xyzcal.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. //xyzcal.cpp - xyz calibration with image processing
  2. #include "Configuration_prusa.h"
  3. #ifdef NEW_XYZCAL
  4. #include "xyzcal.h"
  5. #include <avr/wdt.h>
  6. #include "stepper.h"
  7. #include "temperature.h"
  8. #include "sm4.h"
  9. #define XYZCAL_PINDA_HYST_MIN 20 //50um
  10. #define XYZCAL_PINDA_HYST_MAX 100 //250um
  11. #define XYZCAL_PINDA_HYST_DIF 5 //12.5um
  12. #define ENABLE_FANCHECK_INTERRUPT() EIMSK |= (1<<7)
  13. #define DISABLE_FANCHECK_INTERRUPT() EIMSK &= ~(1<<7)
  14. #define _PINDA ((READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)?1:0)
  15. #define DBG(args...) printf_P(args)
  16. //#define DBG(args...)
  17. #ifndef _n
  18. #define _n PSTR
  19. #endif //_n
  20. #define _X ((int16_t)count_position[X_AXIS])
  21. #define _Y ((int16_t)count_position[Y_AXIS])
  22. #define _Z ((int16_t)count_position[Z_AXIS])
  23. #define _E ((int16_t)count_position[E_AXIS])
  24. #define _PI 3.14159265F
  25. uint8_t check_pinda_0();
  26. uint8_t check_pinda_1();
  27. void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);
  28. uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd);
  29. void xyzcal_meassure_enter(void)
  30. {
  31. DBG(_n("xyzcal_meassure_enter\n"));
  32. disable_heater();
  33. DISABLE_TEMPERATURE_INTERRUPT();
  34. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  35. DISABLE_FANCHECK_INTERRUPT();
  36. #endif //(defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  37. DISABLE_STEPPER_DRIVER_INTERRUPT();
  38. #ifdef WATCHDOG
  39. wdt_disable();
  40. #endif //WATCHDOG
  41. sm4_stop_cb = 0;
  42. sm4_update_pos_cb = xyzcal_update_pos;
  43. sm4_calc_delay_cb = xyzcal_calc_delay;
  44. }
  45. void xyzcal_meassure_leave(void)
  46. {
  47. DBG(_n("xyzcal_meassure_leave\n"));
  48. planner_abort_hard();
  49. ENABLE_TEMPERATURE_INTERRUPT();
  50. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  51. ENABLE_FANCHECK_INTERRUPT();
  52. #endif //(defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  53. ENABLE_STEPPER_DRIVER_INTERRUPT();
  54. #ifdef WATCHDOG
  55. wdt_enable(WDTO_4S);
  56. #endif //WATCHDOG
  57. sm4_stop_cb = 0;
  58. sm4_update_pos_cb = 0;
  59. sm4_calc_delay_cb = 0;
  60. }
  61. uint8_t check_pinda_0()
  62. {
  63. return _PINDA?0:1;
  64. }
  65. uint8_t check_pinda_1()
  66. {
  67. return _PINDA?1:0;
  68. }
  69. uint8_t xyzcal_dm = 0;
  70. void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t)
  71. {
  72. // DBG(_n("xyzcal_update_pos dx=%d dy=%d dz=%d dir=%02x\n"), dx, dy, dz, xyzcal_dm);
  73. if (xyzcal_dm&1) count_position[0] -= dx; else count_position[0] += dx;
  74. if (xyzcal_dm&2) count_position[1] -= dy; else count_position[1] += dy;
  75. if (xyzcal_dm&4) count_position[2] -= dz; else count_position[2] += dz;
  76. // DBG(_n(" after xyzcal_update_pos x=%ld y=%ld z=%ld\n"), count_position[0], count_position[1], count_position[2]);
  77. }
  78. uint16_t xyzcal_sm4_delay = 0;
  79. //#define SM4_ACCEL_TEST
  80. #ifdef SM4_ACCEL_TEST
  81. uint16_t xyzcal_sm4_v0 = 2000;
  82. uint16_t xyzcal_sm4_vm = 45000;
