Marlin_main.cpp 348 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. bool no_response = false;
  240. uint8_t important_status;
  241. uint8_t saved_filament_type;
  242. // save/restore printing in case that mmu was not responding
  243. bool mmu_print_saved = false;
  244. // storing estimated time to end of print counted by slicer
  245. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  246. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  247. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. //===========================================================================
  250. //=============================Private Variables=============================
  251. //===========================================================================
  252. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  253. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  254. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  255. // For tracing an arc
  256. static float offset[3] = {0.0, 0.0, 0.0};
  257. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  258. // Determines Absolute or Relative Coordinates.
  259. // Also there is bool axis_relative_modes[] per axis flag.
  260. static bool relative_mode = false;
  261. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  262. //static float tt = 0;
  263. //static float bt = 0;
  264. //Inactivity shutdown variables
  265. static unsigned long previous_millis_cmd = 0;
  266. unsigned long max_inactive_time = 0;
  267. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  268. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  269. unsigned long starttime=0;
  270. unsigned long stoptime=0;
  271. unsigned long _usb_timer = 0;
  272. bool extruder_under_pressure = true;
  273. bool Stopped=false;
  274. #if NUM_SERVOS > 0
  275. Servo servos[NUM_SERVOS];
  276. #endif
  277. bool target_direction;
  278. //Insert variables if CHDK is defined
  279. #ifdef CHDK
  280. unsigned long chdkHigh = 0;
  281. boolean chdkActive = false;
  282. #endif
  283. //! @name RAM save/restore printing
  284. //! @{
  285. bool saved_printing = false; //!< Print is paused and saved in RAM
  286. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  287. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  288. static float saved_pos[4] = { 0, 0, 0, 0 };
  289. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  290. static float saved_feedrate2 = 0;
  291. static uint8_t saved_active_extruder = 0;
  292. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  293. static bool saved_extruder_under_pressure = false;
  294. static bool saved_extruder_relative_mode = false;
  295. static int saved_fanSpeed = 0; //!< Print fan speed
  296. //! @}
  297. static int saved_feedmultiply_mm = 100;
  298. //===========================================================================
  299. //=============================Routines======================================
  300. //===========================================================================
  301. static void get_arc_coordinates();
  302. static bool setTargetedHotend(int code, uint8_t &extruder);
  303. static void print_time_remaining_init();
  304. static void wait_for_heater(long codenum, uint8_t extruder);
  305. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  306. static void temp_compensation_start();
  307. static void temp_compensation_apply();
  308. uint16_t gcode_in_progress = 0;
  309. uint16_t mcode_in_progress = 0;
  310. void serial_echopair_P(const char *s_P, float v)
  311. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  312. void serial_echopair_P(const char *s_P, double v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, unsigned long v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  317. {
  318. #if 0
  319. char ch=pgm_read_byte(str);
  320. while(ch)
  321. {
  322. MYSERIAL.write(ch);
  323. ch=pgm_read_byte(++str);
  324. }
  325. #else
  326. // hmm, same size as the above version, the compiler did a good job optimizing the above
  327. while( uint8_t ch = pgm_read_byte(str) ){
  328. MYSERIAL.write((char)ch);
  329. ++str;
  330. }
  331. #endif
  332. }
  333. #ifdef SDSUPPORT
  334. #include "SdFatUtil.h"
  335. int freeMemory() { return SdFatUtil::FreeRam(); }
  336. #else
  337. extern "C" {
  338. extern unsigned int __bss_end;
  339. extern unsigned int __heap_start;
  340. extern void *__brkval;
  341. int freeMemory() {
  342. int free_memory;
  343. if ((int)__brkval == 0)
  344. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  345. else
  346. free_memory = ((int)&free_memory) - ((int)__brkval);
  347. return free_memory;
  348. }
  349. }
  350. #endif //!SDSUPPORT
  351. void setup_killpin()
  352. {
  353. #if defined(KILL_PIN) && KILL_PIN > -1
  354. SET_INPUT(KILL_PIN);
  355. WRITE(KILL_PIN,HIGH);
  356. #endif
  357. }
  358. // Set home pin
  359. void setup_homepin(void)
  360. {
  361. #if defined(HOME_PIN) && HOME_PIN > -1
  362. SET_INPUT(HOME_PIN);
  363. WRITE(HOME_PIN,HIGH);
  364. #endif
  365. }
  366. void setup_photpin()
  367. {
  368. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  369. SET_OUTPUT(PHOTOGRAPH_PIN);
  370. WRITE(PHOTOGRAPH_PIN, LOW);
  371. #endif
  372. }
  373. void setup_powerhold()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, HIGH);
  378. #endif
  379. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  380. SET_OUTPUT(PS_ON_PIN);
  381. #if defined(PS_DEFAULT_OFF)
  382. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  383. #else
  384. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  385. #endif
  386. #endif
  387. }
  388. void suicide()
  389. {
  390. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  391. SET_OUTPUT(SUICIDE_PIN);
  392. WRITE(SUICIDE_PIN, LOW);
  393. #endif
  394. }
  395. void servo_init()
  396. {
  397. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  398. servos[0].attach(SERVO0_PIN);
  399. #endif
  400. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  401. servos[1].attach(SERVO1_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  404. servos[2].attach(SERVO2_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  407. servos[3].attach(SERVO3_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 5)
  410. #error "TODO: enter initalisation code for more servos"
  411. #endif
  412. }
  413. bool fans_check_enabled = true;
  414. #ifdef TMC2130
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. Sound_MakeCustom(100,0,false);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. Sound_MakeCustom(100,0,false);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  548. lcd_menu_statistics();
  549. break;
  550. // Level 2: Prepare for shipping
  551. case 2:
  552. //lcd_puts_P(PSTR("Factory RESET"));
  553. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  554. // Force language selection at the next boot up.
  555. lang_reset();
  556. // Force the "Follow calibration flow" message at the next boot up.
  557. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  558. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  559. farm_no = 0;
  560. farm_mode = false;
  561. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  562. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  563. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  564. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  573. #ifdef FILAMENT_SENSOR
  574. fsensor_enable();
  575. fsensor_autoload_set(true);
  576. #endif //FILAMENT_SENSOR
  577. Sound_MakeCustom(100,0,false);
  578. //_delay_ms(2000);
  579. break;
  580. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  581. case 3:
  582. lcd_puts_P(PSTR("Factory RESET"));
  583. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  584. Sound_MakeCustom(100,0,false);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. lcd_clear(); // clears display and homes screen
  619. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if(eSoundMode!=e_SOUND_MODE_SILENT)
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. //! @brief try to check if firmware is on right type of printer
  673. static void check_if_fw_is_on_right_printer(){
  674. #ifdef FILAMENT_SENSOR
  675. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  676. #ifdef IR_SENSOR
  677. swi2c_init();
  678. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  679. if (pat9125_detected){
  680. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  681. #endif //IR_SENSOR
  682. #ifdef PAT9125
  683. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  684. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  685. if (ir_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  687. #endif //PAT9125
  688. }
  689. #endif //FILAMENT_SENSOR
  690. }
  691. uint8_t check_printer_version()
  692. {
  693. uint8_t version_changed = 0;
  694. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  695. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  696. if (printer_type != PRINTER_TYPE) {
  697. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  698. else version_changed |= 0b10;
  699. }
  700. if (motherboard != MOTHERBOARD) {
  701. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  702. else version_changed |= 0b01;
  703. }
  704. return version_changed;
  705. }
  706. #ifdef BOOTAPP
  707. #include "bootapp.h" //bootloader support
  708. #endif //BOOTAPP
  709. #if (LANG_MODE != 0) //secondary language support
  710. #ifdef W25X20CL
  711. // language update from external flash
  712. #define LANGBOOT_BLOCKSIZE 0x1000u
  713. #define LANGBOOT_RAMBUFFER 0x0800
  714. void update_sec_lang_from_external_flash()
  715. {
  716. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  717. {
  718. uint8_t lang = boot_reserved >> 4;
  719. uint8_t state = boot_reserved & 0xf;
  720. lang_table_header_t header;
  721. uint32_t src_addr;
  722. if (lang_get_header(lang, &header, &src_addr))
  723. {
  724. lcd_puts_at_P(1,3,PSTR("Language update."));
  725. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  726. _delay(100);
  727. boot_reserved = (state + 1) | (lang << 4);
  728. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  729. {
  730. cli();
  731. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  732. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  733. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  734. if (state == 0)
  735. {
  736. //TODO - check header integrity
  737. }
  738. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  739. }
  740. else
  741. {
  742. //TODO - check sec lang data integrity
  743. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  744. }
  745. }
  746. }
  747. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  748. }
  749. #ifdef DEBUG_W25X20CL
  750. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  751. {
  752. lang_table_header_t header;
  753. uint8_t count = 0;
  754. uint32_t addr = 0x00000;
  755. while (1)
  756. {
  757. printf_P(_n("LANGTABLE%d:"), count);
  758. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  759. if (header.magic != LANG_MAGIC)
  760. {
  761. printf_P(_n("NG!\n"));
  762. break;
  763. }
  764. printf_P(_n("OK\n"));
  765. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  766. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  767. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  768. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  769. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  770. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  771. addr += header.size;
  772. codes[count] = header.code;
  773. count ++;
  774. }
  775. return count;
  776. }
  777. void list_sec_lang_from_external_flash()
  778. {
  779. uint16_t codes[8];
  780. uint8_t count = lang_xflash_enum_codes(codes);
  781. printf_P(_n("XFlash lang count = %hhd\n"), count);
  782. }
  783. #endif //DEBUG_W25X20CL
  784. #endif //W25X20CL
  785. #endif //(LANG_MODE != 0)
  786. static void w25x20cl_err_msg()
  787. {
  788. lcd_clear();
  789. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. mmu_init();
  797. ultralcd_init();
  798. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  799. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  800. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  801. spi_init();
  802. lcd_splash();
  803. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  804. #ifdef W25X20CL
  805. bool w25x20cl_success = w25x20cl_init();
  806. if (w25x20cl_success)
  807. {
  808. optiboot_w25x20cl_enter();
  809. #if (LANG_MODE != 0) //secondary language support
  810. update_sec_lang_from_external_flash();
  811. #endif //(LANG_MODE != 0)
  812. }
  813. else
  814. {
  815. w25x20cl_err_msg();
  816. }
  817. #else
  818. const bool w25x20cl_success = true;
  819. #endif //W25X20CL
  820. setup_killpin();
  821. setup_powerhold();
  822. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  823. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  824. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  825. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  826. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  827. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  828. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  829. if (farm_mode)
  830. {
  831. no_response = true; //we need confirmation by recieving PRUSA thx
  832. important_status = 8;
  833. prusa_statistics(8);
  834. selectedSerialPort = 1;
  835. #ifdef TMC2130
  836. //increased extruder current (PFW363)
  837. tmc2130_current_h[E_AXIS] = 36;
  838. tmc2130_current_r[E_AXIS] = 36;
  839. #endif //TMC2130
  840. #ifdef FILAMENT_SENSOR
  841. //disabled filament autoload (PFW360)
  842. fsensor_autoload_set(false);
  843. #endif //FILAMENT_SENSOR
  844. // ~ FanCheck -> on
  845. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  846. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  847. }
  848. MYSERIAL.begin(BAUDRATE);
  849. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  850. #ifndef W25X20CL
  851. SERIAL_PROTOCOLLNPGM("start");
  852. #endif //W25X20CL
  853. stdout = uartout;
  854. SERIAL_ECHO_START;
  855. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  856. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  857. #ifdef DEBUG_SEC_LANG
  858. lang_table_header_t header;
  859. uint32_t src_addr = 0x00000;
  860. if (lang_get_header(1, &header, &src_addr))
  861. {
  862. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  863. #define LT_PRINT_TEST 2
  864. // flash usage
  865. // total p.test
  866. //0 252718 t+c text code
  867. //1 253142 424 170 254
  868. //2 253040 322 164 158
  869. //3 253248 530 135 395
  870. #if (LT_PRINT_TEST==1) //not optimized printf
  871. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  872. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  873. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  874. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  875. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  876. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  877. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  878. #elif (LT_PRINT_TEST==2) //optimized printf
  879. printf_P(
  880. _n(
  881. " _src_addr = 0x%08lx\n"
  882. " _lt_magic = 0x%08lx %S\n"
  883. " _lt_size = 0x%04x (%d)\n"
  884. " _lt_count = 0x%04x (%d)\n"
  885. " _lt_chsum = 0x%04x\n"
  886. " _lt_code = 0x%04x (%c%c)\n"
  887. " _lt_resv1 = 0x%08lx\n"
  888. ),
  889. src_addr,
  890. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  891. header.size, header.size,
  892. header.count, header.count,
  893. header.checksum,
  894. header.code, header.code >> 8, header.code & 0xff,
  895. header.signature
  896. );
  897. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  898. MYSERIAL.print(" _src_addr = 0x");
  899. MYSERIAL.println(src_addr, 16);
  900. MYSERIAL.print(" _lt_magic = 0x");
  901. MYSERIAL.print(header.magic, 16);
  902. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  903. MYSERIAL.print(" _lt_size = 0x");
  904. MYSERIAL.print(header.size, 16);
  905. MYSERIAL.print(" (");
  906. MYSERIAL.print(header.size, 10);
  907. MYSERIAL.println(")");
  908. MYSERIAL.print(" _lt_count = 0x");
  909. MYSERIAL.print(header.count, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.count, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_chsum = 0x");
  914. MYSERIAL.println(header.checksum, 16);
  915. MYSERIAL.print(" _lt_code = 0x");
  916. MYSERIAL.print(header.code, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print((char)(header.code >> 8), 0);
  919. MYSERIAL.print((char)(header.code & 0xff), 0);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_resv1 = 0x");
  922. MYSERIAL.println(header.signature, 16);
  923. #endif //(LT_PRINT_TEST==)
  924. #undef LT_PRINT_TEST
  925. #if 0
  926. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  927. for (uint16_t i = 0; i < 1024; i++)
  928. {
  929. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  930. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  931. if ((i % 16) == 15) putchar('\n');
  932. }
  933. #endif
  934. uint16_t sum = 0;
  935. for (uint16_t i = 0; i < header.size; i++)
  936. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum -= header.checksum; //subtract checksum
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  941. if (sum == header.checksum)
  942. printf_P(_n("Checksum OK\n"), sum);
  943. else
  944. printf_P(_n("Checksum NG\n"), sum);
  945. }
  946. else
  947. printf_P(_n("lang_get_header failed!\n"));
  948. #if 0
  949. for (uint16_t i = 0; i < 1024*10; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  952. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. #if 0
  957. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  958. for (int i = 0; i < 4096; ++i) {
  959. int b = eeprom_read_byte((unsigned char*)i);
  960. if (b != 255) {
  961. SERIAL_ECHO(i);
  962. SERIAL_ECHO(":");
  963. SERIAL_ECHO(b);
  964. SERIAL_ECHOLN("");
  965. }
  966. }
  967. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  968. #endif
  969. #endif //DEBUG_SEC_LANG
  970. // Check startup - does nothing if bootloader sets MCUSR to 0
  971. byte mcu = MCUSR;
  972. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  973. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  974. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  975. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  976. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  977. if (mcu & 1) puts_P(MSG_POWERUP);
  978. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  982. MCUSR = 0;
  983. //SERIAL_ECHORPGM(MSG_MARLIN);
  984. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  985. #ifdef STRING_VERSION_CONFIG_H
  986. #ifdef STRING_CONFIG_H_AUTHOR
  987. SERIAL_ECHO_START;
  988. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  989. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  990. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  991. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  992. SERIAL_ECHOPGM("Compiled: ");
  993. SERIAL_ECHOLNPGM(__DATE__);
  994. #endif
  995. #endif
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  998. SERIAL_ECHO(freeMemory());
  999. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1000. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1001. //lcd_update_enable(false); // why do we need this?? - andre
  1002. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1003. bool previous_settings_retrieved = false;
  1004. uint8_t hw_changed = check_printer_version();
  1005. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1006. previous_settings_retrieved = Config_RetrieveSettings();
  1007. }
  1008. else { //printer version was changed so use default settings
  1009. Config_ResetDefault();
  1010. }
  1011. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1012. tp_init(); // Initialize temperature loop
  1013. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1014. else
  1015. {
  1016. w25x20cl_err_msg();
  1017. printf_P(_n("W25X20CL not responding.\n"));
  1018. }
  1019. plan_init(); // Initialize planner;
  1020. factory_reset();
  1021. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1022. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1023. {
  1024. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1025. // where all the EEPROM entries are set to 0x0ff.
