temperature.cpp 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #ifdef IR_SENSOR_ANALOG
  59. uint16_t current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. uint8_t fanSpeedBckp = 255;
  119. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. bool fan_measuring = false;
  122. uint8_t fanState = 0;
  123. #ifdef EXTRUDER_ALTFAN_DETECT
  124. bool extruderFanIsAltfan = false; //set to Noctua
  125. #endif //EXTRUDER_ALTFAN_DETECT
  126. #endif
  127. #if EXTRUDERS > 3
  128. # error Unsupported number of extruders
  129. #elif EXTRUDERS > 2
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  131. #elif EXTRUDERS > 1
  132. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  133. #else
  134. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  135. #endif
  136. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  137. // Init min and max temp with extreme values to prevent false errors during startup
  138. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  139. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  140. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  141. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  142. #ifdef BED_MINTEMP
  143. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  144. #endif
  145. #ifdef BED_MAXTEMP
  146. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  147. #endif
  148. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  149. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  150. static float analog2temp(int raw, uint8_t e);
  151. static float analog2tempBed(int raw);
  152. static float analog2tempAmbient(int raw);
  153. static void updateTemperaturesFromRawValues();
  154. enum TempRunawayStates
  155. {
  156. TempRunaway_INACTIVE = 0,
  157. TempRunaway_PREHEAT = 1,
  158. TempRunaway_ACTIVE = 2,
  159. };
  160. #ifndef SOFT_PWM_SCALE
  161. #define SOFT_PWM_SCALE 0
  162. #endif
  163. //===========================================================================
  164. //============================= functions ============================
  165. //===========================================================================
  166. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  167. static float temp_runaway_status[4];
  168. static float temp_runaway_target[4];
  169. static float temp_runaway_timer[4];
  170. static int temp_runaway_error_counter[4];
  171. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  172. static void temp_runaway_stop(bool isPreheat, bool isBed);
  173. #endif
  174. #ifdef EXTRUDER_ALTFAN_DETECT
  175. ISR(INT6_vect) {
  176. fan_edge_counter[0]++;
  177. }
  178. bool extruder_altfan_detect()
  179. {
  180. setExtruderAutoFanState(3);
  181. SET_INPUT(TACH_0);
  182. CRITICAL_SECTION_START;
  183. EICRB &= ~(1 << ISC61);
  184. EICRB |= (1 << ISC60);
  185. EIMSK |= (1 << INT6);
  186. fan_edge_counter[0] = 0;
  187. CRITICAL_SECTION_END;
  188. extruder_autofan_last_check = _millis();
  189. _delay(1000);
  190. EIMSK &= ~(1 << INT6);
  191. countFanSpeed();
  192. extruderFanIsAltfan = fan_speed[0] > 100;
  193. setExtruderAutoFanState(1);
  194. return extruderFanIsAltfan;
  195. }
  196. #endif //EXTRUDER_ALTFAN_DETECT
  197. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  198. bool checkAllHotends(void)
  199. {
  200. bool result=false;
  201. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  202. return(result);
  203. }
  204. void PID_autotune(float temp, int extruder, int ncycles)
  205. {
  206. pid_number_of_cycles = ncycles;
  207. pid_tuning_finished = false;
  208. float input = 0.0;
  209. pid_cycle=0;
  210. bool heating = true;
  211. unsigned long temp_millis = _millis();
  212. unsigned long t1=temp_millis;
  213. unsigned long t2=temp_millis;
  214. long t_high = 0;
  215. long t_low = 0;
  216. long bias, d;
  217. float Ku, Tu;
  218. float max = 0, min = 10000;
  219. uint8_t safety_check_cycles = 0;
  220. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  221. float temp_ambient;
  222. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  223. unsigned long extruder_autofan_last_check = _millis();
  224. #endif
  225. if ((extruder >= EXTRUDERS)
  226. #if (TEMP_BED_PIN <= -1)
  227. ||(extruder < 0)
  228. #endif
  229. ){
  230. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  231. pid_tuning_finished = true;
  232. pid_cycle = 0;
  233. return;
  234. }
  235. SERIAL_ECHOLN("PID Autotune start");
  236. disable_heater(); // switch off all heaters.
  237. if (extruder<0)
  238. {
  239. soft_pwm_bed = (MAX_BED_POWER)/2;
  240. timer02_set_pwm0(soft_pwm_bed << 1);
  241. bias = d = (MAX_BED_POWER)/2;
  242. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  243. }
  244. else
  245. {
  246. soft_pwm[extruder] = (PID_MAX)/2;
  247. bias = d = (PID_MAX)/2;
  248. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  249. }
  250. for(;;) {
  251. #ifdef WATCHDOG
  252. wdt_reset();
  253. #endif //WATCHDOG
  254. if(temp_meas_ready == true) { // temp sample ready
  255. updateTemperaturesFromRawValues();
  256. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  257. max=max(max,input);
  258. min=min(min,input);
  259. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  260. if(_millis() - extruder_autofan_last_check > 2500) {
  261. checkExtruderAutoFans();
  262. extruder_autofan_last_check = _millis();
  263. }
  264. #endif
  265. if(heating == true && input > temp) {
  266. if(_millis() - t2 > 5000) {
  267. heating=false;
  268. if (extruder<0)
  269. {
  270. soft_pwm_bed = (bias - d) >> 1;
  271. timer02_set_pwm0(soft_pwm_bed << 1);
  272. }
  273. else
  274. soft_pwm[extruder] = (bias - d) >> 1;
  275. t1=_millis();
  276. t_high=t1 - t2;
  277. max=temp;
  278. }
  279. }
  280. if(heating == false && input < temp) {
  281. if(_millis() - t1 > 5000) {
  282. heating=true;
  283. t2=_millis();
  284. t_low=t2 - t1;
  285. if(pid_cycle > 0) {
  286. bias += (d*(t_high - t_low))/(t_low + t_high);
  287. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  288. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  289. else d = bias;
  290. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  291. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  292. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  293. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  294. if(pid_cycle > 2) {
  295. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  296. Tu = ((float)(t_low + t_high)/1000.0);
  297. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  298. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  299. _Kp = 0.6*Ku;
  300. _Ki = 2*_Kp/Tu;
  301. _Kd = _Kp*Tu/8;
  302. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  303. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  304. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  305. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  306. /*
  307. _Kp = 0.33*Ku;
  308. _Ki = _Kp/Tu;
  309. _Kd = _Kp*Tu/3;
  310. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  311. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  312. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  313. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  314. _Kp = 0.2*Ku;
  315. _Ki = 2*_Kp/Tu;
  316. _Kd = _Kp*Tu/3;
  317. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  318. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  319. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  320. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  321. */
  322. }
  323. }
  324. if (extruder<0)
  325. {
  326. soft_pwm_bed = (bias + d) >> 1;
  327. timer02_set_pwm0(soft_pwm_bed << 1);
  328. }
  329. else
  330. soft_pwm[extruder] = (bias + d) >> 1;
  331. pid_cycle++;
  332. min=temp;
  333. }
  334. }
  335. }
  336. if(input > (temp + 20)) {
  337. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  338. pid_tuning_finished = true;
  339. pid_cycle = 0;
  340. return;
  341. }
  342. if(_millis() - temp_millis > 2000) {
  343. int p;
  344. if (extruder<0){
  345. p=soft_pwm_bed;
  346. SERIAL_PROTOCOLPGM("B:");
  347. }else{
  348. p=soft_pwm[extruder];
  349. SERIAL_PROTOCOLPGM("T:");
  350. }
  351. SERIAL_PROTOCOL(input);
  352. SERIAL_PROTOCOLPGM(" @:");
  353. SERIAL_PROTOCOLLN(p);
  354. if (safety_check_cycles == 0) { //save ambient temp
  355. temp_ambient = input;
  356. //SERIAL_ECHOPGM("Ambient T: ");
  357. //MYSERIAL.println(temp_ambient);
  358. safety_check_cycles++;
  359. }
  360. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  361. safety_check_cycles++;
  362. }
  363. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  364. safety_check_cycles++;
  365. //SERIAL_ECHOPGM("Time from beginning: ");
  366. //MYSERIAL.print(safety_check_cycles_count * 2);
  367. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  368. //MYSERIAL.println(input - temp_ambient);
  369. if (abs(input - temp_ambient) < 5.0) {
  370. temp_runaway_stop(false, (extruder<0));
  371. pid_tuning_finished = true;
  372. return;
  373. }
  374. }
  375. temp_millis = _millis();
  376. }
  377. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  378. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  379. pid_tuning_finished = true;
  380. pid_cycle = 0;
  381. return;
  382. }
  383. if(pid_cycle > ncycles) {
  384. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  385. pid_tuning_finished = true;
  386. pid_cycle = 0;
  387. return;
  388. }
  389. lcd_update(0);
  390. }
  391. }
  392. void updatePID()
  393. {
  394. #ifdef PIDTEMP
  395. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  396. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  397. }
  398. #endif
  399. #ifdef PIDTEMPBED
  400. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  401. #endif
  402. }
  403. int getHeaterPower(int heater) {
  404. if (heater<0)
  405. return soft_pwm_bed;
  406. return soft_pwm[heater];
  407. }
  408. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  409. #if defined(FAN_PIN) && FAN_PIN > -1
  410. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  411. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  412. #endif
  413. #endif
  414. void setExtruderAutoFanState(uint8_t state)
  415. {
  416. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  417. //the fan to either On or Off during certain tests/errors.
