Marlin_main.cpp 290 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include <avr/pgmspace.h>
  50. #include "Dcodes.h"
  51. #ifdef SWSPI
  52. #include "swspi.h"
  53. #endif //SWSPI
  54. #ifdef NEW_SPI
  55. #include "spi.h"
  56. #endif //NEW_SPI
  57. #ifdef SWI2C
  58. #include "swi2c.h"
  59. #endif //SWI2C
  60. #ifdef PAT9125
  61. #include "pat9125.h"
  62. #include "fsensor.h"
  63. #endif //PAT9125
  64. #ifdef TMC2130
  65. #include "tmc2130.h"
  66. #endif //TMC2130
  67. #ifdef BLINKM
  68. #include "BlinkM.h"
  69. #include "Wire.h"
  70. #endif
  71. #ifdef ULTRALCD
  72. #include "ultralcd.h"
  73. #endif
  74. #if NUM_SERVOS > 0
  75. #include "Servo.h"
  76. #endif
  77. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  78. #include <SPI.h>
  79. #endif
  80. #define VERSION_STRING "1.0.2"
  81. #include "ultralcd.h"
  82. #include "cmdqueue.h"
  83. // Macros for bit masks
  84. #define BIT(b) (1<<(b))
  85. #define TEST(n,b) (((n)&BIT(b))!=0)
  86. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  87. //Macro for print fan speed
  88. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  89. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  90. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  91. //Implemented Codes
  92. //-------------------
  93. // PRUSA CODES
  94. // P F - Returns FW versions
  95. // P R - Returns revision of printer
  96. // G0 -> G1
  97. // G1 - Coordinated Movement X Y Z E
  98. // G2 - CW ARC
  99. // G3 - CCW ARC
  100. // G4 - Dwell S<seconds> or P<milliseconds>
  101. // G10 - retract filament according to settings of M207
  102. // G11 - retract recover filament according to settings of M208
  103. // G28 - Home all Axis
  104. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. // G30 - Single Z Probe, probes bed at current XY location.
  106. // G31 - Dock sled (Z_PROBE_SLED only)
  107. // G32 - Undock sled (Z_PROBE_SLED only)
  108. // G80 - Automatic mesh bed leveling
  109. // G81 - Print bed profile
  110. // G90 - Use Absolute Coordinates
  111. // G91 - Use Relative Coordinates
  112. // G92 - Set current position to coordinates given
  113. // M Codes
  114. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. // M1 - Same as M0
  116. // M17 - Enable/Power all stepper motors
  117. // M18 - Disable all stepper motors; same as M84
  118. // M20 - List SD card
  119. // M21 - Init SD card
  120. // M22 - Release SD card
  121. // M23 - Select SD file (M23 filename.g)
  122. // M24 - Start/resume SD print
  123. // M25 - Pause SD print
  124. // M26 - Set SD position in bytes (M26 S12345)
  125. // M27 - Report SD print status
  126. // M28 - Start SD write (M28 filename.g)
  127. // M29 - Stop SD write
  128. // M30 - Delete file from SD (M30 filename.g)
  129. // M31 - Output time since last M109 or SD card start to serial
  130. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. // M80 - Turn on Power Supply
  136. // M81 - Turn off Power Supply
  137. // M82 - Set E codes absolute (default)
  138. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  139. // M84 - Disable steppers until next move,
  140. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  141. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  142. // M92 - Set axis_steps_per_unit - same syntax as G92
  143. // M104 - Set extruder target temp
  144. // M105 - Read current temp
  145. // M106 - Fan on
  146. // M107 - Fan off
  147. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  148. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  149. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  150. // M112 - Emergency stop
  151. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. // M114 - Output current position to serial port
  153. // M115 - Capabilities string
  154. // M117 - display message
  155. // M119 - Output Endstop status to serial port
  156. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  157. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  158. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  159. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. // M140 - Set bed target temp
  161. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  162. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  163. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  164. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  165. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  166. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  167. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  168. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  169. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  170. // M206 - set additional homing offset
  171. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  172. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  173. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  174. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  175. // M220 S<factor in percent>- set speed factor override percentage
  176. // M221 S<factor in percent>- set extrude factor override percentage
  177. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  178. // M240 - Trigger a camera to take a photograph
  179. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  180. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  181. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  182. // M301 - Set PID parameters P I and D
  183. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  184. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  185. // M304 - Set bed PID parameters P I and D
  186. // M400 - Finish all moves
  187. // M401 - Lower z-probe if present
  188. // M402 - Raise z-probe if present
  189. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. // M406 - Turn off Filament Sensor extrusion control
  192. // M407 - Displays measured filament diameter
  193. // M500 - stores parameters in EEPROM
  194. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. // M503 - print the current settings (from memory not from EEPROM)
  197. // M509 - force language selection on next restart
  198. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  201. // M860 - Wait for PINDA thermistor to reach target temperature.
  202. // M861 - Set / Read PINDA temperature compensation offsets
  203. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  204. // M907 - Set digital trimpot motor current using axis codes.
  205. // M908 - Control digital trimpot directly.
  206. // M350 - Set microstepping mode.
  207. // M351 - Toggle MS1 MS2 pins directly.
  208. // M928 - Start SD logging (M928 filename.g) - ended by M29
  209. // M999 - Restart after being stopped by error
  210. //Stepper Movement Variables
  211. //===========================================================================
  212. //=============================imported variables============================
  213. //===========================================================================
  214. //===========================================================================
  215. //=============================public variables=============================
  216. //===========================================================================
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. unsigned long PingTime = millis();
  221. unsigned long NcTime;
  222. union Data
  223. {
  224. byte b[2];
  225. int value;
  226. };
  227. float homing_feedrate[] = HOMING_FEEDRATE;
  228. // Currently only the extruder axis may be switched to a relative mode.
  229. // Other axes are always absolute or relative based on the common relative_mode flag.
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedmultiply=100; //100->1 200->2
  232. int saved_feedmultiply;
  233. int extrudemultiply=100; //100->1 200->2
  234. int extruder_multiply[EXTRUDERS] = {100
  235. #if EXTRUDERS > 1
  236. , 100
  237. #if EXTRUDERS > 2
  238. , 100
  239. #endif
  240. #endif
  241. };
  242. int bowden_length[4] = {385, 385, 385, 385};
  243. bool is_usb_printing = false;
  244. bool homing_flag = false;
  245. bool temp_cal_active = false;
  246. unsigned long kicktime = millis()+100000;
  247. unsigned int usb_printing_counter;
  248. int lcd_change_fil_state = 0;
  249. int feedmultiplyBckp = 100;
  250. float HotendTempBckp = 0;
  251. int fanSpeedBckp = 0;
  252. float pause_lastpos[4];
  253. unsigned long pause_time = 0;
  254. unsigned long start_pause_print = millis();
  255. unsigned long t_fan_rising_edge = millis();
  256. //unsigned long load_filament_time;
  257. bool mesh_bed_leveling_flag = false;
  258. bool mesh_bed_run_from_menu = false;
  259. //unsigned char lang_selected = 0;
  260. int8_t FarmMode = 0;
  261. bool prusa_sd_card_upload = false;
  262. unsigned int status_number = 0;
  263. unsigned long total_filament_used;
  264. unsigned int heating_status;
  265. unsigned int heating_status_counter;
  266. bool custom_message;
  267. bool loading_flag = false;
  268. unsigned int custom_message_type;
  269. unsigned int custom_message_state;
  270. char snmm_filaments_used = 0;
  271. bool fan_state[2];
  272. int fan_edge_counter[2];
  273. int fan_speed[2];
  274. char dir_names[3][9];
  275. bool sortAlpha = false;
  276. bool volumetric_enabled = false;
  277. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  278. #if EXTRUDERS > 1
  279. , DEFAULT_NOMINAL_FILAMENT_DIA
  280. #if EXTRUDERS > 2
  281. , DEFAULT_NOMINAL_FILAMENT_DIA
  282. #endif
  283. #endif
  284. };
  285. float extruder_multiplier[EXTRUDERS] = {1.0
  286. #if EXTRUDERS > 1
  287. , 1.0
  288. #if EXTRUDERS > 2
  289. , 1.0
  290. #endif
  291. #endif
  292. };
  293. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  294. float add_homing[3]={0,0,0};
  295. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  296. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  297. bool axis_known_position[3] = {false, false, false};
  298. float zprobe_zoffset;
  299. // Extruder offset
  300. #if EXTRUDERS > 1
  301. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  302. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  303. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  304. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  305. #endif
  306. };
  307. #endif
  308. uint8_t active_extruder = 0;
  309. int fanSpeed=0;
  310. #ifdef FWRETRACT
  311. bool autoretract_enabled=false;
  312. bool retracted[EXTRUDERS]={false
  313. #if EXTRUDERS > 1
  314. , false
  315. #if EXTRUDERS > 2
  316. , false
  317. #endif
  318. #endif
  319. };
  320. bool retracted_swap[EXTRUDERS]={false
  321. #if EXTRUDERS > 1
  322. , false
  323. #if EXTRUDERS > 2
  324. , false
  325. #endif
  326. #endif
  327. };
  328. float retract_length = RETRACT_LENGTH;
  329. float retract_length_swap = RETRACT_LENGTH_SWAP;
  330. float retract_feedrate = RETRACT_FEEDRATE;
  331. float retract_zlift = RETRACT_ZLIFT;
  332. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  333. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  334. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  335. #endif
  336. #ifdef ULTIPANEL
  337. #ifdef PS_DEFAULT_OFF
  338. bool powersupply = false;
  339. #else
  340. bool powersupply = true;
  341. #endif
  342. #endif
  343. bool cancel_heatup = false ;
  344. #ifdef HOST_KEEPALIVE_FEATURE
  345. int busy_state = NOT_BUSY;
  346. static long prev_busy_signal_ms = -1;
  347. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  348. #else
  349. #define host_keepalive();
  350. #define KEEPALIVE_STATE(n);
  351. #endif
  352. const char errormagic[] PROGMEM = "Error:";
  353. const char echomagic[] PROGMEM = "echo:";
  354. bool no_response = false;
  355. uint8_t important_status;
  356. uint8_t saved_filament_type;
  357. // save/restore printing
  358. bool saved_printing = false;
  359. //===========================================================================
  360. //=============================Private Variables=============================
  361. //===========================================================================
  362. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  363. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  364. static float delta[3] = {0.0, 0.0, 0.0};
  365. // For tracing an arc
  366. static float offset[3] = {0.0, 0.0, 0.0};
  367. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  368. // Determines Absolute or Relative Coordinates.
  369. // Also there is bool axis_relative_modes[] per axis flag.
  370. static bool relative_mode = false;
  371. #ifndef _DISABLE_M42_M226
  372. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  373. #endif //_DISABLE_M42_M226
  374. //static float tt = 0;
  375. //static float bt = 0;
  376. //Inactivity shutdown variables
  377. static unsigned long previous_millis_cmd = 0;
  378. unsigned long max_inactive_time = 0;
  379. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  380. unsigned long starttime=0;
  381. unsigned long stoptime=0;
  382. unsigned long _usb_timer = 0;
  383. static uint8_t tmp_extruder;
  384. bool extruder_under_pressure = true;
  385. bool Stopped=false;
  386. #if NUM_SERVOS > 0
  387. Servo servos[NUM_SERVOS];
  388. #endif
  389. bool CooldownNoWait = true;
  390. bool target_direction;
  391. //Insert variables if CHDK is defined
  392. #ifdef CHDK
  393. unsigned long chdkHigh = 0;
  394. boolean chdkActive = false;
  395. #endif
  396. // save/restore printing
  397. static uint32_t saved_sdpos = 0;
  398. static float saved_pos[4] = { 0, 0, 0, 0 };
  399. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  400. static float saved_feedrate2 = 0;
  401. static uint8_t saved_active_extruder = 0;
  402. static bool saved_extruder_under_pressure = false;
  403. //===========================================================================
  404. //=============================Routines======================================
  405. //===========================================================================
  406. void get_arc_coordinates();
  407. bool setTargetedHotend(int code);
  408. void serial_echopair_P(const char *s_P, float v)
  409. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  410. void serial_echopair_P(const char *s_P, double v)
  411. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. void serial_echopair_P(const char *s_P, unsigned long v)
  413. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  414. #ifdef SDSUPPORT
  415. #include "SdFatUtil.h"
  416. int freeMemory() { return SdFatUtil::FreeRam(); }
  417. #else
  418. extern "C" {
  419. extern unsigned int __bss_end;
  420. extern unsigned int __heap_start;
  421. extern void *__brkval;
  422. int freeMemory() {
  423. int free_memory;
  424. if ((int)__brkval == 0)
  425. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  426. else
  427. free_memory = ((int)&free_memory) - ((int)__brkval);
  428. return free_memory;
  429. }
  430. }
  431. #endif //!SDSUPPORT
  432. void setup_killpin()
  433. {
  434. #if defined(KILL_PIN) && KILL_PIN > -1
  435. SET_INPUT(KILL_PIN);
  436. WRITE(KILL_PIN,HIGH);
  437. #endif
  438. }
  439. // Set home pin
  440. void setup_homepin(void)
  441. {
  442. #if defined(HOME_PIN) && HOME_PIN > -1
  443. SET_INPUT(HOME_PIN);
  444. WRITE(HOME_PIN,HIGH);
  445. #endif
  446. }
  447. void setup_photpin()
  448. {
  449. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  450. SET_OUTPUT(PHOTOGRAPH_PIN);
  451. WRITE(PHOTOGRAPH_PIN, LOW);
  452. #endif
  453. }
  454. void setup_powerhold()
  455. {
  456. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  457. SET_OUTPUT(SUICIDE_PIN);
  458. WRITE(SUICIDE_PIN, HIGH);
  459. #endif
  460. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  461. SET_OUTPUT(PS_ON_PIN);
  462. #if defined(PS_DEFAULT_OFF)
  463. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  464. #else
  465. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  466. #endif
  467. #endif
  468. }
  469. void suicide()
  470. {
  471. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  472. SET_OUTPUT(SUICIDE_PIN);
  473. WRITE(SUICIDE_PIN, LOW);
  474. #endif
  475. }
  476. void servo_init()
  477. {
  478. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  479. servos[0].attach(SERVO0_PIN);
  480. #endif
  481. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  482. servos[1].attach(SERVO1_PIN);
  483. #endif
  484. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  485. servos[2].attach(SERVO2_PIN);
  486. #endif
  487. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  488. servos[3].attach(SERVO3_PIN);
  489. #endif
  490. #if (NUM_SERVOS >= 5)
  491. #error "TODO: enter initalisation code for more servos"
  492. #endif
  493. }
  494. static void lcd_language_menu();
  495. void stop_and_save_print_to_ram(float z_move, float e_move);
  496. void restore_print_from_ram_and_continue(float e_move);
  497. bool fans_check_enabled = true;
  498. bool filament_autoload_enabled = true;
  499. #ifdef TMC2130
  500. extern int8_t CrashDetectMenu;
  501. void crashdet_enable()
  502. {
  503. // MYSERIAL.println("crashdet_enable");
  504. tmc2130_sg_stop_on_crash = true;
  505. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  506. CrashDetectMenu = 1;
  507. }
  508. void crashdet_disable()
  509. {
  510. // MYSERIAL.println("crashdet_disable");
  511. tmc2130_sg_stop_on_crash = false;
  512. tmc2130_sg_crash = 0;
  513. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  514. CrashDetectMenu = 0;
  515. }
  516. void crashdet_stop_and_save_print()
  517. {
  518. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  519. }
  520. void crashdet_restore_print_and_continue()
  521. {
  522. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  523. // babystep_apply();
  524. }
  525. void crashdet_stop_and_save_print2()
  526. {
  527. cli();
  528. planner_abort_hard(); //abort printing
  529. cmdqueue_reset(); //empty cmdqueue
  530. card.sdprinting = false;
  531. card.closefile();
  532. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  533. st_reset_timer();
  534. sei();
  535. }
  536. void crashdet_detected(uint8_t mask)
  537. {
  538. // printf("CRASH_DETECTED");
  539. /* while (!is_buffer_empty())
  540. {
  541. process_commands();
  542. cmdqueue_pop_front();
  543. }*/
  544. st_synchronize();
  545. lcd_update_enable(true);
  546. lcd_implementation_clear();
  547. lcd_update(2);
  548. if (mask & X_AXIS_MASK)
  549. {
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  551. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  552. }
  553. if (mask & Y_AXIS_MASK)
  554. {
  555. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  556. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  557. }
  558. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  559. bool yesno = true;
  560. #else
  561. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  562. #endif
  563. lcd_update_enable(true);
  564. lcd_update(2);
  565. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  566. if (yesno)
  567. {
  568. enquecommand_P(PSTR("G28 X Y"));
  569. enquecommand_P(PSTR("CRASH_RECOVER"));
  570. }
  571. else
  572. {
  573. enquecommand_P(PSTR("CRASH_CANCEL"));
  574. }
  575. }
  576. void crashdet_recover()
  577. {
  578. crashdet_restore_print_and_continue();
  579. tmc2130_sg_stop_on_crash = true;
  580. }
  581. void crashdet_cancel()
  582. {
  583. card.sdprinting = false;
  584. card.closefile();
  585. tmc2130_sg_stop_on_crash = true;
  586. }
  587. #endif //TMC2130
  588. void failstats_reset_print()
  589. {
  590. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  591. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  592. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  593. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  594. }
  595. #ifdef MESH_BED_LEVELING
  596. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  597. #endif
  598. // Factory reset function
  599. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  600. // Level input parameter sets depth of reset
  601. // Quiet parameter masks all waitings for user interact.
  602. int er_progress = 0;
  603. void factory_reset(char level, bool quiet)
  604. {
  605. lcd_implementation_clear();
  606. int cursor_pos = 0;
  607. switch (level) {
  608. // Level 0: Language reset
  609. case 0:
  610. WRITE(BEEPER, HIGH);
  611. _delay_ms(100);
  612. WRITE(BEEPER, LOW);
  613. lcd_force_language_selection();
  614. break;
  615. //Level 1: Reset statistics
  616. case 1:
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  621. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  622. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  623. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  624. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  625. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  626. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  627. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  628. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  629. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  630. lcd_menu_statistics();
  631. break;
  632. // Level 2: Prepare for shipping
  633. case 2:
  634. //lcd_printPGM(PSTR("Factory RESET"));
  635. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  636. // Force language selection at the next boot up.
  637. lcd_force_language_selection();
  638. // Force the "Follow calibration flow" message at the next boot up.
  639. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  640. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  641. farm_no = 0;
  642. //*** MaR::180501_01
  643. farm_mode = false;
  644. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  645. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. //_delay_ms(2000);
  650. break;
  651. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  652. case 3:
  653. lcd_printPGM(PSTR("Factory RESET"));
  654. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  655. WRITE(BEEPER, HIGH);
  656. _delay_ms(100);
  657. WRITE(BEEPER, LOW);
  658. er_progress = 0;
  659. lcd_print_at_PGM(3, 3, PSTR(" "));
  660. lcd_implementation_print_at(3, 3, er_progress);
  661. // Erase EEPROM
  662. for (int i = 0; i < 4096; i++) {
  663. eeprom_write_byte((uint8_t*)i, 0xFF);
  664. if (i % 41 == 0) {
  665. er_progress++;
  666. lcd_print_at_PGM(3, 3, PSTR(" "));
  667. lcd_implementation_print_at(3, 3, er_progress);
  668. lcd_printPGM(PSTR("%"));
  669. }
  670. }
  671. break;
  672. case 4:
  673. bowden_menu();
  674. break;
  675. default:
  676. break;
  677. }
  678. }
  679. #include "LiquidCrystal_Prusa.h"
  680. extern LiquidCrystal_Prusa lcd;
  681. FILE _lcdout = {0};
  682. int lcd_putchar(char c, FILE *stream)
  683. {
  684. lcd.write(c);
  685. return 0;
  686. }
  687. FILE _uartout = {0};
  688. int uart_putchar(char c, FILE *stream)
  689. {
  690. MYSERIAL.write(c);
  691. return 0;
  692. }
  693. void lcd_splash()
  694. {
  695. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  696. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  697. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  698. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  699. }
  700. void factory_reset()
  701. {
  702. KEEPALIVE_STATE(PAUSED_FOR_USER);
  703. if (!READ(BTN_ENC))
  704. {
  705. _delay_ms(1000);
  706. if (!READ(BTN_ENC))
  707. {
  708. lcd_implementation_clear();
  709. lcd_printPGM(PSTR("Factory RESET"));
  710. SET_OUTPUT(BEEPER);
  711. WRITE(BEEPER, HIGH);
  712. while (!READ(BTN_ENC));
  713. WRITE(BEEPER, LOW);
  714. _delay_ms(2000);
  715. char level = reset_menu();
  716. factory_reset(level, false);
  717. switch (level) {
  718. case 0: _delay_ms(0); break;
  719. case 1: _delay_ms(0); break;
  720. case 2: _delay_ms(0); break;
  721. case 3: _delay_ms(0); break;
  722. }
  723. // _delay_ms(100);
  724. /*
  725. #ifdef MESH_BED_LEVELING
  726. _delay_ms(2000);
  727. if (!READ(BTN_ENC))
  728. {
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. _delay_ms(200);
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. int _z = 0;
  737. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  738. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  739. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  740. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  741. }
  742. else
  743. {
  744. WRITE(BEEPER, HIGH);
  745. _delay_ms(100);
  746. WRITE(BEEPER, LOW);
  747. }
  748. #endif // mesh */
  749. }
  750. }
  751. else
  752. {
  753. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  754. }
  755. KEEPALIVE_STATE(IN_HANDLER);
  756. }
  757. void show_fw_version_warnings() {
  758. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  759. switch (FW_DEV_VERSION) {
  760. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  761. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  762. case(FW_VERSION_DEVEL):
  763. case(FW_VERSION_DEBUG):
  764. lcd_update_enable(false);
  765. lcd_implementation_clear();
  766. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  767. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  768. #else
  769. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  770. #endif
  771. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  772. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  773. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  774. lcd_wait_for_click();
  775. break;
  776. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  777. }
  778. lcd_update_enable(true);
  779. }
  780. uint8_t check_printer_version()
  781. {
  782. uint8_t version_changed = 0;
  783. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  784. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  785. if (printer_type != PRINTER_TYPE) {
  786. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  787. else version_changed |= 0b10;
  788. }
  789. if (motherboard != MOTHERBOARD) {
  790. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  791. else version_changed |= 0b01;
  792. }
  793. return version_changed;
  794. }
  795. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  796. {
  797. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  798. }
  799. // "Setup" function is called by the Arduino framework on startup.
  800. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  801. // are initialized by the main() routine provided by the Arduino framework.
  802. void setup()
  803. {
  804. lcd_init();
  805. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  806. lcd_splash();
  807. setup_killpin();
  808. setup_powerhold();
  809. //*** MaR::180501_02b
  810. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  811. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  812. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  813. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  814. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  815. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  816. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  817. if (farm_mode)
  818. {
  819. no_response = true; //we need confirmation by recieving PRUSA thx
  820. important_status = 8;
  821. prusa_statistics(8);
  822. selectedSerialPort = 1;
  823. }
  824. MYSERIAL.begin(BAUDRATE);
  825. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  826. stdout = uartout;
  827. SERIAL_PROTOCOLLNPGM("start");
  828. SERIAL_ECHO_START;
  829. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  830. #if 0
  831. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  832. for (int i = 0; i < 4096; ++i) {
  833. int b = eeprom_read_byte((unsigned char*)i);
  834. if (b != 255) {
  835. SERIAL_ECHO(i);
  836. SERIAL_ECHO(":");
  837. SERIAL_ECHO(b);
  838. SERIAL_ECHOLN("");
  839. }
  840. }
  841. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  842. #endif
  843. // Check startup - does nothing if bootloader sets MCUSR to 0
  844. byte mcu = MCUSR;
  845. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  846. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  847. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  848. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  849. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  850. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  851. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  852. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  853. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  854. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  855. MCUSR = 0;
  856. //SERIAL_ECHORPGM(MSG_MARLIN);
  857. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  858. #ifdef STRING_VERSION_CONFIG_H
  859. #ifdef STRING_CONFIG_H_AUTHOR
  860. SERIAL_ECHO_START;
  861. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  862. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  863. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  864. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  865. SERIAL_ECHOPGM("Compiled: ");
  866. SERIAL_ECHOLNPGM(__DATE__);
  867. #endif
  868. #endif
  869. SERIAL_ECHO_START;
  870. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  871. SERIAL_ECHO(freeMemory());
  872. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  873. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  874. //lcd_update_enable(false); // why do we need this?? - andre
  875. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  876. bool previous_settings_retrieved = false;
  877. uint8_t hw_changed = check_printer_version();
  878. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  879. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  880. }
  881. else { //printer version was changed so use default settings
  882. Config_ResetDefault();
  883. }
  884. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  885. tp_init(); // Initialize temperature loop
  886. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  887. plan_init(); // Initialize planner;
  888. factory_reset();
  889. #ifdef TMC2130
  890. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  891. if (silentMode == 0xff) silentMode = 0;
  892. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  893. tmc2130_mode = TMC2130_MODE_NORMAL;
  894. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  895. if (crashdet && !farm_mode)
  896. {
  897. crashdet_enable();
  898. MYSERIAL.println("CrashDetect ENABLED!");
  899. }
  900. else
  901. {
  902. crashdet_disable();
  903. MYSERIAL.println("CrashDetect DISABLED");
  904. }
  905. #ifdef TMC2130_LINEARITY_CORRECTION
  906. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  907. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  908. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  909. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  910. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  911. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  912. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  913. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  914. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  915. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  916. #endif //TMC2130_LINEARITY_CORRECTION
  917. #ifdef TMC2130_VARIABLE_RESOLUTION
  918. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  919. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  920. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  921. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  922. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  923. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  924. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  925. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  926. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  927. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  928. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  929. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  930. #else //TMC2130_VARIABLE_RESOLUTION
  931. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  932. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  933. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  934. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  935. #endif //TMC2130_VARIABLE_RESOLUTION
  936. #endif //TMC2130
  937. #ifdef NEW_SPI
  938. spi_init();
  939. #endif //NEW_SPI
  940. st_init(); // Initialize stepper, this enables interrupts!
  941. #ifdef TMC2130
  942. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  943. tmc2130_init();
  944. #endif //TMC2130
  945. setup_photpin();
  946. servo_init();
  947. // Reset the machine correction matrix.
  948. // It does not make sense to load the correction matrix until the machine is homed.
  949. world2machine_reset();
  950. #ifdef PAT9125
  951. fsensor_init();
  952. #endif //PAT9125
  953. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  954. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  955. #endif
  956. setup_homepin();
  957. #ifdef TMC2130
  958. if (1) {
  959. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  960. // try to run to zero phase before powering the Z motor.
  961. // Move in negative direction
  962. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  963. // Round the current micro-micro steps to micro steps.
  964. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  965. // Until the phase counter is reset to zero.
  966. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  967. delay(2);
  968. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  969. delay(2);
  970. }
  971. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  972. }
  973. #endif //TMC2130
  974. #if defined(Z_AXIS_ALWAYS_ON)
  975. enable_z();
  976. #endif
  977. //*** MaR::180501_02
  978. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  979. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  980. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  981. if (farm_no == 0xFFFF) farm_no = 0;
  982. if (farm_mode)
  983. {
  984. prusa_statistics(8);
  985. }
  986. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  987. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  988. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  989. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  990. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  991. // where all the EEPROM entries are set to 0x0ff.
  992. // Once a firmware boots up, it forces at least a language selection, which changes
  993. // EEPROM_LANG to number lower than 0x0ff.
  994. // 1) Set a high power mode.
  995. #ifdef TMC2130
  996. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  997. tmc2130_mode = TMC2130_MODE_NORMAL;
  998. #endif //TMC2130
  999. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1000. }
  1001. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1002. // but this times out if a blocking dialog is shown in setup().