  1026. // Once a firmware boots up, it forces at least a language selection, which changes
  1027. // EEPROM_LANG to number lower than 0x0ff.
  1028. // 1) Set a high power mode.
  1029. #ifdef TMC2130
  1030. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1031. tmc2130_mode = TMC2130_MODE_NORMAL;
  1032. #endif //TMC2130
  1033. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1034. }
  1035. lcd_encoder_diff=0;
  1036. #ifdef TMC2130
  1037. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1038. if (silentMode == 0xff) silentMode = 0;
  1039. tmc2130_mode = TMC2130_MODE_NORMAL;
  1040. if (lcd_crash_detect_enabled() && !farm_mode)
  1041. {
  1042. lcd_crash_detect_enable();
  1043. puts_P(_N("CrashDetect ENABLED!"));
  1044. }
  1045. else
  1046. {
  1047. lcd_crash_detect_disable();
  1048. puts_P(_N("CrashDetect DISABLED"));
  1049. }
  1050. #ifdef TMC2130_LINEARITY_CORRECTION
  1051. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1052. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1053. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1054. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1055. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1056. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1057. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1058. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1059. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1060. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1061. #endif //TMC2130_LINEARITY_CORRECTION
  1062. #ifdef TMC2130_VARIABLE_RESOLUTION
  1063. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1064. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1065. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1066. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1067. #else //TMC2130_VARIABLE_RESOLUTION
  1068. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1069. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1070. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1071. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1072. #endif //TMC2130_VARIABLE_RESOLUTION
  1073. #endif //TMC2130
  1074. st_init(); // Initialize stepper, this enables interrupts!
  1075. #ifdef UVLO_SUPPORT
  1076. setup_uvlo_interrupt();
  1077. #endif //UVLO_SUPPORT
  1078. #ifdef TMC2130
  1079. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1080. update_mode_profile();
  1081. tmc2130_init();
  1082. #endif //TMC2130
  1083. #ifdef PSU_Delta
  1084. init_force_z(); // ! important for correct Z-axis initialization
  1085. #endif // PSU_Delta
  1086. setup_photpin();
  1087. servo_init();
  1088. // Reset the machine correction matrix.
  1089. // It does not make sense to load the correction matrix until the machine is homed.
  1090. world2machine_reset();
  1091. #ifdef FILAMENT_SENSOR
  1092. fsensor_init();
  1093. #endif //FILAMENT_SENSOR
  1094. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1095. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1096. #endif
  1097. setup_homepin();
  1098. #ifdef TMC2130
  1099. if (1) {
  1100. // try to run to zero phase before powering the Z motor.
  1101. // Move in negative direction
  1102. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1103. // Round the current micro-micro steps to micro steps.
  1104. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1105. // Until the phase counter is reset to zero.
  1106. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1107. _delay(2);
  1108. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1109. _delay(2);
  1110. }
  1111. }
  1112. #endif //TMC2130
  1113. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1114. enable_z();
  1115. #endif
  1116. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1117. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1118. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1119. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1120. if (farm_mode)
  1121. {
  1122. prusa_statistics(8);
  1123. }
  1124. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1125. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1126. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1127. // but this times out if a blocking dialog is shown in setup().
  1128. card.initsd();
  1129. #ifdef DEBUG_SD_SPEED_TEST
  1130. if (card.cardOK)
  1131. {
  1132. uint8_t* buff = (uint8_t*)block_buffer;
  1133. uint32_t block = 0;
  1134. uint32_t sumr = 0;
  1135. uint32_t sumw = 0;
  1136. for (int i = 0; i < 1024; i++)
  1137. {
  1138. uint32_t u = _micros();
  1139. bool res = card.card.readBlock(i, buff);
  1140. u = _micros() - u;
  1141. if (res)
  1142. {
  1143. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1144. sumr += u;
  1145. u = _micros();
  1146. res = card.card.writeBlock(i, buff);
  1147. u = _micros() - u;
  1148. if (res)
  1149. {
  1150. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1151. sumw += u;
  1152. }
  1153. else
  1154. {
  1155. printf_P(PSTR("writeBlock %4d error\n"), i);
  1156. break;
  1157. }
  1158. }
  1159. else
  1160. {
  1161. printf_P(PSTR("readBlock %4d error\n"), i);
  1162. break;
  1163. }
  1164. }
  1165. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1166. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1167. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1168. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1169. }
  1170. else
  1171. printf_P(PSTR("Card NG!\n"));
  1172. #endif //DEBUG_SD_SPEED_TEST
  1173. eeprom_init();
  1174. #ifdef SNMM
  1175. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1176. int _z = BOWDEN_LENGTH;
  1177. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1178. }
  1179. #endif
  1180. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1181. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1182. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1183. #if (LANG_MODE != 0) //secondary language support
  1184. #ifdef DEBUG_W25X20CL
  1185. W25X20CL_SPI_ENTER();
  1186. uint8_t uid[8]; // 64bit unique id
  1187. w25x20cl_rd_uid(uid);
  1188. puts_P(_n("W25X20CL UID="));
  1189. for (uint8_t i = 0; i < 8; i ++)
  1190. printf_P(PSTR("%02hhx"), uid[i]);
  1191. putchar('\n');
  1192. list_sec_lang_from_external_flash();
  1193. #endif //DEBUG_W25X20CL
  1194. // lang_reset();
  1195. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1196. lcd_language();
  1197. #ifdef DEBUG_SEC_LANG
  1198. uint16_t sec_lang_code = lang_get_code(1);
  1199. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1200. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1201. lang_print_sec_lang(uartout);
  1202. #endif //DEBUG_SEC_LANG
  1203. #endif //(LANG_MODE != 0)
  1204. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1205. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1206. temp_cal_active = false;
  1207. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1208. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1209. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1210. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1211. int16_t z_shift = 0;
  1212. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1213. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1214. temp_cal_active = false;
  1215. }
  1216. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1217. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1218. }
  1219. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1220. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1221. }
  1222. //mbl_mode_init();
  1223. mbl_settings_init();
  1224. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1225. if (SilentModeMenu_MMU == 255) {
  1226. SilentModeMenu_MMU = 1;
  1227. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1228. }
  1229. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1230. setup_fan_interrupt();
  1231. #endif //DEBUG_DISABLE_FANCHECK
  1232. #ifdef PAT9125
  1233. fsensor_setup_interrupt();
  1234. #endif //PAT9125
  1235. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1236. #ifndef DEBUG_DISABLE_STARTMSGS
  1237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1238. if (!farm_mode) {
  1239. check_if_fw_is_on_right_printer();
  1240. show_fw_version_warnings();
  1241. }
  1242. switch (hw_changed) {
  1243. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1244. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1245. case(0b01):
  1246. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1247. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1248. break;
  1249. case(0b10):
  1250. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1251. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1252. break;
  1253. case(0b11):
  1254. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1255. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1256. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1257. break;
  1258. default: break; //no change, show no message
  1259. }
  1260. if (!previous_settings_retrieved) {
  1261. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1262. Config_StoreSettings();
  1263. }
  1264. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1265. lcd_wizard(WizState::Run);
  1266. }
  1267. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1268. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1269. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1270. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1271. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1272. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1273. // Show the message.
  1274. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1275. }
  1276. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1277. // Show the message.
  1278. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1279. lcd_update_enable(true);
  1280. }
  1281. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1282. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1283. lcd_update_enable(true);
  1284. }
  1285. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1286. // Show the message.
  1287. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1288. }
  1289. }
  1290. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1291. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1292. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1293. update_current_firmware_version_to_eeprom();
  1294. lcd_selftest();
  1295. }
  1296. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1297. KEEPALIVE_STATE(IN_PROCESS);
  1298. #endif //DEBUG_DISABLE_STARTMSGS
  1299. lcd_update_enable(true);
  1300. lcd_clear();
  1301. lcd_update(2);
  1302. // Store the currently running firmware into an eeprom,
  1303. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1304. update_current_firmware_version_to_eeprom();
  1305. #ifdef TMC2130
  1306. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1307. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1308. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1309. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1310. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1311. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1312. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1313. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1314. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1315. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1316. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1317. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1318. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1319. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1320. #endif //TMC2130
  1321. #ifdef UVLO_SUPPORT
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1323. /*
  1324. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1325. else {
  1326. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1327. lcd_update_enable(true);
  1328. lcd_update(2);
  1329. lcd_setstatuspgm(_T(WELCOME_MSG));
  1330. }
  1331. */
  1332. manage_heater(); // Update temperatures
  1333. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1334. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1335. #endif
  1336. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1337. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1338. puts_P(_N("Automatic recovery!"));
  1339. #endif
  1340. recover_print(1);
  1341. }
  1342. else{
  1343. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1344. puts_P(_N("Normal recovery!"));
  1345. #endif
  1346. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1347. else {
  1348. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1349. lcd_update_enable(true);
  1350. lcd_update(2);
  1351. lcd_setstatuspgm(_T(WELCOME_MSG));
  1352. }
  1353. }
  1354. }
  1355. #endif //UVLO_SUPPORT
  1356. fCheckModeInit();
  1357. fSetMmuMode(mmu_enabled);
  1358. KEEPALIVE_STATE(NOT_BUSY);
  1359. #ifdef WATCHDOG
  1360. wdt_enable(WDTO_4S);
  1361. #endif //WATCHDOG
  1362. }
  1363. void trace();
  1364. #define CHUNK_SIZE 64 // bytes
  1365. #define SAFETY_MARGIN 1
  1366. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1367. int chunkHead = 0;
  1368. void serial_read_stream() {
  1369. setAllTargetHotends(0);
  1370. setTargetBed(0);
  1371. lcd_clear();
  1372. lcd_puts_P(PSTR(" Upload in progress"));
  1373. // first wait for how many bytes we will receive
  1374. uint32_t bytesToReceive;
  1375. // receive the four bytes
  1376. char bytesToReceiveBuffer[4];
  1377. for (int i=0; i<4; i++) {
  1378. int data;
  1379. while ((data = MYSERIAL.read()) == -1) {};
  1380. bytesToReceiveBuffer[i] = data;
  1381. }
  1382. // make it a uint32
  1383. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1384. // we're ready, notify the sender
  1385. MYSERIAL.write('+');
  1386. // lock in the routine
  1387. uint32_t receivedBytes = 0;
  1388. while (prusa_sd_card_upload) {
  1389. int i;
  1390. for (i=0; i<CHUNK_SIZE; i++) {
  1391. int data;
  1392. // check if we're not done
  1393. if (receivedBytes == bytesToReceive) {
  1394. break;
  1395. }
  1396. // read the next byte
  1397. while ((data = MYSERIAL.read()) == -1) {};
  1398. receivedBytes++;
  1399. // save it to the chunk
  1400. chunk[i] = data;
  1401. }
  1402. // write the chunk to SD
  1403. card.write_command_no_newline(&chunk[0]);
  1404. // notify the sender we're ready for more data
  1405. MYSERIAL.write('+');
  1406. // for safety
  1407. manage_heater();
  1408. // check if we're done
  1409. if(receivedBytes == bytesToReceive) {
  1410. trace(); // beep
  1411. card.closefile();
  1412. prusa_sd_card_upload = false;
  1413. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1414. }
  1415. }
  1416. }
  1417. /**
  1418. * Output a "busy" message at regular intervals
  1419. * while the machine is not accepting commands.
  1420. */
  1421. void host_keepalive() {
  1422. #ifndef HOST_KEEPALIVE_FEATURE
  1423. return;
  1424. #endif //HOST_KEEPALIVE_FEATURE
  1425. if (farm_mode) return;
  1426. long ms = _millis();
  1427. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1428. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1429. switch (busy_state) {
  1430. case IN_HANDLER:
  1431. case IN_PROCESS:
  1432. SERIAL_ECHO_START;
  1433. SERIAL_ECHOLNPGM("busy: processing");
  1434. break;
  1435. case PAUSED_FOR_USER:
  1436. SERIAL_ECHO_START;
  1437. SERIAL_ECHOLNPGM("busy: paused for user");
  1438. break;
  1439. case PAUSED_FOR_INPUT:
  1440. SERIAL_ECHO_START;
  1441. SERIAL_ECHOLNPGM("busy: paused for input");
  1442. break;
  1443. default:
  1444. break;
  1445. }
  1446. }
  1447. prev_busy_signal_ms = ms;
  1448. }
  1449. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1450. // Before loop(), the setup() function is called by the main() routine.
  1451. void loop()
  1452. {
  1453. KEEPALIVE_STATE(NOT_BUSY);
  1454. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1455. {
  1456. is_usb_printing = true;
  1457. usb_printing_counter--;
  1458. _usb_timer = _millis();
  1459. }
  1460. if (usb_printing_counter == 0)
  1461. {
  1462. is_usb_printing = false;
  1463. }
  1464. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1465. {
  1466. is_usb_printing = true;
  1467. }
  1468. #ifdef FANCHECK
  1469. if (fan_check_error && isPrintPaused)
  1470. {
  1471. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1472. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1473. }
  1474. #endif
  1475. if (prusa_sd_card_upload)
  1476. {
  1477. //we read byte-by byte
  1478. serial_read_stream();
  1479. }
  1480. else
  1481. {
  1482. get_command();
  1483. #ifdef SDSUPPORT
  1484. card.checkautostart(false);
  1485. #endif
  1486. if(buflen)
  1487. {
  1488. cmdbuffer_front_already_processed = false;
  1489. #ifdef SDSUPPORT
  1490. if(card.saving)
  1491. {
  1492. // Saving a G-code file onto an SD-card is in progress.
  1493. // Saving starts with M28, saving until M29 is seen.
  1494. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1495. card.write_command(CMDBUFFER_CURRENT_STRING);
  1496. if(card.logging)
  1497. process_commands();
  1498. else
  1499. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1500. } else {
  1501. card.closefile();
  1502. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1503. }
  1504. } else {
  1505. process_commands();
  1506. }
  1507. #else
  1508. process_commands();
  1509. #endif //SDSUPPORT
  1510. if (! cmdbuffer_front_already_processed && buflen)
  1511. {
  1512. // ptr points to the start of the block currently being processed.
  1513. // The first character in the block is the block type.
  1514. char *ptr = cmdbuffer + bufindr;
  1515. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1516. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1517. union {
  1518. struct {
  1519. char lo;
  1520. char hi;
  1521. } lohi;
  1522. uint16_t value;
  1523. } sdlen;
  1524. sdlen.value = 0;
  1525. {
  1526. // This block locks the interrupts globally for 3.25 us,
  1527. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1528. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1529. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1530. cli();
  1531. // Reset the command to something, which will be ignored by the power panic routine,
  1532. // so this buffer length will not be counted twice.
  1533. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1534. // Extract the current buffer length.
  1535. sdlen.lohi.lo = *ptr ++;
  1536. sdlen.lohi.hi = *ptr;
  1537. // and pass it to the planner queue.
  1538. planner_add_sd_length(sdlen.value);
  1539. sei();
  1540. }
  1541. }
  1542. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1543. cli();
  1544. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1545. // and one for each command to previous block in the planner queue.