  418. fanState = state;
  419. uint8_t newFanSpeed = 0;
  420. if (fanState & 0x01)
  421. {
  422. #ifdef EXTRUDER_ALTFAN_DETECT
  423. if (extruderFanIsAltfan) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  424. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  425. #else //EXTRUDER_ALTFAN_DETECT
  426. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  427. #endif //EXTRUDER_ALTFAN_DETECT
  428. }
  429. timer4_set_fan0(newFanSpeed);
  430. }
  431. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  432. void countFanSpeed()
  433. {
  434. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  435. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  436. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  437. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  438. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  439. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  440. SERIAL_ECHOLNPGM(" ");*/
  441. fan_edge_counter[0] = 0;
  442. fan_edge_counter[1] = 0;
  443. }
  444. void checkFanSpeed()
  445. {
  446. uint8_t max_print_fan_errors = 0;
  447. uint8_t max_extruder_fan_errors = 0;
  448. #ifdef FAN_SOFT_PWM
  449. max_print_fan_errors = 3; //15 seconds
  450. max_extruder_fan_errors = 2; //10seconds
  451. #else //FAN_SOFT_PWM
  452. max_print_fan_errors = 15; //15 seconds
  453. max_extruder_fan_errors = 5; //5 seconds
  454. #endif //FAN_SOFT_PWM
  455. if(fans_check_enabled != false)
  456. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  457. static unsigned char fan_speed_errors[2] = { 0,0 };
  458. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  459. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  460. else{
  461. fan_speed_errors[0] = 0;
  462. host_keepalive();
  463. }
  464. #endif
  465. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  466. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  467. else fan_speed_errors[1] = 0;
  468. #endif
  469. // drop the fan_check_error flag when both fans are ok
  470. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  471. // we may even send some info to the LCD from here
  472. fan_check_error = EFCE_FIXED;
  473. }
  474. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  475. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  476. lcd_reset_alert_level(); //for another fan speed error
  477. }
  478. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  479. fan_speed_errors[0] = 0;
  480. fanSpeedError(0); //extruder fan
  481. }
  482. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  483. fan_speed_errors[1] = 0;
  484. fanSpeedError(1); //print fan
  485. }
  486. }
  487. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  488. //! Extracted from fanSpeedError to save some space.
  489. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  490. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  491. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  492. SERIAL_ECHOLNRPGM(serialMsg);
  493. if (get_message_level() == 0) {
  494. Sound_MakeCustom(200,0,true);
  495. LCD_ALERTMESSAGERPGM(lcdMsg);
  496. }
  497. }
  498. void fanSpeedError(unsigned char _fan) {
  499. if (get_message_level() != 0 && isPrintPaused) return;
  500. //to ensure that target temp. is not set to zero in case that we are resuming print
  501. if (card.sdprinting || is_usb_printing) {
  502. if (heating_status != 0) {
  503. lcd_print_stop();
  504. }
  505. else {
  506. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  507. }
  508. }
  509. else {
  510. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  511. setTargetHotend0(0);
  512. heating_status = 0;
  513. fan_check_error = EFCE_REPORTED;
  514. }
  515. switch (_fan) {
  516. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  517. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  518. break;
  519. case 1:
  520. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  521. break;
  522. }
  523. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  524. }
  525. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  526. void checkExtruderAutoFans()
  527. {
  528. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  529. if (!(fanState & 0x02))
  530. {
  531. fanState &= ~1;
  532. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  533. }
  534. setExtruderAutoFanState(fanState);
  535. #endif
  536. }
  537. #endif // any extruder auto fan pins set
  538. // ready for eventually parameters adjusting
  539. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  540. //void resetPID(uint8_t extruder)
  541. {
  542. }
  543. void manage_heater()
  544. {
  545. #ifdef WATCHDOG
  546. wdt_reset();
  547. #endif //WATCHDOG
  548. float pid_input;
  549. float pid_output;
  550. if(temp_meas_ready != true) //better readability
  551. return;
  552. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  553. updateTemperaturesFromRawValues();
  554. check_max_temp();
  555. check_min_temp();
  556. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  557. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  558. #endif
  559. for(int e = 0; e < EXTRUDERS; e++)
  560. {
  561. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  562. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  563. #endif
  564. #ifdef PIDTEMP
  565. pid_input = current_temperature[e];
  566. #ifndef PID_OPENLOOP
  567. if(target_temperature[e] == 0) {
  568. pid_output = 0;
  569. pid_reset[e] = true;
  570. } else {
  571. pid_error[e] = target_temperature[e] - pid_input;
  572. if(pid_reset[e]) {
  573. iState_sum[e] = 0.0;
  574. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  575. pid_reset[e] = false;
  576. }
  577. #ifndef PonM
  578. pTerm[e] = cs.Kp * pid_error[e];
  579. iState_sum[e] += pid_error[e];
  580. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  581. iTerm[e] = cs.Ki * iState_sum[e];
  582. // PID_K1 defined in Configuration.h in the PID settings
  583. #define K2 (1.0-PID_K1)
  584. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  585. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  586. if (pid_output > PID_MAX) {
  587. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  588. pid_output=PID_MAX;
  589. } else if (pid_output < 0) {
  590. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  591. pid_output=0;
  592. }
  593. #else // PonM ("Proportional on Measurement" method)
  594. iState_sum[e] += cs.Ki * pid_error[e];
  595. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  596. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  597. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  598. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  599. pid_output = constrain(pid_output, 0, PID_MAX);
