Marlin_main.cpp 305 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  121. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  122. //Implemented Codes
  123. //-------------------
  124. // PRUSA CODES
  125. // P F - Returns FW versions
  126. // P R - Returns revision of printer
  127. // G0 -> G1
  128. // G1 - Coordinated Movement X Y Z E
  129. // G2 - CW ARC
  130. // G3 - CCW ARC
  131. // G4 - Dwell S<seconds> or P<milliseconds>
  132. // G10 - retract filament according to settings of M207
  133. // G11 - retract recover filament according to settings of M208
  134. // G28 - Home all Axis
  135. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  136. // G30 - Single Z Probe, probes bed at current XY location.
  137. // G31 - Dock sled (Z_PROBE_SLED only)
  138. // G32 - Undock sled (Z_PROBE_SLED only)
  139. // G80 - Automatic mesh bed leveling
  140. // G81 - Print bed profile
  141. // G90 - Use Absolute Coordinates
  142. // G91 - Use Relative Coordinates
  143. // G92 - Set current position to coordinates given
  144. // M Codes
  145. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  146. // M1 - Same as M0
  147. // M17 - Enable/Power all stepper motors
  148. // M18 - Disable all stepper motors; same as M84
  149. // M20 - List SD card
  150. // M21 - Init SD card
  151. // M22 - Release SD card
  152. // M23 - Select SD file (M23 filename.g)
  153. // M24 - Start/resume SD print
  154. // M25 - Pause SD print
  155. // M26 - Set SD position in bytes (M26 S12345)
  156. // M27 - Report SD print status
  157. // M28 - Start SD write (M28 filename.g)
  158. // M29 - Stop SD write
  159. // M30 - Delete file from SD (M30 filename.g)
  160. // M31 - Output time since last M109 or SD card start to serial
  161. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  162. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  163. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  164. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  165. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  166. // M73 - Show percent done and print time remaining
  167. // M80 - Turn on Power Supply
  168. // M81 - Turn off Power Supply
  169. // M82 - Set E codes absolute (default)
  170. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  171. // M84 - Disable steppers until next move,
  172. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  173. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  174. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  175. // M92 - Set axis_steps_per_unit - same syntax as G92
  176. // M104 - Set extruder target temp
  177. // M105 - Read current temp
  178. // M106 - Fan on
  179. // M107 - Fan off
  180. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  181. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  182. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  183. // M112 - Emergency stop
  184. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  185. // M114 - Output current position to serial port
  186. // M115 - Capabilities string
  187. // M117 - display message
  188. // M119 - Output Endstop status to serial port
  189. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  190. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  191. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  193. // M140 - Set bed target temp
  194. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  195. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  196. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  197. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  198. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  199. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  200. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  201. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  202. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  203. // M206 - set additional homing offset
  204. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  205. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  206. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  207. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  208. // M220 S<factor in percent>- set speed factor override percentage
  209. // M221 S<factor in percent>- set extrude factor override percentage
  210. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  211. // M240 - Trigger a camera to take a photograph
  212. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  213. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  214. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  215. // M301 - Set PID parameters P I and D
  216. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  217. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  218. // M304 - Set bed PID parameters P I and D
  219. // M400 - Finish all moves
  220. // M401 - Lower z-probe if present
  221. // M402 - Raise z-probe if present
  222. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  223. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  224. // M406 - Turn off Filament Sensor extrusion control
  225. // M407 - Displays measured filament diameter
  226. // M500 - stores parameters in EEPROM
  227. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  228. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  229. // M503 - print the current settings (from memory not from EEPROM)
  230. // M509 - force language selection on next restart
  231. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  232. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  233. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  234. // M860 - Wait for PINDA thermistor to reach target temperature.
  235. // M861 - Set / Read PINDA temperature compensation offsets
  236. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  237. // M907 - Set digital trimpot motor current using axis codes.
  238. // M908 - Control digital trimpot directly.
  239. // M350 - Set microstepping mode.
  240. // M351 - Toggle MS1 MS2 pins directly.
  241. // M928 - Start SD logging (M928 filename.g) - ended by M29
  242. // M999 - Restart after being stopped by error
  243. //Stepper Movement Variables
  244. //===========================================================================
  245. //=============================imported variables============================
  246. //===========================================================================
  247. //===========================================================================
  248. //=============================public variables=============================
  249. //===========================================================================
  250. #ifdef SDSUPPORT
  251. CardReader card;
  252. #endif
  253. unsigned long PingTime = millis();
  254. unsigned long NcTime;
  255. //used for PINDA temp calibration and pause print
  256. #define DEFAULT_RETRACTION 1
  257. #define DEFAULT_RETRACTION_MM 4 //MM
  258. float default_retraction = DEFAULT_RETRACTION;
  259. float homing_feedrate[] = HOMING_FEEDRATE;
  260. // Currently only the extruder axis may be switched to a relative mode.
  261. // Other axes are always absolute or relative based on the common relative_mode flag.
  262. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  263. int feedmultiply=100; //100->1 200->2
  264. int saved_feedmultiply;
  265. int extrudemultiply=100; //100->1 200->2
  266. int extruder_multiply[EXTRUDERS] = {100
  267. #if EXTRUDERS > 1
  268. , 100
  269. #if EXTRUDERS > 2
  270. , 100
  271. #endif
  272. #endif
  273. };
  274. int bowden_length[4] = {385, 385, 385, 385};
  275. bool is_usb_printing = false;
  276. bool homing_flag = false;
  277. bool temp_cal_active = false;
  278. unsigned long kicktime = millis()+100000;
  279. unsigned int usb_printing_counter;
  280. int8_t lcd_change_fil_state = 0;
  281. int feedmultiplyBckp = 100;
  282. int fanSpeedBckp = 0;
  283. unsigned long pause_time = 0;
  284. unsigned long start_pause_print = millis();
  285. unsigned long t_fan_rising_edge = millis();
  286. LongTimer safetyTimer;
  287. LongTimer crashDetTimer;
  288. //unsigned long load_filament_time;
  289. bool mesh_bed_leveling_flag = false;
  290. bool mesh_bed_run_from_menu = false;
  291. int8_t FarmMode = 0;
  292. bool prusa_sd_card_upload = false;
  293. unsigned int status_number = 0;
  294. unsigned long total_filament_used;
  295. unsigned int heating_status;
  296. unsigned int heating_status_counter;
  297. bool loading_flag = false;
  298. char snmm_filaments_used = 0;
  299. bool fan_state[2];
  300. int fan_edge_counter[2];
  301. int fan_speed[2];
  302. char dir_names[3][9];
  303. bool sortAlpha = false;
  304. bool volumetric_enabled = false;
  305. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 1
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 2
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #endif
  311. #endif
  312. };
  313. float extruder_multiplier[EXTRUDERS] = {1.0
  314. #if EXTRUDERS > 1
  315. , 1.0
  316. #if EXTRUDERS > 2
  317. , 1.0
  318. #endif
  319. #endif
  320. };
  321. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  322. //shortcuts for more readable code
  323. #define _x current_position[X_AXIS]
  324. #define _y current_position[Y_AXIS]
  325. #define _z current_position[Z_AXIS]
  326. #define _e current_position[E_AXIS]
  327. float add_homing[3]={0,0,0};
  328. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  329. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  330. bool axis_known_position[3] = {false, false, false};
  331. float zprobe_zoffset;
  332. // Extruder offset
  333. #if EXTRUDERS > 1
  334. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  335. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  336. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  337. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  338. #endif
  339. };
  340. #endif
  341. uint8_t active_extruder = 0;
  342. int fanSpeed=0;
  343. #ifdef FWRETRACT
  344. bool autoretract_enabled=false;
  345. bool retracted[EXTRUDERS]={false
  346. #if EXTRUDERS > 1
  347. , false
  348. #if EXTRUDERS > 2
  349. , false
  350. #endif
  351. #endif
  352. };
  353. bool retracted_swap[EXTRUDERS]={false
  354. #if EXTRUDERS > 1
  355. , false
  356. #if EXTRUDERS > 2
  357. , false
  358. #endif
  359. #endif
  360. };
  361. float retract_length = RETRACT_LENGTH;
  362. float retract_length_swap = RETRACT_LENGTH_SWAP;
  363. float retract_feedrate = RETRACT_FEEDRATE;
  364. float retract_zlift = RETRACT_ZLIFT;
  365. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  366. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  367. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  368. #endif
  369. #ifdef PS_DEFAULT_OFF
  370. bool powersupply = false;
  371. #else
  372. bool powersupply = true;
  373. #endif
  374. bool cancel_heatup = false ;
  375. #ifdef HOST_KEEPALIVE_FEATURE
  376. int busy_state = NOT_BUSY;
  377. static long prev_busy_signal_ms = -1;
  378. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  379. #else
  380. #define host_keepalive();
  381. #define KEEPALIVE_STATE(n);
  382. #endif
  383. const char errormagic[] PROGMEM = "Error:";
  384. const char echomagic[] PROGMEM = "echo:";
  385. bool no_response = false;
  386. uint8_t important_status;
  387. uint8_t saved_filament_type;
  388. // save/restore printing
  389. bool saved_printing = false;
  390. // save/restore printing in case that mmu was not responding
  391. bool mmu_print_saved = false;
  392. // storing estimated time to end of print counted by slicer
  393. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  394. uint32_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  396. uint32_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  397. //===========================================================================
  398. //=============================Private Variables=============================
  399. //===========================================================================
  400. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  401. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  402. // For tracing an arc
  403. static float offset[3] = {0.0, 0.0, 0.0};
  404. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  405. // Determines Absolute or Relative Coordinates.
  406. // Also there is bool axis_relative_modes[] per axis flag.
  407. static bool relative_mode = false;
  408. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  409. //static float tt = 0;
  410. //static float bt = 0;
  411. //Inactivity shutdown variables
  412. static unsigned long previous_millis_cmd = 0;
  413. unsigned long max_inactive_time = 0;
  414. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  415. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  416. unsigned long starttime=0;
  417. unsigned long stoptime=0;
  418. unsigned long _usb_timer = 0;
  419. bool extruder_under_pressure = true;
  420. bool Stopped=false;
  421. #if NUM_SERVOS > 0
  422. Servo servos[NUM_SERVOS];
  423. #endif
  424. bool CooldownNoWait = true;
  425. bool target_direction;
  426. //Insert variables if CHDK is defined
  427. #ifdef CHDK
  428. unsigned long chdkHigh = 0;
  429. boolean chdkActive = false;
  430. #endif
  431. // save/restore printing
  432. static uint32_t saved_sdpos = 0;
  433. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  434. static float saved_pos[4] = { 0, 0, 0, 0 };
  435. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  436. static float saved_feedrate2 = 0;
  437. static uint8_t saved_active_extruder = 0;
  438. static float saved_extruder_temperature = 0.0;
  439. static bool saved_extruder_under_pressure = false;
  440. static bool saved_extruder_relative_mode = false;
  441. static int saved_fanSpeed = 0;
  442. //===========================================================================
  443. //=============================Routines======================================
  444. //===========================================================================
  445. static void get_arc_coordinates();
  446. static bool setTargetedHotend(int code, uint8_t &extruder);
  447. static void print_time_remaining_init();
  448. static void wait_for_heater(long codenum, uint8_t extruder);
  449. uint16_t gcode_in_progress = 0;
  450. uint16_t mcode_in_progress = 0;
  451. void serial_echopair_P(const char *s_P, float v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, double v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. void serial_echopair_P(const char *s_P, unsigned long v)
  456. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  457. #ifdef SDSUPPORT
  458. #include "SdFatUtil.h"
  459. int freeMemory() { return SdFatUtil::FreeRam(); }
  460. #else
  461. extern "C" {
  462. extern unsigned int __bss_end;
  463. extern unsigned int __heap_start;
  464. extern void *__brkval;
  465. int freeMemory() {
  466. int free_memory;
  467. if ((int)__brkval == 0)
  468. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  469. else
  470. free_memory = ((int)&free_memory) - ((int)__brkval);
  471. return free_memory;
  472. }
  473. }
  474. #endif //!SDSUPPORT
  475. void setup_killpin()
  476. {
  477. #if defined(KILL_PIN) && KILL_PIN > -1
  478. SET_INPUT(KILL_PIN);
  479. WRITE(KILL_PIN,HIGH);
  480. #endif
  481. }
  482. // Set home pin
  483. void setup_homepin(void)
  484. {
  485. #if defined(HOME_PIN) && HOME_PIN > -1
  486. SET_INPUT(HOME_PIN);
  487. WRITE(HOME_PIN,HIGH);
  488. #endif
  489. }
  490. void setup_photpin()
  491. {
  492. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  493. SET_OUTPUT(PHOTOGRAPH_PIN);
  494. WRITE(PHOTOGRAPH_PIN, LOW);
  495. #endif
  496. }
  497. void setup_powerhold()
  498. {
  499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  500. SET_OUTPUT(SUICIDE_PIN);
  501. WRITE(SUICIDE_PIN, HIGH);
  502. #endif
  503. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  504. SET_OUTPUT(PS_ON_PIN);
  505. #if defined(PS_DEFAULT_OFF)
  506. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  507. #else
  508. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  509. #endif
  510. #endif
  511. }
  512. void suicide()
  513. {
  514. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  515. SET_OUTPUT(SUICIDE_PIN);
  516. WRITE(SUICIDE_PIN, LOW);
  517. #endif
  518. }
  519. void servo_init()
  520. {
  521. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  522. servos[0].attach(SERVO0_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  525. servos[1].attach(SERVO1_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  528. servos[2].attach(SERVO2_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  531. servos[3].attach(SERVO3_PIN);
  532. #endif
  533. #if (NUM_SERVOS >= 5)
  534. #error "TODO: enter initalisation code for more servos"
  535. #endif
  536. }
  537. bool fans_check_enabled = true;
  538. #ifdef TMC2130
  539. extern int8_t CrashDetectMenu;
  540. void crashdet_enable()
  541. {
  542. tmc2130_sg_stop_on_crash = true;
  543. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  544. CrashDetectMenu = 1;
  545. }
  546. void crashdet_disable()
  547. {
  548. tmc2130_sg_stop_on_crash = false;
  549. tmc2130_sg_crash = 0;
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  551. CrashDetectMenu = 0;
  552. }
  553. void crashdet_stop_and_save_print()
  554. {
  555. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  556. }
  557. void crashdet_restore_print_and_continue()
  558. {
  559. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  560. // babystep_apply();
  561. }
  562. void crashdet_stop_and_save_print2()
  563. {
  564. cli();
  565. planner_abort_hard(); //abort printing
  566. cmdqueue_reset(); //empty cmdqueue
  567. card.sdprinting = false;
  568. card.closefile();
  569. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  570. st_reset_timer();
  571. sei();
  572. }
  573. void crashdet_detected(uint8_t mask)
  574. {
  575. st_synchronize();
  576. static uint8_t crashDet_counter = 0;
  577. bool automatic_recovery_after_crash = true;
  578. if (crashDet_counter++ == 0) {
  579. crashDetTimer.start();
  580. }
  581. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  582. crashDetTimer.stop();
  583. crashDet_counter = 0;
  584. }
  585. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  586. automatic_recovery_after_crash = false;
  587. crashDetTimer.stop();
  588. crashDet_counter = 0;
  589. }
  590. else {
  591. crashDetTimer.start();
  592. }
  593. lcd_update_enable(true);
  594. lcd_clear();
  595. lcd_update(2);
  596. if (mask & X_AXIS_MASK)
  597. {
  598. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  599. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  600. }
  601. if (mask & Y_AXIS_MASK)
  602. {
  603. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  604. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  605. }
  606. lcd_update_enable(true);
  607. lcd_update(2);
  608. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  609. gcode_G28(true, true, false); //home X and Y
  610. st_synchronize();
  611. if (automatic_recovery_after_crash) {
  612. enquecommand_P(PSTR("CRASH_RECOVER"));
  613. }else{
  614. setTargetHotend(0, active_extruder);
  615. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  616. lcd_update_enable(true);
  617. if (yesno)
  618. {
  619. enquecommand_P(PSTR("CRASH_RECOVER"));
  620. }
  621. else
  622. {
  623. enquecommand_P(PSTR("CRASH_CANCEL"));
  624. }
  625. }
  626. }
  627. void crashdet_recover()
  628. {
  629. crashdet_restore_print_and_continue();
  630. tmc2130_sg_stop_on_crash = true;
  631. }
  632. void crashdet_cancel()
  633. {
  634. tmc2130_sg_stop_on_crash = true;
  635. if (saved_printing_type == PRINTING_TYPE_SD) {
  636. lcd_print_stop();
  637. }else if(saved_printing_type == PRINTING_TYPE_USB){
  638. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  639. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  640. }
  641. }
  642. #endif //TMC2130
  643. void failstats_reset_print()
  644. {
  645. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  646. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  647. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  648. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  649. }
  650. #ifdef MESH_BED_LEVELING
  651. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  652. #endif
  653. // Factory reset function
  654. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  655. // Level input parameter sets depth of reset
  656. int er_progress = 0;
  657. static void factory_reset(char level)
  658. {
  659. lcd_clear();
  660. switch (level) {
  661. // Level 0: Language reset
  662. case 0:
  663. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  664. WRITE(BEEPER, HIGH);
  665. _delay_ms(100);
  666. WRITE(BEEPER, LOW);
  667. lang_reset();
  668. break;
  669. //Level 1: Reset statistics
  670. case 1:
  671. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  672. WRITE(BEEPER, HIGH);
  673. _delay_ms(100);
  674. WRITE(BEEPER, LOW);
  675. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  676. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  677. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  678. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  679. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  680. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  681. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  682. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  683. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  684. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  685. lcd_menu_statistics();
  686. break;
  687. // Level 2: Prepare for shipping
  688. case 2:
  689. //lcd_puts_P(PSTR("Factory RESET"));
  690. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  691. // Force language selection at the next boot up.
  692. lang_reset();
  693. // Force the "Follow calibration flow" message at the next boot up.
  694. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  695. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  696. farm_no = 0;
  697. farm_mode = false;
  698. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  699. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  700. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  701. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  702. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  703. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  704. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  705. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  706. #ifdef FILAMENT_SENSOR
  707. fsensor_enable();
  708. fsensor_autoload_set(true);
  709. #endif //FILAMENT_SENSOR
  710. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  711. WRITE(BEEPER, HIGH);
  712. _delay_ms(100);
  713. WRITE(BEEPER, LOW);
  714. //_delay_ms(2000);
  715. break;
  716. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  717. case 3:
  718. lcd_puts_P(PSTR("Factory RESET"));
  719. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  720. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. er_progress = 0;
  725. lcd_puts_at_P(3, 3, PSTR(" "));
  726. lcd_set_cursor(3, 3);
  727. lcd_print(er_progress);
  728. // Erase EEPROM
  729. for (int i = 0; i < 4096; i++) {
  730. eeprom_write_byte((uint8_t*)i, 0xFF);
  731. if (i % 41 == 0) {
  732. er_progress++;
  733. lcd_puts_at_P(3, 3, PSTR(" "));
  734. lcd_set_cursor(3, 3);
  735. lcd_print(er_progress);
  736. lcd_puts_P(PSTR("%"));
  737. }
  738. }
  739. break;
  740. case 4:
  741. bowden_menu();
  742. break;
  743. default:
  744. break;
  745. }
  746. }
  747. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  748. int uart_putchar(char c, FILE *)
  749. {
  750. MYSERIAL.write(c);
  751. return 0;
  752. }
  753. void lcd_splash()
  754. {
  755. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  756. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  757. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  758. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  759. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  760. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  761. }
  762. void factory_reset()
  763. {
  764. KEEPALIVE_STATE(PAUSED_FOR_USER);
  765. if (!READ(BTN_ENC))
  766. {
  767. _delay_ms(1000);
  768. if (!READ(BTN_ENC))
  769. {
  770. lcd_clear();
  771. lcd_puts_P(PSTR("Factory RESET"));
  772. SET_OUTPUT(BEEPER);
  773. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  774. WRITE(BEEPER, HIGH);
  775. while (!READ(BTN_ENC));
  776. WRITE(BEEPER, LOW);
  777. _delay_ms(2000);
  778. char level = reset_menu();
  779. factory_reset(level);
  780. switch (level) {
  781. case 0: _delay_ms(0); break;
  782. case 1: _delay_ms(0); break;
  783. case 2: _delay_ms(0); break;
  784. case 3: _delay_ms(0); break;
  785. }
  786. }
  787. }
  788. KEEPALIVE_STATE(IN_HANDLER);
  789. }
  790. void show_fw_version_warnings() {
  791. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  792. switch (FW_DEV_VERSION) {
  793. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  794. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  795. case(FW_VERSION_DEVEL):
  796. case(FW_VERSION_DEBUG):
  797. lcd_update_enable(false);
  798. lcd_clear();
  799. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  800. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  801. #else
  802. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  803. #endif
  804. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  805. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  806. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  807. lcd_wait_for_click();
  808. break;
  809. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  810. }
  811. lcd_update_enable(true);
  812. }
  813. uint8_t check_printer_version()
  814. {
  815. uint8_t version_changed = 0;
  816. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  817. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  818. if (printer_type != PRINTER_TYPE) {
  819. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  820. else version_changed |= 0b10;
  821. }
  822. if (motherboard != MOTHERBOARD) {
  823. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  824. else version_changed |= 0b01;
  825. }
  826. return version_changed;
  827. }
  828. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  829. {
  830. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  831. }
  832. #ifdef BOOTAPP
  833. #include "bootapp.h" //bootloader support
  834. #endif //BOOTAPP
  835. #if (LANG_MODE != 0) //secondary language support
  836. #ifdef W25X20CL
  837. // language update from external flash
  838. #define LANGBOOT_BLOCKSIZE 0x1000u
  839. #define LANGBOOT_RAMBUFFER 0x0800
  840. void update_sec_lang_from_external_flash()
  841. {
  842. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  843. {
  844. uint8_t lang = boot_reserved >> 4;
  845. uint8_t state = boot_reserved & 0xf;
  846. lang_table_header_t header;
  847. uint32_t src_addr;
  848. if (lang_get_header(lang, &header, &src_addr))
  849. {
  850. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  851. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  852. delay(100);
  853. boot_reserved = (state + 1) | (lang << 4);
  854. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  855. {
  856. cli();
  857. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  858. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  859. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  860. if (state == 0)
  861. {
  862. //TODO - check header integrity
  863. }
  864. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  865. }
  866. else
  867. {
  868. //TODO - check sec lang data integrity
  869. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  870. }
  871. }
  872. }
  873. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  874. }
  875. #ifdef DEBUG_W25X20CL
  876. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  877. {
  878. lang_table_header_t header;
  879. uint8_t count = 0;
  880. uint32_t addr = 0x00000;
  881. while (1)
  882. {
  883. printf_P(_n("LANGTABLE%d:"), count);
  884. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  885. if (header.magic != LANG_MAGIC)
  886. {
  887. printf_P(_n("NG!\n"));
  888. break;
  889. }
  890. printf_P(_n("OK\n"));
  891. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  892. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  893. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  894. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  895. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  896. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  897. addr += header.size;
  898. codes[count] = header.code;
  899. count ++;
  900. }
  901. return count;
  902. }
  903. void list_sec_lang_from_external_flash()
  904. {
  905. uint16_t codes[8];
  906. uint8_t count = lang_xflash_enum_codes(codes);
  907. printf_P(_n("XFlash lang count = %hhd\n"), count);
  908. }
  909. #endif //DEBUG_W25X20CL
  910. #endif //W25X20CL
  911. #endif //(LANG_MODE != 0)
  912. // "Setup" function is called by the Arduino framework on startup.
  913. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  914. // are initialized by the main() routine provided by the Arduino framework.
  915. void setup()
  916. {
  917. mmu_init();
  918. ultralcd_init();
  919. spi_init();
  920. lcd_splash();
  921. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  922. #ifdef W25X20CL
  923. if (!w25x20cl_init())
  924. kill(_i("External SPI flash W25X20CL not responding."));
  925. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  926. optiboot_w25x20cl_enter();
  927. #endif
  928. #if (LANG_MODE != 0) //secondary language support
  929. #ifdef W25X20CL
  930. if (w25x20cl_init())
  931. update_sec_lang_from_external_flash();
  932. #endif //W25X20CL
  933. #endif //(LANG_MODE != 0)
  934. setup_killpin();
  935. setup_powerhold();
  936. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  937. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  938. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  939. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  940. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  941. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  942. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  943. if (farm_mode)
  944. {
  945. no_response = true; //we need confirmation by recieving PRUSA thx
  946. important_status = 8;
  947. prusa_statistics(8);
  948. selectedSerialPort = 1;
  949. #ifdef TMC2130
  950. //increased extruder current (PFW363)
  951. tmc2130_current_h[E_AXIS] = 36;
  952. tmc2130_current_r[E_AXIS] = 36;
  953. #endif //TMC2130
  954. #ifdef FILAMENT_SENSOR
  955. //disabled filament autoload (PFW360)
  956. fsensor_autoload_set(false);
  957. #endif //FILAMENT_SENSOR
  958. }
  959. MYSERIAL.begin(BAUDRATE);
  960. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  961. stdout = uartout;
  962. SERIAL_PROTOCOLLNPGM("start");
  963. SERIAL_ECHO_START;
  964. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  965. #ifdef DEBUG_SEC_LANG
  966. lang_table_header_t header;
  967. uint32_t src_addr = 0x00000;
  968. if (lang_get_header(1, &header, &src_addr))
  969. {
  970. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  971. #define LT_PRINT_TEST 2
  972. // flash usage
  973. // total p.test
  974. //0 252718 t+c text code
  975. //1 253142 424 170 254
  976. //2 253040 322 164 158
  977. //3 253248 530 135 395
  978. #if (LT_PRINT_TEST==1) //not optimized printf
  979. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  980. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  981. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  982. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  983. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  984. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  985. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  986. #elif (LT_PRINT_TEST==2) //optimized printf
  987. printf_P(
  988. _n(
  989. " _src_addr = 0x%08lx\n"
  990. " _lt_magic = 0x%08lx %S\n"
  991. " _lt_size = 0x%04x (%d)\n"
  992. " _lt_count = 0x%04x (%d)\n"
  993. " _lt_chsum = 0x%04x\n"
  994. " _lt_code = 0x%04x (%c%c)\n"
  995. " _lt_resv1 = 0x%08lx\n"
  996. ),
  997. src_addr,
  998. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  999. header.size, header.size,
  1000. header.count, header.count,
  1001. header.checksum,
  1002. header.code, header.code >> 8, header.code & 0xff,
  1003. header.signature
  1004. );
  1005. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1006. MYSERIAL.print(" _src_addr = 0x");
  1007. MYSERIAL.println(src_addr, 16);
  1008. MYSERIAL.print(" _lt_magic = 0x");
  1009. MYSERIAL.print(header.magic, 16);
  1010. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1011. MYSERIAL.print(" _lt_size = 0x");
  1012. MYSERIAL.print(header.size, 16);
  1013. MYSERIAL.print(" (");
  1014. MYSERIAL.print(header.size, 10);
  1015. MYSERIAL.println(")");
  1016. MYSERIAL.print(" _lt_count = 0x");
  1017. MYSERIAL.print(header.count, 16);
  1018. MYSERIAL.print(" (");
  1019. MYSERIAL.print(header.count, 10);
  1020. MYSERIAL.println(")");
  1021. MYSERIAL.print(" _lt_chsum = 0x");
  1022. MYSERIAL.println(header.checksum, 16);
  1023. MYSERIAL.print(" _lt_code = 0x");
  1024. MYSERIAL.print(header.code, 16);
  1025. MYSERIAL.print(" (");
  1026. MYSERIAL.print((char)(header.code >> 8), 0);
  1027. MYSERIAL.print((char)(header.code & 0xff), 0);
  1028. MYSERIAL.println(")");
  1029. MYSERIAL.print(" _lt_resv1 = 0x");
  1030. MYSERIAL.println(header.signature, 16);
  1031. #endif //(LT_PRINT_TEST==)
  1032. #undef LT_PRINT_TEST
  1033. #if 0
  1034. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1035. for (uint16_t i = 0; i < 1024; i++)
  1036. {
  1037. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1038. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1039. if ((i % 16) == 15) putchar('\n');
  1040. }
  1041. #endif
  1042. uint16_t sum = 0;
  1043. for (uint16_t i = 0; i < header.size; i++)
  1044. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1045. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1046. sum -= header.checksum; //subtract checksum
  1047. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1048. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1049. if (sum == header.checksum)
  1050. printf_P(_n("Checksum OK\n"), sum);
  1051. else
  1052. printf_P(_n("Checksum NG\n"), sum);
  1053. }
  1054. else
  1055. printf_P(_n("lang_get_header failed!\n"));
  1056. #if 0
  1057. for (uint16_t i = 0; i < 1024*10; i++)
  1058. {
  1059. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1060. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1061. if ((i % 16) == 15) putchar('\n');
  1062. }
  1063. #endif
  1064. #if 0
  1065. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1066. for (int i = 0; i < 4096; ++i) {
  1067. int b = eeprom_read_byte((unsigned char*)i);
  1068. if (b != 255) {
  1069. SERIAL_ECHO(i);
  1070. SERIAL_ECHO(":");
  1071. SERIAL_ECHO(b);
  1072. SERIAL_ECHOLN("");
  1073. }
  1074. }
  1075. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1076. #endif
  1077. #endif //DEBUG_SEC_LANG
  1078. // Check startup - does nothing if bootloader sets MCUSR to 0
  1079. byte mcu = MCUSR;
  1080. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1081. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1082. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1083. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1084. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1085. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1086. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1087. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1088. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1089. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1090. MCUSR = 0;
  1091. //SERIAL_ECHORPGM(MSG_MARLIN);
  1092. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1093. #ifdef STRING_VERSION_CONFIG_H
  1094. #ifdef STRING_CONFIG_H_AUTHOR
  1095. SERIAL_ECHO_START;
  1096. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1097. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1098. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1099. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1100. SERIAL_ECHOPGM("Compiled: ");
  1101. SERIAL_ECHOLNPGM(__DATE__);
  1102. #endif
  1103. #endif
  1104. SERIAL_ECHO_START;
  1105. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1106. SERIAL_ECHO(freeMemory());
  1107. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1108. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1109. //lcd_update_enable(false); // why do we need this?? - andre
  1110. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1111. bool previous_settings_retrieved = false;
  1112. uint8_t hw_changed = check_printer_version();
  1113. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1114. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1115. }
  1116. else { //printer version was changed so use default settings
  1117. Config_ResetDefault();
  1118. }
  1119. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1120. tp_init(); // Initialize temperature loop
  1121. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1122. plan_init(); // Initialize planner;
  1123. factory_reset();
  1124. lcd_encoder_diff=0;
  1125. #ifdef TMC2130
  1126. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1127. if (silentMode == 0xff) silentMode = 0;
  1128. tmc2130_mode = TMC2130_MODE_NORMAL;
  1129. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1130. if (crashdet && !farm_mode)
  1131. {
  1132. crashdet_enable();
  1133. puts_P(_N("CrashDetect ENABLED!"));
  1134. }
  1135. else
  1136. {
  1137. crashdet_disable();
  1138. puts_P(_N("CrashDetect DISABLED"));
  1139. }
  1140. #ifdef TMC2130_LINEARITY_CORRECTION
  1141. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1142. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1143. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1144. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1145. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1146. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1147. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1148. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1149. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1150. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1151. #endif //TMC2130_LINEARITY_CORRECTION
  1152. #ifdef TMC2130_VARIABLE_RESOLUTION
  1153. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1154. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1155. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1156. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1157. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1158. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1159. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1160. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1161. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1162. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1163. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1164. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1165. #else //TMC2130_VARIABLE_RESOLUTION
  1166. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1167. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1168. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1169. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1170. #endif //TMC2130_VARIABLE_RESOLUTION
  1171. #endif //TMC2130
  1172. st_init(); // Initialize stepper, this enables interrupts!