  1546. planner_add_sd_length(1);
  1547. sei();
  1548. }
  1549. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1550. // this block's SD card length will not be counted twice as its command type has been replaced
  1551. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1552. cmdqueue_pop_front();
  1553. }
  1554. host_keepalive();
  1555. }
  1556. }
  1557. //check heater every n milliseconds
  1558. manage_heater();
  1559. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1560. checkHitEndstops();
  1561. lcd_update(0);
  1562. #ifdef TMC2130
  1563. tmc2130_check_overtemp();
  1564. if (tmc2130_sg_crash)
  1565. {
  1566. uint8_t crash = tmc2130_sg_crash;
  1567. tmc2130_sg_crash = 0;
  1568. // crashdet_stop_and_save_print();
  1569. switch (crash)
  1570. {
  1571. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1572. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1573. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1574. }
  1575. }
  1576. #endif //TMC2130
  1577. mmu_loop();
  1578. }
  1579. #define DEFINE_PGM_READ_ANY(type, reader) \
  1580. static inline type pgm_read_any(const type *p) \
  1581. { return pgm_read_##reader##_near(p); }
  1582. DEFINE_PGM_READ_ANY(float, float);
  1583. DEFINE_PGM_READ_ANY(signed char, byte);
  1584. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1585. static const PROGMEM type array##_P[3] = \
  1586. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1587. static inline type array(int axis) \
  1588. { return pgm_read_any(&array##_P[axis]); } \
  1589. type array##_ext(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); }
  1591. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1592. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1595. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1596. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1597. static void axis_is_at_home(int axis) {
  1598. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1599. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1600. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1601. }
  1602. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1603. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1604. //! @return original feedmultiply
  1605. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1606. saved_feedrate = feedrate;
  1607. int l_feedmultiply = feedmultiply;
  1608. feedmultiply = 100;
  1609. previous_millis_cmd = _millis();
  1610. enable_endstops(enable_endstops_now);
  1611. return l_feedmultiply;
  1612. }
  1613. //! @param original_feedmultiply feedmultiply to restore
  1614. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1615. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1616. enable_endstops(false);
  1617. #endif
  1618. feedrate = saved_feedrate;
  1619. feedmultiply = original_feedmultiply;
  1620. previous_millis_cmd = _millis();
  1621. }
  1622. #ifdef ENABLE_AUTO_BED_LEVELING
  1623. #ifdef AUTO_BED_LEVELING_GRID
  1624. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1625. {
  1626. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1627. planeNormal.debug("planeNormal");
  1628. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1629. //bedLevel.debug("bedLevel");
  1630. //plan_bed_level_matrix.debug("bed level before");
  1631. //vector_3 uncorrected_position = plan_get_position_mm();
  1632. //uncorrected_position.debug("position before");
  1633. vector_3 corrected_position = plan_get_position();
  1634. // corrected_position.debug("position after");
  1635. current_position[X_AXIS] = corrected_position.x;
  1636. current_position[Y_AXIS] = corrected_position.y;
  1637. current_position[Z_AXIS] = corrected_position.z;
  1638. // put the bed at 0 so we don't go below it.
  1639. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1641. }
  1642. #else // not AUTO_BED_LEVELING_GRID
  1643. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1644. plan_bed_level_matrix.set_to_identity();
  1645. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1646. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1647. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1648. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1649. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1650. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1651. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1652. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1653. vector_3 corrected_position = plan_get_position();
  1654. current_position[X_AXIS] = corrected_position.x;
  1655. current_position[Y_AXIS] = corrected_position.y;
  1656. current_position[Z_AXIS] = corrected_position.z;
  1657. // put the bed at 0 so we don't go below it.
  1658. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1659. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1660. }
  1661. #endif // AUTO_BED_LEVELING_GRID
  1662. static void run_z_probe() {
  1663. plan_bed_level_matrix.set_to_identity();
  1664. feedrate = homing_feedrate[Z_AXIS];
  1665. // move down until you find the bed
  1666. float zPosition = -10;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1668. st_synchronize();
  1669. // we have to let the planner know where we are right now as it is not where we said to go.
  1670. zPosition = st_get_position_mm(Z_AXIS);
  1671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1672. // move up the retract distance
  1673. zPosition += home_retract_mm(Z_AXIS);
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1675. st_synchronize();
  1676. // move back down slowly to find bed
  1677. feedrate = homing_feedrate[Z_AXIS]/4;
  1678. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1682. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. }
  1685. static void do_blocking_move_to(float x, float y, float z) {
  1686. float oldFeedRate = feedrate;
  1687. feedrate = homing_feedrate[Z_AXIS];
  1688. current_position[Z_AXIS] = z;
  1689. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. feedrate = XY_TRAVEL_SPEED;
  1692. current_position[X_AXIS] = x;
  1693. current_position[Y_AXIS] = y;
  1694. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1695. st_synchronize();
  1696. feedrate = oldFeedRate;
  1697. }
  1698. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1699. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1700. }
  1701. /// Probe bed height at position (x,y), returns the measured z value
  1702. static float probe_pt(float x, float y, float z_before) {
  1703. // move to right place
  1704. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1705. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1706. run_z_probe();
  1707. float measured_z = current_position[Z_AXIS];
  1708. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1709. SERIAL_PROTOCOLPGM(" x: ");
  1710. SERIAL_PROTOCOL(x);
  1711. SERIAL_PROTOCOLPGM(" y: ");
  1712. SERIAL_PROTOCOL(y);
  1713. SERIAL_PROTOCOLPGM(" z: ");
  1714. SERIAL_PROTOCOL(measured_z);
  1715. SERIAL_PROTOCOLPGM("\n");
  1716. return measured_z;
  1717. }
  1718. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1719. #ifdef LIN_ADVANCE
  1720. /**
  1721. * M900: Set and/or Get advance K factor and WH/D ratio
  1722. *
  1723. * K<factor> Set advance K factor
  1724. * R<ratio> Set ratio directly (overrides WH/D)
  1725. * W<width> H<height> D<diam> Set ratio from WH/D
  1726. */
  1727. inline void gcode_M900() {
  1728. st_synchronize();
  1729. const float newK = code_seen('K') ? code_value_float() : -1;
  1730. if (newK >= 0) extruder_advance_k = newK;
  1731. float newR = code_seen('R') ? code_value_float() : -1;
  1732. if (newR < 0) {
  1733. const float newD = code_seen('D') ? code_value_float() : -1,
  1734. newW = code_seen('W') ? code_value_float() : -1,
  1735. newH = code_seen('H') ? code_value_float() : -1;
  1736. if (newD >= 0 && newW >= 0 && newH >= 0)
  1737. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1738. }
  1739. if (newR >= 0) advance_ed_ratio = newR;
  1740. SERIAL_ECHO_START;
  1741. SERIAL_ECHOPGM("Advance K=");
  1742. SERIAL_ECHOLN(extruder_advance_k);
  1743. SERIAL_ECHOPGM(" E/D=");
  1744. const float ratio = advance_ed_ratio;
  1745. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1746. }
  1747. #endif // LIN_ADVANCE
  1748. bool check_commands() {
  1749. bool end_command_found = false;
  1750. while (buflen)
  1751. {
  1752. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1753. if (!cmdbuffer_front_already_processed)
  1754. cmdqueue_pop_front();
  1755. cmdbuffer_front_already_processed = false;
  1756. }
  1757. return end_command_found;
  1758. }
  1759. #ifdef TMC2130
  1760. bool calibrate_z_auto()
  1761. {
  1762. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1763. lcd_clear();
  1764. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1765. bool endstops_enabled = enable_endstops(true);
  1766. int axis_up_dir = -home_dir(Z_AXIS);
  1767. tmc2130_home_enter(Z_AXIS_MASK);
  1768. current_position[Z_AXIS] = 0;
  1769. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1770. set_destination_to_current();
  1771. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1772. feedrate = homing_feedrate[Z_AXIS];
  1773. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1774. st_synchronize();
  1775. // current_position[axis] = 0;
  1776. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1777. tmc2130_home_exit();
  1778. enable_endstops(false);
  1779. current_position[Z_AXIS] = 0;
  1780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. set_destination_to_current();
  1782. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1783. feedrate = homing_feedrate[Z_AXIS] / 2;
  1784. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1785. st_synchronize();
  1786. enable_endstops(endstops_enabled);
  1787. if (PRINTER_TYPE == PRINTER_MK3) {
  1788. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1789. }
  1790. else {
  1791. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1792. }
  1793. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1794. return true;
  1795. }
  1796. #endif //TMC2130
  1797. #ifdef TMC2130
  1798. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1799. #else
  1800. void homeaxis(int axis, uint8_t cnt)
  1801. #endif //TMC2130
  1802. {
  1803. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1804. #define HOMEAXIS_DO(LETTER) \
  1805. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1806. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1807. {
  1808. int axis_home_dir = home_dir(axis);
  1809. feedrate = homing_feedrate[axis];
  1810. #ifdef TMC2130
  1811. tmc2130_home_enter(X_AXIS_MASK << axis);
  1812. #endif //TMC2130
  1813. // Move away a bit, so that the print head does not touch the end position,
  1814. // and the following movement to endstop has a chance to achieve the required velocity
  1815. // for the stall guard to work.
  1816. current_position[axis] = 0;
  1817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1818. set_destination_to_current();
  1819. // destination[axis] = 11.f;
  1820. destination[axis] = -3.f * axis_home_dir;
  1821. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1822. st_synchronize();
  1823. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1824. endstops_hit_on_purpose();
  1825. enable_endstops(false);
  1826. current_position[axis] = 0;
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1828. destination[axis] = 1. * axis_home_dir;
  1829. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1830. st_synchronize();
  1831. // Now continue to move up to the left end stop with the collision detection enabled.
  1832. enable_endstops(true);
  1833. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. for (uint8_t i = 0; i < cnt; i++)
  1837. {
  1838. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1839. endstops_hit_on_purpose();
  1840. enable_endstops(false);
  1841. current_position[axis] = 0;
  1842. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1843. destination[axis] = -10.f * axis_home_dir;
  1844. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1845. st_synchronize();
  1846. endstops_hit_on_purpose();
  1847. // Now move left up to the collision, this time with a repeatable velocity.
  1848. enable_endstops(true);
  1849. destination[axis] = 11.f * axis_home_dir;
  1850. #ifdef TMC2130
  1851. feedrate = homing_feedrate[axis];
  1852. #else //TMC2130
  1853. feedrate = homing_feedrate[axis] / 2;
  1854. #endif //TMC2130
  1855. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1856. st_synchronize();
  1857. #ifdef TMC2130
  1858. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1859. if (pstep) pstep[i] = mscnt >> 4;
  1860. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1861. #endif //TMC2130
  1862. }
  1863. endstops_hit_on_purpose();
  1864. enable_endstops(false);
  1865. #ifdef TMC2130
  1866. uint8_t orig = tmc2130_home_origin[axis];
  1867. uint8_t back = tmc2130_home_bsteps[axis];
  1868. if (tmc2130_home_enabled && (orig <= 63))
  1869. {
  1870. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1871. if (back > 0)
  1872. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1873. }
  1874. else
  1875. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1876. tmc2130_home_exit();
  1877. #endif //TMC2130
  1878. axis_is_at_home(axis);
  1879. axis_known_position[axis] = true;
  1880. // Move from minimum
  1881. #ifdef TMC2130
  1882. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1883. #else //TMC2130
  1884. float dist = - axis_home_dir * 0.01f * 64;
  1885. #endif //TMC2130
  1886. current_position[axis] -= dist;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. current_position[axis] += dist;
  1889. destination[axis] = current_position[axis];
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. feedrate = 0.0;
  1893. }
  1894. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1895. {
  1896. #ifdef TMC2130
  1897. FORCE_HIGH_POWER_START;
  1898. #endif
  1899. int axis_home_dir = home_dir(axis);
  1900. current_position[axis] = 0;
  1901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1902. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1903. feedrate = homing_feedrate[axis];
  1904. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1905. st_synchronize();
  1906. #ifdef TMC2130
  1907. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1908. FORCE_HIGH_POWER_END;
  1909. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1910. return;
  1911. }
  1912. #endif //TMC2130
  1913. current_position[axis] = 0;
  1914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1915. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1916. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1917. st_synchronize();
  1918. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1919. feedrate = homing_feedrate[axis]/2 ;
  1920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1921. st_synchronize();
  1922. #ifdef TMC2130
  1923. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1924. FORCE_HIGH_POWER_END;
  1925. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1926. return;
  1927. }
  1928. #endif //TMC2130
  1929. axis_is_at_home(axis);
  1930. destination[axis] = current_position[axis];
  1931. feedrate = 0.0;
  1932. endstops_hit_on_purpose();
  1933. axis_known_position[axis] = true;
  1934. #ifdef TMC2130
  1935. FORCE_HIGH_POWER_END;
  1936. #endif
  1937. }
  1938. enable_endstops(endstops_enabled);
  1939. }
  1940. /**/
  1941. void home_xy()
  1942. {
  1943. set_destination_to_current();
  1944. homeaxis(X_AXIS);
  1945. homeaxis(Y_AXIS);
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. endstops_hit_on_purpose();
  1948. }
  1949. void refresh_cmd_timeout(void)
  1950. {
  1951. previous_millis_cmd = _millis();
  1952. }
  1953. #ifdef FWRETRACT
  1954. void retract(bool retracting, bool swapretract = false) {
  1955. if(retracting && !retracted[active_extruder]) {
  1956. destination[X_AXIS]=current_position[X_AXIS];
  1957. destination[Y_AXIS]=current_position[Y_AXIS];
  1958. destination[Z_AXIS]=current_position[Z_AXIS];
  1959. destination[E_AXIS]=current_position[E_AXIS];
  1960. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1961. plan_set_e_position(current_position[E_AXIS]);
  1962. float oldFeedrate = feedrate;
  1963. feedrate=cs.retract_feedrate*60;
  1964. retracted[active_extruder]=true;
  1965. prepare_move();
  1966. current_position[Z_AXIS]-=cs.retract_zlift;
  1967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1968. prepare_move();
  1969. feedrate = oldFeedrate;
  1970. } else if(!retracting && retracted[active_extruder]) {
  1971. destination[X_AXIS]=current_position[X_AXIS];
  1972. destination[Y_AXIS]=current_position[Y_AXIS];
  1973. destination[Z_AXIS]=current_position[Z_AXIS];
  1974. destination[E_AXIS]=current_position[E_AXIS];
  1975. current_position[Z_AXIS]+=cs.retract_zlift;
  1976. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1977. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1978. plan_set_e_position(current_position[E_AXIS]);
  1979. float oldFeedrate = feedrate;
  1980. feedrate=cs.retract_recover_feedrate*60;
  1981. retracted[active_extruder]=false;
  1982. prepare_move();
  1983. feedrate = oldFeedrate;
  1984. }
  1985. } //retract
  1986. #endif //FWRETRACT
  1987. void trace() {
  1988. Sound_MakeCustom(25,440,true);
  1989. }
  1990. /*
  1991. void ramming() {
  1992. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1993. if (current_temperature[0] < 230) {
  1994. //PLA
  1995. max_feedrate[E_AXIS] = 50;
  1996. //current_position[E_AXIS] -= 8;
  1997. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1998. //current_position[E_AXIS] += 8;
  1999. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2000. current_position[E_AXIS] += 5.4;
  2001. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2002. current_position[E_AXIS] += 3.2;
  2003. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2004. current_position[E_AXIS] += 3;
  2005. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2006. st_synchronize();
  2007. max_feedrate[E_AXIS] = 80;
  2008. current_position[E_AXIS] -= 82;
  2009. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2010. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2011. current_position[E_AXIS] -= 20;
  2012. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2013. current_position[E_AXIS] += 5;
  2014. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2015. current_position[E_AXIS] += 5;
  2016. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2017. current_position[E_AXIS] -= 10;
  2018. st_synchronize();
  2019. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2020. current_position[E_AXIS] += 10;
  2021. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2022. current_position[E_AXIS] -= 10;
  2023. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2024. current_position[E_AXIS] += 10;
  2025. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2026. current_position[E_AXIS] -= 10;
  2027. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2028. st_synchronize();
  2029. }
  2030. else {
  2031. //ABS
  2032. max_feedrate[E_AXIS] = 50;
  2033. //current_position[E_AXIS] -= 8;
  2034. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2035. //current_position[E_AXIS] += 8;
  2036. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2037. current_position[E_AXIS] += 3.1;
  2038. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2039. current_position[E_AXIS] += 3.1;
  2040. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2041. current_position[E_AXIS] += 4;
  2042. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2043. st_synchronize();
  2044. //current_position[X_AXIS] += 23; //delay
  2045. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2046. //current_position[X_AXIS] -= 23; //delay
  2047. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2048. _delay(4700);
  2049. max_feedrate[E_AXIS] = 80;
  2050. current_position[E_AXIS] -= 92;
  2051. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2052. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2053. current_position[E_AXIS] -= 5;
  2054. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2055. current_position[E_AXIS] += 5;
  2056. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2057. current_position[E_AXIS] -= 5;
  2058. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2059. st_synchronize();
  2060. current_position[E_AXIS] += 5;
  2061. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2062. current_position[E_AXIS] -= 5;
  2063. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2064. current_position[E_AXIS] += 5;
  2065. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2066. current_position[E_AXIS] -= 5;
  2067. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2068. st_synchronize();
  2069. }
  2070. }
  2071. */
  2072. #ifdef TMC2130
  2073. void force_high_power_mode(bool start_high_power_section) {
  2074. uint8_t silent;
  2075. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2076. if (silent == 1) {
  2077. //we are in silent mode, set to normal mode to enable crash detection
  2078. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2079. st_synchronize();
  2080. cli();
  2081. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2082. update_mode_profile();
  2083. tmc2130_init();
  2084. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2085. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2086. st_reset_timer();
  2087. sei();
  2088. }
  2089. }
  2090. #endif //TMC2130
  2091. #ifdef TMC2130
  2092. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2093. #else
  2094. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2095. #endif //TMC2130
  2096. {
  2097. st_synchronize();
  2098. #if 0
  2099. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2100. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2101. #endif
  2102. // Flag for the display update routine and to disable the print cancelation during homing.