  600. #endif // PonM
  601. }
  602. dState_last[e] = pid_input;
  603. #else
  604. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  605. #endif //PID_OPENLOOP
  606. #ifdef PID_DEBUG
  607. SERIAL_ECHO_START;
  608. SERIAL_ECHO(" PID_DEBUG ");
  609. SERIAL_ECHO(e);
  610. SERIAL_ECHO(": Input ");
  611. SERIAL_ECHO(pid_input);
  612. SERIAL_ECHO(" Output ");
  613. SERIAL_ECHO(pid_output);
  614. SERIAL_ECHO(" pTerm ");
  615. SERIAL_ECHO(pTerm[e]);
  616. SERIAL_ECHO(" iTerm ");
  617. SERIAL_ECHO(iTerm[e]);
  618. SERIAL_ECHO(" dTerm ");
  619. SERIAL_ECHOLN(-dTerm[e]);
  620. #endif //PID_DEBUG
  621. #else /* PID off */
  622. pid_output = 0;
  623. if(current_temperature[e] < target_temperature[e]) {
  624. pid_output = PID_MAX;
  625. }
  626. #endif
  627. // Check if temperature is within the correct range
  628. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  629. {
  630. soft_pwm[e] = (int)pid_output >> 1;
  631. }
  632. else
  633. {
  634. soft_pwm[e] = 0;
  635. }
  636. } // End extruder for loop
  637. #define FAN_CHECK_PERIOD 5000 //5s
  638. #define FAN_CHECK_DURATION 100 //100ms
  639. #ifndef DEBUG_DISABLE_FANCHECK
  640. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  641. #ifdef FAN_SOFT_PWM
  642. #ifdef FANCHECK
  643. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  644. extruder_autofan_last_check = _millis();
  645. fanSpeedBckp = fanSpeedSoftPwm;
  646. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  647. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  648. fanSpeedSoftPwm = 255;
  649. }
  650. fan_measuring = true;
  651. }
  652. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  653. countFanSpeed();
  654. checkFanSpeed();
  655. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  656. fanSpeedSoftPwm = fanSpeedBckp;
  657. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  658. extruder_autofan_last_check = _millis();
  659. fan_measuring = false;
  660. }
  661. #endif //FANCHECK
  662. checkExtruderAutoFans();
  663. #else //FAN_SOFT_PWM
  664. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  665. {
  666. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  667. countFanSpeed();
  668. checkFanSpeed();
  669. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  670. checkExtruderAutoFans();
  671. extruder_autofan_last_check = _millis();
  672. }
  673. #endif //FAN_SOFT_PWM
  674. #endif
  675. #endif //DEBUG_DISABLE_FANCHECK
  676. #ifndef PIDTEMPBED
  677. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  678. return;
  679. previous_millis_bed_heater = _millis();
  680. #endif
  681. #if TEMP_SENSOR_BED != 0
  682. #ifdef PIDTEMPBED
  683. pid_input = current_temperature_bed;
  684. #ifndef PID_OPENLOOP
  685. pid_error_bed = target_temperature_bed - pid_input;
  686. pTerm_bed = cs.bedKp * pid_error_bed;
  687. temp_iState_bed += pid_error_bed;
  688. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  689. iTerm_bed = cs.bedKi * temp_iState_bed;
  690. //PID_K1 defined in Configuration.h in the PID settings
  691. #define K2 (1.0-PID_K1)
  692. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  693. temp_dState_bed = pid_input;
  694. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  695. if (pid_output > MAX_BED_POWER) {
  696. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  697. pid_output=MAX_BED_POWER;
  698. } else if (pid_output < 0){
  699. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  700. pid_output=0;
  701. }
  702. #else
  703. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  704. #endif //PID_OPENLOOP
  705. if(current_temperature_bed < BED_MAXTEMP)
  706. {
  707. soft_pwm_bed = (int)pid_output >> 1;
  708. timer02_set_pwm0(soft_pwm_bed << 1);
  709. }
  710. else {
  711. soft_pwm_bed = 0;
  712. timer02_set_pwm0(soft_pwm_bed << 1);
  713. }
  714. #elif !defined(BED_LIMIT_SWITCHING)
  715. // Check if temperature is within the correct range
  716. if(current_temperature_bed < BED_MAXTEMP)
  717. {
  718. if(current_temperature_bed >= target_temperature_bed)
  719. {
  720. soft_pwm_bed = 0;
  721. timer02_set_pwm0(soft_pwm_bed << 1);
  722. }
  723. else
  724. {
  725. soft_pwm_bed = MAX_BED_POWER>>1;
  726. timer02_set_pwm0(soft_pwm_bed << 1);
  727. }
  728. }
  729. else
  730. {
  731. soft_pwm_bed = 0;
  732. timer02_set_pwm0(soft_pwm_bed << 1);
  733. WRITE(HEATER_BED_PIN,LOW);
  734. }
  735. #else //#ifdef BED_LIMIT_SWITCHING
  736. // Check if temperature is within the correct band
  737. if(current_temperature_bed < BED_MAXTEMP)
  738. {
  739. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  740. {
  741. soft_pwm_bed = 0;
  742. timer02_set_pwm0(soft_pwm_bed << 1);
  743. }
  744. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  745. {
  746. soft_pwm_bed = MAX_BED_POWER>>1;
  747. timer02_set_pwm0(soft_pwm_bed << 1);
  748. }
  749. }
  750. else
  751. {
  752. soft_pwm_bed = 0;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. WRITE(HEATER_BED_PIN,LOW);
  755. }
  756. #endif
  757. if(target_temperature_bed==0)
  758. {
  759. soft_pwm_bed = 0;
  760. timer02_set_pwm0(soft_pwm_bed << 1);
  761. }
  762. #endif
  763. host_keepalive();
  764. }
  765. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  766. // Derived from RepRap FiveD extruder::getTemperature()
  767. // For hot end temperature measurement.
  768. static float analog2temp(int raw, uint8_t e) {
  769. if(e >= EXTRUDERS)
  770. {
  771. SERIAL_ERROR_START;
  772. SERIAL_ERROR((int)e);
  773. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  774. kill(NULL, 6);
  775. return 0.0;
  776. }
  777. #ifdef HEATER_0_USES_MAX6675
  778. if (e == 0)
  779. {
  780. return 0.25 * raw;
  781. }
  782. #endif
  783. if(heater_ttbl_map[e] != NULL)
  784. {
  785. float celsius = 0;
  786. uint8_t i;
  787. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  788. for (i=1; i<heater_ttbllen_map[e]; i++)
  789. {
  790. if (PGM_RD_W((*tt)[i][0]) > raw)
  791. {
  792. celsius = PGM_RD_W((*tt)[i-1][1]) +
  793. (raw - PGM_RD_W((*tt)[i-1][0])) *
  794. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  795. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  796. break;
  797. }
  798. }
  799. // Overflow: Set to last value in the table
  800. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  801. return celsius;
  802. }
  803. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  804. }
  805. // Derived from RepRap FiveD extruder::getTemperature()
  806. // For bed temperature measurement.