  1173. #ifdef TMC2130
  1174. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1175. update_mode_profile();
  1176. tmc2130_init();
  1177. #endif //TMC2130
  1178. setup_photpin();
  1179. servo_init();
  1180. // Reset the machine correction matrix.
  1181. // It does not make sense to load the correction matrix until the machine is homed.
  1182. world2machine_reset();
  1183. #ifdef FILAMENT_SENSOR
  1184. fsensor_init();
  1185. #endif //FILAMENT_SENSOR
  1186. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1187. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1188. #endif
  1189. setup_homepin();
  1190. #ifdef TMC2130
  1191. if (1) {
  1192. // try to run to zero phase before powering the Z motor.
  1193. // Move in negative direction
  1194. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1195. // Round the current micro-micro steps to micro steps.
  1196. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1197. // Until the phase counter is reset to zero.
  1198. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1199. delay(2);
  1200. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1201. delay(2);
  1202. }
  1203. }
  1204. #endif //TMC2130
  1205. #if defined(Z_AXIS_ALWAYS_ON)
  1206. enable_z();
  1207. #endif
  1208. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1209. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1210. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1211. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1212. if (farm_mode)
  1213. {
  1214. prusa_statistics(8);
  1215. }
  1216. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1217. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1218. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1219. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1220. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1221. // where all the EEPROM entries are set to 0x0ff.
  1222. // Once a firmware boots up, it forces at least a language selection, which changes
  1223. // EEPROM_LANG to number lower than 0x0ff.
  1224. // 1) Set a high power mode.
  1225. #ifdef TMC2130
  1226. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1227. tmc2130_mode = TMC2130_MODE_NORMAL;
  1228. #endif //TMC2130
  1229. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1230. }
  1231. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1232. // but this times out if a blocking dialog is shown in setup().
  1233. card.initsd();
  1234. #ifdef DEBUG_SD_SPEED_TEST
  1235. if (card.cardOK)
  1236. {
  1237. uint8_t* buff = (uint8_t*)block_buffer;
  1238. uint32_t block = 0;
  1239. uint32_t sumr = 0;
  1240. uint32_t sumw = 0;
  1241. for (int i = 0; i < 1024; i++)
  1242. {
  1243. uint32_t u = micros();
  1244. bool res = card.card.readBlock(i, buff);
  1245. u = micros() - u;
  1246. if (res)
  1247. {
  1248. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1249. sumr += u;
  1250. u = micros();
  1251. res = card.card.writeBlock(i, buff);
  1252. u = micros() - u;
  1253. if (res)
  1254. {
  1255. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1256. sumw += u;
  1257. }
  1258. else
  1259. {
  1260. printf_P(PSTR("writeBlock %4d error\n"), i);
  1261. break;
  1262. }
  1263. }
  1264. else
  1265. {
  1266. printf_P(PSTR("readBlock %4d error\n"), i);
  1267. break;
  1268. }
  1269. }
  1270. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1271. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1272. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1273. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1274. }
  1275. else
  1276. printf_P(PSTR("Card NG!\n"));
  1277. #endif //DEBUG_SD_SPEED_TEST
  1278. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1279. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1281. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1282. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1283. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1284. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1285. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1286. #ifdef SNMM
  1287. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1288. int _z = BOWDEN_LENGTH;
  1289. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1290. }
  1291. #endif
  1292. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1293. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1294. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1295. #if (LANG_MODE != 0) //secondary language support
  1296. #ifdef DEBUG_W25X20CL
  1297. W25X20CL_SPI_ENTER();
  1298. uint8_t uid[8]; // 64bit unique id
  1299. w25x20cl_rd_uid(uid);
  1300. puts_P(_n("W25X20CL UID="));
  1301. for (uint8_t i = 0; i < 8; i ++)
  1302. printf_P(PSTR("%02hhx"), uid[i]);
  1303. putchar('\n');
  1304. list_sec_lang_from_external_flash();
  1305. #endif //DEBUG_W25X20CL
  1306. // lang_reset();
  1307. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1308. lcd_language();
  1309. #ifdef DEBUG_SEC_LANG
  1310. uint16_t sec_lang_code = lang_get_code(1);
  1311. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1312. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1313. // lang_print_sec_lang(uartout);
  1314. #endif //DEBUG_SEC_LANG
  1315. #endif //(LANG_MODE != 0)
  1316. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1317. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1318. temp_cal_active = false;
  1319. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1321. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1322. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1323. int16_t z_shift = 0;
  1324. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1325. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1326. temp_cal_active = false;
  1327. }
  1328. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1329. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1330. }
  1331. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1332. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1333. }
  1334. check_babystep(); //checking if Z babystep is in allowed range
  1335. #ifdef UVLO_SUPPORT
  1336. setup_uvlo_interrupt();
  1337. #endif //UVLO_SUPPORT
  1338. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1339. setup_fan_interrupt();
  1340. #endif //DEBUG_DISABLE_FANCHECK
  1341. #ifdef FILAMENT_SENSOR
  1342. fsensor_setup_interrupt();
  1343. #endif //FILAMENT_SENSOR
  1344. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1345. #ifndef DEBUG_DISABLE_STARTMSGS
  1346. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1347. show_fw_version_warnings();
  1348. switch (hw_changed) {
  1349. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1350. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1351. case(0b01):
  1352. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1353. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1354. break;
  1355. case(0b10):
  1356. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1357. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1358. break;
  1359. case(0b11):
  1360. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1361. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1362. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1363. break;
  1364. default: break; //no change, show no message
  1365. }
  1366. if (!previous_settings_retrieved) {
  1367. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1368. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1369. }
  1370. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1371. lcd_wizard(0);
  1372. }
  1373. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1374. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1375. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1376. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1377. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1378. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1379. // Show the message.
  1380. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1381. }
  1382. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1383. // Show the message.
  1384. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1385. lcd_update_enable(true);
  1386. }
  1387. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1388. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1389. lcd_update_enable(true);
  1390. }
  1391. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1392. // Show the message.
  1393. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1394. }
  1395. }
  1396. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1397. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1398. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1399. update_current_firmware_version_to_eeprom();
  1400. lcd_selftest();
  1401. }
  1402. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1403. KEEPALIVE_STATE(IN_PROCESS);
  1404. #endif //DEBUG_DISABLE_STARTMSGS
  1405. lcd_update_enable(true);
  1406. lcd_clear();
  1407. lcd_update(2);
  1408. // Store the currently running firmware into an eeprom,
  1409. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1410. update_current_firmware_version_to_eeprom();
  1411. #ifdef TMC2130
  1412. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1413. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1414. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1415. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1416. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1417. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1418. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1419. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1420. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1421. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1422. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1423. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1424. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1425. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1426. #endif //TMC2130
  1427. #ifdef UVLO_SUPPORT
  1428. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1429. /*
  1430. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1431. else {
  1432. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1433. lcd_update_enable(true);
  1434. lcd_update(2);
  1435. lcd_setstatuspgm(_T(WELCOME_MSG));
  1436. }
  1437. */
  1438. manage_heater(); // Update temperatures
  1439. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1440. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1441. #endif
  1442. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1443. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1444. puts_P(_N("Automatic recovery!"));
  1445. #endif
  1446. recover_print(1);
  1447. }
  1448. else{
  1449. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1450. puts_P(_N("Normal recovery!"));
  1451. #endif
  1452. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1453. else {
  1454. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1455. lcd_update_enable(true);
  1456. lcd_update(2);
  1457. lcd_setstatuspgm(_T(WELCOME_MSG));
  1458. }
  1459. }
  1460. }
  1461. #endif //UVLO_SUPPORT
  1462. KEEPALIVE_STATE(NOT_BUSY);
  1463. #ifdef WATCHDOG
  1464. wdt_enable(WDTO_4S);
  1465. #endif //WATCHDOG
  1466. }
  1467. void trace();
  1468. #define CHUNK_SIZE 64 // bytes
  1469. #define SAFETY_MARGIN 1
  1470. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1471. int chunkHead = 0;
  1472. void serial_read_stream() {
  1473. setAllTargetHotends(0);
  1474. setTargetBed(0);
  1475. lcd_clear();
  1476. lcd_puts_P(PSTR(" Upload in progress"));
  1477. // first wait for how many bytes we will receive
  1478. uint32_t bytesToReceive;
  1479. // receive the four bytes
  1480. char bytesToReceiveBuffer[4];
  1481. for (int i=0; i<4; i++) {
  1482. int data;
  1483. while ((data = MYSERIAL.read()) == -1) {};
  1484. bytesToReceiveBuffer[i] = data;
  1485. }
  1486. // make it a uint32
  1487. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1488. // we're ready, notify the sender
  1489. MYSERIAL.write('+');
  1490. // lock in the routine
  1491. uint32_t receivedBytes = 0;
  1492. while (prusa_sd_card_upload) {
  1493. int i;
  1494. for (i=0; i<CHUNK_SIZE; i++) {
  1495. int data;
  1496. // check if we're not done
  1497. if (receivedBytes == bytesToReceive) {
  1498. break;
  1499. }
  1500. // read the next byte
  1501. while ((data = MYSERIAL.read()) == -1) {};
  1502. receivedBytes++;
  1503. // save it to the chunk
  1504. chunk[i] = data;
  1505. }
  1506. // write the chunk to SD
  1507. card.write_command_no_newline(&chunk[0]);
  1508. // notify the sender we're ready for more data
  1509. MYSERIAL.write('+');
  1510. // for safety
  1511. manage_heater();
  1512. // check if we're done
  1513. if(receivedBytes == bytesToReceive) {
  1514. trace(); // beep
  1515. card.closefile();
  1516. prusa_sd_card_upload = false;
  1517. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1518. }
  1519. }
  1520. }
  1521. #ifdef HOST_KEEPALIVE_FEATURE
  1522. /**
  1523. * Output a "busy" message at regular intervals
  1524. * while the machine is not accepting commands.
  1525. */
  1526. void host_keepalive() {
  1527. if (farm_mode) return;
  1528. long ms = millis();
  1529. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1530. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1531. switch (busy_state) {
  1532. case IN_HANDLER:
  1533. case IN_PROCESS:
  1534. SERIAL_ECHO_START;
  1535. SERIAL_ECHOLNPGM("busy: processing");
  1536. break;
  1537. case PAUSED_FOR_USER:
  1538. SERIAL_ECHO_START;
  1539. SERIAL_ECHOLNPGM("busy: paused for user");
  1540. break;
  1541. case PAUSED_FOR_INPUT:
  1542. SERIAL_ECHO_START;
  1543. SERIAL_ECHOLNPGM("busy: paused for input");
  1544. break;
  1545. default:
  1546. break;
  1547. }
  1548. }
  1549. prev_busy_signal_ms = ms;
  1550. }
  1551. #endif
  1552. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1553. // Before loop(), the setup() function is called by the main() routine.
  1554. void loop()
  1555. {
  1556. KEEPALIVE_STATE(NOT_BUSY);
  1557. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1558. {
  1559. is_usb_printing = true;
  1560. usb_printing_counter--;
  1561. _usb_timer = millis();
  1562. }
  1563. if (usb_printing_counter == 0)
  1564. {
  1565. is_usb_printing = false;
  1566. }
  1567. if (prusa_sd_card_upload)
  1568. {
  1569. //we read byte-by byte
  1570. serial_read_stream();
  1571. } else
  1572. {
  1573. get_command();
  1574. #ifdef SDSUPPORT
  1575. card.checkautostart(false);
  1576. #endif
  1577. if(buflen)
  1578. {
  1579. cmdbuffer_front_already_processed = false;
  1580. #ifdef SDSUPPORT
  1581. if(card.saving)
  1582. {
  1583. // Saving a G-code file onto an SD-card is in progress.
  1584. // Saving starts with M28, saving until M29 is seen.
  1585. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1586. card.write_command(CMDBUFFER_CURRENT_STRING);
  1587. if(card.logging)
  1588. process_commands();
  1589. else
  1590. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1591. } else {
  1592. card.closefile();
  1593. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1594. }
  1595. } else {
  1596. process_commands();
  1597. }
  1598. #else
  1599. process_commands();
  1600. #endif //SDSUPPORT
  1601. if (! cmdbuffer_front_already_processed && buflen)
  1602. {
  1603. // ptr points to the start of the block currently being processed.
  1604. // The first character in the block is the block type.
  1605. char *ptr = cmdbuffer + bufindr;
  1606. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1607. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1608. union {
  1609. struct {
  1610. char lo;
  1611. char hi;
  1612. } lohi;
  1613. uint16_t value;
  1614. } sdlen;
  1615. sdlen.value = 0;
  1616. {
  1617. // This block locks the interrupts globally for 3.25 us,
  1618. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1619. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1620. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1621. cli();
  1622. // Reset the command to something, which will be ignored by the power panic routine,
  1623. // so this buffer length will not be counted twice.
  1624. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1625. // Extract the current buffer length.
  1626. sdlen.lohi.lo = *ptr ++;
  1627. sdlen.lohi.hi = *ptr;
  1628. // and pass it to the planner queue.
  1629. planner_add_sd_length(sdlen.value);
  1630. sei();
  1631. }
  1632. }
  1633. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1634. cli();
  1635. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1636. // and one for each command to previous block in the planner queue.
  1637. planner_add_sd_length(1);
  1638. sei();
  1639. }
  1640. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1641. // this block's SD card length will not be counted twice as its command type has been replaced
  1642. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1643. cmdqueue_pop_front();
  1644. }
  1645. host_keepalive();
  1646. }
  1647. }
  1648. //check heater every n milliseconds
  1649. manage_heater();
  1650. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1651. checkHitEndstops();
  1652. lcd_update(0);
  1653. #ifdef FILAMENT_SENSOR
  1654. if (mcode_in_progress != 600 && !mmu_enabled) //M600 not in progress
  1655. fsensor_update();
  1656. #endif //FILAMENT_SENSOR
  1657. #ifdef TMC2130
  1658. tmc2130_check_overtemp();
  1659. if (tmc2130_sg_crash)
  1660. {
  1661. uint8_t crash = tmc2130_sg_crash;
  1662. tmc2130_sg_crash = 0;
  1663. // crashdet_stop_and_save_print();
  1664. switch (crash)
  1665. {
  1666. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1667. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1668. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1669. }
  1670. }
  1671. #endif //TMC2130
  1672. mmu_loop();
  1673. }
  1674. #define DEFINE_PGM_READ_ANY(type, reader) \
  1675. static inline type pgm_read_any(const type *p) \
  1676. { return pgm_read_##reader##_near(p); }
  1677. DEFINE_PGM_READ_ANY(float, float);
  1678. DEFINE_PGM_READ_ANY(signed char, byte);
  1679. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1680. static const PROGMEM type array##_P[3] = \
  1681. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1682. static inline type array(int axis) \
  1683. { return pgm_read_any(&array##_P[axis]); } \
  1684. type array##_ext(int axis) \
  1685. { return pgm_read_any(&array##_P[axis]); }
  1686. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1687. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1688. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1689. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1690. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1691. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1692. static void axis_is_at_home(int axis) {
  1693. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1694. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1695. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1696. }
  1697. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1698. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1699. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1700. saved_feedrate = feedrate;
  1701. saved_feedmultiply = feedmultiply;
  1702. feedmultiply = 100;
  1703. previous_millis_cmd = millis();
  1704. enable_endstops(enable_endstops_now);
  1705. }
  1706. static void clean_up_after_endstop_move() {
  1707. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1708. enable_endstops(false);
  1709. #endif
  1710. feedrate = saved_feedrate;
  1711. feedmultiply = saved_feedmultiply;
  1712. previous_millis_cmd = millis();
  1713. }
  1714. #ifdef ENABLE_AUTO_BED_LEVELING
  1715. #ifdef AUTO_BED_LEVELING_GRID
  1716. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1717. {
  1718. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1719. planeNormal.debug("planeNormal");
  1720. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1721. //bedLevel.debug("bedLevel");
  1722. //plan_bed_level_matrix.debug("bed level before");
  1723. //vector_3 uncorrected_position = plan_get_position_mm();
  1724. //uncorrected_position.debug("position before");
  1725. vector_3 corrected_position = plan_get_position();
  1726. // corrected_position.debug("position after");
  1727. current_position[X_AXIS] = corrected_position.x;
  1728. current_position[Y_AXIS] = corrected_position.y;
  1729. current_position[Z_AXIS] = corrected_position.z;
  1730. // put the bed at 0 so we don't go below it.
  1731. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1732. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1733. }
  1734. #else // not AUTO_BED_LEVELING_GRID
  1735. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1736. plan_bed_level_matrix.set_to_identity();
  1737. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1738. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1739. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1740. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1741. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1742. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1743. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1744. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1745. vector_3 corrected_position = plan_get_position();
  1746. current_position[X_AXIS] = corrected_position.x;
  1747. current_position[Y_AXIS] = corrected_position.y;
  1748. current_position[Z_AXIS] = corrected_position.z;
  1749. // put the bed at 0 so we don't go below it.
  1750. current_position[Z_AXIS] = zprobe_zoffset;
  1751. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1752. }
  1753. #endif // AUTO_BED_LEVELING_GRID
  1754. static void run_z_probe() {
  1755. plan_bed_level_matrix.set_to_identity();
  1756. feedrate = homing_feedrate[Z_AXIS];
  1757. // move down until you find the bed
  1758. float zPosition = -10;
  1759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1760. st_synchronize();
  1761. // we have to let the planner know where we are right now as it is not where we said to go.
  1762. zPosition = st_get_position_mm(Z_AXIS);
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1764. // move up the retract distance
  1765. zPosition += home_retract_mm(Z_AXIS);
  1766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1767. st_synchronize();
  1768. // move back down slowly to find bed
  1769. feedrate = homing_feedrate[Z_AXIS]/4;
  1770. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1772. st_synchronize();
  1773. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1774. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1775. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1776. }
  1777. static void do_blocking_move_to(float x, float y, float z) {
  1778. float oldFeedRate = feedrate;
  1779. feedrate = homing_feedrate[Z_AXIS];
  1780. current_position[Z_AXIS] = z;
  1781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1782. st_synchronize();
  1783. feedrate = XY_TRAVEL_SPEED;
  1784. current_position[X_AXIS] = x;
  1785. current_position[Y_AXIS] = y;
  1786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1787. st_synchronize();
  1788. feedrate = oldFeedRate;
  1789. }
  1790. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1791. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1792. }
  1793. /// Probe bed height at position (x,y), returns the measured z value
  1794. static float probe_pt(float x, float y, float z_before) {
  1795. // move to right place
  1796. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1797. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1798. run_z_probe();
  1799. float measured_z = current_position[Z_AXIS];
  1800. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1801. SERIAL_PROTOCOLPGM(" x: ");
  1802. SERIAL_PROTOCOL(x);
  1803. SERIAL_PROTOCOLPGM(" y: ");
  1804. SERIAL_PROTOCOL(y);
  1805. SERIAL_PROTOCOLPGM(" z: ");
  1806. SERIAL_PROTOCOL(measured_z);
  1807. SERIAL_PROTOCOLPGM("\n");
  1808. return measured_z;
  1809. }
  1810. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1811. #ifdef LIN_ADVANCE
  1812. /**
  1813. * M900: Set and/or Get advance K factor and WH/D ratio
  1814. *
  1815. * K<factor> Set advance K factor
  1816. * R<ratio> Set ratio directly (overrides WH/D)
  1817. * W<width> H<height> D<diam> Set ratio from WH/D
  1818. */
  1819. inline void gcode_M900() {
  1820. st_synchronize();
  1821. const float newK = code_seen('K') ? code_value_float() : -1;
  1822. if (newK >= 0) extruder_advance_k = newK;
  1823. float newR = code_seen('R') ? code_value_float() : -1;
  1824. if (newR < 0) {
  1825. const float newD = code_seen('D') ? code_value_float() : -1,
  1826. newW = code_seen('W') ? code_value_float() : -1,
  1827. newH = code_seen('H') ? code_value_float() : -1;
  1828. if (newD >= 0 && newW >= 0 && newH >= 0)
  1829. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1830. }
  1831. if (newR >= 0) advance_ed_ratio = newR;
  1832. SERIAL_ECHO_START;
  1833. SERIAL_ECHOPGM("Advance K=");
  1834. SERIAL_ECHOLN(extruder_advance_k);
  1835. SERIAL_ECHOPGM(" E/D=");
  1836. const float ratio = advance_ed_ratio;
  1837. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1838. }
  1839. #endif // LIN_ADVANCE
  1840. bool check_commands() {
  1841. bool end_command_found = false;
  1842. while (buflen)
  1843. {
  1844. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1845. if (!cmdbuffer_front_already_processed)
  1846. cmdqueue_pop_front();
  1847. cmdbuffer_front_already_processed = false;
  1848. }
  1849. return end_command_found;
  1850. }
  1851. #ifdef TMC2130
  1852. bool calibrate_z_auto()
  1853. {
  1854. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1855. lcd_clear();
  1856. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1857. bool endstops_enabled = enable_endstops(true);
  1858. int axis_up_dir = -home_dir(Z_AXIS);
  1859. tmc2130_home_enter(Z_AXIS_MASK);
  1860. current_position[Z_AXIS] = 0;
  1861. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1862. set_destination_to_current();
  1863. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1864. feedrate = homing_feedrate[Z_AXIS];
  1865. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1866. st_synchronize();
  1867. // current_position[axis] = 0;
  1868. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1869. tmc2130_home_exit();
  1870. enable_endstops(false);
  1871. current_position[Z_AXIS] = 0;
  1872. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1873. set_destination_to_current();
  1874. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1875. feedrate = homing_feedrate[Z_AXIS] / 2;
  1876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1877. st_synchronize();
  1878. enable_endstops(endstops_enabled);
  1879. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1880. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1881. return true;
  1882. }
  1883. #endif //TMC2130
  1884. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1885. {
  1886. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1887. #define HOMEAXIS_DO(LETTER) \
  1888. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1889. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1890. {
  1891. int axis_home_dir = home_dir(axis);
  1892. feedrate = homing_feedrate[axis];
  1893. #ifdef TMC2130
  1894. tmc2130_home_enter(X_AXIS_MASK << axis);
  1895. #endif //TMC2130
  1896. // Move away a bit, so that the print head does not touch the end position,
  1897. // and the following movement to endstop has a chance to achieve the required velocity
  1898. // for the stall guard to work.
  1899. current_position[axis] = 0;
  1900. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1901. set_destination_to_current();
  1902. // destination[axis] = 11.f;
  1903. destination[axis] = -3.f * axis_home_dir;
  1904. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1905. st_synchronize();
  1906. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1907. endstops_hit_on_purpose();
  1908. enable_endstops(false);
  1909. current_position[axis] = 0;
  1910. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1911. destination[axis] = 1. * axis_home_dir;
  1912. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1913. st_synchronize();
  1914. // Now continue to move up to the left end stop with the collision detection enabled.
  1915. enable_endstops(true);
  1916. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1917. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1918. st_synchronize();
  1919. for (uint8_t i = 0; i < cnt; i++)
  1920. {
  1921. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1922. endstops_hit_on_purpose();
  1923. enable_endstops(false);
  1924. current_position[axis] = 0;
  1925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1926. destination[axis] = -10.f * axis_home_dir;
  1927. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1928. st_synchronize();
  1929. endstops_hit_on_purpose();
  1930. // Now move left up to the collision, this time with a repeatable velocity.
  1931. enable_endstops(true);
  1932. destination[axis] = 11.f * axis_home_dir;
  1933. #ifdef TMC2130
  1934. feedrate = homing_feedrate[axis];
  1935. #else //TMC2130
  1936. feedrate = homing_feedrate[axis] / 2;
  1937. #endif //TMC2130
  1938. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1939. st_synchronize();
  1940. #ifdef TMC2130
  1941. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1942. if (pstep) pstep[i] = mscnt >> 4;
  1943. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1944. #endif //TMC2130
  1945. }
  1946. endstops_hit_on_purpose();
  1947. enable_endstops(false);
  1948. #ifdef TMC2130
  1949. uint8_t orig = tmc2130_home_origin[axis];
  1950. uint8_t back = tmc2130_home_bsteps[axis];
  1951. if (tmc2130_home_enabled && (orig <= 63))
  1952. {
  1953. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1954. if (back > 0)
  1955. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1956. }
  1957. else
  1958. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1959. tmc2130_home_exit();
  1960. #endif //TMC2130
  1961. axis_is_at_home(axis);
  1962. axis_known_position[axis] = true;
  1963. // Move from minimum
  1964. #ifdef TMC2130
  1965. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1966. #else //TMC2130
  1967. float dist = - axis_home_dir * 0.01f * 64;
  1968. #endif //TMC2130
  1969. current_position[axis] -= dist;
  1970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1971. current_position[axis] += dist;
  1972. destination[axis] = current_position[axis];
  1973. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1974. st_synchronize();
  1975. feedrate = 0.0;
  1976. }
  1977. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1978. {
  1979. #ifdef TMC2130
  1980. FORCE_HIGH_POWER_START;
  1981. #endif
  1982. int axis_home_dir = home_dir(axis);
  1983. current_position[axis] = 0;
  1984. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1985. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1986. feedrate = homing_feedrate[axis];
  1987. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1988. st_synchronize();
  1989. #ifdef TMC2130
  1990. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1991. FORCE_HIGH_POWER_END;
  1992. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1993. return;
  1994. }
  1995. #endif //TMC2130
  1996. current_position[axis] = 0;
  1997. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1998. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1999. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2000. st_synchronize();
  2001. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2002. feedrate = homing_feedrate[axis]/2 ;
  2003. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2004. st_synchronize();
  2005. #ifdef TMC2130
  2006. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2007. FORCE_HIGH_POWER_END;
  2008. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2009. return;
  2010. }
  2011. #endif //TMC2130
  2012. axis_is_at_home(axis);
  2013. destination[axis] = current_position[axis];
  2014. feedrate = 0.0;
  2015. endstops_hit_on_purpose();
  2016. axis_known_position[axis] = true;
  2017. #ifdef TMC2130
  2018. FORCE_HIGH_POWER_END;
  2019. #endif
  2020. }
  2021. enable_endstops(endstops_enabled);
  2022. }
  2023. /**/
  2024. void home_xy()
  2025. {
  2026. set_destination_to_current();
  2027. homeaxis(X_AXIS);
  2028. homeaxis(Y_AXIS);
  2029. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2030. endstops_hit_on_purpose();
  2031. }
  2032. void refresh_cmd_timeout(void)
  2033. {
  2034. previous_millis_cmd = millis();
  2035. }
  2036. #ifdef FWRETRACT
  2037. void retract(bool retracting, bool swapretract = false) {
  2038. if(retracting && !retracted[active_extruder]) {
  2039. destination[X_AXIS]=current_position[X_AXIS];
  2040. destination[Y_AXIS]=current_position[Y_AXIS];
  2041. destination[Z_AXIS]=current_position[Z_AXIS];
  2042. destination[E_AXIS]=current_position[E_AXIS];
  2043. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2044. plan_set_e_position(current_position[E_AXIS]);
  2045. float oldFeedrate = feedrate;
  2046. feedrate=retract_feedrate*60;
  2047. retracted[active_extruder]=true;
  2048. prepare_move();
  2049. current_position[Z_AXIS]-=retract_zlift;
  2050. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2051. prepare_move();
  2052. feedrate = oldFeedrate;
  2053. } else if(!retracting && retracted[active_extruder]) {
  2054. destination[X_AXIS]=current_position[X_AXIS];
  2055. destination[Y_AXIS]=current_position[Y_AXIS];
  2056. destination[Z_AXIS]=current_position[Z_AXIS];
  2057. destination[E_AXIS]=current_position[E_AXIS];
  2058. current_position[Z_AXIS]+=retract_zlift;
  2059. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2060. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2061. plan_set_e_position(current_position[E_AXIS]);
  2062. float oldFeedrate = feedrate;
  2063. feedrate=retract_recover_feedrate*60;
  2064. retracted[active_extruder]=false;
  2065. prepare_move();
  2066. feedrate = oldFeedrate;
  2067. }
  2068. } //retract
  2069. #endif //FWRETRACT
  2070. void trace() {
  2071. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2072. tone(BEEPER, 440);
  2073. delay(25);
  2074. noTone(BEEPER);
  2075. delay(20);
  2076. }
  2077. /*
  2078. void ramming() {
  2079. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2080. if (current_temperature[0] < 230) {
  2081. //PLA
  2082. max_feedrate[E_AXIS] = 50;
  2083. //current_position[E_AXIS] -= 8;
  2084. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2085. //current_position[E_AXIS] += 8;
  2086. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2087. current_position[E_AXIS] += 5.4;
  2088. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2089. current_position[E_AXIS] += 3.2;
  2090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2091. current_position[E_AXIS] += 3;
  2092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2093. st_synchronize();
  2094. max_feedrate[E_AXIS] = 80;
  2095. current_position[E_AXIS] -= 82;
  2096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2097. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2098. current_position[E_AXIS] -= 20;
  2099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2100. current_position[E_AXIS] += 5;
  2101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2102. current_position[E_AXIS] += 5;
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2104. current_position[E_AXIS] -= 10;
  2105. st_synchronize();
  2106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2107. current_position[E_AXIS] += 10;
  2108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2109. current_position[E_AXIS] -= 10;
  2110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2111. current_position[E_AXIS] += 10;
  2112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2113. current_position[E_AXIS] -= 10;
  2114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2115. st_synchronize();
  2116. }
  2117. else {
  2118. //ABS
  2119. max_feedrate[E_AXIS] = 50;
  2120. //current_position[E_AXIS] -= 8;
  2121. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2122. //current_position[E_AXIS] += 8;
  2123. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2124. current_position[E_AXIS] += 3.1;
  2125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2126. current_position[E_AXIS] += 3.1;
  2127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2128. current_position[E_AXIS] += 4;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2130. st_synchronize();
  2131. //current_position[X_AXIS] += 23; //delay
  2132. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2133. //current_position[X_AXIS] -= 23; //delay
  2134. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2135. delay(4700);
  2136. max_feedrate[E_AXIS] = 80;
  2137. current_position[E_AXIS] -= 92;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2139. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2140. current_position[E_AXIS] -= 5;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2142. current_position[E_AXIS] += 5;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2144. current_position[E_AXIS] -= 5;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2146. st_synchronize();
  2147. current_position[E_AXIS] += 5;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2149. current_position[E_AXIS] -= 5;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2151. current_position[E_AXIS] += 5;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2153. current_position[E_AXIS] -= 5;
  2154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2155. st_synchronize();
  2156. }
  2157. }
  2158. */
  2159. #ifdef TMC2130
  2160. void force_high_power_mode(bool start_high_power_section) {
  2161. uint8_t silent;
  2162. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2163. if (silent == 1) {
  2164. //we are in silent mode, set to normal mode to enable crash detection
  2165. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2166. st_synchronize();
  2167. cli();
  2168. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2169. update_mode_profile();
  2170. tmc2130_init();
  2171. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2172. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2173. st_reset_timer();
  2174. sei();
  2175. }
  2176. }
  2177. #endif //TMC2130
  2178. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2179. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2180. }
  2181. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2182. st_synchronize();
  2183. #if 0
  2184. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2185. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2186. #endif
  2187. // Flag for the display update routine and to disable the print cancelation during homing.