  2103. homing_flag = true;
  2104. // Which axes should be homed?
  2105. bool home_x = home_x_axis;
  2106. bool home_y = home_y_axis;
  2107. bool home_z = home_z_axis;
  2108. // Either all X,Y,Z codes are present, or none of them.
  2109. bool home_all_axes = home_x == home_y && home_x == home_z;
  2110. if (home_all_axes)
  2111. // No X/Y/Z code provided means to home all axes.
  2112. home_x = home_y = home_z = true;
  2113. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2114. if (home_all_axes) {
  2115. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2116. feedrate = homing_feedrate[Z_AXIS];
  2117. plan_buffer_line_curposXYZE(feedrate / 60, active_extruder);
  2118. st_synchronize();
  2119. }
  2120. #ifdef ENABLE_AUTO_BED_LEVELING
  2121. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2122. #endif //ENABLE_AUTO_BED_LEVELING
  2123. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2124. // the planner will not perform any adjustments in the XY plane.
  2125. // Wait for the motors to stop and update the current position with the absolute values.
  2126. world2machine_revert_to_uncorrected();
  2127. // For mesh bed leveling deactivate the matrix temporarily.
  2128. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2129. // in a single axis only.
  2130. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2131. #ifdef MESH_BED_LEVELING
  2132. uint8_t mbl_was_active = mbl.active;
  2133. mbl.active = 0;
  2134. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2135. #endif
  2136. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2137. // consumed during the first movements following this statement.
  2138. if (home_z)
  2139. babystep_undo();
  2140. saved_feedrate = feedrate;
  2141. int l_feedmultiply = feedmultiply;
  2142. feedmultiply = 100;
  2143. previous_millis_cmd = _millis();
  2144. enable_endstops(true);
  2145. memcpy(destination, current_position, sizeof(destination));
  2146. feedrate = 0.0;
  2147. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2148. if(home_z)
  2149. homeaxis(Z_AXIS);
  2150. #endif
  2151. #ifdef QUICK_HOME
  2152. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2153. if(home_x && home_y) //first diagonal move
  2154. {
  2155. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2156. int x_axis_home_dir = home_dir(X_AXIS);
  2157. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2158. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2159. feedrate = homing_feedrate[X_AXIS];
  2160. if(homing_feedrate[Y_AXIS]<feedrate)
  2161. feedrate = homing_feedrate[Y_AXIS];
  2162. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2163. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2164. } else {
  2165. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2166. }
  2167. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2168. st_synchronize();
  2169. axis_is_at_home(X_AXIS);
  2170. axis_is_at_home(Y_AXIS);
  2171. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2172. destination[X_AXIS] = current_position[X_AXIS];
  2173. destination[Y_AXIS] = current_position[Y_AXIS];
  2174. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2175. feedrate = 0.0;
  2176. st_synchronize();
  2177. endstops_hit_on_purpose();
  2178. current_position[X_AXIS] = destination[X_AXIS];
  2179. current_position[Y_AXIS] = destination[Y_AXIS];
  2180. current_position[Z_AXIS] = destination[Z_AXIS];
  2181. }
  2182. #endif /* QUICK_HOME */
  2183. #ifdef TMC2130
  2184. if(home_x)
  2185. {
  2186. if (!calib)
  2187. homeaxis(X_AXIS);
  2188. else
  2189. tmc2130_home_calibrate(X_AXIS);
  2190. }
  2191. if(home_y)
  2192. {
  2193. if (!calib)
  2194. homeaxis(Y_AXIS);
  2195. else
  2196. tmc2130_home_calibrate(Y_AXIS);
  2197. }
  2198. #else //TMC2130
  2199. if(home_x) homeaxis(X_AXIS);
  2200. if(home_y) homeaxis(Y_AXIS);
  2201. #endif //TMC2130
  2202. if(home_x_axis && home_x_value != 0)
  2203. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2204. if(home_y_axis && home_y_value != 0)
  2205. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2206. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2207. #ifndef Z_SAFE_HOMING
  2208. if(home_z) {
  2209. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2210. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2211. feedrate = max_feedrate[Z_AXIS];
  2212. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2213. st_synchronize();
  2214. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2215. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2216. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2217. {
  2218. homeaxis(X_AXIS);
  2219. homeaxis(Y_AXIS);
  2220. }
  2221. // 1st mesh bed leveling measurement point, corrected.
  2222. world2machine_initialize();
  2223. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2224. world2machine_reset();
  2225. if (destination[Y_AXIS] < Y_MIN_POS)
  2226. destination[Y_AXIS] = Y_MIN_POS;
  2227. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2228. feedrate = homing_feedrate[Z_AXIS]/10;
  2229. current_position[Z_AXIS] = 0;
  2230. enable_endstops(false);
  2231. #ifdef DEBUG_BUILD
  2232. SERIAL_ECHOLNPGM("plan_set_position()");
  2233. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2234. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2235. #endif
  2236. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2237. #ifdef DEBUG_BUILD
  2238. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2239. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2240. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2241. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2242. #endif
  2243. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2244. st_synchronize();
  2245. current_position[X_AXIS] = destination[X_AXIS];
  2246. current_position[Y_AXIS] = destination[Y_AXIS];
  2247. enable_endstops(true);
  2248. endstops_hit_on_purpose();
  2249. homeaxis(Z_AXIS);
  2250. #else // MESH_BED_LEVELING
  2251. homeaxis(Z_AXIS);
  2252. #endif // MESH_BED_LEVELING
  2253. }
  2254. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2255. if(home_all_axes) {
  2256. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2257. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2258. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2259. feedrate = XY_TRAVEL_SPEED/60;
  2260. current_position[Z_AXIS] = 0;
  2261. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2262. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2263. st_synchronize();
  2264. current_position[X_AXIS] = destination[X_AXIS];
  2265. current_position[Y_AXIS] = destination[Y_AXIS];
  2266. homeaxis(Z_AXIS);
  2267. }
  2268. // Let's see if X and Y are homed and probe is inside bed area.
  2269. if(home_z) {
  2270. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2271. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2272. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2273. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2274. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2275. current_position[Z_AXIS] = 0;
  2276. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2277. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2278. feedrate = max_feedrate[Z_AXIS];
  2279. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2280. st_synchronize();
  2281. homeaxis(Z_AXIS);
  2282. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2283. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2284. SERIAL_ECHO_START;
  2285. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2286. } else {
  2287. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2288. SERIAL_ECHO_START;
  2289. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2290. }
  2291. }
  2292. #endif // Z_SAFE_HOMING
  2293. #endif // Z_HOME_DIR < 0
  2294. if(home_z_axis && home_z_value != 0)
  2295. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2296. #ifdef ENABLE_AUTO_BED_LEVELING
  2297. if(home_z)
  2298. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2299. #endif
  2300. // Set the planner and stepper routine positions.
  2301. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2302. // contains the machine coordinates.
  2303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2304. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2305. enable_endstops(false);
  2306. #endif
  2307. feedrate = saved_feedrate;
  2308. feedmultiply = l_feedmultiply;
  2309. previous_millis_cmd = _millis();
  2310. endstops_hit_on_purpose();
  2311. #ifndef MESH_BED_LEVELING
  2312. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2313. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2314. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2315. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2316. lcd_adjust_z();
  2317. #endif
  2318. // Load the machine correction matrix
  2319. world2machine_initialize();
  2320. // and correct the current_position XY axes to match the transformed coordinate system.
  2321. world2machine_update_current();
  2322. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2323. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2324. {
  2325. if (! home_z && mbl_was_active) {
  2326. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2327. mbl.active = true;
  2328. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2329. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2330. }
  2331. }
  2332. else
  2333. {
  2334. st_synchronize();
  2335. homing_flag = false;
  2336. }
  2337. #endif
  2338. if (farm_mode) { prusa_statistics(20); };
  2339. homing_flag = false;
  2340. #if 0
  2341. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2342. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2343. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2344. #endif
  2345. }
  2346. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2347. {
  2348. #ifdef TMC2130
  2349. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2350. #else
  2351. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2352. #endif //TMC2130
  2353. }
  2354. void adjust_bed_reset()
  2355. {
  2356. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2357. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2358. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2359. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2360. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2361. }
  2362. //! @brief Calibrate XYZ
  2363. //! @param onlyZ if true, calibrate only Z axis
  2364. //! @param verbosity_level
  2365. //! @retval true Succeeded
  2366. //! @retval false Failed
  2367. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2368. {
  2369. bool final_result = false;
  2370. #ifdef TMC2130
  2371. FORCE_HIGH_POWER_START;
  2372. #endif // TMC2130
  2373. // Only Z calibration?
  2374. if (!onlyZ)
  2375. {
  2376. setTargetBed(0);
  2377. setAllTargetHotends(0);
  2378. adjust_bed_reset(); //reset bed level correction
  2379. }
  2380. // Disable the default update procedure of the display. We will do a modal dialog.
  2381. lcd_update_enable(false);
  2382. // Let the planner use the uncorrected coordinates.
  2383. mbl.reset();
  2384. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2385. // the planner will not perform any adjustments in the XY plane.
  2386. // Wait for the motors to stop and update the current position with the absolute values.
  2387. world2machine_revert_to_uncorrected();
  2388. // Reset the baby step value applied without moving the axes.
  2389. babystep_reset();
  2390. // Mark all axes as in a need for homing.
  2391. memset(axis_known_position, 0, sizeof(axis_known_position));
  2392. // Home in the XY plane.
  2393. //set_destination_to_current();
  2394. int l_feedmultiply = setup_for_endstop_move();
  2395. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2396. home_xy();
  2397. enable_endstops(false);
  2398. current_position[X_AXIS] += 5;
  2399. current_position[Y_AXIS] += 5;
  2400. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2401. st_synchronize();
  2402. // Let the user move the Z axes up to the end stoppers.
  2403. #ifdef TMC2130
  2404. if (calibrate_z_auto())
  2405. {
  2406. #else //TMC2130
  2407. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2408. {
  2409. #endif //TMC2130
  2410. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2411. if(onlyZ){
  2412. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2413. lcd_set_cursor(0, 3);
  2414. lcd_print(1);
  2415. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2416. }else{
  2417. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2418. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2419. lcd_set_cursor(0, 2);
  2420. lcd_print(1);
  2421. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2422. }
  2423. refresh_cmd_timeout();
  2424. #ifndef STEEL_SHEET
  2425. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2426. {
  2427. lcd_wait_for_cool_down();
  2428. }
  2429. #endif //STEEL_SHEET
  2430. if(!onlyZ)
  2431. {
  2432. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2433. #ifdef STEEL_SHEET
  2434. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2435. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2436. #endif //STEEL_SHEET
  2437. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2438. KEEPALIVE_STATE(IN_HANDLER);
  2439. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2440. lcd_set_cursor(0, 2);
  2441. lcd_print(1);
  2442. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2443. }
  2444. bool endstops_enabled = enable_endstops(false);
  2445. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2446. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2447. st_synchronize();
  2448. // Move the print head close to the bed.
  2449. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2450. enable_endstops(true);
  2451. #ifdef TMC2130
  2452. tmc2130_home_enter(Z_AXIS_MASK);
  2453. #endif //TMC2130
  2454. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2455. st_synchronize();
  2456. #ifdef TMC2130
  2457. tmc2130_home_exit();
  2458. #endif //TMC2130
  2459. enable_endstops(endstops_enabled);
  2460. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2461. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2462. {
  2463. if (onlyZ)
  2464. {
  2465. clean_up_after_endstop_move(l_feedmultiply);
  2466. // Z only calibration.
  2467. // Load the machine correction matrix
  2468. world2machine_initialize();
  2469. // and correct the current_position to match the transformed coordinate system.
  2470. world2machine_update_current();
  2471. //FIXME
  2472. bool result = sample_mesh_and_store_reference();
  2473. if (result)
  2474. {
  2475. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2476. // Shipped, the nozzle height has been set already. The user can start printing now.
  2477. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2478. final_result = true;
  2479. // babystep_apply();
  2480. }
  2481. }
  2482. else
  2483. {
  2484. // Reset the baby step value and the baby step applied flag.
  2485. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2486. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2487. // Complete XYZ calibration.
  2488. uint8_t point_too_far_mask = 0;
  2489. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2490. clean_up_after_endstop_move(l_feedmultiply);
  2491. // Print head up.
  2492. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2493. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2494. st_synchronize();
  2495. //#ifndef NEW_XYZCAL
  2496. if (result >= 0)
  2497. {
  2498. #ifdef HEATBED_V2
  2499. sample_z();
  2500. #else //HEATBED_V2
  2501. point_too_far_mask = 0;
  2502. // Second half: The fine adjustment.
  2503. // Let the planner use the uncorrected coordinates.
  2504. mbl.reset();
  2505. world2machine_reset();
  2506. // Home in the XY plane.
  2507. int l_feedmultiply = setup_for_endstop_move();
  2508. home_xy();
  2509. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2510. clean_up_after_endstop_move(l_feedmultiply);
  2511. // Print head up.
  2512. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2513. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2514. st_synchronize();
  2515. // if (result >= 0) babystep_apply();
  2516. #endif //HEATBED_V2
  2517. }
  2518. //#endif //NEW_XYZCAL
  2519. lcd_update_enable(true);
  2520. lcd_update(2);
  2521. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2522. if (result >= 0)
  2523. {
  2524. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2525. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2526. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2527. final_result = true;
  2528. }
  2529. }
  2530. #ifdef TMC2130
  2531. tmc2130_home_exit();
  2532. #endif
  2533. }
  2534. else
  2535. {
  2536. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2537. final_result = false;
  2538. }
  2539. }
  2540. else
  2541. {
  2542. // Timeouted.
  2543. }
  2544. lcd_update_enable(true);
  2545. #ifdef TMC2130
  2546. FORCE_HIGH_POWER_END;
  2547. #endif // TMC2130
  2548. return final_result;
  2549. }
  2550. void gcode_M114()
  2551. {
  2552. SERIAL_PROTOCOLPGM("X:");
  2553. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2554. SERIAL_PROTOCOLPGM(" Y:");
  2555. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2556. SERIAL_PROTOCOLPGM(" Z:");
  2557. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2558. SERIAL_PROTOCOLPGM(" E:");
  2559. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2560. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2561. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2562. SERIAL_PROTOCOLPGM(" Y:");
  2563. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2564. SERIAL_PROTOCOLPGM(" Z:");
  2565. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2566. SERIAL_PROTOCOLPGM(" E:");
  2567. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2568. SERIAL_PROTOCOLLN("");
  2569. }
  2570. //! extracted code to compute z_shift for M600 in case of filament change operation
  2571. //! requested from fsensors.