  807. static float analog2tempBed(int raw) {
  808. #ifdef BED_USES_THERMISTOR
  809. float celsius = 0;
  810. byte i;
  811. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  812. {
  813. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  814. {
  815. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  816. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  817. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  818. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  819. break;
  820. }
  821. }
  822. // Overflow: Set to last value in the table
  823. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  824. // temperature offset adjustment
  825. #ifdef BED_OFFSET
  826. float _offset = BED_OFFSET;
  827. float _offset_center = BED_OFFSET_CENTER;
  828. float _offset_start = BED_OFFSET_START;
  829. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  830. float _second_koef = (_offset / 2) / (100 - _offset_center);
  831. if (celsius >= _offset_start && celsius <= _offset_center)
  832. {
  833. celsius = celsius + (_first_koef * (celsius - _offset_start));
  834. }
  835. else if (celsius > _offset_center && celsius <= 100)
  836. {
  837. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  838. }
  839. else if (celsius > 100)
  840. {
  841. celsius = celsius + _offset;
  842. }
  843. #endif
  844. return celsius;
  845. #elif defined BED_USES_AD595
  846. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  847. #else
  848. return 0;
  849. #endif
  850. }
  851. #ifdef AMBIENT_THERMISTOR
  852. static float analog2tempAmbient(int raw)
  853. {
  854. float celsius = 0;
  855. byte i;
  856. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  857. {
  858. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  859. {
  860. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  861. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  862. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  863. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  864. break;
  865. }
  866. }
  867. // Overflow: Set to last value in the table
  868. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  869. return celsius;
  870. }
  871. #endif //AMBIENT_THERMISTOR
  872. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  873. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  874. static void updateTemperaturesFromRawValues()
  875. {
  876. for(uint8_t e=0;e<EXTRUDERS;e++)
  877. {
  878. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  879. }
  880. #ifdef PINDA_THERMISTOR
  881. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  882. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  883. #endif
  884. #ifdef AMBIENT_THERMISTOR
  885. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  886. #endif
  887. #ifdef DEBUG_HEATER_BED_SIM
  888. current_temperature_bed = target_temperature_bed;
  889. #else //DEBUG_HEATER_BED_SIM
  890. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  891. #endif //DEBUG_HEATER_BED_SIM
  892. CRITICAL_SECTION_START;
  893. temp_meas_ready = false;
  894. CRITICAL_SECTION_END;
  895. }
  896. void tp_init()
  897. {
  898. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  899. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  900. MCUCR=(1<<JTD);
  901. MCUCR=(1<<JTD);
  902. #endif
  903. // Finish init of mult extruder arrays
  904. for(int e = 0; e < EXTRUDERS; e++) {
  905. // populate with the first value
  906. maxttemp[e] = maxttemp[0];
  907. #ifdef PIDTEMP
  908. iState_sum_min[e] = 0.0;
  909. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  910. #endif //PIDTEMP
  911. #ifdef PIDTEMPBED
  912. temp_iState_min_bed = 0.0;
  913. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  914. #endif //PIDTEMPBED
  915. }
  916. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  917. SET_OUTPUT(HEATER_0_PIN);
  918. #endif
  919. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  920. SET_OUTPUT(HEATER_1_PIN);
  921. #endif
  922. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  923. SET_OUTPUT(HEATER_2_PIN);
  924. #endif
  925. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  926. SET_OUTPUT(HEATER_BED_PIN);
  927. #endif
  928. #if defined(FAN_PIN) && (FAN_PIN > -1)
  929. SET_OUTPUT(FAN_PIN);
  930. #ifdef FAST_PWM_FAN
  931. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  932. #endif
  933. #ifdef FAN_SOFT_PWM
  934. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  935. #endif
  936. #endif
  937. #ifdef HEATER_0_USES_MAX6675
  938. #ifndef SDSUPPORT
  939. SET_OUTPUT(SCK_PIN);
  940. WRITE(SCK_PIN,0);
  941. SET_OUTPUT(MOSI_PIN);
  942. WRITE(MOSI_PIN,1);
  943. SET_INPUT(MISO_PIN);
  944. WRITE(MISO_PIN,1);
  945. #endif
  946. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  947. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  948. pinMode(SS_PIN, OUTPUT);
  949. digitalWrite(SS_PIN,0);
  950. pinMode(MAX6675_SS, OUTPUT);
  951. digitalWrite(MAX6675_SS,1);
  952. #endif
  953. adc_init();
  954. timer0_init();
  955. OCR2B = 128;
  956. TIMSK2 |= (1<<OCIE2B);
  957. timer4_init(); //for tone and Extruder fan PWM
  958. // Wait for temperature measurement to settle
  959. _delay(250);
  960. #ifdef HEATER_0_MINTEMP
  961. minttemp[0] = HEATER_0_MINTEMP;
  962. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  963. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  964. minttemp_raw[0] += OVERSAMPLENR;
  965. #else
  966. minttemp_raw[0] -= OVERSAMPLENR;
  967. #endif
  968. }
  969. #endif //MINTEMP
  970. #ifdef HEATER_0_MAXTEMP
  971. maxttemp[0] = HEATER_0_MAXTEMP;
  972. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  973. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  974. maxttemp_raw[0] -= OVERSAMPLENR;
  975. #else
  976. maxttemp_raw[0] += OVERSAMPLENR;
  977. #endif
  978. }
  979. #endif //MAXTEMP
  980. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  981. minttemp[1] = HEATER_1_MINTEMP;
  982. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  983. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  984. minttemp_raw[1] += OVERSAMPLENR;
  985. #else
  986. minttemp_raw[1] -= OVERSAMPLENR;
  987. #endif
  988. }
  989. #endif // MINTEMP 1
  990. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  991. maxttemp[1] = HEATER_1_MAXTEMP;
  992. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  993. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  994. maxttemp_raw[1] -= OVERSAMPLENR;
  995. #else
  996. maxttemp_raw[1] += OVERSAMPLENR;
  997. #endif
  998. }
  999. #endif //MAXTEMP 1
  1000. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1001. minttemp[2] = HEATER_2_MINTEMP;
  1002. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1003. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1004. minttemp_raw[2] += OVERSAMPLENR;
  1005. #else
  1006. minttemp_raw[2] -= OVERSAMPLENR;
  1007. #endif
  1008. }
  1009. #endif //MINTEMP 2
  1010. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1011. maxttemp[2] = HEATER_2_MAXTEMP;
  1012. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1013. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1014. maxttemp_raw[2] -= OVERSAMPLENR;
  1015. #else
  1016. maxttemp_raw[2] += OVERSAMPLENR;
  1017. #endif
  1018. }
  1019. #endif //MAXTEMP 2
  1020. #ifdef BED_MINTEMP
  1021. /* No bed MINTEMP error implemented?!? */
  1022. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1023. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1024. bed_minttemp_raw += OVERSAMPLENR;
  1025. #else
  1026. bed_minttemp_raw -= OVERSAMPLENR;
  1027. #endif
  1028. }
  1029. #endif //BED_MINTEMP
  1030. #ifdef BED_MAXTEMP
  1031. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1032. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1033. bed_maxttemp_raw -= OVERSAMPLENR;
  1034. #else
  1035. bed_maxttemp_raw += OVERSAMPLENR;
  1036. #endif
  1037. }
  1038. #endif //BED_MAXTEMP
