
  896. printf_P(_n("NG!\n"));
  897. break;
  898. }
  899. printf_P(_n("OK\n"));
  900. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  901. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  902. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  903. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  904. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  905. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  906. addr += header.size;
  907. codes[count] = header.code;
  908. count ++;
  909. }
  910. return count;
  911. }
  912. void list_sec_lang_from_external_flash()
  913. {
  914. uint16_t codes[8];
  915. uint8_t count = lang_xflash_enum_codes(codes);
  916. printf_P(_n("XFlash lang count = %hhd\n"), count);
  917. }
  918. #endif //DEBUG_W25X20CL
  919. #endif //W25X20CL
  920. #endif //(LANG_MODE != 0)
  921. // "Setup" function is called by the Arduino framework on startup.
  922. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  923. // are initialized by the main() routine provided by the Arduino framework.
  924. void setup()
  925. {
  926. mmu_init();
  927. ultralcd_init();
  928. spi_init();
  929. lcd_splash();
  930. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  931. #ifdef W25X20CL
  932. if (!w25x20cl_init())
  933. kill(_i("External SPI flash W25X20CL not responding."));
  934. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  935. optiboot_w25x20cl_enter();
  936. #endif
  937. #if (LANG_MODE != 0) //secondary language support
  938. #ifdef W25X20CL
  939. if (w25x20cl_init())
  940. update_sec_lang_from_external_flash();
  941. #endif //W25X20CL
  942. #endif //(LANG_MODE != 0)
  943. setup_killpin();
  944. setup_powerhold();
  945. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  946. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  947. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  948. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  949. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  950. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  951. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  952. if (farm_mode)
  953. {
  954. no_response = true; //we need confirmation by recieving PRUSA thx
  955. important_status = 8;
  956. prusa_statistics(8);
  957. selectedSerialPort = 1;
  958. #ifdef TMC2130
  959. //increased extruder current (PFW363)
  960. tmc2130_current_h[E_AXIS] = 36;
  961. tmc2130_current_r[E_AXIS] = 36;
  962. #endif //TMC2130
  963. #ifdef FILAMENT_SENSOR
  964. //disabled filament autoload (PFW360)
  965. fsensor_autoload_set(false);
  966. #endif //FILAMENT_SENSOR
  967. }
  968. MYSERIAL.begin(BAUDRATE);
  969. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  970. stdout = uartout;
  971. SERIAL_PROTOCOLLNPGM("start");
  972. SERIAL_ECHO_START;
  973. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  974. #ifdef DEBUG_SEC_LANG
  975. lang_table_header_t header;
  976. uint32_t src_addr = 0x00000;
  977. if (lang_get_header(1, &header, &src_addr))
  978. {
  979. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  980. #define LT_PRINT_TEST 2
  981. // flash usage
  982. // total p.test
  983. //0 252718 t+c text code
  984. //1 253142 424 170 254
  985. //2 253040 322 164 158
  986. //3 253248 530 135 395
  987. #if (LT_PRINT_TEST==1) //not optimized printf
  988. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  989. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  990. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  991. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  992. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  993. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  994. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  995. #elif (LT_PRINT_TEST==2) //optimized printf
  996. printf_P(
  997. _n(
  998. " _src_addr = 0x%08lx\n"
  999. " _lt_magic = 0x%08lx %S\n"
  1000. " _lt_size = 0x%04x (%d)\n"
  1001. " _lt_count = 0x%04x (%d)\n"
  1002. " _lt_chsum = 0x%04x\n"
  1003. " _lt_code = 0x%04x (%c%c)\n"
  1004. " _lt_resv1 = 0x%08lx\n"
  1005. ),
  1006. src_addr,
  1007. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1008. header.size, header.size,
  1009. header.count, header.count,
  1010. header.checksum,
  1011. header.code, header.code >> 8, header.code & 0xff,
  1012. header.signature
  1013. );
  1014. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1015. MYSERIAL.print(" _src_addr = 0x");
  1016. MYSERIAL.println(src_addr, 16);
  1017. MYSERIAL.print(" _lt_magic = 0x");
  1018. MYSERIAL.print(header.magic, 16);
  1019. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1020. MYSERIAL.print(" _lt_size = 0x");
  1021. MYSERIAL.print(header.size, 16);
  1022. MYSERIAL.print(" (");
  1023. MYSERIAL.print(header.size, 10);
  1024. MYSERIAL.println(")");
  1025. MYSERIAL.print(" _lt_count = 0x");
  1026. MYSERIAL.print(header.count, 16);
  1027. MYSERIAL.print(" (");
  1028. MYSERIAL.print(header.count, 10);
  1029. MYSERIAL.println(")");
  1030. MYSERIAL.print(" _lt_chsum = 0x");
  1031. MYSERIAL.println(header.checksum, 16);
  1032. MYSERIAL.print(" _lt_code = 0x");
  1033. MYSERIAL.print(header.code, 16);
  1034. MYSERIAL.print(" (");
  1035. MYSERIAL.print((char)(header.code >> 8), 0);
  1036. MYSERIAL.print((char)(header.code & 0xff), 0);
  1037. MYSERIAL.println(")");
  1038. MYSERIAL.print(" _lt_resv1 = 0x");
  1039. MYSERIAL.println(header.signature, 16);
  1040. #endif //(LT_PRINT_TEST==)
  1041. #undef LT_PRINT_TEST
  1042. #if 0
  1043. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1044. for (uint16_t i = 0; i < 1024; i++)
  1045. {
  1046. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1047. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1048. if ((i % 16) == 15) putchar('\n');
  1049. }
  1050. #endif
  1051. uint16_t sum = 0;
  1052. for (uint16_t i = 0; i < header.size; i++)
  1053. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1054. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1055. sum -= header.checksum; //subtract checksum
  1056. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1057. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1058. if (sum == header.checksum)
  1059. printf_P(_n("Checksum OK\n"), sum);
  1060. else
  1061. printf_P(_n("Checksum NG\n"), sum);
  1062. }
  1063. else
  1064. printf_P(_n("lang_get_header failed!\n"));
  1065. #if 0
  1066. for (uint16_t i = 0; i < 1024*10; i++)
  1067. {
  1068. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1069. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1070. if ((i % 16) == 15) putchar('\n');
  1071. }
  1072. #endif
  1073. #if 0
  1074. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1075. for (int i = 0; i < 4096; ++i) {
  1076. int b = eeprom_read_byte((unsigned char*)i);
  1077. if (b != 255) {
  1078. SERIAL_ECHO(i);
  1079. SERIAL_ECHO(":");
  1080. SERIAL_ECHO(b);
  1081. SERIAL_ECHOLN("");
  1082. }
  1083. }
  1084. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1085. #endif
  1086. #endif //DEBUG_SEC_LANG
  1087. // Check startup - does nothing if bootloader sets MCUSR to 0
  1088. byte mcu = MCUSR;
  1089. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1090. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1091. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1092. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1093. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1094. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1095. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1096. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1097. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1098. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1099. MCUSR = 0;
  1100. //SERIAL_ECHORPGM(MSG_MARLIN);
  1101. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1102. #ifdef STRING_VERSION_CONFIG_H
  1103. #ifdef STRING_CONFIG_H_AUTHOR
  1104. SERIAL_ECHO_START;
  1105. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1106. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1107. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1108. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1109. SERIAL_ECHOPGM("Compiled: ");
  1110. SERIAL_ECHOLNPGM(__DATE__);
  1111. #endif
  1112. #endif
  1113. SERIAL_ECHO_START;
  1114. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1115. SERIAL_ECHO(freeMemory());
  1116. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1117. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1118. //lcd_update_enable(false); // why do we need this?? - andre
  1119. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1120. bool previous_settings_retrieved = false;
  1121. uint8_t hw_changed = check_printer_version();
  1122. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1123. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1124. }
  1125. else { //printer version was changed so use default settings
  1126. Config_ResetDefault();
  1127. }
  1128. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1129. tp_init(); // Initialize temperature loop
  1130. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1131. plan_init(); // Initialize planner;
  1132. factory_reset();
  1133. #ifdef TMC2130
  1134. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1135. if (silentMode == 0xff) silentMode = 0;
  1136. tmc2130_mode = TMC2130_MODE_NORMAL;
  1137. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1138. if (crashdet && !farm_mode)
  1139. {
  1140. crashdet_enable();
  1141. puts_P(_N("CrashDetect ENABLED!"));
  1142. }
  1143. else
  1144. {
  1145. crashdet_disable();
  1146. puts_P(_N("CrashDetect DISABLED"));
  1147. }
  1148. #ifdef TMC2130_LINEARITY_CORRECTION
  1149. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1150. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1151. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1152. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1153. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1154. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1155. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1156. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1157. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1158. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1159. #endif //TMC2130_LINEARITY_CORRECTION
  1160. #ifdef TMC2130_VARIABLE_RESOLUTION
  1161. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1162. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1163. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1164. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1165. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1166. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1167. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1168. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1169. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1170. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1171. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1172. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1173. #else //TMC2130_VARIABLE_RESOLUTION
  1174. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1175. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1176. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1177. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1178. #endif //TMC2130_VARIABLE_RESOLUTION
  1179. #endif //TMC2130
  1180. st_init(); // Initialize stepper, this enables interrupts!
  1181. #ifdef TMC2130
  1182. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1183. update_mode_profile();
  1184. tmc2130_init();
  1185. #endif //TMC2130
  1186. setup_photpin();
  1187. servo_init();
  1188. // Reset the machine correction matrix.
  1189. // It does not make sense to load the correction matrix until the machine is homed.
  1190. world2machine_reset();
  1191. #ifdef FILAMENT_SENSOR
  1192. fsensor_init();
  1193. #endif //FILAMENT_SENSOR
  1194. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1195. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1196. #endif
  1197. setup_homepin();
  1198. #ifdef TMC2130
  1199. if (1) {
  1200. // try to run to zero phase before powering the Z motor.
  1201. // Move in negative direction
  1202. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1203. // Round the current micro-micro steps to micro steps.
  1204. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1205. // Until the phase counter is reset to zero.
  1206. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1207. delay(2);
  1208. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1209. delay(2);
  1210. }
  1211. }
  1212. #endif //TMC2130
  1213. #if defined(Z_AXIS_ALWAYS_ON)
  1214. enable_z();
  1215. #endif
  1216. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1217. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1218. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1219. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1220. if (farm_mode)
  1221. {
  1222. prusa_statistics(8);
  1223. }
  1224. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1225. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1226. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1227. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1228. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1229. // where all the EEPROM entries are set to 0x0ff.
  1230. // Once a firmware boots up, it forces at least a language selection, which changes
  1231. // EEPROM_LANG to number lower than 0x0ff.
  1232. // 1) Set a high power mode.
  1233. #ifdef TMC2130
  1234. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1235. tmc2130_mode = TMC2130_MODE_NORMAL;
  1236. #endif //TMC2130
  1237. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1238. }
  1239. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1240. // but this times out if a blocking dialog is shown in setup().
  1241. card.initsd();
  1242. #ifdef DEBUG_SD_SPEED_TEST
  1243. if (card.cardOK)
  1244. {
  1245. uint8_t* buff = (uint8_t*)block_buffer;
  1246. uint32_t block = 0;
  1247. uint32_t sumr = 0;
  1248. uint32_t sumw = 0;
  1249. for (int i = 0; i < 1024; i++)
  1250. {
  1251. uint32_t u = micros();
  1252. bool res = card.card.readBlock(i, buff);
  1253. u = micros() - u;
  1254. if (res)
  1255. {
  1256. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1257. sumr += u;
  1258. u = micros();
  1259. res = card.card.writeBlock(i, buff);
  1260. u = micros() - u;
  1261. if (res)
  1262. {
  1263. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1264. sumw += u;
  1265. }
  1266. else
  1267. {
  1268. printf_P(PSTR("writeBlock %4d error\n"), i);
  1269. break;
  1270. }
  1271. }
  1272. else
  1273. {
  1274. printf_P(PSTR("readBlock %4d error\n"), i);
  1275. break;
  1276. }
  1277. }
  1278. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1279. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1280. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1281. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1282. }
  1283. else
  1284. printf_P(PSTR("Card NG!\n"));
  1285. #endif //DEBUG_SD_SPEED_TEST
  1286. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1288. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1289. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1290. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1291. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1292. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1293. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1294. #ifdef SNMM
  1295. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1296. int _z = BOWDEN_LENGTH;
  1297. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1298. }
  1299. #endif
  1300. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1301. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1302. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1303. #if (LANG_MODE != 0) //secondary language support
  1304. #ifdef DEBUG_W25X20CL
  1305. W25X20CL_SPI_ENTER();
  1306. uint8_t uid[8]; // 64bit unique id
  1307. w25x20cl_rd_uid(uid);
  1308. puts_P(_n("W25X20CL UID="));
  1309. for (uint8_t i = 0; i < 8; i ++)
  1310. printf_P(PSTR("%02hhx"), uid[i]);
  1311. putchar('\n');
  1312. list_sec_lang_from_external_flash();
  1313. #endif //DEBUG_W25X20CL
  1314. // lang_reset();
  1315. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1316. lcd_language();
  1317. #ifdef DEBUG_SEC_LANG
  1318. uint16_t sec_lang_code = lang_get_code(1);
  1319. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1320. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1321. // lang_print_sec_lang(uartout);
  1322. #endif //DEBUG_SEC_LANG
  1323. #endif //(LANG_MODE != 0)
  1324. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1325. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1326. temp_cal_active = false;
  1327. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1328. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1329. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1330. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1331. int16_t z_shift = 0;
  1332. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1333. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1334. temp_cal_active = false;
  1335. }
  1336. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1337. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1338. }
  1339. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1340. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1341. }
  1342. check_babystep(); //checking if Z babystep is in allowed range
  1343. #ifdef UVLO_SUPPORT
  1344. setup_uvlo_interrupt();
  1345. #endif //UVLO_SUPPORT
  1346. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1347. setup_fan_interrupt();
  1348. #endif //DEBUG_DISABLE_FANCHECK
  1349. #ifdef FILAMENT_SENSOR
  1350. fsensor_setup_interrupt();
  1351. #endif //FILAMENT_SENSOR
  1352. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1353. #ifndef DEBUG_DISABLE_STARTMSGS
  1354. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1355. show_fw_version_warnings();
  1356. switch (hw_changed) {
  1357. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1358. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1359. case(0b01):
  1360. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1361. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1362. break;
  1363. case(0b10):
  1364. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1365. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1366. break;
  1367. case(0b11):
  1368. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1369. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1370. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1371. break;
  1372. default: break; //no change, show no message
  1373. }
  1374. if (!previous_settings_retrieved) {
  1375. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1376. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1377. }
  1378. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1379. lcd_wizard(0);
  1380. }
  1381. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1382. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1383. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1384. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1385. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1386. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1387. // Show the message.
  1388. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1389. }
  1390. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1391. // Show the message.
  1392. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1393. lcd_update_enable(true);
  1394. }
  1395. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1396. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1397. lcd_update_enable(true);
  1398. }
  1399. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1400. // Show the message.
  1401. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1402. }
  1403. }
  1404. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1405. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1406. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1407. update_current_firmware_version_to_eeprom();
  1408. lcd_selftest();
  1409. }
  1410. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1411. KEEPALIVE_STATE(IN_PROCESS);
  1412. #endif //DEBUG_DISABLE_STARTMSGS
  1413. lcd_update_enable(true);
  1414. lcd_clear();
  1415. lcd_update(2);
  1416. // Store the currently running firmware into an eeprom,
  1417. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1418. update_current_firmware_version_to_eeprom();
  1419. #ifdef TMC2130
  1420. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1421. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1422. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1423. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1424. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1425. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1426. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1427. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1428. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1429. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1430. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1431. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1432. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1433. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1434. #endif //TMC2130
  1435. #ifdef UVLO_SUPPORT
  1436. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1437. /*
  1438. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1439. else {
  1440. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1441. lcd_update_enable(true);
  1442. lcd_update(2);
  1443. lcd_setstatuspgm(_T(WELCOME_MSG));
  1444. }
  1445. */
  1446. manage_heater(); // Update temperatures
  1447. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1448. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1449. #endif
  1450. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1451. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1452. puts_P(_N("Automatic recovery!"));
  1453. #endif
  1454. recover_print(1);
  1455. }
  1456. else{
  1457. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1458. puts_P(_N("Normal recovery!"));
  1459. #endif
  1460. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1461. else {
  1462. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1463. lcd_update_enable(true);
  1464. lcd_update(2);
  1465. lcd_setstatuspgm(_T(WELCOME_MSG));
  1466. }
  1467. }
  1468. }
  1469. #endif //UVLO_SUPPORT
  1470. KEEPALIVE_STATE(NOT_BUSY);
  1471. #ifdef WATCHDOG
  1472. wdt_enable(WDTO_4S);
  1473. #endif //WATCHDOG
  1474. }
  1475. void trace();
  1476. #define CHUNK_SIZE 64 // bytes
  1477. #define SAFETY_MARGIN 1
  1478. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1479. int chunkHead = 0;
  1480. void serial_read_stream() {
  1481. setAllTargetHotends(0);
  1482. setTargetBed(0);
  1483. lcd_clear();
  1484. lcd_puts_P(PSTR(" Upload in progress"));
  1485. // first wait for how many bytes we will receive
  1486. uint32_t bytesToReceive;
  1487. // receive the four bytes
  1488. char bytesToReceiveBuffer[4];
  1489. for (int i=0; i<4; i++) {
  1490. int data;
  1491. while ((data = MYSERIAL.read()) == -1) {};
  1492. bytesToReceiveBuffer[i] = data;
  1493. }
  1494. // make it a uint32
  1495. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1496. // we're ready, notify the sender
  1497. MYSERIAL.write('+');
  1498. // lock in the routine
  1499. uint32_t receivedBytes = 0;
  1500. while (prusa_sd_card_upload) {
  1501. int i;
  1502. for (i=0; i<CHUNK_SIZE; i++) {
  1503. int data;
  1504. // check if we're not done
  1505. if (receivedBytes == bytesToReceive) {
  1506. break;
  1507. }
  1508. // read the next byte
  1509. while ((data = MYSERIAL.read()) == -1) {};
  1510. receivedBytes++;
  1511. // save it to the chunk
  1512. chunk[i] = data;
  1513. }
  1514. // write the chunk to SD
  1515. card.write_command_no_newline(&chunk[0]);
  1516. // notify the sender we're ready for more data
  1517. MYSERIAL.write('+');
  1518. // for safety
  1519. manage_heater();
  1520. // check if we're done
  1521. if(receivedBytes == bytesToReceive) {
  1522. trace(); // beep
  1523. card.closefile();
  1524. prusa_sd_card_upload = false;
  1525. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1526. }
  1527. }
  1528. }
  1529. #ifdef HOST_KEEPALIVE_FEATURE
  1530. /**
  1531. * Output a "busy" message at regular intervals
  1532. * while the machine is not accepting commands.
  1533. */
  1534. void host_keepalive() {
  1535. if (farm_mode) return;
  1536. long ms = millis();
  1537. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1538. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1539. switch (busy_state) {
  1540. case IN_HANDLER:
  1541. case IN_PROCESS:
  1542. SERIAL_ECHO_START;
  1543. SERIAL_ECHOLNPGM("busy: processing");
  1544. break;
  1545. case PAUSED_FOR_USER:
  1546. SERIAL_ECHO_START;
  1547. SERIAL_ECHOLNPGM("busy: paused for user");
  1548. break;
  1549. case PAUSED_FOR_INPUT:
  1550. SERIAL_ECHO_START;
  1551. SERIAL_ECHOLNPGM("busy: paused for input");
  1552. break;
  1553. default:
  1554. break;
  1555. }
  1556. }
  1557. prev_busy_signal_ms = ms;
  1558. }
  1559. #endif
  1560. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1561. // Before loop(), the setup() function is called by the main() routine.
  1562. void loop()
  1563. {
  1564. KEEPALIVE_STATE(NOT_BUSY);
  1565. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1566. {
  1567. is_usb_printing = true;
  1568. usb_printing_counter--;
  1569. _usb_timer = millis();
  1570. }
  1571. if (usb_printing_counter == 0)
  1572. {
  1573. is_usb_printing = false;
  1574. }
  1575. if (prusa_sd_card_upload)
  1576. {
  1577. //we read byte-by byte
  1578. serial_read_stream();
  1579. } else
  1580. {
  1581. get_command();
  1582. #ifdef SDSUPPORT
  1583. card.checkautostart(false);
  1584. #endif
  1585. if(buflen)
  1586. {
  1587. cmdbuffer_front_already_processed = false;
  1588. #ifdef SDSUPPORT
  1589. if(card.saving)
  1590. {
  1591. // Saving a G-code file onto an SD-card is in progress.
  1592. // Saving starts with M28, saving until M29 is seen.
  1593. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1594. card.write_command(CMDBUFFER_CURRENT_STRING);
  1595. if(card.logging)
  1596. process_commands();
  1597. else
  1598. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1599. } else {
  1600. card.closefile();
  1601. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1602. }
  1603. } else {
  1604. process_commands();
  1605. }
  1606. #else
  1607. process_commands();
  1608. #endif //SDSUPPORT
  1609. if (! cmdbuffer_front_already_processed && buflen)
  1610. {
  1611. // ptr points to the start of the block currently being processed.
  1612. // The first character in the block is the block type.
  1613. char *ptr = cmdbuffer + bufindr;
  1614. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1615. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1616. union {
  1617. struct {
  1618. char lo;
  1619. char hi;
  1620. } lohi;
  1621. uint16_t value;
  1622. } sdlen;
  1623. sdlen.value = 0;
  1624. {
  1625. // This block locks the interrupts globally for 3.25 us,
  1626. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1627. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1628. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1629. cli();
  1630. // Reset the command to something, which will be ignored by the power panic routine,
  1631. // so this buffer length will not be counted twice.
  1632. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1633. // Extract the current buffer length.
  1634. sdlen.lohi.lo = *ptr ++;
  1635. sdlen.lohi.hi = *ptr;
  1636. // and pass it to the planner queue.
  1637. planner_add_sd_length(sdlen.value);
  1638. sei();
  1639. }
  1640. }
  1641. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1642. cli();
  1643. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1644. // and one for each command to previous block in the planner queue.
  1645. planner_add_sd_length(1);
  1646. sei();
  1647. }
  1648. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1649. // this block's SD card length will not be counted twice as its command type has been replaced
  1650. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1651. cmdqueue_pop_front();
  1652. }
  1653. host_keepalive();
  1654. }
  1655. }
  1656. //check heater every n milliseconds
  1657. manage_heater();
  1658. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1659. checkHitEndstops();
  1660. lcd_update(0);
  1661. #ifdef FILAMENT_SENSOR
  1662. if (mcode_in_progress != 600) //M600 not in progress
  1663. fsensor_update();
  1664. #endif //FILAMENT_SENSOR
  1665. #ifdef TMC2130
  1666. tmc2130_check_overtemp();
  1667. if (tmc2130_sg_crash)
  1668. {
  1669. uint8_t crash = tmc2130_sg_crash;
  1670. tmc2130_sg_crash = 0;
  1671. // crashdet_stop_and_save_print();
  1672. switch (crash)
  1673. {
  1674. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1675. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1676. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1677. }
  1678. }
  1679. #endif //TMC2130
  1680. mmu_loop();
  1681. }
  1682. #define DEFINE_PGM_READ_ANY(type, reader) \
  1683. static inline type pgm_read_any(const type *p) \
  1684. { return pgm_read_##reader##_near(p); }
  1685. DEFINE_PGM_READ_ANY(float, float);
  1686. DEFINE_PGM_READ_ANY(signed char, byte);
  1687. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1688. static const PROGMEM type array##_P[3] = \
  1689. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1690. static inline type array(int axis) \
  1691. { return pgm_read_any(&array##_P[axis]); } \
  1692. type array##_ext(int axis) \
  1693. { return pgm_read_any(&array##_P[axis]); }
  1694. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1695. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1696. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1697. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1698. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1699. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1700. static void axis_is_at_home(int axis) {
  1701. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1702. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1703. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1704. }
  1705. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1706. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1707. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1708. saved_feedrate = feedrate;
  1709. saved_feedmultiply = feedmultiply;
  1710. feedmultiply = 100;
  1711. previous_millis_cmd = millis();
  1712. enable_endstops(enable_endstops_now);
  1713. }
  1714. static void clean_up_after_endstop_move() {
  1715. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1716. enable_endstops(false);
  1717. #endif
  1718. feedrate = saved_feedrate;
  1719. feedmultiply = saved_feedmultiply;
  1720. previous_millis_cmd = millis();
  1721. }
  1722. #ifdef ENABLE_AUTO_BED_LEVELING
  1723. #ifdef AUTO_BED_LEVELING_GRID
  1724. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1725. {
  1726. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1727. planeNormal.debug("planeNormal");
  1728. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1729. //bedLevel.debug("bedLevel");
  1730. //plan_bed_level_matrix.debug("bed level before");
  1731. //vector_3 uncorrected_position = plan_get_position_mm();
  1732. //uncorrected_position.debug("position before");
  1733. vector_3 corrected_position = plan_get_position();
  1734. // corrected_position.debug("position after");
  1735. current_position[X_AXIS] = corrected_position.x;
  1736. current_position[Y_AXIS] = corrected_position.y;
  1737. current_position[Z_AXIS] = corrected_position.z;
  1738. // put the bed at 0 so we don't go below it.
  1739. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1740. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1741. }
  1742. #else // not AUTO_BED_LEVELING_GRID
  1743. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1744. plan_bed_level_matrix.set_to_identity();
  1745. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1746. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1747. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1748. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1749. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1750. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1751. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1752. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1753. vector_3 corrected_position = plan_get_position();
  1754. current_position[X_AXIS] = corrected_position.x;
  1755. current_position[Y_AXIS] = corrected_position.y;
  1756. current_position[Z_AXIS] = corrected_position.z;
  1757. // put the bed at 0 so we don't go below it.
  1758. current_position[Z_AXIS] = zprobe_zoffset;
  1759. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1760. }
  1761. #endif // AUTO_BED_LEVELING_GRID
  1762. static void run_z_probe() {
  1763. plan_bed_level_matrix.set_to_identity();
  1764. feedrate = homing_feedrate[Z_AXIS];
  1765. // move down until you find the bed
  1766. float zPosition = -10;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1768. st_synchronize();
  1769. // we have to let the planner know where we are right now as it is not where we said to go.