  2572. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2573. //! unlike the previous implementation, which was adding 25mm even when the head was
  2574. //! printing at e.g. 24mm height.
  2575. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2576. //! the printout.
  2577. //! This function is templated to enable fast change of computation data type.
  2578. //! @return new z_shift value
  2579. template<typename T>
  2580. static T gcode_M600_filament_change_z_shift()
  2581. {
  2582. #ifdef FILAMENTCHANGE_ZADD
  2583. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2584. // avoid floating point arithmetics when not necessary - results in shorter code
  2585. T ztmp = T( current_position[Z_AXIS] );
  2586. T z_shift = 0;
  2587. if(ztmp < T(25)){
  2588. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2589. }
  2590. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2591. #else
  2592. return T(0);
  2593. #endif
  2594. }
  2595. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2596. {
  2597. st_synchronize();
  2598. float lastpos[4];
  2599. if (farm_mode)
  2600. {
  2601. prusa_statistics(22);
  2602. }
  2603. //First backup current position and settings
  2604. int feedmultiplyBckp = feedmultiply;
  2605. float HotendTempBckp = degTargetHotend(active_extruder);
  2606. int fanSpeedBckp = fanSpeed;
  2607. lastpos[X_AXIS] = current_position[X_AXIS];
  2608. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2609. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2610. lastpos[E_AXIS] = current_position[E_AXIS];
  2611. //Retract E
  2612. current_position[E_AXIS] += e_shift;
  2613. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2614. st_synchronize();
  2615. //Lift Z
  2616. current_position[Z_AXIS] += z_shift;
  2617. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2618. st_synchronize();
  2619. //Move XY to side
  2620. current_position[X_AXIS] = x_position;
  2621. current_position[Y_AXIS] = y_position;
  2622. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2623. st_synchronize();
  2624. //Beep, manage nozzle heater and wait for user to start unload filament
  2625. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2626. lcd_change_fil_state = 0;
  2627. // Unload filament
  2628. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2629. else unload_filament(); //unload filament for single material (used also in M702)
  2630. //finish moves
  2631. st_synchronize();
  2632. if (!mmu_enabled)
  2633. {
  2634. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2635. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2636. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2637. if (lcd_change_fil_state == 0)
  2638. {
  2639. lcd_clear();
  2640. lcd_set_cursor(0, 2);
  2641. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2642. current_position[X_AXIS] -= 100;
  2643. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2644. st_synchronize();
  2645. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2646. }
  2647. }
  2648. if (mmu_enabled)
  2649. {
  2650. if (!automatic) {
  2651. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2652. mmu_M600_wait_and_beep();
  2653. if (saved_printing) {
  2654. lcd_clear();
  2655. lcd_set_cursor(0, 2);
  2656. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2657. mmu_command(MmuCmd::R0);
  2658. manage_response(false, false);
  2659. }
  2660. }
  2661. mmu_M600_load_filament(automatic, HotendTempBckp);
  2662. }
  2663. else
  2664. M600_load_filament();
  2665. if (!automatic) M600_check_state(HotendTempBckp);
  2666. lcd_update_enable(true);
  2667. //Not let's go back to print
  2668. fanSpeed = fanSpeedBckp;
  2669. //Feed a little of filament to stabilize pressure
  2670. if (!automatic)
  2671. {
  2672. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2673. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2674. }
  2675. //Move XY back
  2676. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2677. FILAMENTCHANGE_XYFEED, active_extruder);
  2678. st_synchronize();
  2679. //Move Z back
  2680. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2681. FILAMENTCHANGE_ZFEED, active_extruder);
  2682. st_synchronize();
  2683. //Set E position to original
  2684. plan_set_e_position(lastpos[E_AXIS]);
  2685. memcpy(current_position, lastpos, sizeof(lastpos));
  2686. memcpy(destination, current_position, sizeof(current_position));
  2687. //Recover feed rate
  2688. feedmultiply = feedmultiplyBckp;
  2689. char cmd[9];
  2690. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2691. enquecommand(cmd);
  2692. #ifdef IR_SENSOR
  2693. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2694. fsensor_check_autoload();
  2695. #endif //IR_SENSOR
  2696. lcd_setstatuspgm(_T(WELCOME_MSG));
  2697. custom_message_type = CustomMsg::Status;
  2698. }
  2699. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2700. //!
  2701. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2702. //! during extruding (loading) filament.
  2703. void marlin_rise_z(void)
  2704. {
  2705. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2706. }
  2707. void gcode_M701()
  2708. {
  2709. printf_P(PSTR("gcode_M701 begin\n"));
  2710. if (farm_mode)
  2711. {
  2712. prusa_statistics(22);
  2713. }
  2714. if (mmu_enabled)
  2715. {
  2716. extr_adj(tmp_extruder);//loads current extruder
  2717. mmu_extruder = tmp_extruder;
  2718. }
  2719. else
  2720. {
  2721. enable_z();
  2722. custom_message_type = CustomMsg::FilamentLoading;
  2723. #ifdef FSENSOR_QUALITY
  2724. fsensor_oq_meassure_start(40);
  2725. #endif //FSENSOR_QUALITY
  2726. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2727. current_position[E_AXIS] += 40;
  2728. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2729. st_synchronize();
  2730. marlin_rise_z();
  2731. current_position[E_AXIS] += 30;
  2732. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2733. load_filament_final_feed(); //slow sequence
  2734. st_synchronize();
  2735. Sound_MakeCustom(50,500,false);
  2736. if (!farm_mode && loading_flag) {
  2737. lcd_load_filament_color_check();
  2738. }
  2739. lcd_update_enable(true);
  2740. lcd_update(2);
  2741. lcd_setstatuspgm(_T(WELCOME_MSG));
  2742. disable_z();
  2743. loading_flag = false;
  2744. custom_message_type = CustomMsg::Status;
  2745. #ifdef FSENSOR_QUALITY
  2746. fsensor_oq_meassure_stop();
  2747. if (!fsensor_oq_result())
  2748. {
  2749. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2750. lcd_update_enable(true);
  2751. lcd_update(2);
  2752. if (disable)
  2753. fsensor_disable();
  2754. }
  2755. #endif //FSENSOR_QUALITY
  2756. }
  2757. }
  2758. /**
  2759. * @brief Get serial number from 32U2 processor
  2760. *
  2761. * Typical format of S/N is:CZPX0917X003XC13518
  2762. *
  2763. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2764. *
  2765. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2766. * reply is transmitted to serial port 1 character by character.
  2767. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2768. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2769. * in any case.
  2770. */
  2771. static void gcode_PRUSA_SN()
  2772. {
  2773. if (farm_mode) {
  2774. selectedSerialPort = 0;
  2775. putchar(';');
  2776. putchar('S');
  2777. int numbersRead = 0;
  2778. ShortTimer timeout;
  2779. timeout.start();
  2780. while (numbersRead < 19) {
  2781. while (MSerial.available() > 0) {
  2782. uint8_t serial_char = MSerial.read();
  2783. selectedSerialPort = 1;
  2784. putchar(serial_char);
  2785. numbersRead++;
  2786. selectedSerialPort = 0;
  2787. }
  2788. if (timeout.expired(100u)) break;
  2789. }
  2790. selectedSerialPort = 1;
  2791. putchar('\n');
  2792. #if 0
  2793. for (int b = 0; b < 3; b++) {
  2794. _tone(BEEPER, 110);
  2795. _delay(50);
  2796. _noTone(BEEPER);
  2797. _delay(50);
  2798. }
  2799. #endif
  2800. } else {
  2801. puts_P(_N("Not in farm mode."));
  2802. }
  2803. }
  2804. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2805. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2806. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2807. //! it may even interfere with other functions of the printer! You have been warned!
  2808. //! The test idea is to measure the time necessary to charge the capacitor.
  2809. //! So the algorithm is as follows:
  2810. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2811. //! 2. Wait a few ms
  2812. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2813. //! Repeat 1.-3. several times
  2814. //! Good RAMBo's times are in the range of approx. 260-320 us
  2815. //! Bad RAMBo's times are approx. 260-1200 us
  2816. //! So basically we are interested in maximum time, the minima are mostly the same.
  2817. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2818. static void gcode_PRUSA_BadRAMBoFanTest(){
  2819. //printf_P(PSTR("Enter fan pin test\n"));
  2820. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2821. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2822. unsigned long tach1max = 0;
  2823. uint8_t tach1cntr = 0;
  2824. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2825. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2826. SET_OUTPUT(TACH_1);
  2827. WRITE(TACH_1, LOW);
  2828. _delay(20); // the delay may be lower
  2829. unsigned long tachMeasure = _micros();
  2830. cli();
  2831. SET_INPUT(TACH_1);
  2832. // just wait brutally in an endless cycle until we reach HIGH
  2833. // if this becomes a problem it may be improved to non-endless cycle
  2834. while( READ(TACH_1) == 0 ) ;
  2835. sei();
  2836. tachMeasure = _micros() - tachMeasure;
  2837. if( tach1max < tachMeasure )
  2838. tach1max = tachMeasure;
  2839. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2840. }
  2841. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2842. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2843. if( tach1max > 500 ){
  2844. // bad RAMBo
  2845. SERIAL_PROTOCOLLNPGM("BAD");
  2846. } else {
  2847. SERIAL_PROTOCOLLNPGM("OK");
  2848. }
  2849. // cleanup after the test function
  2850. SET_INPUT(TACH_1);
  2851. WRITE(TACH_1, HIGH);
  2852. #endif
  2853. }
  2854. #ifdef BACKLASH_X
  2855. extern uint8_t st_backlash_x;
  2856. #endif //BACKLASH_X
  2857. #ifdef BACKLASH_Y
  2858. extern uint8_t st_backlash_y;
  2859. #endif //BACKLASH_Y
  2860. //! \ingroup marlin_main
  2861. //! @brief Parse and process commands
  2862. //!
  2863. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2864. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2865. //!
  2866. //!
  2867. //! Implemented Codes
  2868. //! -------------------
  2869. //!
  2870. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2871. //!
  2872. //!@n PRUSA CODES
  2873. //!@n P F - Returns FW versions
  2874. //!@n P R - Returns revision of printer
  2875. //!
  2876. //!@n G0 -> G1
  2877. //!@n G1 - Coordinated Movement X Y Z E
  2878. //!@n G2 - CW ARC
  2879. //!@n G3 - CCW ARC
  2880. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2881. //!@n G10 - retract filament according to settings of M207
  2882. //!@n G11 - retract recover filament according to settings of M208
  2883. //!@n G28 - Home all Axis
  2884. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2885. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2886. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2887. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2888. //!@n G80 - Automatic mesh bed leveling
  2889. //!@n G81 - Print bed profile
  2890. //!@n G90 - Use Absolute Coordinates
  2891. //!@n G91 - Use Relative Coordinates
  2892. //!@n G92 - Set current position to coordinates given
  2893. //!
  2894. //!@n M Codes
  2895. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2896. //!@n M1 - Same as M0
  2897. //!@n M17 - Enable/Power all stepper motors
  2898. //!@n M18 - Disable all stepper motors; same as M84
  2899. //!@n M20 - List SD card
  2900. //!@n M21 - Init SD card
  2901. //!@n M22 - Release SD card
  2902. //!@n M23 - Select SD file (M23 filename.g)
  2903. //!@n M24 - Start/resume SD print
  2904. //!@n M25 - Pause SD print
  2905. //!@n M26 - Set SD position in bytes (M26 S12345)
  2906. //!@n M27 - Report SD print status
  2907. //!@n M28 - Start SD write (M28 filename.g)
  2908. //!@n M29 - Stop SD write
  2909. //!@n M30 - Delete file from SD (M30 filename.g)
  2910. //!@n M31 - Output time since last M109 or SD card start to serial
  2911. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2912. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2913. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2914. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2915. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2916. //!@n M73 - Show percent done and print time remaining
  2917. //!@n M80 - Turn on Power Supply
  2918. //!@n M81 - Turn off Power Supply
  2919. //!@n M82 - Set E codes absolute (default)
  2920. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2921. //!@n M84 - Disable steppers until next move,
  2922. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2923. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2924. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2925. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2926. //!@n M104 - Set extruder target temp
  2927. //!@n M105 - Read current temp
  2928. //!@n M106 - Fan on
  2929. //!@n M107 - Fan off
  2930. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2931. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2932. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2933. //!@n M112 - Emergency stop
  2934. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2935. //!@n M114 - Output current position to serial port
  2936. //!@n M115 - Capabilities string
  2937. //!@n M117 - display message
  2938. //!@n M119 - Output Endstop status to serial port
  2939. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2940. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2941. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2942. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2943. //!@n M140 - Set bed target temp
  2944. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2945. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2946. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2947. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2948. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2949. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2950. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2951. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2952. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2953. //!@n M206 - set additional homing offset
  2954. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2955. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2956. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2957. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2958. //!@n M220 S<factor in percent>- set speed factor override percentage
  2959. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2960. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2961. //!@n M240 - Trigger a camera to take a photograph
  2962. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2963. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2964. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2965. //!@n M301 - Set PID parameters P I and D
  2966. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2967. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2968. //!@n M304 - Set bed PID parameters P I and D
  2969. //!@n M400 - Finish all moves
  2970. //!@n M401 - Lower z-probe if present
  2971. //!@n M402 - Raise z-probe if present
  2972. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2973. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2974. //!@n M406 - Turn off Filament Sensor extrusion control
  2975. //!@n M407 - Displays measured filament diameter
  2976. //!@n M500 - stores parameters in EEPROM
  2977. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2978. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2979. //!@n M503 - print the current settings (from memory not from EEPROM)
  2980. //!@n M509 - force language selection on next restart
  2981. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2982. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2983. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2984. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2985. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2986. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2987. //!@n M907 - Set digital trimpot motor current using axis codes.
  2988. //!@n M908 - Control digital trimpot directly.
  2989. //!@n M350 - Set microstepping mode.
  2990. //!@n M351 - Toggle MS1 MS2 pins directly.
  2991. //!