  1003. card.initsd();
  1004. #ifdef DEBUG_SD_SPEED_TEST
  1005. if (card.cardOK)
  1006. {
  1007. uint8_t* buff = (uint8_t*)block_buffer;
  1008. uint32_t block = 0;
  1009. uint32_t sumr = 0;
  1010. uint32_t sumw = 0;
  1011. for (int i = 0; i < 1024; i++)
  1012. {
  1013. uint32_t u = micros();
  1014. bool res = card.card.readBlock(i, buff);
  1015. u = micros() - u;
  1016. if (res)
  1017. {
  1018. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1019. sumr += u;
  1020. u = micros();
  1021. res = card.card.writeBlock(i, buff);
  1022. u = micros() - u;
  1023. if (res)
  1024. {
  1025. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1026. sumw += u;
  1027. }
  1028. else
  1029. {
  1030. printf_P(PSTR("writeBlock %4d error\n"), i);
  1031. break;
  1032. }
  1033. }
  1034. else
  1035. {
  1036. printf_P(PSTR("readBlock %4d error\n"), i);
  1037. break;
  1038. }
  1039. }
  1040. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1041. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1042. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1043. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1044. }
  1045. else
  1046. printf_P(PSTR("Card NG!\n"));
  1047. #endif DEBUG_SD_SPEED_TEST
  1048. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1049. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1050. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1051. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1052. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1053. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1054. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1055. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1056. #ifdef SNMM
  1057. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1058. int _z = BOWDEN_LENGTH;
  1059. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1060. }
  1061. #endif
  1062. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1063. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1064. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1065. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1066. if (lang_selected >= LANG_NUM)
  1067. {
  1068. lcd_mylang();
  1069. }
  1070. lang_select(lang_selected);
  1071. puts_P(_n("\nNew ML support"));
  1072. printf_P(_n(" lang_selected = %d\n"), lang_selected);
  1073. printf_P(_n(" &_SEC_LANG = 0x%04x\n"), &_SEC_LANG);
  1074. printf_P(_n(" sizeof(_SEC_LANG) = 0x%04x\n"), sizeof(_SEC_LANG));
  1075. uint16_t ptr_lang_table0 = ((uint16_t)(&_SEC_LANG) + 0xff) & 0xff00;
  1076. printf_P(_n(" &_lang_table0 = 0x%04x\n"), ptr_lang_table0);
  1077. uint32_t _lt_magic = pgm_read_dword(((uint32_t*)(ptr_lang_table0 + 0)));
  1078. uint16_t _lt_size = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 4)));
  1079. uint16_t _lt_count = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 6)));
  1080. uint16_t _lt_chsum = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 8)));
  1081. uint16_t _lt_resv0 = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 10)));
  1082. uint32_t _lt_resv1 = pgm_read_dword(((uint32_t*)(ptr_lang_table0 + 12)));
  1083. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), _lt_magic, (_lt_magic==0x4bb45aa5)?_n("OK"):_n("NA"));
  1084. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), _lt_size, _lt_size);
  1085. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), _lt_count, _lt_count);
  1086. printf_P(_n(" _lt_chsum = 0x%04x\n"), _lt_chsum);
  1087. printf_P(_n(" _lt_resv0 = 0x%04x\n"), _lt_resv0);
  1088. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), _lt_resv1);
  1089. puts_P(_n("\n"));
  1090. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1091. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1092. temp_cal_active = false;
  1093. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1094. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1095. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1096. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1097. int16_t z_shift = 0;
  1098. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1099. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1100. temp_cal_active = false;
  1101. }
  1102. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1103. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1104. }
  1105. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1106. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1107. }
  1108. check_babystep(); //checking if Z babystep is in allowed range
  1109. #ifdef UVLO_SUPPORT
  1110. setup_uvlo_interrupt();
  1111. #endif //UVLO_SUPPORT
  1112. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1113. setup_fan_interrupt();
  1114. #endif //DEBUG_DISABLE_FANCHECK
  1115. #ifdef PAT9125
  1116. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1117. fsensor_setup_interrupt();
  1118. #endif //DEBUG_DISABLE_FSENSORCHECK
  1119. #endif //PAT9125
  1120. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1121. #ifndef DEBUG_DISABLE_STARTMSGS
  1122. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1123. show_fw_version_warnings();
  1124. switch (hw_changed) {
  1125. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1126. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1127. case(0b01):
  1128. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1129. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1130. break;
  1131. case(0b10):
  1132. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1133. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1134. break;
  1135. case(0b11):
  1136. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1137. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1138. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1139. break;
  1140. default: break; //no change, show no message
  1141. }
  1142. if (!previous_settings_retrieved) {
  1143. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1144. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1145. }
  1146. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1147. lcd_wizard(0);
  1148. }
  1149. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1150. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1151. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1152. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1153. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1154. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1155. // Show the message.
  1156. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1157. }
  1158. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1159. // Show the message.
  1160. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1161. lcd_update_enable(true);
  1162. }
  1163. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1164. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1165. lcd_update_enable(true);
  1166. }
  1167. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1168. // Show the message.
  1169. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1170. }
  1171. }
  1172. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1173. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1174. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1175. update_current_firmware_version_to_eeprom();
  1176. lcd_selftest();
  1177. }
  1178. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1179. KEEPALIVE_STATE(IN_PROCESS);
  1180. #endif //DEBUG_DISABLE_STARTMSGS
  1181. lcd_update_enable(true);
  1182. lcd_implementation_clear();
  1183. lcd_update(2);
  1184. // Store the currently running firmware into an eeprom,
  1185. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1186. update_current_firmware_version_to_eeprom();
  1187. #ifdef TMC2130
  1188. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1189. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1190. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1191. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1192. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1193. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1194. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1195. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1196. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1197. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1198. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1199. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1200. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1201. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1202. #endif //TMC2130
  1203. #ifdef UVLO_SUPPORT
  1204. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1205. /*
  1206. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1207. else {
  1208. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1209. lcd_update_enable(true);
  1210. lcd_update(2);
  1211. lcd_setstatuspgm(_T(WELCOME_MSG));
  1212. }
  1213. */
  1214. manage_heater(); // Update temperatures
  1215. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1216. MYSERIAL.println("Power panic detected!");
  1217. MYSERIAL.print("Current bed temp:");
  1218. MYSERIAL.println(degBed());
  1219. MYSERIAL.print("Saved bed temp:");
  1220. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1221. #endif
  1222. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1223. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1224. MYSERIAL.println("Automatic recovery!");
  1225. #endif
  1226. recover_print(1);
  1227. }
  1228. else{
  1229. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1230. MYSERIAL.println("Normal recovery!");
  1231. #endif
  1232. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1233. else {
  1234. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1235. lcd_update_enable(true);
  1236. lcd_update(2);
  1237. lcd_setstatuspgm(_T(WELCOME_MSG));
  1238. }
  1239. }
  1240. }
  1241. #endif //UVLO_SUPPORT
  1242. KEEPALIVE_STATE(NOT_BUSY);
  1243. #ifdef WATCHDOG
  1244. wdt_enable(WDTO_4S);
  1245. #endif //WATCHDOG
  1246. }
  1247. #ifdef PAT9125
  1248. void fsensor_init() {
  1249. int pat9125 = pat9125_init();
  1250. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1251. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1252. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1253. if (!pat9125)
  1254. {
  1255. fsensor = 0; //disable sensor
  1256. fsensor_not_responding = true;
  1257. }
  1258. else {
  1259. fsensor_not_responding = false;
  1260. }
  1261. puts_P(PSTR("FSensor "));
  1262. if (fsensor)
  1263. {
  1264. puts_P(PSTR("ENABLED\n"));
  1265. fsensor_enable();
  1266. }
  1267. else
  1268. {
  1269. puts_P(PSTR("DISABLED\n"));
  1270. fsensor_disable();
  1271. }
  1272. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1273. filament_autoload_enabled = false;
  1274. fsensor_disable();
  1275. #endif //DEBUG_DISABLE_FSENSORCHECK
  1276. }
  1277. #endif //PAT9125
  1278. void trace();
  1279. #define CHUNK_SIZE 64 // bytes
  1280. #define SAFETY_MARGIN 1
  1281. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1282. int chunkHead = 0;
  1283. int serial_read_stream() {
  1284. setTargetHotend(0, 0);
  1285. setTargetBed(0);
  1286. lcd_implementation_clear();
  1287. lcd_printPGM(PSTR(" Upload in progress"));
  1288. // first wait for how many bytes we will receive
  1289. uint32_t bytesToReceive;
  1290. // receive the four bytes
  1291. char bytesToReceiveBuffer[4];
  1292. for (int i=0; i<4; i++) {
  1293. int data;
  1294. while ((data = MYSERIAL.read()) == -1) {};
  1295. bytesToReceiveBuffer[i] = data;
  1296. }
  1297. // make it a uint32
  1298. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1299. // we're ready, notify the sender
  1300. MYSERIAL.write('+');
  1301. // lock in the routine
  1302. uint32_t receivedBytes = 0;
  1303. while (prusa_sd_card_upload) {
  1304. int i;
  1305. for (i=0; i<CHUNK_SIZE; i++) {
  1306. int data;
  1307. // check if we're not done
  1308. if (receivedBytes == bytesToReceive) {
  1309. break;
  1310. }
  1311. // read the next byte
  1312. while ((data = MYSERIAL.read()) == -1) {};
  1313. receivedBytes++;
  1314. // save it to the chunk
  1315. chunk[i] = data;
  1316. }
  1317. // write the chunk to SD
  1318. card.write_command_no_newline(&chunk[0]);
  1319. // notify the sender we're ready for more data
  1320. MYSERIAL.write('+');
  1321. // for safety
  1322. manage_heater();
  1323. // check if we're done
  1324. if(receivedBytes == bytesToReceive) {
  1325. trace(); // beep
  1326. card.closefile();
  1327. prusa_sd_card_upload = false;
  1328. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1329. return 0;
  1330. }
  1331. }
  1332. }
  1333. #ifdef HOST_KEEPALIVE_FEATURE
  1334. /**
  1335. * Output a "busy" message at regular intervals
  1336. * while the machine is not accepting commands.
  1337. */
  1338. void host_keepalive() {
  1339. if (farm_mode) return;
  1340. long ms = millis();
  1341. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1342. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1343. switch (busy_state) {
  1344. case IN_HANDLER:
  1345. case IN_PROCESS:
  1346. SERIAL_ECHO_START;
  1347. SERIAL_ECHOLNPGM("busy: processing");
  1348. break;
  1349. case PAUSED_FOR_USER:
  1350. SERIAL_ECHO_START;
  1351. SERIAL_ECHOLNPGM("busy: paused for user");
  1352. break;
  1353. case PAUSED_FOR_INPUT:
  1354. SERIAL_ECHO_START;
  1355. SERIAL_ECHOLNPGM("busy: paused for input");
  1356. break;
  1357. default:
  1358. break;
  1359. }
  1360. }
  1361. prev_busy_signal_ms = ms;
  1362. }
  1363. #endif
  1364. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1365. // Before loop(), the setup() function is called by the main() routine.
  1366. void loop()
  1367. {
  1368. KEEPALIVE_STATE(NOT_BUSY);
  1369. bool stack_integrity = true;
  1370. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1371. {
  1372. is_usb_printing = true;
  1373. usb_printing_counter--;
  1374. _usb_timer = millis();
  1375. }
  1376. if (usb_printing_counter == 0)
  1377. {
  1378. is_usb_printing = false;
  1379. }
  1380. if (prusa_sd_card_upload)
  1381. {
  1382. //we read byte-by byte
  1383. serial_read_stream();
  1384. } else
  1385. {
  1386. get_command();
  1387. #ifdef SDSUPPORT
  1388. card.checkautostart(false);
  1389. #endif
  1390. if(buflen)
  1391. {
  1392. cmdbuffer_front_already_processed = false;
  1393. #ifdef SDSUPPORT
  1394. if(card.saving)
  1395. {
  1396. // Saving a G-code file onto an SD-card is in progress.
  1397. // Saving starts with M28, saving until M29 is seen.
  1398. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1399. card.write_command(CMDBUFFER_CURRENT_STRING);
  1400. if(card.logging)
  1401. process_commands();
  1402. else
  1403. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1404. } else {
  1405. card.closefile();
  1406. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1407. }
  1408. } else {
  1409. process_commands();
  1410. }
  1411. #else
  1412. process_commands();
  1413. #endif //SDSUPPORT
  1414. if (! cmdbuffer_front_already_processed && buflen)
  1415. {
  1416. // ptr points to the start of the block currently being processed.
  1417. // The first character in the block is the block type.
  1418. char *ptr = cmdbuffer + bufindr;
  1419. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1420. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1421. union {
  1422. struct {
  1423. char lo;
  1424. char hi;
  1425. } lohi;
  1426. uint16_t value;
  1427. } sdlen;
  1428. sdlen.value = 0;
  1429. {
  1430. // This block locks the interrupts globally for 3.25 us,
  1431. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1432. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1433. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1434. cli();
  1435. // Reset the command to something, which will be ignored by the power panic routine,
  1436. // so this buffer length will not be counted twice.
  1437. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1438. // Extract the current buffer length.
  1439. sdlen.lohi.lo = *ptr ++;
  1440. sdlen.lohi.hi = *ptr;
  1441. // and pass it to the planner queue.
  1442. planner_add_sd_length(sdlen.value);
  1443. sei();
  1444. }
  1445. }
  1446. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1447. // this block's SD card length will not be counted twice as its command type has been replaced
  1448. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1449. cmdqueue_pop_front();
  1450. }
  1451. host_keepalive();
  1452. }
  1453. }
  1454. //check heater every n milliseconds
  1455. manage_heater();
  1456. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1457. checkHitEndstops();
  1458. lcd_update();
  1459. #ifdef PAT9125
  1460. fsensor_update();
  1461. #endif //PAT9125
  1462. #ifdef TMC2130
  1463. tmc2130_check_overtemp();
  1464. if (tmc2130_sg_crash)
  1465. {
  1466. uint8_t crash = tmc2130_sg_crash;
  1467. tmc2130_sg_crash = 0;
  1468. // crashdet_stop_and_save_print();
  1469. switch (crash)
  1470. {
  1471. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1472. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1473. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1474. }
  1475. }
  1476. #endif //TMC2130
  1477. }
  1478. #define DEFINE_PGM_READ_ANY(type, reader) \
  1479. static inline type pgm_read_any(const type *p) \
  1480. { return pgm_read_##reader##_near(p); }
  1481. DEFINE_PGM_READ_ANY(float, float);
  1482. DEFINE_PGM_READ_ANY(signed char, byte);
  1483. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1484. static const PROGMEM type array##_P[3] = \
  1485. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1486. static inline type array(int axis) \
  1487. { return pgm_read_any(&array##_P[axis]); } \
  1488. type array##_ext(int axis) \
  1489. { return pgm_read_any(&array##_P[axis]); }
  1490. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1491. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1492. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1493. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1494. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1495. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1496. static void axis_is_at_home(int axis) {
  1497. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1498. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1499. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1500. }
  1501. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1502. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1503. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1504. saved_feedrate = feedrate;
  1505. saved_feedmultiply = feedmultiply;
  1506. feedmultiply = 100;
  1507. previous_millis_cmd = millis();
  1508. enable_endstops(enable_endstops_now);
  1509. }
  1510. static void clean_up_after_endstop_move() {
  1511. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1512. enable_endstops(false);
  1513. #endif
  1514. feedrate = saved_feedrate;
  1515. feedmultiply = saved_feedmultiply;
  1516. previous_millis_cmd = millis();
  1517. }
  1518. #ifdef ENABLE_AUTO_BED_LEVELING
  1519. #ifdef AUTO_BED_LEVELING_GRID
  1520. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1521. {
  1522. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1523. planeNormal.debug("planeNormal");
  1524. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1525. //bedLevel.debug("bedLevel");
  1526. //plan_bed_level_matrix.debug("bed level before");
  1527. //vector_3 uncorrected_position = plan_get_position_mm();
  1528. //uncorrected_position.debug("position before");
  1529. vector_3 corrected_position = plan_get_position();
  1530. // corrected_position.debug("position after");
  1531. current_position[X_AXIS] = corrected_position.x;
  1532. current_position[Y_AXIS] = corrected_position.y;
  1533. current_position[Z_AXIS] = corrected_position.z;
  1534. // put the bed at 0 so we don't go below it.
  1535. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1536. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1537. }
  1538. #else // not AUTO_BED_LEVELING_GRID
  1539. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1540. plan_bed_level_matrix.set_to_identity();
  1541. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1542. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1543. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1544. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1545. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1546. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1547. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1548. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1549. vector_3 corrected_position = plan_get_position();
  1550. current_position[X_AXIS] = corrected_position.x;
  1551. current_position[Y_AXIS] = corrected_position.y;
  1552. current_position[Z_AXIS] = corrected_position.z;
  1553. // put the bed at 0 so we don't go below it.
  1554. current_position[Z_AXIS] = zprobe_zoffset;
  1555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1556. }
  1557. #endif // AUTO_BED_LEVELING_GRID
  1558. static void run_z_probe() {
  1559. plan_bed_level_matrix.set_to_identity();
  1560. feedrate = homing_feedrate[Z_AXIS];
  1561. // move down until you find the bed
  1562. float zPosition = -10;
  1563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1564. st_synchronize();
  1565. // we have to let the planner know where we are right now as it is not where we said to go.
  1566. zPosition = st_get_position_mm(Z_AXIS);
  1567. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1568. // move up the retract distance
  1569. zPosition += home_retract_mm(Z_AXIS);
  1570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1571. st_synchronize();
  1572. // move back down slowly to find bed
  1573. feedrate = homing_feedrate[Z_AXIS]/4;
  1574. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1576. st_synchronize();
  1577. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1578. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1579. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1580. }
  1581. static void do_blocking_move_to(float x, float y, float z) {
  1582. float oldFeedRate = feedrate;
  1583. feedrate = homing_feedrate[Z_AXIS];
  1584. current_position[Z_AXIS] = z;
  1585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1586. st_synchronize();
  1587. feedrate = XY_TRAVEL_SPEED;
  1588. current_position[X_AXIS] = x;
  1589. current_position[Y_AXIS] = y;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1591. st_synchronize();
  1592. feedrate = oldFeedRate;
  1593. }
  1594. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1595. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1596. }
  1597. /// Probe bed height at position (x,y), returns the measured z value
  1598. static float probe_pt(float x, float y, float z_before) {
  1599. // move to right place
  1600. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1601. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1602. run_z_probe();
  1603. float measured_z = current_position[Z_AXIS];
  1604. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1605. SERIAL_PROTOCOLPGM(" x: ");
  1606. SERIAL_PROTOCOL(x);
  1607. SERIAL_PROTOCOLPGM(" y: ");
  1608. SERIAL_PROTOCOL(y);
  1609. SERIAL_PROTOCOLPGM(" z: ");
  1610. SERIAL_PROTOCOL(measured_z);
  1611. SERIAL_PROTOCOLPGM("\n");
  1612. return measured_z;
  1613. }
  1614. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1615. #ifdef LIN_ADVANCE
  1616. /**
  1617. * M900: Set and/or Get advance K factor and WH/D ratio
  1618. *
  1619. * K<factor> Set advance K factor
  1620. * R<ratio> Set ratio directly (overrides WH/D)
  1621. * W<width> H<height> D<diam> Set ratio from WH/D
  1622. */
  1623. inline void gcode_M900() {
  1624. st_synchronize();
  1625. const float newK = code_seen('K') ? code_value_float() : -1;
  1626. if (newK >= 0) extruder_advance_k = newK;
  1627. float newR = code_seen('R') ? code_value_float() : -1;
  1628. if (newR < 0) {
  1629. const float newD = code_seen('D') ? code_value_float() : -1,
  1630. newW = code_seen('W') ? code_value_float() : -1,
  1631. newH = code_seen('H') ? code_value_float() : -1;
  1632. if (newD >= 0 && newW >= 0 && newH >= 0)
  1633. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1634. }
  1635. if (newR >= 0) advance_ed_ratio = newR;
  1636. SERIAL_ECHO_START;
  1637. SERIAL_ECHOPGM("Advance K=");
  1638. SERIAL_ECHOLN(extruder_advance_k);
  1639. SERIAL_ECHOPGM(" E/D=");
  1640. const float ratio = advance_ed_ratio;
  1641. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1642. }
  1643. #endif // LIN_ADVANCE
  1644. bool check_commands() {
  1645. bool end_command_found = false;
  1646. while (buflen)
  1647. {
  1648. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1649. if (!cmdbuffer_front_already_processed)
  1650. cmdqueue_pop_front();
  1651. cmdbuffer_front_already_processed = false;
  1652. }
  1653. return end_command_found;
  1654. }
  1655. #ifdef TMC2130
  1656. bool calibrate_z_auto()
  1657. {
  1658. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1659. lcd_implementation_clear();
  1660. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1661. bool endstops_enabled = enable_endstops(true);
  1662. int axis_up_dir = -home_dir(Z_AXIS);
  1663. tmc2130_home_enter(Z_AXIS_MASK);
  1664. current_position[Z_AXIS] = 0;
  1665. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1666. set_destination_to_current();
  1667. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1668. feedrate = homing_feedrate[Z_AXIS];
  1669. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. // current_position[axis] = 0;
  1672. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1673. tmc2130_home_exit();
  1674. enable_endstops(false);
  1675. current_position[Z_AXIS] = 0;
  1676. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1677. set_destination_to_current();
  1678. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1679. feedrate = homing_feedrate[Z_AXIS] / 2;
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. enable_endstops(endstops_enabled);
  1683. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1685. return true;
  1686. }
  1687. #endif //TMC2130
  1688. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1689. {
  1690. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1691. #define HOMEAXIS_DO(LETTER) \
  1692. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1693. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1694. {
  1695. int axis_home_dir = home_dir(axis);
  1696. feedrate = homing_feedrate[axis];
  1697. #ifdef TMC2130
  1698. tmc2130_home_enter(X_AXIS_MASK << axis);
  1699. #endif //TMC2130
  1700. // Move right a bit, so that the print head does not touch the left end position,
  1701. // and the following left movement has a chance to achieve the required velocity
  1702. // for the stall guard to work.
  1703. current_position[axis] = 0;
  1704. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1705. set_destination_to_current();
  1706. // destination[axis] = 11.f;
  1707. destination[axis] = 3.f;
  1708. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1709. st_synchronize();
  1710. // Move left away from the possible collision with the collision detection disabled.
  1711. endstops_hit_on_purpose();
  1712. enable_endstops(false);
  1713. current_position[axis] = 0;
  1714. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1715. destination[axis] = - 1.;
  1716. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1717. st_synchronize();
  1718. // Now continue to move up to the left end stop with the collision detection enabled.
  1719. enable_endstops(true);
  1720. destination[axis] = - 1.1 * max_length(axis);
  1721. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1722. st_synchronize();
  1723. for (uint8_t i = 0; i < cnt; i++)
  1724. {
  1725. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1726. endstops_hit_on_purpose();
  1727. enable_endstops(false);
  1728. current_position[axis] = 0;
  1729. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1730. destination[axis] = 10.f;
  1731. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1732. st_synchronize();
  1733. endstops_hit_on_purpose();
  1734. // Now move left up to the collision, this time with a repeatable velocity.
  1735. enable_endstops(true);
  1736. destination[axis] = - 11.f;
  1737. #ifdef TMC2130
  1738. feedrate = homing_feedrate[axis];
  1739. #else //TMC2130
  1740. feedrate = homing_feedrate[axis] / 2;
  1741. #endif //TMC2130
  1742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1743. st_synchronize();
  1744. #ifdef TMC2130
  1745. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1746. if (pstep) pstep[i] = mscnt >> 4;
  1747. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1748. #endif //TMC2130
  1749. }
  1750. endstops_hit_on_purpose();
  1751. enable_endstops(false);
  1752. #ifdef TMC2130
  1753. uint8_t orig = tmc2130_home_origin[axis];
  1754. uint8_t back = tmc2130_home_bsteps[axis];
  1755. if (tmc2130_home_enabled && (orig <= 63))
  1756. {
  1757. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1758. if (back > 0)
  1759. tmc2130_do_steps(axis, back, 1, 1000);
  1760. }
  1761. else
  1762. tmc2130_do_steps(axis, 8, 2, 1000);
  1763. tmc2130_home_exit();
  1764. #endif //TMC2130
  1765. axis_is_at_home(axis);
  1766. axis_known_position[axis] = true;
  1767. // Move from minimum
  1768. #ifdef TMC2130
  1769. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1770. #else //TMC2130
  1771. float dist = 0.01f * 64;
  1772. #endif //TMC2130
  1773. current_position[axis] -= dist;
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. current_position[axis] += dist;
  1776. destination[axis] = current_position[axis];
  1777. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1778. st_synchronize();
  1779. feedrate = 0.0;
  1780. }
  1781. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1782. {
  1783. int axis_home_dir = home_dir(axis);
  1784. current_position[axis] = 0;
  1785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1786. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1787. feedrate = homing_feedrate[axis];
  1788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. #ifdef TMC2130
  1791. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1792. #endif //TMC2130
  1793. current_position[axis] = 0;
  1794. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1795. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1796. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1797. st_synchronize();
  1798. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1799. feedrate = homing_feedrate[axis]/2 ;
  1800. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1801. st_synchronize();
  1802. #ifdef TMC2130
  1803. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1804. #endif //TMC2130
  1805. axis_is_at_home(axis);
  1806. destination[axis] = current_position[axis];
  1807. feedrate = 0.0;
  1808. endstops_hit_on_purpose();
  1809. axis_known_position[axis] = true;
  1810. }
  1811. enable_endstops(endstops_enabled);
  1812. }
  1813. /**/
  1814. void home_xy()
  1815. {
  1816. set_destination_to_current();
  1817. homeaxis(X_AXIS);
  1818. homeaxis(Y_AXIS);
  1819. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1820. endstops_hit_on_purpose();
  1821. }
  1822. void refresh_cmd_timeout(void)
  1823. {
  1824. previous_millis_cmd = millis();
  1825. }
  1826. #ifdef FWRETRACT
  1827. void retract(bool retracting, bool swapretract = false) {
  1828. if(retracting && !retracted[active_extruder]) {
  1829. destination[X_AXIS]=current_position[X_AXIS];
  1830. destination[Y_AXIS]=current_position[Y_AXIS];
  1831. destination[Z_AXIS]=current_position[Z_AXIS];
  1832. destination[E_AXIS]=current_position[E_AXIS];
  1833. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1834. plan_set_e_position(current_position[E_AXIS]);
  1835. float oldFeedrate = feedrate;
  1836. feedrate=retract_feedrate*60;
  1837. retracted[active_extruder]=true;
  1838. prepare_move();
  1839. current_position[Z_AXIS]-=retract_zlift;
  1840. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1841. prepare_move();
  1842. feedrate = oldFeedrate;
  1843. } else if(!retracting && retracted[active_extruder]) {
  1844. destination[X_AXIS]=current_position[X_AXIS];
  1845. destination[Y_AXIS]=current_position[Y_AXIS];
  1846. destination[Z_AXIS]=current_position[Z_AXIS];
  1847. destination[E_AXIS]=current_position[E_AXIS];
  1848. current_position[Z_AXIS]+=retract_zlift;
  1849. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1850. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1851. plan_set_e_position(current_position[E_AXIS]);
  1852. float oldFeedrate = feedrate;
  1853. feedrate=retract_recover_feedrate*60;
  1854. retracted[active_extruder]=false;
  1855. prepare_move();
  1856. feedrate = oldFeedrate;
  1857. }
  1858. } //retract
  1859. #endif //FWRETRACT
  1860. void trace() {
  1861. tone(BEEPER, 440);
  1862. delay(25);
  1863. noTone(BEEPER);
  1864. delay(20);
  1865. }
  1866. /*
  1867. void ramming() {
  1868. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1869. if (current_temperature[0] < 230) {
  1870. //PLA
  1871. max_feedrate[E_AXIS] = 50;
  1872. //current_position[E_AXIS] -= 8;
  1873. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1874. //current_position[E_AXIS] += 8;
  1875. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1876. current_position[E_AXIS] += 5.4;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1878. current_position[E_AXIS] += 3.2;
  1879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1880. current_position[E_AXIS] += 3;
  1881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1882. st_synchronize();
  1883. max_feedrate[E_AXIS] = 80;
  1884. current_position[E_AXIS] -= 82;
  1885. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1886. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1887. current_position[E_AXIS] -= 20;
  1888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1889. current_position[E_AXIS] += 5;
  1890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1891. current_position[E_AXIS] += 5;
  1892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1893. current_position[E_AXIS] -= 10;
  1894. st_synchronize();
  1895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1896. current_position[E_AXIS] += 10;
  1897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1898. current_position[E_AXIS] -= 10;
  1899. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1900. current_position[E_AXIS] += 10;
  1901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1902. current_position[E_AXIS] -= 10;
  1903. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1904. st_synchronize();
  1905. }
  1906. else {
  1907. //ABS
  1908. max_feedrate[E_AXIS] = 50;
  1909. //current_position[E_AXIS] -= 8;
  1910. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1911. //current_position[E_AXIS] += 8;
  1912. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1913. current_position[E_AXIS] += 3.1;
  1914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1915. current_position[E_AXIS] += 3.1;
  1916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1917. current_position[E_AXIS] += 4;
  1918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1919. st_synchronize();
  1920. //current_position[X_AXIS] += 23; //delay
  1921. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1922. //current_position[X_AXIS] -= 23; //delay
  1923. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1924. delay(4700);
  1925. max_feedrate[E_AXIS] = 80;
  1926. current_position[E_AXIS] -= 92;
  1927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1928. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1929. current_position[E_AXIS] -= 5;
  1930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1931. current_position[E_AXIS] += 5;
  1932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1933. current_position[E_AXIS] -= 5;
  1934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1935. st_synchronize();
  1936. current_position[E_AXIS] += 5;
  1937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1938. current_position[E_AXIS] -= 5;
  1939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1940. current_position[E_AXIS] += 5;
  1941. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1942. current_position[E_AXIS] -= 5;
  1943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1944. st_synchronize();
  1945. }
  1946. }
  1947. */
  1948. #ifdef TMC2130
  1949. void force_high_power_mode(bool start_high_power_section) {
  1950. uint8_t silent;
  1951. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1952. if (silent == 1) {
  1953. //we are in silent mode, set to normal mode to enable crash detection
  1954. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1955. st_synchronize();
  1956. cli();
  1957. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1958. tmc2130_init();
  1959. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1960. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1961. st_reset_timer();
  1962. sei();
  1963. }
  1964. }
  1965. #endif //TMC2130
  1966. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1967. {
  1968. bool final_result = false;
  1969. #ifdef TMC2130
  1970. FORCE_HIGH_POWER_START;
  1971. #endif // TMC2130
  1972. // Only Z calibration?