  1039. }
  1040. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1041. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1042. {
  1043. float __delta;
  1044. float __hysteresis = 0;
  1045. int __timeout = 0;
  1046. bool temp_runaway_check_active = false;
  1047. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1048. static int __preheat_counter[2] = { 0,0};
  1049. static int __preheat_errors[2] = { 0,0};
  1050. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1051. {
  1052. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1053. if (_isbed)
  1054. {
  1055. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1056. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1057. }
  1058. #endif
  1059. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1060. if (!_isbed)
  1061. {
  1062. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1063. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1064. }
  1065. #endif
  1066. temp_runaway_timer[_heater_id] = _millis();
  1067. if (_output == 0)
  1068. {
  1069. temp_runaway_check_active = false;
  1070. temp_runaway_error_counter[_heater_id] = 0;
  1071. }
  1072. if (temp_runaway_target[_heater_id] != _target_temperature)
  1073. {
  1074. if (_target_temperature > 0)
  1075. {
  1076. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1077. temp_runaway_target[_heater_id] = _target_temperature;
  1078. __preheat_start[_heater_id] = _current_temperature;
  1079. __preheat_counter[_heater_id] = 0;
  1080. }
  1081. else
  1082. {
  1083. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1084. temp_runaway_target[_heater_id] = _target_temperature;
  1085. }
  1086. }
  1087. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1088. {
  1089. __preheat_counter[_heater_id]++;
  1090. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1091. {
  1092. /*SERIAL_ECHOPGM("Heater:");
  1093. MYSERIAL.print(_heater_id);
  1094. SERIAL_ECHOPGM(" T:");
  1095. MYSERIAL.print(_current_temperature);
  1096. SERIAL_ECHOPGM(" Tstart:");
  1097. MYSERIAL.print(__preheat_start[_heater_id]);
  1098. SERIAL_ECHOPGM(" delta:");
  1099. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1100. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1101. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1102. __delta=2.0;
  1103. if(_isbed)
  1104. {
  1105. __delta=3.0;
  1106. if(_current_temperature>90.0) __delta=2.0;
  1107. if(_current_temperature>105.0) __delta=0.6;
  1108. }
  1109. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1110. __preheat_errors[_heater_id]++;
  1111. /*SERIAL_ECHOPGM(" Preheat errors:");
  1112. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1113. }
  1114. else {
  1115. //SERIAL_ECHOLNPGM("");
  1116. __preheat_errors[_heater_id] = 0;
  1117. }
  1118. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1119. {
  1120. if (farm_mode) { prusa_statistics(0); }
  1121. temp_runaway_stop(true, _isbed);
  1122. if (farm_mode) { prusa_statistics(91); }
  1123. }
  1124. __preheat_start[_heater_id] = _current_temperature;
  1125. __preheat_counter[_heater_id] = 0;
  1126. }
  1127. }
  1128. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1129. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1130. {
  1131. /*SERIAL_ECHOPGM("Heater:");
  1132. MYSERIAL.print(_heater_id);
  1133. MYSERIAL.println(" ->tempRunaway");*/
  1134. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1135. temp_runaway_check_active = false;
  1136. temp_runaway_error_counter[_heater_id] = 0;
  1137. }
  1138. if (_output > 0)
  1139. {
  1140. temp_runaway_check_active = true;
  1141. }
  1142. if (temp_runaway_check_active)
  1143. {
  1144. // we are in range
  1145. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1146. {
  1147. temp_runaway_check_active = false;
  1148. temp_runaway_error_counter[_heater_id] = 0;
  1149. }
  1150. else
  1151. {
  1152. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1153. {
  1154. temp_runaway_error_counter[_heater_id]++;
  1155. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1156. {
  1157. if (farm_mode) { prusa_statistics(0); }
  1158. temp_runaway_stop(false, _isbed);
  1159. if (farm_mode) { prusa_statistics(90); }
  1160. }
  1161. }
  1162. }
  1163. }
  1164. }
  1165. }
  1166. void temp_runaway_stop(bool isPreheat, bool isBed)
  1167. {
  1168. cancel_heatup = true;
  1169. quickStop();
  1170. if (card.sdprinting)
  1171. {
  1172. card.sdprinting = false;
  1173. card.closefile();
  1174. }
  1175. // Clean the input command queue
  1176. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1177. cmdqueue_reset();
  1178. disable_heater();
  1179. disable_x();
  1180. disable_y();
  1181. disable_e0();
  1182. disable_e1();
  1183. disable_e2();
  1184. manage_heater();
  1185. lcd_update(0);
  1186. Sound_MakeCustom(200,0,true);
  1187. if (isPreheat)
  1188. {
  1189. Stop();
  1190. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1191. SERIAL_ERROR_START;
  1192. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1193. #ifdef EXTRUDER_ALTFAN_DETECT
  1194. extruderFanIsAltfan = false; //full speed
  1195. #endif //EXTRUDER_ALTFAN_DETECT
  1196. setExtruderAutoFanState(3);
  1197. SET_OUTPUT(FAN_PIN);
  1198. #ifdef FAN_SOFT_PWM
  1199. fanSpeedSoftPwm = 255;
  1200. #else //FAN_SOFT_PWM
  1201. analogWrite(FAN_PIN, 255);
  1202. #endif //FAN_SOFT_PWM
  1203. fanSpeed = 255;
  1204. delayMicroseconds(2000);
  1205. }
  1206. else
  1207. {
  1208. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1209. SERIAL_ERROR_START;
  1210. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1211. }
  1212. }
  1213. #endif
  1214. void disable_heater()
  1215. {
  1216. setAllTargetHotends(0);
  1217. setTargetBed(0);
  1218. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1219. target_temperature[0]=0;
  1220. soft_pwm[0]=0;
  1221. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1222. WRITE(HEATER_0_PIN,LOW);
  1223. #endif
  1224. #endif
  1225. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1226. target_temperature[1]=0;
  1227. soft_pwm[1]=0;
  1228. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1229. WRITE(HEATER_1_PIN,LOW);
  1230. #endif
  1231. #endif
  1232. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1233. target_temperature[2]=0;
  1234. soft_pwm[2]=0;
  1235. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1236. WRITE(HEATER_2_PIN,LOW);
  1237. #endif
  1238. #endif
  1239. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1240. target_temperature_bed=0;
  1241. soft_pwm_bed=0;
  1242. timer02_set_pwm0(soft_pwm_bed << 1);
  1243. bedPWMDisabled = 0;
  1244. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1245. //WRITE(HEATER_BED_PIN,LOW);
  1246. #endif
  1247. #endif
  1248. }
  1249. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1250. //! than raw const char * of the messages themselves.
  1251. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1252. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1253. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1254. //! remember the last alert message sent to the LCD
  1255. //! to prevent flicker and improve speed
  1256. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1257. void max_temp_error(uint8_t e) {
  1258. disable_heater();
  1259. if(IsStopped() == false) {
  1260. SERIAL_ERROR_START;
  1261. SERIAL_ERRORLN((int)e);
  1262. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1263. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1264. }
  1265. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1266. Stop();
  1267. #endif
  1268. SET_OUTPUT(FAN_PIN);
  1269. SET_OUTPUT(BEEPER);
  1270. WRITE(FAN_PIN, 1);
  1271. WRITE(BEEPER, 1);
  1272. #ifdef EXTRUDER_ALTFAN_DETECT
  1273. extruderFanIsAltfan = false; //full speed
  1274. #endif //EXTRUDER_ALTFAN_DETECT
  1275. setExtruderAutoFanState(3);
  1276. // fanSpeed will consumed by the check_axes_activity() routine.