  2188. homing_flag = true;
  2189. // Which axes should be homed?
  2190. bool home_x = home_x_axis;
  2191. bool home_y = home_y_axis;
  2192. bool home_z = home_z_axis;
  2193. // Either all X,Y,Z codes are present, or none of them.
  2194. bool home_all_axes = home_x == home_y && home_x == home_z;
  2195. if (home_all_axes)
  2196. // No X/Y/Z code provided means to home all axes.
  2197. home_x = home_y = home_z = true;
  2198. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2199. if (home_all_axes) {
  2200. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2201. feedrate = homing_feedrate[Z_AXIS];
  2202. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2203. st_synchronize();
  2204. }
  2205. #ifdef ENABLE_AUTO_BED_LEVELING
  2206. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2207. #endif //ENABLE_AUTO_BED_LEVELING
  2208. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2209. // the planner will not perform any adjustments in the XY plane.
  2210. // Wait for the motors to stop and update the current position with the absolute values.
  2211. world2machine_revert_to_uncorrected();
  2212. // For mesh bed leveling deactivate the matrix temporarily.
  2213. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2214. // in a single axis only.
  2215. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2216. #ifdef MESH_BED_LEVELING
  2217. uint8_t mbl_was_active = mbl.active;
  2218. mbl.active = 0;
  2219. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2220. #endif
  2221. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2222. // consumed during the first movements following this statement.
  2223. if (home_z)
  2224. babystep_undo();
  2225. saved_feedrate = feedrate;
  2226. saved_feedmultiply = feedmultiply;
  2227. feedmultiply = 100;
  2228. previous_millis_cmd = millis();
  2229. enable_endstops(true);
  2230. memcpy(destination, current_position, sizeof(destination));
  2231. feedrate = 0.0;
  2232. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2233. if(home_z)
  2234. homeaxis(Z_AXIS);
  2235. #endif
  2236. #ifdef QUICK_HOME
  2237. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2238. if(home_x && home_y) //first diagonal move
  2239. {
  2240. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2241. int x_axis_home_dir = home_dir(X_AXIS);
  2242. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2243. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2244. feedrate = homing_feedrate[X_AXIS];
  2245. if(homing_feedrate[Y_AXIS]<feedrate)
  2246. feedrate = homing_feedrate[Y_AXIS];
  2247. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2248. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2249. } else {
  2250. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2251. }
  2252. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2253. st_synchronize();
  2254. axis_is_at_home(X_AXIS);
  2255. axis_is_at_home(Y_AXIS);
  2256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2257. destination[X_AXIS] = current_position[X_AXIS];
  2258. destination[Y_AXIS] = current_position[Y_AXIS];
  2259. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2260. feedrate = 0.0;
  2261. st_synchronize();
  2262. endstops_hit_on_purpose();
  2263. current_position[X_AXIS] = destination[X_AXIS];
  2264. current_position[Y_AXIS] = destination[Y_AXIS];
  2265. current_position[Z_AXIS] = destination[Z_AXIS];
  2266. }
  2267. #endif /* QUICK_HOME */
  2268. #ifdef TMC2130
  2269. if(home_x)
  2270. {
  2271. if (!calib)
  2272. homeaxis(X_AXIS);
  2273. else
  2274. tmc2130_home_calibrate(X_AXIS);
  2275. }
  2276. if(home_y)
  2277. {
  2278. if (!calib)
  2279. homeaxis(Y_AXIS);
  2280. else
  2281. tmc2130_home_calibrate(Y_AXIS);
  2282. }
  2283. #endif //TMC2130
  2284. if(home_x_axis && home_x_value != 0)
  2285. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2286. if(home_y_axis && home_y_value != 0)
  2287. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2288. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2289. #ifndef Z_SAFE_HOMING
  2290. if(home_z) {
  2291. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2292. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2293. feedrate = max_feedrate[Z_AXIS];
  2294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2295. st_synchronize();
  2296. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2297. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2298. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2299. {
  2300. homeaxis(X_AXIS);
  2301. homeaxis(Y_AXIS);
  2302. }
  2303. // 1st mesh bed leveling measurement point, corrected.
  2304. world2machine_initialize();
  2305. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2306. world2machine_reset();
  2307. if (destination[Y_AXIS] < Y_MIN_POS)
  2308. destination[Y_AXIS] = Y_MIN_POS;
  2309. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2310. feedrate = homing_feedrate[Z_AXIS]/10;
  2311. current_position[Z_AXIS] = 0;
  2312. enable_endstops(false);
  2313. #ifdef DEBUG_BUILD
  2314. SERIAL_ECHOLNPGM("plan_set_position()");
  2315. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2316. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2317. #endif
  2318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2319. #ifdef DEBUG_BUILD
  2320. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2321. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2322. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2323. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2324. #endif
  2325. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2326. st_synchronize();
  2327. current_position[X_AXIS] = destination[X_AXIS];
  2328. current_position[Y_AXIS] = destination[Y_AXIS];
  2329. enable_endstops(true);
  2330. endstops_hit_on_purpose();
  2331. homeaxis(Z_AXIS);
  2332. #else // MESH_BED_LEVELING
  2333. homeaxis(Z_AXIS);
  2334. #endif // MESH_BED_LEVELING
  2335. }
  2336. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2337. if(home_all_axes) {
  2338. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2339. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2340. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2341. feedrate = XY_TRAVEL_SPEED/60;
  2342. current_position[Z_AXIS] = 0;
  2343. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2344. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2345. st_synchronize();
  2346. current_position[X_AXIS] = destination[X_AXIS];
  2347. current_position[Y_AXIS] = destination[Y_AXIS];
  2348. homeaxis(Z_AXIS);
  2349. }
  2350. // Let's see if X and Y are homed and probe is inside bed area.
  2351. if(home_z) {
  2352. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2353. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2354. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2355. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2356. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2357. current_position[Z_AXIS] = 0;
  2358. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2359. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2360. feedrate = max_feedrate[Z_AXIS];
  2361. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2362. st_synchronize();
  2363. homeaxis(Z_AXIS);
  2364. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2365. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2366. SERIAL_ECHO_START;
  2367. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2368. } else {
  2369. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2370. SERIAL_ECHO_START;
  2371. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2372. }
  2373. }
  2374. #endif // Z_SAFE_HOMING
  2375. #endif // Z_HOME_DIR < 0
  2376. if(home_z_axis && home_z_value != 0)
  2377. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2378. #ifdef ENABLE_AUTO_BED_LEVELING
  2379. if(home_z)
  2380. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2381. #endif
  2382. // Set the planner and stepper routine positions.
  2383. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2384. // contains the machine coordinates.
  2385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2386. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2387. enable_endstops(false);
  2388. #endif
  2389. feedrate = saved_feedrate;
  2390. feedmultiply = saved_feedmultiply;
  2391. previous_millis_cmd = millis();
  2392. endstops_hit_on_purpose();
  2393. #ifndef MESH_BED_LEVELING
  2394. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2395. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2396. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2397. lcd_adjust_z();
  2398. #endif
  2399. // Load the machine correction matrix
  2400. world2machine_initialize();
  2401. // and correct the current_position XY axes to match the transformed coordinate system.
  2402. world2machine_update_current();
  2403. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2404. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2405. {
  2406. if (! home_z && mbl_was_active) {
  2407. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2408. mbl.active = true;
  2409. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2410. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2411. }
  2412. }
  2413. else
  2414. {
  2415. st_synchronize();
  2416. homing_flag = false;
  2417. }
  2418. #endif
  2419. if (farm_mode) { prusa_statistics(20); };
  2420. homing_flag = false;
  2421. #if 0
  2422. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2423. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2424. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2425. #endif
  2426. }
  2427. void adjust_bed_reset()
  2428. {
  2429. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2430. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2431. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2432. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2433. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2434. }
  2435. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2436. {
  2437. bool final_result = false;
  2438. #ifdef TMC2130
  2439. FORCE_HIGH_POWER_START;
  2440. #endif // TMC2130
  2441. // Only Z calibration?
  2442. if (!onlyZ)
  2443. {
  2444. setTargetBed(0);
  2445. setAllTargetHotends(0);
  2446. adjust_bed_reset(); //reset bed level correction
  2447. }
  2448. // Disable the default update procedure of the display. We will do a modal dialog.
  2449. lcd_update_enable(false);
  2450. // Let the planner use the uncorrected coordinates.
  2451. mbl.reset();
  2452. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2453. // the planner will not perform any adjustments in the XY plane.
  2454. // Wait for the motors to stop and update the current position with the absolute values.
  2455. world2machine_revert_to_uncorrected();
  2456. // Reset the baby step value applied without moving the axes.
  2457. babystep_reset();
  2458. // Mark all axes as in a need for homing.
  2459. memset(axis_known_position, 0, sizeof(axis_known_position));
  2460. // Home in the XY plane.
  2461. //set_destination_to_current();
  2462. setup_for_endstop_move();
  2463. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2464. home_xy();
  2465. enable_endstops(false);
  2466. current_position[X_AXIS] += 5;
  2467. current_position[Y_AXIS] += 5;
  2468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2469. st_synchronize();
  2470. // Let the user move the Z axes up to the end stoppers.
  2471. #ifdef TMC2130
  2472. if (calibrate_z_auto())
  2473. {
  2474. #else //TMC2130
  2475. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2476. {
  2477. #endif //TMC2130
  2478. refresh_cmd_timeout();
  2479. #ifndef STEEL_SHEET
  2480. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2481. {
  2482. lcd_wait_for_cool_down();
  2483. }
  2484. #endif //STEEL_SHEET
  2485. if(!onlyZ)
  2486. {
  2487. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2488. #ifdef STEEL_SHEET
  2489. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2490. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2491. #endif //STEEL_SHEET
  2492. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2493. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2494. KEEPALIVE_STATE(IN_HANDLER);
  2495. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2496. lcd_set_cursor(0, 2);
  2497. lcd_print(1);
  2498. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2499. }
  2500. // Move the print head close to the bed.
  2501. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2502. bool endstops_enabled = enable_endstops(true);
  2503. #ifdef TMC2130
  2504. tmc2130_home_enter(Z_AXIS_MASK);
  2505. #endif //TMC2130
  2506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2507. st_synchronize();
  2508. #ifdef TMC2130
  2509. tmc2130_home_exit();
  2510. #endif //TMC2130
  2511. enable_endstops(endstops_enabled);
  2512. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2513. {
  2514. if (onlyZ)
  2515. {
  2516. clean_up_after_endstop_move();
  2517. // Z only calibration.
  2518. // Load the machine correction matrix
  2519. world2machine_initialize();
  2520. // and correct the current_position to match the transformed coordinate system.
  2521. world2machine_update_current();
  2522. //FIXME
  2523. bool result = sample_mesh_and_store_reference();
  2524. if (result)
  2525. {
  2526. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2527. // Shipped, the nozzle height has been set already. The user can start printing now.
  2528. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2529. final_result = true;
  2530. // babystep_apply();
  2531. }
  2532. }
  2533. else
  2534. {
  2535. // Reset the baby step value and the baby step applied flag.
  2536. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2537. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2538. // Complete XYZ calibration.
  2539. uint8_t point_too_far_mask = 0;
  2540. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2541. clean_up_after_endstop_move();
  2542. // Print head up.
  2543. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2545. st_synchronize();
  2546. //#ifndef NEW_XYZCAL
  2547. if (result >= 0)
  2548. {
  2549. #ifdef HEATBED_V2
  2550. sample_z();
  2551. #else //HEATBED_V2
  2552. point_too_far_mask = 0;
  2553. // Second half: The fine adjustment.
  2554. // Let the planner use the uncorrected coordinates.
  2555. mbl.reset();
  2556. world2machine_reset();
  2557. // Home in the XY plane.
  2558. setup_for_endstop_move();
  2559. home_xy();
  2560. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2561. clean_up_after_endstop_move();
  2562. // Print head up.
  2563. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2565. st_synchronize();
  2566. // if (result >= 0) babystep_apply();
  2567. #endif //HEATBED_V2
  2568. }
  2569. //#endif //NEW_XYZCAL
  2570. lcd_update_enable(true);
  2571. lcd_update(2);
  2572. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2573. if (result >= 0)
  2574. {
  2575. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2576. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2577. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2578. final_result = true;
  2579. }
  2580. }
  2581. #ifdef TMC2130
  2582. tmc2130_home_exit();
  2583. #endif
  2584. }
  2585. else
  2586. {
  2587. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2588. final_result = false;
  2589. }
  2590. }
  2591. else
  2592. {
  2593. // Timeouted.
  2594. }
  2595. lcd_update_enable(true);
  2596. #ifdef TMC2130
  2597. FORCE_HIGH_POWER_END;
  2598. #endif // TMC2130
  2599. return final_result;
  2600. }
  2601. void gcode_M114()
  2602. {
  2603. SERIAL_PROTOCOLPGM("X:");
  2604. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2605. SERIAL_PROTOCOLPGM(" Y:");
  2606. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2607. SERIAL_PROTOCOLPGM(" Z:");
  2608. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2609. SERIAL_PROTOCOLPGM(" E:");
  2610. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2611. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2612. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2613. SERIAL_PROTOCOLPGM(" Y:");
  2614. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2615. SERIAL_PROTOCOLPGM(" Z:");
  2616. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2617. SERIAL_PROTOCOLPGM(" E:");
  2618. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2619. SERIAL_PROTOCOLLN("");
  2620. }
  2621. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2622. {
  2623. st_synchronize();
  2624. float lastpos[4];
  2625. if (farm_mode)
  2626. {
  2627. prusa_statistics(22);
  2628. }
  2629. //First backup current position and settings
  2630. feedmultiplyBckp = feedmultiply;
  2631. float HotendTempBckp = degTargetHotend(active_extruder);
  2632. fanSpeedBckp = fanSpeed;
  2633. lastpos[X_AXIS] = current_position[X_AXIS];
  2634. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2635. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2636. lastpos[E_AXIS] = current_position[E_AXIS];
  2637. //Retract E
  2638. current_position[E_AXIS] += e_shift;
  2639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2640. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2641. st_synchronize();
  2642. //Lift Z
  2643. current_position[Z_AXIS] += z_shift;
  2644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2645. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2646. st_synchronize();
  2647. //Move XY to side
  2648. current_position[X_AXIS] = x_position;
  2649. current_position[Y_AXIS] = y_position;
  2650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2651. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2652. st_synchronize();
  2653. //Beep, manage nozzle heater and wait for user to start unload filament
  2654. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2655. lcd_change_fil_state = 0;
  2656. // Unload filament
  2657. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2658. else unload_filament(); //unload filament for single material (used also in M702)
  2659. //finish moves
  2660. st_synchronize();
  2661. if (!mmu_enabled)
  2662. {
  2663. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2664. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2665. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2666. if (lcd_change_fil_state == 0)
  2667. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2668. lcd_update_enable(true);
  2669. }
  2670. if (mmu_enabled)
  2671. {
  2672. if (!automatic) {
  2673. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2674. mmu_M600_wait_and_beep();
  2675. if (saved_printing) {
  2676. lcd_clear();
  2677. lcd_set_cursor(0, 2);
  2678. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2679. mmu_command(MMU_CMD_R0);
  2680. manage_response(false, false);
  2681. }
  2682. }
  2683. mmu_M600_load_filament(automatic);
  2684. }
  2685. else
  2686. M600_load_filament();
  2687. if (!automatic) M600_check_state();
  2688. lcd_update_enable(true);
  2689. //Not let's go back to print
  2690. fanSpeed = fanSpeedBckp;
  2691. //Feed a little of filament to stabilize pressure
  2692. if (!automatic)
  2693. {
  2694. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2696. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2697. }
  2698. //Move XY back
  2699. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2700. FILAMENTCHANGE_XYFEED, active_extruder);
  2701. st_synchronize();
  2702. //Move Z back
  2703. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2704. FILAMENTCHANGE_ZFEED, active_extruder);
  2705. st_synchronize();
  2706. //Set E position to original
  2707. plan_set_e_position(lastpos[E_AXIS]);
  2708. memcpy(current_position, lastpos, sizeof(lastpos));
  2709. memcpy(destination, current_position, sizeof(current_position));
  2710. //Recover feed rate
  2711. feedmultiply = feedmultiplyBckp;
  2712. char cmd[9];
  2713. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2714. enquecommand(cmd);
  2715. lcd_setstatuspgm(_T(WELCOME_MSG));
  2716. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2717. }
  2718. void gcode_M701()
  2719. {
  2720. printf_P(PSTR("gcode_M701 begin\n"));
  2721. if (mmu_enabled)
  2722. {
  2723. extr_adj(tmp_extruder);//loads current extruder
  2724. mmu_extruder = tmp_extruder;
  2725. }
  2726. else
  2727. {
  2728. enable_z();
  2729. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2730. #ifdef FILAMENT_SENSOR
  2731. fsensor_oq_meassure_start(40);
  2732. #endif //FILAMENT_SENSOR
  2733. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2734. current_position[E_AXIS] += 40;
  2735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2736. st_synchronize();
  2737. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2738. current_position[E_AXIS] += 30;
  2739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2740. st_synchronize();
  2741. current_position[E_AXIS] += 25;
  2742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2743. st_synchronize();
  2744. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2745. delay_keep_alive(50);
  2746. noTone(BEEPER);
  2747. if (!farm_mode && loading_flag) {
  2748. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2749. while (!clean) {
  2750. lcd_update_enable(true);
  2751. lcd_update(2);
  2752. current_position[E_AXIS] += 25;
  2753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2754. st_synchronize();
  2755. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2756. }
  2757. }
  2758. lcd_update_enable(true);
  2759. lcd_update(2);
  2760. lcd_setstatuspgm(_T(WELCOME_MSG));
  2761. disable_z();
  2762. loading_flag = false;
  2763. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2764. #ifdef FILAMENT_SENSOR
  2765. if (mmu_enabled == false)
  2766. {
  2767. fsensor_oq_meassure_stop();
  2768. if (!fsensor_oq_result())
  2769. {
  2770. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2771. lcd_update_enable(true);
  2772. lcd_update(2);
  2773. if (disable)
  2774. fsensor_disable();
  2775. }
  2776. }
  2777. #endif //FILAMENT_SENSOR
  2778. }
  2779. }
  2780. /**
  2781. * @brief Get serial number from 32U2 processor
  2782. *
  2783. * Typical format of S/N is:CZPX0917X003XC13518
  2784. *
  2785. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2786. *
  2787. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2788. * reply is transmitted to serial port 1 character by character.
  2789. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2790. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2791. * in any case.
  2792. */
  2793. static void gcode_PRUSA_SN()
  2794. {
  2795. if (farm_mode) {
  2796. selectedSerialPort = 0;
  2797. putchar(';');
  2798. putchar('S');
  2799. int numbersRead = 0;
  2800. ShortTimer timeout;
  2801. timeout.start();
  2802. while (numbersRead < 19) {
  2803. while (MSerial.available() > 0) {
  2804. uint8_t serial_char = MSerial.read();
  2805. selectedSerialPort = 1;
  2806. putchar(serial_char);
  2807. numbersRead++;
  2808. selectedSerialPort = 0;
  2809. }
  2810. if (timeout.expired(100u)) break;
  2811. }
  2812. selectedSerialPort = 1;
  2813. putchar('\n');
  2814. #if 0
  2815. for (int b = 0; b < 3; b++) {
  2816. tone(BEEPER, 110);
  2817. delay(50);
  2818. noTone(BEEPER);
  2819. delay(50);
  2820. }
  2821. #endif
  2822. } else {
  2823. puts_P(_N("Not in farm mode."));
  2824. }
  2825. }
  2826. #ifdef BACKLASH_X
  2827. extern uint8_t st_backlash_x;
  2828. #endif //BACKLASH_X
  2829. #ifdef BACKLASH_Y
  2830. extern uint8_t st_backlash_y;
  2831. #endif //BACKLASH_Y
  2832. void process_commands()
  2833. {
  2834. if (!buflen) return; //empty command
  2835. #ifdef FILAMENT_RUNOUT_SUPPORT
  2836. SET_INPUT(FR_SENS);
  2837. #endif
  2838. #ifdef CMDBUFFER_DEBUG
  2839. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2840. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2841. SERIAL_ECHOLNPGM("");
  2842. SERIAL_ECHOPGM("In cmdqueue: ");
  2843. SERIAL_ECHO(buflen);
  2844. SERIAL_ECHOLNPGM("");
  2845. #endif /* CMDBUFFER_DEBUG */
  2846. unsigned long codenum; //throw away variable
  2847. char *starpos = NULL;
  2848. #ifdef ENABLE_AUTO_BED_LEVELING
  2849. float x_tmp, y_tmp, z_tmp, real_z;
  2850. #endif
  2851. // PRUSA GCODES
  2852. KEEPALIVE_STATE(IN_HANDLER);
  2853. #ifdef SNMM
  2854. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2855. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2856. int8_t SilentMode;
  2857. #endif
  2858. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2859. starpos = (strchr(strchr_pointer + 5, '*'));
  2860. if (starpos != NULL)
  2861. *(starpos) = '\0';
  2862. lcd_setstatus(strchr_pointer + 5);
  2863. }
  2864. #ifdef TMC2130
  2865. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2866. {
  2867. if(code_seen("CRASH_DETECTED"))
  2868. {
  2869. uint8_t mask = 0;
  2870. if (code_seen('X')) mask |= X_AXIS_MASK;
  2871. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2872. crashdet_detected(mask);
  2873. }
  2874. else if(code_seen("CRASH_RECOVER"))
  2875. crashdet_recover();
  2876. else if(code_seen("CRASH_CANCEL"))
  2877. crashdet_cancel();
  2878. }
  2879. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2880. {
  2881. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2882. {
  2883. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2884. axis = (axis == 'E')?3:(axis - 'X');
  2885. if (axis < 4)
  2886. {
  2887. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2888. tmc2130_set_wave(axis, 247, fac);
  2889. }
  2890. }
  2891. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2892. {
  2893. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2894. axis = (axis == 'E')?3:(axis - 'X');
  2895. if (axis < 4)
  2896. {
  2897. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2898. uint16_t res = tmc2130_get_res(axis);
  2899. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2900. }
  2901. }
  2902. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2903. {
  2904. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2905. axis = (axis == 'E')?3:(axis - 'X');
  2906. if (axis < 4)
  2907. {
  2908. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2909. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2910. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2911. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2912. char* str_end = 0;
  2913. if (CMDBUFFER_CURRENT_STRING[14])
  2914. {
  2915. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2916. if (str_end && *str_end)
  2917. {
  2918. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2919. if (str_end && *str_end)
  2920. {
  2921. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2922. if (str_end && *str_end)
  2923. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2924. }
  2925. }
  2926. }
  2927. tmc2130_chopper_config[axis].toff = chop0;
  2928. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2929. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2930. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2931. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2932. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2933. }
  2934. }
  2935. }
  2936. #ifdef BACKLASH_X
  2937. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2938. {
  2939. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2940. st_backlash_x = bl;
  2941. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2942. }
  2943. #endif //BACKLASH_X
  2944. #ifdef BACKLASH_Y
  2945. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2946. {
  2947. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2948. st_backlash_y = bl;
  2949. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2950. }
  2951. #endif //BACKLASH_Y
  2952. #endif //TMC2130
  2953. else if (code_seen("FSENSOR_RECOVER")) {
  2954. fsensor_restore_print_and_continue();
  2955. }
  2956. else if(code_seen("PRUSA")){
  2957. if (code_seen("Ping")) { //PRUSA Ping
  2958. if (farm_mode) {
  2959. PingTime = millis();
  2960. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2961. }
  2962. }
  2963. else if (code_seen("PRN")) {
  2964. printf_P(_N("%d"), status_number);
  2965. }else if (code_seen("FAN")) {
  2966. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2967. }else if (code_seen("fn")) {
  2968. if (farm_mode) {
  2969. printf_P(_N("%d"), farm_no);
  2970. }
  2971. else {
  2972. puts_P(_N("Not in farm mode."));
  2973. }
  2974. }
  2975. else if (code_seen("thx"))
  2976. {
  2977. no_response = false;
  2978. }
  2979. else if (code_seen("uvlo"))
  2980. {
  2981. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2982. enquecommand_P(PSTR("M24"));
  2983. }
  2984. else if (code_seen("MMURES"))
  2985. {
  2986. mmu_reset();
  2987. }
  2988. else if (code_seen("RESET")) {
  2989. // careful!