  1770. zPosition = st_get_position_mm(Z_AXIS);
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1772. // move up the retract distance
  1773. zPosition += home_retract_mm(Z_AXIS);
  1774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1775. st_synchronize();
  1776. // move back down slowly to find bed
  1777. feedrate = homing_feedrate[Z_AXIS]/4;
  1778. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1780. st_synchronize();
  1781. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1782. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1783. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1784. }
  1785. static void do_blocking_move_to(float x, float y, float z) {
  1786. float oldFeedRate = feedrate;
  1787. feedrate = homing_feedrate[Z_AXIS];
  1788. current_position[Z_AXIS] = z;
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1790. st_synchronize();
  1791. feedrate = XY_TRAVEL_SPEED;
  1792. current_position[X_AXIS] = x;
  1793. current_position[Y_AXIS] = y;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1795. st_synchronize();
  1796. feedrate = oldFeedRate;
  1797. }
  1798. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1799. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1800. }
  1801. /// Probe bed height at position (x,y), returns the measured z value
  1802. static float probe_pt(float x, float y, float z_before) {
  1803. // move to right place
  1804. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1805. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1806. run_z_probe();
  1807. float measured_z = current_position[Z_AXIS];
  1808. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1809. SERIAL_PROTOCOLPGM(" x: ");
  1810. SERIAL_PROTOCOL(x);
  1811. SERIAL_PROTOCOLPGM(" y: ");
  1812. SERIAL_PROTOCOL(y);
  1813. SERIAL_PROTOCOLPGM(" z: ");
  1814. SERIAL_PROTOCOL(measured_z);
  1815. SERIAL_PROTOCOLPGM("\n");
  1816. return measured_z;
  1817. }
  1818. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1819. #ifdef LIN_ADVANCE
  1820. /**
  1821. * M900: Set and/or Get advance K factor and WH/D ratio
  1822. *
  1823. * K<factor> Set advance K factor
  1824. * R<ratio> Set ratio directly (overrides WH/D)
  1825. * W<width> H<height> D<diam> Set ratio from WH/D
  1826. */
  1827. inline void gcode_M900() {
  1828. st_synchronize();
  1829. const float newK = code_seen('K') ? code_value_float() : -1;
  1830. if (newK >= 0) extruder_advance_k = newK;
  1831. float newR = code_seen('R') ? code_value_float() : -1;
  1832. if (newR < 0) {
  1833. const float newD = code_seen('D') ? code_value_float() : -1,
  1834. newW = code_seen('W') ? code_value_float() : -1,
  1835. newH = code_seen('H') ? code_value_float() : -1;
  1836. if (newD >= 0 && newW >= 0 && newH >= 0)
  1837. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1838. }
  1839. if (newR >= 0) advance_ed_ratio = newR;
  1840. SERIAL_ECHO_START;
  1841. SERIAL_ECHOPGM("Advance K=");
  1842. SERIAL_ECHOLN(extruder_advance_k);
  1843. SERIAL_ECHOPGM(" E/D=");
  1844. const float ratio = advance_ed_ratio;
  1845. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1846. }
  1847. #endif // LIN_ADVANCE
  1848. bool check_commands() {
  1849. bool end_command_found = false;
  1850. while (buflen)
  1851. {
  1852. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1853. if (!cmdbuffer_front_already_processed)
  1854. cmdqueue_pop_front();
  1855. cmdbuffer_front_already_processed = false;
  1856. }
  1857. return end_command_found;
  1858. }
  1859. #ifdef TMC2130
  1860. bool calibrate_z_auto()
  1861. {
  1862. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1863. lcd_clear();
  1864. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1865. bool endstops_enabled = enable_endstops(true);
  1866. int axis_up_dir = -home_dir(Z_AXIS);
  1867. tmc2130_home_enter(Z_AXIS_MASK);
  1868. current_position[Z_AXIS] = 0;
  1869. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1870. set_destination_to_current();
  1871. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1872. feedrate = homing_feedrate[Z_AXIS];
  1873. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1874. st_synchronize();
  1875. // current_position[axis] = 0;
  1876. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1877. tmc2130_home_exit();
  1878. enable_endstops(false);
  1879. current_position[Z_AXIS] = 0;
  1880. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1881. set_destination_to_current();
  1882. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1883. feedrate = homing_feedrate[Z_AXIS] / 2;
  1884. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1885. st_synchronize();
  1886. enable_endstops(endstops_enabled);
  1887. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1888. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1889. return true;
  1890. }
  1891. #endif //TMC2130
  1892. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1893. {
  1894. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1895. #define HOMEAXIS_DO(LETTER) \
  1896. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1897. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1898. {
  1899. int axis_home_dir = home_dir(axis);
  1900. feedrate = homing_feedrate[axis];
  1901. #ifdef TMC2130
  1902. tmc2130_home_enter(X_AXIS_MASK << axis);
  1903. #endif //TMC2130
  1904. // Move right a bit, so that the print head does not touch the left end position,
  1905. // and the following left movement has a chance to achieve the required velocity
  1906. // for the stall guard to work.
  1907. current_position[axis] = 0;
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. set_destination_to_current();
  1910. // destination[axis] = 11.f;
  1911. destination[axis] = 3.f;
  1912. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1913. st_synchronize();
  1914. // Move left away from the possible collision with the collision detection disabled.
  1915. endstops_hit_on_purpose();
  1916. enable_endstops(false);
  1917. current_position[axis] = 0;
  1918. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1919. destination[axis] = - 1.;
  1920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1921. st_synchronize();
  1922. // Now continue to move up to the left end stop with the collision detection enabled.
  1923. enable_endstops(true);
  1924. destination[axis] = - 1.1 * max_length(axis);
  1925. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1926. st_synchronize();
  1927. for (uint8_t i = 0; i < cnt; i++)
  1928. {
  1929. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1930. endstops_hit_on_purpose();
  1931. enable_endstops(false);
  1932. current_position[axis] = 0;
  1933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1934. destination[axis] = 10.f;
  1935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1936. st_synchronize();
  1937. endstops_hit_on_purpose();
  1938. // Now move left up to the collision, this time with a repeatable velocity.
  1939. enable_endstops(true);
  1940. destination[axis] = - 11.f;
  1941. #ifdef TMC2130
  1942. feedrate = homing_feedrate[axis];
  1943. #else //TMC2130
  1944. feedrate = homing_feedrate[axis] / 2;
  1945. #endif //TMC2130
  1946. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1947. st_synchronize();
  1948. #ifdef TMC2130
  1949. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1950. if (pstep) pstep[i] = mscnt >> 4;
  1951. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1952. #endif //TMC2130
  1953. }
  1954. endstops_hit_on_purpose();
  1955. enable_endstops(false);
  1956. #ifdef TMC2130
  1957. uint8_t orig = tmc2130_home_origin[axis];
  1958. uint8_t back = tmc2130_home_bsteps[axis];
  1959. if (tmc2130_home_enabled && (orig <= 63))
  1960. {
  1961. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1962. if (back > 0)
  1963. tmc2130_do_steps(axis, back, 1, 1000);
  1964. }
  1965. else
  1966. tmc2130_do_steps(axis, 8, 2, 1000);
  1967. tmc2130_home_exit();
  1968. #endif //TMC2130
  1969. axis_is_at_home(axis);
  1970. axis_known_position[axis] = true;
  1971. // Move from minimum
  1972. #ifdef TMC2130
  1973. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1974. #else //TMC2130
  1975. float dist = 0.01f * 64;
  1976. #endif //TMC2130
  1977. current_position[axis] -= dist;
  1978. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1979. current_position[axis] += dist;
  1980. destination[axis] = current_position[axis];
  1981. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1982. st_synchronize();
  1983. feedrate = 0.0;
  1984. }
  1985. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1986. {
  1987. #ifdef TMC2130
  1988. FORCE_HIGH_POWER_START;
  1989. #endif
  1990. int axis_home_dir = home_dir(axis);
  1991. current_position[axis] = 0;
  1992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1993. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1994. feedrate = homing_feedrate[axis];
  1995. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1996. st_synchronize();
  1997. #ifdef TMC2130
  1998. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1999. FORCE_HIGH_POWER_END;
  2000. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2001. return;
  2002. }
  2003. #endif //TMC2130
  2004. current_position[axis] = 0;
  2005. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2006. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2007. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2008. st_synchronize();
  2009. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2010. feedrate = homing_feedrate[axis]/2 ;
  2011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2012. st_synchronize();
  2013. #ifdef TMC2130
  2014. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2015. FORCE_HIGH_POWER_END;
  2016. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2017. return;
  2018. }
  2019. #endif //TMC2130
  2020. axis_is_at_home(axis);
  2021. destination[axis] = current_position[axis];
  2022. feedrate = 0.0;
  2023. endstops_hit_on_purpose();
  2024. axis_known_position[axis] = true;
  2025. #ifdef TMC2130
  2026. FORCE_HIGH_POWER_END;
  2027. #endif
  2028. }
  2029. enable_endstops(endstops_enabled);
  2030. }
  2031. /**/
  2032. void home_xy()
  2033. {
  2034. set_destination_to_current();
  2035. homeaxis(X_AXIS);
  2036. homeaxis(Y_AXIS);
  2037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2038. endstops_hit_on_purpose();
  2039. }
  2040. void refresh_cmd_timeout(void)
  2041. {
  2042. previous_millis_cmd = millis();
  2043. }
  2044. #ifdef FWRETRACT
  2045. void retract(bool retracting, bool swapretract = false) {
  2046. if(retracting && !retracted[active_extruder]) {
  2047. destination[X_AXIS]=current_position[X_AXIS];
  2048. destination[Y_AXIS]=current_position[Y_AXIS];
  2049. destination[Z_AXIS]=current_position[Z_AXIS];
  2050. destination[E_AXIS]=current_position[E_AXIS];
  2051. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2052. plan_set_e_position(current_position[E_AXIS]);
  2053. float oldFeedrate = feedrate;
  2054. feedrate=retract_feedrate*60;
  2055. retracted[active_extruder]=true;
  2056. prepare_move();
  2057. current_position[Z_AXIS]-=retract_zlift;
  2058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2059. prepare_move();
  2060. feedrate = oldFeedrate;
  2061. } else if(!retracting && retracted[active_extruder]) {
  2062. destination[X_AXIS]=current_position[X_AXIS];
  2063. destination[Y_AXIS]=current_position[Y_AXIS];
  2064. destination[Z_AXIS]=current_position[Z_AXIS];
  2065. destination[E_AXIS]=current_position[E_AXIS];
  2066. current_position[Z_AXIS]+=retract_zlift;
  2067. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2068. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2069. plan_set_e_position(current_position[E_AXIS]);
  2070. float oldFeedrate = feedrate;
  2071. feedrate=retract_recover_feedrate*60;
  2072. retracted[active_extruder]=false;
  2073. prepare_move();
  2074. feedrate = oldFeedrate;
  2075. }
  2076. } //retract
  2077. #endif //FWRETRACT
  2078. void trace() {
  2079. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2080. tone(BEEPER, 440);
  2081. delay(25);
  2082. noTone(BEEPER);
  2083. delay(20);
  2084. }
  2085. /*
  2086. void ramming() {
  2087. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2088. if (current_temperature[0] < 230) {
  2089. //PLA
  2090. max_feedrate[E_AXIS] = 50;
  2091. //current_position[E_AXIS] -= 8;
  2092. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2093. //current_position[E_AXIS] += 8;
  2094. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2095. current_position[E_AXIS] += 5.4;
  2096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2097. current_position[E_AXIS] += 3.2;
  2098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2099. current_position[E_AXIS] += 3;
  2100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2101. st_synchronize();
  2102. max_feedrate[E_AXIS] = 80;
  2103. current_position[E_AXIS] -= 82;
  2104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2105. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2106. current_position[E_AXIS] -= 20;
  2107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2108. current_position[E_AXIS] += 5;
  2109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2110. current_position[E_AXIS] += 5;
  2111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2112. current_position[E_AXIS] -= 10;
  2113. st_synchronize();
  2114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2115. current_position[E_AXIS] += 10;
  2116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2117. current_position[E_AXIS] -= 10;
  2118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2119. current_position[E_AXIS] += 10;
  2120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2121. current_position[E_AXIS] -= 10;
  2122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2123. st_synchronize();
  2124. }
  2125. else {
  2126. //ABS
  2127. max_feedrate[E_AXIS] = 50;
  2128. //current_position[E_AXIS] -= 8;
  2129. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2130. //current_position[E_AXIS] += 8;
  2131. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2132. current_position[E_AXIS] += 3.1;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2134. current_position[E_AXIS] += 3.1;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2136. current_position[E_AXIS] += 4;
  2137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2138. st_synchronize();
  2139. //current_position[X_AXIS] += 23; //delay
  2140. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2141. //current_position[X_AXIS] -= 23; //delay
  2142. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2143. delay(4700);
  2144. max_feedrate[E_AXIS] = 80;
  2145. current_position[E_AXIS] -= 92;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2147. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2148. current_position[E_AXIS] -= 5;
  2149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2150. current_position[E_AXIS] += 5;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2152. current_position[E_AXIS] -= 5;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2154. st_synchronize();
  2155. current_position[E_AXIS] += 5;
  2156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2157. current_position[E_AXIS] -= 5;
  2158. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2159. current_position[E_AXIS] += 5;
  2160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2161. current_position[E_AXIS] -= 5;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2163. st_synchronize();
  2164. }
  2165. }
  2166. */
  2167. #ifdef TMC2130
  2168. void force_high_power_mode(bool start_high_power_section) {
  2169. uint8_t silent;
  2170. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2171. if (silent == 1) {
  2172. //we are in silent mode, set to normal mode to enable crash detection
  2173. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2174. st_synchronize();
  2175. cli();
  2176. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2177. update_mode_profile();
  2178. tmc2130_init();
  2179. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2180. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2181. st_reset_timer();
  2182. sei();
  2183. }
  2184. }
  2185. #endif //TMC2130
  2186. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2187. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2188. }
  2189. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2190. st_synchronize();
  2191. #if 0
  2192. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2193. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2194. #endif
  2195. // Flag for the display update routine and to disable the print cancelation during homing.
  2196. homing_flag = true;
  2197. // Which axes should be homed?
  2198. bool home_x = home_x_axis;
  2199. bool home_y = home_y_axis;
  2200. bool home_z = home_z_axis;
  2201. // Either all X,Y,Z codes are present, or none of them.
  2202. bool home_all_axes = home_x == home_y && home_x == home_z;
  2203. if (home_all_axes)
  2204. // No X/Y/Z code provided means to home all axes.
  2205. home_x = home_y = home_z = true;
  2206. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2207. if (home_all_axes) {
  2208. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2209. feedrate = homing_feedrate[Z_AXIS];
  2210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2211. st_synchronize();
  2212. }
  2213. #ifdef ENABLE_AUTO_BED_LEVELING
  2214. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2215. #endif //ENABLE_AUTO_BED_LEVELING
  2216. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2217. // the planner will not perform any adjustments in the XY plane.
  2218. // Wait for the motors to stop and update the current position with the absolute values.
  2219. world2machine_revert_to_uncorrected();
  2220. // For mesh bed leveling deactivate the matrix temporarily.
  2221. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2222. // in a single axis only.
  2223. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2224. #ifdef MESH_BED_LEVELING
  2225. uint8_t mbl_was_active = mbl.active;
  2226. mbl.active = 0;
  2227. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2228. #endif
  2229. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2230. // consumed during the first movements following this statement.
  2231. if (home_z)
  2232. babystep_undo();
  2233. saved_feedrate = feedrate;
  2234. saved_feedmultiply = feedmultiply;
  2235. feedmultiply = 100;
  2236. previous_millis_cmd = millis();
  2237. enable_endstops(true);
  2238. memcpy(destination, current_position, sizeof(destination));
  2239. feedrate = 0.0;
  2240. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2241. if(home_z)
  2242. homeaxis(Z_AXIS);
  2243. #endif
  2244. #ifdef QUICK_HOME
  2245. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2246. if(home_x && home_y) //first diagonal move
  2247. {
  2248. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2249. int x_axis_home_dir = home_dir(X_AXIS);
  2250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2251. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2252. feedrate = homing_feedrate[X_AXIS];
  2253. if(homing_feedrate[Y_AXIS]<feedrate)
  2254. feedrate = homing_feedrate[Y_AXIS];
  2255. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2256. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2257. } else {
  2258. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2259. }
  2260. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2261. st_synchronize();
  2262. axis_is_at_home(X_AXIS);
  2263. axis_is_at_home(Y_AXIS);
  2264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2265. destination[X_AXIS] = current_position[X_AXIS];
  2266. destination[Y_AXIS] = current_position[Y_AXIS];
  2267. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2268. feedrate = 0.0;
  2269. st_synchronize();
  2270. endstops_hit_on_purpose();
  2271. current_position[X_AXIS] = destination[X_AXIS];
  2272. current_position[Y_AXIS] = destination[Y_AXIS];
  2273. current_position[Z_AXIS] = destination[Z_AXIS];
  2274. }
  2275. #endif /* QUICK_HOME */
  2276. #ifdef TMC2130
  2277. if(home_x)
  2278. {
  2279. if (!calib)
  2280. homeaxis(X_AXIS);
  2281. else
  2282. tmc2130_home_calibrate(X_AXIS);
  2283. }
  2284. if(home_y)
  2285. {
  2286. if (!calib)
  2287. homeaxis(Y_AXIS);
  2288. else
  2289. tmc2130_home_calibrate(Y_AXIS);
  2290. }
  2291. #endif //TMC2130
  2292. if(home_x_axis && home_x_value != 0)
  2293. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2294. if(home_y_axis && home_y_value != 0)
  2295. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2296. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2297. #ifndef Z_SAFE_HOMING
  2298. if(home_z) {
  2299. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2300. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2301. feedrate = max_feedrate[Z_AXIS];
  2302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2303. st_synchronize();
  2304. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2305. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2306. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2307. {
  2308. homeaxis(X_AXIS);
  2309. homeaxis(Y_AXIS);
  2310. }
  2311. // 1st mesh bed leveling measurement point, corrected.
  2312. world2machine_initialize();
  2313. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2314. world2machine_reset();
  2315. if (destination[Y_AXIS] < Y_MIN_POS)
  2316. destination[Y_AXIS] = Y_MIN_POS;
  2317. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2318. feedrate = homing_feedrate[Z_AXIS]/10;
  2319. current_position[Z_AXIS] = 0;
  2320. enable_endstops(false);
  2321. #ifdef DEBUG_BUILD
  2322. SERIAL_ECHOLNPGM("plan_set_position()");
  2323. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2324. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2325. #endif
  2326. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2327. #ifdef DEBUG_BUILD
  2328. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2329. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2330. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2331. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2332. #endif
  2333. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2334. st_synchronize();
  2335. current_position[X_AXIS] = destination[X_AXIS];
  2336. current_position[Y_AXIS] = destination[Y_AXIS];
  2337. enable_endstops(true);
  2338. endstops_hit_on_purpose();
  2339. homeaxis(Z_AXIS);
  2340. #else // MESH_BED_LEVELING
  2341. homeaxis(Z_AXIS);
  2342. #endif // MESH_BED_LEVELING
  2343. }
  2344. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2345. if(home_all_axes) {
  2346. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2347. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2348. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2349. feedrate = XY_TRAVEL_SPEED/60;
  2350. current_position[Z_AXIS] = 0;
  2351. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2352. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2353. st_synchronize();
  2354. current_position[X_AXIS] = destination[X_AXIS];
  2355. current_position[Y_AXIS] = destination[Y_AXIS];
  2356. homeaxis(Z_AXIS);
  2357. }
  2358. // Let's see if X and Y are homed and probe is inside bed area.
  2359. if(home_z) {
  2360. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2361. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2362. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2363. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2364. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2365. current_position[Z_AXIS] = 0;
  2366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2367. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2368. feedrate = max_feedrate[Z_AXIS];
  2369. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2370. st_synchronize();
  2371. homeaxis(Z_AXIS);
  2372. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2373. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2374. SERIAL_ECHO_START;
  2375. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2376. } else {
  2377. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2378. SERIAL_ECHO_START;
  2379. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2380. }
  2381. }
  2382. #endif // Z_SAFE_HOMING
  2383. #endif // Z_HOME_DIR < 0
  2384. if(home_z_axis && home_z_value != 0)
  2385. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2386. #ifdef ENABLE_AUTO_BED_LEVELING
  2387. if(home_z)
  2388. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2389. #endif
  2390. // Set the planner and stepper routine positions.
  2391. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2392. // contains the machine coordinates.
  2393. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2394. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2395. enable_endstops(false);
  2396. #endif
  2397. feedrate = saved_feedrate;
  2398. feedmultiply = saved_feedmultiply;
  2399. previous_millis_cmd = millis();
  2400. endstops_hit_on_purpose();
  2401. #ifndef MESH_BED_LEVELING
  2402. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2403. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2404. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2405. lcd_adjust_z();
  2406. #endif
  2407. // Load the machine correction matrix
  2408. world2machine_initialize();
  2409. // and correct the current_position XY axes to match the transformed coordinate system.
  2410. world2machine_update_current();
  2411. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2412. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2413. {
  2414. if (! home_z && mbl_was_active) {
  2415. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2416. mbl.active = true;
  2417. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2418. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2419. }
  2420. }
  2421. else
  2422. {
  2423. st_synchronize();
  2424. homing_flag = false;
  2425. }
  2426. #endif
  2427. if (farm_mode) { prusa_statistics(20); };
  2428. homing_flag = false;
  2429. #if 0
  2430. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2431. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2432. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2433. #endif
  2434. }
  2435. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2436. {
  2437. bool final_result = false;
  2438. #ifdef TMC2130
  2439. FORCE_HIGH_POWER_START;
  2440. #endif // TMC2130
  2441. // Only Z calibration?
  2442. if (!onlyZ)
  2443. {
  2444. setTargetBed(0);
  2445. setAllTargetHotends(0);
  2446. adjust_bed_reset(); //reset bed level correction
  2447. }
  2448. // Disable the default update procedure of the display. We will do a modal dialog.
  2449. lcd_update_enable(false);
  2450. // Let the planner use the uncorrected coordinates.
  2451. mbl.reset();
  2452. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2453. // the planner will not perform any adjustments in the XY plane.
  2454. // Wait for the motors to stop and update the current position with the absolute values.
  2455. world2machine_revert_to_uncorrected();
  2456. // Reset the baby step value applied without moving the axes.
  2457. babystep_reset();
  2458. // Mark all axes as in a need for homing.
  2459. memset(axis_known_position, 0, sizeof(axis_known_position));
  2460. // Home in the XY plane.
  2461. //set_destination_to_current();
  2462. setup_for_endstop_move();
  2463. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2464. home_xy();
  2465. enable_endstops(false);
  2466. current_position[X_AXIS] += 5;
  2467. current_position[Y_AXIS] += 5;
  2468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2469. st_synchronize();
  2470. // Let the user move the Z axes up to the end stoppers.
  2471. #ifdef TMC2130
  2472. if (calibrate_z_auto())
  2473. {
  2474. #else //TMC2130
  2475. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2476. {
  2477. #endif //TMC2130
  2478. refresh_cmd_timeout();
  2479. #ifndef STEEL_SHEET
  2480. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2481. {
  2482. lcd_wait_for_cool_down();
  2483. }
  2484. #endif //STEEL_SHEET
  2485. if(!onlyZ)
  2486. {
  2487. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2488. #ifdef STEEL_SHEET
  2489. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2490. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2491. #endif //STEEL_SHEET
  2492. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2493. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2494. KEEPALIVE_STATE(IN_HANDLER);
  2495. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2496. lcd_set_cursor(0, 2);
  2497. lcd_print(1);
  2498. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2499. }
  2500. // Move the print head close to the bed.
  2501. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2502. bool endstops_enabled = enable_endstops(true);
  2503. #ifdef TMC2130
  2504. tmc2130_home_enter(Z_AXIS_MASK);
  2505. #endif //TMC2130
  2506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2507. st_synchronize();
  2508. #ifdef TMC2130
  2509. tmc2130_home_exit();
  2510. #endif //TMC2130
  2511. enable_endstops(endstops_enabled);
  2512. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2513. {
  2514. int8_t verbosity_level = 0;
  2515. if (code_seen('V'))
  2516. {
  2517. // Just 'V' without a number counts as V1.
  2518. char c = strchr_pointer[1];
  2519. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2520. }
  2521. if (onlyZ)
  2522. {
  2523. clean_up_after_endstop_move();
  2524. // Z only calibration.
  2525. // Load the machine correction matrix
  2526. world2machine_initialize();
  2527. // and correct the current_position to match the transformed coordinate system.
  2528. world2machine_update_current();
  2529. //FIXME
  2530. bool result = sample_mesh_and_store_reference();
  2531. if (result)
  2532. {
  2533. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2534. // Shipped, the nozzle height has been set already. The user can start printing now.
  2535. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2536. final_result = true;
  2537. // babystep_apply();
  2538. }
  2539. }
  2540. else
  2541. {
  2542. // Reset the baby step value and the baby step applied flag.
  2543. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2544. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2545. // Complete XYZ calibration.
  2546. uint8_t point_too_far_mask = 0;
  2547. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2548. clean_up_after_endstop_move();
  2549. // Print head up.
  2550. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2552. st_synchronize();
  2553. //#ifndef NEW_XYZCAL
  2554. if (result >= 0)
  2555. {
  2556. #ifdef HEATBED_V2
  2557. sample_z();
  2558. #else //HEATBED_V2
  2559. point_too_far_mask = 0;
  2560. // Second half: The fine adjustment.
  2561. // Let the planner use the uncorrected coordinates.
  2562. mbl.reset();
  2563. world2machine_reset();
  2564. // Home in the XY plane.
  2565. setup_for_endstop_move();
  2566. home_xy();
  2567. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2568. clean_up_after_endstop_move();
  2569. // Print head up.
  2570. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2572. st_synchronize();
  2573. // if (result >= 0) babystep_apply();
  2574. #endif //HEATBED_V2
  2575. }
  2576. //#endif //NEW_XYZCAL
  2577. lcd_update_enable(true);
  2578. lcd_update(2);
  2579. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2580. if (result >= 0)
  2581. {
  2582. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2583. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2584. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2585. final_result = true;
  2586. }
  2587. }
  2588. #ifdef TMC2130
  2589. tmc2130_home_exit();
  2590. #endif
  2591. }
  2592. else
  2593. {
  2594. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2595. final_result = false;
  2596. }
  2597. }
  2598. else
  2599. {
  2600. // Timeouted.