  83. uint16_t xyzcal_sm4_v = xyzcal_sm4_v0;
  84. uint16_t xyzcal_sm4_ac = 2000;
  85. uint16_t xyzcal_sm4_ac2 = (uint32_t)xyzcal_sm4_ac * 1024 / 10000;
  86. //float xyzcal_sm4_vm = 10000;
  87. #endif //SM4_ACCEL_TEST
  88. #ifdef SM4_ACCEL_TEST
  89. uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd)
  90. {
  91. uint16_t del_us = 0;
  92. if (xyzcal_sm4_v & 0xf000) //>=4096
  93. {
  94. del_us = (uint16_t)62500 / (uint16_t)(xyzcal_sm4_v >> 4);
  95. xyzcal_sm4_v += (xyzcal_sm4_ac2 * del_us + 512) >> 10;
  96. if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;
  97. if (del_us > 25) return del_us - 25;
  98. }
  99. else
  100. {
  101. del_us = (uint32_t)1000000 / xyzcal_sm4_v;
  102. xyzcal_sm4_v += ((uint32_t)xyzcal_sm4_ac2 * del_us + 512) >> 10;
  103. if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;
  104. if (del_us > 50) return del_us - 50;
  105. }
  106. // uint16_t del_us = (uint16_t)(((float)1000000 / xyzcal_sm4_v) + 0.5);
  107. // uint16_t del_us = (uint32_t)1000000 / xyzcal_sm4_v;
  108. // uint16_t del_us = 100;
  109. // uint16_t del_us = (uint16_t)10000 / xyzcal_sm4_v;
  110. // v += (ac * del_us + 500) / 1000;
  111. // xyzcal_sm4_v += (xyzcal_sm4_ac * del_us) / 1000;
  112. // return xyzcal_sm4_delay;
  113. // DBG(_n("xyzcal_calc_delay nd=%d dd=%d v=%d del_us=%d\n"), nd, dd, xyzcal_sm4_v, del_us);
  114. return 0;
  115. }
  116. #else //SM4_ACCEL_TEST
  117. uint16_t xyzcal_calc_delay(uint16_t, uint16_t)
  118. {
  119. return xyzcal_sm4_delay;
  120. }
  121. #endif //SM4_ACCEL_TEST
  122. bool xyzcal_lineXYZ_to(int16_t x, int16_t y, int16_t z, uint16_t delay_us, int8_t check_pinda)
  123. {
  124. // DBG(_n("xyzcal_lineXYZ_to x=%d y=%d z=%d check=%d\n"), x, y, z, check_pinda);
  125. x -= (int16_t)count_position[0];
  126. y -= (int16_t)count_position[1];
  127. z -= (int16_t)count_position[2];
  128. xyzcal_dm = ((x<0)?1:0) | ((y<0)?2:0) | ((z<0)?4:0);
  129. sm4_set_dir_bits(xyzcal_dm);
  130. sm4_stop_cb = check_pinda?((check_pinda<0)?check_pinda_0:check_pinda_1):0;
  131. xyzcal_sm4_delay = delay_us;
  132. // uint32_t u = _micros();
  133. bool ret = sm4_line_xyze_ui(abs(x), abs(y), abs(z), 0)?true:false;
  134. // u = _micros() - u;
  135. return ret;
  136. }
  137. bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, int16_t rotation, uint16_t delay_us, int8_t check_pinda, uint16_t* pad)
  138. {
  139. bool ret = false;
  140. float r = 0; //radius
  141. uint8_t n = 0; //point number
  142. uint16_t ad = 0; //angle [deg]
  143. float ar; //angle [rad]
  144. uint8_t dad = 0; //delta angle [deg]
  145. uint8_t dad_min = 4; //delta angle min [deg]
  146. uint8_t dad_max = 16; //delta angle max [deg]
  147. uint8_t k = 720 / (dad_max - dad_min); //delta calculation constant
  148. ad = 0;
  149. if (pad) ad = *pad % 720;
  150. DBG(_n("xyzcal_spiral2 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);
  151. for (; ad < 720; ad++)
  152. {
  153. if (radius > 0)
  154. {
  155. dad = dad_max - (ad / k);
  156. r = (float)(((uint32_t)ad) * radius) / 720;
  157. }
  158. else
  159. {
  160. dad = dad_max - ((719 - ad) / k);
  161. r = (float)(((uint32_t)(719 - ad)) * (-radius)) / 720;