  1277. fanSpeed=255;
  1278. if (farm_mode) { prusa_statistics(93); }
  1279. }
  1280. void min_temp_error(uint8_t e) {
  1281. #ifdef DEBUG_DISABLE_MINTEMP
  1282. return;
  1283. #endif
  1284. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1285. disable_heater();
  1286. static const char err[] PROGMEM = "Err: MINTEMP";
  1287. if(IsStopped() == false) {
  1288. SERIAL_ERROR_START;
  1289. SERIAL_ERRORLN((int)e);
  1290. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1291. lcd_setalertstatuspgm(err);
  1292. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1293. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1294. // we are already stopped due to some error, only update the status message without flickering
  1295. lcd_updatestatuspgm(err);
  1296. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1297. }
  1298. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1299. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1300. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1301. // lcd_print_stop();
  1302. // }
  1303. Stop();
  1304. #endif
  1305. if (farm_mode) { prusa_statistics(92); }
  1306. }
  1307. void bed_max_temp_error(void) {
  1308. #if HEATER_BED_PIN > -1
  1309. //WRITE(HEATER_BED_PIN, 0);
  1310. #endif
  1311. if(IsStopped() == false) {
  1312. SERIAL_ERROR_START;
  1313. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1314. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1315. }
  1316. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1317. Stop();
  1318. #endif
  1319. }
  1320. void bed_min_temp_error(void) {
  1321. #ifdef DEBUG_DISABLE_MINTEMP
  1322. return;
  1323. #endif
  1324. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1325. #if HEATER_BED_PIN > -1
  1326. //WRITE(HEATER_BED_PIN, 0);
  1327. #endif
  1328. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1329. if(IsStopped() == false) {
  1330. SERIAL_ERROR_START;
  1331. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1332. lcd_setalertstatuspgm(err);
  1333. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1334. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1335. // we are already stopped due to some error, only update the status message without flickering
  1336. lcd_updatestatuspgm(err);
  1337. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1338. }
  1339. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1340. Stop();
  1341. #endif
  1342. }
  1343. #ifdef HEATER_0_USES_MAX6675
  1344. #define MAX6675_HEAT_INTERVAL 250
  1345. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1346. int max6675_temp = 2000;
  1347. int read_max6675()
  1348. {
  1349. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1350. return max6675_temp;
  1351. max6675_previous_millis = _millis();
  1352. max6675_temp = 0;
  1353. #ifdef PRR
  1354. PRR &= ~(1<<PRSPI);
  1355. #elif defined PRR0
  1356. PRR0 &= ~(1<<PRSPI);
  1357. #endif
  1358. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1359. // enable TT_MAX6675
  1360. WRITE(MAX6675_SS, 0);
  1361. // ensure 100ns delay - a bit extra is fine
  1362. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1363. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1364. // read MSB
  1365. SPDR = 0;
  1366. for (;(SPSR & (1<<SPIF)) == 0;);
  1367. max6675_temp = SPDR;
  1368. max6675_temp <<= 8;
  1369. // read LSB
  1370. SPDR = 0;
  1371. for (;(SPSR & (1<<SPIF)) == 0;);
  1372. max6675_temp |= SPDR;
  1373. // disable TT_MAX6675
  1374. WRITE(MAX6675_SS, 1);
  1375. if (max6675_temp & 4)
  1376. {
  1377. // thermocouple open
  1378. max6675_temp = 2000;
  1379. }
  1380. else
  1381. {
  1382. max6675_temp = max6675_temp >> 3;
  1383. }
  1384. return max6675_temp;
  1385. }
  1386. #endif
  1387. extern "C" {
  1388. void adc_ready(void) //callback from adc when sampling finished
  1389. {
  1390. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1391. #ifdef PINDA_THERMISTOR
  1392. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1393. #endif //PINDA_THERMISTOR
  1394. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1395. #ifdef VOLT_PWR_PIN
  1396. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1397. #endif
  1398. #ifdef AMBIENT_THERMISTOR
  1399. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1400. #endif //AMBIENT_THERMISTOR
  1401. #ifdef VOLT_BED_PIN
  1402. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1403. #endif
  1404. #ifdef IR_SENSOR_ANALOG
  1405. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1406. #endif //IR_SENSOR_ANALOG
  1407. temp_meas_ready = true;
  1408. }
  1409. } // extern "C"
  1410. FORCE_INLINE static void temperature_isr()
  1411. {
  1412. if (!temp_meas_ready) adc_cycle();
  1413. lcd_buttons_update();
  1414. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1415. static uint8_t soft_pwm_0;
  1416. #ifdef SLOW_PWM_HEATERS
  1417. static unsigned char slow_pwm_count = 0;
  1418. static unsigned char state_heater_0 = 0;
  1419. static unsigned char state_timer_heater_0 = 0;
  1420. #endif
  1421. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1422. static unsigned char soft_pwm_1;
  1423. #ifdef SLOW_PWM_HEATERS
  1424. static unsigned char state_heater_1 = 0;
  1425. static unsigned char state_timer_heater_1 = 0;
  1426. #endif
  1427. #endif
  1428. #if EXTRUDERS > 2
  1429. static unsigned char soft_pwm_2;
  1430. #ifdef SLOW_PWM_HEATERS
  1431. static unsigned char state_heater_2 = 0;
  1432. static unsigned char state_timer_heater_2 = 0;
  1433. #endif
  1434. #endif
  1435. #if HEATER_BED_PIN > -1
  1436. // @@DR static unsigned char soft_pwm_b;
  1437. #ifdef SLOW_PWM_HEATERS
  1438. static unsigned char state_heater_b = 0;
  1439. static unsigned char state_timer_heater_b = 0;
  1440. #endif
  1441. #endif
  1442. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1443. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1444. #endif
  1445. #ifndef SLOW_PWM_HEATERS
  1446. /*
  1447. * standard PWM modulation
  1448. */
  1449. if (pwm_count == 0)
  1450. {
  1451. soft_pwm_0 = soft_pwm[0];
  1452. if(soft_pwm_0 > 0)
  1453. {
  1454. WRITE(HEATER_0_PIN,1);
  1455. #ifdef HEATERS_PARALLEL
  1456. WRITE(HEATER_1_PIN,1);
  1457. #endif
  1458. } else WRITE(HEATER_0_PIN,0);
  1459. #if EXTRUDERS > 1
  1460. soft_pwm_1 = soft_pwm[1];
  1461. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1462. #endif
  1463. #if EXTRUDERS > 2
  1464. soft_pwm_2 = soft_pwm[2];
  1465. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1466. #endif
  1467. }
  1468. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1469. #if 0 // @@DR vypnuto pro hw pwm bedu
  1470. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1471. // teoreticky by se tato cast uz vubec nemusela poustet
  1472. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1473. {
  1474. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1475. # ifndef SYSTEM_TIMER_2
  1476. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1477. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1478. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1479. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1480. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1481. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1482. # endif //SYSTEM_TIMER_2
  1483. }
  1484. #endif
  1485. #endif
  1486. #ifdef FAN_SOFT_PWM
  1487. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1488. {
  1489. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1490. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1491. }
  1492. #endif
  1493. if(soft_pwm_0 < pwm_count)
  1494. {
  1495. WRITE(HEATER_0_PIN,0);
  1496. #ifdef HEATERS_PARALLEL
  1497. WRITE(HEATER_1_PIN,0);
  1498. #endif
  1499. }