  2601. }
  2602. lcd_update_enable(true);
  2603. #ifdef TMC2130
  2604. FORCE_HIGH_POWER_END;
  2605. #endif // TMC2130
  2606. return final_result;
  2607. }
  2608. void gcode_M114()
  2609. {
  2610. SERIAL_PROTOCOLPGM("X:");
  2611. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2612. SERIAL_PROTOCOLPGM(" Y:");
  2613. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2614. SERIAL_PROTOCOLPGM(" Z:");
  2615. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2616. SERIAL_PROTOCOLPGM(" E:");
  2617. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2618. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2619. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2620. SERIAL_PROTOCOLPGM(" Y:");
  2621. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2622. SERIAL_PROTOCOLPGM(" Z:");
  2623. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2624. SERIAL_PROTOCOLPGM(" E:");
  2625. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2626. SERIAL_PROTOCOLLN("");
  2627. }
  2628. void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float e_shift_late) {
  2629. st_synchronize();
  2630. float lastpos[4];
  2631. if (farm_mode)
  2632. {
  2633. prusa_statistics(22);
  2634. }
  2635. //First backup current position and settings
  2636. feedmultiplyBckp=feedmultiply;
  2637. HotendTempBckp = degTargetHotend(active_extruder);
  2638. fanSpeedBckp = fanSpeed;
  2639. lastpos[X_AXIS]=current_position[X_AXIS];
  2640. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2641. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2642. lastpos[E_AXIS]=current_position[E_AXIS];
  2643. //Retract E
  2644. current_position[E_AXIS]+= e_shift;
  2645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2646. st_synchronize();
  2647. //Lift Z
  2648. current_position[Z_AXIS]+= z_shift;
  2649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2650. st_synchronize();
  2651. //Move XY to side
  2652. current_position[X_AXIS]= x_position;
  2653. current_position[Y_AXIS]= y_position;
  2654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2655. st_synchronize();
  2656. //Beep, manage nozzle heater and wait for user to start unload filament
  2657. if(!automatic) M600_wait_for_user();
  2658. lcd_change_fil_state = 0;
  2659. // Unload filament
  2660. if (mmu_enabled)
  2661. extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2662. else
  2663. unload_filament(); //unload filament for single material (used also in M702)
  2664. //finish moves
  2665. st_synchronize();
  2666. if (!mmu_enabled)
  2667. {
  2668. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2669. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2670. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2671. lcd_update_enable(true);
  2672. }
  2673. if (mmu_enabled)
  2674. mmu_M600_load_filament(automatic);
  2675. else
  2676. M600_load_filament();
  2677. if(!automatic) M600_check_state();
  2678. //Not let's go back to print
  2679. fanSpeed = fanSpeedBckp;
  2680. //Feed a little of filament to stabilize pressure
  2681. if (!automatic) {
  2682. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2684. }
  2685. //Move XY back
  2686. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2687. st_synchronize();
  2688. //Move Z back
  2689. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2690. st_synchronize();
  2691. //Unretract
  2692. current_position[E_AXIS]= current_position[E_AXIS] - e_shift;
  2693. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2694. st_synchronize();
  2695. //Set E position to original
  2696. plan_set_e_position(lastpos[E_AXIS]);
  2697. memcpy(current_position, lastpos, sizeof(lastpos));
  2698. memcpy(destination, current_position, sizeof(current_position));
  2699. //Recover feed rate
  2700. feedmultiply=feedmultiplyBckp;
  2701. char cmd[9];
  2702. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2703. enquecommand(cmd);
  2704. lcd_setstatuspgm(_T(WELCOME_MSG));
  2705. custom_message = false;
  2706. custom_message_type = 0;
  2707. }
  2708. void gcode_M701()
  2709. {
  2710. printf_P(PSTR("gcode_M701 begin\n"));
  2711. if (mmu_enabled)
  2712. extr_adj(mmu_extruder);//loads current extruder
  2713. else
  2714. {
  2715. enable_z();
  2716. custom_message = true;
  2717. custom_message_type = 2;
  2718. #ifdef FILAMENT_SENSOR
  2719. fsensor_oq_meassure_start(40);
  2720. #endif //FILAMENT_SENSOR
  2721. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2722. current_position[E_AXIS] += 40;
  2723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2724. st_synchronize();
  2725. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2726. current_position[E_AXIS] += 30;
  2727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2728. st_synchronize();
  2729. current_position[E_AXIS] += 25;
  2730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2731. st_synchronize();
  2732. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2733. delay_keep_alive(50);
  2734. noTone(BEEPER);
  2735. if (!farm_mode && loading_flag) {
  2736. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2737. while (!clean) {
  2738. lcd_update_enable(true);
  2739. lcd_update(2);
  2740. current_position[E_AXIS] += 25;
  2741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2742. st_synchronize();
  2743. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2744. }
  2745. }
  2746. lcd_update_enable(true);
  2747. lcd_update(2);
  2748. lcd_setstatuspgm(_T(WELCOME_MSG));
  2749. disable_z();
  2750. loading_flag = false;
  2751. custom_message = false;
  2752. custom_message_type = 0;
  2753. #ifdef FILAMENT_SENSOR
  2754. fsensor_oq_meassure_stop();
  2755. if (!fsensor_oq_result())
  2756. {
  2757. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2758. lcd_update_enable(true);
  2759. lcd_update(2);
  2760. if (disable)
  2761. fsensor_disable();
  2762. }
  2763. #endif //FILAMENT_SENSOR
  2764. }
  2765. }
  2766. /**
  2767. * @brief Get serial number from 32U2 processor
  2768. *
  2769. * Typical format of S/N is:CZPX0917X003XC13518
  2770. *
  2771. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2772. *
  2773. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2774. * reply is transmitted to serial port 1 character by character.
  2775. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2776. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2777. * in any case.
  2778. */
  2779. static void gcode_PRUSA_SN()
  2780. {
  2781. if (farm_mode) {
  2782. selectedSerialPort = 0;
  2783. putchar(';');
  2784. putchar('S');
  2785. int numbersRead = 0;
  2786. ShortTimer timeout;
  2787. timeout.start();
  2788. while (numbersRead < 19) {
  2789. while (MSerial.available() > 0) {
  2790. uint8_t serial_char = MSerial.read();
  2791. selectedSerialPort = 1;
  2792. putchar(serial_char);
  2793. numbersRead++;
  2794. selectedSerialPort = 0;
  2795. }
  2796. if (timeout.expired(100u)) break;
  2797. }
  2798. selectedSerialPort = 1;
  2799. putchar('\n');
  2800. #if 0
  2801. for (int b = 0; b < 3; b++) {
  2802. tone(BEEPER, 110);
  2803. delay(50);
  2804. noTone(BEEPER);
  2805. delay(50);
  2806. }
  2807. #endif
  2808. } else {
  2809. puts_P(_N("Not in farm mode."));
  2810. }
  2811. }
  2812. #ifdef BACKLASH_X
  2813. extern uint8_t st_backlash_x;
  2814. #endif //BACKLASH_X
  2815. #ifdef BACKLASH_Y
  2816. extern uint8_t st_backlash_y;
  2817. #endif //BACKLASH_Y
  2818. void process_commands()
  2819. {
  2820. if (!buflen) return; //empty command
  2821. #ifdef FILAMENT_RUNOUT_SUPPORT
  2822. SET_INPUT(FR_SENS);
  2823. #endif
  2824. #ifdef CMDBUFFER_DEBUG
  2825. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2826. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2827. SERIAL_ECHOLNPGM("");
  2828. SERIAL_ECHOPGM("In cmdqueue: ");
  2829. SERIAL_ECHO(buflen);
  2830. SERIAL_ECHOLNPGM("");
  2831. #endif /* CMDBUFFER_DEBUG */
  2832. unsigned long codenum; //throw away variable
  2833. char *starpos = NULL;
  2834. #ifdef ENABLE_AUTO_BED_LEVELING
  2835. float x_tmp, y_tmp, z_tmp, real_z;
  2836. #endif
  2837. // PRUSA GCODES
  2838. KEEPALIVE_STATE(IN_HANDLER);
  2839. #ifdef SNMM
  2840. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2841. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2842. int8_t SilentMode;
  2843. #endif
  2844. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2845. starpos = (strchr(strchr_pointer + 5, '*'));
  2846. if (starpos != NULL)
  2847. *(starpos) = '\0';
  2848. lcd_setstatus(strchr_pointer + 5);
  2849. }
  2850. #ifdef TMC2130
  2851. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2852. {
  2853. if(code_seen("CRASH_DETECTED"))
  2854. {
  2855. uint8_t mask = 0;
  2856. if (code_seen('X')) mask |= X_AXIS_MASK;
  2857. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2858. crashdet_detected(mask);
  2859. }
  2860. else if(code_seen("CRASH_RECOVER"))
  2861. crashdet_recover();
  2862. else if(code_seen("CRASH_CANCEL"))
  2863. crashdet_cancel();
  2864. }
  2865. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2866. {
  2867. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2868. {
  2869. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2870. axis = (axis == 'E')?3:(axis - 'X');
  2871. if (axis < 4)
  2872. {
  2873. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2874. tmc2130_set_wave(axis, 247, fac);
  2875. }
  2876. }
  2877. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2878. {
  2879. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2880. axis = (axis == 'E')?3:(axis - 'X');
  2881. if (axis < 4)
  2882. {
  2883. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2884. uint16_t res = tmc2130_get_res(axis);
  2885. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2886. }
  2887. }
  2888. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2889. {
  2890. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2891. axis = (axis == 'E')?3:(axis - 'X');
  2892. if (axis < 4)
  2893. {
  2894. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2895. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2896. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2897. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2898. char* str_end = 0;
  2899. if (CMDBUFFER_CURRENT_STRING[14])
  2900. {
  2901. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2902. if (str_end && *str_end)
  2903. {
  2904. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2905. if (str_end && *str_end)
  2906. {
  2907. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2908. if (str_end && *str_end)
  2909. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2910. }
  2911. }
  2912. }
  2913. tmc2130_chopper_config[axis].toff = chop0;
  2914. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2915. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2916. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2917. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2918. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2919. }
  2920. }
  2921. }
  2922. #ifdef BACKLASH_X
  2923. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2924. {
  2925. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2926. st_backlash_x = bl;
  2927. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2928. }
  2929. #endif //BACKLASH_X
  2930. #ifdef BACKLASH_Y
  2931. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2932. {
  2933. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2934. st_backlash_y = bl;
  2935. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2936. }
  2937. #endif //BACKLASH_Y
  2938. #endif //TMC2130
  2939. else if(code_seen("PRUSA")){
  2940. if (code_seen("Ping")) { //PRUSA Ping
  2941. if (farm_mode) {
  2942. PingTime = millis();
  2943. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2944. }
  2945. }
  2946. else if (code_seen("PRN")) {
  2947. printf_P(_N("%d"), status_number);
  2948. }else if (code_seen("FAN")) {
  2949. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2950. }else if (code_seen("fn")) {
  2951. if (farm_mode) {
  2952. printf_P(_N("%d"), farm_no);
  2953. }
  2954. else {
  2955. puts_P(_N("Not in farm mode."));
  2956. }
  2957. }
  2958. else if (code_seen("thx"))
  2959. {
  2960. no_response = false;
  2961. }
  2962. else if (code_seen("uvlo"))
  2963. {
  2964. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2965. enquecommand_P(PSTR("M24"));
  2966. }
  2967. else if (code_seen("MMURES"))
  2968. {
  2969. mmu_reset();
  2970. }
  2971. else if (code_seen("RESET")) {
  2972. // careful!
  2973. if (farm_mode) {
  2974. #ifdef WATCHDOG
  2975. boot_app_magic = BOOT_APP_MAGIC;
  2976. boot_app_flags = BOOT_APP_FLG_RUN;
  2977. wdt_enable(WDTO_15MS);
  2978. cli();
  2979. while(1);
  2980. #else //WATCHDOG
  2981. asm volatile("jmp 0x3E000");
  2982. #endif //WATCHDOG
  2983. }
  2984. else {
  2985. MYSERIAL.println("Not in farm mode.");
  2986. }
  2987. }else if (code_seen("fv")) {
  2988. // get file version
  2989. #ifdef SDSUPPORT
  2990. card.openFile(strchr_pointer + 3,true);
  2991. while (true) {
  2992. uint16_t readByte = card.get();
  2993. MYSERIAL.write(readByte);
  2994. if (readByte=='\n') {
  2995. break;
  2996. }
  2997. }
  2998. card.closefile();
  2999. #endif // SDSUPPORT
  3000. } else if (code_seen("M28")) {
  3001. trace();
  3002. prusa_sd_card_upload = true;
  3003. card.openFile(strchr_pointer+4,false);
  3004. } else if (code_seen("SN")) {
  3005. gcode_PRUSA_SN();
  3006. } else if(code_seen("Fir")){
  3007. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3008. } else if(code_seen("Rev")){
  3009. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3010. } else if(code_seen("Lang")) {
  3011. lang_reset();
  3012. } else if(code_seen("Lz")) {
  3013. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3014. } else if(code_seen("Beat")) {
  3015. // Kick farm link timer
  3016. kicktime = millis();
  3017. } else if(code_seen("FR")) {
  3018. // Factory full reset
  3019. factory_reset(0,true);
  3020. }
  3021. //else if (code_seen('Cal')) {
  3022. // lcd_calibration();
  3023. // }
  3024. }
  3025. else if (code_seen('^')) {
  3026. // nothing, this is a version line
  3027. } else if(code_seen('G'))
  3028. {
  3029. gcode_in_progress = (int)code_value();
  3030. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3031. switch (gcode_in_progress)
  3032. {
  3033. case 0: // G0 -> G1
  3034. case 1: // G1
  3035. if(Stopped == false) {
  3036. #ifdef FILAMENT_RUNOUT_SUPPORT
  3037. if(READ(FR_SENS)){
  3038. feedmultiplyBckp=feedmultiply;
  3039. float target[4];
  3040. float lastpos[4];
  3041. target[X_AXIS]=current_position[X_AXIS];
  3042. target[Y_AXIS]=current_position[Y_AXIS];
  3043. target[Z_AXIS]=current_position[Z_AXIS];
  3044. target[E_AXIS]=current_position[E_AXIS];
  3045. lastpos[X_AXIS]=current_position[X_AXIS];
  3046. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3047. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3048. lastpos[E_AXIS]=current_position[E_AXIS];
  3049. //retract by E
  3050. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3051. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3052. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3054. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3055. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3057. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3059. //finish moves
  3060. st_synchronize();
  3061. //disable extruder steppers so filament can be removed
  3062. disable_e0();
  3063. disable_e1();
  3064. disable_e2();
  3065. delay(100);
  3066. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3067. uint8_t cnt=0;
  3068. int counterBeep = 0;
  3069. lcd_wait_interact();
  3070. while(!lcd_clicked()){
  3071. cnt++;
  3072. manage_heater();
  3073. manage_inactivity(true);
  3074. //lcd_update(0);
  3075. if(cnt==0)
  3076. {
  3077. #if BEEPER > 0
  3078. if (counterBeep== 500){
  3079. counterBeep = 0;
  3080. }
  3081. SET_OUTPUT(BEEPER);
  3082. if (counterBeep== 0){
  3083. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3084. WRITE(BEEPER,HIGH);
  3085. }
  3086. if (counterBeep== 20){
  3087. WRITE(BEEPER,LOW);
  3088. }
  3089. counterBeep++;
  3090. #else
  3091. #endif
  3092. }
  3093. }
  3094. WRITE(BEEPER,LOW);
  3095. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3096. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3097. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3098. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3099. lcd_change_fil_state = 0;
  3100. lcd_loading_filament();
  3101. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3102. lcd_change_fil_state = 0;
  3103. lcd_alright();
  3104. switch(lcd_change_fil_state){
  3105. case 2:
  3106. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3107. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3108. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3109. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3110. lcd_loading_filament();
  3111. break;
  3112. case 3:
  3113. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3114. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3115. lcd_loading_color();
  3116. break;
  3117. default:
  3118. lcd_change_success();
  3119. break;
  3120. }
  3121. }
  3122. target[E_AXIS]+= 5;
  3123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3124. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3126. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3127. //plan_set_e_position(current_position[E_AXIS]);
  3128. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3129. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3130. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3131. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3132. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3133. plan_set_e_position(lastpos[E_AXIS]);
  3134. feedmultiply=feedmultiplyBckp;
  3135. char cmd[9];
  3136. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3137. enquecommand(cmd);
  3138. }
  3139. #endif
  3140. get_coordinates(); // For X Y Z E F
  3141. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3142. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3143. }
  3144. #ifdef FWRETRACT
  3145. if(autoretract_enabled)
  3146. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3147. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3148. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3149. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3150. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3151. retract(!retracted[active_extruder]);
  3152. return;
  3153. }
  3154. }
  3155. #endif //FWRETRACT
  3156. prepare_move();
  3157. //ClearToSend();
  3158. }
  3159. break;
  3160. case 2: // G2 - CW ARC
  3161. if(Stopped == false) {
  3162. get_arc_coordinates();
  3163. prepare_arc_move(true);
  3164. }
  3165. break;
  3166. case 3: // G3 - CCW ARC
  3167. if(Stopped == false) {
  3168. get_arc_coordinates();
  3169. prepare_arc_move(false);
  3170. }
  3171. break;
  3172. case 4: // G4 dwell
  3173. codenum = 0;
  3174. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3175. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3176. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3177. st_synchronize();
  3178. codenum += millis(); // keep track of when we started waiting
  3179. previous_millis_cmd = millis();
  3180. while(millis() < codenum) {
  3181. manage_heater();
  3182. manage_inactivity();
  3183. lcd_update(0);
  3184. }
  3185. break;
  3186. #ifdef FWRETRACT
  3187. case 10: // G10 retract
  3188. #if EXTRUDERS > 1
  3189. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3190. retract(true,retracted_swap[active_extruder]);
  3191. #else
  3192. retract(true);
  3193. #endif
  3194. break;
  3195. case 11: // G11 retract_recover
  3196. #if EXTRUDERS > 1
  3197. retract(false,retracted_swap[active_extruder]);
  3198. #else
  3199. retract(false);
  3200. #endif
  3201. break;
  3202. #endif //FWRETRACT
  3203. case 28: //G28 Home all Axis one at a time
  3204. {
  3205. long home_x_value = 0;
  3206. long home_y_value = 0;
  3207. long home_z_value = 0;
  3208. // Which axes should be homed?
  3209. bool home_x = code_seen(axis_codes[X_AXIS]);
  3210. home_x_value = code_value_long();
  3211. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3212. home_y_value = code_value_long();
  3213. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3214. home_z_value = code_value_long();
  3215. bool without_mbl = code_seen('W');
  3216. // calibrate?
  3217. bool calib = code_seen('C');
  3218. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3219. if ((home_x || home_y || without_mbl || home_z) == false) {
  3220. // Push the commands to the front of the message queue in the reverse order!
  3221. // There shall be always enough space reserved for these commands.
  3222. goto case_G80;
  3223. }
  3224. break;
  3225. }
  3226. #ifdef ENABLE_AUTO_BED_LEVELING
  3227. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3228. {
  3229. #if Z_MIN_PIN == -1
  3230. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3231. #endif
  3232. // Prevent user from running a G29 without first homing in X and Y
  3233. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3234. {
  3235. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3236. SERIAL_ECHO_START;
  3237. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3238. break; // abort G29, since we don't know where we are
  3239. }
  3240. st_synchronize();
  3241. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3242. //vector_3 corrected_position = plan_get_position_mm();
  3243. //corrected_position.debug("position before G29");
  3244. plan_bed_level_matrix.set_to_identity();
  3245. vector_3 uncorrected_position = plan_get_position();
  3246. //uncorrected_position.debug("position durring G29");
  3247. current_position[X_AXIS] = uncorrected_position.x;
  3248. current_position[Y_AXIS] = uncorrected_position.y;
  3249. current_position[Z_AXIS] = uncorrected_position.z;
  3250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3251. setup_for_endstop_move();
  3252. feedrate = homing_feedrate[Z_AXIS];
  3253. #ifdef AUTO_BED_LEVELING_GRID
  3254. // probe at the points of a lattice grid
  3255. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3256. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3257. // solve the plane equation ax + by + d = z
  3258. // A is the matrix with rows [x y 1] for all the probed points
  3259. // B is the vector of the Z positions
  3260. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3261. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3262. // "A" matrix of the linear system of equations
  3263. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3264. // "B" vector of Z points
  3265. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3266. int probePointCounter = 0;
  3267. bool zig = true;
  3268. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3269. {
  3270. int xProbe, xInc;
  3271. if (zig)
  3272. {
  3273. xProbe = LEFT_PROBE_BED_POSITION;
  3274. //xEnd = RIGHT_PROBE_BED_POSITION;
  3275. xInc = xGridSpacing;
  3276. zig = false;
  3277. } else // zag
  3278. {
  3279. xProbe = RIGHT_PROBE_BED_POSITION;
  3280. //xEnd = LEFT_PROBE_BED_POSITION;
  3281. xInc = -xGridSpacing;
  3282. zig = true;
  3283. }
  3284. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3285. {
  3286. float z_before;
  3287. if (probePointCounter == 0)
  3288. {
  3289. // raise before probing
  3290. z_before = Z_RAISE_BEFORE_PROBING;
  3291. } else
  3292. {
  3293. // raise extruder
  3294. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3295. }
  3296. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3297. eqnBVector[probePointCounter] = measured_z;
  3298. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3299. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3300. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3301. probePointCounter++;
  3302. xProbe += xInc;
  3303. }
  3304. }
  3305. clean_up_after_endstop_move();
  3306. // solve lsq problem
  3307. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3308. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3309. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3310. SERIAL_PROTOCOLPGM(" b: ");
  3311. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3312. SERIAL_PROTOCOLPGM(" d: ");
  3313. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3314. set_bed_level_equation_lsq(plane_equation_coefficients);
  3315. free(plane_equation_coefficients);
  3316. #else // AUTO_BED_LEVELING_GRID not defined
  3317. // Probe at 3 arbitrary points
  3318. // probe 1
  3319. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3320. // probe 2
  3321. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3322. // probe 3
  3323. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3324. clean_up_after_endstop_move();
  3325. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3326. #endif // AUTO_BED_LEVELING_GRID
  3327. st_synchronize();
  3328. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3329. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3330. // When the bed is uneven, this height must be corrected.
  3331. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3332. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3333. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3334. z_tmp = current_position[Z_AXIS];
  3335. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3336. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3338. }
  3339. break;
  3340. #ifndef Z_PROBE_SLED
  3341. case 30: // G30 Single Z Probe
  3342. {
  3343. st_synchronize();
  3344. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3345. setup_for_endstop_move();
  3346. feedrate = homing_feedrate[Z_AXIS];
  3347. run_z_probe();
  3348. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3349. SERIAL_PROTOCOLPGM(" X: ");
  3350. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3351. SERIAL_PROTOCOLPGM(" Y: ");
  3352. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3353. SERIAL_PROTOCOLPGM(" Z: ");
  3354. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3355. SERIAL_PROTOCOLPGM("\n");
  3356. clean_up_after_endstop_move();
  3357. }
  3358. break;
  3359. #else
  3360. case 31: // dock the sled
  3361. dock_sled(true);
  3362. break;
  3363. case 32: // undock the sled
  3364. dock_sled(false);
  3365. break;
  3366. #endif // Z_PROBE_SLED
  3367. #endif // ENABLE_AUTO_BED_LEVELING
  3368. #ifdef MESH_BED_LEVELING
  3369. case 30: // G30 Single Z Probe
  3370. {
  3371. st_synchronize();
  3372. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3373. setup_for_endstop_move();
  3374. feedrate = homing_feedrate[Z_AXIS];
  3375. find_bed_induction_sensor_point_z(-10.f, 3);
  3376. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3377. clean_up_after_endstop_move();
  3378. }
  3379. break;
  3380. case 75:
  3381. {
  3382. for (int i = 40; i <= 110; i++)
  3383. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3384. }
  3385. break;
  3386. case 76: //PINDA probe temperature calibration
  3387. {
  3388. #ifdef PINDA_THERMISTOR
  3389. if (true)
  3390. {
  3391. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3392. //we need to know accurate position of first calibration point
  3393. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3394. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3395. break;
  3396. }
  3397. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3398. {
  3399. // We don't know where we are! HOME!
  3400. // Push the commands to the front of the message queue in the reverse order!
  3401. // There shall be always enough space reserved for these commands.
  3402. repeatcommand_front(); // repeat G76 with all its parameters
  3403. enquecommand_front_P((PSTR("G28 W0")));
  3404. break;
  3405. }
  3406. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3407. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3408. if (result)
  3409. {
  3410. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3412. current_position[Z_AXIS] = 50;
  3413. current_position[Y_AXIS] = 180;
  3414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3415. st_synchronize();
  3416. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3417. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3418. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3419. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3420. st_synchronize();
  3421. gcode_G28(false, false, true);
  3422. }
  3423. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3424. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3425. current_position[Z_AXIS] = 100;
  3426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3427. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3428. lcd_temp_cal_show_result(false);
  3429. break;
  3430. }
  3431. }
  3432. lcd_update_enable(true);
  3433. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3434. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3435. float zero_z;
  3436. int z_shift = 0; //unit: steps
  3437. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3438. if (start_temp < 35) start_temp = 35;
  3439. if (start_temp < current_temperature_pinda) start_temp += 5;
  3440. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3441. // setTargetHotend(200, 0);
  3442. setTargetBed(70 + (start_temp - 30));
  3443. custom_message = true;
  3444. custom_message_type = 4;
  3445. custom_message_state = 1;
  3446. custom_message = _T(MSG_TEMP_CALIBRATION);
  3447. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3449. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3450. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3452. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3454. st_synchronize();
  3455. while (current_temperature_pinda < start_temp)
  3456. {
  3457. delay_keep_alive(1000);
  3458. serialecho_temperatures();
  3459. }
  3460. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3461. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3463. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3464. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3465. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3466. st_synchronize();
  3467. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3468. if (find_z_result == false) {
  3469. lcd_temp_cal_show_result(find_z_result);
  3470. break;
  3471. }
  3472. zero_z = current_position[Z_AXIS];
  3473. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3474. int i = -1; for (; i < 5; i++)
  3475. {
  3476. float temp = (40 + i * 5);
  3477. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3478. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3479. if (start_temp <= temp) break;
  3480. }
  3481. for (i++; i < 5; i++)
  3482. {
  3483. float temp = (40 + i * 5);
  3484. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3485. custom_message_state = i + 2;
  3486. setTargetBed(50 + 10 * (temp - 30) / 5);
  3487. // setTargetHotend(255, 0);
  3488. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3489. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3490. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3491. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3493. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3495. st_synchronize();
  3496. while (current_temperature_pinda < temp)
  3497. {
  3498. delay_keep_alive(1000);
  3499. serialecho_temperatures();
  3500. }
  3501. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3503. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3504. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3506. st_synchronize();
  3507. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3508. if (find_z_result == false) {
  3509. lcd_temp_cal_show_result(find_z_result);
  3510. break;
  3511. }
  3512. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3513. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3514. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3515. }
  3516. lcd_temp_cal_show_result(true);
  3517. break;
  3518. }
  3519. #endif //PINDA_THERMISTOR
  3520. setTargetBed(PINDA_MIN_T);
  3521. float zero_z;
  3522. int z_shift = 0; //unit: steps
  3523. int t_c; // temperature
  3524. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3525. // We don't know where we are! HOME!
  3526. // Push the commands to the front of the message queue in the reverse order!
  3527. // There shall be always enough space reserved for these commands.