  2990. if (farm_mode) {
  2991. #ifdef WATCHDOG
  2992. boot_app_magic = BOOT_APP_MAGIC;
  2993. boot_app_flags = BOOT_APP_FLG_RUN;
  2994. wdt_enable(WDTO_15MS);
  2995. cli();
  2996. while(1);
  2997. #else //WATCHDOG
  2998. asm volatile("jmp 0x3E000");
  2999. #endif //WATCHDOG
  3000. }
  3001. else {
  3002. MYSERIAL.println("Not in farm mode.");
  3003. }
  3004. }else if (code_seen("fv")) {
  3005. // get file version
  3006. #ifdef SDSUPPORT
  3007. card.openFile(strchr_pointer + 3,true);
  3008. while (true) {
  3009. uint16_t readByte = card.get();
  3010. MYSERIAL.write(readByte);
  3011. if (readByte=='\n') {
  3012. break;
  3013. }
  3014. }
  3015. card.closefile();
  3016. #endif // SDSUPPORT
  3017. } else if (code_seen("M28")) {
  3018. trace();
  3019. prusa_sd_card_upload = true;
  3020. card.openFile(strchr_pointer+4,false);
  3021. } else if (code_seen("SN")) {
  3022. gcode_PRUSA_SN();
  3023. } else if(code_seen("Fir")){
  3024. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3025. } else if(code_seen("Rev")){
  3026. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3027. } else if(code_seen("Lang")) {
  3028. lang_reset();
  3029. } else if(code_seen("Lz")) {
  3030. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3031. } else if(code_seen("Beat")) {
  3032. // Kick farm link timer
  3033. kicktime = millis();
  3034. } else if(code_seen("FR")) {
  3035. // Factory full reset
  3036. factory_reset(0);
  3037. }
  3038. //else if (code_seen('Cal')) {
  3039. // lcd_calibration();
  3040. // }
  3041. }
  3042. else if (code_seen('^')) {
  3043. // nothing, this is a version line
  3044. } else if(code_seen('G'))
  3045. {
  3046. gcode_in_progress = (int)code_value();
  3047. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3048. switch (gcode_in_progress)
  3049. {
  3050. case 0: // G0 -> G1
  3051. case 1: // G1
  3052. if(Stopped == false) {
  3053. #ifdef FILAMENT_RUNOUT_SUPPORT
  3054. if(READ(FR_SENS)){
  3055. feedmultiplyBckp=feedmultiply;
  3056. float target[4];
  3057. float lastpos[4];
  3058. target[X_AXIS]=current_position[X_AXIS];
  3059. target[Y_AXIS]=current_position[Y_AXIS];
  3060. target[Z_AXIS]=current_position[Z_AXIS];
  3061. target[E_AXIS]=current_position[E_AXIS];
  3062. lastpos[X_AXIS]=current_position[X_AXIS];
  3063. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3064. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3065. lastpos[E_AXIS]=current_position[E_AXIS];
  3066. //retract by E
  3067. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3068. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3069. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3070. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3071. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3072. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3073. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3074. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3076. //finish moves
  3077. st_synchronize();
  3078. //disable extruder steppers so filament can be removed
  3079. disable_e0();
  3080. disable_e1();
  3081. disable_e2();
  3082. delay(100);
  3083. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3084. uint8_t cnt=0;
  3085. int counterBeep = 0;
  3086. lcd_wait_interact();
  3087. while(!lcd_clicked()){
  3088. cnt++;
  3089. manage_heater();
  3090. manage_inactivity(true);
  3091. //lcd_update(0);
  3092. if(cnt==0)
  3093. {
  3094. #if BEEPER > 0
  3095. if (counterBeep== 500){
  3096. counterBeep = 0;
  3097. }
  3098. SET_OUTPUT(BEEPER);
  3099. if (counterBeep== 0){
  3100. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3101. WRITE(BEEPER,HIGH);
  3102. }
  3103. if (counterBeep== 20){
  3104. WRITE(BEEPER,LOW);
  3105. }
  3106. counterBeep++;
  3107. #else
  3108. #endif
  3109. }
  3110. }
  3111. WRITE(BEEPER,LOW);
  3112. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3114. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3115. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3116. lcd_change_fil_state = 0;
  3117. lcd_loading_filament();
  3118. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3119. lcd_change_fil_state = 0;
  3120. lcd_alright();
  3121. switch(lcd_change_fil_state){
  3122. case 2:
  3123. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3124. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3125. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3127. lcd_loading_filament();
  3128. break;
  3129. case 3:
  3130. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3132. lcd_loading_color();
  3133. break;
  3134. default:
  3135. lcd_change_success();
  3136. break;
  3137. }
  3138. }
  3139. target[E_AXIS]+= 5;
  3140. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3141. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3142. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3143. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3144. //plan_set_e_position(current_position[E_AXIS]);
  3145. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3146. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3147. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3148. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3149. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3150. plan_set_e_position(lastpos[E_AXIS]);
  3151. feedmultiply=feedmultiplyBckp;
  3152. char cmd[9];
  3153. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3154. enquecommand(cmd);
  3155. }
  3156. #endif
  3157. get_coordinates(); // For X Y Z E F
  3158. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3159. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3160. }
  3161. #ifdef FWRETRACT
  3162. if(autoretract_enabled)
  3163. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3164. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3165. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3166. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3167. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3168. retract(!retracted[active_extruder]);
  3169. return;
  3170. }
  3171. }
  3172. #endif //FWRETRACT
  3173. prepare_move();
  3174. //ClearToSend();
  3175. }
  3176. break;
  3177. case 2: // G2 - CW ARC
  3178. if(Stopped == false) {
  3179. get_arc_coordinates();
  3180. prepare_arc_move(true);
  3181. }
  3182. break;
  3183. case 3: // G3 - CCW ARC
  3184. if(Stopped == false) {
  3185. get_arc_coordinates();
  3186. prepare_arc_move(false);
  3187. }
  3188. break;
  3189. case 4: // G4 dwell
  3190. codenum = 0;
  3191. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3192. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3193. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3194. st_synchronize();
  3195. codenum += millis(); // keep track of when we started waiting
  3196. previous_millis_cmd = millis();
  3197. while(millis() < codenum) {
  3198. manage_heater();
  3199. manage_inactivity();
  3200. lcd_update(0);
  3201. }
  3202. break;
  3203. #ifdef FWRETRACT
  3204. case 10: // G10 retract
  3205. #if EXTRUDERS > 1
  3206. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3207. retract(true,retracted_swap[active_extruder]);
  3208. #else
  3209. retract(true);
  3210. #endif
  3211. break;
  3212. case 11: // G11 retract_recover
  3213. #if EXTRUDERS > 1
  3214. retract(false,retracted_swap[active_extruder]);
  3215. #else
  3216. retract(false);
  3217. #endif
  3218. break;
  3219. #endif //FWRETRACT
  3220. case 28: //G28 Home all Axis one at a time
  3221. {
  3222. long home_x_value = 0;
  3223. long home_y_value = 0;
  3224. long home_z_value = 0;
  3225. // Which axes should be homed?
  3226. bool home_x = code_seen(axis_codes[X_AXIS]);
  3227. home_x_value = code_value_long();
  3228. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3229. home_y_value = code_value_long();
  3230. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3231. home_z_value = code_value_long();
  3232. bool without_mbl = code_seen('W');
  3233. // calibrate?
  3234. bool calib = code_seen('C');
  3235. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3236. if ((home_x || home_y || without_mbl || home_z) == false) {
  3237. // Push the commands to the front of the message queue in the reverse order!
  3238. // There shall be always enough space reserved for these commands.
  3239. goto case_G80;
  3240. }
  3241. break;
  3242. }
  3243. #ifdef ENABLE_AUTO_BED_LEVELING
  3244. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3245. {
  3246. #if Z_MIN_PIN == -1
  3247. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3248. #endif
  3249. // Prevent user from running a G29 without first homing in X and Y
  3250. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3251. {
  3252. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3253. SERIAL_ECHO_START;
  3254. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3255. break; // abort G29, since we don't know where we are
  3256. }
  3257. st_synchronize();
  3258. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3259. //vector_3 corrected_position = plan_get_position_mm();
  3260. //corrected_position.debug("position before G29");
  3261. plan_bed_level_matrix.set_to_identity();
  3262. vector_3 uncorrected_position = plan_get_position();
  3263. //uncorrected_position.debug("position durring G29");
  3264. current_position[X_AXIS] = uncorrected_position.x;
  3265. current_position[Y_AXIS] = uncorrected_position.y;
  3266. current_position[Z_AXIS] = uncorrected_position.z;
  3267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3268. setup_for_endstop_move();
  3269. feedrate = homing_feedrate[Z_AXIS];
  3270. #ifdef AUTO_BED_LEVELING_GRID
  3271. // probe at the points of a lattice grid
  3272. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3273. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3274. // solve the plane equation ax + by + d = z
  3275. // A is the matrix with rows [x y 1] for all the probed points
  3276. // B is the vector of the Z positions
  3277. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3278. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3279. // "A" matrix of the linear system of equations
  3280. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3281. // "B" vector of Z points
  3282. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3283. int probePointCounter = 0;
  3284. bool zig = true;
  3285. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3286. {
  3287. int xProbe, xInc;
  3288. if (zig)
  3289. {
  3290. xProbe = LEFT_PROBE_BED_POSITION;
  3291. //xEnd = RIGHT_PROBE_BED_POSITION;
  3292. xInc = xGridSpacing;
  3293. zig = false;
  3294. } else // zag
  3295. {
  3296. xProbe = RIGHT_PROBE_BED_POSITION;
  3297. //xEnd = LEFT_PROBE_BED_POSITION;
  3298. xInc = -xGridSpacing;
  3299. zig = true;
  3300. }
  3301. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3302. {
  3303. float z_before;
  3304. if (probePointCounter == 0)
  3305. {
  3306. // raise before probing
  3307. z_before = Z_RAISE_BEFORE_PROBING;
  3308. } else
  3309. {
  3310. // raise extruder
  3311. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3312. }
  3313. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3314. eqnBVector[probePointCounter] = measured_z;
  3315. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3316. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3317. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3318. probePointCounter++;
  3319. xProbe += xInc;
  3320. }
  3321. }
  3322. clean_up_after_endstop_move();
  3323. // solve lsq problem
  3324. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3325. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3326. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3327. SERIAL_PROTOCOLPGM(" b: ");
  3328. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3329. SERIAL_PROTOCOLPGM(" d: ");
  3330. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3331. set_bed_level_equation_lsq(plane_equation_coefficients);
  3332. free(plane_equation_coefficients);
  3333. #else // AUTO_BED_LEVELING_GRID not defined
  3334. // Probe at 3 arbitrary points
  3335. // probe 1
  3336. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3337. // probe 2
  3338. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3339. // probe 3
  3340. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3341. clean_up_after_endstop_move();
  3342. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3343. #endif // AUTO_BED_LEVELING_GRID
  3344. st_synchronize();
  3345. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3346. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3347. // When the bed is uneven, this height must be corrected.
  3348. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3349. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3350. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3351. z_tmp = current_position[Z_AXIS];
  3352. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3353. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3355. }
  3356. break;
  3357. #ifndef Z_PROBE_SLED
  3358. case 30: // G30 Single Z Probe
  3359. {
  3360. st_synchronize();
  3361. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3362. setup_for_endstop_move();
  3363. feedrate = homing_feedrate[Z_AXIS];
  3364. run_z_probe();
  3365. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3366. SERIAL_PROTOCOLPGM(" X: ");
  3367. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3368. SERIAL_PROTOCOLPGM(" Y: ");
  3369. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3370. SERIAL_PROTOCOLPGM(" Z: ");
  3371. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3372. SERIAL_PROTOCOLPGM("\n");
  3373. clean_up_after_endstop_move();
  3374. }
  3375. break;
  3376. #else
  3377. case 31: // dock the sled
  3378. dock_sled(true);
  3379. break;
  3380. case 32: // undock the sled
  3381. dock_sled(false);
  3382. break;
  3383. #endif // Z_PROBE_SLED
  3384. #endif // ENABLE_AUTO_BED_LEVELING
  3385. #ifdef MESH_BED_LEVELING
  3386. case 30: // G30 Single Z Probe
  3387. {
  3388. st_synchronize();
  3389. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3390. setup_for_endstop_move();
  3391. feedrate = homing_feedrate[Z_AXIS];
  3392. find_bed_induction_sensor_point_z(-10.f, 3);
  3393. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3394. clean_up_after_endstop_move();
  3395. }
  3396. break;
  3397. case 75:
  3398. {
  3399. for (int i = 40; i <= 110; i++)
  3400. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3401. }
  3402. break;
  3403. case 76: //PINDA probe temperature calibration
  3404. {
  3405. #ifdef PINDA_THERMISTOR
  3406. if (true)
  3407. {
  3408. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3409. //we need to know accurate position of first calibration point
  3410. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3411. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3412. break;
  3413. }
  3414. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3415. {
  3416. // We don't know where we are! HOME!
  3417. // Push the commands to the front of the message queue in the reverse order!
  3418. // There shall be always enough space reserved for these commands.
  3419. repeatcommand_front(); // repeat G76 with all its parameters
  3420. enquecommand_front_P((PSTR("G28 W0")));
  3421. break;
  3422. }
  3423. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3424. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3425. if (result)
  3426. {
  3427. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3429. current_position[Z_AXIS] = 50;
  3430. current_position[Y_AXIS] = 180;
  3431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3432. st_synchronize();
  3433. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3434. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3435. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3437. st_synchronize();
  3438. gcode_G28(false, false, true);
  3439. }
  3440. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3441. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3442. current_position[Z_AXIS] = 100;
  3443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3444. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3445. lcd_temp_cal_show_result(false);
  3446. break;
  3447. }
  3448. }
  3449. lcd_update_enable(true);
  3450. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3451. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3452. float zero_z;
  3453. int z_shift = 0; //unit: steps
  3454. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3455. if (start_temp < 35) start_temp = 35;
  3456. if (start_temp < current_temperature_pinda) start_temp += 5;
  3457. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3458. // setTargetHotend(200, 0);
  3459. setTargetBed(70 + (start_temp - 30));
  3460. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3461. custom_message_state = 1;
  3462. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3463. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3465. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3466. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3468. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3469. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3470. st_synchronize();
  3471. while (current_temperature_pinda < start_temp)
  3472. {
  3473. delay_keep_alive(1000);
  3474. serialecho_temperatures();
  3475. }
  3476. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3477. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3478. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3479. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3480. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3482. st_synchronize();
  3483. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3484. if (find_z_result == false) {
  3485. lcd_temp_cal_show_result(find_z_result);
  3486. break;
  3487. }
  3488. zero_z = current_position[Z_AXIS];
  3489. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3490. int i = -1; for (; i < 5; i++)
  3491. {
  3492. float temp = (40 + i * 5);
  3493. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3494. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3495. if (start_temp <= temp) break;
  3496. }
  3497. for (i++; i < 5; i++)
  3498. {
  3499. float temp = (40 + i * 5);
  3500. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3501. custom_message_state = i + 2;
  3502. setTargetBed(50 + 10 * (temp - 30) / 5);
  3503. // setTargetHotend(255, 0);
  3504. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3506. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3507. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3509. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3511. st_synchronize();
  3512. while (current_temperature_pinda < temp)
  3513. {
  3514. delay_keep_alive(1000);
  3515. serialecho_temperatures();
  3516. }
  3517. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3519. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3520. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3522. st_synchronize();
  3523. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3524. if (find_z_result == false) {
  3525. lcd_temp_cal_show_result(find_z_result);
  3526. break;
  3527. }
  3528. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3529. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3530. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3531. }
  3532. lcd_temp_cal_show_result(true);
  3533. break;
  3534. }
  3535. #endif //PINDA_THERMISTOR
  3536. setTargetBed(PINDA_MIN_T);
  3537. float zero_z;
  3538. int z_shift = 0; //unit: steps
  3539. int t_c; // temperature
  3540. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3541. // We don't know where we are! HOME!
  3542. // Push the commands to the front of the message queue in the reverse order!
  3543. // There shall be always enough space reserved for these commands.
  3544. repeatcommand_front(); // repeat G76 with all its parameters
  3545. enquecommand_front_P((PSTR("G28 W0")));
  3546. break;
  3547. }
  3548. puts_P(_N("PINDA probe calibration start"));
  3549. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3550. custom_message_state = 1;
  3551. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3552. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3553. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3554. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3556. st_synchronize();
  3557. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3558. delay_keep_alive(1000);
  3559. serialecho_temperatures();
  3560. }
  3561. //enquecommand_P(PSTR("M190 S50"));
  3562. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3563. delay_keep_alive(1000);
  3564. serialecho_temperatures();
  3565. }
  3566. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3567. current_position[Z_AXIS] = 5;
  3568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3569. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3570. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3572. st_synchronize();
  3573. find_bed_induction_sensor_point_z(-1.f);
  3574. zero_z = current_position[Z_AXIS];
  3575. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3576. for (int i = 0; i<5; i++) {
  3577. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3578. custom_message_state = i + 2;
  3579. t_c = 60 + i * 10;
  3580. setTargetBed(t_c);
  3581. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3582. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3583. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3585. st_synchronize();
  3586. while (degBed() < t_c) {
  3587. delay_keep_alive(1000);
  3588. serialecho_temperatures();
  3589. }
  3590. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3591. delay_keep_alive(1000);
  3592. serialecho_temperatures();
  3593. }
  3594. current_position[Z_AXIS] = 5;
  3595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3596. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3597. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3599. st_synchronize();
  3600. find_bed_induction_sensor_point_z(-1.f);
  3601. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3602. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3603. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3604. }
  3605. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3606. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3607. puts_P(_N("Temperature calibration done."));
  3608. disable_x();
  3609. disable_y();
  3610. disable_z();
  3611. disable_e0();
  3612. disable_e1();
  3613. disable_e2();
  3614. setTargetBed(0); //set bed target temperature back to 0
  3615. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3616. temp_cal_active = true;
  3617. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3618. lcd_update_enable(true);
  3619. lcd_update(2);
  3620. }
  3621. break;
  3622. #ifdef DIS
  3623. case 77:
  3624. {
  3625. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3626. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3627. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3628. float dimension_x = 40;
  3629. float dimension_y = 40;
  3630. int points_x = 40;
  3631. int points_y = 40;
  3632. float offset_x = 74;
  3633. float offset_y = 33;
  3634. if (code_seen('X')) dimension_x = code_value();
  3635. if (code_seen('Y')) dimension_y = code_value();
  3636. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3637. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3638. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3639. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3640. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3641. } break;
  3642. #endif
  3643. case 79: {
  3644. for (int i = 255; i > 0; i = i - 5) {
  3645. fanSpeed = i;
  3646. //delay_keep_alive(2000);
  3647. for (int j = 0; j < 100; j++) {
  3648. delay_keep_alive(100);
  3649. }
  3650. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3651. }
  3652. }break;
  3653. /**
  3654. * G80: Mesh-based Z probe, probes a grid and produces a
  3655. * mesh to compensate for variable bed height
  3656. *
  3657. * The S0 report the points as below
  3658. *
  3659. * +----> X-axis
  3660. * |
  3661. * |
  3662. * v Y-axis
  3663. *
  3664. */
  3665. case 80:
  3666. #ifdef MK1BP
  3667. break;
  3668. #endif //MK1BP
  3669. case_G80:
  3670. {
  3671. mesh_bed_leveling_flag = true;
  3672. static bool run = false;
  3673. #ifdef SUPPORT_VERBOSITY
  3674. int8_t verbosity_level = 0;
  3675. if (code_seen('V')) {
  3676. // Just 'V' without a number counts as V1.
  3677. char c = strchr_pointer[1];
  3678. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3679. }
  3680. #endif //SUPPORT_VERBOSITY
  3681. // Firstly check if we know where we are
  3682. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3683. // We don't know where we are! HOME!
  3684. // Push the commands to the front of the message queue in the reverse order!
  3685. // There shall be always enough space reserved for these commands.
  3686. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3687. repeatcommand_front(); // repeat G80 with all its parameters
  3688. enquecommand_front_P((PSTR("G28 W0")));
  3689. }
  3690. else {
  3691. mesh_bed_leveling_flag = false;
  3692. }
  3693. break;
  3694. }
  3695. bool temp_comp_start = true;
  3696. #ifdef PINDA_THERMISTOR
  3697. temp_comp_start = false;
  3698. #endif //PINDA_THERMISTOR
  3699. if (temp_comp_start)
  3700. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3701. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3702. temp_compensation_start();
  3703. run = true;
  3704. repeatcommand_front(); // repeat G80 with all its parameters
  3705. enquecommand_front_P((PSTR("G28 W0")));
  3706. }
  3707. else {
  3708. mesh_bed_leveling_flag = false;
  3709. }
  3710. break;
  3711. }
  3712. run = false;
  3713. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3714. mesh_bed_leveling_flag = false;
  3715. break;
  3716. }
  3717. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3718. unsigned int custom_message_type_old = custom_message_type;
  3719. unsigned int custom_message_state_old = custom_message_state;
  3720. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3721. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3722. lcd_update(1);
  3723. mbl.reset(); //reset mesh bed leveling
  3724. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3725. // consumed during the first movements following this statement.
  3726. babystep_undo();
  3727. // Cycle through all points and probe them
  3728. // First move up. During this first movement, the babystepping will be reverted.
  3729. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3731. // The move to the first calibration point.
  3732. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3733. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3734. #ifdef SUPPORT_VERBOSITY
  3735. if (verbosity_level >= 1)
  3736. {
  3737. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3738. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3739. }
  3740. #endif //SUPPORT_VERBOSITY
  3741. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3743. // Wait until the move is finished.
  3744. st_synchronize();
  3745. int mesh_point = 0; //index number of calibration point
  3746. int ix = 0;
  3747. int iy = 0;
  3748. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3749. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3750. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3751. #ifdef SUPPORT_VERBOSITY
  3752. if (verbosity_level >= 1) {
  3753. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3754. }
  3755. #endif // SUPPORT_VERBOSITY
  3756. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3757. const char *kill_message = NULL;
  3758. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3759. // Get coords of a measuring point.
  3760. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3761. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3762. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3763. float z0 = 0.f;
  3764. if (has_z && mesh_point > 0) {
  3765. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3766. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3767. //#if 0
  3768. #ifdef SUPPORT_VERBOSITY
  3769. if (verbosity_level >= 1) {
  3770. SERIAL_ECHOLNPGM("");
  3771. SERIAL_ECHOPGM("Bed leveling, point: ");
  3772. MYSERIAL.print(mesh_point);
  3773. SERIAL_ECHOPGM(", calibration z: ");
  3774. MYSERIAL.print(z0, 5);
  3775. SERIAL_ECHOLNPGM("");
  3776. }
  3777. #endif // SUPPORT_VERBOSITY
  3778. //#endif
  3779. }
  3780. // Move Z up to MESH_HOME_Z_SEARCH.
  3781. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3783. st_synchronize();
  3784. // Move to XY position of the sensor point.
  3785. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3786. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3787. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3788. #ifdef SUPPORT_VERBOSITY
  3789. if (verbosity_level >= 1) {
  3790. SERIAL_PROTOCOL(mesh_point);
  3791. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3792. }
  3793. #endif // SUPPORT_VERBOSITY
  3794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3795. st_synchronize();
  3796. // Go down until endstop is hit
  3797. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3798. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3799. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3800. break;
  3801. }
  3802. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3803. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3804. break;
  3805. }
  3806. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3807. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3808. break;
  3809. }
  3810. #ifdef SUPPORT_VERBOSITY
  3811. if (verbosity_level >= 10) {
  3812. SERIAL_ECHOPGM("X: ");
  3813. MYSERIAL.print(current_position[X_AXIS], 5);
  3814. SERIAL_ECHOLNPGM("");
  3815. SERIAL_ECHOPGM("Y: ");
  3816. MYSERIAL.print(current_position[Y_AXIS], 5);
  3817. SERIAL_PROTOCOLPGM("\n");
  3818. }
  3819. #endif // SUPPORT_VERBOSITY
  3820. float offset_z = 0;
  3821. #ifdef PINDA_THERMISTOR
  3822. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3823. #endif //PINDA_THERMISTOR
  3824. // #ifdef SUPPORT_VERBOSITY
  3825. /* if (verbosity_level >= 1)
  3826. {
  3827. SERIAL_ECHOPGM("mesh bed leveling: ");
  3828. MYSERIAL.print(current_position[Z_AXIS], 5);
  3829. SERIAL_ECHOPGM(" offset: ");
  3830. MYSERIAL.print(offset_z, 5);
  3831. SERIAL_ECHOLNPGM("");
  3832. }*/
  3833. // #endif // SUPPORT_VERBOSITY
  3834. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3835. custom_message_state--;
  3836. mesh_point++;
  3837. lcd_update(1);
  3838. }
  3839. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3840. #ifdef SUPPORT_VERBOSITY
  3841. if (verbosity_level >= 20) {
  3842. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3843. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3844. MYSERIAL.print(current_position[Z_AXIS], 5);
  3845. }
  3846. #endif // SUPPORT_VERBOSITY
  3847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3848. st_synchronize();
  3849. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3850. kill(kill_message);
  3851. SERIAL_ECHOLNPGM("killed");
  3852. }
  3853. clean_up_after_endstop_move();
  3854. // SERIAL_ECHOLNPGM("clean up finished ");
  3855. bool apply_temp_comp = true;
  3856. #ifdef PINDA_THERMISTOR
  3857. apply_temp_comp = false;
  3858. #endif
  3859. if (apply_temp_comp)
  3860. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3861. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3862. // SERIAL_ECHOLNPGM("babystep applied");
  3863. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3864. #ifdef SUPPORT_VERBOSITY
  3865. if (verbosity_level >= 1) {
  3866. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3867. }
  3868. #endif // SUPPORT_VERBOSITY
  3869. for (uint8_t i = 0; i < 4; ++i) {
  3870. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3871. long correction = 0;
  3872. if (code_seen(codes[i]))
  3873. correction = code_value_long();
  3874. else if (eeprom_bed_correction_valid) {
  3875. unsigned char *addr = (i < 2) ?
  3876. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3877. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3878. correction = eeprom_read_int8(addr);
  3879. }
  3880. if (correction == 0)
  3881. continue;
  3882. float offset = float(correction) * 0.001f;
  3883. if (fabs(offset) > 0.101f) {
  3884. SERIAL_ERROR_START;
  3885. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3886. SERIAL_ECHO(offset);
  3887. SERIAL_ECHOLNPGM(" microns");
  3888. }
  3889. else {
  3890. switch (i) {
  3891. case 0:
  3892. for (uint8_t row = 0; row < 3; ++row) {
  3893. mbl.z_values[row][1] += 0.5f * offset;
  3894. mbl.z_values[row][0] += offset;
  3895. }
  3896. break;
  3897. case 1:
  3898. for (uint8_t row = 0; row < 3; ++row) {
  3899. mbl.z_values[row][1] += 0.5f * offset;
  3900. mbl.z_values[row][2] += offset;
  3901. }
  3902. break;
  3903. case 2:
  3904. for (uint8_t col = 0; col < 3; ++col) {
  3905. mbl.z_values[1][col] += 0.5f * offset;
  3906. mbl.z_values[0][col] += offset;
  3907. }
  3908. break;
  3909. case 3:
  3910. for (uint8_t col = 0; col < 3; ++col) {
  3911. mbl.z_values[1][col] += 0.5f * offset;
  3912. mbl.z_values[2][col] += offset;
  3913. }
  3914. break;
  3915. }
  3916. }
  3917. }
  3918. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3919. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3920. // SERIAL_ECHOLNPGM("Upsample finished");
  3921. mbl.active = 1; //activate mesh bed leveling
  3922. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3923. go_home_with_z_lift();
  3924. // SERIAL_ECHOLNPGM("Go home finished");
  3925. //unretract (after PINDA preheat retraction)
  3926. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3927. current_position[E_AXIS] += default_retraction;
  3928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3929. }
  3930. KEEPALIVE_STATE(NOT_BUSY);
  3931. // Restore custom message state
  3932. lcd_setstatuspgm(_T(WELCOME_MSG));
  3933. custom_message_type = custom_message_type_old;
  3934. custom_message_state = custom_message_state_old;
  3935. mesh_bed_leveling_flag = false;
  3936. mesh_bed_run_from_menu = false;
  3937. lcd_update(2);
  3938. }
  3939. break;
  3940. /**
  3941. * G81: Print mesh bed leveling status and bed profile if activated
  3942. */
  3943. case 81:
  3944. if (mbl.active) {
  3945. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3946. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3947. SERIAL_PROTOCOLPGM(",");
  3948. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3949. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3950. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3951. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3952. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3953. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3954. SERIAL_PROTOCOLPGM(" ");
  3955. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3956. }
  3957. SERIAL_PROTOCOLPGM("\n");
  3958. }
  3959. }
  3960. else
  3961. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3962. break;
  3963. #if 0
  3964. /**
  3965. * G82: Single Z probe at current location
  3966. *
  3967. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3968. *
  3969. */
  3970. case 82:
  3971. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3972. setup_for_endstop_move();
  3973. find_bed_induction_sensor_point_z();
  3974. clean_up_after_endstop_move();
  3975. SERIAL_PROTOCOLPGM("Bed found at: ");
  3976. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3977. SERIAL_PROTOCOLPGM("\n");
  3978. break;
  3979. /**
  3980. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3981. */
  3982. case 83:
  3983. {
  3984. int babystepz = code_seen('S') ? code_value() : 0;
  3985. int BabyPosition = code_seen('P') ? code_value() : 0;
  3986. if (babystepz != 0) {
  3987. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3988. // Is the axis indexed starting with zero or one?
  3989. if (BabyPosition > 4) {
  3990. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3991. }else{
  3992. // Save it to the eeprom
  3993. babystepLoadZ = babystepz;
  3994. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3995. // adjust the Z
  3996. babystepsTodoZadd(babystepLoadZ);
  3997. }
  3998. }
  3999. }
  4000. break;
  4001. /**
  4002. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4003. */
  4004. case 84:
  4005. babystepsTodoZsubtract(babystepLoadZ);
  4006. // babystepLoadZ = 0;
  4007. break;
  4008. /**
  4009. * G85: Prusa3D specific: Pick best babystep
  4010. */
  4011. case 85:
  4012. lcd_pick_babystep();
  4013. break;
  4014. #endif
  4015. /**
  4016. * G86: Prusa3D specific: Disable babystep correction after home.
  4017. * This G-code will be performed at the start of a calibration script.
  4018. */
  4019. case 86:
  4020. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4021. break;
  4022. /**
  4023. * G87: Prusa3D specific: Enable babystep correction after home
  4024. * This G-code will be performed at the end of a calibration script.