  1500. #if EXTRUDERS > 1
  1501. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1502. #endif
  1503. #if EXTRUDERS > 2
  1504. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1505. #endif
  1506. #if 0 // @@DR
  1507. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1508. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1509. //WRITE(HEATER_BED_PIN,0);
  1510. }
  1511. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1512. #endif
  1513. #endif
  1514. #ifdef FAN_SOFT_PWM
  1515. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1516. #endif
  1517. pwm_count += (1 << SOFT_PWM_SCALE);
  1518. pwm_count &= 0x7f;
  1519. #else //ifndef SLOW_PWM_HEATERS
  1520. /*
  1521. * SLOW PWM HEATERS
  1522. *
  1523. * for heaters drived by relay
  1524. */
  1525. #ifndef MIN_STATE_TIME
  1526. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1527. #endif
  1528. if (slow_pwm_count == 0) {
  1529. // EXTRUDER 0
  1530. soft_pwm_0 = soft_pwm[0];
  1531. if (soft_pwm_0 > 0) {
  1532. // turn ON heather only if the minimum time is up
  1533. if (state_timer_heater_0 == 0) {
  1534. // if change state set timer
  1535. if (state_heater_0 == 0) {
  1536. state_timer_heater_0 = MIN_STATE_TIME;
  1537. }
  1538. state_heater_0 = 1;
  1539. WRITE(HEATER_0_PIN, 1);
  1540. #ifdef HEATERS_PARALLEL
  1541. WRITE(HEATER_1_PIN, 1);
  1542. #endif
  1543. }
  1544. } else {
  1545. // turn OFF heather only if the minimum time is up
  1546. if (state_timer_heater_0 == 0) {
  1547. // if change state set timer
  1548. if (state_heater_0 == 1) {
  1549. state_timer_heater_0 = MIN_STATE_TIME;
  1550. }
  1551. state_heater_0 = 0;
  1552. WRITE(HEATER_0_PIN, 0);
  1553. #ifdef HEATERS_PARALLEL
  1554. WRITE(HEATER_1_PIN, 0);
  1555. #endif
  1556. }
  1557. }
  1558. #if EXTRUDERS > 1
  1559. // EXTRUDER 1
  1560. soft_pwm_1 = soft_pwm[1];
  1561. if (soft_pwm_1 > 0) {
  1562. // turn ON heather only if the minimum time is up
  1563. if (state_timer_heater_1 == 0) {
  1564. // if change state set timer
  1565. if (state_heater_1 == 0) {
  1566. state_timer_heater_1 = MIN_STATE_TIME;
  1567. }
  1568. state_heater_1 = 1;
  1569. WRITE(HEATER_1_PIN, 1);
  1570. }
  1571. } else {
  1572. // turn OFF heather only if the minimum time is up
  1573. if (state_timer_heater_1 == 0) {
  1574. // if change state set timer
  1575. if (state_heater_1 == 1) {
  1576. state_timer_heater_1 = MIN_STATE_TIME;
  1577. }
  1578. state_heater_1 = 0;
  1579. WRITE(HEATER_1_PIN, 0);
  1580. }
  1581. }
  1582. #endif
  1583. #if EXTRUDERS > 2
  1584. // EXTRUDER 2
  1585. soft_pwm_2 = soft_pwm[2];
  1586. if (soft_pwm_2 > 0) {
  1587. // turn ON heather only if the minimum time is up
  1588. if (state_timer_heater_2 == 0) {
  1589. // if change state set timer
  1590. if (state_heater_2 == 0) {
  1591. state_timer_heater_2 = MIN_STATE_TIME;
  1592. }
  1593. state_heater_2 = 1;
  1594. WRITE(HEATER_2_PIN, 1);
  1595. }
  1596. } else {
  1597. // turn OFF heather only if the minimum time is up
  1598. if (state_timer_heater_2 == 0) {
  1599. // if change state set timer
  1600. if (state_heater_2 == 1) {
  1601. state_timer_heater_2 = MIN_STATE_TIME;
  1602. }
  1603. state_heater_2 = 0;
  1604. WRITE(HEATER_2_PIN, 0);
  1605. }
  1606. }
  1607. #endif
  1608. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1609. // BED
  1610. soft_pwm_b = soft_pwm_bed;
  1611. if (soft_pwm_b > 0) {
  1612. // turn ON heather only if the minimum time is up
  1613. if (state_timer_heater_b == 0) {
  1614. // if change state set timer
  1615. if (state_heater_b == 0) {
  1616. state_timer_heater_b = MIN_STATE_TIME;
  1617. }
  1618. state_heater_b = 1;
  1619. //WRITE(HEATER_BED_PIN, 1);
  1620. }
  1621. } else {
  1622. // turn OFF heather only if the minimum time is up
  1623. if (state_timer_heater_b == 0) {
  1624. // if change state set timer
  1625. if (state_heater_b == 1) {
  1626. state_timer_heater_b = MIN_STATE_TIME;
  1627. }
  1628. state_heater_b = 0;
  1629. WRITE(HEATER_BED_PIN, 0);
  1630. }
  1631. }
  1632. #endif
  1633. } // if (slow_pwm_count == 0)
  1634. // EXTRUDER 0
  1635. if (soft_pwm_0 < slow_pwm_count) {
  1636. // turn OFF heather only if the minimum time is up
  1637. if (state_timer_heater_0 == 0) {
  1638. // if change state set timer
  1639. if (state_heater_0 == 1) {
  1640. state_timer_heater_0 = MIN_STATE_TIME;
  1641. }
  1642. state_heater_0 = 0;
  1643. WRITE(HEATER_0_PIN, 0);
  1644. #ifdef HEATERS_PARALLEL
  1645. WRITE(HEATER_1_PIN, 0);
  1646. #endif
  1647. }
  1648. }
  1649. #if EXTRUDERS > 1
  1650. // EXTRUDER 1
  1651. if (soft_pwm_1 < slow_pwm_count) {
  1652. // turn OFF heather only if the minimum time is up
  1653. if (state_timer_heater_1 == 0) {
  1654. // if change state set timer
  1655. if (state_heater_1 == 1) {
  1656. state_timer_heater_1 = MIN_STATE_TIME;
  1657. }
  1658. state_heater_1 = 0;
  1659. WRITE(HEATER_1_PIN, 0);
  1660. }
  1661. }
  1662. #endif
  1663. #if EXTRUDERS > 2
  1664. // EXTRUDER 2
  1665. if (soft_pwm_2 < slow_pwm_count) {
  1666. // turn OFF heather only if the minimum time is up
  1667. if (state_timer_heater_2 == 0) {
  1668. // if change state set timer
  1669. if (state_heater_2 == 1) {
  1670. state_timer_heater_2 = MIN_STATE_TIME;
  1671. }
  1672. state_heater_2 = 0;
  1673. WRITE(HEATER_2_PIN, 0);
  1674. }
  1675. }
  1676. #endif
  1677. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1678. // BED
  1679. if (soft_pwm_b < slow_pwm_count) {
  1680. // turn OFF heather only if the minimum time is up
  1681. if (state_timer_heater_b == 0) {
  1682. // if change state set timer
  1683. if (state_heater_b == 1) {
  1684. state_timer_heater_b = MIN_STATE_TIME;
  1685. }
  1686. state_heater_b = 0;
  1687. WRITE(HEATER_BED_PIN, 0);
  1688. }
  1689. }
  1690. #endif
  1691. #ifdef FAN_SOFT_PWM
  1692. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1693. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1694. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1695. }
  1696. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1697. #endif
  1698. pwm_count += (1 << SOFT_PWM_SCALE);
  1699. pwm_count &= 0x7f;
  1700. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1701. if ((pwm_count % 64) == 0) {
  1702. slow_pwm_count++;
  1703. slow_pwm_count &= 0x7f;
  1704. // Extruder 0
  1705. if (state_timer_heater_0 > 0) {
  1706. state_timer_heater_0--;
  1707. }
  1708. #if EXTRUDERS > 1
  1709. // Extruder 1
  1710. if (state_timer_heater_1 > 0)
  1711. state_timer_heater_1--;
  1712. #endif
  1713. #if EXTRUDERS > 2
  1714. // Extruder 2
  1715. if (state_timer_heater_2 > 0)
  1716. state_timer_heater_2--;
  1717. #endif
  1718. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1719. // Bed
  1720. if (state_timer_heater_b > 0)
  1721. state_timer_heater_b--;
  1722. #endif
  1723. } //if ((pwm_count % 64) == 0) {
  1724. #endif //ifndef SLOW_PWM_HEATERS
  1725. #ifdef BABYSTEPPING
  1726. for(uint8_t axis=0;axis<3;axis++)
  1727. {
  1728. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1729. if(curTodo>0)
  1730. {
  1731. asm("cli");
  1732. babystep(axis,/*fwd*/true);
  1733. babystepsTodo[axis]--; //less to do next time
  1734. asm("sei");
  1735. }
  1736. else
  1737. if(curTodo<0)
  1738. {
  1739. asm("cli");
  1740. babystep(axis,/*fwd*/false);
  1741. babystepsTodo[axis]++; //less to do next time
  1742. asm("sei");
  1743. }
  1744. }
  1745. #endif //BABYSTEPPING
  1746. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1747. check_fans();
  1748. #endif //(defined(TACH_0))
  1749. }
  1750. // Timer2 (originaly timer0) is shared with millies
  1751. #ifdef SYSTEM_TIMER_2
  1752. ISR(TIMER2_COMPB_vect)