  3528. repeatcommand_front(); // repeat G76 with all its parameters
  3529. enquecommand_front_P((PSTR("G28 W0")));
  3530. break;
  3531. }
  3532. puts_P(_N("PINDA probe calibration start"));
  3533. custom_message = true;
  3534. custom_message_type = 4;
  3535. custom_message_state = 1;
  3536. custom_message = _T(MSG_TEMP_CALIBRATION);
  3537. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3538. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3539. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3541. st_synchronize();
  3542. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3543. delay_keep_alive(1000);
  3544. serialecho_temperatures();
  3545. }
  3546. //enquecommand_P(PSTR("M190 S50"));
  3547. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3548. delay_keep_alive(1000);
  3549. serialecho_temperatures();
  3550. }
  3551. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3552. current_position[Z_AXIS] = 5;
  3553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3554. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3555. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3557. st_synchronize();
  3558. find_bed_induction_sensor_point_z(-1.f);
  3559. zero_z = current_position[Z_AXIS];
  3560. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3561. for (int i = 0; i<5; i++) {
  3562. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3563. custom_message_state = i + 2;
  3564. t_c = 60 + i * 10;
  3565. setTargetBed(t_c);
  3566. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3567. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3568. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3570. st_synchronize();
  3571. while (degBed() < t_c) {
  3572. delay_keep_alive(1000);
  3573. serialecho_temperatures();
  3574. }
  3575. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3576. delay_keep_alive(1000);
  3577. serialecho_temperatures();
  3578. }
  3579. current_position[Z_AXIS] = 5;
  3580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3581. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3582. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3584. st_synchronize();
  3585. find_bed_induction_sensor_point_z(-1.f);
  3586. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3587. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3588. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3589. }
  3590. custom_message_type = 0;
  3591. custom_message = false;
  3592. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3593. puts_P(_N("Temperature calibration done."));
  3594. disable_x();
  3595. disable_y();
  3596. disable_z();
  3597. disable_e0();
  3598. disable_e1();
  3599. disable_e2();
  3600. setTargetBed(0); //set bed target temperature back to 0
  3601. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3602. temp_cal_active = true;
  3603. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3604. lcd_update_enable(true);
  3605. lcd_update(2);
  3606. }
  3607. break;
  3608. #ifdef DIS
  3609. case 77:
  3610. {
  3611. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3612. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3613. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3614. float dimension_x = 40;
  3615. float dimension_y = 40;
  3616. int points_x = 40;
  3617. int points_y = 40;
  3618. float offset_x = 74;
  3619. float offset_y = 33;
  3620. if (code_seen('X')) dimension_x = code_value();
  3621. if (code_seen('Y')) dimension_y = code_value();
  3622. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3623. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3624. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3625. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3626. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3627. } break;
  3628. #endif
  3629. case 79: {
  3630. for (int i = 255; i > 0; i = i - 5) {
  3631. fanSpeed = i;
  3632. //delay_keep_alive(2000);
  3633. for (int j = 0; j < 100; j++) {
  3634. delay_keep_alive(100);
  3635. }
  3636. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3637. }
  3638. }break;
  3639. /**
  3640. * G80: Mesh-based Z probe, probes a grid and produces a
  3641. * mesh to compensate for variable bed height
  3642. *
  3643. * The S0 report the points as below
  3644. *
  3645. * +----> X-axis
  3646. * |
  3647. * |
  3648. * v Y-axis
  3649. *
  3650. */
  3651. case 80:
  3652. #ifdef MK1BP
  3653. break;
  3654. #endif //MK1BP
  3655. case_G80:
  3656. {
  3657. mesh_bed_leveling_flag = true;
  3658. static bool run = false;
  3659. #ifdef SUPPORT_VERBOSITY
  3660. int8_t verbosity_level = 0;
  3661. if (code_seen('V')) {
  3662. // Just 'V' without a number counts as V1.
  3663. char c = strchr_pointer[1];
  3664. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3665. }
  3666. #endif //SUPPORT_VERBOSITY
  3667. // Firstly check if we know where we are
  3668. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3669. // We don't know where we are! HOME!
  3670. // Push the commands to the front of the message queue in the reverse order!
  3671. // There shall be always enough space reserved for these commands.
  3672. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3673. repeatcommand_front(); // repeat G80 with all its parameters
  3674. enquecommand_front_P((PSTR("G28 W0")));
  3675. }
  3676. else {
  3677. mesh_bed_leveling_flag = false;
  3678. }
  3679. break;
  3680. }
  3681. bool temp_comp_start = true;
  3682. #ifdef PINDA_THERMISTOR
  3683. temp_comp_start = false;
  3684. #endif //PINDA_THERMISTOR
  3685. if (temp_comp_start)
  3686. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3687. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3688. temp_compensation_start();
  3689. run = true;
  3690. repeatcommand_front(); // repeat G80 with all its parameters
  3691. enquecommand_front_P((PSTR("G28 W0")));
  3692. }
  3693. else {
  3694. mesh_bed_leveling_flag = false;
  3695. }
  3696. break;
  3697. }
  3698. run = false;
  3699. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3700. mesh_bed_leveling_flag = false;
  3701. break;
  3702. }
  3703. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3704. bool custom_message_old = custom_message;
  3705. unsigned int custom_message_type_old = custom_message_type;
  3706. unsigned int custom_message_state_old = custom_message_state;
  3707. custom_message = true;
  3708. custom_message_type = 1;
  3709. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3710. lcd_update(1);
  3711. mbl.reset(); //reset mesh bed leveling
  3712. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3713. // consumed during the first movements following this statement.
  3714. babystep_undo();
  3715. // Cycle through all points and probe them
  3716. // First move up. During this first movement, the babystepping will be reverted.
  3717. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3719. // The move to the first calibration point.
  3720. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3721. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3722. #ifdef SUPPORT_VERBOSITY
  3723. if (verbosity_level >= 1)
  3724. {
  3725. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3726. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3727. }
  3728. #endif //SUPPORT_VERBOSITY
  3729. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3731. // Wait until the move is finished.
  3732. st_synchronize();
  3733. int mesh_point = 0; //index number of calibration point
  3734. int ix = 0;
  3735. int iy = 0;
  3736. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3737. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3738. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3739. #ifdef SUPPORT_VERBOSITY
  3740. if (verbosity_level >= 1) {
  3741. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3742. }
  3743. #endif // SUPPORT_VERBOSITY
  3744. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3745. const char *kill_message = NULL;
  3746. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3747. // Get coords of a measuring point.
  3748. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3749. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3750. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3751. float z0 = 0.f;
  3752. if (has_z && mesh_point > 0) {
  3753. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3754. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3755. //#if 0
  3756. #ifdef SUPPORT_VERBOSITY
  3757. if (verbosity_level >= 1) {
  3758. SERIAL_ECHOLNPGM("");
  3759. SERIAL_ECHOPGM("Bed leveling, point: ");
  3760. MYSERIAL.print(mesh_point);
  3761. SERIAL_ECHOPGM(", calibration z: ");
  3762. MYSERIAL.print(z0, 5);
  3763. SERIAL_ECHOLNPGM("");
  3764. }
  3765. #endif // SUPPORT_VERBOSITY
  3766. //#endif
  3767. }
  3768. // Move Z up to MESH_HOME_Z_SEARCH.
  3769. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3771. st_synchronize();
  3772. // Move to XY position of the sensor point.
  3773. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3774. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3775. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3776. #ifdef SUPPORT_VERBOSITY
  3777. if (verbosity_level >= 1) {
  3778. SERIAL_PROTOCOL(mesh_point);
  3779. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3780. }
  3781. #endif // SUPPORT_VERBOSITY
  3782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3783. st_synchronize();
  3784. // Go down until endstop is hit
  3785. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3786. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3787. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3788. break;
  3789. }
  3790. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3791. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3792. break;
  3793. }
  3794. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3795. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3796. break;
  3797. }
  3798. #ifdef SUPPORT_VERBOSITY
  3799. if (verbosity_level >= 10) {
  3800. SERIAL_ECHOPGM("X: ");
  3801. MYSERIAL.print(current_position[X_AXIS], 5);
  3802. SERIAL_ECHOLNPGM("");
  3803. SERIAL_ECHOPGM("Y: ");
  3804. MYSERIAL.print(current_position[Y_AXIS], 5);
  3805. SERIAL_PROTOCOLPGM("\n");
  3806. }
  3807. #endif // SUPPORT_VERBOSITY
  3808. float offset_z = 0;
  3809. #ifdef PINDA_THERMISTOR
  3810. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3811. #endif //PINDA_THERMISTOR
  3812. // #ifdef SUPPORT_VERBOSITY
  3813. /* if (verbosity_level >= 1)
  3814. {
  3815. SERIAL_ECHOPGM("mesh bed leveling: ");
  3816. MYSERIAL.print(current_position[Z_AXIS], 5);
  3817. SERIAL_ECHOPGM(" offset: ");
  3818. MYSERIAL.print(offset_z, 5);
  3819. SERIAL_ECHOLNPGM("");
  3820. }*/
  3821. // #endif // SUPPORT_VERBOSITY
  3822. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3823. custom_message_state--;
  3824. mesh_point++;
  3825. lcd_update(1);
  3826. }
  3827. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3828. #ifdef SUPPORT_VERBOSITY
  3829. if (verbosity_level >= 20) {
  3830. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3831. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3832. MYSERIAL.print(current_position[Z_AXIS], 5);
  3833. }
  3834. #endif // SUPPORT_VERBOSITY
  3835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3836. st_synchronize();
  3837. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3838. kill(kill_message);
  3839. SERIAL_ECHOLNPGM("killed");
  3840. }
  3841. clean_up_after_endstop_move();
  3842. // SERIAL_ECHOLNPGM("clean up finished ");
  3843. bool apply_temp_comp = true;
  3844. #ifdef PINDA_THERMISTOR
  3845. apply_temp_comp = false;
  3846. #endif
  3847. if (apply_temp_comp)
  3848. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3849. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3850. // SERIAL_ECHOLNPGM("babystep applied");
  3851. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3852. #ifdef SUPPORT_VERBOSITY
  3853. if (verbosity_level >= 1) {
  3854. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3855. }
  3856. #endif // SUPPORT_VERBOSITY
  3857. for (uint8_t i = 0; i < 4; ++i) {
  3858. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3859. long correction = 0;
  3860. if (code_seen(codes[i]))
  3861. correction = code_value_long();
  3862. else if (eeprom_bed_correction_valid) {
  3863. unsigned char *addr = (i < 2) ?
  3864. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3865. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3866. correction = eeprom_read_int8(addr);
  3867. }
  3868. if (correction == 0)
  3869. continue;
  3870. float offset = float(correction) * 0.001f;
  3871. if (fabs(offset) > 0.101f) {
  3872. SERIAL_ERROR_START;
  3873. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3874. SERIAL_ECHO(offset);
  3875. SERIAL_ECHOLNPGM(" microns");
  3876. }
  3877. else {
  3878. switch (i) {
  3879. case 0:
  3880. for (uint8_t row = 0; row < 3; ++row) {
  3881. mbl.z_values[row][1] += 0.5f * offset;
  3882. mbl.z_values[row][0] += offset;
  3883. }
  3884. break;
  3885. case 1:
  3886. for (uint8_t row = 0; row < 3; ++row) {
  3887. mbl.z_values[row][1] += 0.5f * offset;
  3888. mbl.z_values[row][2] += offset;
  3889. }
  3890. break;
  3891. case 2:
  3892. for (uint8_t col = 0; col < 3; ++col) {
  3893. mbl.z_values[1][col] += 0.5f * offset;
  3894. mbl.z_values[0][col] += offset;
  3895. }
  3896. break;
  3897. case 3:
  3898. for (uint8_t col = 0; col < 3; ++col) {
  3899. mbl.z_values[1][col] += 0.5f * offset;
  3900. mbl.z_values[2][col] += offset;
  3901. }
  3902. break;
  3903. }
  3904. }
  3905. }
  3906. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3907. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3908. // SERIAL_ECHOLNPGM("Upsample finished");
  3909. mbl.active = 1; //activate mesh bed leveling
  3910. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3911. go_home_with_z_lift();
  3912. // SERIAL_ECHOLNPGM("Go home finished");
  3913. //unretract (after PINDA preheat retraction)
  3914. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3915. current_position[E_AXIS] += default_retraction;
  3916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3917. }
  3918. KEEPALIVE_STATE(NOT_BUSY);
  3919. // Restore custom message state
  3920. lcd_setstatuspgm(_T(WELCOME_MSG));
  3921. custom_message = custom_message_old;
  3922. custom_message_type = custom_message_type_old;
  3923. custom_message_state = custom_message_state_old;
  3924. mesh_bed_leveling_flag = false;
  3925. mesh_bed_run_from_menu = false;
  3926. lcd_update(2);
  3927. }
  3928. break;
  3929. /**
  3930. * G81: Print mesh bed leveling status and bed profile if activated
  3931. */
  3932. case 81:
  3933. if (mbl.active) {
  3934. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3935. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3936. SERIAL_PROTOCOLPGM(",");
  3937. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3938. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3939. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3940. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3941. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3942. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3943. SERIAL_PROTOCOLPGM(" ");
  3944. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3945. }
  3946. SERIAL_PROTOCOLPGM("\n");
  3947. }
  3948. }
  3949. else
  3950. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3951. break;
  3952. #if 0
  3953. /**
  3954. * G82: Single Z probe at current location
  3955. *
  3956. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3957. *
  3958. */
  3959. case 82:
  3960. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3961. setup_for_endstop_move();
  3962. find_bed_induction_sensor_point_z();
  3963. clean_up_after_endstop_move();
  3964. SERIAL_PROTOCOLPGM("Bed found at: ");
  3965. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3966. SERIAL_PROTOCOLPGM("\n");
  3967. break;
  3968. /**
  3969. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3970. */
  3971. case 83:
  3972. {
  3973. int babystepz = code_seen('S') ? code_value() : 0;
  3974. int BabyPosition = code_seen('P') ? code_value() : 0;
  3975. if (babystepz != 0) {
  3976. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3977. // Is the axis indexed starting with zero or one?
  3978. if (BabyPosition > 4) {
  3979. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3980. }else{
  3981. // Save it to the eeprom
  3982. babystepLoadZ = babystepz;
  3983. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3984. // adjust the Z
  3985. babystepsTodoZadd(babystepLoadZ);
  3986. }
  3987. }
  3988. }
  3989. break;
  3990. /**
  3991. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3992. */
  3993. case 84:
  3994. babystepsTodoZsubtract(babystepLoadZ);
  3995. // babystepLoadZ = 0;
  3996. break;
  3997. /**
  3998. * G85: Prusa3D specific: Pick best babystep
  3999. */
  4000. case 85:
  4001. lcd_pick_babystep();
  4002. break;
  4003. #endif
  4004. /**
  4005. * G86: Prusa3D specific: Disable babystep correction after home.
  4006. * This G-code will be performed at the start of a calibration script.
  4007. */
  4008. case 86:
  4009. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4010. break;
  4011. /**
  4012. * G87: Prusa3D specific: Enable babystep correction after home
  4013. * This G-code will be performed at the end of a calibration script.
  4014. */
  4015. case 87:
  4016. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4017. break;
  4018. /**
  4019. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4020. */
  4021. case 88:
  4022. break;
  4023. #endif // ENABLE_MESH_BED_LEVELING
  4024. case 90: // G90
  4025. relative_mode = false;
  4026. break;
  4027. case 91: // G91
  4028. relative_mode = true;
  4029. break;
  4030. case 92: // G92
  4031. if(!code_seen(axis_codes[E_AXIS]))
  4032. st_synchronize();
  4033. for(int8_t i=0; i < NUM_AXIS; i++) {
  4034. if(code_seen(axis_codes[i])) {
  4035. if(i == E_AXIS) {
  4036. current_position[i] = code_value();
  4037. plan_set_e_position(current_position[E_AXIS]);
  4038. }
  4039. else {
  4040. current_position[i] = code_value()+add_homing[i];
  4041. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4042. }
  4043. }
  4044. }
  4045. break;
  4046. case 98: // G98 (activate farm mode)
  4047. farm_mode = 1;
  4048. PingTime = millis();
  4049. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4050. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4051. SilentModeMenu = SILENT_MODE_OFF;
  4052. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4053. break;
  4054. case 99: // G99 (deactivate farm mode)
  4055. farm_mode = 0;
  4056. lcd_printer_connected();
  4057. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4058. lcd_update(2);
  4059. break;
  4060. default:
  4061. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4062. }
  4063. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4064. gcode_in_progress = 0;
  4065. } // end if(code_seen('G'))
  4066. else if(code_seen('M'))
  4067. {
  4068. int index;
  4069. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4070. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4071. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4072. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4073. } else
  4074. {
  4075. mcode_in_progress = (int)code_value();
  4076. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4077. switch(mcode_in_progress)
  4078. {
  4079. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4080. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4081. {
  4082. char *src = strchr_pointer + 2;
  4083. codenum = 0;
  4084. bool hasP = false, hasS = false;
  4085. if (code_seen('P')) {
  4086. codenum = code_value(); // milliseconds to wait
  4087. hasP = codenum > 0;
  4088. }
  4089. if (code_seen('S')) {
  4090. codenum = code_value() * 1000; // seconds to wait
  4091. hasS = codenum > 0;
  4092. }
  4093. starpos = strchr(src, '*');
  4094. if (starpos != NULL) *(starpos) = '\0';
  4095. while (*src == ' ') ++src;
  4096. if (!hasP && !hasS && *src != '\0') {
  4097. lcd_setstatus(src);
  4098. } else {
  4099. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4100. }
  4101. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4102. st_synchronize();
  4103. previous_millis_cmd = millis();
  4104. if (codenum > 0){
  4105. codenum += millis(); // keep track of when we started waiting
  4106. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4107. while(millis() < codenum && !lcd_clicked()){
  4108. manage_heater();
  4109. manage_inactivity(true);
  4110. lcd_update(0);
  4111. }
  4112. KEEPALIVE_STATE(IN_HANDLER);
  4113. lcd_ignore_click(false);
  4114. }else{
  4115. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4116. while(!lcd_clicked()){
  4117. manage_heater();
  4118. manage_inactivity(true);
  4119. lcd_update(0);
  4120. }
  4121. KEEPALIVE_STATE(IN_HANDLER);
  4122. }
  4123. if (IS_SD_PRINTING)
  4124. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4125. else
  4126. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4127. }
  4128. break;
  4129. case 17:
  4130. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4131. enable_x();
  4132. enable_y();
  4133. enable_z();
  4134. enable_e0();
  4135. enable_e1();
  4136. enable_e2();
  4137. break;
  4138. #ifdef SDSUPPORT
  4139. case 20: // M20 - list SD card
  4140. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4141. card.ls();
  4142. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4143. break;
  4144. case 21: // M21 - init SD card
  4145. card.initsd();
  4146. break;
  4147. case 22: //M22 - release SD card
  4148. card.release();
  4149. break;
  4150. case 23: //M23 - Select file
  4151. starpos = (strchr(strchr_pointer + 4,'*'));
  4152. if(starpos!=NULL)
  4153. *(starpos)='\0';
  4154. card.openFile(strchr_pointer + 4,true);
  4155. break;
  4156. case 24: //M24 - Start SD print
  4157. if (!card.paused)
  4158. failstats_reset_print();
  4159. card.startFileprint();
  4160. starttime=millis();
  4161. break;
  4162. case 25: //M25 - Pause SD print
  4163. card.pauseSDPrint();
  4164. break;
  4165. case 26: //M26 - Set SD index
  4166. if(card.cardOK && code_seen('S')) {
  4167. card.setIndex(code_value_long());
  4168. }
  4169. break;
  4170. case 27: //M27 - Get SD status
  4171. card.getStatus();
  4172. break;
  4173. case 28: //M28 - Start SD write
  4174. starpos = (strchr(strchr_pointer + 4,'*'));
  4175. if(starpos != NULL){
  4176. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4177. strchr_pointer = strchr(npos,' ') + 1;
  4178. *(starpos) = '\0';
  4179. }
  4180. card.openFile(strchr_pointer+4,false);
  4181. break;
  4182. case 29: //M29 - Stop SD write
  4183. //processed in write to file routine above
  4184. //card,saving = false;
  4185. break;
  4186. case 30: //M30 <filename> Delete File
  4187. if (card.cardOK){
  4188. card.closefile();
  4189. starpos = (strchr(strchr_pointer + 4,'*'));
  4190. if(starpos != NULL){
  4191. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4192. strchr_pointer = strchr(npos,' ') + 1;
  4193. *(starpos) = '\0';
  4194. }
  4195. card.removeFile(strchr_pointer + 4);
  4196. }
  4197. break;
  4198. case 32: //M32 - Select file and start SD print
  4199. {
  4200. if(card.sdprinting) {
  4201. st_synchronize();
  4202. }
  4203. starpos = (strchr(strchr_pointer + 4,'*'));
  4204. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4205. if(namestartpos==NULL)
  4206. {
  4207. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4208. }
  4209. else
  4210. namestartpos++; //to skip the '!'
  4211. if(starpos!=NULL)
  4212. *(starpos)='\0';
  4213. bool call_procedure=(code_seen('P'));
  4214. if(strchr_pointer>namestartpos)
  4215. call_procedure=false; //false alert, 'P' found within filename
  4216. if( card.cardOK )
  4217. {
  4218. card.openFile(namestartpos,true,!call_procedure);
  4219. if(code_seen('S'))
  4220. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4221. card.setIndex(code_value_long());
  4222. card.startFileprint();
  4223. if(!call_procedure)
  4224. starttime=millis(); //procedure calls count as normal print time.
  4225. }
  4226. } break;
  4227. case 928: //M928 - Start SD write
  4228. starpos = (strchr(strchr_pointer + 5,'*'));
  4229. if(starpos != NULL){
  4230. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4231. strchr_pointer = strchr(npos,' ') + 1;
  4232. *(starpos) = '\0';
  4233. }
  4234. card.openLogFile(strchr_pointer+5);
  4235. break;
  4236. #endif //SDSUPPORT
  4237. case 31: //M31 take time since the start of the SD print or an M109 command
  4238. {
  4239. stoptime=millis();
  4240. char time[30];
  4241. unsigned long t=(stoptime-starttime)/1000;
  4242. int sec,min;
  4243. min=t/60;
  4244. sec=t%60;
  4245. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4246. SERIAL_ECHO_START;
  4247. SERIAL_ECHOLN(time);
  4248. lcd_setstatus(time);
  4249. autotempShutdown();
  4250. }
  4251. break;
  4252. case 42: //M42 -Change pin status via gcode
  4253. if (code_seen('S'))
  4254. {
  4255. int pin_status = code_value();
  4256. int pin_number = LED_PIN;
  4257. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4258. pin_number = code_value();
  4259. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4260. {
  4261. if (sensitive_pins[i] == pin_number)
  4262. {
  4263. pin_number = -1;
  4264. break;
  4265. }
  4266. }
  4267. #if defined(FAN_PIN) && FAN_PIN > -1
  4268. if (pin_number == FAN_PIN)
  4269. fanSpeed = pin_status;
  4270. #endif
  4271. if (pin_number > -1)
  4272. {
  4273. pinMode(pin_number, OUTPUT);
  4274. digitalWrite(pin_number, pin_status);
  4275. analogWrite(pin_number, pin_status);
  4276. }
  4277. }
  4278. break;
  4279. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4280. // Reset the baby step value and the baby step applied flag.
  4281. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4282. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4283. // Reset the skew and offset in both RAM and EEPROM.
  4284. reset_bed_offset_and_skew();
  4285. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4286. // the planner will not perform any adjustments in the XY plane.
  4287. // Wait for the motors to stop and update the current position with the absolute values.
  4288. world2machine_revert_to_uncorrected();
  4289. break;
  4290. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4291. {
  4292. int8_t verbosity_level = 0;
  4293. bool only_Z = code_seen('Z');
  4294. #ifdef SUPPORT_VERBOSITY
  4295. if (code_seen('V'))
  4296. {
  4297. // Just 'V' without a number counts as V1.
  4298. char c = strchr_pointer[1];
  4299. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4300. }
  4301. #endif //SUPPORT_VERBOSITY
  4302. gcode_M45(only_Z, verbosity_level);
  4303. }
  4304. break;
  4305. /*
  4306. case 46:
  4307. {
  4308. // M46: Prusa3D: Show the assigned IP address.
  4309. uint8_t ip[4];
  4310. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4311. if (hasIP) {
  4312. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4313. SERIAL_ECHO(int(ip[0]));
  4314. SERIAL_ECHOPGM(".");
  4315. SERIAL_ECHO(int(ip[1]));
  4316. SERIAL_ECHOPGM(".");
  4317. SERIAL_ECHO(int(ip[2]));
  4318. SERIAL_ECHOPGM(".");
  4319. SERIAL_ECHO(int(ip[3]));
  4320. SERIAL_ECHOLNPGM("");
  4321. } else {
  4322. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4323. }
  4324. break;
  4325. }
  4326. */
  4327. case 47:
  4328. // M47: Prusa3D: Show end stops dialog on the display.
  4329. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4330. lcd_diag_show_end_stops();
  4331. KEEPALIVE_STATE(IN_HANDLER);
  4332. break;
  4333. #if 0
  4334. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4335. {
  4336. // Disable the default update procedure of the display. We will do a modal dialog.
  4337. lcd_update_enable(false);
  4338. // Let the planner use the uncorrected coordinates.
  4339. mbl.reset();
  4340. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4341. // the planner will not perform any adjustments in the XY plane.
  4342. // Wait for the motors to stop and update the current position with the absolute values.
  4343. world2machine_revert_to_uncorrected();
  4344. // Move the print head close to the bed.
  4345. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4347. st_synchronize();
  4348. // Home in the XY plane.
  4349. set_destination_to_current();
  4350. setup_for_endstop_move();
  4351. home_xy();
  4352. int8_t verbosity_level = 0;
  4353. if (code_seen('V')) {
  4354. // Just 'V' without a number counts as V1.
  4355. char c = strchr_pointer[1];
  4356. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4357. }
  4358. bool success = scan_bed_induction_points(verbosity_level);
  4359. clean_up_after_endstop_move();
  4360. // Print head up.
  4361. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4363. st_synchronize();
  4364. lcd_update_enable(true);
  4365. break;
  4366. }
  4367. #endif
  4368. // M48 Z-Probe repeatability measurement function.
  4369. //
  4370. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4371. //
  4372. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4373. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4374. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4375. // regenerated.
  4376. //
  4377. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4378. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4379. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4380. //
  4381. #ifdef ENABLE_AUTO_BED_LEVELING
  4382. #ifdef Z_PROBE_REPEATABILITY_TEST
  4383. case 48: // M48 Z-Probe repeatability
  4384. {
  4385. #if Z_MIN_PIN == -1
  4386. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4387. #endif
  4388. double sum=0.0;
  4389. double mean=0.0;
  4390. double sigma=0.0;
  4391. double sample_set[50];
  4392. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4393. double X_current, Y_current, Z_current;
  4394. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4395. if (code_seen('V') || code_seen('v')) {
  4396. verbose_level = code_value();
  4397. if (verbose_level<0 || verbose_level>4 ) {
  4398. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4399. goto Sigma_Exit;
  4400. }
  4401. }
  4402. if (verbose_level > 0) {
  4403. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4404. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4405. }
  4406. if (code_seen('n')) {
  4407. n_samples = code_value();
  4408. if (n_samples<4 || n_samples>50 ) {
  4409. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4410. goto Sigma_Exit;
  4411. }
  4412. }
  4413. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4414. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4415. Z_current = st_get_position_mm(Z_AXIS);
  4416. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4417. ext_position = st_get_position_mm(E_AXIS);
  4418. if (code_seen('X') || code_seen('x') ) {
  4419. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4420. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4421. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4422. goto Sigma_Exit;
  4423. }
  4424. }
  4425. if (code_seen('Y') || code_seen('y') ) {
  4426. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4427. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4428. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4429. goto Sigma_Exit;
  4430. }
  4431. }
  4432. if (code_seen('L') || code_seen('l') ) {
  4433. n_legs = code_value();
  4434. if ( n_legs==1 )
  4435. n_legs = 2;
  4436. if ( n_legs<0 || n_legs>15 ) {
  4437. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4438. goto Sigma_Exit;
  4439. }
  4440. }
  4441. //
  4442. // Do all the preliminary setup work. First raise the probe.