  2992. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2993. //!@n M999 - Restart after being stopped by error
  2994. //! <br><br>
  2995. /** @defgroup marlin_main Marlin main */
  2996. /** \ingroup GCodes */
  2997. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  2998. void process_commands()
  2999. {
  3000. #ifdef FANCHECK
  3001. if(fan_check_error){
  3002. if(fan_check_error == EFCE_DETECTED){
  3003. fan_check_error = EFCE_REPORTED;
  3004. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3005. lcd_pause_print();
  3006. } // otherwise it has already been reported, so just ignore further processing
  3007. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3008. }
  3009. #endif
  3010. if (!buflen) return; //empty command
  3011. #ifdef FILAMENT_RUNOUT_SUPPORT
  3012. SET_INPUT(FR_SENS);
  3013. #endif
  3014. #ifdef CMDBUFFER_DEBUG
  3015. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3016. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3017. SERIAL_ECHOLNPGM("");
  3018. SERIAL_ECHOPGM("In cmdqueue: ");
  3019. SERIAL_ECHO(buflen);
  3020. SERIAL_ECHOLNPGM("");
  3021. #endif /* CMDBUFFER_DEBUG */
  3022. unsigned long codenum; //throw away variable
  3023. char *starpos = NULL;
  3024. #ifdef ENABLE_AUTO_BED_LEVELING
  3025. float x_tmp, y_tmp, z_tmp, real_z;
  3026. #endif
  3027. // PRUSA GCODES
  3028. KEEPALIVE_STATE(IN_HANDLER);
  3029. #ifdef SNMM
  3030. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3031. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3032. int8_t SilentMode;
  3033. #endif
  3034. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3035. starpos = (strchr(strchr_pointer + 5, '*'));
  3036. if (starpos != NULL)
  3037. *(starpos) = '\0';
  3038. lcd_setstatus(strchr_pointer + 5);
  3039. }
  3040. #ifdef TMC2130
  3041. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3042. {
  3043. //! ### CRASH_DETECTED - TMC2130
  3044. // ---------------------------------
  3045. if(code_seen("CRASH_DETECTED"))
  3046. {
  3047. uint8_t mask = 0;
  3048. if (code_seen('X')) mask |= X_AXIS_MASK;
  3049. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3050. crashdet_detected(mask);
  3051. }
  3052. //! ### CRASH_RECOVER - TMC2130
  3053. // ----------------------------------
  3054. else if(code_seen("CRASH_RECOVER"))
  3055. crashdet_recover();
  3056. //! ### CRASH_CANCEL - TMC2130
  3057. // ----------------------------------
  3058. else if(code_seen("CRASH_CANCEL"))
  3059. crashdet_cancel();
  3060. }
  3061. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3062. {
  3063. //! ### TMC_SET_WAVE_
  3064. // --------------------
  3065. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3066. {
  3067. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3068. axis = (axis == 'E')?3:(axis - 'X');
  3069. if (axis < 4)
  3070. {
  3071. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3072. tmc2130_set_wave(axis, 247, fac);
  3073. }
  3074. }
  3075. //! ### TMC_SET_STEP_
  3076. // ------------------
  3077. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3078. {
  3079. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3080. axis = (axis == 'E')?3:(axis - 'X');
  3081. if (axis < 4)
  3082. {
  3083. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3084. uint16_t res = tmc2130_get_res(axis);
  3085. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3086. }
  3087. }
  3088. //! ### TMC_SET_CHOP_
  3089. // -------------------
  3090. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3091. {
  3092. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3093. axis = (axis == 'E')?3:(axis - 'X');
  3094. if (axis < 4)
  3095. {
  3096. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3097. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3098. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3099. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3100. char* str_end = 0;
  3101. if (CMDBUFFER_CURRENT_STRING[14])
  3102. {
  3103. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3104. if (str_end && *str_end)
  3105. {
  3106. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3107. if (str_end && *str_end)
  3108. {
  3109. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3110. if (str_end && *str_end)
  3111. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3112. }
  3113. }
  3114. }
  3115. tmc2130_chopper_config[axis].toff = chop0;
  3116. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3117. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3118. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3119. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3120. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3121. }
  3122. }
  3123. }
  3124. #ifdef BACKLASH_X
  3125. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3126. {
  3127. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3128. st_backlash_x = bl;
  3129. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3130. }
  3131. #endif //BACKLASH_X
  3132. #ifdef BACKLASH_Y
  3133. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3134. {
  3135. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3136. st_backlash_y = bl;
  3137. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3138. }
  3139. #endif //BACKLASH_Y
  3140. #endif //TMC2130
  3141. else if(code_seen("PRUSA")){
  3142. /*!
  3143. *
  3144. ### PRUSA - Internal command set
  3145. Set of internal PRUSA commands
  3146. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3147. - `Ping`
  3148. - `PRN` - Prints revision of the printer
  3149. - `FAN` - Prints fan details
  3150. - `fn` - Prints farm no.
  3151. - `thx`
  3152. - `uvlo`
  3153. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3154. - `MMURES` - Reset MMU
  3155. - `RESET` - (Careful!)
  3156. - `fv` - ?
  3157. - `M28`
  3158. - `SN`
  3159. - `Fir` - Prints firmware version
  3160. - `Rev`- Prints filament size, elelectronics, nozzle type
  3161. - `Lang` - Reset the language
  3162. - `Lz`
  3163. - `Beat` - Kick farm link timer
  3164. - `FR` - Full factory reset
  3165. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3166. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3167. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3168. *
  3169. */
  3170. if (code_seen("Ping")) { // PRUSA Ping
  3171. if (farm_mode) {
  3172. PingTime = _millis();
  3173. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3174. }
  3175. }
  3176. else if (code_seen("PRN")) { // PRUSA PRN
  3177. printf_P(_N("%d"), status_number);
  3178. } else if( code_seen("FANPINTST") ){
  3179. gcode_PRUSA_BadRAMBoFanTest();
  3180. }else if (code_seen("FAN")) { //! PRUSA FAN
  3181. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3182. }else if (code_seen("fn")) { // PRUSA fn
  3183. if (farm_mode) {
  3184. printf_P(_N("%d"), farm_no);
  3185. }
  3186. else {
  3187. puts_P(_N("Not in farm mode."));
  3188. }
  3189. }
  3190. else if (code_seen("thx")) // PRUSA thx
  3191. {
  3192. no_response = false;
  3193. }
  3194. else if (code_seen("uvlo")) // PRUSA uvlo
  3195. {
  3196. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3197. enquecommand_P(PSTR("M24"));
  3198. }
  3199. #ifdef FILAMENT_SENSOR
  3200. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3201. {
  3202. fsensor_restore_print_and_continue();
  3203. }
  3204. #endif //FILAMENT_SENSOR
  3205. else if (code_seen("MMURES")) // PRUSA MMURES
  3206. {
  3207. mmu_reset();
  3208. }
  3209. else if (code_seen("RESET")) { // PRUSA RESET
  3210. // careful!
  3211. if (farm_mode) {
  3212. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3213. boot_app_magic = BOOT_APP_MAGIC;
  3214. boot_app_flags = BOOT_APP_FLG_RUN;
  3215. wdt_enable(WDTO_15MS);
  3216. cli();
  3217. while(1);
  3218. #else //WATCHDOG
  3219. asm volatile("jmp 0x3E000");
  3220. #endif //WATCHDOG
  3221. }
  3222. else {
  3223. MYSERIAL.println("Not in farm mode.");
  3224. }
  3225. }else if (code_seen("fv")) { // PRUSA fv
  3226. // get file version
  3227. #ifdef SDSUPPORT
  3228. card.openFile(strchr_pointer + 3,true);
  3229. while (true) {
  3230. uint16_t readByte = card.get();
  3231. MYSERIAL.write(readByte);
  3232. if (readByte=='\n') {
  3233. break;
  3234. }
  3235. }
  3236. card.closefile();
  3237. #endif // SDSUPPORT
  3238. } else if (code_seen("M28")) { // PRUSA M28
  3239. trace();
  3240. prusa_sd_card_upload = true;
  3241. card.openFile(strchr_pointer+4,false);
  3242. } else if (code_seen("SN")) { // PRUSA SN
  3243. gcode_PRUSA_SN();
  3244. } else if(code_seen("Fir")){ // PRUSA Fir
  3245. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3246. } else if(code_seen("Rev")){ // PRUSA Rev
  3247. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3248. } else if(code_seen("Lang")) { // PRUSA Lang
  3249. lang_reset();
  3250. } else if(code_seen("Lz")) { // PRUSA Lz
  3251. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3252. } else if(code_seen("Beat")) { // PRUSA Beat
  3253. // Kick farm link timer
  3254. kicktime = _millis();
  3255. } else if(code_seen("FR")) { // PRUSA FR
  3256. // Factory full reset
  3257. factory_reset(0);
  3258. //-//
  3259. /*
  3260. } else if(code_seen("rrr")) {
  3261. MYSERIAL.println("=== checking ===");
  3262. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3263. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3264. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3265. MYSERIAL.println(farm_mode,DEC);
  3266. MYSERIAL.println(eCheckMode,DEC);
  3267. } else if(code_seen("www")) {
  3268. MYSERIAL.println("=== @ FF ===");
  3269. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3270. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3271. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3272. */
  3273. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3274. uint16_t nDiameter;
  3275. if(code_seen('D'))
  3276. {
  3277. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3278. nozzle_diameter_check(nDiameter);
  3279. }
  3280. else if(code_seen("set") && farm_mode)
  3281. {
  3282. strchr_pointer++; // skip 1st char (~ 's')
  3283. strchr_pointer++; // skip 2nd char (~ 'e')
  3284. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3285. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3286. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3287. }
  3288. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3289. //-// !!! SupportMenu
  3290. /*
  3291. // musi byt PRED "PRUSA model"
  3292. } else if (code_seen("smodel")) { //! PRUSA smodel
  3293. size_t nOffset;
  3294. // ! -> "l"
  3295. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3296. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3297. if(*(strchr_pointer+1+nOffset))
  3298. printer_smodel_check(strchr_pointer);
  3299. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3300. } else if (code_seen("model")) { //! PRUSA model
  3301. uint16_t nPrinterModel;
  3302. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3303. nPrinterModel=(uint16_t)code_value_long();
  3304. if(nPrinterModel!=0)
  3305. printer_model_check(nPrinterModel);
  3306. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3307. } else if (code_seen("version")) { //! PRUSA version
  3308. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3309. while(*strchr_pointer==' ') // skip leading spaces
  3310. strchr_pointer++;
  3311. if(*strchr_pointer!=0)
  3312. fw_version_check(strchr_pointer);
  3313. else SERIAL_PROTOCOLLN(FW_VERSION);
  3314. } else if (code_seen("gcode")) { //! PRUSA gcode
  3315. uint16_t nGcodeLevel;
  3316. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3317. nGcodeLevel=(uint16_t)code_value_long();
  3318. if(nGcodeLevel!=0)
  3319. gcode_level_check(nGcodeLevel);
  3320. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3321. */
  3322. }
  3323. //else if (code_seen('Cal')) {
  3324. // lcd_calibration();
  3325. // }
  3326. }
  3327. // This prevents reading files with "^" in their names.
  3328. // Since it is unclear, if there is some usage of this construct,
  3329. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3330. // else if (code_seen('^')) {
  3331. // // nothing, this is a version line
  3332. // }
  3333. else if(code_seen('G'))
  3334. {
  3335. gcode_in_progress = (int)code_value();
  3336. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3337. switch (gcode_in_progress)
  3338. {
  3339. //! ### G0, G1 - Coordinated movement X Y Z E
  3340. // --------------------------------------
  3341. case 0: // G0 -> G1
  3342. case 1: // G1
  3343. if(Stopped == false) {
  3344. #ifdef FILAMENT_RUNOUT_SUPPORT
  3345. if(READ(FR_SENS)){
  3346. int feedmultiplyBckp=feedmultiply;
  3347. float target[4];
  3348. float lastpos[4];
  3349. target[X_AXIS]=current_position[X_AXIS];
  3350. target[Y_AXIS]=current_position[Y_AXIS];
  3351. target[Z_AXIS]=current_position[Z_AXIS];
  3352. target[E_AXIS]=current_position[E_AXIS];
  3353. lastpos[X_AXIS]=current_position[X_AXIS];
  3354. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3355. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3356. lastpos[E_AXIS]=current_position[E_AXIS];
  3357. //retract by E
  3358. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3359. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3360. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3361. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3362. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3363. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3364. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3365. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3366. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3367. //finish moves
  3368. st_synchronize();
  3369. //disable extruder steppers so filament can be removed
  3370. disable_e0();
  3371. disable_e1();
  3372. disable_e2();
  3373. _delay(100);
  3374. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3375. uint8_t cnt=0;
  3376. int counterBeep = 0;
  3377. lcd_wait_interact();
  3378. while(!lcd_clicked()){
  3379. cnt++;
  3380. manage_heater();
  3381. manage_inactivity(true);
  3382. //lcd_update(0);
  3383. if(cnt==0)
  3384. {
  3385. #if BEEPER > 0
  3386. if (counterBeep== 500){
  3387. counterBeep = 0;
  3388. }
  3389. SET_OUTPUT(BEEPER);
  3390. if (counterBeep== 0){
  3391. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3392. WRITE(BEEPER,HIGH);
  3393. }
  3394. if (counterBeep== 20){
  3395. WRITE(BEEPER,LOW);
  3396. }
  3397. counterBeep++;
  3398. #else
  3399. #endif
  3400. }
  3401. }
  3402. WRITE(BEEPER,LOW);
  3403. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3404. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3405. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3406. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3407. lcd_change_fil_state = 0;
  3408. lcd_loading_filament();
  3409. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3410. lcd_change_fil_state = 0;
  3411. lcd_alright();
  3412. switch(lcd_change_fil_state){
  3413. case 2:
  3414. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3415. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3416. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3417. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3418. lcd_loading_filament();
  3419. break;
  3420. case 3:
  3421. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3422. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3423. lcd_loading_color();
  3424. break;
  3425. default:
  3426. lcd_change_success();
  3427. break;
  3428. }
  3429. }
  3430. target[E_AXIS]+= 5;
  3431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3432. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3434. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3435. //plan_set_e_position(current_position[E_AXIS]);
  3436. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3437. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3438. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3439. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3440. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3441. plan_set_e_position(lastpos[E_AXIS]);
  3442. feedmultiply=feedmultiplyBckp;
  3443. char cmd[9];
  3444. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3445. enquecommand(cmd);
  3446. }
  3447. #endif
  3448. get_coordinates(); // For X Y Z E F
  3449. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3450. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3451. }
  3452. #ifdef FWRETRACT
  3453. if(cs.autoretract_enabled)
  3454. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3455. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3456. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3457. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3458. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3459. retract(!retracted[active_extruder]);
  3460. return;
  3461. }
  3462. }
  3463. #endif //FWRETRACT
  3464. prepare_move();
  3465. //ClearToSend();
  3466. }
  3467. break;
  3468. //! ### G2 - CW ARC
  3469. // ------------------------------
  3470. case 2:
  3471. if(Stopped == false) {
  3472. get_arc_coordinates();
  3473. prepare_arc_move(true);
  3474. }
  3475. break;
  3476. //! ### G3 - CCW ARC
  3477. // -------------------------------
  3478. case 3:
  3479. if(Stopped == false) {
  3480. get_arc_coordinates();
  3481. prepare_arc_move(false);
  3482. }
  3483. break;
  3484. //! ### G4 - Dwell
  3485. // -------------------------------
  3486. case 4:
  3487. codenum = 0;
  3488. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3489. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3490. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3491. st_synchronize();
  3492. codenum += _millis(); // keep track of when we started waiting
  3493. previous_millis_cmd = _millis();
  3494. while(_millis() < codenum) {
  3495. manage_heater();
  3496. manage_inactivity();
  3497. lcd_update(0);
  3498. }
  3499. break;
  3500. #ifdef FWRETRACT
  3501. //! ### G10 Retract
  3502. // ------------------------------
  3503. case 10:
  3504. #if EXTRUDERS > 1
  3505. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3506. retract(true,retracted_swap[active_extruder]);
  3507. #else
  3508. retract(true);
  3509. #endif
  3510. break;
  3511. //! ### G11 - Retract recover
  3512. // -----------------------------
  3513. case 11:
  3514. #if EXTRUDERS > 1
  3515. retract(false,retracted_swap[active_extruder]);
  3516. #else
  3517. retract(false);
  3518. #endif
  3519. break;
  3520. #endif //FWRETRACT
  3521. //! ### G28 - Home all Axis one at a time
  3522. // --------------------------------------------
  3523. case 28:
  3524. {
  3525. long home_x_value = 0;
  3526. long home_y_value = 0;
  3527. long home_z_value = 0;
  3528. // Which axes should be homed?
  3529. bool home_x = code_seen(axis_codes[X_AXIS]);
  3530. home_x_value = code_value_long();
  3531. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3532. home_y_value = code_value_long();
  3533. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3534. home_z_value = code_value_long();
  3535. bool without_mbl = code_seen('W');
  3536. // calibrate?
  3537. #ifdef TMC2130
  3538. bool calib = code_seen('C');
  3539. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3540. #else
  3541. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3542. #endif //TMC2130
  3543. if ((home_x || home_y || without_mbl || home_z) == false) {
  3544. // Push the commands to the front of the message queue in the reverse order!
  3545. // There shall be always enough space reserved for these commands.