  1753. #else //SYSTEM_TIMER_2
  1754. ISR(TIMER0_COMPB_vect)
  1755. #endif //SYSTEM_TIMER_2
  1756. {
  1757. static bool _lock = false;
  1758. if (!_lock)
  1759. {
  1760. _lock = true;
  1761. sei();
  1762. temperature_isr();
  1763. cli();
  1764. _lock = false;
  1765. }
  1766. }
  1767. void check_max_temp()
  1768. {
  1769. //heater
  1770. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1771. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1772. #else
  1773. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1774. #endif
  1775. max_temp_error(0);
  1776. }
  1777. //bed
  1778. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1779. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1780. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1781. #else
  1782. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1783. #endif
  1784. target_temperature_bed = 0;
  1785. bed_max_temp_error();
  1786. }
  1787. #endif
  1788. }
  1789. //! number of repeating the same state with consecutive step() calls
  1790. //! used to slow down text switching
  1791. struct alert_automaton_mintemp {
  1792. const char *m2;
  1793. alert_automaton_mintemp(const char *m2):m2(m2){}
  1794. private:
  1795. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1796. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1797. States state = States::Init;
  1798. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1799. void substep(States next_state){
  1800. if( repeat == 0 ){
  1801. state = next_state; // advance to the next state
  1802. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1803. } else {
  1804. --repeat;
  1805. }
  1806. }
  1807. public:
  1808. //! brief state automaton step routine
  1809. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1810. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1811. void step(float current_temp, float mintemp){
  1812. static const char m1[] PROGMEM = "Please restart";
  1813. switch(state){
  1814. case States::Init: // initial state - check hysteresis
  1815. if( current_temp > mintemp ){
  1816. state = States::TempAboveMintemp;
  1817. }
  1818. // otherwise keep the Err MINTEMP alert message on the display,
  1819. // i.e. do not transfer to state 1
  1820. break;
  1821. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1822. lcd_setalertstatuspgm(m2);
  1823. substep(States::ShowMintemp);
  1824. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1825. break;
  1826. case States::ShowPleaseRestart: // displaying "Please restart"
  1827. lcd_updatestatuspgm(m1);
  1828. substep(States::ShowMintemp);
  1829. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1830. break;
  1831. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1832. lcd_updatestatuspgm(m2);
  1833. substep(States::ShowPleaseRestart);
  1834. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1835. break;
  1836. }
  1837. }
  1838. };
  1839. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1840. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1841. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1842. void check_min_temp_heater0()
  1843. {
  1844. //heater
  1845. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1846. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1847. #else
  1848. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1849. #endif
  1850. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1851. min_temp_error(0);
  1852. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1853. // no recovery, just force the user to restart the printer
  1854. // which is a safer variant than just continuing printing
  1855. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1856. // we shall signalize, that MINTEMP has been fixed
  1857. // Code notice: normally the alert_automaton instance would have been placed here
  1858. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1859. // due to stupid compiler that takes 16 more bytes.
  1860. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1861. }
  1862. }
  1863. void check_min_temp_bed()
  1864. {
  1865. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1866. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1867. #else
  1868. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1869. #endif
  1870. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1871. bed_min_temp_error();
  1872. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1873. // no recovery, just force the user to restart the printer
  1874. // which is a safer variant than just continuing printing
  1875. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1876. }
  1877. }
  1878. void check_min_temp()
  1879. {
  1880. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1881. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1882. #ifdef AMBIENT_THERMISTOR
  1883. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1884. { // ambient temperature is low
  1885. #endif //AMBIENT_THERMISTOR
  1886. // *** 'common' part of code for MK2.5 & MK3
  1887. // * nozzle checking
  1888. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1889. { // ~ nozzle heating is on
  1890. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1891. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1892. {
  1893. bCheckingOnHeater=true; // not necessary
  1894. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1895. }
  1896. }
  1897. else { // ~ nozzle heating is off
  1898. oTimer4minTempHeater.start();
  1899. bCheckingOnHeater=false;
  1900. }
  1901. // * bed checking
  1902. if(target_temperature_bed>BED_MINTEMP)
  1903. { // ~ bed heating is on
  1904. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1905. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1906. {
  1907. bCheckingOnBed=true; // not necessary
  1908. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1909. }
  1910. }
  1911. else { // ~ bed heating is off
  1912. oTimer4minTempBed.start();
  1913. bCheckingOnBed=false;
  1914. }
  1915. // *** end of 'common' part
  1916. #ifdef AMBIENT_THERMISTOR
  1917. }
  1918. else { // ambient temperature is standard
  1919. check_min_temp_heater0();
  1920. check_min_temp_bed();
  1921. }
  1922. #endif //AMBIENT_THERMISTOR
  1923. }
  1924. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1925. void check_fans() {
  1926. #ifdef FAN_SOFT_PWM
  1927. if (READ(TACH_0) != fan_state[0]) {
  1928. if(fan_measuring) fan_edge_counter[0] ++;
  1929. fan_state[0] = !fan_state[0];
  1930. }
  1931. #else //FAN_SOFT_PWM
  1932. if (READ(TACH_0) != fan_state[0]) {
  1933. fan_edge_counter[0] ++;
  1934. fan_state[0] = !fan_state[0];
  1935. }
  1936. #endif
  1937. //if (READ(TACH_1) != fan_state[1]) {
  1938. // fan_edge_counter[1] ++;
  1939. // fan_state[1] = !fan_state[1];
  1940. //}
  1941. }
  1942. #endif //TACH_0
  1943. #ifdef PIDTEMP
  1944. // Apply the scale factors to the PID values
  1945. float scalePID_i(float i)
  1946. {
  1947. return i*PID_dT;
  1948. }
  1949. float unscalePID_i(float i)
  1950. {
  1951. return i/PID_dT;
  1952. }
  1953. float scalePID_d(float d)
  1954. {
  1955. return d/PID_dT;
  1956. }
  1957. float unscalePID_d(float d)
  1958. {
  1959. return d*PID_dT;
  1960. }
  1961. #endif //PIDTEMP
  1962. #ifdef PINDA_THERMISTOR
  1963. //! @brief PINDA thermistor detected
  1964. //!
  1965. //! @retval true firmware should do temperature compensation and allow calibration
  1966. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  1967. //!
  1968. bool has_temperature_compensation()
  1969. {
  1970. #ifdef DETECT_SUPERPINDA
  1971. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  1972. #else
  1973. return true;
  1974. #endif
  1975. }
  1976. #endif //PINDA_THERMISTOR