  1973. if (!onlyZ)
  1974. {
  1975. setTargetBed(0);
  1976. setTargetHotend(0, 0);
  1977. setTargetHotend(0, 1);
  1978. setTargetHotend(0, 2);
  1979. adjust_bed_reset(); //reset bed level correction
  1980. }
  1981. // Disable the default update procedure of the display. We will do a modal dialog.
  1982. lcd_update_enable(false);
  1983. // Let the planner use the uncorrected coordinates.
  1984. mbl.reset();
  1985. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1986. // the planner will not perform any adjustments in the XY plane.
  1987. // Wait for the motors to stop and update the current position with the absolute values.
  1988. world2machine_revert_to_uncorrected();
  1989. // Reset the baby step value applied without moving the axes.
  1990. babystep_reset();
  1991. // Mark all axes as in a need for homing.
  1992. memset(axis_known_position, 0, sizeof(axis_known_position));
  1993. // Home in the XY plane.
  1994. //set_destination_to_current();
  1995. setup_for_endstop_move();
  1996. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  1997. home_xy();
  1998. enable_endstops(false);
  1999. current_position[X_AXIS] += 5;
  2000. current_position[Y_AXIS] += 5;
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2002. st_synchronize();
  2003. // Let the user move the Z axes up to the end stoppers.
  2004. #ifdef TMC2130
  2005. if (calibrate_z_auto())
  2006. {
  2007. #else //TMC2130
  2008. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2009. {
  2010. #endif //TMC2130
  2011. refresh_cmd_timeout();
  2012. #ifndef STEEL_SHEET
  2013. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2014. {
  2015. lcd_wait_for_cool_down();
  2016. }
  2017. #endif //STEEL_SHEET
  2018. if(!onlyZ)
  2019. {
  2020. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2021. #ifdef STEEL_SHEET
  2022. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2023. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2024. #endif //STEEL_SHEET
  2025. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2026. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2027. KEEPALIVE_STATE(IN_HANDLER);
  2028. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2029. lcd_implementation_print_at(0, 2, 1);
  2030. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2031. }
  2032. // Move the print head close to the bed.
  2033. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2034. bool endstops_enabled = enable_endstops(true);
  2035. #ifdef TMC2130
  2036. tmc2130_home_enter(Z_AXIS_MASK);
  2037. #endif //TMC2130
  2038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2039. st_synchronize();
  2040. #ifdef TMC2130
  2041. tmc2130_home_exit();
  2042. #endif //TMC2130
  2043. enable_endstops(endstops_enabled);
  2044. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2045. {
  2046. int8_t verbosity_level = 0;
  2047. if (code_seen('V'))
  2048. {
  2049. // Just 'V' without a number counts as V1.
  2050. char c = strchr_pointer[1];
  2051. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2052. }
  2053. if (onlyZ)
  2054. {
  2055. clean_up_after_endstop_move();
  2056. // Z only calibration.
  2057. // Load the machine correction matrix
  2058. world2machine_initialize();
  2059. // and correct the current_position to match the transformed coordinate system.
  2060. world2machine_update_current();
  2061. //FIXME
  2062. bool result = sample_mesh_and_store_reference();
  2063. if (result)
  2064. {
  2065. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2066. // Shipped, the nozzle height has been set already. The user can start printing now.
  2067. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2068. final_result = true;
  2069. // babystep_apply();
  2070. }
  2071. }
  2072. else
  2073. {
  2074. // Reset the baby step value and the baby step applied flag.
  2075. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2076. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2077. // Complete XYZ calibration.
  2078. uint8_t point_too_far_mask = 0;
  2079. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2080. clean_up_after_endstop_move();
  2081. // Print head up.
  2082. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2083. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2084. st_synchronize();
  2085. //#ifndef NEW_XYZCAL
  2086. if (result >= 0)
  2087. {
  2088. #ifdef HEATBED_V2
  2089. sample_z();
  2090. #else //HEATBED_V2
  2091. point_too_far_mask = 0;
  2092. // Second half: The fine adjustment.
  2093. // Let the planner use the uncorrected coordinates.
  2094. mbl.reset();
  2095. world2machine_reset();
  2096. // Home in the XY plane.
  2097. setup_for_endstop_move();
  2098. home_xy();
  2099. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2100. clean_up_after_endstop_move();
  2101. // Print head up.
  2102. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2104. st_synchronize();
  2105. // if (result >= 0) babystep_apply();
  2106. #endif //HEATBED_V2
  2107. }
  2108. //#endif //NEW_XYZCAL
  2109. lcd_update_enable(true);
  2110. lcd_update(2);
  2111. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2112. if (result >= 0)
  2113. {
  2114. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2115. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2116. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2117. final_result = true;
  2118. }
  2119. }
  2120. #ifdef TMC2130
  2121. tmc2130_home_exit();
  2122. #endif
  2123. }
  2124. else
  2125. {
  2126. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2127. final_result = false;
  2128. }
  2129. }
  2130. else
  2131. {
  2132. // Timeouted.
  2133. }
  2134. lcd_update_enable(true);
  2135. #ifdef TMC2130
  2136. FORCE_HIGH_POWER_END;
  2137. #endif // TMC2130
  2138. return final_result;
  2139. }
  2140. void gcode_M114()
  2141. {
  2142. SERIAL_PROTOCOLPGM("X:");
  2143. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2144. SERIAL_PROTOCOLPGM(" Y:");
  2145. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2146. SERIAL_PROTOCOLPGM(" Z:");
  2147. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2148. SERIAL_PROTOCOLPGM(" E:");
  2149. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2150. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2151. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2152. SERIAL_PROTOCOLPGM(" Y:");
  2153. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2154. SERIAL_PROTOCOLPGM(" Z:");
  2155. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2156. SERIAL_PROTOCOLPGM(" E:");
  2157. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2158. SERIAL_PROTOCOLLN("");
  2159. }
  2160. void gcode_M701()
  2161. {
  2162. #ifdef SNMM
  2163. extr_adj(snmm_extruder);//loads current extruder
  2164. #else
  2165. enable_z();
  2166. custom_message = true;
  2167. custom_message_type = 2;
  2168. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2169. current_position[E_AXIS] += 70;
  2170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2171. current_position[E_AXIS] += 25;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2173. st_synchronize();
  2174. tone(BEEPER, 500);
  2175. delay_keep_alive(50);
  2176. noTone(BEEPER);
  2177. if (!farm_mode && loading_flag) {
  2178. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2179. while (!clean) {
  2180. lcd_update_enable(true);
  2181. lcd_update(2);
  2182. current_position[E_AXIS] += 25;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2184. st_synchronize();
  2185. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2186. }
  2187. }
  2188. lcd_update_enable(true);
  2189. lcd_update(2);
  2190. lcd_setstatuspgm(_T(WELCOME_MSG));
  2191. disable_z();
  2192. loading_flag = false;
  2193. custom_message = false;
  2194. custom_message_type = 0;
  2195. #endif
  2196. }
  2197. /**
  2198. * @brief Get serial number from 32U2 processor
  2199. *
  2200. * Typical format of S/N is:CZPX0917X003XC13518
  2201. *
  2202. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2203. *
  2204. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2205. * reply is transmitted to serial port 1 character by character.
  2206. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2207. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2208. * in any case.
  2209. */
  2210. static void gcode_PRUSA_SN()
  2211. {
  2212. if (farm_mode) {
  2213. selectedSerialPort = 0;
  2214. MSerial.write(";S");
  2215. int numbersRead = 0;
  2216. Timer timeout;
  2217. timeout.start();
  2218. while (numbersRead < 19) {
  2219. while (MSerial.available() > 0) {
  2220. uint8_t serial_char = MSerial.read();
  2221. selectedSerialPort = 1;
  2222. MSerial.write(serial_char);
  2223. numbersRead++;
  2224. selectedSerialPort = 0;
  2225. }
  2226. if (timeout.expired(100)) break;
  2227. }
  2228. selectedSerialPort = 1;
  2229. MSerial.write('\n');
  2230. #if 0
  2231. for (int b = 0; b < 3; b++) {
  2232. tone(BEEPER, 110);
  2233. delay(50);
  2234. noTone(BEEPER);
  2235. delay(50);
  2236. }
  2237. #endif
  2238. } else {
  2239. MYSERIAL.println("Not in farm mode.");
  2240. }
  2241. }
  2242. void process_commands()
  2243. {
  2244. if (!buflen) return; //empty command
  2245. #ifdef FILAMENT_RUNOUT_SUPPORT
  2246. SET_INPUT(FR_SENS);
  2247. #endif
  2248. #ifdef CMDBUFFER_DEBUG
  2249. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2250. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2251. SERIAL_ECHOLNPGM("");
  2252. SERIAL_ECHOPGM("In cmdqueue: ");
  2253. SERIAL_ECHO(buflen);
  2254. SERIAL_ECHOLNPGM("");
  2255. #endif /* CMDBUFFER_DEBUG */
  2256. unsigned long codenum; //throw away variable
  2257. char *starpos = NULL;
  2258. #ifdef ENABLE_AUTO_BED_LEVELING
  2259. float x_tmp, y_tmp, z_tmp, real_z;
  2260. #endif
  2261. // PRUSA GCODES
  2262. KEEPALIVE_STATE(IN_HANDLER);
  2263. #ifdef SNMM
  2264. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2265. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2266. int8_t SilentMode;
  2267. #endif
  2268. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2269. starpos = (strchr(strchr_pointer + 5, '*'));
  2270. if (starpos != NULL)
  2271. *(starpos) = '\0';
  2272. lcd_setstatus(strchr_pointer + 5);
  2273. }
  2274. #ifdef TMC2130
  2275. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2276. {
  2277. if(code_seen("CRASH_DETECTED"))
  2278. {
  2279. uint8_t mask = 0;
  2280. if (code_seen("X")) mask |= X_AXIS_MASK;
  2281. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2282. crashdet_detected(mask);
  2283. }
  2284. else if(code_seen("CRASH_RECOVER"))
  2285. crashdet_recover();
  2286. else if(code_seen("CRASH_CANCEL"))
  2287. crashdet_cancel();
  2288. }
  2289. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2290. {
  2291. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2292. {
  2293. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2294. tmc2130_set_wave(E_AXIS, 247, fac);
  2295. }
  2296. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2297. {
  2298. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2299. uint16_t res = tmc2130_get_res(E_AXIS);
  2300. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2301. }
  2302. }
  2303. #endif //TMC2130
  2304. else if(code_seen("PRUSA")){
  2305. if (code_seen("Ping")) { //PRUSA Ping
  2306. if (farm_mode) {
  2307. PingTime = millis();
  2308. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2309. }
  2310. }
  2311. else if (code_seen("PRN")) {
  2312. MYSERIAL.println(status_number);
  2313. }else if (code_seen("FAN")) {
  2314. MYSERIAL.print("E0:");
  2315. MYSERIAL.print(60*fan_speed[0]);
  2316. MYSERIAL.println(" RPM");
  2317. MYSERIAL.print("PRN0:");
  2318. MYSERIAL.print(60*fan_speed[1]);
  2319. MYSERIAL.println(" RPM");
  2320. }else if (code_seen("fn")) {
  2321. if (farm_mode) {
  2322. MYSERIAL.println(farm_no);
  2323. }
  2324. else {
  2325. MYSERIAL.println("Not in farm mode.");
  2326. }
  2327. }
  2328. else if (code_seen("thx")) {
  2329. no_response = false;
  2330. }else if (code_seen("fv")) {
  2331. // get file version
  2332. #ifdef SDSUPPORT
  2333. card.openFile(strchr_pointer + 3,true);
  2334. while (true) {
  2335. uint16_t readByte = card.get();
  2336. MYSERIAL.write(readByte);
  2337. if (readByte=='\n') {
  2338. break;
  2339. }
  2340. }
  2341. card.closefile();
  2342. #endif // SDSUPPORT
  2343. } else if (code_seen("M28")) {
  2344. trace();
  2345. prusa_sd_card_upload = true;
  2346. card.openFile(strchr_pointer+4,false);
  2347. } else if (code_seen("SN")) {
  2348. gcode_PRUSA_SN();
  2349. } else if(code_seen("Fir")){
  2350. SERIAL_PROTOCOLLN(FW_VERSION);
  2351. } else if(code_seen("Rev")){
  2352. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2353. } else if(code_seen("Lang")) {
  2354. lcd_force_language_selection();
  2355. } else if(code_seen("Lz")) {
  2356. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2357. } else if (code_seen("SERIAL LOW")) {
  2358. MYSERIAL.println("SERIAL LOW");
  2359. MYSERIAL.begin(BAUDRATE);
  2360. return;
  2361. } else if (code_seen("SERIAL HIGH")) {
  2362. MYSERIAL.println("SERIAL HIGH");
  2363. MYSERIAL.begin(1152000);
  2364. return;
  2365. } else if(code_seen("Beat")) {
  2366. // Kick farm link timer
  2367. kicktime = millis();
  2368. } else if(code_seen("FR")) {
  2369. // Factory full reset
  2370. factory_reset(0,true);
  2371. }
  2372. //else if (code_seen('Cal')) {
  2373. // lcd_calibration();
  2374. // }
  2375. }
  2376. else if (code_seen('^')) {
  2377. // nothing, this is a version line
  2378. } else if(code_seen('G'))
  2379. {
  2380. switch((int)code_value())
  2381. {
  2382. case 0: // G0 -> G1
  2383. case 1: // G1
  2384. if(Stopped == false) {
  2385. #ifdef FILAMENT_RUNOUT_SUPPORT
  2386. if(READ(FR_SENS)){
  2387. feedmultiplyBckp=feedmultiply;
  2388. float target[4];
  2389. float lastpos[4];
  2390. target[X_AXIS]=current_position[X_AXIS];
  2391. target[Y_AXIS]=current_position[Y_AXIS];
  2392. target[Z_AXIS]=current_position[Z_AXIS];
  2393. target[E_AXIS]=current_position[E_AXIS];
  2394. lastpos[X_AXIS]=current_position[X_AXIS];
  2395. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2396. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2397. lastpos[E_AXIS]=current_position[E_AXIS];
  2398. //retract by E
  2399. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2400. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2401. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2403. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2404. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2405. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2406. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2407. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2408. //finish moves
  2409. st_synchronize();
  2410. //disable extruder steppers so filament can be removed
  2411. disable_e0();
  2412. disable_e1();
  2413. disable_e2();
  2414. delay(100);
  2415. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2416. uint8_t cnt=0;
  2417. int counterBeep = 0;
  2418. lcd_wait_interact();
  2419. while(!lcd_clicked()){
  2420. cnt++;
  2421. manage_heater();
  2422. manage_inactivity(true);
  2423. //lcd_update();
  2424. if(cnt==0)
  2425. {
  2426. #if BEEPER > 0
  2427. if (counterBeep== 500){
  2428. counterBeep = 0;
  2429. }
  2430. SET_OUTPUT(BEEPER);
  2431. if (counterBeep== 0){
  2432. WRITE(BEEPER,HIGH);
  2433. }
  2434. if (counterBeep== 20){
  2435. WRITE(BEEPER,LOW);
  2436. }
  2437. counterBeep++;
  2438. #else
  2439. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2440. lcd_buzz(1000/6,100);
  2441. #else
  2442. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2443. #endif
  2444. #endif
  2445. }
  2446. }
  2447. WRITE(BEEPER,LOW);
  2448. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2449. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2450. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2451. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2452. lcd_change_fil_state = 0;
  2453. lcd_loading_filament();
  2454. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2455. lcd_change_fil_state = 0;
  2456. lcd_alright();
  2457. switch(lcd_change_fil_state){
  2458. case 2:
  2459. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2461. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2463. lcd_loading_filament();
  2464. break;
  2465. case 3:
  2466. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2467. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2468. lcd_loading_color();
  2469. break;
  2470. default:
  2471. lcd_change_success();
  2472. break;
  2473. }
  2474. }
  2475. target[E_AXIS]+= 5;
  2476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2477. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2479. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2480. //plan_set_e_position(current_position[E_AXIS]);
  2481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2482. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2483. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2484. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2485. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2486. plan_set_e_position(lastpos[E_AXIS]);
  2487. feedmultiply=feedmultiplyBckp;
  2488. char cmd[9];
  2489. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2490. enquecommand(cmd);
  2491. }
  2492. #endif
  2493. get_coordinates(); // For X Y Z E F
  2494. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2495. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2496. }
  2497. #ifdef FWRETRACT
  2498. if(autoretract_enabled)
  2499. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2500. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2501. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2502. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2503. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2504. retract(!retracted);
  2505. return;
  2506. }
  2507. }
  2508. #endif //FWRETRACT
  2509. prepare_move();
  2510. //ClearToSend();
  2511. }
  2512. break;
  2513. case 2: // G2 - CW ARC
  2514. if(Stopped == false) {
  2515. get_arc_coordinates();
  2516. prepare_arc_move(true);
  2517. }
  2518. break;
  2519. case 3: // G3 - CCW ARC
  2520. if(Stopped == false) {
  2521. get_arc_coordinates();
  2522. prepare_arc_move(false);
  2523. }
  2524. break;
  2525. case 4: // G4 dwell
  2526. codenum = 0;
  2527. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2528. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2529. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2530. st_synchronize();
  2531. codenum += millis(); // keep track of when we started waiting
  2532. previous_millis_cmd = millis();
  2533. while(millis() < codenum) {
  2534. manage_heater();
  2535. manage_inactivity();
  2536. lcd_update();
  2537. }
  2538. break;
  2539. #ifdef FWRETRACT
  2540. case 10: // G10 retract
  2541. #if EXTRUDERS > 1
  2542. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2543. retract(true,retracted_swap[active_extruder]);
  2544. #else
  2545. retract(true);
  2546. #endif
  2547. break;
  2548. case 11: // G11 retract_recover
  2549. #if EXTRUDERS > 1
  2550. retract(false,retracted_swap[active_extruder]);
  2551. #else
  2552. retract(false);
  2553. #endif
  2554. break;
  2555. #endif //FWRETRACT
  2556. case 28: //G28 Home all Axis one at a time
  2557. {
  2558. st_synchronize();
  2559. #if 0
  2560. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2561. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2562. #endif
  2563. // Flag for the display update routine and to disable the print cancelation during homing.
  2564. homing_flag = true;
  2565. // Which axes should be homed?
  2566. bool home_x = code_seen(axis_codes[X_AXIS]);
  2567. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2568. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2569. // calibrate?
  2570. bool calib = code_seen('C');
  2571. // Either all X,Y,Z codes are present, or none of them.
  2572. bool home_all_axes = home_x == home_y && home_x == home_z;
  2573. if (home_all_axes)
  2574. // No X/Y/Z code provided means to home all axes.
  2575. home_x = home_y = home_z = true;
  2576. #ifdef ENABLE_AUTO_BED_LEVELING
  2577. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2578. #endif //ENABLE_AUTO_BED_LEVELING
  2579. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2580. // the planner will not perform any adjustments in the XY plane.
  2581. // Wait for the motors to stop and update the current position with the absolute values.
  2582. world2machine_revert_to_uncorrected();
  2583. // For mesh bed leveling deactivate the matrix temporarily.
  2584. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2585. // in a single axis only.
  2586. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2587. #ifdef MESH_BED_LEVELING
  2588. uint8_t mbl_was_active = mbl.active;
  2589. mbl.active = 0;
  2590. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2591. #endif
  2592. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2593. // consumed during the first movements following this statement.
  2594. if (home_z)
  2595. babystep_undo();
  2596. saved_feedrate = feedrate;
  2597. saved_feedmultiply = feedmultiply;
  2598. feedmultiply = 100;
  2599. previous_millis_cmd = millis();
  2600. enable_endstops(true);
  2601. memcpy(destination, current_position, sizeof(destination));
  2602. feedrate = 0.0;
  2603. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2604. if(home_z)
  2605. homeaxis(Z_AXIS);
  2606. #endif
  2607. #ifdef QUICK_HOME
  2608. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2609. if(home_x && home_y) //first diagonal move
  2610. {
  2611. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2612. int x_axis_home_dir = home_dir(X_AXIS);
  2613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2614. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2615. feedrate = homing_feedrate[X_AXIS];
  2616. if(homing_feedrate[Y_AXIS]<feedrate)
  2617. feedrate = homing_feedrate[Y_AXIS];
  2618. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2619. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2620. } else {
  2621. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2622. }
  2623. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2624. st_synchronize();
  2625. axis_is_at_home(X_AXIS);
  2626. axis_is_at_home(Y_AXIS);
  2627. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2628. destination[X_AXIS] = current_position[X_AXIS];
  2629. destination[Y_AXIS] = current_position[Y_AXIS];
  2630. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2631. feedrate = 0.0;
  2632. st_synchronize();
  2633. endstops_hit_on_purpose();
  2634. current_position[X_AXIS] = destination[X_AXIS];
  2635. current_position[Y_AXIS] = destination[Y_AXIS];
  2636. current_position[Z_AXIS] = destination[Z_AXIS];
  2637. }
  2638. #endif /* QUICK_HOME */
  2639. #ifdef TMC2130
  2640. if(home_x)
  2641. {
  2642. if (!calib)
  2643. homeaxis(X_AXIS);
  2644. else
  2645. tmc2130_home_calibrate(X_AXIS);
  2646. }
  2647. if(home_y)
  2648. {
  2649. if (!calib)
  2650. homeaxis(Y_AXIS);
  2651. else
  2652. tmc2130_home_calibrate(Y_AXIS);
  2653. }
  2654. #endif //TMC2130
  2655. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2656. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2657. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2658. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2659. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2660. #ifndef Z_SAFE_HOMING
  2661. if(home_z) {
  2662. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2663. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2664. feedrate = max_feedrate[Z_AXIS];
  2665. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2666. st_synchronize();
  2667. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2668. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2669. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2670. {
  2671. homeaxis(X_AXIS);
  2672. homeaxis(Y_AXIS);
  2673. }
  2674. // 1st mesh bed leveling measurement point, corrected.
  2675. world2machine_initialize();
  2676. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2677. world2machine_reset();
  2678. if (destination[Y_AXIS] < Y_MIN_POS)
  2679. destination[Y_AXIS] = Y_MIN_POS;
  2680. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2681. feedrate = homing_feedrate[Z_AXIS]/10;
  2682. current_position[Z_AXIS] = 0;
  2683. enable_endstops(false);
  2684. #ifdef DEBUG_BUILD
  2685. SERIAL_ECHOLNPGM("plan_set_position()");
  2686. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2687. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2688. #endif
  2689. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2690. #ifdef DEBUG_BUILD
  2691. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2692. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2693. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2694. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2695. #endif
  2696. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2697. st_synchronize();
  2698. current_position[X_AXIS] = destination[X_AXIS];
  2699. current_position[Y_AXIS] = destination[Y_AXIS];
  2700. enable_endstops(true);
  2701. endstops_hit_on_purpose();
  2702. homeaxis(Z_AXIS);
  2703. #else // MESH_BED_LEVELING
  2704. homeaxis(Z_AXIS);
  2705. #endif // MESH_BED_LEVELING
  2706. }
  2707. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2708. if(home_all_axes) {
  2709. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2710. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2711. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2712. feedrate = XY_TRAVEL_SPEED/60;
  2713. current_position[Z_AXIS] = 0;
  2714. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2715. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2716. st_synchronize();
  2717. current_position[X_AXIS] = destination[X_AXIS];
  2718. current_position[Y_AXIS] = destination[Y_AXIS];
  2719. homeaxis(Z_AXIS);
  2720. }
  2721. // Let's see if X and Y are homed and probe is inside bed area.
  2722. if(home_z) {
  2723. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2724. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2725. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2726. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2727. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2728. current_position[Z_AXIS] = 0;
  2729. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2730. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2731. feedrate = max_feedrate[Z_AXIS];
  2732. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2733. st_synchronize();
  2734. homeaxis(Z_AXIS);
  2735. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2736. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2737. SERIAL_ECHO_START;
  2738. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2739. } else {
  2740. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2741. SERIAL_ECHO_START;
  2742. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2743. }
  2744. }
  2745. #endif // Z_SAFE_HOMING
  2746. #endif // Z_HOME_DIR < 0
  2747. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2748. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2749. #ifdef ENABLE_AUTO_BED_LEVELING
  2750. if(home_z)
  2751. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2752. #endif
  2753. // Set the planner and stepper routine positions.
  2754. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2755. // contains the machine coordinates.
  2756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2757. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2758. enable_endstops(false);
  2759. #endif
  2760. feedrate = saved_feedrate;
  2761. feedmultiply = saved_feedmultiply;
  2762. previous_millis_cmd = millis();
  2763. endstops_hit_on_purpose();
  2764. #ifndef MESH_BED_LEVELING
  2765. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2766. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2767. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2768. lcd_adjust_z();
  2769. #endif
  2770. // Load the machine correction matrix
  2771. world2machine_initialize();
  2772. // and correct the current_position XY axes to match the transformed coordinate system.
  2773. world2machine_update_current();
  2774. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2775. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2776. {
  2777. if (! home_z && mbl_was_active) {
  2778. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2779. mbl.active = true;
  2780. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2781. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2782. }
  2783. }
  2784. else
  2785. {
  2786. st_synchronize();
  2787. homing_flag = false;
  2788. // Push the commands to the front of the message queue in the reverse order!
  2789. // There shall be always enough space reserved for these commands.
  2790. // enquecommand_front_P((PSTR("G80")));
  2791. goto case_G80;
  2792. }
  2793. #endif
  2794. if (farm_mode) { prusa_statistics(20); };
  2795. homing_flag = false;
  2796. #if 0
  2797. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2798. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2799. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2800. #endif
  2801. break;
  2802. }
  2803. #ifdef ENABLE_AUTO_BED_LEVELING
  2804. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2805. {
  2806. #if Z_MIN_PIN == -1
  2807. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2808. #endif
  2809. // Prevent user from running a G29 without first homing in X and Y
  2810. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2811. {
  2812. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2813. SERIAL_ECHO_START;
  2814. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2815. break; // abort G29, since we don't know where we are
  2816. }
  2817. st_synchronize();
  2818. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2819. //vector_3 corrected_position = plan_get_position_mm();
  2820. //corrected_position.debug("position before G29");
  2821. plan_bed_level_matrix.set_to_identity();
  2822. vector_3 uncorrected_position = plan_get_position();
  2823. //uncorrected_position.debug("position durring G29");
  2824. current_position[X_AXIS] = uncorrected_position.x;
  2825. current_position[Y_AXIS] = uncorrected_position.y;
  2826. current_position[Z_AXIS] = uncorrected_position.z;
  2827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2828. setup_for_endstop_move();
  2829. feedrate = homing_feedrate[Z_AXIS];
  2830. #ifdef AUTO_BED_LEVELING_GRID
  2831. // probe at the points of a lattice grid
  2832. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2833. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2834. // solve the plane equation ax + by + d = z
  2835. // A is the matrix with rows [x y 1] for all the probed points
  2836. // B is the vector of the Z positions
  2837. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2838. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2839. // "A" matrix of the linear system of equations
  2840. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2841. // "B" vector of Z points
  2842. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2843. int probePointCounter = 0;
  2844. bool zig = true;
  2845. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2846. {
  2847. int xProbe, xInc;
  2848. if (zig)
  2849. {
  2850. xProbe = LEFT_PROBE_BED_POSITION;
  2851. //xEnd = RIGHT_PROBE_BED_POSITION;
  2852. xInc = xGridSpacing;
  2853. zig = false;
  2854. } else // zag
  2855. {
  2856. xProbe = RIGHT_PROBE_BED_POSITION;
  2857. //xEnd = LEFT_PROBE_BED_POSITION;
  2858. xInc = -xGridSpacing;
  2859. zig = true;
  2860. }
  2861. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2862. {
  2863. float z_before;
  2864. if (probePointCounter == 0)
  2865. {
  2866. // raise before probing
  2867. z_before = Z_RAISE_BEFORE_PROBING;
  2868. } else
  2869. {
  2870. // raise extruder
  2871. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2872. }
  2873. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2874. eqnBVector[probePointCounter] = measured_z;
  2875. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2876. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2877. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2878. probePointCounter++;
  2879. xProbe += xInc;
  2880. }
  2881. }
  2882. clean_up_after_endstop_move();
  2883. // solve lsq problem
  2884. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2885. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2886. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2887. SERIAL_PROTOCOLPGM(" b: ");
  2888. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2889. SERIAL_PROTOCOLPGM(" d: ");
  2890. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2891. set_bed_level_equation_lsq(plane_equation_coefficients);
  2892. free(plane_equation_coefficients);
  2893. #else // AUTO_BED_LEVELING_GRID not defined
  2894. // Probe at 3 arbitrary points
  2895. // probe 1
  2896. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2897. // probe 2
  2898. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2899. // probe 3
  2900. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2901. clean_up_after_endstop_move();
  2902. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2903. #endif // AUTO_BED_LEVELING_GRID
  2904. st_synchronize();
  2905. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2906. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2907. // When the bed is uneven, this height must be corrected.