  162. }
  163. ar = (ad + rotation)* (float)_PI / 180;
  164. float _cos = cos(ar);
  165. float _sin = sin(ar);
  166. int x = (int)(cx + (_cos * r));
  167. int y = (int)(cy + (_sin * r));
  168. int z = (int)(z0 - ((float)((int32_t)dz * ad) / 720));
  169. if (xyzcal_lineXYZ_to(x, y, z, delay_us, check_pinda))
  170. {
  171. ad += dad + 1;
  172. ret = true;
  173. break;
  174. }
  175. n++;
  176. ad += dad;
  177. }
  178. if (pad) *pad = ad;
  179. return ret;
  180. }
  181. bool xyzcal_spiral8(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, uint16_t delay_us, int8_t check_pinda, uint16_t* pad)
  182. {
  183. bool ret = false;
  184. uint16_t ad = 0;
  185. if (pad) ad = *pad;
  186. DBG(_n("xyzcal_spiral8 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);
  187. if (!ret && (ad < 720))
  188. if ((ret = xyzcal_spiral2(cx, cy, z0 - 0*dz, dz, radius, 0, delay_us, check_pinda, &ad)) != 0)
  189. ad += 0;
  190. if (!ret && (ad < 1440))
  191. if ((ret = xyzcal_spiral2(cx, cy, z0 - 1*dz, dz, -radius, 0, delay_us, check_pinda, &ad)) != 0)
  192. ad += 720;
  193. if (!ret && (ad < 2160))
  194. if ((ret = xyzcal_spiral2(cx, cy, z0 - 2*dz, dz, radius, 180, delay_us, check_pinda, &ad)) != 0)
  195. ad += 1440;
  196. if (!ret && (ad < 2880))
  197. if ((ret = xyzcal_spiral2(cx, cy, z0 - 3*dz, dz, -radius, 180, delay_us, check_pinda, &ad)) != 0)
  198. ad += 2160;
  199. if (pad) *pad = ad;
  200. return ret;
  201. }
  202. #ifdef XYZCAL_MEASSURE_PINDA_HYSTEREZIS
  203. int8_t xyzcal_meassure_pinda_hysterezis(int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t samples)
  204. {
  205. DBG(_n("xyzcal_meassure_pinda_hysterezis\n"));
  206. int8_t ret = -1; // PINDA signal error
  207. int16_t z = _Z;
  208. int16_t sum_up = 0;
  209. int16_t sum_dn = 0;
  210. int16_t up;
  211. int16_t dn;
  212. uint8_t sample;
  213. xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);
  214. xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1);
  215. if (!_PINDA)
  216. {
  217. for (sample = 0; sample < samples; sample++)
  218. {
  219. dn = _Z;
  220. if (!xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1)) break;
  221. dn = dn - _Z;
  222. up = _Z;
  223. if (!xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1)) break;
  224. up = _Z - up;
  225. DBG(_n("%d. up=%d dn=%d\n"), sample, up, dn);
  226. sum_up += up;
  227. sum_dn += dn;
  228. if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)
  229. {
  230. ret = -2; // difference between up-dn to high
  231. break;
  232. }
  233. }
  234. if (sample == samples)
  235. {
  236. up = sum_up / samples;
  237. dn = sum_dn / samples;
  238. uint16_t hyst = (up + dn) / 2;
  239. if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)
  240. ret = -2; // difference between up-dn to high
  241. else if ((hyst < XYZCAL_PINDA_HYST_MIN) || (hyst > XYZCAL_PINDA_HYST_MAX))
  242. ret = -3; // hysterezis out of range
  243. else
  244. ret = hyst;
  245. }
  246. }
  247. xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0);
  248. return ret;
  249. }
  250. #endif //XYZCAL_MEASSURE_PINDA_HYSTEREZIS