  4025. */
  4026. case 87:
  4027. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4028. break;
  4029. /**
  4030. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4031. */
  4032. case 88:
  4033. break;
  4034. #endif // ENABLE_MESH_BED_LEVELING
  4035. case 90: // G90
  4036. relative_mode = false;
  4037. break;
  4038. case 91: // G91
  4039. relative_mode = true;
  4040. break;
  4041. case 92: // G92
  4042. if(!code_seen(axis_codes[E_AXIS]))
  4043. st_synchronize();
  4044. for(int8_t i=0; i < NUM_AXIS; i++) {
  4045. if(code_seen(axis_codes[i])) {
  4046. if(i == E_AXIS) {
  4047. current_position[i] = code_value();
  4048. plan_set_e_position(current_position[E_AXIS]);
  4049. }
  4050. else {
  4051. current_position[i] = code_value()+add_homing[i];
  4052. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4053. }
  4054. }
  4055. }
  4056. break;
  4057. case 98: // G98 (activate farm mode)
  4058. farm_mode = 1;
  4059. PingTime = millis();
  4060. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4061. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4062. SilentModeMenu = SILENT_MODE_OFF;
  4063. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4064. break;
  4065. case 99: // G99 (deactivate farm mode)
  4066. farm_mode = 0;
  4067. lcd_printer_connected();
  4068. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4069. lcd_update(2);
  4070. break;
  4071. default:
  4072. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4073. }
  4074. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4075. gcode_in_progress = 0;
  4076. } // end if(code_seen('G'))
  4077. else if(code_seen('M'))
  4078. {
  4079. int index;
  4080. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4081. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4082. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4083. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4084. } else
  4085. {
  4086. mcode_in_progress = (int)code_value();
  4087. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4088. switch(mcode_in_progress)
  4089. {
  4090. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4091. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4092. {
  4093. char *src = strchr_pointer + 2;
  4094. codenum = 0;
  4095. bool hasP = false, hasS = false;
  4096. if (code_seen('P')) {
  4097. codenum = code_value(); // milliseconds to wait
  4098. hasP = codenum > 0;
  4099. }
  4100. if (code_seen('S')) {
  4101. codenum = code_value() * 1000; // seconds to wait
  4102. hasS = codenum > 0;
  4103. }
  4104. starpos = strchr(src, '*');
  4105. if (starpos != NULL) *(starpos) = '\0';
  4106. while (*src == ' ') ++src;
  4107. if (!hasP && !hasS && *src != '\0') {
  4108. lcd_setstatus(src);
  4109. } else {
  4110. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4111. }
  4112. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4113. st_synchronize();
  4114. previous_millis_cmd = millis();
  4115. if (codenum > 0){
  4116. codenum += millis(); // keep track of when we started waiting
  4117. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4118. while(millis() < codenum && !lcd_clicked()){
  4119. manage_heater();
  4120. manage_inactivity(true);
  4121. lcd_update(0);
  4122. }
  4123. KEEPALIVE_STATE(IN_HANDLER);
  4124. lcd_ignore_click(false);
  4125. }else{
  4126. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4127. while(!lcd_clicked()){
  4128. manage_heater();
  4129. manage_inactivity(true);
  4130. lcd_update(0);
  4131. }
  4132. KEEPALIVE_STATE(IN_HANDLER);
  4133. }
  4134. if (IS_SD_PRINTING)
  4135. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4136. else
  4137. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4138. }
  4139. break;
  4140. case 17:
  4141. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4142. enable_x();
  4143. enable_y();
  4144. enable_z();
  4145. enable_e0();
  4146. enable_e1();
  4147. enable_e2();
  4148. break;
  4149. #ifdef SDSUPPORT
  4150. case 20: // M20 - list SD card
  4151. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4152. card.ls();
  4153. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4154. break;
  4155. case 21: // M21 - init SD card
  4156. card.initsd();
  4157. break;
  4158. case 22: //M22 - release SD card
  4159. card.release();
  4160. break;
  4161. case 23: //M23 - Select file
  4162. starpos = (strchr(strchr_pointer + 4,'*'));
  4163. if(starpos!=NULL)
  4164. *(starpos)='\0';
  4165. card.openFile(strchr_pointer + 4,true);
  4166. break;
  4167. case 24: //M24 - Start SD print
  4168. if (!card.paused)
  4169. failstats_reset_print();
  4170. card.startFileprint();
  4171. starttime=millis();
  4172. break;
  4173. case 25: //M25 - Pause SD print
  4174. card.pauseSDPrint();
  4175. break;
  4176. case 26: //M26 - Set SD index
  4177. if(card.cardOK && code_seen('S')) {
  4178. card.setIndex(code_value_long());
  4179. }
  4180. break;
  4181. case 27: //M27 - Get SD status
  4182. card.getStatus();
  4183. break;
  4184. case 28: //M28 - Start SD write
  4185. starpos = (strchr(strchr_pointer + 4,'*'));
  4186. if(starpos != NULL){
  4187. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4188. strchr_pointer = strchr(npos,' ') + 1;
  4189. *(starpos) = '\0';
  4190. }
  4191. card.openFile(strchr_pointer+4,false);
  4192. break;
  4193. case 29: //M29 - Stop SD write
  4194. //processed in write to file routine above
  4195. //card,saving = false;
  4196. break;
  4197. case 30: //M30 <filename> Delete File
  4198. if (card.cardOK){
  4199. card.closefile();
  4200. starpos = (strchr(strchr_pointer + 4,'*'));
  4201. if(starpos != NULL){
  4202. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4203. strchr_pointer = strchr(npos,' ') + 1;
  4204. *(starpos) = '\0';
  4205. }
  4206. card.removeFile(strchr_pointer + 4);
  4207. }
  4208. break;
  4209. case 32: //M32 - Select file and start SD print
  4210. {
  4211. if(card.sdprinting) {
  4212. st_synchronize();
  4213. }
  4214. starpos = (strchr(strchr_pointer + 4,'*'));
  4215. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4216. if(namestartpos==NULL)
  4217. {
  4218. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4219. }
  4220. else
  4221. namestartpos++; //to skip the '!'
  4222. if(starpos!=NULL)
  4223. *(starpos)='\0';
  4224. bool call_procedure=(code_seen('P'));
  4225. if(strchr_pointer>namestartpos)
  4226. call_procedure=false; //false alert, 'P' found within filename
  4227. if( card.cardOK )
  4228. {
  4229. card.openFile(namestartpos,true,!call_procedure);
  4230. if(code_seen('S'))
  4231. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4232. card.setIndex(code_value_long());
  4233. card.startFileprint();
  4234. if(!call_procedure)
  4235. starttime=millis(); //procedure calls count as normal print time.
  4236. }
  4237. } break;
  4238. case 928: //M928 - Start SD write
  4239. starpos = (strchr(strchr_pointer + 5,'*'));
  4240. if(starpos != NULL){
  4241. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4242. strchr_pointer = strchr(npos,' ') + 1;
  4243. *(starpos) = '\0';
  4244. }
  4245. card.openLogFile(strchr_pointer+5);
  4246. break;
  4247. #endif //SDSUPPORT
  4248. case 31: //M31 take time since the start of the SD print or an M109 command
  4249. {
  4250. stoptime=millis();
  4251. char time[30];
  4252. unsigned long t=(stoptime-starttime)/1000;
  4253. int sec,min;
  4254. min=t/60;
  4255. sec=t%60;
  4256. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4257. SERIAL_ECHO_START;
  4258. SERIAL_ECHOLN(time);
  4259. lcd_setstatus(time);
  4260. autotempShutdown();
  4261. }
  4262. break;
  4263. case 42: //M42 -Change pin status via gcode
  4264. if (code_seen('S'))
  4265. {
  4266. int pin_status = code_value();
  4267. int pin_number = LED_PIN;
  4268. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4269. pin_number = code_value();
  4270. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4271. {
  4272. if (sensitive_pins[i] == pin_number)
  4273. {
  4274. pin_number = -1;
  4275. break;
  4276. }
  4277. }
  4278. #if defined(FAN_PIN) && FAN_PIN > -1
  4279. if (pin_number == FAN_PIN)
  4280. fanSpeed = pin_status;
  4281. #endif
  4282. if (pin_number > -1)
  4283. {
  4284. pinMode(pin_number, OUTPUT);
  4285. digitalWrite(pin_number, pin_status);
  4286. analogWrite(pin_number, pin_status);
  4287. }
  4288. }
  4289. break;
  4290. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4291. // Reset the baby step value and the baby step applied flag.
  4292. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4293. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4294. // Reset the skew and offset in both RAM and EEPROM.
  4295. reset_bed_offset_and_skew();
  4296. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4297. // the planner will not perform any adjustments in the XY plane.
  4298. // Wait for the motors to stop and update the current position with the absolute values.
  4299. world2machine_revert_to_uncorrected();
  4300. break;
  4301. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4302. {
  4303. int8_t verbosity_level = 0;
  4304. bool only_Z = code_seen('Z');
  4305. #ifdef SUPPORT_VERBOSITY
  4306. if (code_seen('V'))
  4307. {
  4308. // Just 'V' without a number counts as V1.
  4309. char c = strchr_pointer[1];
  4310. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4311. }
  4312. #endif //SUPPORT_VERBOSITY
  4313. gcode_M45(only_Z, verbosity_level);
  4314. }
  4315. break;
  4316. /*
  4317. case 46:
  4318. {
  4319. // M46: Prusa3D: Show the assigned IP address.
  4320. uint8_t ip[4];
  4321. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4322. if (hasIP) {
  4323. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4324. SERIAL_ECHO(int(ip[0]));
  4325. SERIAL_ECHOPGM(".");
  4326. SERIAL_ECHO(int(ip[1]));
  4327. SERIAL_ECHOPGM(".");
  4328. SERIAL_ECHO(int(ip[2]));
  4329. SERIAL_ECHOPGM(".");
  4330. SERIAL_ECHO(int(ip[3]));
  4331. SERIAL_ECHOLNPGM("");
  4332. } else {
  4333. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4334. }
  4335. break;
  4336. }
  4337. */
  4338. case 47:
  4339. // M47: Prusa3D: Show end stops dialog on the display.
  4340. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4341. lcd_diag_show_end_stops();
  4342. KEEPALIVE_STATE(IN_HANDLER);
  4343. break;
  4344. #if 0
  4345. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4346. {
  4347. // Disable the default update procedure of the display. We will do a modal dialog.
  4348. lcd_update_enable(false);
  4349. // Let the planner use the uncorrected coordinates.
  4350. mbl.reset();
  4351. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4352. // the planner will not perform any adjustments in the XY plane.
  4353. // Wait for the motors to stop and update the current position with the absolute values.
  4354. world2machine_revert_to_uncorrected();
  4355. // Move the print head close to the bed.
  4356. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4357. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4358. st_synchronize();
  4359. // Home in the XY plane.
  4360. set_destination_to_current();
  4361. setup_for_endstop_move();
  4362. home_xy();
  4363. int8_t verbosity_level = 0;
  4364. if (code_seen('V')) {
  4365. // Just 'V' without a number counts as V1.
  4366. char c = strchr_pointer[1];
  4367. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4368. }
  4369. bool success = scan_bed_induction_points(verbosity_level);
  4370. clean_up_after_endstop_move();
  4371. // Print head up.
  4372. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4374. st_synchronize();
  4375. lcd_update_enable(true);
  4376. break;
  4377. }
  4378. #endif
  4379. // M48 Z-Probe repeatability measurement function.
  4380. //
  4381. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4382. //
  4383. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4384. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4385. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4386. // regenerated.
  4387. //
  4388. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4389. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4390. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4391. //
  4392. #ifdef ENABLE_AUTO_BED_LEVELING
  4393. #ifdef Z_PROBE_REPEATABILITY_TEST
  4394. case 48: // M48 Z-Probe repeatability
  4395. {
  4396. #if Z_MIN_PIN == -1
  4397. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4398. #endif
  4399. double sum=0.0;
  4400. double mean=0.0;
  4401. double sigma=0.0;
  4402. double sample_set[50];
  4403. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4404. double X_current, Y_current, Z_current;
  4405. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4406. if (code_seen('V') || code_seen('v')) {
  4407. verbose_level = code_value();
  4408. if (verbose_level<0 || verbose_level>4 ) {
  4409. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4410. goto Sigma_Exit;
  4411. }
  4412. }
  4413. if (verbose_level > 0) {
  4414. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4415. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4416. }
  4417. if (code_seen('n')) {
  4418. n_samples = code_value();
  4419. if (n_samples<4 || n_samples>50 ) {
  4420. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4421. goto Sigma_Exit;
  4422. }
  4423. }
  4424. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4425. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4426. Z_current = st_get_position_mm(Z_AXIS);
  4427. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4428. ext_position = st_get_position_mm(E_AXIS);
  4429. if (code_seen('X') || code_seen('x') ) {
  4430. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4431. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4432. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4433. goto Sigma_Exit;
  4434. }
  4435. }
  4436. if (code_seen('Y') || code_seen('y') ) {
  4437. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4438. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4439. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4440. goto Sigma_Exit;
  4441. }
  4442. }
  4443. if (code_seen('L') || code_seen('l') ) {
  4444. n_legs = code_value();
  4445. if ( n_legs==1 )
  4446. n_legs = 2;
  4447. if ( n_legs<0 || n_legs>15 ) {
  4448. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4449. goto Sigma_Exit;
  4450. }
  4451. }
  4452. //
  4453. // Do all the preliminary setup work. First raise the probe.
  4454. //
  4455. st_synchronize();
  4456. plan_bed_level_matrix.set_to_identity();
  4457. plan_buffer_line( X_current, Y_current, Z_start_location,
  4458. ext_position,
  4459. homing_feedrate[Z_AXIS]/60,
  4460. active_extruder);
  4461. st_synchronize();
  4462. //
  4463. // Now get everything to the specified probe point So we can safely do a probe to
  4464. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4465. // use that as a starting point for each probe.
  4466. //
  4467. if (verbose_level > 2)
  4468. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4469. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4470. ext_position,
  4471. homing_feedrate[X_AXIS]/60,
  4472. active_extruder);
  4473. st_synchronize();
  4474. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4475. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4476. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4477. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4478. //
  4479. // OK, do the inital probe to get us close to the bed.
  4480. // Then retrace the right amount and use that in subsequent probes
  4481. //
  4482. setup_for_endstop_move();
  4483. run_z_probe();
  4484. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4485. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4486. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4487. ext_position,
  4488. homing_feedrate[X_AXIS]/60,
  4489. active_extruder);
  4490. st_synchronize();
  4491. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4492. for( n=0; n<n_samples; n++) {
  4493. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4494. if ( n_legs) {
  4495. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4496. int rotational_direction, l;
  4497. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4498. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4499. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4500. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4501. //SERIAL_ECHOPAIR(" theta: ",theta);
  4502. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4503. //SERIAL_PROTOCOLLNPGM("");
  4504. for( l=0; l<n_legs-1; l++) {
  4505. if (rotational_direction==1)
  4506. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4507. else
  4508. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4509. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4510. if ( radius<0.0 )
  4511. radius = -radius;
  4512. X_current = X_probe_location + cos(theta) * radius;
  4513. Y_current = Y_probe_location + sin(theta) * radius;
  4514. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4515. X_current = X_MIN_POS;
  4516. if ( X_current>X_MAX_POS)
  4517. X_current = X_MAX_POS;
  4518. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4519. Y_current = Y_MIN_POS;
  4520. if ( Y_current>Y_MAX_POS)
  4521. Y_current = Y_MAX_POS;
  4522. if (verbose_level>3 ) {
  4523. SERIAL_ECHOPAIR("x: ", X_current);
  4524. SERIAL_ECHOPAIR("y: ", Y_current);
  4525. SERIAL_PROTOCOLLNPGM("");
  4526. }
  4527. do_blocking_move_to( X_current, Y_current, Z_current );
  4528. }
  4529. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4530. }
  4531. setup_for_endstop_move();
  4532. run_z_probe();
  4533. sample_set[n] = current_position[Z_AXIS];
  4534. //
  4535. // Get the current mean for the data points we have so far
  4536. //
  4537. sum=0.0;
  4538. for( j=0; j<=n; j++) {
  4539. sum = sum + sample_set[j];
  4540. }
  4541. mean = sum / (double (n+1));
  4542. //
  4543. // Now, use that mean to calculate the standard deviation for the
  4544. // data points we have so far
  4545. //
  4546. sum=0.0;
  4547. for( j=0; j<=n; j++) {
  4548. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4549. }
  4550. sigma = sqrt( sum / (double (n+1)) );
  4551. if (verbose_level > 1) {
  4552. SERIAL_PROTOCOL(n+1);
  4553. SERIAL_PROTOCOL(" of ");
  4554. SERIAL_PROTOCOL(n_samples);
  4555. SERIAL_PROTOCOLPGM(" z: ");
  4556. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4557. }
  4558. if (verbose_level > 2) {
  4559. SERIAL_PROTOCOL(" mean: ");
  4560. SERIAL_PROTOCOL_F(mean,6);
  4561. SERIAL_PROTOCOL(" sigma: ");
  4562. SERIAL_PROTOCOL_F(sigma,6);
  4563. }
  4564. if (verbose_level > 0)
  4565. SERIAL_PROTOCOLPGM("\n");
  4566. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4567. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4568. st_synchronize();
  4569. }
  4570. delay(1000);
  4571. clean_up_after_endstop_move();
  4572. // enable_endstops(true);
  4573. if (verbose_level > 0) {
  4574. SERIAL_PROTOCOLPGM("Mean: ");
  4575. SERIAL_PROTOCOL_F(mean, 6);
  4576. SERIAL_PROTOCOLPGM("\n");
  4577. }
  4578. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4579. SERIAL_PROTOCOL_F(sigma, 6);
  4580. SERIAL_PROTOCOLPGM("\n\n");
  4581. Sigma_Exit:
  4582. break;
  4583. }
  4584. #endif // Z_PROBE_REPEATABILITY_TEST
  4585. #endif // ENABLE_AUTO_BED_LEVELING
  4586. case 73: //M73 show percent done and time remaining
  4587. if(code_seen('P')) print_percent_done_normal = code_value();
  4588. if(code_seen('R')) print_time_remaining_normal = code_value();
  4589. if(code_seen('Q')) print_percent_done_silent = code_value();
  4590. if(code_seen('S')) print_time_remaining_silent = code_value();
  4591. {
  4592. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4593. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4594. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4595. }
  4596. break;
  4597. case 104: // M104
  4598. {
  4599. uint8_t extruder;
  4600. if(setTargetedHotend(104,extruder)){
  4601. break;
  4602. }
  4603. if (code_seen('S'))
  4604. {
  4605. setTargetHotendSafe(code_value(), extruder);
  4606. }
  4607. setWatch();
  4608. break;
  4609. }
  4610. case 112: // M112 -Emergency Stop
  4611. kill(_n(""), 3);
  4612. break;
  4613. case 140: // M140 set bed temp
  4614. if (code_seen('S')) setTargetBed(code_value());
  4615. break;
  4616. case 105 : // M105
  4617. {
  4618. uint8_t extruder;
  4619. if(setTargetedHotend(105, extruder)){
  4620. break;
  4621. }
  4622. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4623. SERIAL_PROTOCOLPGM("ok T:");
  4624. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4625. SERIAL_PROTOCOLPGM(" /");
  4626. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4627. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4628. SERIAL_PROTOCOLPGM(" B:");
  4629. SERIAL_PROTOCOL_F(degBed(),1);
  4630. SERIAL_PROTOCOLPGM(" /");
  4631. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4632. #endif //TEMP_BED_PIN
  4633. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4634. SERIAL_PROTOCOLPGM(" T");
  4635. SERIAL_PROTOCOL(cur_extruder);
  4636. SERIAL_PROTOCOLPGM(":");
  4637. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4638. SERIAL_PROTOCOLPGM(" /");
  4639. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4640. }
  4641. #else
  4642. SERIAL_ERROR_START;
  4643. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4644. #endif
  4645. SERIAL_PROTOCOLPGM(" @:");
  4646. #ifdef EXTRUDER_WATTS
  4647. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4648. SERIAL_PROTOCOLPGM("W");
  4649. #else
  4650. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4651. #endif
  4652. SERIAL_PROTOCOLPGM(" B@:");
  4653. #ifdef BED_WATTS
  4654. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4655. SERIAL_PROTOCOLPGM("W");
  4656. #else
  4657. SERIAL_PROTOCOL(getHeaterPower(-1));
  4658. #endif
  4659. #ifdef PINDA_THERMISTOR
  4660. SERIAL_PROTOCOLPGM(" P:");
  4661. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4662. #endif //PINDA_THERMISTOR
  4663. #ifdef AMBIENT_THERMISTOR
  4664. SERIAL_PROTOCOLPGM(" A:");
  4665. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4666. #endif //AMBIENT_THERMISTOR
  4667. #ifdef SHOW_TEMP_ADC_VALUES
  4668. {float raw = 0.0;
  4669. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4670. SERIAL_PROTOCOLPGM(" ADC B:");
  4671. SERIAL_PROTOCOL_F(degBed(),1);
  4672. SERIAL_PROTOCOLPGM("C->");
  4673. raw = rawBedTemp();
  4674. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4675. SERIAL_PROTOCOLPGM(" Rb->");
  4676. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4677. SERIAL_PROTOCOLPGM(" Rxb->");
  4678. SERIAL_PROTOCOL_F(raw, 5);
  4679. #endif
  4680. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4681. SERIAL_PROTOCOLPGM(" T");
  4682. SERIAL_PROTOCOL(cur_extruder);
  4683. SERIAL_PROTOCOLPGM(":");
  4684. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4685. SERIAL_PROTOCOLPGM("C->");
  4686. raw = rawHotendTemp(cur_extruder);
  4687. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4688. SERIAL_PROTOCOLPGM(" Rt");
  4689. SERIAL_PROTOCOL(cur_extruder);
  4690. SERIAL_PROTOCOLPGM("->");
  4691. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4692. SERIAL_PROTOCOLPGM(" Rx");
  4693. SERIAL_PROTOCOL(cur_extruder);
  4694. SERIAL_PROTOCOLPGM("->");
  4695. SERIAL_PROTOCOL_F(raw, 5);
  4696. }}
  4697. #endif
  4698. SERIAL_PROTOCOLLN("");
  4699. KEEPALIVE_STATE(NOT_BUSY);
  4700. return;
  4701. break;
  4702. }
  4703. case 109:
  4704. {// M109 - Wait for extruder heater to reach target.
  4705. uint8_t extruder;
  4706. if(setTargetedHotend(109, extruder)){
  4707. break;
  4708. }
  4709. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4710. heating_status = 1;
  4711. if (farm_mode) { prusa_statistics(1); };
  4712. #ifdef AUTOTEMP
  4713. autotemp_enabled=false;
  4714. #endif
  4715. if (code_seen('S')) {
  4716. setTargetHotendSafe(code_value(), extruder);
  4717. CooldownNoWait = true;
  4718. } else if (code_seen('R')) {
  4719. setTargetHotendSafe(code_value(), extruder);
  4720. CooldownNoWait = false;
  4721. }
  4722. #ifdef AUTOTEMP
  4723. if (code_seen('S')) autotemp_min=code_value();
  4724. if (code_seen('B')) autotemp_max=code_value();
  4725. if (code_seen('F'))
  4726. {
  4727. autotemp_factor=code_value();
  4728. autotemp_enabled=true;
  4729. }
  4730. #endif
  4731. setWatch();
  4732. codenum = millis();
  4733. /* See if we are heating up or cooling down */
  4734. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4735. KEEPALIVE_STATE(NOT_BUSY);
  4736. cancel_heatup = false;
  4737. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4738. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4739. KEEPALIVE_STATE(IN_HANDLER);
  4740. heating_status = 2;
  4741. if (farm_mode) { prusa_statistics(2); };
  4742. //starttime=millis();
  4743. previous_millis_cmd = millis();
  4744. }
  4745. break;
  4746. case 190: // M190 - Wait for bed heater to reach target.
  4747. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4748. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4749. heating_status = 3;
  4750. if (farm_mode) { prusa_statistics(1); };
  4751. if (code_seen('S'))
  4752. {
  4753. setTargetBed(code_value());
  4754. CooldownNoWait = true;
  4755. }
  4756. else if (code_seen('R'))
  4757. {
  4758. setTargetBed(code_value());
  4759. CooldownNoWait = false;
  4760. }
  4761. codenum = millis();
  4762. cancel_heatup = false;
  4763. target_direction = isHeatingBed(); // true if heating, false if cooling
  4764. KEEPALIVE_STATE(NOT_BUSY);
  4765. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4766. {
  4767. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4768. {
  4769. if (!farm_mode) {
  4770. float tt = degHotend(active_extruder);
  4771. SERIAL_PROTOCOLPGM("T:");
  4772. SERIAL_PROTOCOL(tt);
  4773. SERIAL_PROTOCOLPGM(" E:");
  4774. SERIAL_PROTOCOL((int)active_extruder);
  4775. SERIAL_PROTOCOLPGM(" B:");
  4776. SERIAL_PROTOCOL_F(degBed(), 1);
  4777. SERIAL_PROTOCOLLN("");
  4778. }
  4779. codenum = millis();
  4780. }
  4781. manage_heater();
  4782. manage_inactivity();
  4783. lcd_update(0);
  4784. }
  4785. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4786. KEEPALIVE_STATE(IN_HANDLER);
  4787. heating_status = 4;
  4788. previous_millis_cmd = millis();
  4789. #endif
  4790. break;
  4791. #if defined(FAN_PIN) && FAN_PIN > -1
  4792. case 106: //M106 Fan On
  4793. if (code_seen('S')){
  4794. fanSpeed=constrain(code_value(),0,255);
  4795. }
  4796. else {
  4797. fanSpeed=255;
  4798. }
  4799. break;
  4800. case 107: //M107 Fan Off
  4801. fanSpeed = 0;
  4802. break;
  4803. #endif //FAN_PIN
  4804. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4805. case 80: // M80 - Turn on Power Supply
  4806. SET_OUTPUT(PS_ON_PIN); //GND
  4807. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4808. // If you have a switch on suicide pin, this is useful
  4809. // if you want to start another print with suicide feature after
  4810. // a print without suicide...
  4811. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4812. SET_OUTPUT(SUICIDE_PIN);
  4813. WRITE(SUICIDE_PIN, HIGH);
  4814. #endif
  4815. powersupply = true;
  4816. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4817. lcd_update(0);
  4818. break;
  4819. #endif
  4820. case 81: // M81 - Turn off Power Supply
  4821. disable_heater();
  4822. st_synchronize();
  4823. disable_e0();
  4824. disable_e1();
  4825. disable_e2();
  4826. finishAndDisableSteppers();
  4827. fanSpeed = 0;
  4828. delay(1000); // Wait a little before to switch off
  4829. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4830. st_synchronize();
  4831. suicide();
  4832. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4833. SET_OUTPUT(PS_ON_PIN);
  4834. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4835. #endif
  4836. powersupply = false;
  4837. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4838. lcd_update(0);
  4839. break;
  4840. case 82:
  4841. axis_relative_modes[3] = false;
  4842. break;
  4843. case 83:
  4844. axis_relative_modes[3] = true;
  4845. break;
  4846. case 18: //compatibility
  4847. case 84: // M84
  4848. if(code_seen('S')){
  4849. stepper_inactive_time = code_value() * 1000;
  4850. }
  4851. else
  4852. {
  4853. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4854. if(all_axis)
  4855. {
  4856. st_synchronize();
  4857. disable_e0();
  4858. disable_e1();
  4859. disable_e2();
  4860. finishAndDisableSteppers();
  4861. }
  4862. else
  4863. {
  4864. st_synchronize();
  4865. if (code_seen('X')) disable_x();
  4866. if (code_seen('Y')) disable_y();
  4867. if (code_seen('Z')) disable_z();
  4868. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4869. if (code_seen('E')) {
  4870. disable_e0();
  4871. disable_e1();
  4872. disable_e2();
  4873. }
  4874. #endif
  4875. }
  4876. }
  4877. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4878. print_time_remaining_init();
  4879. snmm_filaments_used = 0;
  4880. break;
  4881. case 85: // M85
  4882. if(code_seen('S')) {
  4883. max_inactive_time = code_value() * 1000;
  4884. }
  4885. break;
  4886. #ifdef SAFETYTIMER
  4887. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4888. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4889. if (code_seen('S')) {
  4890. safetytimer_inactive_time = code_value() * 1000;
  4891. safetyTimer.start();
  4892. }
  4893. break;
  4894. #endif
  4895. case 92: // M92
  4896. for(int8_t i=0; i < NUM_AXIS; i++)
  4897. {
  4898. if(code_seen(axis_codes[i]))
  4899. {
  4900. if(i == 3) { // E
  4901. float value = code_value();
  4902. if(value < 20.0) {
  4903. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4904. max_jerk[E_AXIS] *= factor;
  4905. max_feedrate[i] *= factor;
  4906. axis_steps_per_sqr_second[i] *= factor;
  4907. }
  4908. axis_steps_per_unit[i] = value;
  4909. }
  4910. else {
  4911. axis_steps_per_unit[i] = code_value();
  4912. }
  4913. }
  4914. }
  4915. break;
  4916. case 110: // M110 - reset line pos
  4917. if (code_seen('N'))
  4918. gcode_LastN = code_value_long();
  4919. break;
  4920. #ifdef HOST_KEEPALIVE_FEATURE
  4921. case 113: // M113 - Get or set Host Keepalive interval
  4922. if (code_seen('S')) {
  4923. host_keepalive_interval = (uint8_t)code_value_short();
  4924. // NOMORE(host_keepalive_interval, 60);
  4925. }
  4926. else {
  4927. SERIAL_ECHO_START;
  4928. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4929. SERIAL_PROTOCOLLN("");
  4930. }
  4931. break;
  4932. #endif
  4933. case 115: // M115
  4934. if (code_seen('V')) {
  4935. // Report the Prusa version number.
  4936. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4937. } else if (code_seen('U')) {
  4938. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4939. // pause the print and ask the user to upgrade the firmware.