  4443. //
  4444. st_synchronize();
  4445. plan_bed_level_matrix.set_to_identity();
  4446. plan_buffer_line( X_current, Y_current, Z_start_location,
  4447. ext_position,
  4448. homing_feedrate[Z_AXIS]/60,
  4449. active_extruder);
  4450. st_synchronize();
  4451. //
  4452. // Now get everything to the specified probe point So we can safely do a probe to
  4453. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4454. // use that as a starting point for each probe.
  4455. //
  4456. if (verbose_level > 2)
  4457. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4458. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4459. ext_position,
  4460. homing_feedrate[X_AXIS]/60,
  4461. active_extruder);
  4462. st_synchronize();
  4463. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4464. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4465. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4466. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4467. //
  4468. // OK, do the inital probe to get us close to the bed.
  4469. // Then retrace the right amount and use that in subsequent probes
  4470. //
  4471. setup_for_endstop_move();
  4472. run_z_probe();
  4473. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4474. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4475. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4476. ext_position,
  4477. homing_feedrate[X_AXIS]/60,
  4478. active_extruder);
  4479. st_synchronize();
  4480. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4481. for( n=0; n<n_samples; n++) {
  4482. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4483. if ( n_legs) {
  4484. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4485. int rotational_direction, l;
  4486. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4487. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4488. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4489. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4490. //SERIAL_ECHOPAIR(" theta: ",theta);
  4491. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4492. //SERIAL_PROTOCOLLNPGM("");
  4493. for( l=0; l<n_legs-1; l++) {
  4494. if (rotational_direction==1)
  4495. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4496. else
  4497. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4498. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4499. if ( radius<0.0 )
  4500. radius = -radius;
  4501. X_current = X_probe_location + cos(theta) * radius;
  4502. Y_current = Y_probe_location + sin(theta) * radius;
  4503. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4504. X_current = X_MIN_POS;
  4505. if ( X_current>X_MAX_POS)
  4506. X_current = X_MAX_POS;
  4507. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4508. Y_current = Y_MIN_POS;
  4509. if ( Y_current>Y_MAX_POS)
  4510. Y_current = Y_MAX_POS;
  4511. if (verbose_level>3 ) {
  4512. SERIAL_ECHOPAIR("x: ", X_current);
  4513. SERIAL_ECHOPAIR("y: ", Y_current);
  4514. SERIAL_PROTOCOLLNPGM("");
  4515. }
  4516. do_blocking_move_to( X_current, Y_current, Z_current );
  4517. }
  4518. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4519. }
  4520. setup_for_endstop_move();
  4521. run_z_probe();
  4522. sample_set[n] = current_position[Z_AXIS];
  4523. //
  4524. // Get the current mean for the data points we have so far
  4525. //
  4526. sum=0.0;
  4527. for( j=0; j<=n; j++) {
  4528. sum = sum + sample_set[j];
  4529. }
  4530. mean = sum / (double (n+1));
  4531. //
  4532. // Now, use that mean to calculate the standard deviation for the
  4533. // data points we have so far
  4534. //
  4535. sum=0.0;
  4536. for( j=0; j<=n; j++) {
  4537. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4538. }
  4539. sigma = sqrt( sum / (double (n+1)) );
  4540. if (verbose_level > 1) {
  4541. SERIAL_PROTOCOL(n+1);
  4542. SERIAL_PROTOCOL(" of ");
  4543. SERIAL_PROTOCOL(n_samples);
  4544. SERIAL_PROTOCOLPGM(" z: ");
  4545. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4546. }
  4547. if (verbose_level > 2) {
  4548. SERIAL_PROTOCOL(" mean: ");
  4549. SERIAL_PROTOCOL_F(mean,6);
  4550. SERIAL_PROTOCOL(" sigma: ");
  4551. SERIAL_PROTOCOL_F(sigma,6);
  4552. }
  4553. if (verbose_level > 0)
  4554. SERIAL_PROTOCOLPGM("\n");
  4555. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4556. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4557. st_synchronize();
  4558. }
  4559. delay(1000);
  4560. clean_up_after_endstop_move();
  4561. // enable_endstops(true);
  4562. if (verbose_level > 0) {
  4563. SERIAL_PROTOCOLPGM("Mean: ");
  4564. SERIAL_PROTOCOL_F(mean, 6);
  4565. SERIAL_PROTOCOLPGM("\n");
  4566. }
  4567. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4568. SERIAL_PROTOCOL_F(sigma, 6);
  4569. SERIAL_PROTOCOLPGM("\n\n");
  4570. Sigma_Exit:
  4571. break;
  4572. }
  4573. #endif // Z_PROBE_REPEATABILITY_TEST
  4574. #endif // ENABLE_AUTO_BED_LEVELING
  4575. case 73: //M73 show percent done and time remaining
  4576. if(code_seen('P')) print_percent_done_normal = code_value();
  4577. if(code_seen('R')) print_time_remaining_normal = code_value();
  4578. if(code_seen('Q')) print_percent_done_silent = code_value();
  4579. if(code_seen('S')) print_time_remaining_silent = code_value();
  4580. {
  4581. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4582. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4583. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4584. }
  4585. break;
  4586. case 104: // M104
  4587. if(setTargetedHotend(104)){
  4588. break;
  4589. }
  4590. if (code_seen('S'))
  4591. {
  4592. setTargetHotendSafe(code_value(), tmp_extruder);
  4593. }
  4594. setWatch();
  4595. break;
  4596. case 112: // M112 -Emergency Stop
  4597. kill(_n(""), 3);
  4598. break;
  4599. case 140: // M140 set bed temp
  4600. if (code_seen('S')) setTargetBed(code_value());
  4601. break;
  4602. case 105 : // M105
  4603. if(setTargetedHotend(105)){
  4604. break;
  4605. }
  4606. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4607. SERIAL_PROTOCOLPGM("ok T:");
  4608. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4609. SERIAL_PROTOCOLPGM(" /");
  4610. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4611. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4612. SERIAL_PROTOCOLPGM(" B:");
  4613. SERIAL_PROTOCOL_F(degBed(),1);
  4614. SERIAL_PROTOCOLPGM(" /");
  4615. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4616. #endif //TEMP_BED_PIN
  4617. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4618. SERIAL_PROTOCOLPGM(" T");
  4619. SERIAL_PROTOCOL(cur_extruder);
  4620. SERIAL_PROTOCOLPGM(":");
  4621. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4622. SERIAL_PROTOCOLPGM(" /");
  4623. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4624. }
  4625. #else
  4626. SERIAL_ERROR_START;
  4627. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4628. #endif
  4629. SERIAL_PROTOCOLPGM(" @:");
  4630. #ifdef EXTRUDER_WATTS
  4631. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4632. SERIAL_PROTOCOLPGM("W");
  4633. #else
  4634. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4635. #endif
  4636. SERIAL_PROTOCOLPGM(" B@:");
  4637. #ifdef BED_WATTS
  4638. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4639. SERIAL_PROTOCOLPGM("W");
  4640. #else
  4641. SERIAL_PROTOCOL(getHeaterPower(-1));
  4642. #endif
  4643. #ifdef PINDA_THERMISTOR
  4644. SERIAL_PROTOCOLPGM(" P:");
  4645. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4646. #endif //PINDA_THERMISTOR
  4647. #ifdef AMBIENT_THERMISTOR
  4648. SERIAL_PROTOCOLPGM(" A:");
  4649. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4650. #endif //AMBIENT_THERMISTOR
  4651. #ifdef SHOW_TEMP_ADC_VALUES
  4652. {float raw = 0.0;
  4653. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4654. SERIAL_PROTOCOLPGM(" ADC B:");
  4655. SERIAL_PROTOCOL_F(degBed(),1);
  4656. SERIAL_PROTOCOLPGM("C->");
  4657. raw = rawBedTemp();
  4658. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4659. SERIAL_PROTOCOLPGM(" Rb->");
  4660. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4661. SERIAL_PROTOCOLPGM(" Rxb->");
  4662. SERIAL_PROTOCOL_F(raw, 5);
  4663. #endif
  4664. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4665. SERIAL_PROTOCOLPGM(" T");
  4666. SERIAL_PROTOCOL(cur_extruder);
  4667. SERIAL_PROTOCOLPGM(":");
  4668. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4669. SERIAL_PROTOCOLPGM("C->");
  4670. raw = rawHotendTemp(cur_extruder);
  4671. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4672. SERIAL_PROTOCOLPGM(" Rt");
  4673. SERIAL_PROTOCOL(cur_extruder);
  4674. SERIAL_PROTOCOLPGM("->");
  4675. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4676. SERIAL_PROTOCOLPGM(" Rx");
  4677. SERIAL_PROTOCOL(cur_extruder);
  4678. SERIAL_PROTOCOLPGM("->");
  4679. SERIAL_PROTOCOL_F(raw, 5);
  4680. }}
  4681. #endif
  4682. SERIAL_PROTOCOLLN("");
  4683. KEEPALIVE_STATE(NOT_BUSY);
  4684. return;
  4685. break;
  4686. case 109:
  4687. {// M109 - Wait for extruder heater to reach target.
  4688. if(setTargetedHotend(109)){
  4689. break;
  4690. }
  4691. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4692. heating_status = 1;
  4693. if (farm_mode) { prusa_statistics(1); };
  4694. #ifdef AUTOTEMP
  4695. autotemp_enabled=false;
  4696. #endif
  4697. if (code_seen('S')) {
  4698. setTargetHotendSafe(code_value(), tmp_extruder);
  4699. CooldownNoWait = true;
  4700. } else if (code_seen('R')) {
  4701. setTargetHotendSafe(code_value(), tmp_extruder);
  4702. CooldownNoWait = false;
  4703. }
  4704. #ifdef AUTOTEMP
  4705. if (code_seen('S')) autotemp_min=code_value();
  4706. if (code_seen('B')) autotemp_max=code_value();
  4707. if (code_seen('F'))
  4708. {
  4709. autotemp_factor=code_value();
  4710. autotemp_enabled=true;
  4711. }
  4712. #endif
  4713. setWatch();
  4714. codenum = millis();
  4715. /* See if we are heating up or cooling down */
  4716. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4717. KEEPALIVE_STATE(NOT_BUSY);
  4718. cancel_heatup = false;
  4719. wait_for_heater(codenum); //loops until target temperature is reached
  4720. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4721. KEEPALIVE_STATE(IN_HANDLER);
  4722. heating_status = 2;
  4723. if (farm_mode) { prusa_statistics(2); };
  4724. //starttime=millis();
  4725. previous_millis_cmd = millis();
  4726. }
  4727. break;
  4728. case 190: // M190 - Wait for bed heater to reach target.
  4729. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4730. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4731. heating_status = 3;
  4732. if (farm_mode) { prusa_statistics(1); };
  4733. if (code_seen('S'))
  4734. {
  4735. setTargetBed(code_value());
  4736. CooldownNoWait = true;
  4737. }
  4738. else if (code_seen('R'))
  4739. {
  4740. setTargetBed(code_value());
  4741. CooldownNoWait = false;
  4742. }
  4743. codenum = millis();
  4744. cancel_heatup = false;
  4745. target_direction = isHeatingBed(); // true if heating, false if cooling
  4746. KEEPALIVE_STATE(NOT_BUSY);
  4747. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4748. {
  4749. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4750. {
  4751. if (!farm_mode) {
  4752. float tt = degHotend(active_extruder);
  4753. SERIAL_PROTOCOLPGM("T:");
  4754. SERIAL_PROTOCOL(tt);
  4755. SERIAL_PROTOCOLPGM(" E:");
  4756. SERIAL_PROTOCOL((int)active_extruder);
  4757. SERIAL_PROTOCOLPGM(" B:");
  4758. SERIAL_PROTOCOL_F(degBed(), 1);
  4759. SERIAL_PROTOCOLLN("");
  4760. }
  4761. codenum = millis();
  4762. }
  4763. manage_heater();
  4764. manage_inactivity();
  4765. lcd_update(0);
  4766. }
  4767. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4768. KEEPALIVE_STATE(IN_HANDLER);
  4769. heating_status = 4;
  4770. previous_millis_cmd = millis();
  4771. #endif
  4772. break;
  4773. #if defined(FAN_PIN) && FAN_PIN > -1
  4774. case 106: //M106 Fan On
  4775. if (code_seen('S')){
  4776. fanSpeed=constrain(code_value(),0,255);
  4777. }
  4778. else {
  4779. fanSpeed=255;
  4780. }
  4781. break;
  4782. case 107: //M107 Fan Off
  4783. fanSpeed = 0;
  4784. break;
  4785. #endif //FAN_PIN
  4786. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4787. case 80: // M80 - Turn on Power Supply
  4788. SET_OUTPUT(PS_ON_PIN); //GND
  4789. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4790. // If you have a switch on suicide pin, this is useful
  4791. // if you want to start another print with suicide feature after
  4792. // a print without suicide...
  4793. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4794. SET_OUTPUT(SUICIDE_PIN);
  4795. WRITE(SUICIDE_PIN, HIGH);
  4796. #endif
  4797. powersupply = true;
  4798. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4799. lcd_update(0);
  4800. break;
  4801. #endif
  4802. case 81: // M81 - Turn off Power Supply
  4803. disable_heater();
  4804. st_synchronize();
  4805. disable_e0();
  4806. disable_e1();
  4807. disable_e2();
  4808. finishAndDisableSteppers();
  4809. fanSpeed = 0;
  4810. delay(1000); // Wait a little before to switch off
  4811. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4812. st_synchronize();
  4813. suicide();
  4814. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4815. SET_OUTPUT(PS_ON_PIN);
  4816. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4817. #endif
  4818. powersupply = false;
  4819. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4820. lcd_update(0);
  4821. break;
  4822. case 82:
  4823. axis_relative_modes[3] = false;
  4824. break;
  4825. case 83:
  4826. axis_relative_modes[3] = true;
  4827. break;
  4828. case 18: //compatibility
  4829. case 84: // M84
  4830. if(code_seen('S')){
  4831. stepper_inactive_time = code_value() * 1000;
  4832. }
  4833. else
  4834. {
  4835. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4836. if(all_axis)
  4837. {
  4838. st_synchronize();
  4839. disable_e0();
  4840. disable_e1();
  4841. disable_e2();
  4842. finishAndDisableSteppers();
  4843. }
  4844. else
  4845. {
  4846. st_synchronize();
  4847. if (code_seen('X')) disable_x();
  4848. if (code_seen('Y')) disable_y();
  4849. if (code_seen('Z')) disable_z();
  4850. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4851. if (code_seen('E')) {
  4852. disable_e0();
  4853. disable_e1();
  4854. disable_e2();
  4855. }
  4856. #endif
  4857. }
  4858. }
  4859. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4860. print_time_remaining_init();
  4861. snmm_filaments_used = 0;
  4862. break;
  4863. case 85: // M85
  4864. if(code_seen('S')) {
  4865. max_inactive_time = code_value() * 1000;
  4866. }
  4867. break;
  4868. #ifdef SAFETYTIMER
  4869. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4870. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4871. if (code_seen('S')) {
  4872. safetytimer_inactive_time = code_value() * 1000;
  4873. safetyTimer.start();
  4874. }
  4875. break;
  4876. #endif
  4877. case 92: // M92
  4878. for(int8_t i=0; i < NUM_AXIS; i++)
  4879. {
  4880. if(code_seen(axis_codes[i]))
  4881. {
  4882. if(i == 3) { // E
  4883. float value = code_value();
  4884. if(value < 20.0) {
  4885. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4886. max_jerk[E_AXIS] *= factor;
  4887. max_feedrate[i] *= factor;
  4888. axis_steps_per_sqr_second[i] *= factor;
  4889. }
  4890. axis_steps_per_unit[i] = value;
  4891. }
  4892. else {
  4893. axis_steps_per_unit[i] = code_value();
  4894. }
  4895. }
  4896. }
  4897. break;
  4898. case 110: // M110 - reset line pos
  4899. if (code_seen('N'))
  4900. gcode_LastN = code_value_long();
  4901. break;
  4902. #ifdef HOST_KEEPALIVE_FEATURE
  4903. case 113: // M113 - Get or set Host Keepalive interval
  4904. if (code_seen('S')) {
  4905. host_keepalive_interval = (uint8_t)code_value_short();
  4906. // NOMORE(host_keepalive_interval, 60);
  4907. }
  4908. else {
  4909. SERIAL_ECHO_START;
  4910. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4911. SERIAL_PROTOCOLLN("");
  4912. }
  4913. break;
  4914. #endif
  4915. case 115: // M115
  4916. if (code_seen('V')) {
  4917. // Report the Prusa version number.
  4918. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4919. } else if (code_seen('U')) {
  4920. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4921. // pause the print and ask the user to upgrade the firmware.
  4922. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4923. } else {
  4924. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4925. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4926. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4927. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4928. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4929. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4930. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4931. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4932. SERIAL_ECHOPGM(" UUID:");
  4933. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4934. }
  4935. break;
  4936. /* case 117: // M117 display message
  4937. starpos = (strchr(strchr_pointer + 5,'*'));
  4938. if(starpos!=NULL)
  4939. *(starpos)='\0';
  4940. lcd_setstatus(strchr_pointer + 5);
  4941. break;*/
  4942. case 114: // M114
  4943. gcode_M114();
  4944. break;
  4945. case 120: // M120
  4946. enable_endstops(false) ;
  4947. break;
  4948. case 121: // M121
  4949. enable_endstops(true) ;
  4950. break;
  4951. case 119: // M119
  4952. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4953. SERIAL_PROTOCOLLN("");
  4954. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4955. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4956. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4957. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4958. }else{
  4959. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4960. }
  4961. SERIAL_PROTOCOLLN("");
  4962. #endif
  4963. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4964. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4965. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4966. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4967. }else{
  4968. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4969. }
  4970. SERIAL_PROTOCOLLN("");
  4971. #endif
  4972. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4973. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4974. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4975. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4976. }else{
  4977. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4978. }
  4979. SERIAL_PROTOCOLLN("");
  4980. #endif
  4981. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4982. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4983. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4984. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4985. }else{
  4986. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4987. }
  4988. SERIAL_PROTOCOLLN("");
  4989. #endif
  4990. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4991. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4992. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4993. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4994. }else{
  4995. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4996. }
  4997. SERIAL_PROTOCOLLN("");
  4998. #endif
  4999. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5000. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5001. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5002. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5003. }else{
  5004. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5005. }
  5006. SERIAL_PROTOCOLLN("");
  5007. #endif
  5008. break;
  5009. //TODO: update for all axis, use for loop
  5010. #ifdef BLINKM
  5011. case 150: // M150
  5012. {
  5013. byte red;
  5014. byte grn;
  5015. byte blu;
  5016. if(code_seen('R')) red = code_value();
  5017. if(code_seen('U')) grn = code_value();
  5018. if(code_seen('B')) blu = code_value();
  5019. SendColors(red,grn,blu);
  5020. }
  5021. break;
  5022. #endif //BLINKM
  5023. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5024. {
  5025. tmp_extruder = active_extruder;
  5026. if(code_seen('T')) {
  5027. tmp_extruder = code_value();
  5028. if(tmp_extruder >= EXTRUDERS) {
  5029. SERIAL_ECHO_START;
  5030. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5031. break;
  5032. }
  5033. }
  5034. if(code_seen('D')) {
  5035. float diameter = (float)code_value();
  5036. if (diameter == 0.0) {
  5037. // setting any extruder filament size disables volumetric on the assumption that
  5038. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5039. // for all extruders
  5040. volumetric_enabled = false;
  5041. } else {
  5042. filament_size[tmp_extruder] = (float)code_value();
  5043. // make sure all extruders have some sane value for the filament size
  5044. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5045. #if EXTRUDERS > 1
  5046. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5047. #if EXTRUDERS > 2
  5048. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5049. #endif
  5050. #endif
  5051. volumetric_enabled = true;
  5052. }
  5053. } else {
  5054. //reserved for setting filament diameter via UFID or filament measuring device
  5055. break;
  5056. }
  5057. calculate_extruder_multipliers();
  5058. }
  5059. break;
  5060. case 201: // M201
  5061. for (int8_t i = 0; i < NUM_AXIS; i++)
  5062. {
  5063. if (code_seen(axis_codes[i]))
  5064. {
  5065. unsigned long val = code_value();
  5066. #ifdef TMC2130
  5067. unsigned long val_silent = val;
  5068. if ((i == X_AXIS) || (i == Y_AXIS))
  5069. {
  5070. if (val > NORMAL_MAX_ACCEL_XY)
  5071. val = NORMAL_MAX_ACCEL_XY;
  5072. if (val_silent > SILENT_MAX_ACCEL_XY)
  5073. val_silent = SILENT_MAX_ACCEL_XY;
  5074. }
  5075. max_acceleration_units_per_sq_second_normal[i] = val;
  5076. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5077. #else //TMC2130
  5078. max_acceleration_units_per_sq_second[i] = val;
  5079. #endif //TMC2130
  5080. }
  5081. }
  5082. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5083. reset_acceleration_rates();
  5084. break;
  5085. #if 0 // Not used for Sprinter/grbl gen6
  5086. case 202: // M202
  5087. for(int8_t i=0; i < NUM_AXIS; i++) {
  5088. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5089. }
  5090. break;
  5091. #endif
  5092. case 203: // M203 max feedrate mm/sec
  5093. for (int8_t i = 0; i < NUM_AXIS; i++)
  5094. {
  5095. if (code_seen(axis_codes[i]))
  5096. {
  5097. float val = code_value();
  5098. #ifdef TMC2130
  5099. float val_silent = val;
  5100. if ((i == X_AXIS) || (i == Y_AXIS))
  5101. {
  5102. if (val > NORMAL_MAX_FEEDRATE_XY)
  5103. val = NORMAL_MAX_FEEDRATE_XY;
  5104. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5105. val_silent = SILENT_MAX_FEEDRATE_XY;
  5106. }
  5107. max_feedrate_normal[i] = val;
  5108. max_feedrate_silent[i] = val_silent;
  5109. #else //TMC2130
  5110. max_feedrate[i] = val;
  5111. #endif //TMC2130
  5112. }
  5113. }
  5114. break;
  5115. case 204:
  5116. // M204 acclereration settings.
  5117. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5118. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5119. {
  5120. if(code_seen('S')) {
  5121. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5122. // and it is also generated by Slic3r to control acceleration per extrusion type
  5123. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5124. acceleration = code_value();
  5125. // Interpret the T value as retract acceleration in the old Marlin format.
  5126. if(code_seen('T'))
  5127. retract_acceleration = code_value();
  5128. } else {
  5129. // New acceleration format, compatible with the upstream Marlin.
  5130. if(code_seen('P'))
  5131. acceleration = code_value();
  5132. if(code_seen('R'))
  5133. retract_acceleration = code_value();
  5134. if(code_seen('T')) {
  5135. // Interpret the T value as the travel acceleration in the new Marlin format.