  251. void xyzcal_scan_pixels_32x32(int16_t cx, int16_t cy, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t* pixels)
  252. {
  253. DBG(_n("xyzcal_scan_pixels_32x32 cx=%d cy=%d min_z=%d max_z=%d\n"), cx, cy, min_z, max_z);
  254. // xyzcal_lineXYZ_to(cx - 1024, cy - 1024, max_z, 2*delay_us, 0);
  255. // xyzcal_lineXYZ_to(cx, cy, max_z, delay_us, 0);
  256. int16_t z = (int16_t)count_position[2];
  257. xyzcal_lineXYZ_to(cx, cy, z, 2*delay_us, 0);
  258. for (uint8_t r = 0; r < 32; r++)
  259. {
  260. // int8_t _pinda = _PINDA;
  261. xyzcal_lineXYZ_to((r&1)?(cx+1024):(cx-1024), cy - 1024 + r*64, z, 2*delay_us, 0);
  262. xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);
  263. xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1);
  264. z = (int16_t)count_position[2];
  265. sm4_set_dir(X_AXIS, (r&1)?1:0);
  266. for (uint8_t c = 0; c < 32; c++)
  267. {
  268. uint16_t sum = 0;
  269. int16_t z_sum = 0;
  270. for (uint8_t i = 0; i < 64; i++)
  271. {
  272. int8_t pinda = _PINDA;
  273. int16_t pix = z - min_z;
  274. pix += (pinda)?23:-24;
  275. if (pix < 0) pix = 0;
  276. if (pix > 255) pix = 255;
  277. sum += pix;
  278. z_sum += z;
  279. // if (_pinda != pinda)
  280. // {
  281. // if (pinda)
  282. // DBG(_n("!1 x=%d z=%d\n"), c*64+i, z+23);
  283. // else
  284. // DBG(_n("!0 x=%d z=%d\n"), c*64+i, z-24);
  285. // }
  286. sm4_set_dir(Z_AXIS, !pinda);
  287. if (!pinda)
  288. {
  289. if (z > min_z)
  290. {
  291. sm4_do_step(Z_AXIS_MASK);
  292. z--;
  293. }
  294. }
  295. else
  296. {
  297. if (z < max_z)
  298. {
  299. sm4_do_step(Z_AXIS_MASK);
  300. z++;
  301. }
  302. }
  303. sm4_do_step(X_AXIS_MASK);
  304. delayMicroseconds(600);
  305. // _pinda = pinda;
  306. }
  307. sum >>= 6; //div 64
  308. if (z_sum < 0)
  309. {
  310. z_sum = -z_sum;
  311. z_sum >>= 6; //div 64
  312. z_sum = -z_sum;
  313. }
  314. else
  315. z_sum >>= 6; //div 64
  316. if (pixels) pixels[((uint16_t)r<<5) + ((r&1)?(31-c):c)] = sum;
  317. // DBG(_n("c=%d r=%d l=%d z=%d\n"), c, r, sum, z_sum);
  318. count_position[0] += (r&1)?-64:64;
  319. count_position[2] = z;
  320. }
  321. if (pixels)
  322. for (uint8_t c = 0; c < 32; c++)
  323. DBG(_n("%02x"), pixels[((uint16_t)r<<5) + c]);
  324. DBG(_n("\n"));
  325. }
  326. // xyzcal_lineXYZ_to(cx, cy, z, 2*delay_us, 0);
  327. }
  328. void xyzcal_histo_pixels_32x32(uint8_t* pixels, uint16_t* histo)
  329. {
  330. for (uint8_t l = 0; l < 16; l++)
  331. histo[l] = 0;
  332. for (uint8_t r = 0; r < 32; r++)
  333. for (uint8_t c = 0; c < 32; c++)
  334. {
  335. uint8_t pix = pixels[((uint16_t)r<<5) + c];
  336. histo[pix >> 4]++;
  337. }
  338. for (uint8_t l = 0; l < 16; l++)
  339. DBG(_n(" %2d %d\n"), l, histo[l]);
  340. }
  341. void xyzcal_adjust_pixels(uint8_t* pixels, uint16_t* histo)
  342. {
  343. uint8_t l;
  344. uint16_t max_c = histo[1];
  345. uint8_t max_l = 1;
  346. for (l = 1; l < 16; l++)
  347. {
  348. uint16_t c = histo[l];
  349. if (c > max_c)
  350. {
  351. max_c = c;
  352. max_l = l;
  353. }
  354. }
  355. DBG(_n("max_c=%2d max_l=%d\n"), max_c, max_l);
  356. for (l = 14; l > 8; l--)
  357. if (histo[l] >= 10)