  3546. goto case_G80;
  3547. }
  3548. break;
  3549. }
  3550. #ifdef ENABLE_AUTO_BED_LEVELING
  3551. //! ### G29 - Detailed Z-Probe
  3552. // --------------------------------
  3553. case 29:
  3554. {
  3555. #if Z_MIN_PIN == -1
  3556. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3557. #endif
  3558. // Prevent user from running a G29 without first homing in X and Y
  3559. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3560. {
  3561. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3562. SERIAL_ECHO_START;
  3563. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3564. break; // abort G29, since we don't know where we are
  3565. }
  3566. st_synchronize();
  3567. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3568. //vector_3 corrected_position = plan_get_position_mm();
  3569. //corrected_position.debug("position before G29");
  3570. plan_bed_level_matrix.set_to_identity();
  3571. vector_3 uncorrected_position = plan_get_position();
  3572. //uncorrected_position.debug("position durring G29");
  3573. current_position[X_AXIS] = uncorrected_position.x;
  3574. current_position[Y_AXIS] = uncorrected_position.y;
  3575. current_position[Z_AXIS] = uncorrected_position.z;
  3576. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3577. int l_feedmultiply = setup_for_endstop_move();
  3578. feedrate = homing_feedrate[Z_AXIS];
  3579. #ifdef AUTO_BED_LEVELING_GRID
  3580. // probe at the points of a lattice grid
  3581. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3582. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3583. // solve the plane equation ax + by + d = z
  3584. // A is the matrix with rows [x y 1] for all the probed points
  3585. // B is the vector of the Z positions
  3586. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3587. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3588. // "A" matrix of the linear system of equations
  3589. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3590. // "B" vector of Z points
  3591. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3592. int probePointCounter = 0;
  3593. bool zig = true;
  3594. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3595. {
  3596. int xProbe, xInc;
  3597. if (zig)
  3598. {
  3599. xProbe = LEFT_PROBE_BED_POSITION;
  3600. //xEnd = RIGHT_PROBE_BED_POSITION;
  3601. xInc = xGridSpacing;
  3602. zig = false;
  3603. } else // zag
  3604. {
  3605. xProbe = RIGHT_PROBE_BED_POSITION;
  3606. //xEnd = LEFT_PROBE_BED_POSITION;
  3607. xInc = -xGridSpacing;
  3608. zig = true;
  3609. }
  3610. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3611. {
  3612. float z_before;
  3613. if (probePointCounter == 0)
  3614. {
  3615. // raise before probing
  3616. z_before = Z_RAISE_BEFORE_PROBING;
  3617. } else
  3618. {
  3619. // raise extruder
  3620. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3621. }
  3622. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3623. eqnBVector[probePointCounter] = measured_z;
  3624. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3625. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3626. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3627. probePointCounter++;
  3628. xProbe += xInc;
  3629. }
  3630. }
  3631. clean_up_after_endstop_move(l_feedmultiply);
  3632. // solve lsq problem
  3633. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3634. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3635. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3636. SERIAL_PROTOCOLPGM(" b: ");
  3637. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3638. SERIAL_PROTOCOLPGM(" d: ");
  3639. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3640. set_bed_level_equation_lsq(plane_equation_coefficients);
  3641. free(plane_equation_coefficients);
  3642. #else // AUTO_BED_LEVELING_GRID not defined
  3643. // Probe at 3 arbitrary points
  3644. // probe 1
  3645. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3646. // probe 2
  3647. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3648. // probe 3
  3649. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3650. clean_up_after_endstop_move(l_feedmultiply);
  3651. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3652. #endif // AUTO_BED_LEVELING_GRID
  3653. st_synchronize();
  3654. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3655. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3656. // When the bed is uneven, this height must be corrected.
  3657. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3658. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3659. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3660. z_tmp = current_position[Z_AXIS];
  3661. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3662. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3663. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3664. }
  3665. break;
  3666. #ifndef Z_PROBE_SLED
  3667. //! ### G30 - Single Z Probe
  3668. // ------------------------------------
  3669. case 30:
  3670. {
  3671. st_synchronize();
  3672. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3673. int l_feedmultiply = setup_for_endstop_move();
  3674. feedrate = homing_feedrate[Z_AXIS];
  3675. run_z_probe();
  3676. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3677. SERIAL_PROTOCOLPGM(" X: ");
  3678. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3679. SERIAL_PROTOCOLPGM(" Y: ");
  3680. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3681. SERIAL_PROTOCOLPGM(" Z: ");
  3682. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3683. SERIAL_PROTOCOLPGM("\n");
  3684. clean_up_after_endstop_move(l_feedmultiply);
  3685. }
  3686. break;
  3687. #else
  3688. //! ### G31 - Dock the sled
  3689. // ---------------------------
  3690. case 31:
  3691. dock_sled(true);
  3692. break;
  3693. //! ### G32 - Undock the sled
  3694. // ----------------------------
  3695. case 32:
  3696. dock_sled(false);
  3697. break;
  3698. #endif // Z_PROBE_SLED
  3699. #endif // ENABLE_AUTO_BED_LEVELING
  3700. #ifdef MESH_BED_LEVELING
  3701. //! ### G30 - Single Z Probe
  3702. // ----------------------------
  3703. case 30:
  3704. {
  3705. st_synchronize();
  3706. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3707. int l_feedmultiply = setup_for_endstop_move();
  3708. feedrate = homing_feedrate[Z_AXIS];
  3709. find_bed_induction_sensor_point_z(-10.f, 3);
  3710. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3711. clean_up_after_endstop_move(l_feedmultiply);
  3712. }
  3713. break;
  3714. //! ### G75 - Print temperature interpolation
  3715. // ---------------------------------------------
  3716. case 75:
  3717. {
  3718. for (int i = 40; i <= 110; i++)
  3719. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3720. }
  3721. break;
  3722. //! ### G76 - PINDA probe temperature calibration
  3723. // ------------------------------------------------
  3724. case 76:
  3725. {
  3726. #ifdef PINDA_THERMISTOR
  3727. if (true)
  3728. {
  3729. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3730. //we need to know accurate position of first calibration point
  3731. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3732. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3733. break;
  3734. }
  3735. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3736. {
  3737. // We don't know where we are! HOME!
  3738. // Push the commands to the front of the message queue in the reverse order!
  3739. // There shall be always enough space reserved for these commands.
  3740. repeatcommand_front(); // repeat G76 with all its parameters
  3741. enquecommand_front_P((PSTR("G28 W0")));
  3742. break;
  3743. }
  3744. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3745. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3746. if (result)
  3747. {
  3748. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3749. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3750. current_position[Z_AXIS] = 50;
  3751. current_position[Y_AXIS] = 180;
  3752. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3753. st_synchronize();
  3754. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3755. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3756. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3757. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3758. st_synchronize();
  3759. gcode_G28(false, false, true);
  3760. }
  3761. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3762. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3763. current_position[Z_AXIS] = 100;
  3764. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3765. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3766. lcd_temp_cal_show_result(false);
  3767. break;
  3768. }
  3769. }
  3770. lcd_update_enable(true);
  3771. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3772. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3773. float zero_z;
  3774. int z_shift = 0; //unit: steps
  3775. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3776. if (start_temp < 35) start_temp = 35;
  3777. if (start_temp < current_temperature_pinda) start_temp += 5;
  3778. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3779. // setTargetHotend(200, 0);
  3780. setTargetBed(70 + (start_temp - 30));
  3781. custom_message_type = CustomMsg::TempCal;
  3782. custom_message_state = 1;
  3783. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3784. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3785. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3786. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3787. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3788. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3789. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3790. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3791. st_synchronize();
  3792. while (current_temperature_pinda < start_temp)
  3793. {
  3794. delay_keep_alive(1000);
  3795. serialecho_temperatures();
  3796. }
  3797. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3798. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3799. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3800. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3801. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3802. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3803. st_synchronize();
  3804. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3805. if (find_z_result == false) {
  3806. lcd_temp_cal_show_result(find_z_result);
  3807. break;
  3808. }
  3809. zero_z = current_position[Z_AXIS];
  3810. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3811. int i = -1; for (; i < 5; i++)
  3812. {
  3813. float temp = (40 + i * 5);
  3814. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3815. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3816. if (start_temp <= temp) break;
  3817. }
  3818. for (i++; i < 5; i++)
  3819. {
  3820. float temp = (40 + i * 5);
  3821. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3822. custom_message_state = i + 2;
  3823. setTargetBed(50 + 10 * (temp - 30) / 5);
  3824. // setTargetHotend(255, 0);
  3825. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3826. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3827. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3828. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3829. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3830. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3831. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3832. st_synchronize();
  3833. while (current_temperature_pinda < temp)
  3834. {
  3835. delay_keep_alive(1000);
  3836. serialecho_temperatures();
  3837. }
  3838. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3839. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3840. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3841. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3842. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3843. st_synchronize();
  3844. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3845. if (find_z_result == false) {
  3846. lcd_temp_cal_show_result(find_z_result);
  3847. break;
  3848. }
  3849. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3850. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3851. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3852. }
  3853. lcd_temp_cal_show_result(true);
  3854. break;
  3855. }
  3856. #endif //PINDA_THERMISTOR
  3857. setTargetBed(PINDA_MIN_T);
  3858. float zero_z;
  3859. int z_shift = 0; //unit: steps
  3860. int t_c; // temperature
  3861. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3862. // We don't know where we are! HOME!
  3863. // Push the commands to the front of the message queue in the reverse order!
  3864. // There shall be always enough space reserved for these commands.
  3865. repeatcommand_front(); // repeat G76 with all its parameters
  3866. enquecommand_front_P((PSTR("G28 W0")));
  3867. break;
  3868. }
  3869. puts_P(_N("PINDA probe calibration start"));
  3870. custom_message_type = CustomMsg::TempCal;
  3871. custom_message_state = 1;
  3872. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3873. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3874. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3875. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3876. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3877. st_synchronize();
  3878. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3879. delay_keep_alive(1000);
  3880. serialecho_temperatures();
  3881. }
  3882. //enquecommand_P(PSTR("M190 S50"));
  3883. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3884. delay_keep_alive(1000);
  3885. serialecho_temperatures();
  3886. }
  3887. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3888. current_position[Z_AXIS] = 5;
  3889. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3890. current_position[X_AXIS] = BED_X0;
  3891. current_position[Y_AXIS] = BED_Y0;
  3892. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3893. st_synchronize();
  3894. find_bed_induction_sensor_point_z(-1.f);
  3895. zero_z = current_position[Z_AXIS];
  3896. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3897. for (int i = 0; i<5; i++) {
  3898. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3899. custom_message_state = i + 2;
  3900. t_c = 60 + i * 10;
  3901. setTargetBed(t_c);
  3902. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3903. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3904. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3905. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3906. st_synchronize();
  3907. while (degBed() < t_c) {
  3908. delay_keep_alive(1000);
  3909. serialecho_temperatures();
  3910. }
  3911. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3912. delay_keep_alive(1000);
  3913. serialecho_temperatures();
  3914. }
  3915. current_position[Z_AXIS] = 5;
  3916. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3917. current_position[X_AXIS] = BED_X0;
  3918. current_position[Y_AXIS] = BED_Y0;
  3919. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3920. st_synchronize();
  3921. find_bed_induction_sensor_point_z(-1.f);
  3922. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3923. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3924. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3925. }
  3926. custom_message_type = CustomMsg::Status;
  3927. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3928. puts_P(_N("Temperature calibration done."));
  3929. disable_x();
  3930. disable_y();
  3931. disable_z();
  3932. disable_e0();
  3933. disable_e1();
  3934. disable_e2();
  3935. setTargetBed(0); //set bed target temperature back to 0
  3936. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3937. temp_cal_active = true;
  3938. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3939. lcd_update_enable(true);
  3940. lcd_update(2);
  3941. }
  3942. break;
  3943. //! ### G80 - Mesh-based Z probe
  3944. // -----------------------------------
  3945. /*
  3946. * Probes a grid and produces a mesh to compensate for variable bed height
  3947. * The S0 report the points as below
  3948. * +----> X-axis
  3949. * |
  3950. * |
  3951. * v Y-axis
  3952. */
  3953. case 80:
  3954. #ifdef MK1BP
  3955. break;
  3956. #endif //MK1BP
  3957. case_G80:
  3958. {
  3959. mesh_bed_leveling_flag = true;
  3960. #ifndef PINDA_THERMISTOR
  3961. static bool run = false; // thermistor-less PINDA temperature compensation is running
  3962. #endif // ndef PINDA_THERMISTOR
  3963. #ifdef SUPPORT_VERBOSITY
  3964. int8_t verbosity_level = 0;
  3965. if (code_seen('V')) {
  3966. // Just 'V' without a number counts as V1.
  3967. char c = strchr_pointer[1];
  3968. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3969. }
  3970. #endif //SUPPORT_VERBOSITY
  3971. // Firstly check if we know where we are
  3972. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3973. // We don't know where we are! HOME!
  3974. // Push the commands to the front of the message queue in the reverse order!
  3975. // There shall be always enough space reserved for these commands.
  3976. if (lcd_commands_type != LcdCommands::StopPrint) {
  3977. repeatcommand_front(); // repeat G80 with all its parameters
  3978. enquecommand_front_P((PSTR("G28 W0")));
  3979. }
  3980. else {
  3981. mesh_bed_leveling_flag = false;
  3982. }
  3983. break;
  3984. }
  3985. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3986. if (code_seen('N')) {
  3987. nMeasPoints = code_value_uint8();
  3988. if (nMeasPoints != 7) {
  3989. nMeasPoints = 3;
  3990. }
  3991. }
  3992. else {
  3993. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3994. }
  3995. uint8_t nProbeRetry = 3;
  3996. if (code_seen('R')) {
  3997. nProbeRetry = code_value_uint8();
  3998. if (nProbeRetry > 10) {
  3999. nProbeRetry = 10;
  4000. }
  4001. }
  4002. else {
  4003. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4004. }
  4005. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4006. #ifndef PINDA_THERMISTOR
  4007. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4008. {
  4009. if (lcd_commands_type != LcdCommands::StopPrint) {
  4010. temp_compensation_start();
  4011. run = true;
  4012. repeatcommand_front(); // repeat G80 with all its parameters
  4013. enquecommand_front_P((PSTR("G28 W0")));
  4014. }
  4015. else {
  4016. mesh_bed_leveling_flag = false;
  4017. }
  4018. break;
  4019. }
  4020. run = false;
  4021. #endif //PINDA_THERMISTOR
  4022. if (lcd_commands_type == LcdCommands::StopPrint) {
  4023. mesh_bed_leveling_flag = false;
  4024. break;
  4025. }
  4026. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4027. CustomMsg custom_message_type_old = custom_message_type;
  4028. unsigned int custom_message_state_old = custom_message_state;
  4029. custom_message_type = CustomMsg::MeshBedLeveling;
  4030. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4031. lcd_update(1);
  4032. mbl.reset(); //reset mesh bed leveling
  4033. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4034. // consumed during the first movements following this statement.
  4035. babystep_undo();
  4036. // Cycle through all points and probe them
  4037. // First move up. During this first movement, the babystepping will be reverted.
  4038. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4039. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4040. // The move to the first calibration point.
  4041. current_position[X_AXIS] = BED_X0;
  4042. current_position[Y_AXIS] = BED_Y0;
  4043. #ifdef SUPPORT_VERBOSITY
  4044. if (verbosity_level >= 1)
  4045. {
  4046. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4047. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4048. }
  4049. #else //SUPPORT_VERBOSITY
  4050. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4051. #endif //SUPPORT_VERBOSITY
  4052. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4053. // Wait until the move is finished.
  4054. st_synchronize();
  4055. uint8_t mesh_point = 0; //index number of calibration point
  4056. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4057. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4058. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4059. #ifdef SUPPORT_VERBOSITY
  4060. if (verbosity_level >= 1) {
  4061. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4062. }
  4063. #endif // SUPPORT_VERBOSITY
  4064. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4065. const char *kill_message = NULL;
  4066. while (mesh_point != nMeasPoints * nMeasPoints) {
  4067. // Get coords of a measuring point.
  4068. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4069. uint8_t iy = mesh_point / nMeasPoints;
  4070. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4071. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4072. custom_message_state--;
  4073. mesh_point++;
  4074. continue; //skip
  4075. }*/
  4076. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4077. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4078. {
  4079. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4080. }
  4081. float z0 = 0.f;
  4082. if (has_z && (mesh_point > 0)) {
  4083. uint16_t z_offset_u = 0;
  4084. if (nMeasPoints == 7) {
  4085. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4086. }
  4087. else {
  4088. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4089. }
  4090. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4091. #ifdef SUPPORT_VERBOSITY
  4092. if (verbosity_level >= 1) {
  4093. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4094. }
  4095. #endif // SUPPORT_VERBOSITY
  4096. }
  4097. // Move Z up to MESH_HOME_Z_SEARCH.