  5136. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5137. // travel_acceleration = code_value();
  5138. }
  5139. }
  5140. }
  5141. break;
  5142. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5143. {
  5144. if(code_seen('S')) minimumfeedrate = code_value();
  5145. if(code_seen('T')) mintravelfeedrate = code_value();
  5146. if(code_seen('B')) minsegmenttime = code_value() ;
  5147. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5148. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5149. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5150. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5151. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5152. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5153. }
  5154. break;
  5155. case 206: // M206 additional homing offset
  5156. for(int8_t i=0; i < 3; i++)
  5157. {
  5158. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5159. }
  5160. break;
  5161. #ifdef FWRETRACT
  5162. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5163. {
  5164. if(code_seen('S'))
  5165. {
  5166. retract_length = code_value() ;
  5167. }
  5168. if(code_seen('F'))
  5169. {
  5170. retract_feedrate = code_value()/60 ;
  5171. }
  5172. if(code_seen('Z'))
  5173. {
  5174. retract_zlift = code_value() ;
  5175. }
  5176. }break;
  5177. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5178. {
  5179. if(code_seen('S'))
  5180. {
  5181. retract_recover_length = code_value() ;
  5182. }
  5183. if(code_seen('F'))
  5184. {
  5185. retract_recover_feedrate = code_value()/60 ;
  5186. }
  5187. }break;
  5188. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5189. {
  5190. if(code_seen('S'))
  5191. {
  5192. int t= code_value() ;
  5193. switch(t)
  5194. {
  5195. case 0:
  5196. {
  5197. autoretract_enabled=false;
  5198. retracted[0]=false;
  5199. #if EXTRUDERS > 1
  5200. retracted[1]=false;
  5201. #endif
  5202. #if EXTRUDERS > 2
  5203. retracted[2]=false;
  5204. #endif
  5205. }break;
  5206. case 1:
  5207. {
  5208. autoretract_enabled=true;
  5209. retracted[0]=false;
  5210. #if EXTRUDERS > 1
  5211. retracted[1]=false;
  5212. #endif
  5213. #if EXTRUDERS > 2
  5214. retracted[2]=false;
  5215. #endif
  5216. }break;
  5217. default:
  5218. SERIAL_ECHO_START;
  5219. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5220. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5221. SERIAL_ECHOLNPGM("\"(1)");
  5222. }
  5223. }
  5224. }break;
  5225. #endif // FWRETRACT
  5226. #if EXTRUDERS > 1
  5227. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5228. {
  5229. if(setTargetedHotend(218)){
  5230. break;
  5231. }
  5232. if(code_seen('X'))
  5233. {
  5234. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5235. }
  5236. if(code_seen('Y'))
  5237. {
  5238. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5239. }
  5240. SERIAL_ECHO_START;
  5241. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5242. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5243. {
  5244. SERIAL_ECHO(" ");
  5245. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5246. SERIAL_ECHO(",");
  5247. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5248. }
  5249. SERIAL_ECHOLN("");
  5250. }break;
  5251. #endif
  5252. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5253. {
  5254. if(code_seen('S'))
  5255. {
  5256. feedmultiply = code_value() ;
  5257. }
  5258. }
  5259. break;
  5260. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5261. {
  5262. if(code_seen('S'))
  5263. {
  5264. int tmp_code = code_value();
  5265. if (code_seen('T'))
  5266. {
  5267. if(setTargetedHotend(221)){
  5268. break;
  5269. }
  5270. extruder_multiply[tmp_extruder] = tmp_code;
  5271. }
  5272. else
  5273. {
  5274. extrudemultiply = tmp_code ;
  5275. }
  5276. }
  5277. calculate_extruder_multipliers();
  5278. }
  5279. break;
  5280. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5281. {
  5282. if(code_seen('P')){
  5283. int pin_number = code_value(); // pin number
  5284. int pin_state = -1; // required pin state - default is inverted
  5285. if(code_seen('S')) pin_state = code_value(); // required pin state
  5286. if(pin_state >= -1 && pin_state <= 1){
  5287. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5288. {
  5289. if (sensitive_pins[i] == pin_number)
  5290. {
  5291. pin_number = -1;
  5292. break;
  5293. }
  5294. }
  5295. if (pin_number > -1)
  5296. {
  5297. int target = LOW;
  5298. st_synchronize();
  5299. pinMode(pin_number, INPUT);
  5300. switch(pin_state){
  5301. case 1:
  5302. target = HIGH;
  5303. break;
  5304. case 0:
  5305. target = LOW;
  5306. break;
  5307. case -1:
  5308. target = !digitalRead(pin_number);
  5309. break;
  5310. }
  5311. while(digitalRead(pin_number) != target){
  5312. manage_heater();
  5313. manage_inactivity();
  5314. lcd_update(0);
  5315. }
  5316. }
  5317. }
  5318. }
  5319. }
  5320. break;
  5321. #if NUM_SERVOS > 0
  5322. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5323. {
  5324. int servo_index = -1;
  5325. int servo_position = 0;
  5326. if (code_seen('P'))
  5327. servo_index = code_value();
  5328. if (code_seen('S')) {
  5329. servo_position = code_value();
  5330. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5331. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5332. servos[servo_index].attach(0);
  5333. #endif
  5334. servos[servo_index].write(servo_position);
  5335. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5336. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5337. servos[servo_index].detach();
  5338. #endif
  5339. }
  5340. else {
  5341. SERIAL_ECHO_START;
  5342. SERIAL_ECHO("Servo ");
  5343. SERIAL_ECHO(servo_index);
  5344. SERIAL_ECHOLN(" out of range");
  5345. }
  5346. }
  5347. else if (servo_index >= 0) {
  5348. SERIAL_PROTOCOL(_T(MSG_OK));
  5349. SERIAL_PROTOCOL(" Servo ");
  5350. SERIAL_PROTOCOL(servo_index);
  5351. SERIAL_PROTOCOL(": ");
  5352. SERIAL_PROTOCOL(servos[servo_index].read());
  5353. SERIAL_PROTOCOLLN("");
  5354. }
  5355. }
  5356. break;
  5357. #endif // NUM_SERVOS > 0
  5358. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5359. case 300: // M300
  5360. {
  5361. int beepS = code_seen('S') ? code_value() : 110;
  5362. int beepP = code_seen('P') ? code_value() : 1000;
  5363. if (beepS > 0)
  5364. {
  5365. #if BEEPER > 0
  5366. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5367. tone(BEEPER, beepS);
  5368. delay(beepP);
  5369. noTone(BEEPER);
  5370. #endif
  5371. }
  5372. else
  5373. {
  5374. delay(beepP);
  5375. }
  5376. }
  5377. break;
  5378. #endif // M300
  5379. #ifdef PIDTEMP
  5380. case 301: // M301
  5381. {
  5382. if(code_seen('P')) Kp = code_value();
  5383. if(code_seen('I')) Ki = scalePID_i(code_value());
  5384. if(code_seen('D')) Kd = scalePID_d(code_value());
  5385. #ifdef PID_ADD_EXTRUSION_RATE
  5386. if(code_seen('C')) Kc = code_value();
  5387. #endif
  5388. updatePID();
  5389. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5390. SERIAL_PROTOCOL(" p:");
  5391. SERIAL_PROTOCOL(Kp);
  5392. SERIAL_PROTOCOL(" i:");
  5393. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5394. SERIAL_PROTOCOL(" d:");
  5395. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5396. #ifdef PID_ADD_EXTRUSION_RATE
  5397. SERIAL_PROTOCOL(" c:");
  5398. //Kc does not have scaling applied above, or in resetting defaults
  5399. SERIAL_PROTOCOL(Kc);
  5400. #endif
  5401. SERIAL_PROTOCOLLN("");
  5402. }
  5403. break;
  5404. #endif //PIDTEMP
  5405. #ifdef PIDTEMPBED
  5406. case 304: // M304
  5407. {
  5408. if(code_seen('P')) bedKp = code_value();
  5409. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5410. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5411. updatePID();
  5412. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5413. SERIAL_PROTOCOL(" p:");
  5414. SERIAL_PROTOCOL(bedKp);
  5415. SERIAL_PROTOCOL(" i:");
  5416. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5417. SERIAL_PROTOCOL(" d:");
  5418. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5419. SERIAL_PROTOCOLLN("");
  5420. }
  5421. break;
  5422. #endif //PIDTEMP
  5423. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5424. {
  5425. #ifdef CHDK
  5426. SET_OUTPUT(CHDK);
  5427. WRITE(CHDK, HIGH);
  5428. chdkHigh = millis();
  5429. chdkActive = true;
  5430. #else
  5431. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5432. const uint8_t NUM_PULSES=16;
  5433. const float PULSE_LENGTH=0.01524;
  5434. for(int i=0; i < NUM_PULSES; i++) {
  5435. WRITE(PHOTOGRAPH_PIN, HIGH);
  5436. _delay_ms(PULSE_LENGTH);
  5437. WRITE(PHOTOGRAPH_PIN, LOW);
  5438. _delay_ms(PULSE_LENGTH);
  5439. }
  5440. delay(7.33);
  5441. for(int i=0; i < NUM_PULSES; i++) {
  5442. WRITE(PHOTOGRAPH_PIN, HIGH);
  5443. _delay_ms(PULSE_LENGTH);
  5444. WRITE(PHOTOGRAPH_PIN, LOW);
  5445. _delay_ms(PULSE_LENGTH);
  5446. }
  5447. #endif
  5448. #endif //chdk end if
  5449. }
  5450. break;
  5451. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5452. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5453. {
  5454. float temp = .0;
  5455. if (code_seen('S')) temp=code_value();
  5456. set_extrude_min_temp(temp);
  5457. }
  5458. break;
  5459. #endif
  5460. case 303: // M303 PID autotune
  5461. {
  5462. float temp = 150.0;
  5463. int e=0;
  5464. int c=5;
  5465. if (code_seen('E')) e=code_value();
  5466. if (e<0)
  5467. temp=70;
  5468. if (code_seen('S')) temp=code_value();
  5469. if (code_seen('C')) c=code_value();
  5470. PID_autotune(temp, e, c);
  5471. }
  5472. break;
  5473. case 400: // M400 finish all moves
  5474. {
  5475. st_synchronize();
  5476. }
  5477. break;
  5478. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5479. {
  5480. //currently three different materials are needed (default, flex and PVA)
  5481. //add storing this information for different load/unload profiles etc. in the future
  5482. //firmware does not wait for "ok" from mmu
  5483. if (mmu_enabled)
  5484. {
  5485. uint8_t extruder;
  5486. uint8_t filament;
  5487. if(code_seen('E')) extruder = code_value();
  5488. if(code_seen('F')) filament = code_value();
  5489. mmu_set_filament_type(extruder, filament);
  5490. }
  5491. }
  5492. break;
  5493. case 500: // M500 Store settings in EEPROM
  5494. {
  5495. Config_StoreSettings(EEPROM_OFFSET);
  5496. }
  5497. break;
  5498. case 501: // M501 Read settings from EEPROM
  5499. {
  5500. Config_RetrieveSettings(EEPROM_OFFSET);
  5501. }
  5502. break;
  5503. case 502: // M502 Revert to default settings
  5504. {
  5505. Config_ResetDefault();
  5506. }
  5507. break;
  5508. case 503: // M503 print settings currently in memory
  5509. {
  5510. Config_PrintSettings();
  5511. }
  5512. break;
  5513. case 509: //M509 Force language selection
  5514. {
  5515. lang_reset();
  5516. SERIAL_ECHO_START;
  5517. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5518. }
  5519. break;
  5520. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5521. case 540:
  5522. {
  5523. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5524. }
  5525. break;
  5526. #endif
  5527. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5528. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5529. {
  5530. float value;
  5531. if (code_seen('Z'))
  5532. {
  5533. value = code_value();
  5534. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5535. {
  5536. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5537. SERIAL_ECHO_START;
  5538. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5539. SERIAL_PROTOCOLLN("");
  5540. }
  5541. else
  5542. {
  5543. SERIAL_ECHO_START;
  5544. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5545. SERIAL_ECHORPGM(MSG_Z_MIN);
  5546. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5547. SERIAL_ECHORPGM(MSG_Z_MAX);
  5548. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5549. SERIAL_PROTOCOLLN("");
  5550. }
  5551. }
  5552. else
  5553. {
  5554. SERIAL_ECHO_START;
  5555. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5556. SERIAL_ECHO(-zprobe_zoffset);
  5557. SERIAL_PROTOCOLLN("");
  5558. }
  5559. break;
  5560. }
  5561. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5562. #ifdef FILAMENTCHANGEENABLE
  5563. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5564. {
  5565. st_synchronize();
  5566. float x_position = current_position[X_AXIS];
  5567. float y_position = current_position[Y_AXIS];
  5568. float z_shift = 0;
  5569. float e_shift_init = 0;
  5570. float e_shift_late = 0;
  5571. bool automatic = false;
  5572. //Retract extruder
  5573. if(code_seen('E'))
  5574. {
  5575. e_shift_init = code_value();
  5576. }
  5577. else
  5578. {
  5579. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5580. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5581. #endif
  5582. }
  5583. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5584. if (code_seen('L'))
  5585. {
  5586. e_shift_late = code_value();
  5587. }
  5588. else
  5589. {
  5590. #ifdef FILAMENTCHANGE_FINALRETRACT
  5591. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5592. #endif
  5593. }
  5594. //Lift Z
  5595. if(code_seen('Z'))
  5596. {
  5597. z_shift = code_value();
  5598. }
  5599. else
  5600. {
  5601. #ifdef FILAMENTCHANGE_ZADD
  5602. z_shift= FILAMENTCHANGE_ZADD ;
  5603. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5604. #endif
  5605. }
  5606. //Move XY to side
  5607. if(code_seen('X'))
  5608. {
  5609. x_position = code_value();
  5610. }
  5611. else
  5612. {
  5613. #ifdef FILAMENTCHANGE_XPOS
  5614. x_position = FILAMENTCHANGE_XPOS;
  5615. #endif
  5616. }
  5617. if(code_seen('Y'))
  5618. {
  5619. y_position = code_value();
  5620. }
  5621. else
  5622. {
  5623. #ifdef FILAMENTCHANGE_YPOS
  5624. y_position = FILAMENTCHANGE_YPOS ;
  5625. #endif
  5626. }
  5627. if (mmu_enabled && code_seen("AUTO"))
  5628. automatic = true;
  5629. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5630. }
  5631. break;
  5632. #endif //FILAMENTCHANGEENABLE
  5633. case 601: {
  5634. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5635. }
  5636. break;
  5637. case 602: {
  5638. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5639. }
  5640. break;
  5641. #ifdef PINDA_THERMISTOR
  5642. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5643. {
  5644. int set_target_pinda = 0;
  5645. if (code_seen('S')) {
  5646. set_target_pinda = code_value();
  5647. }
  5648. else {
  5649. break;
  5650. }
  5651. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5652. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5653. SERIAL_PROTOCOL(set_target_pinda);
  5654. SERIAL_PROTOCOLLN("");
  5655. codenum = millis();
  5656. cancel_heatup = false;
  5657. bool is_pinda_cooling = false;
  5658. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5659. is_pinda_cooling = true;
  5660. }
  5661. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5662. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5663. {
  5664. SERIAL_PROTOCOLPGM("P:");
  5665. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5666. SERIAL_PROTOCOLPGM("/");
  5667. SERIAL_PROTOCOL(set_target_pinda);
  5668. SERIAL_PROTOCOLLN("");
  5669. codenum = millis();
  5670. }
  5671. manage_heater();
  5672. manage_inactivity();
  5673. lcd_update(0);
  5674. }
  5675. LCD_MESSAGERPGM(_T(MSG_OK));
  5676. break;
  5677. }
  5678. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5679. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5680. uint8_t cal_status = calibration_status_pinda();
  5681. int16_t usteps = 0;
  5682. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5683. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5684. for (uint8_t i = 0; i < 6; i++)
  5685. {
  5686. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5687. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5688. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5689. SERIAL_PROTOCOLPGM(", ");
  5690. SERIAL_PROTOCOL(35 + (i * 5));
  5691. SERIAL_PROTOCOLPGM(", ");
  5692. SERIAL_PROTOCOL(usteps);
  5693. SERIAL_PROTOCOLPGM(", ");
  5694. SERIAL_PROTOCOL(mm * 1000);
  5695. SERIAL_PROTOCOLLN("");
  5696. }
  5697. }
  5698. else if (code_seen('!')) { // ! - Set factory default values
  5699. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5700. int16_t z_shift = 8; //40C - 20um - 8usteps
  5701. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5702. z_shift = 24; //45C - 60um - 24usteps
  5703. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5704. z_shift = 48; //50C - 120um - 48usteps
  5705. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5706. z_shift = 80; //55C - 200um - 80usteps
  5707. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5708. z_shift = 120; //60C - 300um - 120usteps
  5709. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5710. SERIAL_PROTOCOLLN("factory restored");
  5711. }
  5712. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5713. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5714. int16_t z_shift = 0;
  5715. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5716. SERIAL_PROTOCOLLN("zerorized");
  5717. }
  5718. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5719. int16_t usteps = code_value();
  5720. if (code_seen('I')) {
  5721. byte index = code_value();
  5722. if ((index >= 0) && (index < 5)) {
  5723. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5724. SERIAL_PROTOCOLLN("OK");
  5725. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5726. for (uint8_t i = 0; i < 6; i++)
  5727. {
  5728. usteps = 0;
  5729. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5730. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5731. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5732. SERIAL_PROTOCOLPGM(", ");
  5733. SERIAL_PROTOCOL(35 + (i * 5));
  5734. SERIAL_PROTOCOLPGM(", ");
  5735. SERIAL_PROTOCOL(usteps);
  5736. SERIAL_PROTOCOLPGM(", ");
  5737. SERIAL_PROTOCOL(mm * 1000);
  5738. SERIAL_PROTOCOLLN("");
  5739. }
  5740. }
  5741. }
  5742. }
  5743. else {
  5744. SERIAL_PROTOCOLPGM("no valid command");
  5745. }
  5746. break;
  5747. #endif //PINDA_THERMISTOR
  5748. #ifdef LIN_ADVANCE
  5749. case 900: // M900: Set LIN_ADVANCE options.
  5750. gcode_M900();
  5751. break;
  5752. #endif
  5753. case 907: // M907 Set digital trimpot motor current using axis codes.
  5754. {
  5755. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5756. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5757. if(code_seen('B')) st_current_set(4,code_value());
  5758. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5759. #endif
  5760. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5761. if(code_seen('X')) st_current_set(0, code_value());
  5762. #endif
  5763. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5764. if(code_seen('Z')) st_current_set(1, code_value());
  5765. #endif
  5766. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5767. if(code_seen('E')) st_current_set(2, code_value());
  5768. #endif
  5769. }
  5770. break;
  5771. case 908: // M908 Control digital trimpot directly.
  5772. {
  5773. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5774. uint8_t channel,current;
  5775. if(code_seen('P')) channel=code_value();
  5776. if(code_seen('S')) current=code_value();
  5777. digitalPotWrite(channel, current);
  5778. #endif
  5779. }
  5780. break;
  5781. #ifdef TMC2130
  5782. case 910: // M910 TMC2130 init
  5783. {
  5784. tmc2130_init();
  5785. }
  5786. break;
  5787. case 911: // M911 Set TMC2130 holding currents
  5788. {
  5789. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5790. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5791. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5792. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5793. }
  5794. break;
  5795. case 912: // M912 Set TMC2130 running currents
  5796. {
  5797. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5798. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5799. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5800. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5801. }
  5802. break;
  5803. case 913: // M913 Print TMC2130 currents
  5804. {
  5805. tmc2130_print_currents();
  5806. }
  5807. break;
  5808. case 914: // M914 Set normal mode
  5809. {
  5810. tmc2130_mode = TMC2130_MODE_NORMAL;
  5811. update_mode_profile();
  5812. tmc2130_init();
  5813. }
  5814. break;
  5815. case 915: // M915 Set silent mode
  5816. {
  5817. tmc2130_mode = TMC2130_MODE_SILENT;
  5818. update_mode_profile();
  5819. tmc2130_init();
  5820. }
  5821. break;
  5822. case 916: // M916 Set sg_thrs
  5823. {
  5824. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5825. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5826. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5827. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5828. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5829. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5830. }
  5831. break;
  5832. case 917: // M917 Set TMC2130 pwm_ampl
  5833. {
  5834. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5835. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5836. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5837. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5838. }
  5839. break;
  5840. case 918: // M918 Set TMC2130 pwm_grad
  5841. {
  5842. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5843. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5844. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5845. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5846. }
  5847. break;
  5848. #endif //TMC2130
  5849. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5850. {
  5851. #ifdef TMC2130
  5852. if(code_seen('E'))
  5853. {
  5854. uint16_t res_new = code_value();
  5855. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5856. {
  5857. st_synchronize();
  5858. uint8_t axis = E_AXIS;
  5859. uint16_t res = tmc2130_get_res(axis);
  5860. tmc2130_set_res(axis, res_new);
  5861. if (res_new > res)
  5862. {
  5863. uint16_t fac = (res_new / res);
  5864. axis_steps_per_unit[axis] *= fac;
  5865. position[E_AXIS] *= fac;
  5866. }
  5867. else
  5868. {
  5869. uint16_t fac = (res / res_new);
  5870. axis_steps_per_unit[axis] /= fac;
  5871. position[E_AXIS] /= fac;
  5872. }
  5873. }
  5874. }
  5875. #else //TMC2130
  5876. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5877. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5878. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5879. if(code_seen('B')) microstep_mode(4,code_value());
  5880. microstep_readings();
  5881. #endif
  5882. #endif //TMC2130
  5883. }
  5884. break;
  5885. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5886. {
  5887. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5888. if(code_seen('S')) switch((int)code_value())
  5889. {
  5890. case 1:
  5891. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5892. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5893. break;
  5894. case 2:
  5895. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5896. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5897. break;
  5898. }
  5899. microstep_readings();
  5900. #endif
  5901. }
  5902. break;
  5903. case 701: //M701: load filament
  5904. {
  5905. if (mmu_enabled && code_seen('E'))
  5906. mmu_extruder = code_value();
  5907. gcode_M701();
  5908. }
  5909. break;
  5910. case 702:
  5911. {
  5912. if (mmu_enabled)
  5913. {
  5914. if (code_seen('U'))
  5915. extr_unload_used(); //unload all filaments which were used in current print
  5916. else if (code_seen('C'))
  5917. extr_unload(); //unload just current filament
  5918. else
  5919. extr_unload_all(); //unload all filaments
  5920. }
  5921. else
  5922. unload_filament();
  5923. }
  5924. break;
  5925. case 999: // M999: Restart after being stopped
  5926. Stopped = false;
  5927. lcd_reset_alert_level();
  5928. gcode_LastN = Stopped_gcode_LastN;
  5929. FlushSerialRequestResend();
  5930. break;
  5931. default:
  5932. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5933. }
  5934. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5935. mcode_in_progress = 0;
  5936. }
  5937. } // end if(code_seen('M')) (end of M codes)
  5938. else if(code_seen('T'))
  5939. {
  5940. int index;
  5941. st_synchronize();
  5942. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5943. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5944. SERIAL_ECHOLNPGM("Invalid T code.");
  5945. }
  5946. else {
  5947. if (*(strchr_pointer + index) == '?') {
  5948. tmp_extruder = choose_extruder_menu();
  5949. }
  5950. else {
  5951. tmp_extruder = code_value();
  5952. }
  5953. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5954. if (mmu_enabled)
  5955. {
  5956. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  5957. mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  5958. manage_response(true, true);
  5959. mmu_extruder = tmp_extruder; //filament change is finished
  5960. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5961. mmu_load_to_nozzle();
  5962. }
  5963. else
  5964. {
  5965. #ifdef SNMM
  5966. #ifdef LIN_ADVANCE
  5967. if (mmu_extruder != tmp_extruder)
  5968. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5969. #endif
  5970. mmu_extruder = tmp_extruder;
  5971. delay(100);
  5972. disable_e0();
  5973. disable_e1();
  5974. disable_e2();
  5975. pinMode(E_MUX0_PIN, OUTPUT);
  5976. pinMode(E_MUX1_PIN, OUTPUT);
  5977. delay(100);
  5978. SERIAL_ECHO_START;
  5979. SERIAL_ECHO("T:");
  5980. SERIAL_ECHOLN((int)tmp_extruder);
  5981. switch (tmp_extruder) {
  5982. case 1:
  5983. WRITE(E_MUX0_PIN, HIGH);
  5984. WRITE(E_MUX1_PIN, LOW);
  5985. break;
  5986. case 2:
  5987. WRITE(E_MUX0_PIN, LOW);
  5988. WRITE(E_MUX1_PIN, HIGH);
  5989. break;
  5990. case 3:
  5991. WRITE(E_MUX0_PIN, HIGH);
  5992. WRITE(E_MUX1_PIN, HIGH);
  5993. break;
  5994. default:
  5995. WRITE(E_MUX0_PIN, LOW);
  5996. WRITE(E_MUX1_PIN, LOW);
  5997. break;
  5998. }
  5999. delay(100);
  6000. #else //SNMM
  6001. if (tmp_extruder >= EXTRUDERS) {
  6002. SERIAL_ECHO_START;
  6003. SERIAL_ECHOPGM("T");
  6004. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6005. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6006. }
  6007. else {
  6008. #if EXTRUDERS > 1
  6009. boolean make_move = false;
  6010. #endif
  6011. if (code_seen('F')) {
  6012. #if EXTRUDERS > 1
  6013. make_move = true;
  6014. #endif
  6015. next_feedrate = code_value();
  6016. if (next_feedrate > 0.0) {
  6017. feedrate = next_feedrate;
  6018. }
  6019. }
  6020. #if EXTRUDERS > 1
  6021. if (tmp_extruder != active_extruder) {
  6022. // Save current position to return to after applying extruder offset
  6023. memcpy(destination, current_position, sizeof(destination));
  6024. // Offset extruder (only by XY)
  6025. int i;
  6026. for (i = 0; i < 2; i++) {
  6027. current_position[i] = current_position[i] -
  6028. extruder_offset[i][active_extruder] +
  6029. extruder_offset[i][tmp_extruder];
  6030. }
  6031. // Set the new active extruder and position
  6032. active_extruder = tmp_extruder;
  6033. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6034. // Move to the old position if 'F' was in the parameters
  6035. if (make_move && Stopped == false) {
  6036. prepare_move();
  6037. }
  6038. }
  6039. #endif
  6040. SERIAL_ECHO_START;
  6041. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6042. SERIAL_PROTOCOLLN((int)active_extruder);
  6043. }
  6044. #endif //SNMM
  6045. }
  6046. }
  6047. } // end if(code_seen('T')) (end of T codes)
  6048. else if (code_seen('D')) // D codes (debug)
  6049. {
  6050. switch((int)code_value())
  6051. {
  6052. #ifdef DEBUG_DCODES
  6053. case -1: // D-1 - Endless loop
  6054. dcode__1(); break;
  6055. case 0: // D0 - Reset
  6056. dcode_0(); break;
  6057. case 1: // D1 - Clear EEPROM
  6058. dcode_1(); break;
  6059. case 2: // D2 - Read/Write RAM
  6060. dcode_2(); break;
  6061. #endif //DEBUG_DCODES
  6062. #ifdef DEBUG_DCODE3
  6063. case 3: // D3 - Read/Write EEPROM
  6064. dcode_3(); break;
  6065. #endif //DEBUG_DCODE3
  6066. #ifdef DEBUG_DCODES
  6067. case 4: // D4 - Read/Write PIN
  6068. dcode_4(); break;
  6069. case 5: // D5 - Read/Write FLASH
  6070. // dcode_5(); break;
  6071. break;
  6072. case 6: // D6 - Read/Write external FLASH
  6073. dcode_6(); break;
  6074. case 7: // D7 - Read/Write Bootloader
  6075. dcode_7(); break;
  6076. case 8: // D8 - Read/Write PINDA
  6077. dcode_8(); break;
  6078. case 9: // D9 - Read/Write ADC
  6079. dcode_9(); break;
  6080. case 10: // D10 - XYZ calibration = OK
  6081. dcode_10(); break;
  6082. #ifdef TMC2130
  6083. case 2130: // D9125 - TMC2130
  6084. dcode_2130(); break;
  6085. #endif //TMC2130
  6086. #ifdef FILAMENT_SENSOR
  6087. case 9125: // D9125 - FILAMENT_SENSOR
  6088. dcode_9125(); break;
  6089. #endif //FILAMENT_SENSOR
  6090. #endif //DEBUG_DCODES
  6091. }
  6092. }
  6093. else
  6094. {
  6095. SERIAL_ECHO_START;
  6096. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6097. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6098. SERIAL_ECHOLNPGM("\"(2)");
  6099. }
  6100. KEEPALIVE_STATE(NOT_BUSY);
  6101. ClearToSend();
  6102. }
  6103. void FlushSerialRequestResend()
  6104. {
  6105. //char cmdbuffer[bufindr][100]="Resend:";
  6106. MYSERIAL.flush();
  6107. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6108. }
  6109. // Confirm the execution of a command, if sent from a serial line.
  6110. // Execution of a command from a SD card will not be confirmed.
  6111. void ClearToSend()
  6112. {
  6113. previous_millis_cmd = millis();
  6114. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6115. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6116. }
  6117. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6118. void update_currents() {
  6119. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6120. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6121. float tmp_motor[3];
  6122. //SERIAL_ECHOLNPGM("Currents updated: ");
  6123. if (destination[Z_AXIS] < Z_SILENT) {
  6124. //SERIAL_ECHOLNPGM("LOW");
  6125. for (uint8_t i = 0; i < 3; i++) {
  6126. st_current_set(i, current_low[i]);
  6127. /*MYSERIAL.print(int(i));
  6128. SERIAL_ECHOPGM(": ");
  6129. MYSERIAL.println(current_low[i]);*/
  6130. }
  6131. }
  6132. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6133. //SERIAL_ECHOLNPGM("HIGH");
  6134. for (uint8_t i = 0; i < 3; i++) {
  6135. st_current_set(i, current_high[i]);
  6136. /*MYSERIAL.print(int(i));
  6137. SERIAL_ECHOPGM(": ");
  6138. MYSERIAL.println(current_high[i]);*/
  6139. }
  6140. }
  6141. else {
  6142. for (uint8_t i = 0; i < 3; i++) {
  6143. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6144. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6145. st_current_set(i, tmp_motor[i]);
  6146. /*MYSERIAL.print(int(i));
  6147. SERIAL_ECHOPGM(": ");
  6148. MYSERIAL.println(tmp_motor[i]);*/
  6149. }
  6150. }
  6151. }
  6152. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6153. void get_coordinates()
  6154. {
  6155. bool seen[4]={false,false,false,false};
  6156. for(int8_t i=0; i < NUM_AXIS; i++) {
  6157. if(code_seen(axis_codes[i]))
  6158. {
  6159. bool relative = axis_relative_modes[i] || relative_mode;
  6160. destination[i] = (float)code_value();
  6161. if (i == E_AXIS) {
  6162. float emult = extruder_multiplier[active_extruder];
  6163. if (emult != 1.) {
  6164. if (! relative) {
  6165. destination[i] -= current_position[i];
  6166. relative = true;
  6167. }
  6168. destination[i] *= emult;
  6169. }
  6170. }
  6171. if (relative)
  6172. destination[i] += current_position[i];
  6173. seen[i]=true;
  6174. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6175. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6176. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6177. }
  6178. else destination[i] = current_position[i]; //Are these else lines really needed?