  2908. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2909. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2910. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2911. z_tmp = current_position[Z_AXIS];
  2912. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2913. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2915. }
  2916. break;
  2917. #ifndef Z_PROBE_SLED
  2918. case 30: // G30 Single Z Probe
  2919. {
  2920. st_synchronize();
  2921. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2922. setup_for_endstop_move();
  2923. feedrate = homing_feedrate[Z_AXIS];
  2924. run_z_probe();
  2925. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  2926. SERIAL_PROTOCOLPGM(" X: ");
  2927. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2928. SERIAL_PROTOCOLPGM(" Y: ");
  2929. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2930. SERIAL_PROTOCOLPGM(" Z: ");
  2931. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2932. SERIAL_PROTOCOLPGM("\n");
  2933. clean_up_after_endstop_move();
  2934. }
  2935. break;
  2936. #else
  2937. case 31: // dock the sled
  2938. dock_sled(true);
  2939. break;
  2940. case 32: // undock the sled
  2941. dock_sled(false);
  2942. break;
  2943. #endif // Z_PROBE_SLED
  2944. #endif // ENABLE_AUTO_BED_LEVELING
  2945. #ifdef MESH_BED_LEVELING
  2946. case 30: // G30 Single Z Probe
  2947. {
  2948. st_synchronize();
  2949. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2950. setup_for_endstop_move();
  2951. feedrate = homing_feedrate[Z_AXIS];
  2952. find_bed_induction_sensor_point_z(-10.f, 3);
  2953. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  2954. SERIAL_PROTOCOLPGM(" X: ");
  2955. MYSERIAL.print(current_position[X_AXIS], 5);
  2956. SERIAL_PROTOCOLPGM(" Y: ");
  2957. MYSERIAL.print(current_position[Y_AXIS], 5);
  2958. SERIAL_PROTOCOLPGM(" Z: ");
  2959. MYSERIAL.print(current_position[Z_AXIS], 5);
  2960. SERIAL_PROTOCOLPGM("\n");
  2961. clean_up_after_endstop_move();
  2962. }
  2963. break;
  2964. case 75:
  2965. {
  2966. for (int i = 40; i <= 110; i++) {
  2967. MYSERIAL.print(i);
  2968. MYSERIAL.print(" ");
  2969. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2970. }
  2971. }
  2972. break;
  2973. case 76: //PINDA probe temperature calibration
  2974. {
  2975. #ifdef PINDA_THERMISTOR
  2976. if (true)
  2977. {
  2978. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2979. {
  2980. // We don't know where we are! HOME!
  2981. // Push the commands to the front of the message queue in the reverse order!
  2982. // There shall be always enough space reserved for these commands.
  2983. repeatcommand_front(); // repeat G76 with all its parameters
  2984. enquecommand_front_P((PSTR("G28 W0")));
  2985. break;
  2986. }
  2987. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  2988. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2989. if (result)
  2990. {
  2991. current_position[Z_AXIS] = 50;
  2992. current_position[Y_AXIS] += 180;
  2993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2994. st_synchronize();
  2995. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2996. current_position[Y_AXIS] -= 180;
  2997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2998. st_synchronize();
  2999. feedrate = homing_feedrate[Z_AXIS] / 10;
  3000. enable_endstops(true);
  3001. endstops_hit_on_purpose();
  3002. homeaxis(Z_AXIS);
  3003. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3004. enable_endstops(false);
  3005. }
  3006. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3007. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3008. current_position[Z_AXIS] = 100;
  3009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3010. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3011. lcd_temp_cal_show_result(false);
  3012. break;
  3013. }
  3014. }
  3015. lcd_update_enable(true);
  3016. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3017. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3018. float zero_z;
  3019. int z_shift = 0; //unit: steps
  3020. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3021. if (start_temp < 35) start_temp = 35;
  3022. if (start_temp < current_temperature_pinda) start_temp += 5;
  3023. SERIAL_ECHOPGM("start temperature: ");
  3024. MYSERIAL.println(start_temp);
  3025. // setTargetHotend(200, 0);
  3026. setTargetBed(70 + (start_temp - 30));
  3027. custom_message = true;
  3028. custom_message_type = 4;
  3029. custom_message_state = 1;
  3030. custom_message = _T(MSG_TEMP_CALIBRATION);
  3031. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3032. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3033. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3035. st_synchronize();
  3036. while (current_temperature_pinda < start_temp)
  3037. {
  3038. delay_keep_alive(1000);
  3039. serialecho_temperatures();
  3040. }
  3041. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3042. current_position[Z_AXIS] = 5;
  3043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3044. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3045. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3047. st_synchronize();
  3048. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3049. if (find_z_result == false) {
  3050. lcd_temp_cal_show_result(find_z_result);
  3051. break;
  3052. }
  3053. zero_z = current_position[Z_AXIS];
  3054. //current_position[Z_AXIS]
  3055. SERIAL_ECHOLNPGM("");
  3056. SERIAL_ECHOPGM("ZERO: ");
  3057. MYSERIAL.print(current_position[Z_AXIS]);
  3058. SERIAL_ECHOLNPGM("");
  3059. int i = -1; for (; i < 5; i++)
  3060. {
  3061. float temp = (40 + i * 5);
  3062. SERIAL_ECHOPGM("Step: ");
  3063. MYSERIAL.print(i + 2);
  3064. SERIAL_ECHOLNPGM("/6 (skipped)");
  3065. SERIAL_ECHOPGM("PINDA temperature: ");
  3066. MYSERIAL.print((40 + i*5));
  3067. SERIAL_ECHOPGM(" Z shift (mm):");
  3068. MYSERIAL.print(0);
  3069. SERIAL_ECHOLNPGM("");
  3070. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3071. if (start_temp <= temp) break;
  3072. }
  3073. for (i++; i < 5; i++)
  3074. {
  3075. float temp = (40 + i * 5);
  3076. SERIAL_ECHOPGM("Step: ");
  3077. MYSERIAL.print(i + 2);
  3078. SERIAL_ECHOLNPGM("/6");
  3079. custom_message_state = i + 2;
  3080. setTargetBed(50 + 10 * (temp - 30) / 5);
  3081. // setTargetHotend(255, 0);
  3082. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3083. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3084. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3086. st_synchronize();
  3087. while (current_temperature_pinda < temp)
  3088. {
  3089. delay_keep_alive(1000);
  3090. serialecho_temperatures();
  3091. }
  3092. current_position[Z_AXIS] = 5;
  3093. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3094. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3095. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3097. st_synchronize();
  3098. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3099. if (find_z_result == false) {
  3100. lcd_temp_cal_show_result(find_z_result);
  3101. break;
  3102. }
  3103. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3104. SERIAL_ECHOLNPGM("");
  3105. SERIAL_ECHOPGM("PINDA temperature: ");
  3106. MYSERIAL.print(current_temperature_pinda);
  3107. SERIAL_ECHOPGM(" Z shift (mm):");
  3108. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3109. SERIAL_ECHOLNPGM("");
  3110. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3111. }
  3112. lcd_temp_cal_show_result(true);
  3113. break;
  3114. }
  3115. #endif //PINDA_THERMISTOR
  3116. setTargetBed(PINDA_MIN_T);
  3117. float zero_z;
  3118. int z_shift = 0; //unit: steps
  3119. int t_c; // temperature
  3120. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3121. // We don't know where we are! HOME!
  3122. // Push the commands to the front of the message queue in the reverse order!
  3123. // There shall be always enough space reserved for these commands.
  3124. repeatcommand_front(); // repeat G76 with all its parameters
  3125. enquecommand_front_P((PSTR("G28 W0")));
  3126. break;
  3127. }
  3128. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3129. custom_message = true;
  3130. custom_message_type = 4;
  3131. custom_message_state = 1;
  3132. custom_message = _T(MSG_TEMP_CALIBRATION);
  3133. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3134. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3135. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3137. st_synchronize();
  3138. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3139. delay_keep_alive(1000);
  3140. serialecho_temperatures();
  3141. }
  3142. //enquecommand_P(PSTR("M190 S50"));
  3143. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3144. delay_keep_alive(1000);
  3145. serialecho_temperatures();
  3146. }
  3147. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3148. current_position[Z_AXIS] = 5;
  3149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3150. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3151. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3153. st_synchronize();
  3154. find_bed_induction_sensor_point_z(-1.f);
  3155. zero_z = current_position[Z_AXIS];
  3156. //current_position[Z_AXIS]
  3157. SERIAL_ECHOLNPGM("");
  3158. SERIAL_ECHOPGM("ZERO: ");
  3159. MYSERIAL.print(current_position[Z_AXIS]);
  3160. SERIAL_ECHOLNPGM("");
  3161. for (int i = 0; i<5; i++) {
  3162. SERIAL_ECHOPGM("Step: ");
  3163. MYSERIAL.print(i+2);
  3164. SERIAL_ECHOLNPGM("/6");
  3165. custom_message_state = i + 2;
  3166. t_c = 60 + i * 10;
  3167. setTargetBed(t_c);
  3168. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3169. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3170. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3172. st_synchronize();
  3173. while (degBed() < t_c) {
  3174. delay_keep_alive(1000);
  3175. serialecho_temperatures();
  3176. }
  3177. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3178. delay_keep_alive(1000);
  3179. serialecho_temperatures();
  3180. }
  3181. current_position[Z_AXIS] = 5;
  3182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3183. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3184. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3186. st_synchronize();
  3187. find_bed_induction_sensor_point_z(-1.f);
  3188. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3189. SERIAL_ECHOLNPGM("");
  3190. SERIAL_ECHOPGM("Temperature: ");
  3191. MYSERIAL.print(t_c);
  3192. SERIAL_ECHOPGM(" Z shift (mm):");
  3193. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3194. SERIAL_ECHOLNPGM("");
  3195. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3196. }
  3197. custom_message_type = 0;
  3198. custom_message = false;
  3199. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3200. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3201. disable_x();
  3202. disable_y();
  3203. disable_z();
  3204. disable_e0();
  3205. disable_e1();
  3206. disable_e2();
  3207. setTargetBed(0); //set bed target temperature back to 0
  3208. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3209. temp_cal_active = true;
  3210. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3211. lcd_update_enable(true);
  3212. lcd_update(2);
  3213. }
  3214. break;
  3215. #ifdef DIS
  3216. case 77:
  3217. {
  3218. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3219. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3220. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3221. float dimension_x = 40;
  3222. float dimension_y = 40;
  3223. int points_x = 40;
  3224. int points_y = 40;
  3225. float offset_x = 74;
  3226. float offset_y = 33;
  3227. if (code_seen('X')) dimension_x = code_value();
  3228. if (code_seen('Y')) dimension_y = code_value();
  3229. if (code_seen('XP')) points_x = code_value();
  3230. if (code_seen('YP')) points_y = code_value();
  3231. if (code_seen('XO')) offset_x = code_value();
  3232. if (code_seen('YO')) offset_y = code_value();
  3233. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3234. } break;
  3235. #endif
  3236. case 79: {
  3237. for (int i = 255; i > 0; i = i - 5) {
  3238. fanSpeed = i;
  3239. //delay_keep_alive(2000);
  3240. for (int j = 0; j < 100; j++) {
  3241. delay_keep_alive(100);
  3242. }
  3243. fan_speed[1];
  3244. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3245. }
  3246. }break;
  3247. /**
  3248. * G80: Mesh-based Z probe, probes a grid and produces a
  3249. * mesh to compensate for variable bed height
  3250. *
  3251. * The S0 report the points as below
  3252. *
  3253. * +----> X-axis
  3254. * |
  3255. * |
  3256. * v Y-axis
  3257. *
  3258. */
  3259. case 80:
  3260. #ifdef MK1BP
  3261. break;
  3262. #endif //MK1BP
  3263. case_G80:
  3264. {
  3265. #ifdef TMC2130
  3266. //previously enqueued "G28 W0" failed (crash Z)
  3267. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && !axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0))
  3268. {
  3269. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3270. break;
  3271. }
  3272. #endif //TMC2130
  3273. mesh_bed_leveling_flag = true;
  3274. int8_t verbosity_level = 0;
  3275. static bool run = false;
  3276. if (code_seen('V')) {
  3277. // Just 'V' without a number counts as V1.
  3278. char c = strchr_pointer[1];
  3279. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3280. }
  3281. // Firstly check if we know where we are
  3282. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3283. // We don't know where we are! HOME!
  3284. // Push the commands to the front of the message queue in the reverse order!
  3285. // There shall be always enough space reserved for these commands.
  3286. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3287. repeatcommand_front(); // repeat G80 with all its parameters
  3288. enquecommand_front_P((PSTR("G28 W0")));
  3289. }
  3290. else {
  3291. mesh_bed_leveling_flag = false;
  3292. }
  3293. break;
  3294. }
  3295. bool temp_comp_start = true;
  3296. #ifdef PINDA_THERMISTOR
  3297. temp_comp_start = false;
  3298. #endif //PINDA_THERMISTOR
  3299. if (temp_comp_start)
  3300. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3301. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3302. temp_compensation_start();
  3303. run = true;
  3304. repeatcommand_front(); // repeat G80 with all its parameters
  3305. enquecommand_front_P((PSTR("G28 W0")));
  3306. }
  3307. else {
  3308. mesh_bed_leveling_flag = false;
  3309. }
  3310. break;
  3311. }
  3312. run = false;
  3313. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3314. mesh_bed_leveling_flag = false;
  3315. break;
  3316. }
  3317. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3318. bool custom_message_old = custom_message;
  3319. unsigned int custom_message_type_old = custom_message_type;
  3320. unsigned int custom_message_state_old = custom_message_state;
  3321. custom_message = true;
  3322. custom_message_type = 1;
  3323. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3324. lcd_update(1);
  3325. mbl.reset(); //reset mesh bed leveling
  3326. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3327. // consumed during the first movements following this statement.
  3328. babystep_undo();
  3329. // Cycle through all points and probe them
  3330. // First move up. During this first movement, the babystepping will be reverted.
  3331. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3332. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3333. // The move to the first calibration point.
  3334. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3335. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3336. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3337. #ifdef SUPPORT_VERBOSITY
  3338. if (verbosity_level >= 1) {
  3339. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3340. }
  3341. #endif //SUPPORT_VERBOSITY
  3342. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3344. // Wait until the move is finished.
  3345. st_synchronize();
  3346. int mesh_point = 0; //index number of calibration point
  3347. int ix = 0;
  3348. int iy = 0;
  3349. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3350. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3351. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3352. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3353. #ifdef SUPPORT_VERBOSITY
  3354. if (verbosity_level >= 1) {
  3355. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3356. }
  3357. #endif // SUPPORT_VERBOSITY
  3358. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3359. const char *kill_message = NULL;
  3360. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3361. // Get coords of a measuring point.
  3362. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3363. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3364. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3365. float z0 = 0.f;
  3366. if (has_z && mesh_point > 0) {
  3367. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3368. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3369. //#if 0
  3370. #ifdef SUPPORT_VERBOSITY
  3371. if (verbosity_level >= 1) {
  3372. SERIAL_ECHOLNPGM("");
  3373. SERIAL_ECHOPGM("Bed leveling, point: ");
  3374. MYSERIAL.print(mesh_point);
  3375. SERIAL_ECHOPGM(", calibration z: ");
  3376. MYSERIAL.print(z0, 5);
  3377. SERIAL_ECHOLNPGM("");
  3378. }
  3379. #endif // SUPPORT_VERBOSITY
  3380. //#endif
  3381. }
  3382. // Move Z up to MESH_HOME_Z_SEARCH.
  3383. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3385. st_synchronize();
  3386. // Move to XY position of the sensor point.
  3387. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3388. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3389. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3390. #ifdef SUPPORT_VERBOSITY
  3391. if (verbosity_level >= 1) {
  3392. SERIAL_PROTOCOL(mesh_point);
  3393. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3394. }
  3395. #endif // SUPPORT_VERBOSITY
  3396. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3397. st_synchronize();
  3398. // Go down until endstop is hit
  3399. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3400. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3401. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3402. break;
  3403. }
  3404. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3405. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3406. break;
  3407. }
  3408. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3409. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3410. break;
  3411. }
  3412. #ifdef SUPPORT_VERBOSITY
  3413. if (verbosity_level >= 10) {
  3414. SERIAL_ECHOPGM("X: ");
  3415. MYSERIAL.print(current_position[X_AXIS], 5);
  3416. SERIAL_ECHOLNPGM("");
  3417. SERIAL_ECHOPGM("Y: ");
  3418. MYSERIAL.print(current_position[Y_AXIS], 5);
  3419. SERIAL_PROTOCOLPGM("\n");
  3420. }
  3421. #endif // SUPPORT_VERBOSITY
  3422. float offset_z = 0;
  3423. #ifdef PINDA_THERMISTOR
  3424. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3425. #endif //PINDA_THERMISTOR
  3426. // #ifdef SUPPORT_VERBOSITY
  3427. /* if (verbosity_level >= 1)
  3428. {
  3429. SERIAL_ECHOPGM("mesh bed leveling: ");
  3430. MYSERIAL.print(current_position[Z_AXIS], 5);
  3431. SERIAL_ECHOPGM(" offset: ");
  3432. MYSERIAL.print(offset_z, 5);
  3433. SERIAL_ECHOLNPGM("");
  3434. }*/
  3435. // #endif // SUPPORT_VERBOSITY
  3436. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3437. custom_message_state--;
  3438. mesh_point++;
  3439. lcd_update(1);
  3440. }
  3441. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3442. #ifdef SUPPORT_VERBOSITY
  3443. if (verbosity_level >= 20) {
  3444. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3445. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3446. MYSERIAL.print(current_position[Z_AXIS], 5);
  3447. }
  3448. #endif // SUPPORT_VERBOSITY
  3449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3450. st_synchronize();
  3451. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3452. kill(kill_message);
  3453. SERIAL_ECHOLNPGM("killed");
  3454. }
  3455. clean_up_after_endstop_move();
  3456. // SERIAL_ECHOLNPGM("clean up finished ");
  3457. bool apply_temp_comp = true;
  3458. #ifdef PINDA_THERMISTOR
  3459. apply_temp_comp = false;
  3460. #endif
  3461. if (apply_temp_comp)
  3462. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3463. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3464. // SERIAL_ECHOLNPGM("babystep applied");
  3465. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3466. #ifdef SUPPORT_VERBOSITY
  3467. if (verbosity_level >= 1) {
  3468. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3469. }
  3470. #endif // SUPPORT_VERBOSITY
  3471. for (uint8_t i = 0; i < 4; ++i) {
  3472. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3473. long correction = 0;
  3474. if (code_seen(codes[i]))
  3475. correction = code_value_long();
  3476. else if (eeprom_bed_correction_valid) {
  3477. unsigned char *addr = (i < 2) ?
  3478. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3479. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3480. correction = eeprom_read_int8(addr);
  3481. }
  3482. if (correction == 0)
  3483. continue;
  3484. float offset = float(correction) * 0.001f;
  3485. if (fabs(offset) > 0.101f) {
  3486. SERIAL_ERROR_START;
  3487. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3488. SERIAL_ECHO(offset);
  3489. SERIAL_ECHOLNPGM(" microns");
  3490. }
  3491. else {
  3492. switch (i) {
  3493. case 0:
  3494. for (uint8_t row = 0; row < 3; ++row) {
  3495. mbl.z_values[row][1] += 0.5f * offset;
  3496. mbl.z_values[row][0] += offset;
  3497. }
  3498. break;
  3499. case 1:
  3500. for (uint8_t row = 0; row < 3; ++row) {
  3501. mbl.z_values[row][1] += 0.5f * offset;
  3502. mbl.z_values[row][2] += offset;
  3503. }
  3504. break;
  3505. case 2:
  3506. for (uint8_t col = 0; col < 3; ++col) {
  3507. mbl.z_values[1][col] += 0.5f * offset;
  3508. mbl.z_values[0][col] += offset;
  3509. }
  3510. break;
  3511. case 3:
  3512. for (uint8_t col = 0; col < 3; ++col) {
  3513. mbl.z_values[1][col] += 0.5f * offset;
  3514. mbl.z_values[2][col] += offset;
  3515. }
  3516. break;
  3517. }
  3518. }
  3519. }
  3520. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3521. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3522. // SERIAL_ECHOLNPGM("Upsample finished");
  3523. mbl.active = 1; //activate mesh bed leveling
  3524. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3525. go_home_with_z_lift();
  3526. // SERIAL_ECHOLNPGM("Go home finished");
  3527. //unretract (after PINDA preheat retraction)
  3528. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3529. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3531. }
  3532. KEEPALIVE_STATE(NOT_BUSY);
  3533. // Restore custom message state
  3534. custom_message = custom_message_old;
  3535. custom_message_type = custom_message_type_old;
  3536. custom_message_state = custom_message_state_old;
  3537. mesh_bed_leveling_flag = false;
  3538. mesh_bed_run_from_menu = false;
  3539. lcd_update(2);
  3540. }
  3541. break;
  3542. /**
  3543. * G81: Print mesh bed leveling status and bed profile if activated
  3544. */
  3545. case 81:
  3546. if (mbl.active) {
  3547. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3548. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3549. SERIAL_PROTOCOLPGM(",");
  3550. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3551. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3552. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3553. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3554. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3555. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3556. SERIAL_PROTOCOLPGM(" ");
  3557. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3558. }
  3559. SERIAL_PROTOCOLPGM("\n");
  3560. }
  3561. }
  3562. else
  3563. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3564. break;
  3565. #if 0
  3566. /**
  3567. * G82: Single Z probe at current location
  3568. *
  3569. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3570. *
  3571. */
  3572. case 82:
  3573. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3574. setup_for_endstop_move();
  3575. find_bed_induction_sensor_point_z();
  3576. clean_up_after_endstop_move();
  3577. SERIAL_PROTOCOLPGM("Bed found at: ");
  3578. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3579. SERIAL_PROTOCOLPGM("\n");
  3580. break;
  3581. /**
  3582. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3583. */
  3584. case 83:
  3585. {
  3586. int babystepz = code_seen('S') ? code_value() : 0;
  3587. int BabyPosition = code_seen('P') ? code_value() : 0;
  3588. if (babystepz != 0) {
  3589. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3590. // Is the axis indexed starting with zero or one?
  3591. if (BabyPosition > 4) {
  3592. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3593. }else{
  3594. // Save it to the eeprom
  3595. babystepLoadZ = babystepz;
  3596. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3597. // adjust the Z
  3598. babystepsTodoZadd(babystepLoadZ);
  3599. }
  3600. }
  3601. }
  3602. break;
  3603. /**
  3604. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3605. */
  3606. case 84:
  3607. babystepsTodoZsubtract(babystepLoadZ);
  3608. // babystepLoadZ = 0;
  3609. break;
  3610. /**
  3611. * G85: Prusa3D specific: Pick best babystep
  3612. */
  3613. case 85:
  3614. lcd_pick_babystep();
  3615. break;
  3616. #endif
  3617. /**
  3618. * G86: Prusa3D specific: Disable babystep correction after home.
  3619. * This G-code will be performed at the start of a calibration script.
  3620. */
  3621. case 86:
  3622. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3623. break;
  3624. /**
  3625. * G87: Prusa3D specific: Enable babystep correction after home
  3626. * This G-code will be performed at the end of a calibration script.
  3627. */
  3628. case 87:
  3629. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3630. break;
  3631. /**
  3632. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3633. */
  3634. case 88:
  3635. break;
  3636. #endif // ENABLE_MESH_BED_LEVELING
  3637. case 90: // G90
  3638. relative_mode = false;
  3639. break;
  3640. case 91: // G91
  3641. relative_mode = true;
  3642. break;
  3643. case 92: // G92
  3644. if(!code_seen(axis_codes[E_AXIS]))
  3645. st_synchronize();
  3646. for(int8_t i=0; i < NUM_AXIS; i++) {
  3647. if(code_seen(axis_codes[i])) {
  3648. if(i == E_AXIS) {
  3649. current_position[i] = code_value();
  3650. plan_set_e_position(current_position[E_AXIS]);
  3651. }
  3652. else {
  3653. current_position[i] = code_value()+add_homing[i];
  3654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3655. }
  3656. }
  3657. }
  3658. break;
  3659. case 98: // G98 (activate farm mode)
  3660. farm_mode = 1;
  3661. PingTime = millis();
  3662. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3663. SilentModeMenu = SILENT_MODE_OFF;
  3664. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3665. break;
  3666. case 99: // G99 (deactivate farm mode)
  3667. farm_mode = 0;
  3668. lcd_printer_connected();
  3669. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3670. lcd_update(2);
  3671. break;
  3672. default:
  3673. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3674. }
  3675. } // end if(code_seen('G'))
  3676. else if(code_seen('M'))
  3677. {
  3678. int index;
  3679. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3680. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3681. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3682. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3683. } else
  3684. switch((int)code_value())
  3685. {
  3686. #ifdef ULTIPANEL
  3687. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3688. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3689. {
  3690. char *src = strchr_pointer + 2;
  3691. codenum = 0;
  3692. bool hasP = false, hasS = false;
  3693. if (code_seen('P')) {
  3694. codenum = code_value(); // milliseconds to wait
  3695. hasP = codenum > 0;
  3696. }
  3697. if (code_seen('S')) {
  3698. codenum = code_value() * 1000; // seconds to wait
  3699. hasS = codenum > 0;
  3700. }
  3701. starpos = strchr(src, '*');
  3702. if (starpos != NULL) *(starpos) = '\0';
  3703. while (*src == ' ') ++src;
  3704. if (!hasP && !hasS && *src != '\0') {
  3705. lcd_setstatus(src);
  3706. } else {
  3707. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3708. }
  3709. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3710. st_synchronize();
  3711. previous_millis_cmd = millis();
  3712. if (codenum > 0){
  3713. codenum += millis(); // keep track of when we started waiting
  3714. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3715. while(millis() < codenum && !lcd_clicked()){
  3716. manage_heater();
  3717. manage_inactivity(true);
  3718. lcd_update();
  3719. }
  3720. KEEPALIVE_STATE(IN_HANDLER);
  3721. lcd_ignore_click(false);
  3722. }else{
  3723. if (!lcd_detected())
  3724. break;
  3725. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3726. while(!lcd_clicked()){
  3727. manage_heater();
  3728. manage_inactivity(true);
  3729. lcd_update();
  3730. }
  3731. KEEPALIVE_STATE(IN_HANDLER);
  3732. }
  3733. if (IS_SD_PRINTING)
  3734. LCD_MESSAGERPGM(_i("Resuming print"));////MSG_RESUMING c=0 r=0
  3735. else
  3736. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3737. }
  3738. break;
  3739. #endif
  3740. case 17:
  3741. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3742. enable_x();
  3743. enable_y();
  3744. enable_z();
  3745. enable_e0();
  3746. enable_e1();
  3747. enable_e2();
  3748. break;
  3749. #ifdef SDSUPPORT
  3750. case 20: // M20 - list SD card
  3751. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3752. card.ls();
  3753. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3754. break;
  3755. case 21: // M21 - init SD card
  3756. card.initsd();
  3757. break;
  3758. case 22: //M22 - release SD card
  3759. card.release();
  3760. break;
  3761. case 23: //M23 - Select file
  3762. starpos = (strchr(strchr_pointer + 4,'*'));
  3763. if(starpos!=NULL)
  3764. *(starpos)='\0';
  3765. card.openFile(strchr_pointer + 4,true);
  3766. break;
  3767. case 24: //M24 - Start SD print
  3768. if (!card.paused)
  3769. failstats_reset_print();
  3770. card.startFileprint();
  3771. starttime=millis();
  3772. break;
  3773. case 25: //M25 - Pause SD print
  3774. card.pauseSDPrint();
  3775. break;
  3776. case 26: //M26 - Set SD index
  3777. if(card.cardOK && code_seen('S')) {
  3778. card.setIndex(code_value_long());
  3779. }
  3780. break;
  3781. case 27: //M27 - Get SD status
  3782. card.getStatus();
  3783. break;
  3784. case 28: //M28 - Start SD write
  3785. starpos = (strchr(strchr_pointer + 4,'*'));
  3786. if(starpos != NULL){
  3787. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3788. strchr_pointer = strchr(npos,' ') + 1;
  3789. *(starpos) = '\0';
  3790. }
  3791. card.openFile(strchr_pointer+4,false);
  3792. break;
  3793. case 29: //M29 - Stop SD write
  3794. //processed in write to file routine above
  3795. //card,saving = false;
  3796. break;
  3797. case 30: //M30 <filename> Delete File
  3798. if (card.cardOK){
  3799. card.closefile();
  3800. starpos = (strchr(strchr_pointer + 4,'*'));
  3801. if(starpos != NULL){
  3802. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3803. strchr_pointer = strchr(npos,' ') + 1;
  3804. *(starpos) = '\0';
  3805. }
  3806. card.removeFile(strchr_pointer + 4);
  3807. }
  3808. break;
  3809. case 32: //M32 - Select file and start SD print
  3810. {
  3811. if(card.sdprinting) {
  3812. st_synchronize();
  3813. }
  3814. starpos = (strchr(strchr_pointer + 4,'*'));
  3815. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3816. if(namestartpos==NULL)
  3817. {
  3818. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3819. }
  3820. else
  3821. namestartpos++; //to skip the '!'