  4940. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4941. } else {
  4942. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4943. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4944. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4945. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4946. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4947. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4948. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4949. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4950. SERIAL_ECHOPGM(" UUID:");
  4951. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4952. }
  4953. break;
  4954. /* case 117: // M117 display message
  4955. starpos = (strchr(strchr_pointer + 5,'*'));
  4956. if(starpos!=NULL)
  4957. *(starpos)='\0';
  4958. lcd_setstatus(strchr_pointer + 5);
  4959. break;*/
  4960. case 114: // M114
  4961. gcode_M114();
  4962. break;
  4963. case 120: // M120
  4964. enable_endstops(false) ;
  4965. break;
  4966. case 121: // M121
  4967. enable_endstops(true) ;
  4968. break;
  4969. case 119: // M119
  4970. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4971. SERIAL_PROTOCOLLN("");
  4972. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4973. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4974. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4975. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4976. }else{
  4977. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4978. }
  4979. SERIAL_PROTOCOLLN("");
  4980. #endif
  4981. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4982. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4983. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4984. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4985. }else{
  4986. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4987. }
  4988. SERIAL_PROTOCOLLN("");
  4989. #endif
  4990. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4991. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4992. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4993. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4994. }else{
  4995. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4996. }
  4997. SERIAL_PROTOCOLLN("");
  4998. #endif
  4999. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5000. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5001. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5002. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5003. }else{
  5004. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5005. }
  5006. SERIAL_PROTOCOLLN("");
  5007. #endif
  5008. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5009. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5010. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5011. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5012. }else{
  5013. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5014. }
  5015. SERIAL_PROTOCOLLN("");
  5016. #endif
  5017. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5018. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5019. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5020. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5021. }else{
  5022. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5023. }
  5024. SERIAL_PROTOCOLLN("");
  5025. #endif
  5026. break;
  5027. //TODO: update for all axis, use for loop
  5028. #ifdef BLINKM
  5029. case 150: // M150
  5030. {
  5031. byte red;
  5032. byte grn;
  5033. byte blu;
  5034. if(code_seen('R')) red = code_value();
  5035. if(code_seen('U')) grn = code_value();
  5036. if(code_seen('B')) blu = code_value();
  5037. SendColors(red,grn,blu);
  5038. }
  5039. break;
  5040. #endif //BLINKM
  5041. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5042. {
  5043. uint8_t extruder = active_extruder;
  5044. if(code_seen('T')) {
  5045. extruder = code_value();
  5046. if(extruder >= EXTRUDERS) {
  5047. SERIAL_ECHO_START;
  5048. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5049. break;
  5050. }
  5051. }
  5052. if(code_seen('D')) {
  5053. float diameter = (float)code_value();
  5054. if (diameter == 0.0) {
  5055. // setting any extruder filament size disables volumetric on the assumption that
  5056. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5057. // for all extruders
  5058. volumetric_enabled = false;
  5059. } else {
  5060. filament_size[extruder] = (float)code_value();
  5061. // make sure all extruders have some sane value for the filament size
  5062. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5063. #if EXTRUDERS > 1
  5064. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5065. #if EXTRUDERS > 2
  5066. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5067. #endif
  5068. #endif
  5069. volumetric_enabled = true;
  5070. }
  5071. } else {
  5072. //reserved for setting filament diameter via UFID or filament measuring device
  5073. break;
  5074. }
  5075. calculate_extruder_multipliers();
  5076. }
  5077. break;
  5078. case 201: // M201
  5079. for (int8_t i = 0; i < NUM_AXIS; i++)
  5080. {
  5081. if (code_seen(axis_codes[i]))
  5082. {
  5083. unsigned long val = code_value();
  5084. #ifdef TMC2130
  5085. unsigned long val_silent = val;
  5086. if ((i == X_AXIS) || (i == Y_AXIS))
  5087. {
  5088. if (val > NORMAL_MAX_ACCEL_XY)
  5089. val = NORMAL_MAX_ACCEL_XY;
  5090. if (val_silent > SILENT_MAX_ACCEL_XY)
  5091. val_silent = SILENT_MAX_ACCEL_XY;
  5092. }
  5093. max_acceleration_units_per_sq_second_normal[i] = val;
  5094. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5095. #else //TMC2130
  5096. max_acceleration_units_per_sq_second[i] = val;
  5097. #endif //TMC2130
  5098. }
  5099. }
  5100. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5101. reset_acceleration_rates();
  5102. break;
  5103. #if 0 // Not used for Sprinter/grbl gen6
  5104. case 202: // M202
  5105. for(int8_t i=0; i < NUM_AXIS; i++) {
  5106. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5107. }
  5108. break;
  5109. #endif
  5110. case 203: // M203 max feedrate mm/sec
  5111. for (int8_t i = 0; i < NUM_AXIS; i++)
  5112. {
  5113. if (code_seen(axis_codes[i]))
  5114. {
  5115. float val = code_value();
  5116. #ifdef TMC2130
  5117. float val_silent = val;
  5118. if ((i == X_AXIS) || (i == Y_AXIS))
  5119. {
  5120. if (val > NORMAL_MAX_FEEDRATE_XY)
  5121. val = NORMAL_MAX_FEEDRATE_XY;
  5122. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5123. val_silent = SILENT_MAX_FEEDRATE_XY;
  5124. }
  5125. max_feedrate_normal[i] = val;
  5126. max_feedrate_silent[i] = val_silent;
  5127. #else //TMC2130
  5128. max_feedrate[i] = val;
  5129. #endif //TMC2130
  5130. }
  5131. }
  5132. break;
  5133. case 204:
  5134. // M204 acclereration settings.
  5135. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5136. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5137. {
  5138. if(code_seen('S')) {
  5139. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5140. // and it is also generated by Slic3r to control acceleration per extrusion type
  5141. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5142. acceleration = code_value();
  5143. // Interpret the T value as retract acceleration in the old Marlin format.
  5144. if(code_seen('T'))
  5145. retract_acceleration = code_value();
  5146. } else {
  5147. // New acceleration format, compatible with the upstream Marlin.
  5148. if(code_seen('P'))
  5149. acceleration = code_value();
  5150. if(code_seen('R'))
  5151. retract_acceleration = code_value();
  5152. if(code_seen('T')) {
  5153. // Interpret the T value as the travel acceleration in the new Marlin format.
  5154. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5155. // travel_acceleration = code_value();
  5156. }
  5157. }
  5158. }
  5159. break;
  5160. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5161. {
  5162. if(code_seen('S')) minimumfeedrate = code_value();
  5163. if(code_seen('T')) mintravelfeedrate = code_value();
  5164. if(code_seen('B')) minsegmenttime = code_value() ;
  5165. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5166. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5167. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5168. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5169. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5170. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5171. }
  5172. break;
  5173. case 206: // M206 additional homing offset
  5174. for(int8_t i=0; i < 3; i++)
  5175. {
  5176. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5177. }
  5178. break;
  5179. #ifdef FWRETRACT
  5180. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5181. {
  5182. if(code_seen('S'))
  5183. {
  5184. retract_length = code_value() ;
  5185. }
  5186. if(code_seen('F'))
  5187. {
  5188. retract_feedrate = code_value()/60 ;
  5189. }
  5190. if(code_seen('Z'))
  5191. {
  5192. retract_zlift = code_value() ;
  5193. }
  5194. }break;
  5195. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5196. {
  5197. if(code_seen('S'))
  5198. {
  5199. retract_recover_length = code_value() ;
  5200. }
  5201. if(code_seen('F'))
  5202. {
  5203. retract_recover_feedrate = code_value()/60 ;
  5204. }
  5205. }break;
  5206. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5207. {
  5208. if(code_seen('S'))
  5209. {
  5210. int t= code_value() ;
  5211. switch(t)
  5212. {
  5213. case 0:
  5214. {
  5215. autoretract_enabled=false;
  5216. retracted[0]=false;
  5217. #if EXTRUDERS > 1
  5218. retracted[1]=false;
  5219. #endif
  5220. #if EXTRUDERS > 2
  5221. retracted[2]=false;
  5222. #endif
  5223. }break;
  5224. case 1:
  5225. {
  5226. autoretract_enabled=true;
  5227. retracted[0]=false;
  5228. #if EXTRUDERS > 1
  5229. retracted[1]=false;
  5230. #endif
  5231. #if EXTRUDERS > 2
  5232. retracted[2]=false;
  5233. #endif
  5234. }break;
  5235. default:
  5236. SERIAL_ECHO_START;
  5237. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5238. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5239. SERIAL_ECHOLNPGM("\"(1)");
  5240. }
  5241. }
  5242. }break;
  5243. #endif // FWRETRACT
  5244. #if EXTRUDERS > 1
  5245. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5246. {
  5247. uint8_t extruder;
  5248. if(setTargetedHotend(218, extruder)){
  5249. break;
  5250. }
  5251. if(code_seen('X'))
  5252. {
  5253. extruder_offset[X_AXIS][extruder] = code_value();
  5254. }
  5255. if(code_seen('Y'))
  5256. {
  5257. extruder_offset[Y_AXIS][extruder] = code_value();
  5258. }
  5259. SERIAL_ECHO_START;
  5260. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5261. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5262. {
  5263. SERIAL_ECHO(" ");
  5264. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5265. SERIAL_ECHO(",");
  5266. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5267. }
  5268. SERIAL_ECHOLN("");
  5269. }break;
  5270. #endif
  5271. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5272. {
  5273. if(code_seen('S'))
  5274. {
  5275. feedmultiply = code_value() ;
  5276. }
  5277. }
  5278. break;
  5279. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5280. {
  5281. if(code_seen('S'))
  5282. {
  5283. int tmp_code = code_value();
  5284. if (code_seen('T'))
  5285. {
  5286. uint8_t extruder;
  5287. if(setTargetedHotend(221, extruder)){
  5288. break;
  5289. }
  5290. extruder_multiply[extruder] = tmp_code;
  5291. }
  5292. else
  5293. {
  5294. extrudemultiply = tmp_code ;
  5295. }
  5296. }
  5297. calculate_extruder_multipliers();
  5298. }
  5299. break;
  5300. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5301. {
  5302. if(code_seen('P')){
  5303. int pin_number = code_value(); // pin number
  5304. int pin_state = -1; // required pin state - default is inverted
  5305. if(code_seen('S')) pin_state = code_value(); // required pin state
  5306. if(pin_state >= -1 && pin_state <= 1){
  5307. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5308. {
  5309. if (sensitive_pins[i] == pin_number)
  5310. {
  5311. pin_number = -1;
  5312. break;
  5313. }
  5314. }
  5315. if (pin_number > -1)
  5316. {
  5317. int target = LOW;
  5318. st_synchronize();
  5319. pinMode(pin_number, INPUT);
  5320. switch(pin_state){
  5321. case 1:
  5322. target = HIGH;
  5323. break;
  5324. case 0:
  5325. target = LOW;
  5326. break;
  5327. case -1:
  5328. target = !digitalRead(pin_number);
  5329. break;
  5330. }
  5331. while(digitalRead(pin_number) != target){
  5332. manage_heater();
  5333. manage_inactivity();
  5334. lcd_update(0);
  5335. }
  5336. }
  5337. }
  5338. }
  5339. }
  5340. break;
  5341. #if NUM_SERVOS > 0
  5342. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5343. {
  5344. int servo_index = -1;
  5345. int servo_position = 0;
  5346. if (code_seen('P'))
  5347. servo_index = code_value();
  5348. if (code_seen('S')) {
  5349. servo_position = code_value();
  5350. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5351. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5352. servos[servo_index].attach(0);
  5353. #endif
  5354. servos[servo_index].write(servo_position);
  5355. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5356. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5357. servos[servo_index].detach();
  5358. #endif
  5359. }
  5360. else {
  5361. SERIAL_ECHO_START;
  5362. SERIAL_ECHO("Servo ");
  5363. SERIAL_ECHO(servo_index);
  5364. SERIAL_ECHOLN(" out of range");
  5365. }
  5366. }
  5367. else if (servo_index >= 0) {
  5368. SERIAL_PROTOCOL(_T(MSG_OK));
  5369. SERIAL_PROTOCOL(" Servo ");
  5370. SERIAL_PROTOCOL(servo_index);
  5371. SERIAL_PROTOCOL(": ");
  5372. SERIAL_PROTOCOL(servos[servo_index].read());
  5373. SERIAL_PROTOCOLLN("");
  5374. }
  5375. }
  5376. break;
  5377. #endif // NUM_SERVOS > 0
  5378. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5379. case 300: // M300
  5380. {
  5381. int beepS = code_seen('S') ? code_value() : 110;
  5382. int beepP = code_seen('P') ? code_value() : 1000;
  5383. if (beepS > 0)
  5384. {
  5385. #if BEEPER > 0
  5386. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5387. tone(BEEPER, beepS);
  5388. delay(beepP);
  5389. noTone(BEEPER);
  5390. #endif
  5391. }
  5392. else
  5393. {
  5394. delay(beepP);
  5395. }
  5396. }
  5397. break;
  5398. #endif // M300
  5399. #ifdef PIDTEMP
  5400. case 301: // M301
  5401. {
  5402. if(code_seen('P')) Kp = code_value();
  5403. if(code_seen('I')) Ki = scalePID_i(code_value());
  5404. if(code_seen('D')) Kd = scalePID_d(code_value());
  5405. #ifdef PID_ADD_EXTRUSION_RATE
  5406. if(code_seen('C')) Kc = code_value();
  5407. #endif
  5408. updatePID();
  5409. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5410. SERIAL_PROTOCOL(" p:");
  5411. SERIAL_PROTOCOL(Kp);
  5412. SERIAL_PROTOCOL(" i:");
  5413. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5414. SERIAL_PROTOCOL(" d:");
  5415. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5416. #ifdef PID_ADD_EXTRUSION_RATE
  5417. SERIAL_PROTOCOL(" c:");
  5418. //Kc does not have scaling applied above, or in resetting defaults
  5419. SERIAL_PROTOCOL(Kc);
  5420. #endif
  5421. SERIAL_PROTOCOLLN("");
  5422. }
  5423. break;
  5424. #endif //PIDTEMP
  5425. #ifdef PIDTEMPBED
  5426. case 304: // M304
  5427. {
  5428. if(code_seen('P')) bedKp = code_value();
  5429. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5430. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5431. updatePID();
  5432. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5433. SERIAL_PROTOCOL(" p:");
  5434. SERIAL_PROTOCOL(bedKp);
  5435. SERIAL_PROTOCOL(" i:");
  5436. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5437. SERIAL_PROTOCOL(" d:");
  5438. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5439. SERIAL_PROTOCOLLN("");
  5440. }
  5441. break;
  5442. #endif //PIDTEMP
  5443. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5444. {
  5445. #ifdef CHDK
  5446. SET_OUTPUT(CHDK);
  5447. WRITE(CHDK, HIGH);
  5448. chdkHigh = millis();
  5449. chdkActive = true;
  5450. #else
  5451. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5452. const uint8_t NUM_PULSES=16;
  5453. const float PULSE_LENGTH=0.01524;
  5454. for(int i=0; i < NUM_PULSES; i++) {
  5455. WRITE(PHOTOGRAPH_PIN, HIGH);
  5456. _delay_ms(PULSE_LENGTH);
  5457. WRITE(PHOTOGRAPH_PIN, LOW);
  5458. _delay_ms(PULSE_LENGTH);
  5459. }
  5460. delay(7.33);
  5461. for(int i=0; i < NUM_PULSES; i++) {
  5462. WRITE(PHOTOGRAPH_PIN, HIGH);
  5463. _delay_ms(PULSE_LENGTH);
  5464. WRITE(PHOTOGRAPH_PIN, LOW);
  5465. _delay_ms(PULSE_LENGTH);
  5466. }
  5467. #endif
  5468. #endif //chdk end if
  5469. }
  5470. break;
  5471. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5472. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5473. {
  5474. float temp = .0;
  5475. if (code_seen('S')) temp=code_value();
  5476. set_extrude_min_temp(temp);
  5477. }
  5478. break;
  5479. #endif
  5480. case 303: // M303 PID autotune
  5481. {
  5482. float temp = 150.0;
  5483. int e=0;
  5484. int c=5;
  5485. if (code_seen('E')) e=code_value();
  5486. if (e<0)
  5487. temp=70;
  5488. if (code_seen('S')) temp=code_value();
  5489. if (code_seen('C')) c=code_value();
  5490. PID_autotune(temp, e, c);
  5491. }
  5492. break;
  5493. case 400: // M400 finish all moves
  5494. {
  5495. st_synchronize();
  5496. }
  5497. break;
  5498. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5499. {
  5500. //currently three different materials are needed (default, flex and PVA)
  5501. //add storing this information for different load/unload profiles etc. in the future
  5502. //firmware does not wait for "ok" from mmu
  5503. if (mmu_enabled)
  5504. {
  5505. uint8_t extruder = 255;
  5506. uint8_t filament = FILAMENT_UNDEFINED;
  5507. if(code_seen('E')) extruder = code_value();
  5508. if(code_seen('F')) filament = code_value();
  5509. mmu_set_filament_type(extruder, filament);
  5510. }
  5511. }
  5512. break;
  5513. case 500: // M500 Store settings in EEPROM
  5514. {
  5515. Config_StoreSettings(EEPROM_OFFSET);
  5516. }
  5517. break;
  5518. case 501: // M501 Read settings from EEPROM
  5519. {
  5520. Config_RetrieveSettings(EEPROM_OFFSET);
  5521. }
  5522. break;
  5523. case 502: // M502 Revert to default settings
  5524. {
  5525. Config_ResetDefault();
  5526. }
  5527. break;
  5528. case 503: // M503 print settings currently in memory
  5529. {
  5530. Config_PrintSettings();
  5531. }
  5532. break;
  5533. case 509: //M509 Force language selection
  5534. {
  5535. lang_reset();
  5536. SERIAL_ECHO_START;
  5537. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5538. }
  5539. break;
  5540. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5541. case 540:
  5542. {
  5543. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5544. }
  5545. break;
  5546. #endif
  5547. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5548. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5549. {
  5550. float value;
  5551. if (code_seen('Z'))
  5552. {
  5553. value = code_value();
  5554. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5555. {
  5556. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5557. SERIAL_ECHO_START;
  5558. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5559. SERIAL_PROTOCOLLN("");
  5560. }
  5561. else
  5562. {
  5563. SERIAL_ECHO_START;
  5564. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5565. SERIAL_ECHORPGM(MSG_Z_MIN);
  5566. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5567. SERIAL_ECHORPGM(MSG_Z_MAX);
  5568. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5569. SERIAL_PROTOCOLLN("");
  5570. }
  5571. }
  5572. else
  5573. {
  5574. SERIAL_ECHO_START;
  5575. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5576. SERIAL_ECHO(-zprobe_zoffset);
  5577. SERIAL_PROTOCOLLN("");
  5578. }
  5579. break;
  5580. }
  5581. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5582. #ifdef FILAMENTCHANGEENABLE
  5583. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5584. {
  5585. st_synchronize();
  5586. float x_position = current_position[X_AXIS];
  5587. float y_position = current_position[Y_AXIS];
  5588. float z_shift = 0;
  5589. float e_shift_init = 0;
  5590. float e_shift_late = 0;
  5591. bool automatic = false;
  5592. //Retract extruder
  5593. if(code_seen('E'))
  5594. {
  5595. e_shift_init = code_value();
  5596. }
  5597. else
  5598. {
  5599. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5600. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5601. #endif
  5602. }
  5603. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5604. if (code_seen('L'))
  5605. {
  5606. e_shift_late = code_value();
  5607. }
  5608. else
  5609. {
  5610. #ifdef FILAMENTCHANGE_FINALRETRACT
  5611. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5612. #endif
  5613. }
  5614. //Lift Z
  5615. if(code_seen('Z'))
  5616. {
  5617. z_shift = code_value();
  5618. }
  5619. else
  5620. {
  5621. #ifdef FILAMENTCHANGE_ZADD
  5622. z_shift= FILAMENTCHANGE_ZADD ;
  5623. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5624. #endif
  5625. }
  5626. //Move XY to side
  5627. if(code_seen('X'))
  5628. {
  5629. x_position = code_value();
  5630. }
  5631. else
  5632. {
  5633. #ifdef FILAMENTCHANGE_XPOS
  5634. x_position = FILAMENTCHANGE_XPOS;
  5635. #endif
  5636. }
  5637. if(code_seen('Y'))
  5638. {
  5639. y_position = code_value();
  5640. }
  5641. else
  5642. {
  5643. #ifdef FILAMENTCHANGE_YPOS
  5644. y_position = FILAMENTCHANGE_YPOS ;
  5645. #endif
  5646. }
  5647. if (mmu_enabled && code_seen("AUTO"))
  5648. automatic = true;
  5649. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5650. }
  5651. break;
  5652. #endif //FILAMENTCHANGEENABLE
  5653. case 601:
  5654. {
  5655. lcd_pause_print();
  5656. }
  5657. break;
  5658. case 602: {
  5659. lcd_resume_print();
  5660. }
  5661. break;
  5662. #ifdef PINDA_THERMISTOR
  5663. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5664. {
  5665. int set_target_pinda = 0;
  5666. if (code_seen('S')) {
  5667. set_target_pinda = code_value();
  5668. }
  5669. else {
  5670. break;
  5671. }
  5672. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5673. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5674. SERIAL_PROTOCOL(set_target_pinda);
  5675. SERIAL_PROTOCOLLN("");
  5676. codenum = millis();
  5677. cancel_heatup = false;
  5678. bool is_pinda_cooling = false;
  5679. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5680. is_pinda_cooling = true;
  5681. }
  5682. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5683. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5684. {
  5685. SERIAL_PROTOCOLPGM("P:");
  5686. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5687. SERIAL_PROTOCOLPGM("/");
  5688. SERIAL_PROTOCOL(set_target_pinda);
  5689. SERIAL_PROTOCOLLN("");
  5690. codenum = millis();
  5691. }
  5692. manage_heater();
  5693. manage_inactivity();
  5694. lcd_update(0);
  5695. }
  5696. LCD_MESSAGERPGM(_T(MSG_OK));
  5697. break;
  5698. }
  5699. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5700. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5701. uint8_t cal_status = calibration_status_pinda();
  5702. int16_t usteps = 0;
  5703. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5704. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5705. for (uint8_t i = 0; i < 6; i++)
  5706. {
  5707. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5708. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5709. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5710. SERIAL_PROTOCOLPGM(", ");
  5711. SERIAL_PROTOCOL(35 + (i * 5));
  5712. SERIAL_PROTOCOLPGM(", ");
  5713. SERIAL_PROTOCOL(usteps);
  5714. SERIAL_PROTOCOLPGM(", ");
  5715. SERIAL_PROTOCOL(mm * 1000);
  5716. SERIAL_PROTOCOLLN("");
  5717. }
  5718. }
  5719. else if (code_seen('!')) { // ! - Set factory default values
  5720. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5721. int16_t z_shift = 8; //40C - 20um - 8usteps
  5722. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5723. z_shift = 24; //45C - 60um - 24usteps
  5724. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5725. z_shift = 48; //50C - 120um - 48usteps
  5726. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5727. z_shift = 80; //55C - 200um - 80usteps
  5728. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5729. z_shift = 120; //60C - 300um - 120usteps
  5730. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5731. SERIAL_PROTOCOLLN("factory restored");
  5732. }
  5733. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5734. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5735. int16_t z_shift = 0;
  5736. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5737. SERIAL_PROTOCOLLN("zerorized");
  5738. }
  5739. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5740. int16_t usteps = code_value();
  5741. if (code_seen('I')) {
  5742. uint8_t index = code_value();
  5743. if (index < 5) {
  5744. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5745. SERIAL_PROTOCOLLN("OK");
  5746. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5747. for (uint8_t i = 0; i < 6; i++)
  5748. {
  5749. usteps = 0;
  5750. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5751. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5752. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5753. SERIAL_PROTOCOLPGM(", ");
  5754. SERIAL_PROTOCOL(35 + (i * 5));
  5755. SERIAL_PROTOCOLPGM(", ");
  5756. SERIAL_PROTOCOL(usteps);
  5757. SERIAL_PROTOCOLPGM(", ");
  5758. SERIAL_PROTOCOL(mm * 1000);
  5759. SERIAL_PROTOCOLLN("");
  5760. }
  5761. }
  5762. }
  5763. }
  5764. else {
  5765. SERIAL_PROTOCOLPGM("no valid command");
  5766. }
  5767. break;
  5768. #endif //PINDA_THERMISTOR
  5769. #ifdef LIN_ADVANCE
  5770. case 900: // M900: Set LIN_ADVANCE options.
  5771. gcode_M900();
  5772. break;
  5773. #endif
  5774. case 907: // M907 Set digital trimpot motor current using axis codes.
  5775. {
  5776. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5777. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5778. if(code_seen('B')) st_current_set(4,code_value());
  5779. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5780. #endif
  5781. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5782. if(code_seen('X')) st_current_set(0, code_value());
  5783. #endif
  5784. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5785. if(code_seen('Z')) st_current_set(1, code_value());
  5786. #endif
  5787. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5788. if(code_seen('E')) st_current_set(2, code_value());
  5789. #endif
  5790. }
  5791. break;
  5792. case 908: // M908 Control digital trimpot directly.
  5793. {
  5794. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5795. uint8_t channel,current;
  5796. if(code_seen('P')) channel=code_value();
  5797. if(code_seen('S')) current=code_value();
  5798. digitalPotWrite(channel, current);
  5799. #endif
  5800. }
  5801. break;
  5802. #ifdef TMC2130
  5803. case 910: // M910 TMC2130 init
  5804. {
  5805. tmc2130_init();
  5806. }
  5807. break;
  5808. case 911: // M911 Set TMC2130 holding currents
  5809. {
  5810. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5811. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5812. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5813. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5814. }
  5815. break;
  5816. case 912: // M912 Set TMC2130 running currents
  5817. {
  5818. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5819. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5820. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5821. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5822. }
  5823. break;
  5824. case 913: // M913 Print TMC2130 currents
  5825. {
  5826. tmc2130_print_currents();
  5827. }
  5828. break;
  5829. case 914: // M914 Set normal mode
  5830. {
  5831. tmc2130_mode = TMC2130_MODE_NORMAL;
  5832. update_mode_profile();
  5833. tmc2130_init();
  5834. }
  5835. break;
  5836. case 915: // M915 Set silent mode
  5837. {
  5838. tmc2130_mode = TMC2130_MODE_SILENT;
  5839. update_mode_profile();
  5840. tmc2130_init();
  5841. }
  5842. break;
  5843. case 916: // M916 Set sg_thrs
  5844. {
  5845. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5846. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5847. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5848. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5849. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5850. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5851. }
  5852. break;
  5853. case 917: // M917 Set TMC2130 pwm_ampl
  5854. {
  5855. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5856. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5857. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5858. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5859. }
  5860. break;
  5861. case 918: // M918 Set TMC2130 pwm_grad
  5862. {
  5863. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5864. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5865. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5866. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5867. }
  5868. break;
  5869. #endif //TMC2130
  5870. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5871. {
  5872. #ifdef TMC2130
  5873. if(code_seen('E'))
  5874. {
  5875. uint16_t res_new = code_value();
  5876. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5877. {
  5878. st_synchronize();
  5879. uint8_t axis = E_AXIS;
  5880. uint16_t res = tmc2130_get_res(axis);
  5881. tmc2130_set_res(axis, res_new);
  5882. if (res_new > res)
  5883. {
  5884. uint16_t fac = (res_new / res);
  5885. axis_steps_per_unit[axis] *= fac;
  5886. position[E_AXIS] *= fac;
  5887. }
  5888. else
  5889. {
  5890. uint16_t fac = (res / res_new);
  5891. axis_steps_per_unit[axis] /= fac;
  5892. position[E_AXIS] /= fac;
  5893. }
  5894. }
  5895. }
  5896. #else //TMC2130
  5897. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5898. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5899. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5900. if(code_seen('B')) microstep_mode(4,code_value());
  5901. microstep_readings();
  5902. #endif
  5903. #endif //TMC2130
  5904. }
  5905. break;
  5906. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5907. {
  5908. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5909. if(code_seen('S')) switch((int)code_value())
  5910. {
  5911. case 1:
  5912. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5913. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5914. break;
  5915. case 2:
  5916. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5917. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5918. break;
  5919. }
  5920. microstep_readings();
  5921. #endif
  5922. }
  5923. break;
  5924. case 701: //M701: load filament
  5925. {
  5926. if (mmu_enabled && code_seen('E'))
  5927. tmp_extruder = code_value();
  5928. gcode_M701();
  5929. }
  5930. break;
  5931. case 702:
  5932. {
  5933. if (mmu_enabled)
  5934. {
  5935. if (code_seen('U'))
  5936. extr_unload_used(); //unload all filaments which were used in current print
  5937. else if (code_seen('C'))
  5938. extr_unload(); //unload just current filament
  5939. else
  5940. extr_unload_all(); //unload all filaments
  5941. }
  5942. else
  5943. unload_filament();
  5944. }
  5945. break;
  5946. case 999: // M999: Restart after being stopped
  5947. Stopped = false;
  5948. lcd_reset_alert_level();
  5949. gcode_LastN = Stopped_gcode_LastN;
  5950. FlushSerialRequestResend();
  5951. break;
  5952. default:
  5953. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5954. }
  5955. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5956. mcode_in_progress = 0;
  5957. }
  5958. } // end if(code_seen('M')) (end of M codes)
  5959. else if(code_seen('T'))
  5960. {
  5961. int index;
  5962. st_synchronize();
  5963. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5964. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5965. SERIAL_ECHOLNPGM("Invalid T code.");
  5966. }
  5967. else {
  5968. if (*(strchr_pointer + index) == '?') {
  5969. tmp_extruder = choose_extruder_menu();
  5970. }
  5971. else {
  5972. tmp_extruder = code_value();
  5973. }
  5974. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5975. if (mmu_enabled)
  5976. {
  5977. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5978. manage_response(true, true);
  5979. mmu_command(MMU_CMD_C0);
  5980. mmu_extruder = tmp_extruder; //filament change is finished
  5981. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5982. {
  5983. mmu_load_to_nozzle();
  5984. }
  5985. }
  5986. else
  5987. {
  5988. #ifdef SNMM
  5989. #ifdef LIN_ADVANCE
  5990. if (mmu_extruder != tmp_extruder)
  5991. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5992. #endif
  5993. mmu_extruder = tmp_extruder;
  5994. delay(100);
  5995. disable_e0();
  5996. disable_e1();
  5997. disable_e2();
  5998. pinMode(E_MUX0_PIN, OUTPUT);
  5999. pinMode(E_MUX1_PIN, OUTPUT);
  6000. delay(100);
  6001. SERIAL_ECHO_START;
  6002. SERIAL_ECHO("T:");
  6003. SERIAL_ECHOLN((int)tmp_extruder);
  6004. switch (tmp_extruder) {
  6005. case 1:
  6006. WRITE(E_MUX0_PIN, HIGH);
  6007. WRITE(E_MUX1_PIN, LOW);
  6008. break;
  6009. case 2:
  6010. WRITE(E_MUX0_PIN, LOW);
  6011. WRITE(E_MUX1_PIN, HIGH);
  6012. break;
  6013. case 3:
  6014. WRITE(E_MUX0_PIN, HIGH);
  6015. WRITE(E_MUX1_PIN, HIGH);
  6016. break;
  6017. default:
  6018. WRITE(E_MUX0_PIN, LOW);
  6019. WRITE(E_MUX1_PIN, LOW);
  6020. break;
  6021. }
  6022. delay(100);
  6023. #else //SNMM
  6024. if (tmp_extruder >= EXTRUDERS) {
  6025. SERIAL_ECHO_START;
  6026. SERIAL_ECHOPGM("T");
  6027. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6028. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6029. }
  6030. else {
  6031. #if EXTRUDERS > 1
  6032. boolean make_move = false;
  6033. #endif
  6034. if (code_seen('F')) {
  6035. #if EXTRUDERS > 1
  6036. make_move = true;
  6037. #endif
  6038. next_feedrate = code_value();
  6039. if (next_feedrate > 0.0) {
  6040. feedrate = next_feedrate;
  6041. }
  6042. }
  6043. #if EXTRUDERS > 1
  6044. if (tmp_extruder != active_extruder) {
  6045. // Save current position to return to after applying extruder offset
  6046. memcpy(destination, current_position, sizeof(destination));
  6047. // Offset extruder (only by XY)
  6048. int i;
  6049. for (i = 0; i < 2; i++) {
  6050. current_position[i] = current_position[i] -
  6051. extruder_offset[i][active_extruder] +
  6052. extruder_offset[i][tmp_extruder];
  6053. }
  6054. // Set the new active extruder and position
  6055. active_extruder = tmp_extruder;
  6056. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6057. // Move to the old position if 'F' was in the parameters
  6058. if (make_move && Stopped == false) {
  6059. prepare_move();
  6060. }
  6061. }
  6062. #endif
  6063. SERIAL_ECHO_START;
  6064. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6065. SERIAL_PROTOCOLLN((int)active_extruder);
  6066. }
  6067. #endif //SNMM
  6068. }
  6069. }
  6070. } // end if(code_seen('T')) (end of T codes)
  6071. else if (code_seen('D')) // D codes (debug)
  6072. {
  6073. switch((int)code_value())
  6074. {
  6075. #ifdef DEBUG_DCODES
  6076. case -1: // D-1 - Endless loop
  6077. dcode__1(); break;
  6078. case 0: // D0 - Reset
  6079. dcode_0(); break;
  6080. case 1: // D1 - Clear EEPROM
  6081. dcode_1(); break;
  6082. case 2: // D2 - Read/Write RAM
  6083. dcode_2(); break;
  6084. #endif //DEBUG_DCODES
  6085. #ifdef DEBUG_DCODE3
  6086. case 3: // D3 - Read/Write EEPROM
  6087. dcode_3(); break;
  6088. #endif //DEBUG_DCODE3
  6089. #ifdef DEBUG_DCODES
  6090. case 4: // D4 - Read/Write PIN
  6091. dcode_4(); break;
  6092. case 5: // D5 - Read/Write FLASH
  6093. // dcode_5(); break;
  6094. break;
  6095. case 6: // D6 - Read/Write external FLASH
  6096. dcode_6(); break;
  6097. case 7: // D7 - Read/Write Bootloader
  6098. dcode_7(); break;
  6099. case 8: // D8 - Read/Write PINDA
  6100. dcode_8(); break;
  6101. case 9: // D9 - Read/Write ADC
  6102. dcode_9(); break;
  6103. case 10: // D10 - XYZ calibration = OK
  6104. dcode_10(); break;
  6105. #ifdef TMC2130
  6106. case 2130: // D9125 - TMC2130
  6107. dcode_2130(); break;
  6108. #endif //TMC2130
  6109. #ifdef FILAMENT_SENSOR
  6110. case 9125: // D9125 - FILAMENT_SENSOR
  6111. dcode_9125(); break;
  6112. #endif //FILAMENT_SENSOR
  6113. #endif //DEBUG_DCODES
  6114. }
  6115. }
  6116. else
  6117. {
  6118. SERIAL_ECHO_START;
  6119. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6120. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6121. SERIAL_ECHOLNPGM("\"(2)");
  6122. }
  6123. KEEPALIVE_STATE(NOT_BUSY);
  6124. ClearToSend();
  6125. }
  6126. void FlushSerialRequestResend()
  6127. {
  6128. //char cmdbuffer[bufindr][100]="Resend:";
  6129. MYSERIAL.flush();
  6130. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6131. }
  6132. // Confirm the execution of a command, if sent from a serial line.