  6179. }
  6180. if(code_seen('F')) {
  6181. next_feedrate = code_value();
  6182. #ifdef MAX_SILENT_FEEDRATE
  6183. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6184. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6185. #endif //MAX_SILENT_FEEDRATE
  6186. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6187. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6188. {
  6189. // float e_max_speed =
  6190. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6191. }
  6192. }
  6193. }
  6194. void get_arc_coordinates()
  6195. {
  6196. #ifdef SF_ARC_FIX
  6197. bool relative_mode_backup = relative_mode;
  6198. relative_mode = true;
  6199. #endif
  6200. get_coordinates();
  6201. #ifdef SF_ARC_FIX
  6202. relative_mode=relative_mode_backup;
  6203. #endif
  6204. if(code_seen('I')) {
  6205. offset[0] = code_value();
  6206. }
  6207. else {
  6208. offset[0] = 0.0;
  6209. }
  6210. if(code_seen('J')) {
  6211. offset[1] = code_value();
  6212. }
  6213. else {
  6214. offset[1] = 0.0;
  6215. }
  6216. }
  6217. void clamp_to_software_endstops(float target[3])
  6218. {
  6219. #ifdef DEBUG_DISABLE_SWLIMITS
  6220. return;
  6221. #endif //DEBUG_DISABLE_SWLIMITS
  6222. world2machine_clamp(target[0], target[1]);
  6223. // Clamp the Z coordinate.
  6224. if (min_software_endstops) {
  6225. float negative_z_offset = 0;
  6226. #ifdef ENABLE_AUTO_BED_LEVELING
  6227. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6228. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6229. #endif
  6230. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6231. }
  6232. if (max_software_endstops) {
  6233. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6234. }
  6235. }
  6236. #ifdef MESH_BED_LEVELING
  6237. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6238. float dx = x - current_position[X_AXIS];
  6239. float dy = y - current_position[Y_AXIS];
  6240. float dz = z - current_position[Z_AXIS];
  6241. int n_segments = 0;
  6242. if (mbl.active) {
  6243. float len = abs(dx) + abs(dy);
  6244. if (len > 0)
  6245. // Split to 3cm segments or shorter.
  6246. n_segments = int(ceil(len / 30.f));
  6247. }
  6248. if (n_segments > 1) {
  6249. float de = e - current_position[E_AXIS];
  6250. for (int i = 1; i < n_segments; ++ i) {
  6251. float t = float(i) / float(n_segments);
  6252. if (saved_printing || (mbl.active == false)) return;
  6253. plan_buffer_line(
  6254. current_position[X_AXIS] + t * dx,
  6255. current_position[Y_AXIS] + t * dy,
  6256. current_position[Z_AXIS] + t * dz,
  6257. current_position[E_AXIS] + t * de,
  6258. feed_rate, extruder);
  6259. }
  6260. }
  6261. // The rest of the path.
  6262. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6263. current_position[X_AXIS] = x;
  6264. current_position[Y_AXIS] = y;
  6265. current_position[Z_AXIS] = z;
  6266. current_position[E_AXIS] = e;
  6267. }
  6268. #endif // MESH_BED_LEVELING
  6269. void prepare_move()
  6270. {
  6271. clamp_to_software_endstops(destination);
  6272. previous_millis_cmd = millis();
  6273. // Do not use feedmultiply for E or Z only moves
  6274. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6275. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6276. }
  6277. else {
  6278. #ifdef MESH_BED_LEVELING
  6279. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6280. #else
  6281. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6282. #endif
  6283. }
  6284. for(int8_t i=0; i < NUM_AXIS; i++) {
  6285. current_position[i] = destination[i];
  6286. }
  6287. }
  6288. void prepare_arc_move(char isclockwise) {
  6289. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6290. // Trace the arc
  6291. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6292. // As far as the parser is concerned, the position is now == target. In reality the
  6293. // motion control system might still be processing the action and the real tool position
  6294. // in any intermediate location.
  6295. for(int8_t i=0; i < NUM_AXIS; i++) {
  6296. current_position[i] = destination[i];
  6297. }
  6298. previous_millis_cmd = millis();
  6299. }
  6300. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6301. #if defined(FAN_PIN)
  6302. #if CONTROLLERFAN_PIN == FAN_PIN
  6303. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6304. #endif
  6305. #endif
  6306. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6307. unsigned long lastMotorCheck = 0;
  6308. void controllerFan()
  6309. {
  6310. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6311. {
  6312. lastMotorCheck = millis();
  6313. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6314. #if EXTRUDERS > 2
  6315. || !READ(E2_ENABLE_PIN)
  6316. #endif
  6317. #if EXTRUDER > 1
  6318. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6319. || !READ(X2_ENABLE_PIN)
  6320. #endif
  6321. || !READ(E1_ENABLE_PIN)
  6322. #endif
  6323. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6324. {
  6325. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6326. }
  6327. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6328. {
  6329. digitalWrite(CONTROLLERFAN_PIN, 0);
  6330. analogWrite(CONTROLLERFAN_PIN, 0);
  6331. }
  6332. else
  6333. {
  6334. // allows digital or PWM fan output to be used (see M42 handling)
  6335. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6336. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6337. }
  6338. }
  6339. }
  6340. #endif
  6341. #ifdef TEMP_STAT_LEDS
  6342. static bool blue_led = false;
  6343. static bool red_led = false;
  6344. static uint32_t stat_update = 0;
  6345. void handle_status_leds(void) {
  6346. float max_temp = 0.0;
  6347. if(millis() > stat_update) {
  6348. stat_update += 500; // Update every 0.5s
  6349. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6350. max_temp = max(max_temp, degHotend(cur_extruder));
  6351. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6352. }
  6353. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6354. max_temp = max(max_temp, degTargetBed());
  6355. max_temp = max(max_temp, degBed());
  6356. #endif
  6357. if((max_temp > 55.0) && (red_led == false)) {
  6358. digitalWrite(STAT_LED_RED, 1);
  6359. digitalWrite(STAT_LED_BLUE, 0);
  6360. red_led = true;
  6361. blue_led = false;
  6362. }
  6363. if((max_temp < 54.0) && (blue_led == false)) {
  6364. digitalWrite(STAT_LED_RED, 0);
  6365. digitalWrite(STAT_LED_BLUE, 1);
  6366. red_led = false;
  6367. blue_led = true;
  6368. }
  6369. }
  6370. }
  6371. #endif
  6372. #ifdef SAFETYTIMER
  6373. /**
  6374. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6375. *
  6376. * Full screen blocking notification message is shown after heater turning off.
  6377. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6378. * damage print.
  6379. *
  6380. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6381. */
  6382. static void handleSafetyTimer()
  6383. {
  6384. #if (EXTRUDERS > 1)
  6385. #error Implemented only for one extruder.
  6386. #endif //(EXTRUDERS > 1)
  6387. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6388. {
  6389. safetyTimer.stop();
  6390. }
  6391. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6392. {
  6393. safetyTimer.start();
  6394. }
  6395. else if (safetyTimer.expired(safetytimer_inactive_time))
  6396. {
  6397. setTargetBed(0);
  6398. setAllTargetHotends(0);
  6399. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6400. }
  6401. }
  6402. #endif //SAFETYTIMER
  6403. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6404. {
  6405. #ifdef FILAMENT_SENSOR
  6406. if (mcode_in_progress != 600) //M600 not in progress
  6407. {
  6408. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6409. {
  6410. if (fsensor_check_autoload())
  6411. {
  6412. fsensor_autoload_check_stop();
  6413. if (degHotend0() > EXTRUDE_MINTEMP)
  6414. {
  6415. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  6416. tone(BEEPER, 1000);
  6417. delay_keep_alive(50);
  6418. noTone(BEEPER);
  6419. loading_flag = true;
  6420. enquecommand_front_P((PSTR("M701")));
  6421. }
  6422. else
  6423. {
  6424. lcd_update_enable(false);
  6425. lcd_clear();
  6426. lcd_set_cursor(0, 0);
  6427. lcd_puts_P(_T(MSG_ERROR));
  6428. lcd_set_cursor(0, 2);
  6429. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6430. delay(2000);
  6431. lcd_clear();
  6432. lcd_update_enable(true);
  6433. }
  6434. }
  6435. }
  6436. else
  6437. fsensor_autoload_check_stop();
  6438. }
  6439. #endif //FILAMENT_SENSOR
  6440. #ifdef SAFETYTIMER
  6441. handleSafetyTimer();
  6442. #endif //SAFETYTIMER
  6443. #if defined(KILL_PIN) && KILL_PIN > -1
  6444. static int killCount = 0; // make the inactivity button a bit less responsive
  6445. const int KILL_DELAY = 10000;
  6446. #endif
  6447. if(buflen < (BUFSIZE-1)){
  6448. get_command();
  6449. }
  6450. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6451. if(max_inactive_time)
  6452. kill(_n(""), 4);
  6453. if(stepper_inactive_time) {
  6454. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6455. {
  6456. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6457. disable_x();
  6458. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6459. disable_y();
  6460. disable_z();
  6461. disable_e0();
  6462. disable_e1();
  6463. disable_e2();
  6464. }
  6465. }
  6466. }
  6467. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6468. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6469. {
  6470. chdkActive = false;
  6471. WRITE(CHDK, LOW);
  6472. }
  6473. #endif
  6474. #if defined(KILL_PIN) && KILL_PIN > -1
  6475. // Check if the kill button was pressed and wait just in case it was an accidental
  6476. // key kill key press
  6477. // -------------------------------------------------------------------------------
  6478. if( 0 == READ(KILL_PIN) )
  6479. {
  6480. killCount++;
  6481. }
  6482. else if (killCount > 0)
  6483. {
  6484. killCount--;
  6485. }
  6486. // Exceeded threshold and we can confirm that it was not accidental
  6487. // KILL the machine
  6488. // ----------------------------------------------------------------
  6489. if ( killCount >= KILL_DELAY)
  6490. {
  6491. kill("", 5);
  6492. }
  6493. #endif
  6494. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6495. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6496. #endif
  6497. #ifdef EXTRUDER_RUNOUT_PREVENT
  6498. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6499. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6500. {
  6501. bool oldstatus=READ(E0_ENABLE_PIN);
  6502. enable_e0();
  6503. float oldepos=current_position[E_AXIS];
  6504. float oldedes=destination[E_AXIS];
  6505. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6506. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6507. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6508. current_position[E_AXIS]=oldepos;
  6509. destination[E_AXIS]=oldedes;
  6510. plan_set_e_position(oldepos);
  6511. previous_millis_cmd=millis();
  6512. st_synchronize();
  6513. WRITE(E0_ENABLE_PIN,oldstatus);
  6514. }
  6515. #endif
  6516. #ifdef TEMP_STAT_LEDS
  6517. handle_status_leds();
  6518. #endif
  6519. check_axes_activity();
  6520. }
  6521. void kill(const char *full_screen_message, unsigned char id)
  6522. {
  6523. printf_P(_N("KILL: %d\n"), id);
  6524. //return;
  6525. cli(); // Stop interrupts
  6526. disable_heater();
  6527. disable_x();
  6528. // SERIAL_ECHOLNPGM("kill - disable Y");
  6529. disable_y();
  6530. disable_z();
  6531. disable_e0();
  6532. disable_e1();
  6533. disable_e2();
  6534. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6535. pinMode(PS_ON_PIN,INPUT);
  6536. #endif
  6537. SERIAL_ERROR_START;
  6538. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6539. if (full_screen_message != NULL) {
  6540. SERIAL_ERRORLNRPGM(full_screen_message);
  6541. lcd_display_message_fullscreen_P(full_screen_message);
  6542. } else {
  6543. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6544. }
  6545. // FMC small patch to update the LCD before ending
  6546. sei(); // enable interrupts
  6547. for ( int i=5; i--; lcd_update(0))
  6548. {
  6549. delay(200);
  6550. }
  6551. cli(); // disable interrupts
  6552. suicide();
  6553. while(1)
  6554. {
  6555. #ifdef WATCHDOG
  6556. wdt_reset();
  6557. #endif //WATCHDOG
  6558. /* Intentionally left empty */
  6559. } // Wait for reset
  6560. }
  6561. void Stop()
  6562. {
  6563. disable_heater();
  6564. if(Stopped == false) {
  6565. Stopped = true;
  6566. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6567. SERIAL_ERROR_START;
  6568. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6569. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6570. }
  6571. }
  6572. bool IsStopped() { return Stopped; };
  6573. #ifdef FAST_PWM_FAN
  6574. void setPwmFrequency(uint8_t pin, int val)
  6575. {
  6576. val &= 0x07;
  6577. switch(digitalPinToTimer(pin))
  6578. {
  6579. #if defined(TCCR0A)
  6580. case TIMER0A:
  6581. case TIMER0B:
  6582. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6583. // TCCR0B |= val;
  6584. break;
  6585. #endif
  6586. #if defined(TCCR1A)
  6587. case TIMER1A:
  6588. case TIMER1B:
  6589. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6590. // TCCR1B |= val;
  6591. break;
  6592. #endif
  6593. #if defined(TCCR2)
  6594. case TIMER2:
  6595. case TIMER2:
  6596. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6597. TCCR2 |= val;
  6598. break;
  6599. #endif
  6600. #if defined(TCCR2A)
  6601. case TIMER2A:
  6602. case TIMER2B:
  6603. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6604. TCCR2B |= val;
  6605. break;
  6606. #endif
  6607. #if defined(TCCR3A)
  6608. case TIMER3A:
  6609. case TIMER3B:
  6610. case TIMER3C:
  6611. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6612. TCCR3B |= val;
  6613. break;
  6614. #endif
  6615. #if defined(TCCR4A)
  6616. case TIMER4A:
  6617. case TIMER4B:
  6618. case TIMER4C:
  6619. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6620. TCCR4B |= val;
  6621. break;
  6622. #endif
  6623. #if defined(TCCR5A)
  6624. case TIMER5A:
  6625. case TIMER5B:
  6626. case TIMER5C:
  6627. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6628. TCCR5B |= val;
  6629. break;
  6630. #endif
  6631. }
  6632. }
  6633. #endif //FAST_PWM_FAN
  6634. bool setTargetedHotend(int code){
  6635. tmp_extruder = active_extruder;
  6636. if(code_seen('T')) {
  6637. tmp_extruder = code_value();
  6638. if(tmp_extruder >= EXTRUDERS) {
  6639. SERIAL_ECHO_START;
  6640. switch(code){
  6641. case 104:
  6642. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6643. break;
  6644. case 105:
  6645. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6646. break;
  6647. case 109:
  6648. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6649. break;
  6650. case 218:
  6651. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6652. break;
  6653. case 221:
  6654. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6655. break;
  6656. }
  6657. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6658. return true;
  6659. }
  6660. }
  6661. return false;
  6662. }
  6663. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6664. {
  6665. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6666. {
  6667. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6668. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6669. }
  6670. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6671. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6672. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6673. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6674. total_filament_used = 0;
  6675. }
  6676. float calculate_extruder_multiplier(float diameter) {
  6677. float out = 1.f;
  6678. if (volumetric_enabled && diameter > 0.f) {
  6679. float area = M_PI * diameter * diameter * 0.25;
  6680. out = 1.f / area;
  6681. }
  6682. if (extrudemultiply != 100)
  6683. out *= float(extrudemultiply) * 0.01f;
  6684. return out;
  6685. }
  6686. void calculate_extruder_multipliers() {
  6687. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6688. #if EXTRUDERS > 1
  6689. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6690. #if EXTRUDERS > 2
  6691. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6692. #endif
  6693. #endif
  6694. }
  6695. void delay_keep_alive(unsigned int ms)
  6696. {
  6697. for (;;) {
  6698. manage_heater();
  6699. // Manage inactivity, but don't disable steppers on timeout.
  6700. manage_inactivity(true);
  6701. lcd_update(0);
  6702. if (ms == 0)
  6703. break;
  6704. else if (ms >= 50) {
  6705. delay(50);
  6706. ms -= 50;
  6707. } else {
  6708. delay(ms);
  6709. ms = 0;
  6710. }
  6711. }
  6712. }
  6713. void wait_for_heater(long codenum) {
  6714. #ifdef TEMP_RESIDENCY_TIME
  6715. long residencyStart;
  6716. residencyStart = -1;
  6717. /* continue to loop until we have reached the target temp
  6718. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6719. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6720. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6721. #else
  6722. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6723. #endif //TEMP_RESIDENCY_TIME
  6724. if ((millis() - codenum) > 1000UL)
  6725. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6726. if (!farm_mode) {
  6727. SERIAL_PROTOCOLPGM("T:");
  6728. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6729. SERIAL_PROTOCOLPGM(" E:");
  6730. SERIAL_PROTOCOL((int)tmp_extruder);
  6731. #ifdef TEMP_RESIDENCY_TIME
  6732. SERIAL_PROTOCOLPGM(" W:");
  6733. if (residencyStart > -1)
  6734. {
  6735. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6736. SERIAL_PROTOCOLLN(codenum);
  6737. }
  6738. else
  6739. {
  6740. SERIAL_PROTOCOLLN("?");
  6741. }
  6742. }
  6743. #else
  6744. SERIAL_PROTOCOLLN("");
  6745. #endif
  6746. codenum = millis();
  6747. }
  6748. manage_heater();
  6749. manage_inactivity();
  6750. lcd_update(0);
  6751. #ifdef TEMP_RESIDENCY_TIME
  6752. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6753. or when current temp falls outside the hysteresis after target temp was reached */
  6754. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6755. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6756. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6757. {
  6758. residencyStart = millis();
  6759. }
  6760. #endif //TEMP_RESIDENCY_TIME
  6761. }
  6762. }
  6763. void check_babystep() {
  6764. int babystep_z;
  6765. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6766. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6767. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6768. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6769. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6770. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6771. lcd_update_enable(true);
  6772. }
  6773. }
  6774. #ifdef DIS
  6775. void d_setup()
  6776. {
  6777. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6778. pinMode(D_DATA, INPUT_PULLUP);
  6779. pinMode(D_REQUIRE, OUTPUT);
  6780. digitalWrite(D_REQUIRE, HIGH);
  6781. }
  6782. float d_ReadData()
  6783. {
  6784. int digit[13];
  6785. String mergeOutput;
  6786. float output;
  6787. digitalWrite(D_REQUIRE, HIGH);
  6788. for (int i = 0; i<13; i++)
  6789. {
  6790. for (int j = 0; j < 4; j++)
  6791. {
  6792. while (digitalRead(D_DATACLOCK) == LOW) {}
  6793. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6794. bitWrite(digit[i], j, digitalRead(D_DATA));
  6795. }
  6796. }
  6797. digitalWrite(D_REQUIRE, LOW);
  6798. mergeOutput = "";
  6799. output = 0;
  6800. for (int r = 5; r <= 10; r++) //Merge digits
  6801. {
  6802. mergeOutput += digit[r];
  6803. }
  6804. output = mergeOutput.toFloat();
  6805. if (digit[4] == 8) //Handle sign
  6806. {
  6807. output *= -1;
  6808. }
  6809. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6810. {
  6811. output /= 10;
  6812. }
  6813. return output;
  6814. }
  6815. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6816. int t1 = 0;
  6817. int t_delay = 0;
  6818. int digit[13];
  6819. int m;
  6820. char str[3];
  6821. //String mergeOutput;
  6822. char mergeOutput[15];
  6823. float output;
  6824. int mesh_point = 0; //index number of calibration point
  6825. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6826. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6827. float mesh_home_z_search = 4;
  6828. float row[x_points_num];
  6829. int ix = 0;
  6830. int iy = 0;
  6831. const char* filename_wldsd = "wldsd.txt";
  6832. char data_wldsd[70];
  6833. char numb_wldsd[10];
  6834. d_setup();
  6835. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6836. // We don't know where we are! HOME!
  6837. // Push the commands to the front of the message queue in the reverse order!
  6838. // There shall be always enough space reserved for these commands.
  6839. repeatcommand_front(); // repeat G80 with all its parameters
  6840. enquecommand_front_P((PSTR("G28 W0")));
  6841. enquecommand_front_P((PSTR("G1 Z5")));
  6842. return;
  6843. }
  6844. bool custom_message_old = custom_message;
  6845. unsigned int custom_message_type_old = custom_message_type;
  6846. unsigned int custom_message_state_old = custom_message_state;
  6847. custom_message = true;
  6848. custom_message_type = 1;
  6849. custom_message_state = (x_points_num * y_points_num) + 10;
  6850. lcd_update(1);
  6851. mbl.reset();
  6852. babystep_undo();
  6853. card.openFile(filename_wldsd, false);
  6854. current_position[Z_AXIS] = mesh_home_z_search;
  6855. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6856. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6857. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6858. setup_for_endstop_move(false);
  6859. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6860. SERIAL_PROTOCOL(x_points_num);
  6861. SERIAL_PROTOCOLPGM(",");
  6862. SERIAL_PROTOCOL(y_points_num);
  6863. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6864. SERIAL_PROTOCOL(mesh_home_z_search);
  6865. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6866. SERIAL_PROTOCOL(x_dimension);
  6867. SERIAL_PROTOCOLPGM(",");
  6868. SERIAL_PROTOCOL(y_dimension);
  6869. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6870. while (mesh_point != x_points_num * y_points_num) {
  6871. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6872. iy = mesh_point / x_points_num;
  6873. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6874. float z0 = 0.f;
  6875. current_position[Z_AXIS] = mesh_home_z_search;
  6876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6877. st_synchronize();
  6878. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6879. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6881. st_synchronize();
  6882. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6883. break;
  6884. card.closefile();
  6885. }
  6886. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6887. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6888. //strcat(data_wldsd, numb_wldsd);
  6889. //MYSERIAL.println(data_wldsd);
  6890. //delay(1000);
  6891. //delay(3000);
  6892. //t1 = millis();
  6893. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6894. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6895. memset(digit, 0, sizeof(digit));
  6896. //cli();
  6897. digitalWrite(D_REQUIRE, LOW);
  6898. for (int i = 0; i<13; i++)
  6899. {
  6900. //t1 = millis();
  6901. for (int j = 0; j < 4; j++)
  6902. {
  6903. while (digitalRead(D_DATACLOCK) == LOW) {}
  6904. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6905. bitWrite(digit[i], j, digitalRead(D_DATA));
  6906. }
  6907. //t_delay = (millis() - t1);
  6908. //SERIAL_PROTOCOLPGM(" ");
  6909. //SERIAL_PROTOCOL_F(t_delay, 5);
  6910. //SERIAL_PROTOCOLPGM(" ");
  6911. }
  6912. //sei();
  6913. digitalWrite(D_REQUIRE, HIGH);
  6914. mergeOutput[0] = '\0';
  6915. output = 0;
  6916. for (int r = 5; r <= 10; r++) //Merge digits
  6917. {
  6918. sprintf(str, "%d", digit[r]);
  6919. strcat(mergeOutput, str);
  6920. }
  6921. output = atof(mergeOutput);
  6922. if (digit[4] == 8) //Handle sign
  6923. {
  6924. output *= -1;
  6925. }
  6926. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6927. {
  6928. output *= 0.1;
  6929. }
  6930. //output = d_ReadData();
  6931. //row[ix] = current_position[Z_AXIS];
  6932. memset(data_wldsd, 0, sizeof(data_wldsd));
  6933. for (int i = 0; i <3; i++) {
  6934. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6935. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6936. strcat(data_wldsd, numb_wldsd);
  6937. strcat(data_wldsd, ";");
  6938. }
  6939. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6940. dtostrf(output, 8, 5, numb_wldsd);
  6941. strcat(data_wldsd, numb_wldsd);
  6942. //strcat(data_wldsd, ";");
  6943. card.write_command(data_wldsd);
  6944. //row[ix] = d_ReadData();
  6945. row[ix] = output; // current_position[Z_AXIS];
  6946. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6947. for (int i = 0; i < x_points_num; i++) {
  6948. SERIAL_PROTOCOLPGM(" ");
  6949. SERIAL_PROTOCOL_F(row[i], 5);
  6950. }
  6951. SERIAL_PROTOCOLPGM("\n");
  6952. }
  6953. custom_message_state--;
  6954. mesh_point++;
  6955. lcd_update(1);
  6956. }
  6957. card.closefile();
  6958. }
  6959. #endif
  6960. void temp_compensation_start() {
  6961. custom_message = true;
  6962. custom_message_type = 5;
  6963. custom_message_state = PINDA_HEAT_T + 1;
  6964. lcd_update(2);
  6965. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6966. current_position[E_AXIS] -= default_retraction;
  6967. }
  6968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6969. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6970. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6971. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6973. st_synchronize();
  6974. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6975. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6976. delay_keep_alive(1000);
  6977. custom_message_state = PINDA_HEAT_T - i;
  6978. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6979. else lcd_update(1);
  6980. }
  6981. custom_message_type = 0;
  6982. custom_message_state = 0;
  6983. custom_message = false;
  6984. }
  6985. void temp_compensation_apply() {
  6986. int i_add;
  6987. int z_shift = 0;
  6988. float z_shift_mm;
  6989. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6990. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6991. i_add = (target_temperature_bed - 60) / 10;
  6992. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6993. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6994. }else {
  6995. //interpolation
  6996. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6997. }
  6998. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  6999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7000. st_synchronize();
  7001. plan_set_z_position(current_position[Z_AXIS]);
  7002. }
  7003. else {
  7004. //we have no temp compensation data
  7005. }
  7006. }
  7007. float temp_comp_interpolation(float inp_temperature) {
  7008. //cubic spline interpolation
  7009. int n, i, j;
  7010. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7011. int shift[10];
  7012. int temp_C[10];
  7013. n = 6; //number of measured points
  7014. shift[0] = 0;
  7015. for (i = 0; i < n; i++) {
  7016. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7017. temp_C[i] = 50 + i * 10; //temperature in C
  7018. #ifdef PINDA_THERMISTOR
  7019. temp_C[i] = 35 + i * 5; //temperature in C
  7020. #else
  7021. temp_C[i] = 50 + i * 10; //temperature in C
  7022. #endif
  7023. x[i] = (float)temp_C[i];
  7024. f[i] = (float)shift[i];
  7025. }
  7026. if (inp_temperature < x[0]) return 0;
  7027. for (i = n - 1; i>0; i--) {
  7028. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7029. h[i - 1] = x[i] - x[i - 1];
  7030. }
  7031. //*********** formation of h, s , f matrix **************
  7032. for (i = 1; i<n - 1; i++) {
  7033. m[i][i] = 2 * (h[i - 1] + h[i]);
  7034. if (i != 1) {
  7035. m[i][i - 1] = h[i - 1];
  7036. m[i - 1][i] = h[i - 1];
  7037. }
  7038. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7039. }
  7040. //*********** forward elimination **************
  7041. for (i = 1; i<n - 2; i++) {
  7042. temp = (m[i + 1][i] / m[i][i]);
  7043. for (j = 1; j <= n - 1; j++)
  7044. m[i + 1][j] -= temp*m[i][j];
  7045. }
  7046. //*********** backward substitution *********
  7047. for (i = n - 2; i>0; i--) {
  7048. sum = 0;
  7049. for (j = i; j <= n - 2; j++)
  7050. sum += m[i][j] * s[j];
  7051. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7052. }
  7053. for (i = 0; i<n - 1; i++)
  7054. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7055. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7056. b = s[i] / 2;
  7057. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7058. d = f[i];
  7059. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7060. }
  7061. return sum;
  7062. }
  7063. #ifdef PINDA_THERMISTOR
  7064. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7065. {
  7066. if (!temp_cal_active) return 0;
  7067. if (!calibration_status_pinda()) return 0;
  7068. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7069. }
  7070. #endif //PINDA_THERMISTOR
  7071. void long_pause() //long pause print
  7072. {
  7073. st_synchronize();
  7074. //save currently set parameters to global variables
  7075. saved_feedmultiply = feedmultiply;
  7076. HotendTempBckp = degTargetHotend(active_extruder);
  7077. fanSpeedBckp = fanSpeed;
  7078. start_pause_print = millis();
  7079. //save position
  7080. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7081. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7082. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7083. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7084. //retract
  7085. current_position[E_AXIS] -= default_retraction;
  7086. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7087. //lift z
  7088. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7089. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7091. //set nozzle target temperature to 0
  7092. setAllTargetHotends(0);
  7093. //Move XY to side
  7094. current_position[X_AXIS] = X_PAUSE_POS;
  7095. current_position[Y_AXIS] = Y_PAUSE_POS;
  7096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7097. // Turn off the print fan
  7098. fanSpeed = 0;
  7099. st_synchronize();
  7100. }
  7101. void serialecho_temperatures() {
  7102. float tt = degHotend(active_extruder);
  7103. SERIAL_PROTOCOLPGM("T:");
  7104. SERIAL_PROTOCOL(tt);
  7105. SERIAL_PROTOCOLPGM(" E:");
  7106. SERIAL_PROTOCOL((int)active_extruder);
  7107. SERIAL_PROTOCOLPGM(" B:");
  7108. SERIAL_PROTOCOL_F(degBed(), 1);
  7109. SERIAL_PROTOCOLLN("");
  7110. }
  7111. extern uint32_t sdpos_atomic;
  7112. #ifdef UVLO_SUPPORT
  7113. void uvlo_()
  7114. {
  7115. unsigned long time_start = millis();
  7116. bool sd_print = card.sdprinting;
  7117. // Conserve power as soon as possible.