  3822. if(starpos!=NULL)
  3823. *(starpos)='\0';
  3824. bool call_procedure=(code_seen('P'));
  3825. if(strchr_pointer>namestartpos)
  3826. call_procedure=false; //false alert, 'P' found within filename
  3827. if( card.cardOK )
  3828. {
  3829. card.openFile(namestartpos,true,!call_procedure);
  3830. if(code_seen('S'))
  3831. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3832. card.setIndex(code_value_long());
  3833. card.startFileprint();
  3834. if(!call_procedure)
  3835. starttime=millis(); //procedure calls count as normal print time.
  3836. }
  3837. } break;
  3838. case 928: //M928 - Start SD write
  3839. starpos = (strchr(strchr_pointer + 5,'*'));
  3840. if(starpos != NULL){
  3841. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3842. strchr_pointer = strchr(npos,' ') + 1;
  3843. *(starpos) = '\0';
  3844. }
  3845. card.openLogFile(strchr_pointer+5);
  3846. break;
  3847. #endif //SDSUPPORT
  3848. case 31: //M31 take time since the start of the SD print or an M109 command
  3849. {
  3850. stoptime=millis();
  3851. char time[30];
  3852. unsigned long t=(stoptime-starttime)/1000;
  3853. int sec,min;
  3854. min=t/60;
  3855. sec=t%60;
  3856. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3857. SERIAL_ECHO_START;
  3858. SERIAL_ECHOLN(time);
  3859. lcd_setstatus(time);
  3860. autotempShutdown();
  3861. }
  3862. break;
  3863. #ifndef _DISABLE_M42_M226
  3864. case 42: //M42 -Change pin status via gcode
  3865. if (code_seen('S'))
  3866. {
  3867. int pin_status = code_value();
  3868. int pin_number = LED_PIN;
  3869. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3870. pin_number = code_value();
  3871. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3872. {
  3873. if (sensitive_pins[i] == pin_number)
  3874. {
  3875. pin_number = -1;
  3876. break;
  3877. }
  3878. }
  3879. #if defined(FAN_PIN) && FAN_PIN > -1
  3880. if (pin_number == FAN_PIN)
  3881. fanSpeed = pin_status;
  3882. #endif
  3883. if (pin_number > -1)
  3884. {
  3885. pinMode(pin_number, OUTPUT);
  3886. digitalWrite(pin_number, pin_status);
  3887. analogWrite(pin_number, pin_status);
  3888. }
  3889. }
  3890. break;
  3891. #endif //_DISABLE_M42_M226
  3892. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3893. // Reset the baby step value and the baby step applied flag.
  3894. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3895. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3896. // Reset the skew and offset in both RAM and EEPROM.
  3897. reset_bed_offset_and_skew();
  3898. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3899. // the planner will not perform any adjustments in the XY plane.
  3900. // Wait for the motors to stop and update the current position with the absolute values.
  3901. world2machine_revert_to_uncorrected();
  3902. break;
  3903. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3904. {
  3905. int8_t verbosity_level = 0;
  3906. bool only_Z = code_seen('Z');
  3907. #ifdef SUPPORT_VERBOSITY
  3908. if (code_seen('V'))
  3909. {
  3910. // Just 'V' without a number counts as V1.
  3911. char c = strchr_pointer[1];
  3912. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3913. }
  3914. #endif //SUPPORT_VERBOSITY
  3915. gcode_M45(only_Z, verbosity_level);
  3916. }
  3917. break;
  3918. /*
  3919. case 46:
  3920. {
  3921. // M46: Prusa3D: Show the assigned IP address.
  3922. uint8_t ip[4];
  3923. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3924. if (hasIP) {
  3925. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3926. SERIAL_ECHO(int(ip[0]));
  3927. SERIAL_ECHOPGM(".");
  3928. SERIAL_ECHO(int(ip[1]));
  3929. SERIAL_ECHOPGM(".");
  3930. SERIAL_ECHO(int(ip[2]));
  3931. SERIAL_ECHOPGM(".");
  3932. SERIAL_ECHO(int(ip[3]));
  3933. SERIAL_ECHOLNPGM("");
  3934. } else {
  3935. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3936. }
  3937. break;
  3938. }
  3939. */
  3940. case 47:
  3941. // M47: Prusa3D: Show end stops dialog on the display.
  3942. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3943. lcd_diag_show_end_stops();
  3944. KEEPALIVE_STATE(IN_HANDLER);
  3945. break;
  3946. #if 0
  3947. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3948. {
  3949. // Disable the default update procedure of the display. We will do a modal dialog.
  3950. lcd_update_enable(false);
  3951. // Let the planner use the uncorrected coordinates.
  3952. mbl.reset();
  3953. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3954. // the planner will not perform any adjustments in the XY plane.
  3955. // Wait for the motors to stop and update the current position with the absolute values.
  3956. world2machine_revert_to_uncorrected();
  3957. // Move the print head close to the bed.
  3958. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3960. st_synchronize();
  3961. // Home in the XY plane.
  3962. set_destination_to_current();
  3963. setup_for_endstop_move();
  3964. home_xy();
  3965. int8_t verbosity_level = 0;
  3966. if (code_seen('V')) {
  3967. // Just 'V' without a number counts as V1.
  3968. char c = strchr_pointer[1];
  3969. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3970. }
  3971. bool success = scan_bed_induction_points(verbosity_level);
  3972. clean_up_after_endstop_move();
  3973. // Print head up.
  3974. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3976. st_synchronize();
  3977. lcd_update_enable(true);
  3978. break;
  3979. }
  3980. #endif
  3981. // M48 Z-Probe repeatability measurement function.
  3982. //
  3983. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3984. //
  3985. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3986. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3987. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3988. // regenerated.
  3989. //
  3990. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3991. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3992. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3993. //
  3994. #ifdef ENABLE_AUTO_BED_LEVELING
  3995. #ifdef Z_PROBE_REPEATABILITY_TEST
  3996. case 48: // M48 Z-Probe repeatability
  3997. {
  3998. #if Z_MIN_PIN == -1
  3999. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4000. #endif
  4001. double sum=0.0;
  4002. double mean=0.0;
  4003. double sigma=0.0;
  4004. double sample_set[50];
  4005. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4006. double X_current, Y_current, Z_current;
  4007. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4008. if (code_seen('V') || code_seen('v')) {
  4009. verbose_level = code_value();
  4010. if (verbose_level<0 || verbose_level>4 ) {
  4011. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4012. goto Sigma_Exit;
  4013. }
  4014. }
  4015. if (verbose_level > 0) {
  4016. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4017. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4018. }
  4019. if (code_seen('n')) {
  4020. n_samples = code_value();
  4021. if (n_samples<4 || n_samples>50 ) {
  4022. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4023. goto Sigma_Exit;
  4024. }
  4025. }
  4026. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4027. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4028. Z_current = st_get_position_mm(Z_AXIS);
  4029. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4030. ext_position = st_get_position_mm(E_AXIS);
  4031. if (code_seen('X') || code_seen('x') ) {
  4032. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4033. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4034. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4035. goto Sigma_Exit;
  4036. }
  4037. }
  4038. if (code_seen('Y') || code_seen('y') ) {
  4039. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4040. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4041. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4042. goto Sigma_Exit;
  4043. }
  4044. }
  4045. if (code_seen('L') || code_seen('l') ) {
  4046. n_legs = code_value();
  4047. if ( n_legs==1 )
  4048. n_legs = 2;
  4049. if ( n_legs<0 || n_legs>15 ) {
  4050. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4051. goto Sigma_Exit;
  4052. }
  4053. }
  4054. //
  4055. // Do all the preliminary setup work. First raise the probe.
  4056. //
  4057. st_synchronize();
  4058. plan_bed_level_matrix.set_to_identity();
  4059. plan_buffer_line( X_current, Y_current, Z_start_location,
  4060. ext_position,
  4061. homing_feedrate[Z_AXIS]/60,
  4062. active_extruder);
  4063. st_synchronize();
  4064. //
  4065. // Now get everything to the specified probe point So we can safely do a probe to
  4066. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4067. // use that as a starting point for each probe.
  4068. //
  4069. if (verbose_level > 2)
  4070. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4071. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4072. ext_position,
  4073. homing_feedrate[X_AXIS]/60,
  4074. active_extruder);
  4075. st_synchronize();
  4076. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4077. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4078. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4079. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4080. //
  4081. // OK, do the inital probe to get us close to the bed.
  4082. // Then retrace the right amount and use that in subsequent probes
  4083. //
  4084. setup_for_endstop_move();
  4085. run_z_probe();
  4086. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4087. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4088. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4089. ext_position,
  4090. homing_feedrate[X_AXIS]/60,
  4091. active_extruder);
  4092. st_synchronize();
  4093. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4094. for( n=0; n<n_samples; n++) {
  4095. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4096. if ( n_legs) {
  4097. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4098. int rotational_direction, l;
  4099. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4100. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4101. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4102. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4103. //SERIAL_ECHOPAIR(" theta: ",theta);
  4104. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4105. //SERIAL_PROTOCOLLNPGM("");
  4106. for( l=0; l<n_legs-1; l++) {
  4107. if (rotational_direction==1)
  4108. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4109. else
  4110. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4111. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4112. if ( radius<0.0 )
  4113. radius = -radius;
  4114. X_current = X_probe_location + cos(theta) * radius;
  4115. Y_current = Y_probe_location + sin(theta) * radius;
  4116. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4117. X_current = X_MIN_POS;
  4118. if ( X_current>X_MAX_POS)
  4119. X_current = X_MAX_POS;
  4120. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4121. Y_current = Y_MIN_POS;
  4122. if ( Y_current>Y_MAX_POS)
  4123. Y_current = Y_MAX_POS;
  4124. if (verbose_level>3 ) {
  4125. SERIAL_ECHOPAIR("x: ", X_current);
  4126. SERIAL_ECHOPAIR("y: ", Y_current);
  4127. SERIAL_PROTOCOLLNPGM("");
  4128. }
  4129. do_blocking_move_to( X_current, Y_current, Z_current );
  4130. }
  4131. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4132. }
  4133. setup_for_endstop_move();
  4134. run_z_probe();
  4135. sample_set[n] = current_position[Z_AXIS];
  4136. //
  4137. // Get the current mean for the data points we have so far
  4138. //
  4139. sum=0.0;
  4140. for( j=0; j<=n; j++) {
  4141. sum = sum + sample_set[j];
  4142. }
  4143. mean = sum / (double (n+1));
  4144. //
  4145. // Now, use that mean to calculate the standard deviation for the
  4146. // data points we have so far
  4147. //
  4148. sum=0.0;
  4149. for( j=0; j<=n; j++) {
  4150. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4151. }
  4152. sigma = sqrt( sum / (double (n+1)) );
  4153. if (verbose_level > 1) {
  4154. SERIAL_PROTOCOL(n+1);
  4155. SERIAL_PROTOCOL(" of ");
  4156. SERIAL_PROTOCOL(n_samples);
  4157. SERIAL_PROTOCOLPGM(" z: ");
  4158. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4159. }
  4160. if (verbose_level > 2) {
  4161. SERIAL_PROTOCOL(" mean: ");
  4162. SERIAL_PROTOCOL_F(mean,6);
  4163. SERIAL_PROTOCOL(" sigma: ");
  4164. SERIAL_PROTOCOL_F(sigma,6);
  4165. }
  4166. if (verbose_level > 0)
  4167. SERIAL_PROTOCOLPGM("\n");
  4168. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4169. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4170. st_synchronize();
  4171. }
  4172. delay(1000);
  4173. clean_up_after_endstop_move();
  4174. // enable_endstops(true);
  4175. if (verbose_level > 0) {
  4176. SERIAL_PROTOCOLPGM("Mean: ");
  4177. SERIAL_PROTOCOL_F(mean, 6);
  4178. SERIAL_PROTOCOLPGM("\n");
  4179. }
  4180. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4181. SERIAL_PROTOCOL_F(sigma, 6);
  4182. SERIAL_PROTOCOLPGM("\n\n");
  4183. Sigma_Exit:
  4184. break;
  4185. }
  4186. #endif // Z_PROBE_REPEATABILITY_TEST
  4187. #endif // ENABLE_AUTO_BED_LEVELING
  4188. case 104: // M104
  4189. if(setTargetedHotend(104)){
  4190. break;
  4191. }
  4192. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4193. setWatch();
  4194. break;
  4195. case 112: // M112 -Emergency Stop
  4196. kill("", 3);
  4197. break;
  4198. case 140: // M140 set bed temp
  4199. if (code_seen('S')) setTargetBed(code_value());
  4200. break;
  4201. case 105 : // M105
  4202. if(setTargetedHotend(105)){
  4203. break;
  4204. }
  4205. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4206. SERIAL_PROTOCOLPGM("ok T:");
  4207. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4208. SERIAL_PROTOCOLPGM(" /");
  4209. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4210. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4211. SERIAL_PROTOCOLPGM(" B:");
  4212. SERIAL_PROTOCOL_F(degBed(),1);
  4213. SERIAL_PROTOCOLPGM(" /");
  4214. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4215. #endif //TEMP_BED_PIN
  4216. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4217. SERIAL_PROTOCOLPGM(" T");
  4218. SERIAL_PROTOCOL(cur_extruder);
  4219. SERIAL_PROTOCOLPGM(":");
  4220. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4221. SERIAL_PROTOCOLPGM(" /");
  4222. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4223. }
  4224. #else
  4225. SERIAL_ERROR_START;
  4226. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4227. #endif
  4228. SERIAL_PROTOCOLPGM(" @:");
  4229. #ifdef EXTRUDER_WATTS
  4230. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4231. SERIAL_PROTOCOLPGM("W");
  4232. #else
  4233. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4234. #endif
  4235. SERIAL_PROTOCOLPGM(" B@:");
  4236. #ifdef BED_WATTS
  4237. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4238. SERIAL_PROTOCOLPGM("W");
  4239. #else
  4240. SERIAL_PROTOCOL(getHeaterPower(-1));
  4241. #endif
  4242. #ifdef PINDA_THERMISTOR
  4243. SERIAL_PROTOCOLPGM(" P:");
  4244. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4245. #endif //PINDA_THERMISTOR
  4246. #ifdef AMBIENT_THERMISTOR
  4247. SERIAL_PROTOCOLPGM(" A:");
  4248. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4249. #endif //AMBIENT_THERMISTOR
  4250. #ifdef SHOW_TEMP_ADC_VALUES
  4251. {float raw = 0.0;
  4252. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4253. SERIAL_PROTOCOLPGM(" ADC B:");
  4254. SERIAL_PROTOCOL_F(degBed(),1);
  4255. SERIAL_PROTOCOLPGM("C->");
  4256. raw = rawBedTemp();
  4257. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4258. SERIAL_PROTOCOLPGM(" Rb->");
  4259. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4260. SERIAL_PROTOCOLPGM(" Rxb->");
  4261. SERIAL_PROTOCOL_F(raw, 5);
  4262. #endif
  4263. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4264. SERIAL_PROTOCOLPGM(" T");
  4265. SERIAL_PROTOCOL(cur_extruder);
  4266. SERIAL_PROTOCOLPGM(":");
  4267. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4268. SERIAL_PROTOCOLPGM("C->");
  4269. raw = rawHotendTemp(cur_extruder);
  4270. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4271. SERIAL_PROTOCOLPGM(" Rt");
  4272. SERIAL_PROTOCOL(cur_extruder);
  4273. SERIAL_PROTOCOLPGM("->");
  4274. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4275. SERIAL_PROTOCOLPGM(" Rx");
  4276. SERIAL_PROTOCOL(cur_extruder);
  4277. SERIAL_PROTOCOLPGM("->");
  4278. SERIAL_PROTOCOL_F(raw, 5);
  4279. }}
  4280. #endif
  4281. SERIAL_PROTOCOLLN("");
  4282. KEEPALIVE_STATE(NOT_BUSY);
  4283. return;
  4284. break;
  4285. case 109:
  4286. {// M109 - Wait for extruder heater to reach target.
  4287. if(setTargetedHotend(109)){
  4288. break;
  4289. }
  4290. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4291. heating_status = 1;
  4292. if (farm_mode) { prusa_statistics(1); };
  4293. #ifdef AUTOTEMP
  4294. autotemp_enabled=false;
  4295. #endif
  4296. if (code_seen('S')) {
  4297. setTargetHotend(code_value(), tmp_extruder);
  4298. CooldownNoWait = true;
  4299. } else if (code_seen('R')) {
  4300. setTargetHotend(code_value(), tmp_extruder);
  4301. CooldownNoWait = false;
  4302. }
  4303. #ifdef AUTOTEMP
  4304. if (code_seen('S')) autotemp_min=code_value();
  4305. if (code_seen('B')) autotemp_max=code_value();
  4306. if (code_seen('F'))
  4307. {
  4308. autotemp_factor=code_value();
  4309. autotemp_enabled=true;
  4310. }
  4311. #endif
  4312. setWatch();
  4313. codenum = millis();
  4314. /* See if we are heating up or cooling down */
  4315. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4316. KEEPALIVE_STATE(NOT_BUSY);
  4317. cancel_heatup = false;
  4318. wait_for_heater(codenum); //loops until target temperature is reached
  4319. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4320. KEEPALIVE_STATE(IN_HANDLER);
  4321. heating_status = 2;
  4322. if (farm_mode) { prusa_statistics(2); };
  4323. //starttime=millis();
  4324. previous_millis_cmd = millis();
  4325. }
  4326. break;
  4327. case 190: // M190 - Wait for bed heater to reach target.
  4328. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4329. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4330. heating_status = 3;
  4331. if (farm_mode) { prusa_statistics(1); };
  4332. if (code_seen('S'))
  4333. {
  4334. setTargetBed(code_value());
  4335. CooldownNoWait = true;
  4336. }
  4337. else if (code_seen('R'))
  4338. {
  4339. setTargetBed(code_value());
  4340. CooldownNoWait = false;
  4341. }
  4342. codenum = millis();
  4343. cancel_heatup = false;
  4344. target_direction = isHeatingBed(); // true if heating, false if cooling
  4345. KEEPALIVE_STATE(NOT_BUSY);
  4346. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4347. {
  4348. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4349. {
  4350. if (!farm_mode) {
  4351. float tt = degHotend(active_extruder);
  4352. SERIAL_PROTOCOLPGM("T:");
  4353. SERIAL_PROTOCOL(tt);
  4354. SERIAL_PROTOCOLPGM(" E:");
  4355. SERIAL_PROTOCOL((int)active_extruder);
  4356. SERIAL_PROTOCOLPGM(" B:");
  4357. SERIAL_PROTOCOL_F(degBed(), 1);
  4358. SERIAL_PROTOCOLLN("");
  4359. }
  4360. codenum = millis();
  4361. }
  4362. manage_heater();
  4363. manage_inactivity();
  4364. lcd_update();
  4365. }
  4366. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4367. KEEPALIVE_STATE(IN_HANDLER);
  4368. heating_status = 4;
  4369. previous_millis_cmd = millis();
  4370. #endif
  4371. break;
  4372. #if defined(FAN_PIN) && FAN_PIN > -1
  4373. case 106: //M106 Fan On
  4374. if (code_seen('S')){
  4375. fanSpeed=constrain(code_value(),0,255);
  4376. }
  4377. else {
  4378. fanSpeed=255;
  4379. }
  4380. break;
  4381. case 107: //M107 Fan Off
  4382. fanSpeed = 0;
  4383. break;
  4384. #endif //FAN_PIN
  4385. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4386. case 80: // M80 - Turn on Power Supply
  4387. SET_OUTPUT(PS_ON_PIN); //GND
  4388. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4389. // If you have a switch on suicide pin, this is useful
  4390. // if you want to start another print with suicide feature after
  4391. // a print without suicide...
  4392. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4393. SET_OUTPUT(SUICIDE_PIN);
  4394. WRITE(SUICIDE_PIN, HIGH);
  4395. #endif
  4396. #ifdef ULTIPANEL
  4397. powersupply = true;
  4398. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4399. lcd_update();
  4400. #endif
  4401. break;
  4402. #endif
  4403. case 81: // M81 - Turn off Power Supply
  4404. disable_heater();
  4405. st_synchronize();
  4406. disable_e0();
  4407. disable_e1();
  4408. disable_e2();
  4409. finishAndDisableSteppers();
  4410. fanSpeed = 0;
  4411. delay(1000); // Wait a little before to switch off
  4412. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4413. st_synchronize();
  4414. suicide();
  4415. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4416. SET_OUTPUT(PS_ON_PIN);
  4417. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4418. #endif
  4419. #ifdef ULTIPANEL
  4420. powersupply = false;
  4421. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4422. /*
  4423. MACHNAME = "Prusa i3"
  4424. MSGOFF = "Vypnuto"
  4425. "Prusai3"" ""vypnuto""."
  4426. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4427. */
  4428. lcd_update();
  4429. #endif
  4430. break;
  4431. case 82:
  4432. axis_relative_modes[3] = false;
  4433. break;
  4434. case 83:
  4435. axis_relative_modes[3] = true;
  4436. break;
  4437. case 18: //compatibility
  4438. case 84: // M84
  4439. if(code_seen('S')){
  4440. stepper_inactive_time = code_value() * 1000;
  4441. }
  4442. else
  4443. {
  4444. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4445. if(all_axis)
  4446. {
  4447. st_synchronize();
  4448. disable_e0();
  4449. disable_e1();
  4450. disable_e2();
  4451. finishAndDisableSteppers();
  4452. }
  4453. else
  4454. {
  4455. st_synchronize();
  4456. if (code_seen('X')) disable_x();
  4457. if (code_seen('Y')) disable_y();
  4458. if (code_seen('Z')) disable_z();
  4459. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4460. if (code_seen('E')) {
  4461. disable_e0();
  4462. disable_e1();
  4463. disable_e2();
  4464. }
  4465. #endif
  4466. }
  4467. }
  4468. snmm_filaments_used = 0;
  4469. break;
  4470. case 85: // M85
  4471. if(code_seen('S')) {
  4472. max_inactive_time = code_value() * 1000;
  4473. }
  4474. break;
  4475. case 92: // M92
  4476. for(int8_t i=0; i < NUM_AXIS; i++)
  4477. {
  4478. if(code_seen(axis_codes[i]))
  4479. {
  4480. if(i == 3) { // E
  4481. float value = code_value();
  4482. if(value < 20.0) {
  4483. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4484. max_jerk[E_AXIS] *= factor;
  4485. max_feedrate[i] *= factor;
  4486. axis_steps_per_sqr_second[i] *= factor;
  4487. }
  4488. axis_steps_per_unit[i] = value;
  4489. }
  4490. else {
  4491. axis_steps_per_unit[i] = code_value();
  4492. }
  4493. }
  4494. }
  4495. break;
  4496. case 110: // M110 - reset line pos
  4497. if (code_seen('N'))
  4498. gcode_LastN = code_value_long();
  4499. break;
  4500. #ifdef HOST_KEEPALIVE_FEATURE
  4501. case 113: // M113 - Get or set Host Keepalive interval
  4502. if (code_seen('S')) {
  4503. host_keepalive_interval = (uint8_t)code_value_short();
  4504. // NOMORE(host_keepalive_interval, 60);
  4505. }
  4506. else {
  4507. SERIAL_ECHO_START;
  4508. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4509. SERIAL_PROTOCOLLN("");
  4510. }
  4511. break;
  4512. #endif
  4513. case 115: // M115
  4514. if (code_seen('V')) {
  4515. // Report the Prusa version number.
  4516. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4517. } else if (code_seen('U')) {
  4518. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4519. // pause the print and ask the user to upgrade the firmware.