  358. break;
  359. uint8_t pix_min = 0;
  360. uint8_t pix_max = l << 4;
  361. if (histo[0] < (32*32 - 144))
  362. {
  363. pix_min = (max_l << 4) / 2;
  364. }
  365. uint8_t pix_dif = pix_max - pix_min;
  366. DBG(_n(" min=%d max=%d dif=%d\n"), pix_min, pix_max, pix_dif);
  367. for (int16_t i = 0; i < 32*32; i++)
  368. {
  369. uint16_t pix = pixels[i];
  370. if (pix > pix_min) pix -= pix_min;
  371. else pix = 0;
  372. pix <<= 8;
  373. pix /= pix_dif;
  374. // if (pix < 0) pix = 0;
  375. if (pix > 255) pix = 255;
  376. pixels[i] = (uint8_t)pix;
  377. }
  378. for (uint8_t r = 0; r < 32; r++)
  379. {
  380. for (uint8_t c = 0; c < 32; c++)
  381. DBG(_n("%02x"), pixels[((uint16_t)r<<5) + c]);
  382. DBG(_n("\n"));
  383. }
  384. }
  385. /*
  386. void xyzcal_draw_pattern_12x12_in_32x32(uint8_t* pattern, uint32_t* pixels, int w, int h, uint8_t x, uint8_t y, uint32_t and, uint32_t or)
  387. {
  388. for (int i = 0; i < 8; i++)
  389. for (int j = 0; j < 8; j++)
  390. {
  391. int idx = (x + j) + w * (y + i);
  392. if (pattern[i] & (1 << j))
  393. {
  394. pixels[idx] &= and;
  395. pixels[idx] |= or;
  396. }
  397. }
  398. }
  399. */
  400. int16_t xyzcal_match_pattern_12x12_in_32x32(uint16_t* pattern, uint8_t* pixels, uint8_t c, uint8_t r)
  401. {
  402. uint8_t thr = 16;
  403. int16_t match = 0;
  404. for (uint8_t i = 0; i < 12; i++)
  405. for (uint8_t j = 0; j < 12; j++)
  406. {
  407. if (((i == 0) || (i == 11)) && ((j < 2) || (j >= 10))) continue; //skip corners
  408. if (((j == 0) || (j == 11)) && ((i < 2) || (i >= 10))) continue;
  409. uint16_t idx = (c + j) + 32 * (r + i);
  410. uint8_t val = pixels[idx];
  411. if (pattern[i] & (1 << j))
  412. {
  413. if (val > thr) match ++;
  414. else match --;
  415. }
  416. else
  417. {
  418. if (val <= thr) match ++;
  419. else match --;
  420. }
  421. }
  422. return match;
  423. }
  424. int16_t xyzcal_find_pattern_12x12_in_32x32(uint8_t* pixels, uint16_t* pattern, uint8_t* pc, uint8_t* pr)
  425. {
  426. uint8_t max_c = 0;
  427. uint8_t max_r = 0;
  428. int16_t max_match = 0;
  429. for (uint8_t r = 0; r < (32 - 12); r++)
  430. for (uint8_t c = 0; c < (32 - 12); c++)
  431. {
  432. int16_t match = xyzcal_match_pattern_12x12_in_32x32(pattern, pixels, c, r);
  433. if (max_match < match)
  434. {
  435. max_c = c;
  436. max_r = r;
  437. max_match = match;
  438. }
  439. }
  440. DBG(_n("max_c=%d max_r=%d max_match=%d\n"), max_c, max_r, max_match);
  441. if (pc) *pc = max_c;
  442. if (pr) *pr = max_r;
  443. return max_match;
  444. }
  445. #define MAX_DIAMETR 600
  446. #define XYZCAL_FIND_CENTER_DIAGONAL
  447. int8_t xyzcal_find_point_center2(uint16_t delay_us)
  448. {
  449. printf_P(PSTR("xyzcal_find_point_center2\n"));
  450. int16_t x0 = _X;
  451. int16_t y0 = _Y;
  452. int16_t z0 = _Z;
  453. printf_P(PSTR(" x0=%d\n"), x0);
  454. printf_P(PSTR(" y0=%d\n"), y0);
  455. printf_P(PSTR(" z0=%d\n"), z0);
  456. xyzcal_lineXYZ_to(_X, _Y, z0 + 400, 500, -1);
  457. xyzcal_lineXYZ_to(_X, _Y, z0 - 400, 500, 1);
  458. xyzcal_lineXYZ_to(_X, _Y, z0 + 400, 500, -1);
  459. xyzcal_lineXYZ_to(_X, _Y, z0 - 400, 500, 1);