  7118. disable_x();
  7119. disable_y();
  7120. #ifdef TMC2130
  7121. tmc2130_set_current_h(Z_AXIS, 20);
  7122. tmc2130_set_current_r(Z_AXIS, 20);
  7123. tmc2130_set_current_h(E_AXIS, 20);
  7124. tmc2130_set_current_r(E_AXIS, 20);
  7125. #endif //TMC2130
  7126. // Indicate that the interrupt has been triggered.
  7127. // SERIAL_ECHOLNPGM("UVLO");
  7128. // Read out the current Z motor microstep counter. This will be later used
  7129. // for reaching the zero full step before powering off.
  7130. uint16_t z_microsteps = 0;
  7131. #ifdef TMC2130
  7132. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7133. #endif //TMC2130
  7134. // Calculate the file position, from which to resume this print.
  7135. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7136. {
  7137. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7138. sd_position -= sdlen_planner;
  7139. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7140. sd_position -= sdlen_cmdqueue;
  7141. if (sd_position < 0) sd_position = 0;
  7142. }
  7143. // Backup the feedrate in mm/min.
  7144. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7145. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7146. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7147. // are in action.
  7148. planner_abort_hard();
  7149. // Store the current extruder position.
  7150. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7151. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7152. // Clean the input command queue.
  7153. cmdqueue_reset();
  7154. card.sdprinting = false;
  7155. // card.closefile();
  7156. // Enable stepper driver interrupt to move Z axis.
  7157. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7158. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7159. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7160. sei();
  7161. plan_buffer_line(
  7162. current_position[X_AXIS],
  7163. current_position[Y_AXIS],
  7164. current_position[Z_AXIS],
  7165. current_position[E_AXIS] - default_retraction,
  7166. 95, active_extruder);
  7167. st_synchronize();
  7168. disable_e0();
  7169. plan_buffer_line(
  7170. current_position[X_AXIS],
  7171. current_position[Y_AXIS],
  7172. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7173. current_position[E_AXIS] - default_retraction,
  7174. 40, active_extruder);
  7175. st_synchronize();
  7176. disable_e0();
  7177. plan_buffer_line(
  7178. current_position[X_AXIS],
  7179. current_position[Y_AXIS],
  7180. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7181. current_position[E_AXIS] - default_retraction,
  7182. 40, active_extruder);
  7183. st_synchronize();
  7184. disable_e0();
  7185. disable_z();
  7186. // Move Z up to the next 0th full step.
  7187. // Write the file position.
  7188. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7189. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7190. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7191. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7192. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7193. // Scale the z value to 1u resolution.
  7194. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7195. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7196. }
  7197. // Read out the current Z motor microstep counter. This will be later used
  7198. // for reaching the zero full step before powering off.
  7199. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7200. // Store the current position.
  7201. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7202. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7203. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7204. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7205. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7206. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7207. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7208. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7209. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7210. #if EXTRUDERS > 1
  7211. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7212. #if EXTRUDERS > 2
  7213. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7214. #endif
  7215. #endif
  7216. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7217. // Finaly store the "power outage" flag.
  7218. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7219. st_synchronize();
  7220. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7221. disable_z();
  7222. // Increment power failure counter
  7223. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7224. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7225. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7226. #if 0
  7227. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7228. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7229. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7230. st_synchronize();
  7231. #endif
  7232. wdt_enable(WDTO_500MS);
  7233. WRITE(BEEPER,HIGH);
  7234. while(1)
  7235. ;
  7236. }
  7237. void uvlo_tiny()
  7238. {
  7239. uint16_t z_microsteps=0;
  7240. // Conserve power as soon as possible.
  7241. disable_x();
  7242. disable_y();
  7243. disable_e0();
  7244. #ifdef TMC2130
  7245. tmc2130_set_current_h(Z_AXIS, 20);
  7246. tmc2130_set_current_r(Z_AXIS, 20);
  7247. #endif //TMC2130
  7248. // Read out the current Z motor microstep counter
  7249. #ifdef TMC2130
  7250. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7251. #endif //TMC2130
  7252. planner_abort_hard();
  7253. sei();
  7254. plan_buffer_line(
  7255. current_position[X_AXIS],
  7256. current_position[Y_AXIS],
  7257. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7258. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7259. current_position[E_AXIS],
  7260. 40, active_extruder);
  7261. st_synchronize();
  7262. disable_z();
  7263. // Finaly store the "power outage" flag.
  7264. //if(sd_print)
  7265. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7266. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7267. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7268. // Increment power failure counter
  7269. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7270. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7271. wdt_enable(WDTO_500MS);
  7272. WRITE(BEEPER,HIGH);
  7273. while(1)
  7274. ;
  7275. }
  7276. #endif //UVLO_SUPPORT
  7277. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7278. void setup_fan_interrupt() {
  7279. //INT7
  7280. DDRE &= ~(1 << 7); //input pin
  7281. PORTE &= ~(1 << 7); //no internal pull-up
  7282. //start with sensing rising edge
  7283. EICRB &= ~(1 << 6);
  7284. EICRB |= (1 << 7);
  7285. //enable INT7 interrupt
  7286. EIMSK |= (1 << 7);
  7287. }
  7288. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7289. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7290. ISR(INT7_vect) {
  7291. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7292. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7293. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7294. t_fan_rising_edge = millis_nc();
  7295. }
  7296. else { //interrupt was triggered by falling edge
  7297. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7298. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7299. }
  7300. }
  7301. EICRB ^= (1 << 6); //change edge
  7302. }
  7303. #endif
  7304. #ifdef UVLO_SUPPORT
  7305. void setup_uvlo_interrupt() {
  7306. DDRE &= ~(1 << 4); //input pin
  7307. PORTE &= ~(1 << 4); //no internal pull-up
  7308. //sensing falling edge
  7309. EICRB |= (1 << 0);
  7310. EICRB &= ~(1 << 1);
  7311. //enable INT4 interrupt
  7312. EIMSK |= (1 << 4);
  7313. }
  7314. ISR(INT4_vect) {
  7315. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7316. SERIAL_ECHOLNPGM("INT4");
  7317. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7318. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7319. }
  7320. void recover_print(uint8_t automatic) {
  7321. char cmd[30];
  7322. lcd_update_enable(true);
  7323. lcd_update(2);
  7324. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7325. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7326. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7327. // Lift the print head, so one may remove the excess priming material.
  7328. if(!bTiny&&(current_position[Z_AXIS]<25))
  7329. enquecommand_P(PSTR("G1 Z25 F800"));
  7330. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7331. enquecommand_P(PSTR("G28 X Y"));
  7332. // Set the target bed and nozzle temperatures and wait.
  7333. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7334. enquecommand(cmd);
  7335. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7336. enquecommand(cmd);
  7337. enquecommand_P(PSTR("M83")); //E axis relative mode
  7338. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7339. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7340. if(automatic == 0){
  7341. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7342. }
  7343. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7344. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7345. // Restart the print.
  7346. restore_print_from_eeprom();
  7347. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7348. }
  7349. void recover_machine_state_after_power_panic(bool bTiny)
  7350. {
  7351. char cmd[30];
  7352. // 1) Recover the logical cordinates at the time of the power panic.
  7353. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7354. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7355. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7356. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7357. // The current position after power panic is moved to the next closest 0th full step.
  7358. if(bTiny)
  7359. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7360. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7361. else
  7362. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7363. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7364. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7365. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7366. sprintf_P(cmd, PSTR("G92 E"));
  7367. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7368. enquecommand(cmd);
  7369. }
  7370. memcpy(destination, current_position, sizeof(destination));
  7371. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7372. print_world_coordinates();
  7373. // 2) Initialize the logical to physical coordinate system transformation.
  7374. world2machine_initialize();
  7375. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7376. mbl.active = false;
  7377. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7378. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7379. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7380. // Scale the z value to 10u resolution.
  7381. int16_t v;
  7382. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7383. if (v != 0)
  7384. mbl.active = true;
  7385. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7386. }
  7387. if (mbl.active)
  7388. mbl.upsample_3x3();
  7389. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7390. // print_mesh_bed_leveling_table();
  7391. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7392. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7393. babystep_load();
  7394. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7395. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7396. // 6) Power up the motors, mark their positions as known.
  7397. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7398. axis_known_position[X_AXIS] = true; enable_x();
  7399. axis_known_position[Y_AXIS] = true; enable_y();
  7400. axis_known_position[Z_AXIS] = true; enable_z();
  7401. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7402. print_physical_coordinates();
  7403. // 7) Recover the target temperatures.
  7404. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7405. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7406. // 8) Recover extruder multipilers
  7407. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7408. #if EXTRUDERS > 1
  7409. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7410. #if EXTRUDERS > 2
  7411. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7412. #endif
  7413. #endif
  7414. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7415. }
  7416. void restore_print_from_eeprom() {
  7417. int feedrate_rec;
  7418. uint8_t fan_speed_rec;
  7419. char cmd[30];
  7420. char filename[13];
  7421. uint8_t depth = 0;
  7422. char dir_name[9];
  7423. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7424. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7425. SERIAL_ECHOPGM("Feedrate:");
  7426. MYSERIAL.println(feedrate_rec);
  7427. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7428. MYSERIAL.println(int(depth));
  7429. for (int i = 0; i < depth; i++) {
  7430. for (int j = 0; j < 8; j++) {
  7431. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7432. }
  7433. dir_name[8] = '\0';
  7434. MYSERIAL.println(dir_name);
  7435. strcpy(dir_names[i], dir_name);
  7436. card.chdir(dir_name);
  7437. }
  7438. for (int i = 0; i < 8; i++) {
  7439. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7440. }
  7441. filename[8] = '\0';
  7442. MYSERIAL.print(filename);
  7443. strcat_P(filename, PSTR(".gco"));
  7444. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7445. enquecommand(cmd);
  7446. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7447. SERIAL_ECHOPGM("Position read from eeprom:");
  7448. MYSERIAL.println(position);
  7449. // E axis relative mode.
  7450. enquecommand_P(PSTR("M83"));
  7451. // Move to the XY print position in logical coordinates, where the print has been killed.
  7452. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7453. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7454. strcat_P(cmd, PSTR(" F2000"));
  7455. enquecommand(cmd);
  7456. // Move the Z axis down to the print, in logical coordinates.
  7457. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7458. enquecommand(cmd);
  7459. // Unretract.
  7460. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7461. // Set the feedrate saved at the power panic.
  7462. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7463. enquecommand(cmd);
  7464. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7465. {
  7466. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7467. }
  7468. // Set the fan speed saved at the power panic.
  7469. strcpy_P(cmd, PSTR("M106 S"));
  7470. strcat(cmd, itostr3(int(fan_speed_rec)));
  7471. enquecommand(cmd);
  7472. // Set a position in the file.
  7473. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7474. enquecommand(cmd);
  7475. enquecommand_P(PSTR("G4 S0"));
  7476. enquecommand_P(PSTR("PRUSA uvlo"));
  7477. }
  7478. #endif //UVLO_SUPPORT
  7479. ////////////////////////////////////////////////////////////////////////////////
  7480. // save/restore printing
  7481. void stop_and_save_print_to_ram(float z_move, float e_move)
  7482. {
  7483. if (saved_printing) return;
  7484. #if 0
  7485. unsigned char nplanner_blocks;
  7486. #endif
  7487. unsigned char nlines;
  7488. uint16_t sdlen_planner;
  7489. uint16_t sdlen_cmdqueue;
  7490. cli();
  7491. if (card.sdprinting) {
  7492. #if 0
  7493. nplanner_blocks = number_of_blocks();
  7494. #endif
  7495. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7496. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7497. saved_sdpos -= sdlen_planner;
  7498. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7499. saved_sdpos -= sdlen_cmdqueue;
  7500. saved_printing_type = PRINTING_TYPE_SD;
  7501. }
  7502. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7503. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7504. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7505. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7506. saved_sdpos -= nlines;
  7507. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7508. saved_printing_type = PRINTING_TYPE_USB;
  7509. }
  7510. else {
  7511. //not sd printing nor usb printing
  7512. }
  7513. #if 0
  7514. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7515. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7516. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7517. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7518. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7519. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7520. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7521. {
  7522. card.setIndex(saved_sdpos);
  7523. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7524. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7525. MYSERIAL.print(char(card.get()));
  7526. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7527. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7528. MYSERIAL.print(char(card.get()));
  7529. SERIAL_ECHOLNPGM("End of command buffer");
  7530. }
  7531. {
  7532. // Print the content of the planner buffer, line by line:
  7533. card.setIndex(saved_sdpos);
  7534. int8_t iline = 0;
  7535. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7536. SERIAL_ECHOPGM("Planner line (from file): ");
  7537. MYSERIAL.print(int(iline), DEC);
  7538. SERIAL_ECHOPGM(", length: ");
  7539. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7540. SERIAL_ECHOPGM(", steps: (");
  7541. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7542. SERIAL_ECHOPGM(",");
  7543. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7544. SERIAL_ECHOPGM(",");
  7545. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7546. SERIAL_ECHOPGM(",");
  7547. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7548. SERIAL_ECHOPGM("), events: ");
  7549. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7550. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7551. MYSERIAL.print(char(card.get()));
  7552. }
  7553. }
  7554. {
  7555. // Print the content of the command buffer, line by line:
  7556. int8_t iline = 0;
  7557. union {
  7558. struct {
  7559. char lo;
  7560. char hi;
  7561. } lohi;
  7562. uint16_t value;
  7563. } sdlen_single;
  7564. int _bufindr = bufindr;
  7565. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7566. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7567. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7568. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7569. }
  7570. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7571. MYSERIAL.print(int(iline), DEC);
  7572. SERIAL_ECHOPGM(", type: ");
  7573. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7574. SERIAL_ECHOPGM(", len: ");
  7575. MYSERIAL.println(sdlen_single.value, DEC);
  7576. // Print the content of the buffer line.
  7577. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7578. SERIAL_ECHOPGM("Buffer line (from file): ");
  7579. MYSERIAL.println(int(iline), DEC);
  7580. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7581. MYSERIAL.print(char(card.get()));
  7582. if (-- _buflen == 0)
  7583. break;
  7584. // First skip the current command ID and iterate up to the end of the string.
  7585. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7586. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7587. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7588. // If the end of the buffer was empty,
  7589. if (_bufindr == sizeof(cmdbuffer)) {
  7590. // skip to the start and find the nonzero command.
  7591. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7592. }
  7593. }
  7594. }
  7595. #endif
  7596. #if 0
  7597. saved_feedrate2 = feedrate; //save feedrate
  7598. #else
  7599. // Try to deduce the feedrate from the first block of the planner.
  7600. // Speed is in mm/min.
  7601. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7602. #endif
  7603. planner_abort_hard(); //abort printing
  7604. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7605. saved_active_extruder = active_extruder; //save active_extruder
  7606. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7607. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7608. cmdqueue_reset(); //empty cmdqueue
  7609. card.sdprinting = false;
  7610. // card.closefile();
  7611. saved_printing = true;
  7612. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7613. st_reset_timer();
  7614. sei();
  7615. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7616. #if 1
  7617. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7618. char buf[48];
  7619. // First unretract (relative extrusion)
  7620. if(!saved_extruder_relative_mode){
  7621. strcpy_P(buf, PSTR("M83"));
  7622. enquecommand(buf, false);
  7623. }
  7624. //retract 45mm/s
  7625. strcpy_P(buf, PSTR("G1 E"));
  7626. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7627. strcat_P(buf, PSTR(" F"));
  7628. dtostrf(2700, 8, 3, buf + strlen(buf));
  7629. enquecommand(buf, false);
  7630. // Then lift Z axis
  7631. strcpy_P(buf, PSTR("G1 Z"));
  7632. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7633. strcat_P(buf, PSTR(" F"));
  7634. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7635. // At this point the command queue is empty.
  7636. enquecommand(buf, false);
  7637. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7638. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7639. repeatcommand_front();
  7640. #else
  7641. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7642. st_synchronize(); //wait moving
  7643. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7644. memcpy(destination, current_position, sizeof(destination));
  7645. #endif
  7646. }
  7647. }
  7648. void restore_print_from_ram_and_continue(float e_move)
  7649. {
  7650. if (!saved_printing) return;
  7651. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7652. // current_position[axis] = st_get_position_mm(axis);
  7653. active_extruder = saved_active_extruder; //restore active_extruder
  7654. feedrate = saved_feedrate2; //restore feedrate
  7655. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7656. float e = saved_pos[E_AXIS] - e_move;
  7657. plan_set_e_position(e);
  7658. //first move print head in XY to the saved position:
  7659. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7660. st_synchronize();
  7661. //then move Z
  7662. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7663. st_synchronize();
  7664. //and finaly unretract (35mm/s)
  7665. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7666. st_synchronize();
  7667. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7668. memcpy(destination, current_position, sizeof(destination));
  7669. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7670. card.setIndex(saved_sdpos);
  7671. sdpos_atomic = saved_sdpos;
  7672. card.sdprinting = true;
  7673. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7674. }
  7675. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7676. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7677. serial_count = 0;
  7678. FlushSerialRequestResend();
  7679. }
  7680. else {
  7681. //not sd printing nor usb printing
  7682. }
  7683. lcd_setstatuspgm(_T(WELCOME_MSG));
  7684. saved_printing = false;
  7685. }
  7686. void print_world_coordinates()
  7687. {
  7688. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7689. }
  7690. void print_physical_coordinates()
  7691. {
  7692. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7693. }
  7694. void print_mesh_bed_leveling_table()
  7695. {
  7696. SERIAL_ECHOPGM("mesh bed leveling: ");
  7697. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7698. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7699. MYSERIAL.print(mbl.z_values[y][x], 3);
  7700. SERIAL_ECHOPGM(" ");
  7701. }
  7702. SERIAL_ECHOLNPGM("");
  7703. }
  7704. uint16_t print_time_remaining() {
  7705. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7706. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7707. else print_t = print_time_remaining_silent;
  7708. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7709. return print_t;
  7710. }
  7711. uint8_t print_percent_done()
  7712. {
  7713. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7714. uint8_t percent_done = 0;
  7715. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7716. percent_done = print_percent_done_normal;
  7717. }
  7718. else if (print_percent_done_silent <= 100) {
  7719. percent_done = print_percent_done_silent;
  7720. }
  7721. else {
  7722. percent_done = card.percentDone();
  7723. }
  7724. return percent_done;
  7725. }
  7726. static void print_time_remaining_init()
  7727. {
  7728. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7729. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7730. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7731. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7732. }
  7733. void M600_check_state()
  7734. {
  7735. //Wait for user to check the state
  7736. lcd_change_fil_state = 0;
  7737. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  7738. lcd_change_fil_state = 0;
  7739. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7740. lcd_alright();
  7741. KEEPALIVE_STATE(IN_HANDLER);
  7742. switch(lcd_change_fil_state){
  7743. // Filament failed to load so load it again
  7744. case 2:
  7745. if (mmu_enabled)
  7746. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7747. else
  7748. M600_load_filament_movements();
  7749. break;
  7750. // Filament loaded properly but color is not clear
  7751. case 3:
  7752. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7754. lcd_loading_color();
  7755. break;
  7756. // Everything good
  7757. default:
  7758. lcd_change_success();
  7759. lcd_update_enable(true);
  7760. break;
  7761. }
  7762. }
  7763. }
  7764. void M600_wait_for_user() {
  7765. //Beep, manage nozzle heater and wait for user to start unload filament
  7766. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7767. int counterBeep = 0;
  7768. unsigned long waiting_start_time = millis();
  7769. uint8_t wait_for_user_state = 0;
  7770. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7771. bool bFirst=true;
  7772. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7773. manage_heater();
  7774. manage_inactivity(true);
  7775. #if BEEPER > 0
  7776. if (counterBeep == 500) {
  7777. counterBeep = 0;
  7778. }
  7779. SET_OUTPUT(BEEPER);
  7780. if (counterBeep == 0) {
  7781. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7782. {
  7783. bFirst=false;
  7784. WRITE(BEEPER, HIGH);
  7785. }
  7786. }
  7787. if (counterBeep == 20) {
  7788. WRITE(BEEPER, LOW);
  7789. }
  7790. counterBeep++;
  7791. #endif //BEEPER > 0
  7792. switch (wait_for_user_state) {
  7793. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7794. delay_keep_alive(4);
  7795. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7796. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7797. wait_for_user_state = 1;
  7798. setTargetHotend(0, 0);
  7799. setTargetHotend(0, 1);
  7800. setTargetHotend(0, 2);
  7801. st_synchronize();
  7802. disable_e0();
  7803. disable_e1();
  7804. disable_e2();
  7805. }
  7806. break;
  7807. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7808. delay_keep_alive(4);
  7809. if (lcd_clicked()) {
  7810. setTargetHotend(HotendTempBckp, active_extruder);
  7811. lcd_wait_for_heater();
  7812. wait_for_user_state = 2;
  7813. }
  7814. break;
  7815. case 2: //waiting for nozzle to reach target temperature
  7816. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7817. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7818. waiting_start_time = millis();
  7819. wait_for_user_state = 0;
  7820. }
  7821. else {
  7822. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7823. lcd_set_cursor(1, 4);
  7824. lcd_print(ftostr3(degHotend(active_extruder)));
  7825. }
  7826. break;
  7827. }
  7828. }
  7829. WRITE(BEEPER, LOW);
  7830. }
  7831. void M600_load_filament_movements()
  7832. {
  7833. #ifdef SNMM
  7834. display_loading();
  7835. do
  7836. {
  7837. current_position[E_AXIS] += 0.002;
  7838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7839. delay_keep_alive(2);
  7840. }
  7841. while (!lcd_clicked());
  7842. st_synchronize();
  7843. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7845. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7847. current_position[E_AXIS] += 40;
  7848. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7849. current_position[E_AXIS] += 10;
  7850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7851. #else
  7852. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7854. #endif
  7855. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7857. lcd_loading_filament();
  7858. }
  7859. void M600_load_filament() {
  7860. //load filament for single material and SNMM
  7861. lcd_wait_interact();
  7862. //load_filament_time = millis();
  7863. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7864. #ifdef FILAMENT_SENSOR
  7865. fsensor_autoload_check_start();
  7866. #endif //FILAMENT_SENSOR
  7867. while(!lcd_clicked())
  7868. {
  7869. manage_heater();
  7870. manage_inactivity(true);
  7871. #ifdef FILAMENT_SENSOR
  7872. if (fsensor_check_autoload())
  7873. {
  7874. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7875. tone(BEEPER, 1000);
  7876. delay_keep_alive(50);
  7877. noTone(BEEPER);
  7878. break;
  7879. }
  7880. #endif //FILAMENT_SENSOR
  7881. }
  7882. #ifdef FILAMENT_SENSOR
  7883. fsensor_autoload_check_stop();
  7884. #endif //FILAMENT_SENSOR
  7885. KEEPALIVE_STATE(IN_HANDLER);
  7886. #ifdef FILAMENT_SENSOR
  7887. fsensor_oq_meassure_start(70);
  7888. #endif //FILAMENT_SENSOR
  7889. M600_load_filament_movements();
  7890. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7891. tone(BEEPER, 500);
  7892. delay_keep_alive(50);
  7893. noTone(BEEPER);
  7894. #ifdef FILAMENT_SENSOR
  7895. fsensor_oq_meassure_stop();
  7896. if (!fsensor_oq_result())
  7897. {
  7898. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7899. lcd_update_enable(true);
  7900. lcd_update(2);
  7901. if (disable)
  7902. fsensor_disable();
  7903. }
  7904. #endif //FILAMENT_SENSOR
  7905. }
  7906. #define FIL_LOAD_LENGTH 60