  4520. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4521. } else {
  4522. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4523. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4524. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4525. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4526. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4527. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4528. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4529. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4530. SERIAL_ECHOPGM(" UUID:");
  4531. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4532. }
  4533. break;
  4534. /* case 117: // M117 display message
  4535. starpos = (strchr(strchr_pointer + 5,'*'));
  4536. if(starpos!=NULL)
  4537. *(starpos)='\0';
  4538. lcd_setstatus(strchr_pointer + 5);
  4539. break;*/
  4540. case 114: // M114
  4541. gcode_M114();
  4542. break;
  4543. case 120: // M120
  4544. enable_endstops(false) ;
  4545. break;
  4546. case 121: // M121
  4547. enable_endstops(true) ;
  4548. break;
  4549. case 119: // M119
  4550. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4551. SERIAL_PROTOCOLLN("");
  4552. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4553. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4554. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4555. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4556. }else{
  4557. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4558. }
  4559. SERIAL_PROTOCOLLN("");
  4560. #endif
  4561. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4562. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4563. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4564. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4565. }else{
  4566. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4567. }
  4568. SERIAL_PROTOCOLLN("");
  4569. #endif
  4570. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4571. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4572. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4573. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4574. }else{
  4575. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4576. }
  4577. SERIAL_PROTOCOLLN("");
  4578. #endif
  4579. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4580. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4581. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4582. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4583. }else{
  4584. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4585. }
  4586. SERIAL_PROTOCOLLN("");
  4587. #endif
  4588. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4589. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4590. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4591. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4592. }else{
  4593. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4594. }
  4595. SERIAL_PROTOCOLLN("");
  4596. #endif
  4597. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4598. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4599. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4600. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4601. }else{
  4602. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4603. }
  4604. SERIAL_PROTOCOLLN("");
  4605. #endif
  4606. break;
  4607. //TODO: update for all axis, use for loop
  4608. #ifdef BLINKM
  4609. case 150: // M150
  4610. {
  4611. byte red;
  4612. byte grn;
  4613. byte blu;
  4614. if(code_seen('R')) red = code_value();
  4615. if(code_seen('U')) grn = code_value();
  4616. if(code_seen('B')) blu = code_value();
  4617. SendColors(red,grn,blu);
  4618. }
  4619. break;
  4620. #endif //BLINKM
  4621. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4622. {
  4623. tmp_extruder = active_extruder;
  4624. if(code_seen('T')) {
  4625. tmp_extruder = code_value();
  4626. if(tmp_extruder >= EXTRUDERS) {
  4627. SERIAL_ECHO_START;
  4628. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4629. break;
  4630. }
  4631. }
  4632. float area = .0;
  4633. if(code_seen('D')) {
  4634. float diameter = (float)code_value();
  4635. if (diameter == 0.0) {
  4636. // setting any extruder filament size disables volumetric on the assumption that
  4637. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4638. // for all extruders
  4639. volumetric_enabled = false;
  4640. } else {
  4641. filament_size[tmp_extruder] = (float)code_value();
  4642. // make sure all extruders have some sane value for the filament size
  4643. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4644. #if EXTRUDERS > 1
  4645. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4646. #if EXTRUDERS > 2
  4647. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4648. #endif
  4649. #endif
  4650. volumetric_enabled = true;
  4651. }
  4652. } else {
  4653. //reserved for setting filament diameter via UFID or filament measuring device
  4654. break;
  4655. }
  4656. calculate_extruder_multipliers();
  4657. }
  4658. break;
  4659. case 201: // M201
  4660. for(int8_t i=0; i < NUM_AXIS; i++)
  4661. {
  4662. if(code_seen(axis_codes[i]))
  4663. {
  4664. max_acceleration_units_per_sq_second[i] = code_value();
  4665. }
  4666. }
  4667. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4668. reset_acceleration_rates();
  4669. break;
  4670. #if 0 // Not used for Sprinter/grbl gen6
  4671. case 202: // M202
  4672. for(int8_t i=0; i < NUM_AXIS; i++) {
  4673. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4674. }
  4675. break;
  4676. #endif
  4677. case 203: // M203 max feedrate mm/sec
  4678. for(int8_t i=0; i < NUM_AXIS; i++) {
  4679. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4680. }
  4681. break;
  4682. case 204: // M204 acclereration S normal moves T filmanent only moves
  4683. {
  4684. if(code_seen('S')) acceleration = code_value() ;
  4685. if(code_seen('T')) retract_acceleration = code_value() ;
  4686. }
  4687. break;
  4688. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4689. {
  4690. if(code_seen('S')) minimumfeedrate = code_value();
  4691. if(code_seen('T')) mintravelfeedrate = code_value();
  4692. if(code_seen('B')) minsegmenttime = code_value() ;
  4693. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4694. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4695. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4696. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4697. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4698. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4699. }
  4700. break;
  4701. case 206: // M206 additional homing offset
  4702. for(int8_t i=0; i < 3; i++)
  4703. {
  4704. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4705. }
  4706. break;
  4707. #ifdef FWRETRACT
  4708. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4709. {
  4710. if(code_seen('S'))
  4711. {
  4712. retract_length = code_value() ;
  4713. }
  4714. if(code_seen('F'))
  4715. {
  4716. retract_feedrate = code_value()/60 ;
  4717. }
  4718. if(code_seen('Z'))
  4719. {
  4720. retract_zlift = code_value() ;
  4721. }
  4722. }break;
  4723. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4724. {
  4725. if(code_seen('S'))
  4726. {
  4727. retract_recover_length = code_value() ;
  4728. }
  4729. if(code_seen('F'))
  4730. {
  4731. retract_recover_feedrate = code_value()/60 ;
  4732. }
  4733. }break;
  4734. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4735. {
  4736. if(code_seen('S'))
  4737. {
  4738. int t= code_value() ;
  4739. switch(t)
  4740. {
  4741. case 0:
  4742. {
  4743. autoretract_enabled=false;
  4744. retracted[0]=false;
  4745. #if EXTRUDERS > 1
  4746. retracted[1]=false;
  4747. #endif
  4748. #if EXTRUDERS > 2
  4749. retracted[2]=false;
  4750. #endif
  4751. }break;
  4752. case 1:
  4753. {
  4754. autoretract_enabled=true;
  4755. retracted[0]=false;
  4756. #if EXTRUDERS > 1
  4757. retracted[1]=false;
  4758. #endif
  4759. #if EXTRUDERS > 2
  4760. retracted[2]=false;
  4761. #endif
  4762. }break;
  4763. default:
  4764. SERIAL_ECHO_START;
  4765. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4766. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4767. SERIAL_ECHOLNPGM("\"(1)");
  4768. }
  4769. }
  4770. }break;
  4771. #endif // FWRETRACT
  4772. #if EXTRUDERS > 1
  4773. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4774. {
  4775. if(setTargetedHotend(218)){
  4776. break;
  4777. }
  4778. if(code_seen('X'))
  4779. {
  4780. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4781. }
  4782. if(code_seen('Y'))
  4783. {
  4784. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4785. }
  4786. SERIAL_ECHO_START;
  4787. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4788. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4789. {
  4790. SERIAL_ECHO(" ");
  4791. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4792. SERIAL_ECHO(",");
  4793. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4794. }
  4795. SERIAL_ECHOLN("");
  4796. }break;
  4797. #endif
  4798. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4799. {
  4800. if(code_seen('S'))
  4801. {
  4802. feedmultiply = code_value() ;
  4803. }
  4804. }
  4805. break;
  4806. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4807. {
  4808. if(code_seen('S'))
  4809. {
  4810. int tmp_code = code_value();
  4811. if (code_seen('T'))
  4812. {
  4813. if(setTargetedHotend(221)){
  4814. break;
  4815. }
  4816. extruder_multiply[tmp_extruder] = tmp_code;
  4817. }
  4818. else
  4819. {
  4820. extrudemultiply = tmp_code ;
  4821. }
  4822. }
  4823. calculate_extruder_multipliers();
  4824. }
  4825. break;
  4826. #ifndef _DISABLE_M42_M226
  4827. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4828. {
  4829. if(code_seen('P')){
  4830. int pin_number = code_value(); // pin number
  4831. int pin_state = -1; // required pin state - default is inverted
  4832. if(code_seen('S')) pin_state = code_value(); // required pin state
  4833. if(pin_state >= -1 && pin_state <= 1){
  4834. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4835. {
  4836. if (sensitive_pins[i] == pin_number)
  4837. {
  4838. pin_number = -1;
  4839. break;
  4840. }
  4841. }
  4842. if (pin_number > -1)
  4843. {
  4844. int target = LOW;
  4845. st_synchronize();
  4846. pinMode(pin_number, INPUT);
  4847. switch(pin_state){
  4848. case 1:
  4849. target = HIGH;
  4850. break;
  4851. case 0:
  4852. target = LOW;
  4853. break;
  4854. case -1:
  4855. target = !digitalRead(pin_number);
  4856. break;
  4857. }
  4858. while(digitalRead(pin_number) != target){
  4859. manage_heater();
  4860. manage_inactivity();
  4861. lcd_update();
  4862. }
  4863. }
  4864. }
  4865. }
  4866. }
  4867. break;
  4868. #endif //_DISABLE_M42_M226
  4869. #if NUM_SERVOS > 0
  4870. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4871. {
  4872. int servo_index = -1;
  4873. int servo_position = 0;
  4874. if (code_seen('P'))
  4875. servo_index = code_value();
  4876. if (code_seen('S')) {
  4877. servo_position = code_value();
  4878. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4879. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4880. servos[servo_index].attach(0);
  4881. #endif
  4882. servos[servo_index].write(servo_position);
  4883. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4884. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4885. servos[servo_index].detach();
  4886. #endif
  4887. }
  4888. else {
  4889. SERIAL_ECHO_START;
  4890. SERIAL_ECHO("Servo ");
  4891. SERIAL_ECHO(servo_index);
  4892. SERIAL_ECHOLN(" out of range");
  4893. }
  4894. }
  4895. else if (servo_index >= 0) {
  4896. SERIAL_PROTOCOL(_T(MSG_OK));
  4897. SERIAL_PROTOCOL(" Servo ");
  4898. SERIAL_PROTOCOL(servo_index);
  4899. SERIAL_PROTOCOL(": ");
  4900. SERIAL_PROTOCOL(servos[servo_index].read());
  4901. SERIAL_PROTOCOLLN("");
  4902. }
  4903. }
  4904. break;
  4905. #endif // NUM_SERVOS > 0
  4906. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4907. case 300: // M300
  4908. {
  4909. int beepS = code_seen('S') ? code_value() : 110;
  4910. int beepP = code_seen('P') ? code_value() : 1000;
  4911. if (beepS > 0)
  4912. {
  4913. #if BEEPER > 0
  4914. tone(BEEPER, beepS);
  4915. delay(beepP);
  4916. noTone(BEEPER);
  4917. #elif defined(ULTRALCD)
  4918. lcd_buzz(beepS, beepP);
  4919. #elif defined(LCD_USE_I2C_BUZZER)
  4920. lcd_buzz(beepP, beepS);
  4921. #endif
  4922. }
  4923. else
  4924. {
  4925. delay(beepP);
  4926. }
  4927. }
  4928. break;
  4929. #endif // M300
  4930. #ifdef PIDTEMP
  4931. case 301: // M301
  4932. {
  4933. if(code_seen('P')) Kp = code_value();
  4934. if(code_seen('I')) Ki = scalePID_i(code_value());
  4935. if(code_seen('D')) Kd = scalePID_d(code_value());
  4936. #ifdef PID_ADD_EXTRUSION_RATE
  4937. if(code_seen('C')) Kc = code_value();
  4938. #endif
  4939. updatePID();
  4940. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  4941. SERIAL_PROTOCOL(" p:");
  4942. SERIAL_PROTOCOL(Kp);
  4943. SERIAL_PROTOCOL(" i:");
  4944. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4945. SERIAL_PROTOCOL(" d:");
  4946. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4947. #ifdef PID_ADD_EXTRUSION_RATE
  4948. SERIAL_PROTOCOL(" c:");
  4949. //Kc does not have scaling applied above, or in resetting defaults
  4950. SERIAL_PROTOCOL(Kc);
  4951. #endif
  4952. SERIAL_PROTOCOLLN("");
  4953. }
  4954. break;
  4955. #endif //PIDTEMP
  4956. #ifdef PIDTEMPBED
  4957. case 304: // M304
  4958. {
  4959. if(code_seen('P')) bedKp = code_value();
  4960. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4961. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4962. updatePID();
  4963. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  4964. SERIAL_PROTOCOL(" p:");
  4965. SERIAL_PROTOCOL(bedKp);
  4966. SERIAL_PROTOCOL(" i:");
  4967. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4968. SERIAL_PROTOCOL(" d:");
  4969. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4970. SERIAL_PROTOCOLLN("");
  4971. }
  4972. break;
  4973. #endif //PIDTEMP
  4974. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4975. {
  4976. #ifdef CHDK
  4977. SET_OUTPUT(CHDK);
  4978. WRITE(CHDK, HIGH);
  4979. chdkHigh = millis();
  4980. chdkActive = true;
  4981. #else
  4982. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4983. const uint8_t NUM_PULSES=16;
  4984. const float PULSE_LENGTH=0.01524;
  4985. for(int i=0; i < NUM_PULSES; i++) {
  4986. WRITE(PHOTOGRAPH_PIN, HIGH);
  4987. _delay_ms(PULSE_LENGTH);
  4988. WRITE(PHOTOGRAPH_PIN, LOW);
  4989. _delay_ms(PULSE_LENGTH);
  4990. }
  4991. delay(7.33);
  4992. for(int i=0; i < NUM_PULSES; i++) {
  4993. WRITE(PHOTOGRAPH_PIN, HIGH);
  4994. _delay_ms(PULSE_LENGTH);
  4995. WRITE(PHOTOGRAPH_PIN, LOW);
  4996. _delay_ms(PULSE_LENGTH);
  4997. }
  4998. #endif
  4999. #endif //chdk end if
  5000. }
  5001. break;
  5002. #ifdef DOGLCD
  5003. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5004. {
  5005. if (code_seen('C')) {
  5006. lcd_setcontrast( ((int)code_value())&63 );
  5007. }
  5008. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5009. SERIAL_PROTOCOL(lcd_contrast);
  5010. SERIAL_PROTOCOLLN("");
  5011. }
  5012. break;
  5013. #endif
  5014. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5015. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5016. {
  5017. float temp = .0;
  5018. if (code_seen('S')) temp=code_value();
  5019. set_extrude_min_temp(temp);
  5020. }
  5021. break;
  5022. #endif
  5023. case 303: // M303 PID autotune
  5024. {
  5025. float temp = 150.0;
  5026. int e=0;
  5027. int c=5;
  5028. if (code_seen('E')) e=code_value();
  5029. if (e<0)
  5030. temp=70;
  5031. if (code_seen('S')) temp=code_value();
  5032. if (code_seen('C')) c=code_value();
  5033. PID_autotune(temp, e, c);
  5034. }
  5035. break;
  5036. case 400: // M400 finish all moves
  5037. {
  5038. st_synchronize();
  5039. }
  5040. break;
  5041. case 500: // M500 Store settings in EEPROM
  5042. {
  5043. Config_StoreSettings(EEPROM_OFFSET);
  5044. }
  5045. break;
  5046. case 501: // M501 Read settings from EEPROM
  5047. {
  5048. Config_RetrieveSettings(EEPROM_OFFSET);
  5049. }
  5050. break;
  5051. case 502: // M502 Revert to default settings
  5052. {
  5053. Config_ResetDefault();
  5054. }
  5055. break;
  5056. case 503: // M503 print settings currently in memory
  5057. {
  5058. Config_PrintSettings();
  5059. }
  5060. break;
  5061. case 509: //M509 Force language selection
  5062. {
  5063. lcd_force_language_selection();
  5064. SERIAL_ECHO_START;
  5065. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5066. }
  5067. break;
  5068. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5069. case 540:
  5070. {
  5071. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5072. }
  5073. break;
  5074. #endif
  5075. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5076. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5077. {
  5078. float value;
  5079. if (code_seen('Z'))
  5080. {
  5081. value = code_value();
  5082. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5083. {
  5084. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5085. SERIAL_ECHO_START;
  5086. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5087. SERIAL_PROTOCOLLN("");
  5088. }
  5089. else
  5090. {
  5091. SERIAL_ECHO_START;
  5092. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5093. SERIAL_ECHORPGM(MSG_Z_MIN);
  5094. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5095. SERIAL_ECHORPGM(MSG_Z_MAX);
  5096. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5097. SERIAL_PROTOCOLLN("");
  5098. }
  5099. }
  5100. else
  5101. {
  5102. SERIAL_ECHO_START;
  5103. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5104. SERIAL_ECHO(-zprobe_zoffset);
  5105. SERIAL_PROTOCOLLN("");
  5106. }
  5107. break;
  5108. }
  5109. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5110. #ifdef FILAMENTCHANGEENABLE
  5111. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5112. {
  5113. #ifdef PAT9125
  5114. bool old_fsensor_enabled = fsensor_enabled;
  5115. fsensor_enabled = false; //temporary solution for unexpected restarting
  5116. #endif //PAT9125
  5117. st_synchronize();
  5118. float target[4];
  5119. float lastpos[4];
  5120. if (farm_mode)
  5121. {
  5122. prusa_statistics(22);
  5123. }
  5124. feedmultiplyBckp=feedmultiply;
  5125. int8_t TooLowZ = 0;
  5126. float HotendTempBckp = degTargetHotend(active_extruder);
  5127. int fanSpeedBckp = fanSpeed;
  5128. target[X_AXIS]=current_position[X_AXIS];
  5129. target[Y_AXIS]=current_position[Y_AXIS];
  5130. target[Z_AXIS]=current_position[Z_AXIS];
  5131. target[E_AXIS]=current_position[E_AXIS];
  5132. lastpos[X_AXIS]=current_position[X_AXIS];
  5133. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5134. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5135. lastpos[E_AXIS]=current_position[E_AXIS];
  5136. //Restract extruder
  5137. if(code_seen('E'))
  5138. {
  5139. target[E_AXIS]+= code_value();
  5140. }
  5141. else
  5142. {
  5143. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5144. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5145. #endif
  5146. }
  5147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5148. //Lift Z
  5149. if(code_seen('Z'))
  5150. {
  5151. target[Z_AXIS]+= code_value();
  5152. }
  5153. else
  5154. {
  5155. #ifdef FILAMENTCHANGE_ZADD
  5156. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5157. if(target[Z_AXIS] < 10){
  5158. target[Z_AXIS]+= 10 ;
  5159. TooLowZ = 1;
  5160. }else{
  5161. TooLowZ = 0;
  5162. }
  5163. #endif
  5164. }
  5165. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5166. //Move XY to side
  5167. if(code_seen('X'))
  5168. {
  5169. target[X_AXIS]+= code_value();
  5170. }
  5171. else
  5172. {
  5173. #ifdef FILAMENTCHANGE_XPOS
  5174. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5175. #endif
  5176. }
  5177. if(code_seen('Y'))
  5178. {
  5179. target[Y_AXIS]= code_value();
  5180. }
  5181. else
  5182. {
  5183. #ifdef FILAMENTCHANGE_YPOS
  5184. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5185. #endif
  5186. }
  5187. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5188. st_synchronize();
  5189. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5190. uint8_t cnt = 0;
  5191. int counterBeep = 0;
  5192. fanSpeed = 0;
  5193. unsigned long waiting_start_time = millis();
  5194. uint8_t wait_for_user_state = 0;
  5195. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5196. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5197. //cnt++;
  5198. manage_heater();
  5199. manage_inactivity(true);
  5200. /*#ifdef SNMM
  5201. target[E_AXIS] += 0.002;
  5202. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5203. #endif // SNMM*/
  5204. //if (cnt == 0)
  5205. {
  5206. #if BEEPER > 0
  5207. if (counterBeep == 500) {
  5208. counterBeep = 0;
  5209. }
  5210. SET_OUTPUT(BEEPER);
  5211. if (counterBeep == 0) {
  5212. WRITE(BEEPER, HIGH);
  5213. }
  5214. if (counterBeep == 20) {
  5215. WRITE(BEEPER, LOW);
  5216. }
  5217. counterBeep++;
  5218. #else
  5219. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5220. lcd_buzz(1000 / 6, 100);
  5221. #else
  5222. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5223. #endif
  5224. #endif
  5225. }
  5226. switch (wait_for_user_state) {
  5227. case 0:
  5228. delay_keep_alive(4);
  5229. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5230. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5231. wait_for_user_state = 1;
  5232. setTargetHotend(0, 0);
  5233. setTargetHotend(0, 1);
  5234. setTargetHotend(0, 2);
  5235. st_synchronize();
  5236. disable_e0();
  5237. disable_e1();
  5238. disable_e2();
  5239. }
  5240. break;
  5241. case 1:
  5242. delay_keep_alive(4);
  5243. if (lcd_clicked()) {
  5244. setTargetHotend(HotendTempBckp, active_extruder);
  5245. lcd_wait_for_heater();
  5246. wait_for_user_state = 2;
  5247. }
  5248. break;
  5249. case 2:
  5250. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5251. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5252. waiting_start_time = millis();
  5253. wait_for_user_state = 0;
  5254. }
  5255. else {
  5256. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5257. lcd.setCursor(1, 4);
  5258. lcd.print(ftostr3(degHotend(active_extruder)));
  5259. }
  5260. break;
  5261. }
  5262. }
  5263. WRITE(BEEPER, LOW);
  5264. lcd_change_fil_state = 0;
  5265. // Unload filament
  5266. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5267. KEEPALIVE_STATE(IN_HANDLER);
  5268. custom_message = true;
  5269. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5270. if (code_seen('L'))
  5271. {
  5272. target[E_AXIS] += code_value();
  5273. }
  5274. else
  5275. {
  5276. #ifdef SNMM
  5277. #else
  5278. #ifdef FILAMENTCHANGE_FINALRETRACT
  5279. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5280. #endif
  5281. #endif // SNMM
  5282. }
  5283. #ifdef SNMM
  5284. target[E_AXIS] += 12;
  5285. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5286. target[E_AXIS] += 6;
  5287. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5288. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5289. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5290. st_synchronize();
  5291. target[E_AXIS] += (FIL_COOLING);
  5292. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5293. target[E_AXIS] += (FIL_COOLING*-1);
  5294. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5295. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5296. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5297. st_synchronize();
  5298. #else
  5299. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5300. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5301. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5302. st_synchronize();
  5303. #ifdef TMC2130
  5304. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5305. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5306. #else
  5307. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5308. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5309. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5310. #endif //TMC2130
  5311. target[E_AXIS] -= 45;
  5312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5313. st_synchronize();
  5314. target[E_AXIS] -= 15;
  5315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5316. st_synchronize();
  5317. target[E_AXIS] -= 20;
  5318. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5319. st_synchronize();
  5320. #ifdef TMC2130
  5321. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5322. #else
  5323. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5324. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5325. else st_current_set(2, tmp_motor_loud[2]);
  5326. #endif //TMC2130
  5327. #endif // SNMM
  5328. //finish moves
  5329. st_synchronize();
  5330. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5331. //disable extruder steppers so filament can be removed
  5332. disable_e0();
  5333. disable_e1();
  5334. disable_e2();
  5335. delay(100);
  5336. WRITE(BEEPER, HIGH);
  5337. counterBeep = 0;
  5338. while(!lcd_clicked() && (counterBeep < 50)) {
  5339. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5340. delay_keep_alive(100);
  5341. counterBeep++;
  5342. }
  5343. WRITE(BEEPER, LOW);
  5344. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5345. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5346. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5347. //lcd_return_to_status();
  5348. lcd_update_enable(true);
  5349. //Wait for user to insert filament
  5350. lcd_wait_interact();
  5351. //load_filament_time = millis();
  5352. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5353. #ifdef PAT9125
  5354. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5355. #endif //PAT9125
  5356. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5357. while(!lcd_clicked())
  5358. {
  5359. manage_heater();
  5360. manage_inactivity(true);
  5361. #ifdef PAT9125
  5362. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5363. {
  5364. tone(BEEPER, 1000);
  5365. delay_keep_alive(50);
  5366. noTone(BEEPER);
  5367. break;
  5368. }
  5369. #endif //PAT9125
  5370. /*#ifdef SNMM
  5371. target[E_AXIS] += 0.002;
  5372. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5373. #endif // SNMM*/
  5374. }
  5375. #ifdef PAT9125
  5376. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5377. #endif //PAT9125
  5378. //WRITE(BEEPER, LOW);
  5379. KEEPALIVE_STATE(IN_HANDLER);
  5380. #ifdef SNMM
  5381. display_loading();
  5382. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5383. do {
  5384. target[E_AXIS] += 0.002;
  5385. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5386. delay_keep_alive(2);
  5387. } while (!lcd_clicked());
  5388. KEEPALIVE_STATE(IN_HANDLER);
  5389. /*if (millis() - load_filament_time > 2) {
  5390. load_filament_time = millis();
  5391. target[E_AXIS] += 0.001;
  5392. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5393. }*/
  5394. //Filament inserted
  5395. //Feed the filament to the end of nozzle quickly
  5396. st_synchronize();
  5397. target[E_AXIS] += bowden_length[snmm_extruder];
  5398. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5399. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5400. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5401. target[E_AXIS] += 40;
  5402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5403. target[E_AXIS] += 10;
  5404. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5405. #else
  5406. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5407. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5408. #endif // SNMM
  5409. //Extrude some filament
  5410. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5411. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5412. //Wait for user to check the state
  5413. lcd_change_fil_state = 0;
  5414. lcd_loading_filament();
  5415. tone(BEEPER, 500);
  5416. delay_keep_alive(50);
  5417. noTone(BEEPER);
  5418. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5419. lcd_change_fil_state = 0;
  5420. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5421. lcd_alright();
  5422. KEEPALIVE_STATE(IN_HANDLER);
  5423. switch(lcd_change_fil_state){
  5424. // Filament failed to load so load it again
  5425. case 2:
  5426. #ifdef SNMM
  5427. display_loading();
  5428. do {
  5429. target[E_AXIS] += 0.002;
  5430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5431. delay_keep_alive(2);
  5432. } while (!lcd_clicked());
  5433. st_synchronize();
  5434. target[E_AXIS] += bowden_length[snmm_extruder];
  5435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5436. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5437. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5438. target[E_AXIS] += 40;
  5439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5440. target[E_AXIS] += 10;
  5441. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5442. #else
  5443. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5445. #endif
  5446. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5448. lcd_loading_filament();
  5449. break;
  5450. // Filament loaded properly but color is not clear
  5451. case 3:
  5452. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5454. lcd_loading_color();
  5455. break;
  5456. // Everything good
  5457. default:
  5458. lcd_change_success();
  5459. lcd_update_enable(true);
  5460. break;
  5461. }
  5462. }
  5463. //Not let's go back to print
  5464. fanSpeed = fanSpeedBckp;
  5465. //Feed a little of filament to stabilize pressure
  5466. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5467. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5468. //Retract
  5469. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5470. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5471. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5472. //Move XY back
  5473. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5474. //Move Z back
  5475. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5476. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5477. //Unretract
  5478. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5479. //Set E position to original
  5480. plan_set_e_position(lastpos[E_AXIS]);
  5481. //Recover feed rate
  5482. feedmultiply=feedmultiplyBckp;
  5483. char cmd[9];
  5484. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5485. enquecommand(cmd);
  5486. lcd_setstatuspgm(_T(WELCOME_MSG));
  5487. custom_message = false;
  5488. custom_message_type = 0;
  5489. #ifdef PAT9125
  5490. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5491. if (fsensor_M600)
  5492. {
  5493. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5494. st_synchronize();
  5495. while (!is_buffer_empty())
  5496. {
  5497. process_commands();
  5498. cmdqueue_pop_front();
  5499. }
  5500. fsensor_enable();
  5501. fsensor_restore_print_and_continue();
  5502. }
  5503. #endif //PAT9125
  5504. }
  5505. break;
  5506. #endif //FILAMENTCHANGEENABLE
  5507. case 601: {
  5508. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5509. }
  5510. break;
  5511. case 602: {
  5512. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5513. }
  5514. break;
  5515. #ifdef PINDA_THERMISTOR
  5516. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5517. {
  5518. int setTargetPinda = 0;
  5519. if (code_seen('S')) {
  5520. setTargetPinda = code_value();
  5521. }
  5522. else {
  5523. break;
  5524. }
  5525. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5526. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5527. SERIAL_PROTOCOL(setTargetPinda);
  5528. SERIAL_PROTOCOLLN("");
  5529. codenum = millis();
  5530. cancel_heatup = false;
  5531. while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  5532. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5533. {
  5534. SERIAL_PROTOCOLPGM("P:");
  5535. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5536. SERIAL_PROTOCOLPGM("/");
  5537. SERIAL_PROTOCOL(setTargetPinda);
  5538. SERIAL_PROTOCOLLN("");
  5539. codenum = millis();
  5540. }
  5541. manage_heater();
  5542. manage_inactivity();
  5543. lcd_update();
  5544. }
  5545. LCD_MESSAGERPGM(_T(MSG_OK));
  5546. break;
  5547. }
  5548. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5549. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5550. uint8_t cal_status = calibration_status_pinda();
  5551. int16_t usteps = 0;
  5552. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5553. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5554. for (uint8_t i = 0; i < 6; i++)
  5555. {
  5556. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5557. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5558. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5559. SERIAL_PROTOCOLPGM(", ");
  5560. SERIAL_PROTOCOL(35 + (i * 5));
  5561. SERIAL_PROTOCOLPGM(", ");
  5562. SERIAL_PROTOCOL(usteps);
  5563. SERIAL_PROTOCOLPGM(", ");
  5564. SERIAL_PROTOCOL(mm * 1000);
  5565. SERIAL_PROTOCOLLN("");
  5566. }
  5567. }
  5568. else if (code_seen('!')) { // ! - Set factory default values
  5569. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5570. int16_t z_shift = 8; //40C - 20um - 8usteps
  5571. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5572. z_shift = 24; //45C - 60um - 24usteps
  5573. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5574. z_shift = 48; //50C - 120um - 48usteps
  5575. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5576. z_shift = 80; //55C - 200um - 80usteps
  5577. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5578. z_shift = 120; //60C - 300um - 120usteps
  5579. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5580. SERIAL_PROTOCOLLN("factory restored");
  5581. }
  5582. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5583. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5584. int16_t z_shift = 0;
  5585. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5586. SERIAL_PROTOCOLLN("zerorized");
  5587. }
  5588. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5589. int16_t usteps = code_value();
  5590. if (code_seen('I')) {
  5591. byte index = code_value();
  5592. if ((index >= 0) && (index < 5)) {
  5593. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5594. SERIAL_PROTOCOLLN("OK");
  5595. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5596. for (uint8_t i = 0; i < 6; i++)
  5597. {
  5598. usteps = 0;
  5599. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5600. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5601. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5602. SERIAL_PROTOCOLPGM(", ");
  5603. SERIAL_PROTOCOL(35 + (i * 5));
  5604. SERIAL_PROTOCOLPGM(", ");
  5605. SERIAL_PROTOCOL(usteps);
  5606. SERIAL_PROTOCOLPGM(", ");
  5607. SERIAL_PROTOCOL(mm * 1000);
  5608. SERIAL_PROTOCOLLN("");
  5609. }
  5610. }
  5611. }
  5612. }
  5613. else {
  5614. SERIAL_PROTOCOLPGM("no valid command");
  5615. }
  5616. break;
  5617. #endif //PINDA_THERMISTOR
  5618. #ifdef LIN_ADVANCE
  5619. case 900: // M900: Set LIN_ADVANCE options.
  5620. gcode_M900();
  5621. break;
  5622. #endif
  5623. case 907: // M907 Set digital trimpot motor current using axis codes.
  5624. {
  5625. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5626. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5627. if(code_seen('B')) st_current_set(4,code_value());
  5628. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5629. #endif
  5630. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5631. if(code_seen('X')) st_current_set(0, code_value());
  5632. #endif
  5633. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5634. if(code_seen('Z')) st_current_set(1, code_value());
  5635. #endif
  5636. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5637. if(code_seen('E')) st_current_set(2, code_value());
  5638. #endif
  5639. }
  5640. break;
  5641. case 908: // M908 Control digital trimpot directly.