  460. z0 = _Z - 20;
  461. xyzcal_lineXYZ_to(_X, _Y, z0, 500, 0);
  462. // xyzcal_lineXYZ_to(x0, y0, z0 - 100, 500, 1);
  463. // z0 = _Z;
  464. // printf_P(PSTR(" z0=%d\n"), z0);
  465. // xyzcal_lineXYZ_to(x0, y0, z0 + 100, 500, -1);
  466. // z0 += _Z;
  467. // z0 /= 2;
  468. printf_P(PSTR(" z0=%d\n"), z0);
  469. // xyzcal_lineXYZ_to(x0, y0, z0 - 100, 500, 1);
  470. // z0 = _Z - 10;
  471. int8_t ret = 1;
  472. #ifdef XYZCAL_FIND_CENTER_DIAGONAL
  473. int32_t xc = 0;
  474. int32_t yc = 0;
  475. int16_t ad = 45;
  476. for (; ad < 360; ad += 90)
  477. {
  478. float ar = (float)ad * _PI / 180;
  479. int16_t x = x0 + MAX_DIAMETR * cos(ar);
  480. int16_t y = y0 + MAX_DIAMETR * sin(ar);
  481. if (!xyzcal_lineXYZ_to(x, y, z0, delay_us, -1))
  482. {
  483. printf_P(PSTR("ERROR ad=%d\n"), ad);
  484. ret = 0;
  485. break;
  486. }
  487. xc += _X;
  488. yc += _Y;
  489. xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
  490. }
  491. if (ret)
  492. {
  493. printf_P(PSTR("OK\n"), ad);
  494. x0 = xc / 4;
  495. y0 = yc / 4;
  496. printf_P(PSTR(" x0=%d\n"), x0);
  497. printf_P(PSTR(" y0=%d\n"), y0);
  498. }
  499. #else //XYZCAL_FIND_CENTER_DIAGONAL
  500. xyzcal_lineXYZ_to(x0 - MAX_DIAMETR, y0, z0, delay_us, -1);
  501. int16_t dx1 = x0 - _X;
  502. if (dx1 >= MAX_DIAMETR)
  503. {
  504. printf_P(PSTR("!!! dx1 = %d\n"), dx1);
  505. return 0;
  506. }
  507. xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
  508. xyzcal_lineXYZ_to(x0 + MAX_DIAMETR, y0, z0, delay_us, -1);
  509. int16_t dx2 = _X - x0;
  510. if (dx2 >= MAX_DIAMETR)
  511. {
  512. printf_P(PSTR("!!! dx2 = %d\n"), dx2);
  513. return 0;
  514. }
  515. xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
  516. xyzcal_lineXYZ_to(x0 , y0 - MAX_DIAMETR, z0, delay_us, -1);
  517. int16_t dy1 = y0 - _Y;
  518. if (dy1 >= MAX_DIAMETR)
  519. {
  520. printf_P(PSTR("!!! dy1 = %d\n"), dy1);
  521. return 0;
  522. }
  523. xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
  524. xyzcal_lineXYZ_to(x0, y0 + MAX_DIAMETR, z0, delay_us, -1);
  525. int16_t dy2 = _Y - y0;
  526. if (dy2 >= MAX_DIAMETR)
  527. {
  528. printf_P(PSTR("!!! dy2 = %d\n"), dy2);
  529. return 0;
  530. }
  531. printf_P(PSTR("dx1=%d\n"), dx1);
  532. printf_P(PSTR("dx2=%d\n"), dx2);
  533. printf_P(PSTR("dy1=%d\n"), dy1);
  534. printf_P(PSTR("dy2=%d\n"), dy2);
  535. x0 += (dx2 - dx1) / 2;
  536. y0 += (dy2 - dy1) / 2;
  537. printf_P(PSTR(" x0=%d\n"), x0);
  538. printf_P(PSTR(" y0=%d\n"), y0);
  539. #endif //XYZCAL_FIND_CENTER_DIAGONAL
  540. xyzcal_lineXYZ_to(x0, y0, z0, delay_us, 0);
  541. return ret;
  542. }
  543. #ifdef XYZCAL_FIND_POINT_CENTER
  544. int8_t xyzcal_find_point_center(int16_t x0, int16_t y0, int16_t z0, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t turns)
  545. {
  546. uint8_t n;
  547. uint16_t ad;
  548. float ar;
  549. float _cos;
  550. float _sin;
  551. int16_t r_min = 0;
  552. int16_t r_max = 0;
  553. int16_t x_min = 0;
  554. int16_t x_max = 0;
  555. int16_t y_min = 0;
  556. int16_t y_max = 0;
  557. int16_t r = 10;
  558. int16_t x = x0;
  559. int16_t y = y0;
  560. int16_t z = z0;