  6133. // Execution of a command from a SD card will not be confirmed.
  6134. void ClearToSend()
  6135. {
  6136. previous_millis_cmd = millis();
  6137. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6138. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6139. }
  6140. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6141. void update_currents() {
  6142. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6143. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6144. float tmp_motor[3];
  6145. //SERIAL_ECHOLNPGM("Currents updated: ");
  6146. if (destination[Z_AXIS] < Z_SILENT) {
  6147. //SERIAL_ECHOLNPGM("LOW");
  6148. for (uint8_t i = 0; i < 3; i++) {
  6149. st_current_set(i, current_low[i]);
  6150. /*MYSERIAL.print(int(i));
  6151. SERIAL_ECHOPGM(": ");
  6152. MYSERIAL.println(current_low[i]);*/
  6153. }
  6154. }
  6155. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6156. //SERIAL_ECHOLNPGM("HIGH");
  6157. for (uint8_t i = 0; i < 3; i++) {
  6158. st_current_set(i, current_high[i]);
  6159. /*MYSERIAL.print(int(i));
  6160. SERIAL_ECHOPGM(": ");
  6161. MYSERIAL.println(current_high[i]);*/
  6162. }
  6163. }
  6164. else {
  6165. for (uint8_t i = 0; i < 3; i++) {
  6166. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6167. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6168. st_current_set(i, tmp_motor[i]);
  6169. /*MYSERIAL.print(int(i));
  6170. SERIAL_ECHOPGM(": ");
  6171. MYSERIAL.println(tmp_motor[i]);*/
  6172. }
  6173. }
  6174. }
  6175. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6176. void get_coordinates()
  6177. {
  6178. bool seen[4]={false,false,false,false};
  6179. for(int8_t i=0; i < NUM_AXIS; i++) {
  6180. if(code_seen(axis_codes[i]))
  6181. {
  6182. bool relative = axis_relative_modes[i] || relative_mode;
  6183. destination[i] = (float)code_value();
  6184. if (i == E_AXIS) {
  6185. float emult = extruder_multiplier[active_extruder];
  6186. if (emult != 1.) {
  6187. if (! relative) {
  6188. destination[i] -= current_position[i];
  6189. relative = true;
  6190. }
  6191. destination[i] *= emult;
  6192. }
  6193. }
  6194. if (relative)
  6195. destination[i] += current_position[i];
  6196. seen[i]=true;
  6197. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6198. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6199. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6200. }
  6201. else destination[i] = current_position[i]; //Are these else lines really needed?
  6202. }
  6203. if(code_seen('F')) {
  6204. next_feedrate = code_value();
  6205. #ifdef MAX_SILENT_FEEDRATE
  6206. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6207. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6208. #endif //MAX_SILENT_FEEDRATE
  6209. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6210. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6211. {
  6212. // float e_max_speed =
  6213. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6214. }
  6215. }
  6216. }
  6217. void get_arc_coordinates()
  6218. {
  6219. #ifdef SF_ARC_FIX
  6220. bool relative_mode_backup = relative_mode;
  6221. relative_mode = true;
  6222. #endif
  6223. get_coordinates();
  6224. #ifdef SF_ARC_FIX
  6225. relative_mode=relative_mode_backup;
  6226. #endif
  6227. if(code_seen('I')) {
  6228. offset[0] = code_value();
  6229. }
  6230. else {
  6231. offset[0] = 0.0;
  6232. }
  6233. if(code_seen('J')) {
  6234. offset[1] = code_value();
  6235. }
  6236. else {
  6237. offset[1] = 0.0;
  6238. }
  6239. }
  6240. void clamp_to_software_endstops(float target[3])
  6241. {
  6242. #ifdef DEBUG_DISABLE_SWLIMITS
  6243. return;
  6244. #endif //DEBUG_DISABLE_SWLIMITS
  6245. world2machine_clamp(target[0], target[1]);
  6246. // Clamp the Z coordinate.
  6247. if (min_software_endstops) {
  6248. float negative_z_offset = 0;
  6249. #ifdef ENABLE_AUTO_BED_LEVELING
  6250. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6251. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6252. #endif
  6253. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6254. }
  6255. if (max_software_endstops) {
  6256. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6257. }
  6258. }
  6259. #ifdef MESH_BED_LEVELING
  6260. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6261. float dx = x - current_position[X_AXIS];
  6262. float dy = y - current_position[Y_AXIS];
  6263. float dz = z - current_position[Z_AXIS];
  6264. int n_segments = 0;
  6265. if (mbl.active) {
  6266. float len = abs(dx) + abs(dy);
  6267. if (len > 0)
  6268. // Split to 3cm segments or shorter.
  6269. n_segments = int(ceil(len / 30.f));
  6270. }
  6271. if (n_segments > 1) {
  6272. float de = e - current_position[E_AXIS];
  6273. for (int i = 1; i < n_segments; ++ i) {
  6274. float t = float(i) / float(n_segments);
  6275. if (saved_printing || (mbl.active == false)) return;
  6276. plan_buffer_line(
  6277. current_position[X_AXIS] + t * dx,
  6278. current_position[Y_AXIS] + t * dy,
  6279. current_position[Z_AXIS] + t * dz,
  6280. current_position[E_AXIS] + t * de,
  6281. feed_rate, extruder);
  6282. }
  6283. }
  6284. // The rest of the path.
  6285. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6286. current_position[X_AXIS] = x;
  6287. current_position[Y_AXIS] = y;
  6288. current_position[Z_AXIS] = z;
  6289. current_position[E_AXIS] = e;
  6290. }
  6291. #endif // MESH_BED_LEVELING
  6292. void prepare_move()
  6293. {
  6294. clamp_to_software_endstops(destination);
  6295. previous_millis_cmd = millis();
  6296. // Do not use feedmultiply for E or Z only moves
  6297. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6298. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6299. }
  6300. else {
  6301. #ifdef MESH_BED_LEVELING
  6302. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6303. #else
  6304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6305. #endif
  6306. }
  6307. for(int8_t i=0; i < NUM_AXIS; i++) {
  6308. current_position[i] = destination[i];
  6309. }
  6310. }
  6311. void prepare_arc_move(char isclockwise) {
  6312. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6313. // Trace the arc
  6314. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6315. // As far as the parser is concerned, the position is now == target. In reality the
  6316. // motion control system might still be processing the action and the real tool position
  6317. // in any intermediate location.
  6318. for(int8_t i=0; i < NUM_AXIS; i++) {
  6319. current_position[i] = destination[i];
  6320. }
  6321. previous_millis_cmd = millis();
  6322. }
  6323. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6324. #if defined(FAN_PIN)
  6325. #if CONTROLLERFAN_PIN == FAN_PIN
  6326. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6327. #endif
  6328. #endif
  6329. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6330. unsigned long lastMotorCheck = 0;
  6331. void controllerFan()
  6332. {
  6333. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6334. {
  6335. lastMotorCheck = millis();
  6336. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6337. #if EXTRUDERS > 2
  6338. || !READ(E2_ENABLE_PIN)
  6339. #endif
  6340. #if EXTRUDER > 1
  6341. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6342. || !READ(X2_ENABLE_PIN)
  6343. #endif
  6344. || !READ(E1_ENABLE_PIN)
  6345. #endif
  6346. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6347. {
  6348. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6349. }
  6350. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6351. {
  6352. digitalWrite(CONTROLLERFAN_PIN, 0);
  6353. analogWrite(CONTROLLERFAN_PIN, 0);
  6354. }
  6355. else
  6356. {
  6357. // allows digital or PWM fan output to be used (see M42 handling)
  6358. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6359. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6360. }
  6361. }
  6362. }
  6363. #endif
  6364. #ifdef TEMP_STAT_LEDS
  6365. static bool blue_led = false;
  6366. static bool red_led = false;
  6367. static uint32_t stat_update = 0;
  6368. void handle_status_leds(void) {
  6369. float max_temp = 0.0;
  6370. if(millis() > stat_update) {
  6371. stat_update += 500; // Update every 0.5s
  6372. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6373. max_temp = max(max_temp, degHotend(cur_extruder));
  6374. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6375. }
  6376. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6377. max_temp = max(max_temp, degTargetBed());
  6378. max_temp = max(max_temp, degBed());
  6379. #endif
  6380. if((max_temp > 55.0) && (red_led == false)) {
  6381. digitalWrite(STAT_LED_RED, 1);
  6382. digitalWrite(STAT_LED_BLUE, 0);
  6383. red_led = true;
  6384. blue_led = false;
  6385. }
  6386. if((max_temp < 54.0) && (blue_led == false)) {
  6387. digitalWrite(STAT_LED_RED, 0);
  6388. digitalWrite(STAT_LED_BLUE, 1);
  6389. red_led = false;
  6390. blue_led = true;
  6391. }
  6392. }
  6393. }
  6394. #endif
  6395. #ifdef SAFETYTIMER
  6396. /**
  6397. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6398. *
  6399. * Full screen blocking notification message is shown after heater turning off.
  6400. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6401. * damage print.
  6402. *
  6403. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6404. */
  6405. static void handleSafetyTimer()
  6406. {
  6407. #if (EXTRUDERS > 1)
  6408. #error Implemented only for one extruder.
  6409. #endif //(EXTRUDERS > 1)
  6410. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6411. {
  6412. safetyTimer.stop();
  6413. }
  6414. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6415. {
  6416. safetyTimer.start();
  6417. }
  6418. else if (safetyTimer.expired(safetytimer_inactive_time))
  6419. {
  6420. setTargetBed(0);
  6421. setAllTargetHotends(0);
  6422. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6423. }
  6424. }
  6425. #endif //SAFETYTIMER
  6426. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6427. {
  6428. #ifdef FILAMENT_SENSOR
  6429. if (mmu_enabled == false)
  6430. {
  6431. if (mcode_in_progress != 600) //M600 not in progress
  6432. {
  6433. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6434. {
  6435. if (fsensor_check_autoload())
  6436. {
  6437. fsensor_autoload_check_stop();
  6438. if (degHotend0() > EXTRUDE_MINTEMP)
  6439. {
  6440. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6441. tone(BEEPER, 1000);
  6442. delay_keep_alive(50);
  6443. noTone(BEEPER);
  6444. loading_flag = true;
  6445. enquecommand_front_P((PSTR("M701")));
  6446. }
  6447. else
  6448. {
  6449. lcd_update_enable(false);
  6450. lcd_clear();
  6451. lcd_set_cursor(0, 0);
  6452. lcd_puts_P(_T(MSG_ERROR));
  6453. lcd_set_cursor(0, 2);
  6454. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6455. delay(2000);
  6456. lcd_clear();
  6457. lcd_update_enable(true);
  6458. }
  6459. }
  6460. }
  6461. else
  6462. fsensor_autoload_check_stop();
  6463. }
  6464. }
  6465. #endif //FILAMENT_SENSOR
  6466. #ifdef SAFETYTIMER
  6467. handleSafetyTimer();
  6468. #endif //SAFETYTIMER
  6469. #if defined(KILL_PIN) && KILL_PIN > -1
  6470. static int killCount = 0; // make the inactivity button a bit less responsive
  6471. const int KILL_DELAY = 10000;
  6472. #endif
  6473. if(buflen < (BUFSIZE-1)){
  6474. get_command();
  6475. }
  6476. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6477. if(max_inactive_time)
  6478. kill(_n(""), 4);
  6479. if(stepper_inactive_time) {
  6480. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6481. {
  6482. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6483. disable_x();
  6484. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6485. disable_y();
  6486. disable_z();
  6487. disable_e0();
  6488. disable_e1();
  6489. disable_e2();
  6490. }
  6491. }
  6492. }
  6493. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6494. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6495. {
  6496. chdkActive = false;
  6497. WRITE(CHDK, LOW);
  6498. }
  6499. #endif
  6500. #if defined(KILL_PIN) && KILL_PIN > -1
  6501. // Check if the kill button was pressed and wait just in case it was an accidental
  6502. // key kill key press
  6503. // -------------------------------------------------------------------------------
  6504. if( 0 == READ(KILL_PIN) )
  6505. {
  6506. killCount++;
  6507. }
  6508. else if (killCount > 0)
  6509. {
  6510. killCount--;
  6511. }
  6512. // Exceeded threshold and we can confirm that it was not accidental
  6513. // KILL the machine
  6514. // ----------------------------------------------------------------
  6515. if ( killCount >= KILL_DELAY)
  6516. {
  6517. kill("", 5);
  6518. }
  6519. #endif
  6520. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6521. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6522. #endif
  6523. #ifdef EXTRUDER_RUNOUT_PREVENT
  6524. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6525. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6526. {
  6527. bool oldstatus=READ(E0_ENABLE_PIN);
  6528. enable_e0();
  6529. float oldepos=current_position[E_AXIS];
  6530. float oldedes=destination[E_AXIS];
  6531. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6532. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6533. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6534. current_position[E_AXIS]=oldepos;
  6535. destination[E_AXIS]=oldedes;
  6536. plan_set_e_position(oldepos);
  6537. previous_millis_cmd=millis();
  6538. st_synchronize();
  6539. WRITE(E0_ENABLE_PIN,oldstatus);
  6540. }
  6541. #endif
  6542. #ifdef TEMP_STAT_LEDS
  6543. handle_status_leds();
  6544. #endif
  6545. check_axes_activity();
  6546. mmu_loop();
  6547. }
  6548. void kill(const char *full_screen_message, unsigned char id)
  6549. {
  6550. printf_P(_N("KILL: %d\n"), id);
  6551. //return;
  6552. cli(); // Stop interrupts
  6553. disable_heater();
  6554. disable_x();
  6555. // SERIAL_ECHOLNPGM("kill - disable Y");
  6556. disable_y();
  6557. disable_z();
  6558. disable_e0();
  6559. disable_e1();
  6560. disable_e2();
  6561. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6562. pinMode(PS_ON_PIN,INPUT);
  6563. #endif
  6564. SERIAL_ERROR_START;
  6565. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6566. if (full_screen_message != NULL) {
  6567. SERIAL_ERRORLNRPGM(full_screen_message);
  6568. lcd_display_message_fullscreen_P(full_screen_message);
  6569. } else {
  6570. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6571. }
  6572. // FMC small patch to update the LCD before ending
  6573. sei(); // enable interrupts
  6574. for ( int i=5; i--; lcd_update(0))
  6575. {
  6576. delay(200);
  6577. }
  6578. cli(); // disable interrupts
  6579. suicide();
  6580. while(1)
  6581. {
  6582. #ifdef WATCHDOG
  6583. wdt_reset();
  6584. #endif //WATCHDOG
  6585. /* Intentionally left empty */
  6586. } // Wait for reset
  6587. }
  6588. void Stop()
  6589. {
  6590. disable_heater();
  6591. if(Stopped == false) {
  6592. Stopped = true;
  6593. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6594. SERIAL_ERROR_START;
  6595. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6596. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6597. }
  6598. }
  6599. bool IsStopped() { return Stopped; };
  6600. #ifdef FAST_PWM_FAN
  6601. void setPwmFrequency(uint8_t pin, int val)
  6602. {
  6603. val &= 0x07;
  6604. switch(digitalPinToTimer(pin))
  6605. {
  6606. #if defined(TCCR0A)
  6607. case TIMER0A:
  6608. case TIMER0B:
  6609. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6610. // TCCR0B |= val;
  6611. break;
  6612. #endif
  6613. #if defined(TCCR1A)
  6614. case TIMER1A:
  6615. case TIMER1B:
  6616. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6617. // TCCR1B |= val;
  6618. break;
  6619. #endif
  6620. #if defined(TCCR2)
  6621. case TIMER2:
  6622. case TIMER2:
  6623. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6624. TCCR2 |= val;
  6625. break;
  6626. #endif
  6627. #if defined(TCCR2A)
  6628. case TIMER2A:
  6629. case TIMER2B:
  6630. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6631. TCCR2B |= val;
  6632. break;
  6633. #endif
  6634. #if defined(TCCR3A)
  6635. case TIMER3A:
  6636. case TIMER3B:
  6637. case TIMER3C:
  6638. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6639. TCCR3B |= val;
  6640. break;
  6641. #endif
  6642. #if defined(TCCR4A)
  6643. case TIMER4A:
  6644. case TIMER4B:
  6645. case TIMER4C:
  6646. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6647. TCCR4B |= val;
  6648. break;
  6649. #endif
  6650. #if defined(TCCR5A)
  6651. case TIMER5A:
  6652. case TIMER5B:
  6653. case TIMER5C:
  6654. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6655. TCCR5B |= val;
  6656. break;
  6657. #endif
  6658. }
  6659. }
  6660. #endif //FAST_PWM_FAN
  6661. //! @brief Get and validate extruder number
  6662. //!
  6663. //! If it is not specified, active_extruder is returned in parameter extruder.
  6664. //! @param [in] code M code number
  6665. //! @param [out] extruder
  6666. //! @return error
  6667. //! @retval true Invalid extruder specified in T code
  6668. //! @retval false Valid extruder specified in T code, or not specifiead
  6669. bool setTargetedHotend(int code, uint8_t &extruder)
  6670. {
  6671. extruder = active_extruder;
  6672. if(code_seen('T')) {
  6673. extruder = code_value();
  6674. if(extruder >= EXTRUDERS) {
  6675. SERIAL_ECHO_START;
  6676. switch(code){
  6677. case 104:
  6678. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6679. break;
  6680. case 105:
  6681. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6682. break;
  6683. case 109:
  6684. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6685. break;
  6686. case 218:
  6687. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6688. break;
  6689. case 221:
  6690. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6691. break;
  6692. }
  6693. SERIAL_PROTOCOLLN((int)extruder);
  6694. return true;
  6695. }
  6696. }
  6697. return false;
  6698. }
  6699. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6700. {
  6701. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6702. {
  6703. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6704. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6705. }
  6706. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6707. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6708. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6709. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6710. total_filament_used = 0;
  6711. }
  6712. float calculate_extruder_multiplier(float diameter) {
  6713. float out = 1.f;
  6714. if (volumetric_enabled && diameter > 0.f) {
  6715. float area = M_PI * diameter * diameter * 0.25;
  6716. out = 1.f / area;
  6717. }
  6718. if (extrudemultiply != 100)
  6719. out *= float(extrudemultiply) * 0.01f;
  6720. return out;
  6721. }
  6722. void calculate_extruder_multipliers() {
  6723. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6724. #if EXTRUDERS > 1
  6725. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6726. #if EXTRUDERS > 2
  6727. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6728. #endif
  6729. #endif
  6730. }
  6731. void delay_keep_alive(unsigned int ms)
  6732. {
  6733. for (;;) {
  6734. manage_heater();
  6735. // Manage inactivity, but don't disable steppers on timeout.
  6736. manage_inactivity(true);
  6737. lcd_update(0);
  6738. if (ms == 0)
  6739. break;
  6740. else if (ms >= 50) {
  6741. delay(50);
  6742. ms -= 50;
  6743. } else {
  6744. delay(ms);
  6745. ms = 0;
  6746. }
  6747. }
  6748. }
  6749. static void wait_for_heater(long codenum, uint8_t extruder) {
  6750. #ifdef TEMP_RESIDENCY_TIME
  6751. long residencyStart;
  6752. residencyStart = -1;
  6753. /* continue to loop until we have reached the target temp
  6754. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6755. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6756. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6757. #else
  6758. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6759. #endif //TEMP_RESIDENCY_TIME
  6760. if ((millis() - codenum) > 1000UL)
  6761. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6762. if (!farm_mode) {
  6763. SERIAL_PROTOCOLPGM("T:");
  6764. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6765. SERIAL_PROTOCOLPGM(" E:");
  6766. SERIAL_PROTOCOL((int)extruder);
  6767. #ifdef TEMP_RESIDENCY_TIME
  6768. SERIAL_PROTOCOLPGM(" W:");
  6769. if (residencyStart > -1)
  6770. {
  6771. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6772. SERIAL_PROTOCOLLN(codenum);
  6773. }
  6774. else
  6775. {
  6776. SERIAL_PROTOCOLLN("?");
  6777. }
  6778. }
  6779. #else
  6780. SERIAL_PROTOCOLLN("");
  6781. #endif
  6782. codenum = millis();
  6783. }
  6784. manage_heater();
  6785. manage_inactivity();
  6786. lcd_update(0);
  6787. #ifdef TEMP_RESIDENCY_TIME
  6788. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6789. or when current temp falls outside the hysteresis after target temp was reached */
  6790. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6791. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6792. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6793. {
  6794. residencyStart = millis();
  6795. }
  6796. #endif //TEMP_RESIDENCY_TIME
  6797. }
  6798. }
  6799. void check_babystep()
  6800. {
  6801. int babystep_z;
  6802. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6803. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6804. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6805. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6806. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6807. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6808. lcd_update_enable(true);
  6809. }
  6810. }
  6811. #ifdef DIS
  6812. void d_setup()
  6813. {
  6814. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6815. pinMode(D_DATA, INPUT_PULLUP);
  6816. pinMode(D_REQUIRE, OUTPUT);
  6817. digitalWrite(D_REQUIRE, HIGH);
  6818. }
  6819. float d_ReadData()
  6820. {
  6821. int digit[13];
  6822. String mergeOutput;
  6823. float output;
  6824. digitalWrite(D_REQUIRE, HIGH);
  6825. for (int i = 0; i<13; i++)
  6826. {
  6827. for (int j = 0; j < 4; j++)
  6828. {
  6829. while (digitalRead(D_DATACLOCK) == LOW) {}
  6830. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6831. bitWrite(digit[i], j, digitalRead(D_DATA));
  6832. }
  6833. }
  6834. digitalWrite(D_REQUIRE, LOW);
  6835. mergeOutput = "";
  6836. output = 0;
  6837. for (int r = 5; r <= 10; r++) //Merge digits
  6838. {
  6839. mergeOutput += digit[r];
  6840. }
  6841. output = mergeOutput.toFloat();
  6842. if (digit[4] == 8) //Handle sign
  6843. {
  6844. output *= -1;
  6845. }
  6846. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6847. {
  6848. output /= 10;
  6849. }
  6850. return output;
  6851. }
  6852. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6853. int t1 = 0;
  6854. int t_delay = 0;
  6855. int digit[13];
  6856. int m;
  6857. char str[3];
  6858. //String mergeOutput;
  6859. char mergeOutput[15];
  6860. float output;
  6861. int mesh_point = 0; //index number of calibration point
  6862. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6863. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6864. float mesh_home_z_search = 4;
  6865. float row[x_points_num];
  6866. int ix = 0;
  6867. int iy = 0;
  6868. const char* filename_wldsd = "wldsd.txt";
  6869. char data_wldsd[70];
  6870. char numb_wldsd[10];
  6871. d_setup();
  6872. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6873. // We don't know where we are! HOME!
  6874. // Push the commands to the front of the message queue in the reverse order!
  6875. // There shall be always enough space reserved for these commands.