  5642. {
  5643. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5644. uint8_t channel,current;
  5645. if(code_seen('P')) channel=code_value();
  5646. if(code_seen('S')) current=code_value();
  5647. digitalPotWrite(channel, current);
  5648. #endif
  5649. }
  5650. break;
  5651. #ifdef TMC2130
  5652. case 910: // M910 TMC2130 init
  5653. {
  5654. tmc2130_init();
  5655. }
  5656. break;
  5657. case 911: // M911 Set TMC2130 holding currents
  5658. {
  5659. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5660. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5661. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5662. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5663. }
  5664. break;
  5665. case 912: // M912 Set TMC2130 running currents
  5666. {
  5667. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5668. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5669. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5670. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5671. }
  5672. break;
  5673. case 913: // M913 Print TMC2130 currents
  5674. {
  5675. tmc2130_print_currents();
  5676. }
  5677. break;
  5678. case 914: // M914 Set normal mode
  5679. {
  5680. tmc2130_mode = TMC2130_MODE_NORMAL;
  5681. tmc2130_init();
  5682. }
  5683. break;
  5684. case 915: // M915 Set silent mode
  5685. {
  5686. tmc2130_mode = TMC2130_MODE_SILENT;
  5687. tmc2130_init();
  5688. }
  5689. break;
  5690. case 916: // M916 Set sg_thrs
  5691. {
  5692. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5693. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5694. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5695. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5696. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5697. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5698. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5699. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5700. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5701. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5702. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5703. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5704. }
  5705. break;
  5706. case 917: // M917 Set TMC2130 pwm_ampl
  5707. {
  5708. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5709. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5710. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5711. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5712. }
  5713. break;
  5714. case 918: // M918 Set TMC2130 pwm_grad
  5715. {
  5716. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5717. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5718. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5719. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5720. }
  5721. break;
  5722. #endif //TMC2130
  5723. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5724. {
  5725. #ifdef TMC2130
  5726. if(code_seen('E'))
  5727. {
  5728. uint16_t res_new = code_value();
  5729. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5730. {
  5731. st_synchronize();
  5732. uint8_t axis = E_AXIS;
  5733. uint16_t res = tmc2130_get_res(axis);
  5734. tmc2130_set_res(axis, res_new);
  5735. if (res_new > res)
  5736. {
  5737. uint16_t fac = (res_new / res);
  5738. axis_steps_per_unit[axis] *= fac;
  5739. position[E_AXIS] *= fac;
  5740. }
  5741. else
  5742. {
  5743. uint16_t fac = (res / res_new);
  5744. axis_steps_per_unit[axis] /= fac;
  5745. position[E_AXIS] /= fac;
  5746. }
  5747. }
  5748. }
  5749. #else //TMC2130
  5750. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5751. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5752. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5753. if(code_seen('B')) microstep_mode(4,code_value());
  5754. microstep_readings();
  5755. #endif
  5756. #endif //TMC2130
  5757. }
  5758. break;
  5759. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5760. {
  5761. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5762. if(code_seen('S')) switch((int)code_value())
  5763. {
  5764. case 1:
  5765. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5766. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5767. break;
  5768. case 2:
  5769. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5770. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5771. break;
  5772. }
  5773. microstep_readings();
  5774. #endif
  5775. }
  5776. break;
  5777. case 701: //M701: load filament
  5778. {
  5779. gcode_M701();
  5780. }
  5781. break;
  5782. case 702:
  5783. {
  5784. #ifdef SNMM
  5785. if (code_seen('U')) {
  5786. extr_unload_used(); //unload all filaments which were used in current print
  5787. }
  5788. else if (code_seen('C')) {
  5789. extr_unload(); //unload just current filament
  5790. }
  5791. else {
  5792. extr_unload_all(); //unload all filaments
  5793. }
  5794. #else
  5795. #ifdef PAT9125
  5796. bool old_fsensor_enabled = fsensor_enabled;
  5797. fsensor_enabled = false;
  5798. #endif //PAT9125
  5799. custom_message = true;
  5800. custom_message_type = 2;
  5801. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5802. // extr_unload2();
  5803. current_position[E_AXIS] -= 45;
  5804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5805. st_synchronize();
  5806. current_position[E_AXIS] -= 15;
  5807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5808. st_synchronize();
  5809. current_position[E_AXIS] -= 20;
  5810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5811. st_synchronize();
  5812. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5813. //disable extruder steppers so filament can be removed
  5814. disable_e0();
  5815. disable_e1();
  5816. disable_e2();
  5817. delay(100);
  5818. WRITE(BEEPER, HIGH);
  5819. uint8_t counterBeep = 0;
  5820. while (!lcd_clicked() && (counterBeep < 50)) {
  5821. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5822. delay_keep_alive(100);
  5823. counterBeep++;
  5824. }
  5825. WRITE(BEEPER, LOW);
  5826. st_synchronize();
  5827. while (lcd_clicked()) delay_keep_alive(100);
  5828. lcd_update_enable(true);
  5829. lcd_setstatuspgm(_T(WELCOME_MSG));
  5830. custom_message = false;
  5831. custom_message_type = 0;
  5832. #ifdef PAT9125
  5833. fsensor_enabled = old_fsensor_enabled;
  5834. #endif //PAT9125
  5835. #endif
  5836. }
  5837. break;
  5838. case 999: // M999: Restart after being stopped
  5839. Stopped = false;
  5840. lcd_reset_alert_level();
  5841. gcode_LastN = Stopped_gcode_LastN;
  5842. FlushSerialRequestResend();
  5843. break;
  5844. default:
  5845. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5846. }
  5847. } // end if(code_seen('M')) (end of M codes)
  5848. else if(code_seen('T'))
  5849. {
  5850. int index;
  5851. st_synchronize();
  5852. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5853. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5854. SERIAL_ECHOLNPGM("Invalid T code.");
  5855. }
  5856. else {
  5857. if (*(strchr_pointer + index) == '?') {
  5858. tmp_extruder = choose_extruder_menu();
  5859. }
  5860. else {
  5861. tmp_extruder = code_value();
  5862. }
  5863. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5864. #ifdef SNMM
  5865. #ifdef LIN_ADVANCE
  5866. if (snmm_extruder != tmp_extruder)
  5867. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5868. #endif
  5869. snmm_extruder = tmp_extruder;
  5870. delay(100);
  5871. disable_e0();
  5872. disable_e1();
  5873. disable_e2();
  5874. pinMode(E_MUX0_PIN, OUTPUT);
  5875. pinMode(E_MUX1_PIN, OUTPUT);
  5876. delay(100);
  5877. SERIAL_ECHO_START;
  5878. SERIAL_ECHO("T:");
  5879. SERIAL_ECHOLN((int)tmp_extruder);
  5880. switch (tmp_extruder) {
  5881. case 1:
  5882. WRITE(E_MUX0_PIN, HIGH);
  5883. WRITE(E_MUX1_PIN, LOW);
  5884. break;
  5885. case 2:
  5886. WRITE(E_MUX0_PIN, LOW);
  5887. WRITE(E_MUX1_PIN, HIGH);
  5888. break;
  5889. case 3:
  5890. WRITE(E_MUX0_PIN, HIGH);
  5891. WRITE(E_MUX1_PIN, HIGH);
  5892. break;
  5893. default:
  5894. WRITE(E_MUX0_PIN, LOW);
  5895. WRITE(E_MUX1_PIN, LOW);
  5896. break;
  5897. }
  5898. delay(100);
  5899. #else
  5900. if (tmp_extruder >= EXTRUDERS) {
  5901. SERIAL_ECHO_START;
  5902. SERIAL_ECHOPGM("T");
  5903. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5904. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  5905. }
  5906. else {
  5907. boolean make_move = false;
  5908. if (code_seen('F')) {
  5909. make_move = true;
  5910. next_feedrate = code_value();
  5911. if (next_feedrate > 0.0) {
  5912. feedrate = next_feedrate;
  5913. }
  5914. }
  5915. #if EXTRUDERS > 1
  5916. if (tmp_extruder != active_extruder) {
  5917. // Save current position to return to after applying extruder offset
  5918. memcpy(destination, current_position, sizeof(destination));
  5919. // Offset extruder (only by XY)
  5920. int i;
  5921. for (i = 0; i < 2; i++) {
  5922. current_position[i] = current_position[i] -
  5923. extruder_offset[i][active_extruder] +
  5924. extruder_offset[i][tmp_extruder];
  5925. }
  5926. // Set the new active extruder and position
  5927. active_extruder = tmp_extruder;
  5928. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5929. // Move to the old position if 'F' was in the parameters
  5930. if (make_move && Stopped == false) {
  5931. prepare_move();
  5932. }
  5933. }
  5934. #endif
  5935. SERIAL_ECHO_START;
  5936. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  5937. SERIAL_PROTOCOLLN((int)active_extruder);
  5938. }
  5939. #endif
  5940. }
  5941. } // end if(code_seen('T')) (end of T codes)
  5942. #ifdef DEBUG_DCODES
  5943. else if (code_seen('D')) // D codes (debug)
  5944. {
  5945. switch((int)code_value())
  5946. {
  5947. case -1: // D-1 - Endless loop
  5948. dcode__1(); break;
  5949. case 0: // D0 - Reset
  5950. dcode_0(); break;
  5951. case 1: // D1 - Clear EEPROM
  5952. dcode_1(); break;
  5953. case 2: // D2 - Read/Write RAM
  5954. dcode_2(); break;
  5955. case 3: // D3 - Read/Write EEPROM
  5956. dcode_3(); break;
  5957. case 4: // D4 - Read/Write PIN
  5958. dcode_4(); break;
  5959. case 5: // D5 - Read/Write FLASH
  5960. // dcode_5(); break;
  5961. break;
  5962. case 6: // D6 - Read/Write external FLASH
  5963. dcode_6(); break;
  5964. case 7: // D7 - Read/Write Bootloader
  5965. dcode_7(); break;
  5966. case 8: // D8 - Read/Write PINDA
  5967. dcode_8(); break;
  5968. case 9: // D9 - Read/Write ADC
  5969. dcode_9(); break;
  5970. case 10: // D10 - XYZ calibration = OK
  5971. dcode_10(); break;
  5972. #ifdef TMC2130
  5973. case 2130: // D9125 - TMC2130
  5974. dcode_2130(); break;
  5975. #endif //TMC2130
  5976. #ifdef PAT9125
  5977. case 9125: // D9125 - PAT9125
  5978. dcode_9125(); break;
  5979. #endif //PAT9125
  5980. }
  5981. }
  5982. #endif //DEBUG_DCODES
  5983. else
  5984. {
  5985. SERIAL_ECHO_START;
  5986. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5987. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5988. SERIAL_ECHOLNPGM("\"(2)");
  5989. }
  5990. KEEPALIVE_STATE(NOT_BUSY);
  5991. ClearToSend();
  5992. }
  5993. void FlushSerialRequestResend()
  5994. {
  5995. //char cmdbuffer[bufindr][100]="Resend:";
  5996. MYSERIAL.flush();
  5997. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  5998. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5999. previous_millis_cmd = millis();
  6000. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6001. }
  6002. // Confirm the execution of a command, if sent from a serial line.
  6003. // Execution of a command from a SD card will not be confirmed.
  6004. void ClearToSend()
  6005. {
  6006. previous_millis_cmd = millis();
  6007. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  6008. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6009. }
  6010. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6011. void update_currents() {
  6012. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6013. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6014. float tmp_motor[3];
  6015. //SERIAL_ECHOLNPGM("Currents updated: ");
  6016. if (destination[Z_AXIS] < Z_SILENT) {
  6017. //SERIAL_ECHOLNPGM("LOW");
  6018. for (uint8_t i = 0; i < 3; i++) {
  6019. st_current_set(i, current_low[i]);
  6020. /*MYSERIAL.print(int(i));
  6021. SERIAL_ECHOPGM(": ");
  6022. MYSERIAL.println(current_low[i]);*/
  6023. }
  6024. }
  6025. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6026. //SERIAL_ECHOLNPGM("HIGH");
  6027. for (uint8_t i = 0; i < 3; i++) {
  6028. st_current_set(i, current_high[i]);
  6029. /*MYSERIAL.print(int(i));
  6030. SERIAL_ECHOPGM(": ");
  6031. MYSERIAL.println(current_high[i]);*/
  6032. }
  6033. }
  6034. else {
  6035. for (uint8_t i = 0; i < 3; i++) {
  6036. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6037. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6038. st_current_set(i, tmp_motor[i]);
  6039. /*MYSERIAL.print(int(i));
  6040. SERIAL_ECHOPGM(": ");
  6041. MYSERIAL.println(tmp_motor[i]);*/
  6042. }
  6043. }
  6044. }
  6045. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6046. void get_coordinates()
  6047. {
  6048. bool seen[4]={false,false,false,false};
  6049. for(int8_t i=0; i < NUM_AXIS; i++) {
  6050. if(code_seen(axis_codes[i]))
  6051. {
  6052. bool relative = axis_relative_modes[i] || relative_mode;
  6053. destination[i] = (float)code_value();
  6054. if (i == E_AXIS) {
  6055. float emult = extruder_multiplier[active_extruder];
  6056. if (emult != 1.) {
  6057. if (! relative) {
  6058. destination[i] -= current_position[i];
  6059. relative = true;
  6060. }
  6061. destination[i] *= emult;
  6062. }
  6063. }
  6064. if (relative)
  6065. destination[i] += current_position[i];
  6066. seen[i]=true;
  6067. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6068. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6069. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6070. }
  6071. else destination[i] = current_position[i]; //Are these else lines really needed?
  6072. }
  6073. if(code_seen('F')) {
  6074. next_feedrate = code_value();
  6075. #ifdef MAX_SILENT_FEEDRATE
  6076. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6077. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6078. #endif //MAX_SILENT_FEEDRATE
  6079. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6080. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6081. {
  6082. // float e_max_speed =
  6083. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6084. }
  6085. }
  6086. }
  6087. void get_arc_coordinates()
  6088. {
  6089. #ifdef SF_ARC_FIX
  6090. bool relative_mode_backup = relative_mode;
  6091. relative_mode = true;
  6092. #endif
  6093. get_coordinates();
  6094. #ifdef SF_ARC_FIX
  6095. relative_mode=relative_mode_backup;
  6096. #endif
  6097. if(code_seen('I')) {
  6098. offset[0] = code_value();
  6099. }
  6100. else {
  6101. offset[0] = 0.0;
  6102. }
  6103. if(code_seen('J')) {
  6104. offset[1] = code_value();
  6105. }
  6106. else {
  6107. offset[1] = 0.0;
  6108. }
  6109. }
  6110. void clamp_to_software_endstops(float target[3])
  6111. {
  6112. #ifdef DEBUG_DISABLE_SWLIMITS
  6113. return;
  6114. #endif //DEBUG_DISABLE_SWLIMITS
  6115. world2machine_clamp(target[0], target[1]);
  6116. // Clamp the Z coordinate.
  6117. if (min_software_endstops) {
  6118. float negative_z_offset = 0;
  6119. #ifdef ENABLE_AUTO_BED_LEVELING
  6120. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6121. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6122. #endif
  6123. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6124. }
  6125. if (max_software_endstops) {
  6126. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6127. }
  6128. }
  6129. #ifdef MESH_BED_LEVELING
  6130. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6131. float dx = x - current_position[X_AXIS];
  6132. float dy = y - current_position[Y_AXIS];
  6133. float dz = z - current_position[Z_AXIS];
  6134. int n_segments = 0;
  6135. if (mbl.active) {
  6136. float len = abs(dx) + abs(dy);
  6137. if (len > 0)
  6138. // Split to 3cm segments or shorter.
  6139. n_segments = int(ceil(len / 30.f));
  6140. }
  6141. if (n_segments > 1) {
  6142. float de = e - current_position[E_AXIS];
  6143. for (int i = 1; i < n_segments; ++ i) {
  6144. float t = float(i) / float(n_segments);
  6145. plan_buffer_line(
  6146. current_position[X_AXIS] + t * dx,
  6147. current_position[Y_AXIS] + t * dy,
  6148. current_position[Z_AXIS] + t * dz,
  6149. current_position[E_AXIS] + t * de,
  6150. feed_rate, extruder);
  6151. }
  6152. }
  6153. // The rest of the path.
  6154. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6155. current_position[X_AXIS] = x;
  6156. current_position[Y_AXIS] = y;
  6157. current_position[Z_AXIS] = z;
  6158. current_position[E_AXIS] = e;
  6159. }
  6160. #endif // MESH_BED_LEVELING
  6161. void prepare_move()
  6162. {
  6163. clamp_to_software_endstops(destination);
  6164. previous_millis_cmd = millis();
  6165. // Do not use feedmultiply for E or Z only moves
  6166. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6167. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6168. }
  6169. else {
  6170. #ifdef MESH_BED_LEVELING
  6171. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6172. #else
  6173. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6174. #endif
  6175. }
  6176. for(int8_t i=0; i < NUM_AXIS; i++) {
  6177. current_position[i] = destination[i];
  6178. }
  6179. }
  6180. void prepare_arc_move(char isclockwise) {
  6181. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6182. // Trace the arc
  6183. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6184. // As far as the parser is concerned, the position is now == target. In reality the
  6185. // motion control system might still be processing the action and the real tool position
  6186. // in any intermediate location.
  6187. for(int8_t i=0; i < NUM_AXIS; i++) {
  6188. current_position[i] = destination[i];
  6189. }
  6190. previous_millis_cmd = millis();
  6191. }
  6192. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6193. #if defined(FAN_PIN)
  6194. #if CONTROLLERFAN_PIN == FAN_PIN
  6195. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6196. #endif
  6197. #endif
  6198. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6199. unsigned long lastMotorCheck = 0;
  6200. void controllerFan()
  6201. {
  6202. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6203. {
  6204. lastMotorCheck = millis();
  6205. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6206. #if EXTRUDERS > 2
  6207. || !READ(E2_ENABLE_PIN)
  6208. #endif
  6209. #if EXTRUDER > 1
  6210. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6211. || !READ(X2_ENABLE_PIN)
  6212. #endif
  6213. || !READ(E1_ENABLE_PIN)
  6214. #endif
  6215. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6216. {
  6217. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6218. }
  6219. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6220. {
  6221. digitalWrite(CONTROLLERFAN_PIN, 0);
  6222. analogWrite(CONTROLLERFAN_PIN, 0);
  6223. }
  6224. else
  6225. {
  6226. // allows digital or PWM fan output to be used (see M42 handling)
  6227. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6228. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6229. }
  6230. }
  6231. }
  6232. #endif
  6233. #ifdef TEMP_STAT_LEDS
  6234. static bool blue_led = false;
  6235. static bool red_led = false;
  6236. static uint32_t stat_update = 0;
  6237. void handle_status_leds(void) {
  6238. float max_temp = 0.0;
  6239. if(millis() > stat_update) {
  6240. stat_update += 500; // Update every 0.5s
  6241. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6242. max_temp = max(max_temp, degHotend(cur_extruder));
  6243. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6244. }
  6245. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6246. max_temp = max(max_temp, degTargetBed());
  6247. max_temp = max(max_temp, degBed());
  6248. #endif
  6249. if((max_temp > 55.0) && (red_led == false)) {
  6250. digitalWrite(STAT_LED_RED, 1);
  6251. digitalWrite(STAT_LED_BLUE, 0);
  6252. red_led = true;
  6253. blue_led = false;
  6254. }
  6255. if((max_temp < 54.0) && (blue_led == false)) {
  6256. digitalWrite(STAT_LED_RED, 0);
  6257. digitalWrite(STAT_LED_BLUE, 1);
  6258. red_led = false;
  6259. blue_led = true;
  6260. }
  6261. }
  6262. }
  6263. #endif
  6264. #ifdef SAFETYTIMER
  6265. /**
  6266. * @brief Turn off heating after 30 minutes of inactivity
  6267. *
  6268. * Full screen blocking notification message is shown after heater turning off.
  6269. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6270. * damage print.
  6271. */
  6272. static void handleSafetyTimer()
  6273. {
  6274. #if (EXTRUDERS > 1)
  6275. #error Implemented only for one extruder.
  6276. #endif //(EXTRUDERS > 1)
  6277. static Timer safetyTimer;
  6278. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6279. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6280. {
  6281. safetyTimer.stop();
  6282. }
  6283. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6284. {
  6285. safetyTimer.start();
  6286. }
  6287. else if (safetyTimer.expired(1800000ul)) //30 min
  6288. {
  6289. setTargetBed(0);
  6290. setTargetHotend(0, 0);
  6291. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6292. }
  6293. }
  6294. #endif //SAFETYTIMER
  6295. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6296. {
  6297. #ifdef PAT9125
  6298. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6299. {
  6300. if (fsensor_autoload_enabled)
  6301. {
  6302. if (fsensor_check_autoload())
  6303. {
  6304. if (degHotend0() > EXTRUDE_MINTEMP)
  6305. {
  6306. fsensor_autoload_check_stop();
  6307. tone(BEEPER, 1000);
  6308. delay_keep_alive(50);
  6309. noTone(BEEPER);
  6310. loading_flag = true;
  6311. enquecommand_front_P((PSTR("M701")));
  6312. }
  6313. else
  6314. {
  6315. lcd_update_enable(false);
  6316. lcd_implementation_clear();
  6317. lcd.setCursor(0, 0);
  6318. lcd_printPGM(_T(MSG_ERROR));
  6319. lcd.setCursor(0, 2);
  6320. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6321. delay(2000);
  6322. lcd_implementation_clear();
  6323. lcd_update_enable(true);
  6324. }
  6325. }
  6326. }
  6327. else
  6328. fsensor_autoload_check_start();
  6329. }
  6330. else
  6331. if (fsensor_autoload_enabled)
  6332. fsensor_autoload_check_stop();
  6333. #endif //PAT9125
  6334. #ifdef SAFETYTIMER
  6335. handleSafetyTimer();
  6336. #endif //SAFETYTIMER
  6337. #if defined(KILL_PIN) && KILL_PIN > -1
  6338. static int killCount = 0; // make the inactivity button a bit less responsive
  6339. const int KILL_DELAY = 10000;
  6340. #endif
  6341. if(buflen < (BUFSIZE-1)){
  6342. get_command();
  6343. }
  6344. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6345. if(max_inactive_time)
  6346. kill("", 4);
  6347. if(stepper_inactive_time) {
  6348. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6349. {
  6350. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6351. disable_x();
  6352. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6353. disable_y();
  6354. disable_z();
  6355. disable_e0();
  6356. disable_e1();
  6357. disable_e2();
  6358. }
  6359. }
  6360. }
  6361. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6362. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6363. {
  6364. chdkActive = false;
  6365. WRITE(CHDK, LOW);
  6366. }
  6367. #endif
  6368. #if defined(KILL_PIN) && KILL_PIN > -1
  6369. // Check if the kill button was pressed and wait just in case it was an accidental
  6370. // key kill key press
  6371. // -------------------------------------------------------------------------------
  6372. if( 0 == READ(KILL_PIN) )
  6373. {
  6374. killCount++;
  6375. }
  6376. else if (killCount > 0)
  6377. {
  6378. killCount--;
  6379. }
  6380. // Exceeded threshold and we can confirm that it was not accidental
  6381. // KILL the machine
  6382. // ----------------------------------------------------------------
  6383. if ( killCount >= KILL_DELAY)
  6384. {
  6385. kill("", 5);
  6386. }
  6387. #endif
  6388. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6389. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6390. #endif
  6391. #ifdef EXTRUDER_RUNOUT_PREVENT
  6392. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6393. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6394. {
  6395. bool oldstatus=READ(E0_ENABLE_PIN);
  6396. enable_e0();
  6397. float oldepos=current_position[E_AXIS];
  6398. float oldedes=destination[E_AXIS];
  6399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6400. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6401. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6402. current_position[E_AXIS]=oldepos;
  6403. destination[E_AXIS]=oldedes;
  6404. plan_set_e_position(oldepos);
  6405. previous_millis_cmd=millis();
  6406. st_synchronize();
  6407. WRITE(E0_ENABLE_PIN,oldstatus);
  6408. }
  6409. #endif
  6410. #ifdef TEMP_STAT_LEDS
  6411. handle_status_leds();
  6412. #endif
  6413. check_axes_activity();
  6414. }
  6415. void kill(const char *full_screen_message, unsigned char id)
  6416. {
  6417. SERIAL_ECHOPGM("KILL: ");
  6418. MYSERIAL.println(int(id));
  6419. //return;
  6420. cli(); // Stop interrupts
  6421. disable_heater();
  6422. disable_x();
  6423. // SERIAL_ECHOLNPGM("kill - disable Y");
  6424. disable_y();
  6425. disable_z();
  6426. disable_e0();
  6427. disable_e1();
  6428. disable_e2();
  6429. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6430. pinMode(PS_ON_PIN,INPUT);
  6431. #endif
  6432. SERIAL_ERROR_START;
  6433. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6434. if (full_screen_message != NULL) {
  6435. SERIAL_ERRORLNRPGM(full_screen_message);
  6436. lcd_display_message_fullscreen_P(full_screen_message);
  6437. } else {
  6438. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6439. }
  6440. // FMC small patch to update the LCD before ending
  6441. sei(); // enable interrupts
  6442. for ( int i=5; i--; lcd_update())
  6443. {
  6444. delay(200);
  6445. }
  6446. cli(); // disable interrupts
  6447. suicide();
  6448. while(1)
  6449. {
  6450. #ifdef WATCHDOG
  6451. wdt_reset();
  6452. #endif //WATCHDOG
  6453. /* Intentionally left empty */
  6454. } // Wait for reset
  6455. }
  6456. void Stop()
  6457. {
  6458. disable_heater();
  6459. if(Stopped == false) {
  6460. Stopped = true;
  6461. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6462. SERIAL_ERROR_START;
  6463. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6464. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6465. }
  6466. }
  6467. bool IsStopped() { return Stopped; };
  6468. #ifdef FAST_PWM_FAN
  6469. void setPwmFrequency(uint8_t pin, int val)
  6470. {
  6471. val &= 0x07;
  6472. switch(digitalPinToTimer(pin))
  6473. {
  6474. #if defined(TCCR0A)
  6475. case TIMER0A:
  6476. case TIMER0B:
  6477. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6478. // TCCR0B |= val;
  6479. break;
  6480. #endif
  6481. #if defined(TCCR1A)
  6482. case TIMER1A:
  6483. case TIMER1B:
  6484. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6485. // TCCR1B |= val;
  6486. break;
  6487. #endif
  6488. #if defined(TCCR2)
  6489. case TIMER2:
  6490. case TIMER2:
  6491. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6492. TCCR2 |= val;
  6493. break;
  6494. #endif
  6495. #if defined(TCCR2A)
  6496. case TIMER2A:
  6497. case TIMER2B:
  6498. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6499. TCCR2B |= val;
  6500. break;
  6501. #endif
  6502. #if defined(TCCR3A)
  6503. case TIMER3A:
  6504. case TIMER3B:
  6505. case TIMER3C:
  6506. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6507. TCCR3B |= val;
  6508. break;
  6509. #endif
  6510. #if defined(TCCR4A)
  6511. case TIMER4A:
  6512. case TIMER4B:
  6513. case TIMER4C:
  6514. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6515. TCCR4B |= val;
  6516. break;
  6517. #endif
  6518. #if defined(TCCR5A)
  6519. case TIMER5A:
  6520. case TIMER5B:
  6521. case TIMER5C:
  6522. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6523. TCCR5B |= val;
  6524. break;
  6525. #endif
  6526. }
  6527. }
  6528. #endif //FAST_PWM_FAN
  6529. bool setTargetedHotend(int code){
  6530. tmp_extruder = active_extruder;
  6531. if(code_seen('T')) {
  6532. tmp_extruder = code_value();
  6533. if(tmp_extruder >= EXTRUDERS) {
  6534. SERIAL_ECHO_START;
  6535. switch(code){
  6536. case 104:
  6537. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6538. break;
  6539. case 105:
  6540. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6541. break;
  6542. case 109:
  6543. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6544. break;
  6545. case 218:
  6546. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6547. break;
  6548. case 221:
  6549. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6550. break;
  6551. }
  6552. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6553. return true;
  6554. }
  6555. }
  6556. return false;
  6557. }
  6558. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6559. {
  6560. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6561. {
  6562. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6563. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6564. }
  6565. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6566. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6567. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6568. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6569. total_filament_used = 0;
  6570. }
  6571. float calculate_extruder_multiplier(float diameter) {
  6572. float out = 1.f;
  6573. if (volumetric_enabled && diameter > 0.f) {
  6574. float area = M_PI * diameter * diameter * 0.25;
  6575. out = 1.f / area;
  6576. }
  6577. if (extrudemultiply != 100)
  6578. out *= float(extrudemultiply) * 0.01f;
  6579. return out;
  6580. }
  6581. void calculate_extruder_multipliers() {
  6582. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6583. #if EXTRUDERS > 1
  6584. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6585. #if EXTRUDERS > 2
  6586. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6587. #endif
  6588. #endif
  6589. }
  6590. void delay_keep_alive(unsigned int ms)
  6591. {
  6592. for (;;) {
  6593. manage_heater();
  6594. // Manage inactivity, but don't disable steppers on timeout.