  561. int8_t _pinda = _PINDA;
  562. for (n = 0; n < turns; n++)
  563. {
  564. uint32_t r_sum = 0;
  565. for (ad = 0; ad < 720; ad++)
  566. {
  567. ar = ad * _PI / 360;
  568. _cos = cos(ar);
  569. _sin = sin(ar);
  570. x = x0 + (int)(_cos * r);
  571. y = y0 + (int)(_sin * r);
  572. xyzcal_lineXYZ_to(x, y, z, 1000, 0);
  573. int8_t pinda = _PINDA;
  574. if (pinda)
  575. r += 1;
  576. else
  577. {
  578. r -= 1;
  579. ad--;
  580. r_sum -= r;
  581. }
  582. if (ad == 0)
  583. {
  584. x_min = x0;
  585. x_max = x0;
  586. y_min = y0;
  587. y_max = y0;
  588. r_min = r;
  589. r_max = r;
  590. }
  591. else if (pinda)
  592. {
  593. if (x_min > x) x_min = (2*x + x_min) / 3;
  594. if (x_max < x) x_max = (2*x + x_max) / 3;
  595. if (y_min > y) y_min = (2*y + y_min) / 3;
  596. if (y_max < y) y_max = (2*y + y_max) / 3;
  597. /* if (x_min > x) x_min = x;
  598. if (x_max < x) x_max = x;
  599. if (y_min > y) y_min = y;
  600. if (y_max < y) y_max = y;*/
  601. if (r_min > r) r_min = r;
  602. if (r_max < r) r_max = r;
  603. }
  604. r_sum += r;
  605. /* if (_pinda != pinda)
  606. {
  607. if (pinda)
  608. DBG(_n("!1 x=%d y=%d\n"), x, y);
  609. else
  610. DBG(_n("!0 x=%d y=%d\n"), x, y);
  611. }*/
  612. _pinda = pinda;
  613. // DBG(_n("x=%d y=%d rx=%d ry=%d\n"), x, y, rx, ry);
  614. }
  615. DBG(_n("x_min=%d x_max=%d y_min=%d y_max=%d r_min=%d r_max=%d r_avg=%d\n"), x_min, x_max, y_min, y_max, r_min, r_max, r_sum / 720);
  616. if ((n > 2) && (n & 1))
  617. {
  618. x0 += (x_min + x_max);
  619. y0 += (y_min + y_max);
  620. x0 /= 3;
  621. y0 /= 3;
  622. int rx = (x_max - x_min) / 2;
  623. int ry = (y_max - y_min) / 2;
  624. r = (rx + ry) / 3;//(rx < ry)?rx:ry;
  625. DBG(_n("x0=%d y0=%d r=%d\n"), x0, y0, r);
  626. }
  627. }
  628. xyzcal_lineXYZ_to(x0, y0, z, 200, 0);
  629. }
  630. #endif //XYZCAL_FIND_POINT_CENTER
  631. uint8_t xyzcal_xycoords2point(int16_t x, int16_t y)
  632. {
  633. uint8_t ix = (x > 10000)?1:0;
  634. uint8_t iy = (y > 10000)?1:0;
  635. return iy?(3-ix):ix;
  636. }
  637. //MK3
  638. #if ((MOTHERBOARD == BOARD_EINSY_1_0a))
  639. const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};
  640. const int16_t xyzcal_point_ycoords[4] PROGMEM = {600, 600, 19800, 19800};
  641. #endif //((MOTHERBOARD == BOARD_EINSY_1_0a))
  642. //MK2.5
  643. #if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
  644. const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};
  645. const int16_t xyzcal_point_ycoords[4] PROGMEM = {700, 700, 19800, 19800};
  646. #endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))
  647. const uint16_t xyzcal_point_pattern[12] PROGMEM = {0x000, 0x0f0, 0x1f8, 0x3fc, 0x7fe, 0x7fe, 0x7fe, 0x7fe, 0x3fc, 0x1f8, 0x0f0, 0x000};
  648. bool xyzcal_searchZ(void)
  649. {
  650. DBG(_n("xyzcal_searchZ x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
  651. int16_t x0 = _X;
  652. int16_t y0 = _Y;
  653. int16_t z0 = _Z;
  654. // int16_t min_z = -6000;
  655. // int16_t dz = 100;
  656. int16_t z = z0;
  657. while (z > -2300) //-6mm + 0.25mm
  658. {
  659. uint16_t ad = 0;