  6876. repeatcommand_front(); // repeat G80 with all its parameters
  6877. enquecommand_front_P((PSTR("G28 W0")));
  6878. enquecommand_front_P((PSTR("G1 Z5")));
  6879. return;
  6880. }
  6881. unsigned int custom_message_type_old = custom_message_type;
  6882. unsigned int custom_message_state_old = custom_message_state;
  6883. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6884. custom_message_state = (x_points_num * y_points_num) + 10;
  6885. lcd_update(1);
  6886. mbl.reset();
  6887. babystep_undo();
  6888. card.openFile(filename_wldsd, false);
  6889. current_position[Z_AXIS] = mesh_home_z_search;
  6890. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6891. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6892. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6893. setup_for_endstop_move(false);
  6894. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6895. SERIAL_PROTOCOL(x_points_num);
  6896. SERIAL_PROTOCOLPGM(",");
  6897. SERIAL_PROTOCOL(y_points_num);
  6898. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6899. SERIAL_PROTOCOL(mesh_home_z_search);
  6900. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6901. SERIAL_PROTOCOL(x_dimension);
  6902. SERIAL_PROTOCOLPGM(",");
  6903. SERIAL_PROTOCOL(y_dimension);
  6904. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6905. while (mesh_point != x_points_num * y_points_num) {
  6906. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6907. iy = mesh_point / x_points_num;
  6908. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6909. float z0 = 0.f;
  6910. current_position[Z_AXIS] = mesh_home_z_search;
  6911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6912. st_synchronize();
  6913. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6914. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6916. st_synchronize();
  6917. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6918. break;
  6919. card.closefile();
  6920. }
  6921. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6922. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6923. //strcat(data_wldsd, numb_wldsd);
  6924. //MYSERIAL.println(data_wldsd);
  6925. //delay(1000);
  6926. //delay(3000);
  6927. //t1 = millis();
  6928. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6929. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6930. memset(digit, 0, sizeof(digit));
  6931. //cli();
  6932. digitalWrite(D_REQUIRE, LOW);
  6933. for (int i = 0; i<13; i++)
  6934. {
  6935. //t1 = millis();
  6936. for (int j = 0; j < 4; j++)
  6937. {
  6938. while (digitalRead(D_DATACLOCK) == LOW) {}
  6939. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6940. bitWrite(digit[i], j, digitalRead(D_DATA));
  6941. }
  6942. //t_delay = (millis() - t1);
  6943. //SERIAL_PROTOCOLPGM(" ");
  6944. //SERIAL_PROTOCOL_F(t_delay, 5);
  6945. //SERIAL_PROTOCOLPGM(" ");
  6946. }
  6947. //sei();
  6948. digitalWrite(D_REQUIRE, HIGH);
  6949. mergeOutput[0] = '\0';
  6950. output = 0;
  6951. for (int r = 5; r <= 10; r++) //Merge digits
  6952. {
  6953. sprintf(str, "%d", digit[r]);
  6954. strcat(mergeOutput, str);
  6955. }
  6956. output = atof(mergeOutput);
  6957. if (digit[4] == 8) //Handle sign
  6958. {
  6959. output *= -1;
  6960. }
  6961. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6962. {
  6963. output *= 0.1;
  6964. }
  6965. //output = d_ReadData();
  6966. //row[ix] = current_position[Z_AXIS];
  6967. memset(data_wldsd, 0, sizeof(data_wldsd));
  6968. for (int i = 0; i <3; i++) {
  6969. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6970. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6971. strcat(data_wldsd, numb_wldsd);
  6972. strcat(data_wldsd, ";");
  6973. }
  6974. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6975. dtostrf(output, 8, 5, numb_wldsd);
  6976. strcat(data_wldsd, numb_wldsd);
  6977. //strcat(data_wldsd, ";");
  6978. card.write_command(data_wldsd);
  6979. //row[ix] = d_ReadData();
  6980. row[ix] = output; // current_position[Z_AXIS];
  6981. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6982. for (int i = 0; i < x_points_num; i++) {
  6983. SERIAL_PROTOCOLPGM(" ");
  6984. SERIAL_PROTOCOL_F(row[i], 5);
  6985. }
  6986. SERIAL_PROTOCOLPGM("\n");
  6987. }
  6988. custom_message_state--;
  6989. mesh_point++;
  6990. lcd_update(1);
  6991. }
  6992. card.closefile();
  6993. }
  6994. #endif
  6995. void temp_compensation_start() {
  6996. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  6997. custom_message_state = PINDA_HEAT_T + 1;
  6998. lcd_update(2);
  6999. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7000. current_position[E_AXIS] -= default_retraction;
  7001. }
  7002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7003. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7004. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7005. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7007. st_synchronize();
  7008. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7009. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7010. delay_keep_alive(1000);
  7011. custom_message_state = PINDA_HEAT_T - i;
  7012. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7013. else lcd_update(1);
  7014. }
  7015. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7016. custom_message_state = 0;
  7017. }
  7018. void temp_compensation_apply() {
  7019. int i_add;
  7020. int z_shift = 0;
  7021. float z_shift_mm;
  7022. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7023. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7024. i_add = (target_temperature_bed - 60) / 10;
  7025. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7026. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7027. }else {
  7028. //interpolation
  7029. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7030. }
  7031. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7033. st_synchronize();
  7034. plan_set_z_position(current_position[Z_AXIS]);
  7035. }
  7036. else {
  7037. //we have no temp compensation data
  7038. }
  7039. }
  7040. float temp_comp_interpolation(float inp_temperature) {
  7041. //cubic spline interpolation
  7042. int n, i, j;
  7043. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7044. int shift[10];
  7045. int temp_C[10];
  7046. n = 6; //number of measured points
  7047. shift[0] = 0;
  7048. for (i = 0; i < n; i++) {
  7049. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7050. temp_C[i] = 50 + i * 10; //temperature in C
  7051. #ifdef PINDA_THERMISTOR
  7052. temp_C[i] = 35 + i * 5; //temperature in C
  7053. #else
  7054. temp_C[i] = 50 + i * 10; //temperature in C
  7055. #endif
  7056. x[i] = (float)temp_C[i];
  7057. f[i] = (float)shift[i];
  7058. }
  7059. if (inp_temperature < x[0]) return 0;
  7060. for (i = n - 1; i>0; i--) {
  7061. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7062. h[i - 1] = x[i] - x[i - 1];
  7063. }
  7064. //*********** formation of h, s , f matrix **************
  7065. for (i = 1; i<n - 1; i++) {
  7066. m[i][i] = 2 * (h[i - 1] + h[i]);
  7067. if (i != 1) {
  7068. m[i][i - 1] = h[i - 1];
  7069. m[i - 1][i] = h[i - 1];
  7070. }
  7071. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7072. }
  7073. //*********** forward elimination **************
  7074. for (i = 1; i<n - 2; i++) {
  7075. temp = (m[i + 1][i] / m[i][i]);
  7076. for (j = 1; j <= n - 1; j++)
  7077. m[i + 1][j] -= temp*m[i][j];
  7078. }
  7079. //*********** backward substitution *********
  7080. for (i = n - 2; i>0; i--) {
  7081. sum = 0;
  7082. for (j = i; j <= n - 2; j++)
  7083. sum += m[i][j] * s[j];
  7084. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7085. }
  7086. for (i = 0; i<n - 1; i++)
  7087. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7088. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7089. b = s[i] / 2;
  7090. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7091. d = f[i];
  7092. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7093. }
  7094. return sum;
  7095. }
  7096. #ifdef PINDA_THERMISTOR
  7097. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7098. {
  7099. if (!temp_cal_active) return 0;
  7100. if (!calibration_status_pinda()) return 0;
  7101. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7102. }
  7103. #endif //PINDA_THERMISTOR
  7104. void long_pause() //long pause print
  7105. {
  7106. st_synchronize();
  7107. //save currently set parameters to global variables
  7108. saved_feedmultiply = feedmultiply;
  7109. fanSpeedBckp = fanSpeed;
  7110. start_pause_print = millis();
  7111. //retract
  7112. current_position[E_AXIS] -= default_retraction;
  7113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7114. //lift z
  7115. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7116. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7118. //set nozzle target temperature to 0
  7119. setAllTargetHotends(0);
  7120. //Move XY to side
  7121. current_position[X_AXIS] = X_PAUSE_POS;
  7122. current_position[Y_AXIS] = Y_PAUSE_POS;
  7123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7124. // Turn off the print fan
  7125. fanSpeed = 0;
  7126. st_synchronize();
  7127. }
  7128. void serialecho_temperatures() {
  7129. float tt = degHotend(active_extruder);
  7130. SERIAL_PROTOCOLPGM("T:");
  7131. SERIAL_PROTOCOL(tt);
  7132. SERIAL_PROTOCOLPGM(" E:");
  7133. SERIAL_PROTOCOL((int)active_extruder);
  7134. SERIAL_PROTOCOLPGM(" B:");
  7135. SERIAL_PROTOCOL_F(degBed(), 1);
  7136. SERIAL_PROTOCOLLN("");
  7137. }
  7138. extern uint32_t sdpos_atomic;
  7139. #ifdef UVLO_SUPPORT
  7140. void uvlo_()
  7141. {
  7142. unsigned long time_start = millis();
  7143. bool sd_print = card.sdprinting;
  7144. // Conserve power as soon as possible.
  7145. disable_x();
  7146. disable_y();
  7147. #ifdef TMC2130
  7148. tmc2130_set_current_h(Z_AXIS, 20);
  7149. tmc2130_set_current_r(Z_AXIS, 20);
  7150. tmc2130_set_current_h(E_AXIS, 20);
  7151. tmc2130_set_current_r(E_AXIS, 20);
  7152. #endif //TMC2130
  7153. // Indicate that the interrupt has been triggered.
  7154. // SERIAL_ECHOLNPGM("UVLO");
  7155. // Read out the current Z motor microstep counter. This will be later used
  7156. // for reaching the zero full step before powering off.
  7157. uint16_t z_microsteps = 0;
  7158. #ifdef TMC2130
  7159. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7160. #endif //TMC2130
  7161. // Calculate the file position, from which to resume this print.
  7162. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7163. {
  7164. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7165. sd_position -= sdlen_planner;
  7166. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7167. sd_position -= sdlen_cmdqueue;
  7168. if (sd_position < 0) sd_position = 0;
  7169. }
  7170. // Backup the feedrate in mm/min.
  7171. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7172. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7173. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7174. // are in action.
  7175. planner_abort_hard();
  7176. // Store the current extruder position.
  7177. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7178. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7179. // Clean the input command queue.
  7180. cmdqueue_reset();
  7181. card.sdprinting = false;
  7182. // card.closefile();
  7183. // Enable stepper driver interrupt to move Z axis.
  7184. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7185. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7186. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7187. sei();
  7188. plan_buffer_line(
  7189. current_position[X_AXIS],
  7190. current_position[Y_AXIS],
  7191. current_position[Z_AXIS],
  7192. current_position[E_AXIS] - default_retraction,
  7193. 95, active_extruder);
  7194. st_synchronize();
  7195. disable_e0();
  7196. plan_buffer_line(
  7197. current_position[X_AXIS],
  7198. current_position[Y_AXIS],
  7199. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7200. current_position[E_AXIS] - default_retraction,
  7201. 40, active_extruder);
  7202. st_synchronize();
  7203. disable_e0();
  7204. plan_buffer_line(
  7205. current_position[X_AXIS],
  7206. current_position[Y_AXIS],
  7207. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7208. current_position[E_AXIS] - default_retraction,
  7209. 40, active_extruder);
  7210. st_synchronize();
  7211. disable_e0();
  7212. disable_z();
  7213. // Move Z up to the next 0th full step.
  7214. // Write the file position.
  7215. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7216. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7217. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7218. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7219. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7220. // Scale the z value to 1u resolution.
  7221. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7222. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7223. }
  7224. // Read out the current Z motor microstep counter. This will be later used
  7225. // for reaching the zero full step before powering off.
  7226. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7227. // Store the current position.
  7228. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7229. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7230. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7231. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7232. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7233. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7234. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7235. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7236. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7237. #if EXTRUDERS > 1
  7238. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7239. #if EXTRUDERS > 2
  7240. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7241. #endif
  7242. #endif
  7243. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7244. // Finaly store the "power outage" flag.
  7245. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7246. st_synchronize();
  7247. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7248. disable_z();
  7249. // Increment power failure counter
  7250. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7251. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7252. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7253. #if 0
  7254. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7255. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7257. st_synchronize();
  7258. #endif
  7259. wdt_enable(WDTO_500MS);
  7260. WRITE(BEEPER,HIGH);
  7261. while(1)
  7262. ;
  7263. }
  7264. void uvlo_tiny()
  7265. {
  7266. uint16_t z_microsteps=0;
  7267. // Conserve power as soon as possible.
  7268. disable_x();
  7269. disable_y();
  7270. disable_e0();
  7271. #ifdef TMC2130
  7272. tmc2130_set_current_h(Z_AXIS, 20);
  7273. tmc2130_set_current_r(Z_AXIS, 20);
  7274. #endif //TMC2130
  7275. // Read out the current Z motor microstep counter
  7276. #ifdef TMC2130
  7277. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7278. #endif //TMC2130
  7279. planner_abort_hard();
  7280. sei();
  7281. plan_buffer_line(
  7282. current_position[X_AXIS],
  7283. current_position[Y_AXIS],
  7284. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7285. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7286. current_position[E_AXIS],
  7287. 40, active_extruder);
  7288. st_synchronize();
  7289. disable_z();
  7290. // Finaly store the "power outage" flag.
  7291. //if(sd_print)
  7292. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7293. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7294. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7295. // Increment power failure counter
  7296. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7297. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7298. wdt_enable(WDTO_500MS);
  7299. WRITE(BEEPER,HIGH);
  7300. while(1)
  7301. ;
  7302. }
  7303. #endif //UVLO_SUPPORT
  7304. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7305. void setup_fan_interrupt() {
  7306. //INT7
  7307. DDRE &= ~(1 << 7); //input pin
  7308. PORTE &= ~(1 << 7); //no internal pull-up
  7309. //start with sensing rising edge
  7310. EICRB &= ~(1 << 6);
  7311. EICRB |= (1 << 7);
  7312. //enable INT7 interrupt
  7313. EIMSK |= (1 << 7);
  7314. }
  7315. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7316. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7317. ISR(INT7_vect) {
  7318. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7319. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7320. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7321. t_fan_rising_edge = millis_nc();
  7322. }
  7323. else { //interrupt was triggered by falling edge
  7324. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7325. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7326. }
  7327. }
  7328. EICRB ^= (1 << 6); //change edge
  7329. }
  7330. #endif
  7331. #ifdef UVLO_SUPPORT
  7332. void setup_uvlo_interrupt() {
  7333. DDRE &= ~(1 << 4); //input pin
  7334. PORTE &= ~(1 << 4); //no internal pull-up
  7335. //sensing falling edge
  7336. EICRB |= (1 << 0);
  7337. EICRB &= ~(1 << 1);
  7338. //enable INT4 interrupt
  7339. EIMSK |= (1 << 4);
  7340. }
  7341. ISR(INT4_vect) {
  7342. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7343. SERIAL_ECHOLNPGM("INT4");
  7344. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7345. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7346. }
  7347. void recover_print(uint8_t automatic) {
  7348. char cmd[30];
  7349. lcd_update_enable(true);
  7350. lcd_update(2);
  7351. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7352. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7353. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7354. // Lift the print head, so one may remove the excess priming material.
  7355. if(!bTiny&&(current_position[Z_AXIS]<25))
  7356. enquecommand_P(PSTR("G1 Z25 F800"));
  7357. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7358. enquecommand_P(PSTR("G28 X Y"));
  7359. // Set the target bed and nozzle temperatures and wait.
  7360. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7361. enquecommand(cmd);
  7362. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7363. enquecommand(cmd);
  7364. enquecommand_P(PSTR("M83")); //E axis relative mode
  7365. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7366. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7367. if(automatic == 0){
  7368. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7369. }
  7370. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7371. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7372. // Restart the print.
  7373. restore_print_from_eeprom();
  7374. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7375. }
  7376. void recover_machine_state_after_power_panic(bool bTiny)
  7377. {
  7378. char cmd[30];
  7379. // 1) Recover the logical cordinates at the time of the power panic.
  7380. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7381. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7382. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7383. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7384. // The current position after power panic is moved to the next closest 0th full step.
  7385. if(bTiny)
  7386. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7387. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7388. else
  7389. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7390. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7391. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7392. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7393. sprintf_P(cmd, PSTR("G92 E"));
  7394. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7395. enquecommand(cmd);
  7396. }
  7397. memcpy(destination, current_position, sizeof(destination));
  7398. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7399. print_world_coordinates();
  7400. // 2) Initialize the logical to physical coordinate system transformation.
  7401. world2machine_initialize();
  7402. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7403. mbl.active = false;
  7404. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7405. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7406. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7407. // Scale the z value to 10u resolution.
  7408. int16_t v;
  7409. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7410. if (v != 0)
  7411. mbl.active = true;
  7412. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7413. }
  7414. if (mbl.active)
  7415. mbl.upsample_3x3();
  7416. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7417. // print_mesh_bed_leveling_table();
  7418. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7419. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7420. babystep_load();
  7421. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7422. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7423. // 6) Power up the motors, mark their positions as known.
  7424. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7425. axis_known_position[X_AXIS] = true; enable_x();
  7426. axis_known_position[Y_AXIS] = true; enable_y();
  7427. axis_known_position[Z_AXIS] = true; enable_z();
  7428. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7429. print_physical_coordinates();
  7430. // 7) Recover the target temperatures.
  7431. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7432. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7433. // 8) Recover extruder multipilers
  7434. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7435. #if EXTRUDERS > 1
  7436. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7437. #if EXTRUDERS > 2
  7438. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7439. #endif
  7440. #endif
  7441. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7442. }
  7443. void restore_print_from_eeprom() {
  7444. int feedrate_rec;
  7445. uint8_t fan_speed_rec;
  7446. char cmd[30];
  7447. char filename[13];
  7448. uint8_t depth = 0;
  7449. char dir_name[9];
  7450. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7451. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7452. SERIAL_ECHOPGM("Feedrate:");
  7453. MYSERIAL.println(feedrate_rec);
  7454. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7455. MYSERIAL.println(int(depth));
  7456. for (int i = 0; i < depth; i++) {
  7457. for (int j = 0; j < 8; j++) {
  7458. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7459. }
  7460. dir_name[8] = '\0';
  7461. MYSERIAL.println(dir_name);
  7462. strcpy(dir_names[i], dir_name);
  7463. card.chdir(dir_name);
  7464. }
  7465. for (int i = 0; i < 8; i++) {
  7466. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7467. }
  7468. filename[8] = '\0';
  7469. MYSERIAL.print(filename);
  7470. strcat_P(filename, PSTR(".gco"));
  7471. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7472. enquecommand(cmd);
  7473. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7474. SERIAL_ECHOPGM("Position read from eeprom:");
  7475. MYSERIAL.println(position);
  7476. // E axis relative mode.
  7477. enquecommand_P(PSTR("M83"));
  7478. // Move to the XY print position in logical coordinates, where the print has been killed.
  7479. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7480. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7481. strcat_P(cmd, PSTR(" F2000"));
  7482. enquecommand(cmd);
  7483. // Move the Z axis down to the print, in logical coordinates.
  7484. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7485. enquecommand(cmd);
  7486. // Unretract.
  7487. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7488. // Set the feedrate saved at the power panic.
  7489. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7490. enquecommand(cmd);
  7491. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7492. {
  7493. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7494. }
  7495. // Set the fan speed saved at the power panic.
  7496. strcpy_P(cmd, PSTR("M106 S"));
  7497. strcat(cmd, itostr3(int(fan_speed_rec)));
  7498. enquecommand(cmd);
  7499. // Set a position in the file.
  7500. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7501. enquecommand(cmd);
  7502. enquecommand_P(PSTR("G4 S0"));
  7503. enquecommand_P(PSTR("PRUSA uvlo"));
  7504. }
  7505. #endif //UVLO_SUPPORT
  7506. ////////////////////////////////////////////////////////////////////////////////
  7507. // save/restore printing
  7508. void stop_and_save_print_to_ram(float z_move, float e_move)
  7509. {
  7510. if (saved_printing) return;
  7511. #if 0
  7512. unsigned char nplanner_blocks;
  7513. #endif
  7514. unsigned char nlines;
  7515. uint16_t sdlen_planner;
  7516. uint16_t sdlen_cmdqueue;
  7517. cli();
  7518. if (card.sdprinting) {
  7519. #if 0
  7520. nplanner_blocks = number_of_blocks();
  7521. #endif
  7522. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7523. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7524. saved_sdpos -= sdlen_planner;
  7525. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7526. saved_sdpos -= sdlen_cmdqueue;
  7527. saved_printing_type = PRINTING_TYPE_SD;
  7528. }
  7529. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7530. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7531. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7532. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7533. saved_sdpos -= nlines;
  7534. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7535. saved_printing_type = PRINTING_TYPE_USB;
  7536. }
  7537. else {
  7538. //not sd printing nor usb printing
  7539. }
  7540. #if 0
  7541. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7542. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7543. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7544. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7545. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7546. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7547. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7548. {
  7549. card.setIndex(saved_sdpos);
  7550. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7551. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7552. MYSERIAL.print(char(card.get()));
  7553. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7554. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7555. MYSERIAL.print(char(card.get()));
  7556. SERIAL_ECHOLNPGM("End of command buffer");
  7557. }
  7558. {
  7559. // Print the content of the planner buffer, line by line:
  7560. card.setIndex(saved_sdpos);
  7561. int8_t iline = 0;
  7562. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7563. SERIAL_ECHOPGM("Planner line (from file): ");
  7564. MYSERIAL.print(int(iline), DEC);
  7565. SERIAL_ECHOPGM(", length: ");
  7566. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7567. SERIAL_ECHOPGM(", steps: (");
  7568. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7569. SERIAL_ECHOPGM(",");
  7570. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7571. SERIAL_ECHOPGM(",");
  7572. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7573. SERIAL_ECHOPGM(",");
  7574. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7575. SERIAL_ECHOPGM("), events: ");
  7576. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7577. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7578. MYSERIAL.print(char(card.get()));
  7579. }
  7580. }
  7581. {
  7582. // Print the content of the command buffer, line by line:
  7583. int8_t iline = 0;
  7584. union {
  7585. struct {
  7586. char lo;
  7587. char hi;
  7588. } lohi;
  7589. uint16_t value;
  7590. } sdlen_single;
  7591. int _bufindr = bufindr;
  7592. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7593. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7594. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7595. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7596. }
  7597. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7598. MYSERIAL.print(int(iline), DEC);
  7599. SERIAL_ECHOPGM(", type: ");
  7600. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7601. SERIAL_ECHOPGM(", len: ");
  7602. MYSERIAL.println(sdlen_single.value, DEC);
  7603. // Print the content of the buffer line.
  7604. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7605. SERIAL_ECHOPGM("Buffer line (from file): ");
  7606. MYSERIAL.println(int(iline), DEC);
  7607. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7608. MYSERIAL.print(char(card.get()));
  7609. if (-- _buflen == 0)
  7610. break;
  7611. // First skip the current command ID and iterate up to the end of the string.
  7612. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7613. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7614. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7615. // If the end of the buffer was empty,
  7616. if (_bufindr == sizeof(cmdbuffer)) {
  7617. // skip to the start and find the nonzero command.
  7618. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7619. }
  7620. }
  7621. }
  7622. #endif
  7623. #if 0
  7624. saved_feedrate2 = feedrate; //save feedrate
  7625. #else
  7626. // Try to deduce the feedrate from the first block of the planner.
  7627. // Speed is in mm/min.
  7628. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7629. #endif
  7630. planner_abort_hard(); //abort printing
  7631. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7632. saved_active_extruder = active_extruder; //save active_extruder
  7633. saved_extruder_temperature = degTargetHotend(active_extruder);
  7634. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7635. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7636. saved_fanSpeed = fanSpeed;
  7637. cmdqueue_reset(); //empty cmdqueue
  7638. card.sdprinting = false;
  7639. // card.closefile();
  7640. saved_printing = true;
  7641. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7642. st_reset_timer();
  7643. sei();
  7644. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7645. #if 1
  7646. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7647. char buf[48];
  7648. // First unretract (relative extrusion)
  7649. if(!saved_extruder_relative_mode){
  7650. strcpy_P(buf, PSTR("M83"));
  7651. enquecommand(buf, false);
  7652. }
  7653. //retract 45mm/s
  7654. strcpy_P(buf, PSTR("G1 E"));
  7655. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7656. strcat_P(buf, PSTR(" F"));
  7657. dtostrf(2700, 8, 3, buf + strlen(buf));
  7658. enquecommand(buf, false);
  7659. // Then lift Z axis
  7660. strcpy_P(buf, PSTR("G1 Z"));
  7661. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7662. strcat_P(buf, PSTR(" F"));
  7663. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7664. // At this point the command queue is empty.
  7665. enquecommand(buf, false);
  7666. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7667. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7668. repeatcommand_front();
  7669. #else
  7670. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7671. st_synchronize(); //wait moving
  7672. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7673. memcpy(destination, current_position, sizeof(destination));
  7674. #endif
  7675. }
  7676. }
  7677. void restore_print_from_ram_and_continue(float e_move)
  7678. {
  7679. if (!saved_printing) return;
  7680. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7681. // current_position[axis] = st_get_position_mm(axis);
  7682. active_extruder = saved_active_extruder; //restore active_extruder
  7683. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7684. heating_status = 1;
  7685. wait_for_heater(millis(),saved_active_extruder);
  7686. heating_status = 2;
  7687. feedrate = saved_feedrate2; //restore feedrate
  7688. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7689. fanSpeed = saved_fanSpeed;
  7690. float e = saved_pos[E_AXIS] - e_move;
  7691. plan_set_e_position(e);
  7692. //first move print head in XY to the saved position:
  7693. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7694. st_synchronize();
  7695. //then move Z
  7696. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7697. st_synchronize();
  7698. //and finaly unretract (35mm/s)
  7699. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7700. st_synchronize();
  7701. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7702. memcpy(destination, current_position, sizeof(destination));
  7703. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7704. card.setIndex(saved_sdpos);
  7705. sdpos_atomic = saved_sdpos;
  7706. card.sdprinting = true;
  7707. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7708. }
  7709. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7710. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7711. serial_count = 0;
  7712. FlushSerialRequestResend();
  7713. }
  7714. else {
  7715. //not sd printing nor usb printing
  7716. }
  7717. lcd_setstatuspgm(_T(WELCOME_MSG));
  7718. saved_printing = false;
  7719. }
  7720. void print_world_coordinates()
  7721. {
  7722. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7723. }
  7724. void print_physical_coordinates()
  7725. {
  7726. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7727. }
  7728. void print_mesh_bed_leveling_table()
  7729. {
  7730. SERIAL_ECHOPGM("mesh bed leveling: ");
  7731. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7732. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7733. MYSERIAL.print(mbl.z_values[y][x], 3);
  7734. SERIAL_ECHOPGM(" ");
  7735. }
  7736. SERIAL_ECHOLNPGM("");
  7737. }
  7738. uint16_t print_time_remaining() {
  7739. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7740. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7741. else print_t = print_time_remaining_silent;
  7742. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7743. return print_t;
  7744. }
  7745. uint8_t calc_percent_done()
  7746. {
  7747. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7748. uint8_t percent_done = 0;
  7749. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7750. percent_done = print_percent_done_normal;
  7751. }
  7752. else if (print_percent_done_silent <= 100) {
  7753. percent_done = print_percent_done_silent;
  7754. }
  7755. else {
  7756. percent_done = card.percentDone();
  7757. }
  7758. return percent_done;
  7759. }
  7760. static void print_time_remaining_init()
  7761. {
  7762. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7763. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7764. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7765. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7766. }
  7767. void M600_check_state()
  7768. {
  7769. //Wait for user to check the state
  7770. lcd_change_fil_state = 0;
  7771. while (lcd_change_fil_state != 1){
  7772. lcd_change_fil_state = 0;
  7773. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7774. lcd_alright();
  7775. KEEPALIVE_STATE(IN_HANDLER);
  7776. switch(lcd_change_fil_state){
  7777. // Filament failed to load so load it again
  7778. case 2:
  7779. if (mmu_enabled)
  7780. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7781. else
  7782. M600_load_filament_movements();
  7783. break;
  7784. // Filament loaded properly but color is not clear
  7785. case 3:
  7786. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7788. lcd_loading_color();
  7789. break;
  7790. // Everything good
  7791. default:
  7792. lcd_change_success();
  7793. break;
  7794. }
  7795. }
  7796. }
  7797. void M600_wait_for_user(float HotendTempBckp) {
  7798. //Beep, manage nozzle heater and wait for user to start unload filament
  7799. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7800. int counterBeep = 0;
  7801. unsigned long waiting_start_time = millis();
  7802. uint8_t wait_for_user_state = 0;
  7803. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7804. bool bFirst=true;
  7805. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7806. manage_heater();
  7807. manage_inactivity(true);
  7808. #if BEEPER > 0
  7809. if (counterBeep == 500) {
  7810. counterBeep = 0;
  7811. }
  7812. SET_OUTPUT(BEEPER);
  7813. if (counterBeep == 0) {
  7814. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7815. {
  7816. bFirst=false;
  7817. WRITE(BEEPER, HIGH);
  7818. }
  7819. }
  7820. if (counterBeep == 20) {
  7821. WRITE(BEEPER, LOW);
  7822. }
  7823. counterBeep++;
  7824. #endif //BEEPER > 0
  7825. switch (wait_for_user_state) {
  7826. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7827. delay_keep_alive(4);
  7828. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7829. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7830. wait_for_user_state = 1;
  7831. setAllTargetHotends(0);
  7832. st_synchronize();
  7833. disable_e0();
  7834. disable_e1();
  7835. disable_e2();
  7836. }
  7837. break;
  7838. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7839. delay_keep_alive(4);
  7840. if (lcd_clicked()) {
  7841. setTargetHotend(HotendTempBckp, active_extruder);
  7842. lcd_wait_for_heater();
  7843. wait_for_user_state = 2;
  7844. }
  7845. break;
  7846. case 2: //waiting for nozzle to reach target temperature
  7847. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7848. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7849. waiting_start_time = millis();
  7850. wait_for_user_state = 0;
  7851. }
  7852. else {
  7853. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7854. lcd_set_cursor(1, 4);
  7855. lcd_print(ftostr3(degHotend(active_extruder)));
  7856. }
  7857. break;
  7858. }
  7859. }
  7860. WRITE(BEEPER, LOW);
  7861. }
  7862. void M600_load_filament_movements()
  7863. {
  7864. #ifdef SNMM
  7865. display_loading();
  7866. do
  7867. {
  7868. current_position[E_AXIS] += 0.002;
  7869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7870. delay_keep_alive(2);
  7871. }
  7872. while (!lcd_clicked());
  7873. st_synchronize();
  7874. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7876. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7878. current_position[E_AXIS] += 40;
  7879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7880. current_position[E_AXIS] += 10;
  7881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7882. #else
  7883. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7885. #endif
  7886. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7888. lcd_loading_filament();
  7889. }
  7890. void M600_load_filament() {
  7891. //load filament for single material and SNMM
  7892. lcd_wait_interact();
  7893. //load_filament_time = millis();
  7894. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7895. #ifdef FILAMENT_SENSOR
  7896. fsensor_autoload_check_start();
  7897. #endif //FILAMENT_SENSOR
  7898. while(!lcd_clicked())
  7899. {
  7900. manage_heater();
  7901. manage_inactivity(true);
  7902. #ifdef FILAMENT_SENSOR
  7903. if (fsensor_check_autoload())
  7904. {
  7905. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7906. tone(BEEPER, 1000);
  7907. delay_keep_alive(50);
  7908. noTone(BEEPER);
  7909. break;
  7910. }
  7911. #endif //FILAMENT_SENSOR
  7912. }
  7913. #ifdef FILAMENT_SENSOR
  7914. fsensor_autoload_check_stop();
  7915. #endif //FILAMENT_SENSOR
  7916. KEEPALIVE_STATE(IN_HANDLER);
  7917. #ifdef FILAMENT_SENSOR
  7918. fsensor_oq_meassure_start(70);
  7919. #endif //FILAMENT_SENSOR
  7920. M600_load_filament_movements();
  7921. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7922. tone(BEEPER, 500);
  7923. delay_keep_alive(50);
  7924. noTone(BEEPER);
  7925. #ifdef FILAMENT_SENSOR
  7926. fsensor_oq_meassure_stop();
  7927. if (!fsensor_oq_result())
  7928. {
  7929. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7930. lcd_update_enable(true);
  7931. lcd_update(2);
  7932. if (disable)
  7933. fsensor_disable();
  7934. }
  7935. #endif //FILAMENT_SENSOR
  7936. lcd_update_enable(false);
  7937. }
  7938. #define FIL_LOAD_LENGTH 60