  6595. manage_inactivity(true);
  6596. lcd_update();
  6597. if (ms == 0)
  6598. break;
  6599. else if (ms >= 50) {
  6600. delay(50);
  6601. ms -= 50;
  6602. } else {
  6603. delay(ms);
  6604. ms = 0;
  6605. }
  6606. }
  6607. }
  6608. void wait_for_heater(long codenum) {
  6609. #ifdef TEMP_RESIDENCY_TIME
  6610. long residencyStart;
  6611. residencyStart = -1;
  6612. /* continue to loop until we have reached the target temp
  6613. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6614. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6615. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6616. #else
  6617. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6618. #endif //TEMP_RESIDENCY_TIME
  6619. if ((millis() - codenum) > 1000UL)
  6620. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6621. if (!farm_mode) {
  6622. SERIAL_PROTOCOLPGM("T:");
  6623. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6624. SERIAL_PROTOCOLPGM(" E:");
  6625. SERIAL_PROTOCOL((int)tmp_extruder);
  6626. #ifdef TEMP_RESIDENCY_TIME
  6627. SERIAL_PROTOCOLPGM(" W:");
  6628. if (residencyStart > -1)
  6629. {
  6630. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6631. SERIAL_PROTOCOLLN(codenum);
  6632. }
  6633. else
  6634. {
  6635. SERIAL_PROTOCOLLN("?");
  6636. }
  6637. }
  6638. #else
  6639. SERIAL_PROTOCOLLN("");
  6640. #endif
  6641. codenum = millis();
  6642. }
  6643. manage_heater();
  6644. manage_inactivity();
  6645. lcd_update();
  6646. #ifdef TEMP_RESIDENCY_TIME
  6647. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6648. or when current temp falls outside the hysteresis after target temp was reached */
  6649. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6650. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6651. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6652. {
  6653. residencyStart = millis();
  6654. }
  6655. #endif //TEMP_RESIDENCY_TIME
  6656. }
  6657. }
  6658. void check_babystep() {
  6659. int babystep_z;
  6660. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6661. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6662. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6663. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6664. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6665. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6666. lcd_update_enable(true);
  6667. }
  6668. }
  6669. #ifdef DIS
  6670. void d_setup()
  6671. {
  6672. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6673. pinMode(D_DATA, INPUT_PULLUP);
  6674. pinMode(D_REQUIRE, OUTPUT);
  6675. digitalWrite(D_REQUIRE, HIGH);
  6676. }
  6677. float d_ReadData()
  6678. {
  6679. int digit[13];
  6680. String mergeOutput;
  6681. float output;
  6682. digitalWrite(D_REQUIRE, HIGH);
  6683. for (int i = 0; i<13; i++)
  6684. {
  6685. for (int j = 0; j < 4; j++)
  6686. {
  6687. while (digitalRead(D_DATACLOCK) == LOW) {}
  6688. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6689. bitWrite(digit[i], j, digitalRead(D_DATA));
  6690. }
  6691. }
  6692. digitalWrite(D_REQUIRE, LOW);
  6693. mergeOutput = "";
  6694. output = 0;
  6695. for (int r = 5; r <= 10; r++) //Merge digits
  6696. {
  6697. mergeOutput += digit[r];
  6698. }
  6699. output = mergeOutput.toFloat();
  6700. if (digit[4] == 8) //Handle sign
  6701. {
  6702. output *= -1;
  6703. }
  6704. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6705. {
  6706. output /= 10;
  6707. }
  6708. return output;
  6709. }
  6710. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6711. int t1 = 0;
  6712. int t_delay = 0;
  6713. int digit[13];
  6714. int m;
  6715. char str[3];
  6716. //String mergeOutput;
  6717. char mergeOutput[15];
  6718. float output;
  6719. int mesh_point = 0; //index number of calibration point
  6720. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6721. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6722. float mesh_home_z_search = 4;
  6723. float row[x_points_num];
  6724. int ix = 0;
  6725. int iy = 0;
  6726. char* filename_wldsd = "wldsd.txt";
  6727. char data_wldsd[70];
  6728. char numb_wldsd[10];
  6729. d_setup();
  6730. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6731. // We don't know where we are! HOME!
  6732. // Push the commands to the front of the message queue in the reverse order!
  6733. // There shall be always enough space reserved for these commands.
  6734. repeatcommand_front(); // repeat G80 with all its parameters
  6735. enquecommand_front_P((PSTR("G28 W0")));
  6736. enquecommand_front_P((PSTR("G1 Z5")));
  6737. return;
  6738. }
  6739. bool custom_message_old = custom_message;
  6740. unsigned int custom_message_type_old = custom_message_type;
  6741. unsigned int custom_message_state_old = custom_message_state;
  6742. custom_message = true;
  6743. custom_message_type = 1;
  6744. custom_message_state = (x_points_num * y_points_num) + 10;
  6745. lcd_update(1);
  6746. mbl.reset();
  6747. babystep_undo();
  6748. card.openFile(filename_wldsd, false);
  6749. current_position[Z_AXIS] = mesh_home_z_search;
  6750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6751. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6752. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6753. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6754. setup_for_endstop_move(false);
  6755. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6756. SERIAL_PROTOCOL(x_points_num);
  6757. SERIAL_PROTOCOLPGM(",");
  6758. SERIAL_PROTOCOL(y_points_num);
  6759. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6760. SERIAL_PROTOCOL(mesh_home_z_search);
  6761. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6762. SERIAL_PROTOCOL(x_dimension);
  6763. SERIAL_PROTOCOLPGM(",");
  6764. SERIAL_PROTOCOL(y_dimension);
  6765. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6766. while (mesh_point != x_points_num * y_points_num) {
  6767. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6768. iy = mesh_point / x_points_num;
  6769. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6770. float z0 = 0.f;
  6771. current_position[Z_AXIS] = mesh_home_z_search;
  6772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6773. st_synchronize();
  6774. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6775. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6777. st_synchronize();
  6778. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6779. break;
  6780. card.closefile();
  6781. }
  6782. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6783. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6784. //strcat(data_wldsd, numb_wldsd);
  6785. //MYSERIAL.println(data_wldsd);
  6786. //delay(1000);
  6787. //delay(3000);
  6788. //t1 = millis();
  6789. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6790. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6791. memset(digit, 0, sizeof(digit));
  6792. //cli();
  6793. digitalWrite(D_REQUIRE, LOW);
  6794. for (int i = 0; i<13; i++)
  6795. {
  6796. //t1 = millis();
  6797. for (int j = 0; j < 4; j++)
  6798. {
  6799. while (digitalRead(D_DATACLOCK) == LOW) {}
  6800. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6801. bitWrite(digit[i], j, digitalRead(D_DATA));
  6802. }
  6803. //t_delay = (millis() - t1);
  6804. //SERIAL_PROTOCOLPGM(" ");
  6805. //SERIAL_PROTOCOL_F(t_delay, 5);
  6806. //SERIAL_PROTOCOLPGM(" ");
  6807. }
  6808. //sei();
  6809. digitalWrite(D_REQUIRE, HIGH);
  6810. mergeOutput[0] = '\0';
  6811. output = 0;
  6812. for (int r = 5; r <= 10; r++) //Merge digits
  6813. {
  6814. sprintf(str, "%d", digit[r]);
  6815. strcat(mergeOutput, str);
  6816. }
  6817. output = atof(mergeOutput);
  6818. if (digit[4] == 8) //Handle sign
  6819. {
  6820. output *= -1;
  6821. }
  6822. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6823. {
  6824. output *= 0.1;
  6825. }
  6826. //output = d_ReadData();
  6827. //row[ix] = current_position[Z_AXIS];
  6828. memset(data_wldsd, 0, sizeof(data_wldsd));
  6829. for (int i = 0; i <3; i++) {
  6830. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6831. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6832. strcat(data_wldsd, numb_wldsd);
  6833. strcat(data_wldsd, ";");
  6834. }
  6835. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6836. dtostrf(output, 8, 5, numb_wldsd);
  6837. strcat(data_wldsd, numb_wldsd);
  6838. //strcat(data_wldsd, ";");
  6839. card.write_command(data_wldsd);
  6840. //row[ix] = d_ReadData();
  6841. row[ix] = output; // current_position[Z_AXIS];
  6842. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6843. for (int i = 0; i < x_points_num; i++) {
  6844. SERIAL_PROTOCOLPGM(" ");
  6845. SERIAL_PROTOCOL_F(row[i], 5);
  6846. }
  6847. SERIAL_PROTOCOLPGM("\n");
  6848. }
  6849. custom_message_state--;
  6850. mesh_point++;
  6851. lcd_update(1);
  6852. }
  6853. card.closefile();
  6854. }
  6855. #endif
  6856. void temp_compensation_start() {
  6857. custom_message = true;
  6858. custom_message_type = 5;
  6859. custom_message_state = PINDA_HEAT_T + 1;
  6860. lcd_update(2);
  6861. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6862. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6863. }
  6864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6865. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6866. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6867. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6869. st_synchronize();
  6870. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6871. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6872. delay_keep_alive(1000);
  6873. custom_message_state = PINDA_HEAT_T - i;
  6874. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6875. else lcd_update(1);
  6876. }
  6877. custom_message_type = 0;
  6878. custom_message_state = 0;
  6879. custom_message = false;
  6880. }
  6881. void temp_compensation_apply() {
  6882. int i_add;
  6883. int compensation_value;
  6884. int z_shift = 0;
  6885. float z_shift_mm;
  6886. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6887. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6888. i_add = (target_temperature_bed - 60) / 10;
  6889. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6890. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6891. }else {
  6892. //interpolation
  6893. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6894. }
  6895. SERIAL_PROTOCOLPGM("\n");
  6896. SERIAL_PROTOCOLPGM("Z shift applied:");
  6897. MYSERIAL.print(z_shift_mm);
  6898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6899. st_synchronize();
  6900. plan_set_z_position(current_position[Z_AXIS]);
  6901. }
  6902. else {
  6903. //we have no temp compensation data
  6904. }
  6905. }
  6906. float temp_comp_interpolation(float inp_temperature) {
  6907. //cubic spline interpolation
  6908. int n, i, j, k;
  6909. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6910. int shift[10];
  6911. int temp_C[10];
  6912. n = 6; //number of measured points
  6913. shift[0] = 0;
  6914. for (i = 0; i < n; i++) {
  6915. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6916. temp_C[i] = 50 + i * 10; //temperature in C
  6917. #ifdef PINDA_THERMISTOR
  6918. temp_C[i] = 35 + i * 5; //temperature in C
  6919. #else
  6920. temp_C[i] = 50 + i * 10; //temperature in C
  6921. #endif
  6922. x[i] = (float)temp_C[i];
  6923. f[i] = (float)shift[i];
  6924. }
  6925. if (inp_temperature < x[0]) return 0;
  6926. for (i = n - 1; i>0; i--) {
  6927. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6928. h[i - 1] = x[i] - x[i - 1];
  6929. }
  6930. //*********** formation of h, s , f matrix **************
  6931. for (i = 1; i<n - 1; i++) {
  6932. m[i][i] = 2 * (h[i - 1] + h[i]);
  6933. if (i != 1) {
  6934. m[i][i - 1] = h[i - 1];
  6935. m[i - 1][i] = h[i - 1];
  6936. }
  6937. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6938. }
  6939. //*********** forward elimination **************
  6940. for (i = 1; i<n - 2; i++) {
  6941. temp = (m[i + 1][i] / m[i][i]);
  6942. for (j = 1; j <= n - 1; j++)
  6943. m[i + 1][j] -= temp*m[i][j];
  6944. }
  6945. //*********** backward substitution *********
  6946. for (i = n - 2; i>0; i--) {
  6947. sum = 0;
  6948. for (j = i; j <= n - 2; j++)
  6949. sum += m[i][j] * s[j];
  6950. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6951. }
  6952. for (i = 0; i<n - 1; i++)
  6953. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6954. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6955. b = s[i] / 2;
  6956. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6957. d = f[i];
  6958. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6959. }
  6960. return sum;
  6961. }
  6962. #ifdef PINDA_THERMISTOR
  6963. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6964. {
  6965. if (!temp_cal_active) return 0;
  6966. if (!calibration_status_pinda()) return 0;
  6967. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6968. }
  6969. #endif //PINDA_THERMISTOR
  6970. void long_pause() //long pause print
  6971. {
  6972. st_synchronize();
  6973. //save currently set parameters to global variables
  6974. saved_feedmultiply = feedmultiply;
  6975. HotendTempBckp = degTargetHotend(active_extruder);
  6976. fanSpeedBckp = fanSpeed;
  6977. start_pause_print = millis();
  6978. //save position
  6979. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6980. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6981. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6982. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6983. //retract
  6984. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6986. //lift z
  6987. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6988. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6990. //set nozzle target temperature to 0
  6991. setTargetHotend(0, 0);
  6992. setTargetHotend(0, 1);
  6993. setTargetHotend(0, 2);
  6994. //Move XY to side
  6995. current_position[X_AXIS] = X_PAUSE_POS;
  6996. current_position[Y_AXIS] = Y_PAUSE_POS;
  6997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6998. // Turn off the print fan
  6999. fanSpeed = 0;
  7000. st_synchronize();
  7001. }
  7002. void serialecho_temperatures() {
  7003. float tt = degHotend(active_extruder);
  7004. SERIAL_PROTOCOLPGM("T:");
  7005. SERIAL_PROTOCOL(tt);
  7006. SERIAL_PROTOCOLPGM(" E:");
  7007. SERIAL_PROTOCOL((int)active_extruder);
  7008. SERIAL_PROTOCOLPGM(" B:");
  7009. SERIAL_PROTOCOL_F(degBed(), 1);
  7010. SERIAL_PROTOCOLLN("");
  7011. }
  7012. extern uint32_t sdpos_atomic;
  7013. #ifdef UVLO_SUPPORT
  7014. void uvlo_()
  7015. {
  7016. unsigned long time_start = millis();
  7017. bool sd_print = card.sdprinting;
  7018. // Conserve power as soon as possible.
  7019. disable_x();
  7020. disable_y();
  7021. disable_e0();
  7022. #ifdef TMC2130
  7023. tmc2130_set_current_h(Z_AXIS, 20);
  7024. tmc2130_set_current_r(Z_AXIS, 20);
  7025. tmc2130_set_current_h(E_AXIS, 20);
  7026. tmc2130_set_current_r(E_AXIS, 20);
  7027. #endif //TMC2130
  7028. // Indicate that the interrupt has been triggered.
  7029. // SERIAL_ECHOLNPGM("UVLO");
  7030. // Read out the current Z motor microstep counter. This will be later used
  7031. // for reaching the zero full step before powering off.
  7032. uint16_t z_microsteps = 0;
  7033. #ifdef TMC2130
  7034. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7035. #endif //TMC2130
  7036. // Calculate the file position, from which to resume this print.
  7037. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7038. {
  7039. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7040. sd_position -= sdlen_planner;
  7041. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7042. sd_position -= sdlen_cmdqueue;
  7043. if (sd_position < 0) sd_position = 0;
  7044. }
  7045. // Backup the feedrate in mm/min.
  7046. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7047. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7048. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7049. // are in action.
  7050. planner_abort_hard();
  7051. // Store the current extruder position.
  7052. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7053. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7054. // Clean the input command queue.
  7055. cmdqueue_reset();
  7056. card.sdprinting = false;
  7057. // card.closefile();
  7058. // Enable stepper driver interrupt to move Z axis.
  7059. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7060. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7061. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7062. sei();
  7063. plan_buffer_line(
  7064. current_position[X_AXIS],
  7065. current_position[Y_AXIS],
  7066. current_position[Z_AXIS],
  7067. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7068. 95, active_extruder);
  7069. st_synchronize();
  7070. disable_e0();
  7071. plan_buffer_line(
  7072. current_position[X_AXIS],
  7073. current_position[Y_AXIS],
  7074. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7075. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7076. 40, active_extruder);
  7077. st_synchronize();
  7078. disable_e0();
  7079. plan_buffer_line(
  7080. current_position[X_AXIS],
  7081. current_position[Y_AXIS],
  7082. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7083. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7084. 40, active_extruder);
  7085. st_synchronize();
  7086. disable_e0();
  7087. disable_z();
  7088. // Move Z up to the next 0th full step.
  7089. // Write the file position.
  7090. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7091. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7092. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7093. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7094. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7095. // Scale the z value to 1u resolution.
  7096. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7097. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7098. }
  7099. // Read out the current Z motor microstep counter. This will be later used
  7100. // for reaching the zero full step before powering off.
  7101. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7102. // Store the current position.
  7103. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7104. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7105. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7106. // Store the current feed rate, temperatures and fan speed.
  7107. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7108. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7109. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7110. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7111. // Finaly store the "power outage" flag.
  7112. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7113. st_synchronize();
  7114. SERIAL_ECHOPGM("stps");
  7115. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7116. disable_z();
  7117. // Increment power failure counter
  7118. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7119. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7120. SERIAL_ECHOLNPGM("UVLO - end");
  7121. MYSERIAL.println(millis() - time_start);
  7122. #if 0
  7123. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7124. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7126. st_synchronize();
  7127. #endif
  7128. cli();
  7129. volatile unsigned int ppcount = 0;
  7130. SET_OUTPUT(BEEPER);
  7131. WRITE(BEEPER, HIGH);
  7132. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7133. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7134. }
  7135. WRITE(BEEPER, LOW);
  7136. while(1){
  7137. #if 1
  7138. WRITE(BEEPER, LOW);
  7139. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7140. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7141. }
  7142. #endif
  7143. };
  7144. }
  7145. #endif //UVLO_SUPPORT
  7146. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7147. void setup_fan_interrupt() {
  7148. //INT7
  7149. DDRE &= ~(1 << 7); //input pin
  7150. PORTE &= ~(1 << 7); //no internal pull-up
  7151. //start with sensing rising edge
  7152. EICRB &= ~(1 << 6);
  7153. EICRB |= (1 << 7);
  7154. //enable INT7 interrupt
  7155. EIMSK |= (1 << 7);
  7156. }
  7157. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7158. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7159. ISR(INT7_vect) {
  7160. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7161. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7162. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7163. t_fan_rising_edge = millis_nc();
  7164. }
  7165. else { //interrupt was triggered by falling edge
  7166. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7167. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7168. }
  7169. }
  7170. EICRB ^= (1 << 6); //change edge
  7171. }
  7172. #endif
  7173. #ifdef UVLO_SUPPORT
  7174. void setup_uvlo_interrupt() {
  7175. DDRE &= ~(1 << 4); //input pin
  7176. PORTE &= ~(1 << 4); //no internal pull-up
  7177. //sensing falling edge
  7178. EICRB |= (1 << 0);
  7179. EICRB &= ~(1 << 1);
  7180. //enable INT4 interrupt
  7181. EIMSK |= (1 << 4);
  7182. }
  7183. ISR(INT4_vect) {
  7184. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7185. SERIAL_ECHOLNPGM("INT4");
  7186. if (IS_SD_PRINTING) uvlo_();
  7187. }
  7188. void recover_print(uint8_t automatic) {
  7189. char cmd[30];
  7190. lcd_update_enable(true);
  7191. lcd_update(2);
  7192. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7193. recover_machine_state_after_power_panic();
  7194. // Set the target bed and nozzle temperatures.
  7195. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  7196. enquecommand(cmd);
  7197. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  7198. enquecommand(cmd);
  7199. // Lift the print head, so one may remove the excess priming material.
  7200. if (current_position[Z_AXIS] < 25)
  7201. enquecommand_P(PSTR("G1 Z25 F800"));
  7202. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7203. enquecommand_P(PSTR("G28 X Y"));
  7204. // Set the target bed and nozzle temperatures and wait.
  7205. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7206. enquecommand(cmd);
  7207. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7208. enquecommand(cmd);
  7209. enquecommand_P(PSTR("M83")); //E axis relative mode
  7210. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7211. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7212. if(automatic == 0){
  7213. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7214. }
  7215. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7216. // Mark the power panic status as inactive.
  7217. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7218. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7219. delay_keep_alive(1000);
  7220. }*/
  7221. SERIAL_ECHOPGM("After waiting for temp:");
  7222. SERIAL_ECHOPGM("Current position X_AXIS:");
  7223. MYSERIAL.println(current_position[X_AXIS]);
  7224. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7225. MYSERIAL.println(current_position[Y_AXIS]);
  7226. // Restart the print.
  7227. restore_print_from_eeprom();
  7228. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7229. MYSERIAL.print(current_position[Z_AXIS]);
  7230. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7231. MYSERIAL.print(current_position[E_AXIS]);
  7232. }
  7233. void recover_machine_state_after_power_panic()
  7234. {
  7235. char cmd[30];
  7236. // 1) Recover the logical cordinates at the time of the power panic.
  7237. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7238. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7239. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7240. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7241. // The current position after power panic is moved to the next closest 0th full step.
  7242. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7243. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7244. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7245. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7246. sprintf_P(cmd, PSTR("G92 E"));
  7247. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7248. enquecommand(cmd);
  7249. }
  7250. memcpy(destination, current_position, sizeof(destination));
  7251. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7252. print_world_coordinates();
  7253. // 2) Initialize the logical to physical coordinate system transformation.
  7254. world2machine_initialize();
  7255. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7256. mbl.active = false;
  7257. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7258. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7259. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7260. // Scale the z value to 10u resolution.
  7261. int16_t v;
  7262. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7263. if (v != 0)
  7264. mbl.active = true;
  7265. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7266. }
  7267. if (mbl.active)
  7268. mbl.upsample_3x3();
  7269. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7270. // print_mesh_bed_leveling_table();
  7271. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7272. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7273. babystep_load();
  7274. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7275. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7276. // 6) Power up the motors, mark their positions as known.
  7277. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7278. axis_known_position[X_AXIS] = true; enable_x();
  7279. axis_known_position[Y_AXIS] = true; enable_y();
  7280. axis_known_position[Z_AXIS] = true; enable_z();
  7281. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7282. print_physical_coordinates();
  7283. // 7) Recover the target temperatures.
  7284. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7285. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7286. }
  7287. void restore_print_from_eeprom() {
  7288. float x_rec, y_rec, z_pos;
  7289. int feedrate_rec;
  7290. uint8_t fan_speed_rec;
  7291. char cmd[30];
  7292. char* c;
  7293. char filename[13];
  7294. uint8_t depth = 0;
  7295. char dir_name[9];
  7296. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7297. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7298. SERIAL_ECHOPGM("Feedrate:");
  7299. MYSERIAL.println(feedrate_rec);
  7300. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7301. MYSERIAL.println(int(depth));
  7302. for (int i = 0; i < depth; i++) {
  7303. for (int j = 0; j < 8; j++) {
  7304. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7305. }
  7306. dir_name[8] = '\0';
  7307. MYSERIAL.println(dir_name);
  7308. card.chdir(dir_name);
  7309. }
  7310. for (int i = 0; i < 8; i++) {
  7311. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7312. }
  7313. filename[8] = '\0';
  7314. MYSERIAL.print(filename);
  7315. strcat_P(filename, PSTR(".gco"));
  7316. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7317. for (c = &cmd[4]; *c; c++)
  7318. *c = tolower(*c);
  7319. enquecommand(cmd);
  7320. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7321. SERIAL_ECHOPGM("Position read from eeprom:");
  7322. MYSERIAL.println(position);
  7323. // E axis relative mode.
  7324. enquecommand_P(PSTR("M83"));
  7325. // Move to the XY print position in logical coordinates, where the print has been killed.
  7326. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7327. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7328. strcat_P(cmd, PSTR(" F2000"));
  7329. enquecommand(cmd);
  7330. // Move the Z axis down to the print, in logical coordinates.
  7331. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7332. enquecommand(cmd);
  7333. // Unretract.
  7334. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7335. // Set the feedrate saved at the power panic.
  7336. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7337. enquecommand(cmd);
  7338. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7339. {
  7340. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7341. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7342. }
  7343. // Set the fan speed saved at the power panic.
  7344. strcpy_P(cmd, PSTR("M106 S"));
  7345. strcat(cmd, itostr3(int(fan_speed_rec)));
  7346. enquecommand(cmd);
  7347. // Set a position in the file.
  7348. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7349. enquecommand(cmd);
  7350. // Start SD print.
  7351. enquecommand_P(PSTR("M24"));
  7352. }
  7353. #endif //UVLO_SUPPORT
  7354. ////////////////////////////////////////////////////////////////////////////////
  7355. // save/restore printing
  7356. void stop_and_save_print_to_ram(float z_move, float e_move)
  7357. {
  7358. if (saved_printing) return;
  7359. cli();
  7360. unsigned char nplanner_blocks = number_of_blocks();
  7361. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7362. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7363. saved_sdpos -= sdlen_planner;
  7364. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7365. saved_sdpos -= sdlen_cmdqueue;
  7366. #if 0
  7367. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7368. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7369. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7370. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7371. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7372. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7373. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7374. {
  7375. card.setIndex(saved_sdpos);
  7376. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7377. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7378. MYSERIAL.print(char(card.get()));
  7379. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7380. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7381. MYSERIAL.print(char(card.get()));
  7382. SERIAL_ECHOLNPGM("End of command buffer");
  7383. }
  7384. {
  7385. // Print the content of the planner buffer, line by line:
  7386. card.setIndex(saved_sdpos);
  7387. int8_t iline = 0;
  7388. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7389. SERIAL_ECHOPGM("Planner line (from file): ");
  7390. MYSERIAL.print(int(iline), DEC);
  7391. SERIAL_ECHOPGM(", length: ");
  7392. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7393. SERIAL_ECHOPGM(", steps: (");
  7394. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7395. SERIAL_ECHOPGM(",");
  7396. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7397. SERIAL_ECHOPGM(",");
  7398. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7399. SERIAL_ECHOPGM(",");
  7400. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7401. SERIAL_ECHOPGM("), events: ");
  7402. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7403. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7404. MYSERIAL.print(char(card.get()));
  7405. }
  7406. }
  7407. {
  7408. // Print the content of the command buffer, line by line:
  7409. int8_t iline = 0;
  7410. union {
  7411. struct {
  7412. char lo;
  7413. char hi;
  7414. } lohi;
  7415. uint16_t value;
  7416. } sdlen_single;
  7417. int _bufindr = bufindr;
  7418. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7419. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7420. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7421. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7422. }
  7423. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7424. MYSERIAL.print(int(iline), DEC);
  7425. SERIAL_ECHOPGM(", type: ");
  7426. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7427. SERIAL_ECHOPGM(", len: ");
  7428. MYSERIAL.println(sdlen_single.value, DEC);
  7429. // Print the content of the buffer line.
  7430. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7431. SERIAL_ECHOPGM("Buffer line (from file): ");
  7432. MYSERIAL.print(int(iline), DEC);
  7433. MYSERIAL.println(int(iline), DEC);
  7434. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7435. MYSERIAL.print(char(card.get()));
  7436. if (-- _buflen == 0)
  7437. break;
  7438. // First skip the current command ID and iterate up to the end of the string.
  7439. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7440. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7441. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7442. // If the end of the buffer was empty,
  7443. if (_bufindr == sizeof(cmdbuffer)) {
  7444. // skip to the start and find the nonzero command.
  7445. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7446. }
  7447. }
  7448. }
  7449. #endif
  7450. #if 0
  7451. saved_feedrate2 = feedrate; //save feedrate
  7452. #else
  7453. // Try to deduce the feedrate from the first block of the planner.
  7454. // Speed is in mm/min.
  7455. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7456. #endif
  7457. planner_abort_hard(); //abort printing
  7458. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7459. saved_active_extruder = active_extruder; //save active_extruder
  7460. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7461. cmdqueue_reset(); //empty cmdqueue
  7462. card.sdprinting = false;
  7463. // card.closefile();
  7464. saved_printing = true;
  7465. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7466. st_reset_timer();
  7467. sei();
  7468. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7469. #if 1
  7470. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7471. char buf[48];
  7472. strcpy_P(buf, PSTR("G1 Z"));
  7473. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7474. strcat_P(buf, PSTR(" E"));
  7475. // Relative extrusion
  7476. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7477. strcat_P(buf, PSTR(" F"));
  7478. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7479. // At this point the command queue is empty.
  7480. enquecommand(buf, false);
  7481. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7482. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7483. repeatcommand_front();
  7484. #else
  7485. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7486. st_synchronize(); //wait moving
  7487. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7488. memcpy(destination, current_position, sizeof(destination));
  7489. #endif
  7490. }
  7491. }
  7492. void restore_print_from_ram_and_continue(float e_move)
  7493. {
  7494. if (!saved_printing) return;
  7495. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7496. // current_position[axis] = st_get_position_mm(axis);
  7497. active_extruder = saved_active_extruder; //restore active_extruder
  7498. feedrate = saved_feedrate2; //restore feedrate
  7499. float e = saved_pos[E_AXIS] - e_move;
  7500. plan_set_e_position(e);
  7501. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7502. st_synchronize();
  7503. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7504. memcpy(destination, current_position, sizeof(destination));
  7505. card.setIndex(saved_sdpos);
  7506. sdpos_atomic = saved_sdpos;
  7507. card.sdprinting = true;
  7508. saved_printing = false;
  7509. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7510. }
  7511. void print_world_coordinates()
  7512. {
  7513. SERIAL_ECHOPGM("world coordinates: (");
  7514. MYSERIAL.print(current_position[X_AXIS], 3);
  7515. SERIAL_ECHOPGM(", ");
  7516. MYSERIAL.print(current_position[Y_AXIS], 3);
  7517. SERIAL_ECHOPGM(", ");
  7518. MYSERIAL.print(current_position[Z_AXIS], 3);
  7519. SERIAL_ECHOLNPGM(")");
  7520. }
  7521. void print_physical_coordinates()
  7522. {
  7523. SERIAL_ECHOPGM("physical coordinates: (");
  7524. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7525. SERIAL_ECHOPGM(", ");
  7526. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7527. SERIAL_ECHOPGM(", ");
  7528. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7529. SERIAL_ECHOLNPGM(")");
  7530. }
  7531. void print_mesh_bed_leveling_table()
  7532. {
  7533. SERIAL_ECHOPGM("mesh bed leveling: ");
  7534. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7535. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7536. MYSERIAL.print(mbl.z_values[y][x], 3);
  7537. SERIAL_ECHOPGM(" ");
  7538. }
  7539. SERIAL_ECHOLNPGM("");
  7540. }
  7541. #define FIL_LOAD_LENGTH 60