  660. if (xyzcal_spiral8(x0, y0, z, 100, 900, 320, 1, &ad)) //dz=100 radius=900 delay=400
  661. {
  662. int16_t x_on = _X;
  663. int16_t y_on = _Y;
  664. int16_t z_on = _Z;
  665. DBG(_n(" ON-SIGNAL at x=%d y=%d z=%d ad=%d\n"), x_on, y_on, z_on, ad);
  666. return true;
  667. }
  668. z -= 400;
  669. }
  670. DBG(_n("xyzcal_searchZ no signal\n x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
  671. return false;
  672. }
  673. bool xyzcal_scan_and_process(void)
  674. {
  675. DBG(_n("sizeof(block_buffer)=%d\n"), sizeof(block_t)*BLOCK_BUFFER_SIZE);
  676. // DBG(_n("sizeof(pixels)=%d\n"), 32*32);
  677. // DBG(_n("sizeof(histo)=%d\n"), 2*16);
  678. // DBG(_n("sizeof(pattern)=%d\n"), 2*12);
  679. DBG(_n("sizeof(total)=%d\n"), 32*32+2*16+2*12);
  680. bool ret = false;
  681. int16_t x = _X;
  682. int16_t y = _Y;
  683. int16_t z = _Z;
  684. uint8_t* pixels = (uint8_t*)block_buffer;
  685. xyzcal_scan_pixels_32x32(x, y, z - 72, 2400, 200, pixels);
  686. uint16_t* histo = (uint16_t*)(pixels + 32*32);
  687. xyzcal_histo_pixels_32x32(pixels, histo);
  688. xyzcal_adjust_pixels(pixels, histo);
  689. uint16_t* pattern = (uint16_t*)(histo + 2*16);
  690. for (uint8_t i = 0; i < 12; i++)
  691. {
  692. pattern[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern + i));
  693. // DBG(_n(" pattern[%d]=%d\n"), i, pattern[i]);
  694. }
  695. uint8_t c = 0;
  696. uint8_t r = 0;
  697. if (xyzcal_find_pattern_12x12_in_32x32(pixels, pattern, &c, &r) > 66) //total pixels=144, corner=12 (1/2 = 66)
  698. {
  699. DBG(_n(" pattern found at %d %d\n"), c, r);
  700. c += 6;
  701. r += 6;
  702. x += ((int16_t)c - 16) << 6;
  703. y += ((int16_t)r - 16) << 6;
  704. DBG(_n(" x=%d y=%d z=%d\n"), x, y, z);
  705. xyzcal_lineXYZ_to(x, y, z, 200, 0);
  706. ret = true;
  707. }
  708. for (uint16_t i = 0; i < sizeof(block_t)*BLOCK_BUFFER_SIZE; i++)
  709. pixels[i] = 0;
  710. return ret;
  711. }
  712. bool xyzcal_find_bed_induction_sensor_point_xy(void)
  713. {
  714. DBG(_n("xyzcal_find_bed_induction_sensor_point_xy x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);
  715. bool ret = false;
  716. st_synchronize();
  717. int16_t x = _X;
  718. int16_t y = _Y;
  719. int16_t z = _Z;
  720. uint8_t point = xyzcal_xycoords2point(x, y);
  721. x = pgm_read_word((uint16_t*)(xyzcal_point_xcoords + point));
  722. y = pgm_read_word((uint16_t*)(xyzcal_point_ycoords + point));
  723. DBG(_n("point=%d x=%d y=%d z=%d\n"), point, x, y, z);
  724. xyzcal_meassure_enter();
  725. xyzcal_lineXYZ_to(x, y, z, 200, 0);
  726. if (xyzcal_searchZ())
  727. {
  728. int16_t z = _Z;
  729. xyzcal_lineXYZ_to(x, y, z, 200, 0);
  730. if (xyzcal_scan_and_process())
  731. {
  732. if (xyzcal_find_point_center2(500))
  733. {
  734. uint32_t x_avg = 0;
  735. uint32_t y_avg = 0;
  736. uint8_t n; for (n = 0; n < 4; n++)
  737. {
  738. if (!xyzcal_find_point_center2(1000)) break;
  739. x_avg += _X;
  740. y_avg += _Y;
  741. }
  742. if (n == 4)
  743. {
  744. xyzcal_lineXYZ_to(x_avg >> 2, y_avg >> 2, _Z, 200, 0);
  745. ret = true;
  746. }
  747. }
  748. }
  749. }
  750. xyzcal_meassure_leave();
  751. return ret;
  752. }
  753. #endif //NEW_XYZCAL