  4098. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4099. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4100. float init_z_bckp = current_position[Z_AXIS];
  4101. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4102. st_synchronize();
  4103. // Move to XY position of the sensor point.
  4104. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4105. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4106. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4107. #ifdef SUPPORT_VERBOSITY
  4108. if (verbosity_level >= 1) {
  4109. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4110. SERIAL_PROTOCOL(mesh_point);
  4111. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4112. }
  4113. #else //SUPPORT_VERBOSITY
  4114. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4115. #endif // SUPPORT_VERBOSITY
  4116. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4117. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4118. st_synchronize();
  4119. // Go down until endstop is hit
  4120. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4121. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4122. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4123. break;
  4124. }
  4125. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4126. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4127. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4128. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4129. st_synchronize();
  4130. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4131. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4132. break;
  4133. }
  4134. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4135. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4136. break;
  4137. }
  4138. }
  4139. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4140. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4141. break;
  4142. }
  4143. #ifdef SUPPORT_VERBOSITY
  4144. if (verbosity_level >= 10) {
  4145. SERIAL_ECHOPGM("X: ");
  4146. MYSERIAL.print(current_position[X_AXIS], 5);
  4147. SERIAL_ECHOLNPGM("");
  4148. SERIAL_ECHOPGM("Y: ");
  4149. MYSERIAL.print(current_position[Y_AXIS], 5);
  4150. SERIAL_PROTOCOLPGM("\n");
  4151. }
  4152. #endif // SUPPORT_VERBOSITY
  4153. float offset_z = 0;
  4154. #ifdef PINDA_THERMISTOR
  4155. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4156. #endif //PINDA_THERMISTOR
  4157. // #ifdef SUPPORT_VERBOSITY
  4158. /* if (verbosity_level >= 1)
  4159. {
  4160. SERIAL_ECHOPGM("mesh bed leveling: ");
  4161. MYSERIAL.print(current_position[Z_AXIS], 5);
  4162. SERIAL_ECHOPGM(" offset: ");
  4163. MYSERIAL.print(offset_z, 5);
  4164. SERIAL_ECHOLNPGM("");
  4165. }*/
  4166. // #endif // SUPPORT_VERBOSITY
  4167. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4168. custom_message_state--;
  4169. mesh_point++;
  4170. lcd_update(1);
  4171. }
  4172. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4173. #ifdef SUPPORT_VERBOSITY
  4174. if (verbosity_level >= 20) {
  4175. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4176. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4177. MYSERIAL.print(current_position[Z_AXIS], 5);
  4178. }
  4179. #endif // SUPPORT_VERBOSITY
  4180. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4181. st_synchronize();
  4182. if (mesh_point != nMeasPoints * nMeasPoints) {
  4183. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4184. bool bState;
  4185. do { // repeat until Z-leveling o.k.
  4186. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4187. #ifdef TMC2130
  4188. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4189. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4190. #else // TMC2130
  4191. lcd_wait_for_click_delay(0); // ~ no timeout
  4192. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4193. #endif // TMC2130
  4194. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4195. bState=enable_z_endstop(false);
  4196. current_position[Z_AXIS] -= 1;
  4197. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4198. st_synchronize();
  4199. enable_z_endstop(true);
  4200. #ifdef TMC2130
  4201. tmc2130_home_enter(Z_AXIS_MASK);
  4202. #endif // TMC2130
  4203. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4204. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4205. st_synchronize();
  4206. #ifdef TMC2130
  4207. tmc2130_home_exit();
  4208. #endif // TMC2130
  4209. enable_z_endstop(bState);
  4210. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4211. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4212. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4213. lcd_update_enable(true); // display / status-line recovery
  4214. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4215. repeatcommand_front(); // re-run (i.e. of "G80")
  4216. break;
  4217. }
  4218. clean_up_after_endstop_move(l_feedmultiply);
  4219. // SERIAL_ECHOLNPGM("clean up finished ");
  4220. #ifndef PINDA_THERMISTOR
  4221. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4222. #endif
  4223. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4224. // SERIAL_ECHOLNPGM("babystep applied");
  4225. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4226. #ifdef SUPPORT_VERBOSITY
  4227. if (verbosity_level >= 1) {
  4228. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4229. }
  4230. #endif // SUPPORT_VERBOSITY
  4231. for (uint8_t i = 0; i < 4; ++i) {
  4232. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4233. long correction = 0;
  4234. if (code_seen(codes[i]))
  4235. correction = code_value_long();
  4236. else if (eeprom_bed_correction_valid) {
  4237. unsigned char *addr = (i < 2) ?
  4238. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4239. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4240. correction = eeprom_read_int8(addr);
  4241. }
  4242. if (correction == 0)
  4243. continue;
  4244. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4245. SERIAL_ERROR_START;
  4246. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4247. SERIAL_ECHO(correction);
  4248. SERIAL_ECHOLNPGM(" microns");
  4249. }
  4250. else {
  4251. float offset = float(correction) * 0.001f;
  4252. switch (i) {
  4253. case 0:
  4254. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4255. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4256. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4257. }
  4258. }
  4259. break;
  4260. case 1:
  4261. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4262. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4263. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4264. }
  4265. }
  4266. break;
  4267. case 2:
  4268. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4269. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4270. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4271. }
  4272. }
  4273. break;
  4274. case 3:
  4275. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4276. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4277. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4278. }
  4279. }
  4280. break;
  4281. }
  4282. }
  4283. }
  4284. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4285. if (nMeasPoints == 3) {
  4286. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4287. }
  4288. /*
  4289. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4290. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4291. SERIAL_PROTOCOLPGM(",");
  4292. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4293. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4294. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4295. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4296. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4297. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4298. SERIAL_PROTOCOLPGM(" ");
  4299. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4300. }
  4301. SERIAL_PROTOCOLPGM("\n");
  4302. }
  4303. */
  4304. if (nMeasPoints == 7 && magnet_elimination) {
  4305. mbl_interpolation(nMeasPoints);
  4306. }
  4307. /*
  4308. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4309. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4310. SERIAL_PROTOCOLPGM(",");
  4311. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4312. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4313. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4314. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4315. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4316. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4317. SERIAL_PROTOCOLPGM(" ");
  4318. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4319. }
  4320. SERIAL_PROTOCOLPGM("\n");
  4321. }
  4322. */
  4323. // SERIAL_ECHOLNPGM("Upsample finished");
  4324. mbl.active = 1; //activate mesh bed leveling
  4325. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4326. go_home_with_z_lift();
  4327. // SERIAL_ECHOLNPGM("Go home finished");
  4328. //unretract (after PINDA preheat retraction)
  4329. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4330. current_position[E_AXIS] += default_retraction;
  4331. plan_buffer_line_curposXYZE(400, active_extruder);
  4332. }
  4333. KEEPALIVE_STATE(NOT_BUSY);
  4334. // Restore custom message state
  4335. lcd_setstatuspgm(_T(WELCOME_MSG));
  4336. custom_message_type = custom_message_type_old;
  4337. custom_message_state = custom_message_state_old;
  4338. mesh_bed_leveling_flag = false;
  4339. mesh_bed_run_from_menu = false;
  4340. lcd_update(2);
  4341. }
  4342. break;
  4343. //! ### G81 - Mesh bed leveling status
  4344. // -----------------------------------------
  4345. /*
  4346. * Prints mesh bed leveling status and bed profile if activated
  4347. */
  4348. case 81:
  4349. if (mbl.active) {
  4350. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4351. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4352. SERIAL_PROTOCOLPGM(",");
  4353. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4354. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4355. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4356. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4357. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4358. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4359. SERIAL_PROTOCOLPGM(" ");
  4360. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4361. }
  4362. SERIAL_PROTOCOLPGM("\n");
  4363. }
  4364. }
  4365. else
  4366. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4367. break;
  4368. #if 0
  4369. /*
  4370. * G82: Single Z probe at current location
  4371. *
  4372. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4373. *
  4374. */
  4375. case 82:
  4376. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4377. int l_feedmultiply = setup_for_endstop_move();
  4378. find_bed_induction_sensor_point_z();
  4379. clean_up_after_endstop_move(l_feedmultiply);
  4380. SERIAL_PROTOCOLPGM("Bed found at: ");
  4381. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4382. SERIAL_PROTOCOLPGM("\n");
  4383. break;
  4384. /*
  4385. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4386. */
  4387. case 83:
  4388. {
  4389. int babystepz = code_seen('S') ? code_value() : 0;
  4390. int BabyPosition = code_seen('P') ? code_value() : 0;
  4391. if (babystepz != 0) {
  4392. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4393. // Is the axis indexed starting with zero or one?
  4394. if (BabyPosition > 4) {
  4395. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4396. }else{
  4397. // Save it to the eeprom
  4398. babystepLoadZ = babystepz;
  4399. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4400. // adjust the Z
  4401. babystepsTodoZadd(babystepLoadZ);
  4402. }
  4403. }
  4404. }
  4405. break;
  4406. /*
  4407. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4408. */
  4409. case 84:
  4410. babystepsTodoZsubtract(babystepLoadZ);
  4411. // babystepLoadZ = 0;
  4412. break;
  4413. /*
  4414. * G85: Prusa3D specific: Pick best babystep
  4415. */
  4416. case 85:
  4417. lcd_pick_babystep();
  4418. break;
  4419. #endif
  4420. /**
  4421. * ### G86 - Disable babystep correction after home
  4422. *
  4423. * This G-code will be performed at the start of a calibration script.
  4424. * (Prusa3D specific)
  4425. */
  4426. case 86:
  4427. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4428. break;
  4429. /**
  4430. * ### G87 - Enable babystep correction after home
  4431. *
  4432. *
  4433. * This G-code will be performed at the end of a calibration script.
  4434. * (Prusa3D specific)
  4435. */
  4436. case 87:
  4437. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4438. break;
  4439. /**
  4440. * ### G88 - Reserved
  4441. *
  4442. * Currently has no effect.
  4443. */
  4444. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4445. case 88:
  4446. break;
  4447. #endif // ENABLE_MESH_BED_LEVELING
  4448. //! ### G90 - Switch off relative mode
  4449. // -------------------------------
  4450. case 90:
  4451. relative_mode = false;
  4452. break;
  4453. //! ### G91 - Switch on relative mode
  4454. // -------------------------------
  4455. case 91:
  4456. relative_mode = true;
  4457. break;
  4458. //! ### G92 - Set position
  4459. // -----------------------------
  4460. case 92:
  4461. if(!code_seen(axis_codes[E_AXIS]))
  4462. st_synchronize();
  4463. for(int8_t i=0; i < NUM_AXIS; i++) {
  4464. if(code_seen(axis_codes[i])) {
  4465. if(i == E_AXIS) {
  4466. current_position[i] = code_value();
  4467. plan_set_e_position(current_position[E_AXIS]);
  4468. }
  4469. else {
  4470. current_position[i] = code_value()+cs.add_homing[i];
  4471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4472. }
  4473. }
  4474. }
  4475. break;
  4476. //! ### G98 - Activate farm mode
  4477. // -----------------------------------
  4478. case 98:
  4479. farm_mode = 1;
  4480. PingTime = _millis();
  4481. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4482. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4483. SilentModeMenu = SILENT_MODE_OFF;
  4484. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4485. fCheckModeInit(); // alternatively invoke printer reset
  4486. break;
  4487. //! ### G99 - Deactivate farm mode
  4488. // -------------------------------------
  4489. case 99:
  4490. farm_mode = 0;
  4491. lcd_printer_connected();
  4492. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4493. lcd_update(2);
  4494. fCheckModeInit(); // alternatively invoke printer reset
  4495. break;
  4496. default:
  4497. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4498. }
  4499. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4500. gcode_in_progress = 0;
  4501. } // end if(code_seen('G'))
  4502. //! ---------------------------------------------------------------------------------
  4503. else if(code_seen('M'))
  4504. {
  4505. int index;
  4506. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4507. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4508. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4509. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4510. } else
  4511. {
  4512. mcode_in_progress = (int)code_value();
  4513. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4514. switch(mcode_in_progress)
  4515. {
  4516. //! ### M0, M1 - Stop the printer
  4517. // ---------------------------------------------------------------
  4518. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4519. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4520. {
  4521. char *src = strchr_pointer + 2;
  4522. codenum = 0;
  4523. bool hasP = false, hasS = false;
  4524. if (code_seen('P')) {
  4525. codenum = code_value(); // milliseconds to wait
  4526. hasP = codenum > 0;
  4527. }
  4528. if (code_seen('S')) {
  4529. codenum = code_value() * 1000; // seconds to wait
  4530. hasS = codenum > 0;
  4531. }
  4532. starpos = strchr(src, '*');
  4533. if (starpos != NULL) *(starpos) = '\0';
  4534. while (*src == ' ') ++src;
  4535. if (!hasP && !hasS && *src != '\0') {
  4536. lcd_setstatus(src);
  4537. } else {
  4538. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4539. }
  4540. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4541. st_synchronize();
  4542. previous_millis_cmd = _millis();
  4543. if (codenum > 0){
  4544. codenum += _millis(); // keep track of when we started waiting
  4545. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4546. while(_millis() < codenum && !lcd_clicked()){
  4547. manage_heater();
  4548. manage_inactivity(true);
  4549. lcd_update(0);
  4550. }
  4551. KEEPALIVE_STATE(IN_HANDLER);
  4552. lcd_ignore_click(false);
  4553. }else{
  4554. marlin_wait_for_click();
  4555. }
  4556. if (IS_SD_PRINTING)
  4557. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4558. else
  4559. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4560. }
  4561. break;
  4562. //! ### M17 - Enable axes
  4563. // ---------------------------------
  4564. case 17:
  4565. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4566. enable_x();
  4567. enable_y();
  4568. enable_z();
  4569. enable_e0();
  4570. enable_e1();
  4571. enable_e2();
  4572. break;
  4573. #ifdef SDSUPPORT
  4574. //! ### M20 - SD Card file list
  4575. // -----------------------------------
  4576. case 20:
  4577. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4578. card.ls();
  4579. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4580. break;
  4581. //! ### M21 - Init SD card
  4582. // ------------------------------------
  4583. case 21:
  4584. card.initsd();
  4585. break;
  4586. //! ### M22 - Release SD card
  4587. // -----------------------------------
  4588. case 22:
  4589. card.release();
  4590. break;
  4591. //! ### M23 - Select file
  4592. // -----------------------------------
  4593. case 23:
  4594. starpos = (strchr(strchr_pointer + 4,'*'));
  4595. if(starpos!=NULL)
  4596. *(starpos)='\0';
  4597. card.openFile(strchr_pointer + 4,true);
  4598. break;
  4599. //! ### M24 - Start SD print
  4600. // ----------------------------------
  4601. case 24:
  4602. if (!card.paused)
  4603. failstats_reset_print();
  4604. card.startFileprint();
  4605. starttime=_millis();
  4606. break;
  4607. //! ### M25 - Pause SD print
  4608. // ----------------------------------
  4609. case 25:
  4610. card.pauseSDPrint();
  4611. break;
  4612. //! ### M26 S\<index\> - Set SD index
  4613. //! Set position in SD card file to index in bytes.
  4614. //! This command is expected to be called after M23 and before M24.
  4615. //! Otherwise effect of this command is undefined.
  4616. // ----------------------------------
  4617. case 26:
  4618. if(card.cardOK && code_seen('S')) {
  4619. long index = code_value_long();
  4620. card.setIndex(index);
  4621. // We don't disable interrupt during update of sdpos_atomic
  4622. // as we expect, that SD card print is not active in this moment
  4623. sdpos_atomic = index;
  4624. }
  4625. break;
  4626. //! ### M27 - Get SD status
  4627. // ----------------------------------
  4628. case 27:
  4629. card.getStatus();
  4630. break;
  4631. //! ### M28 - Start SD write
  4632. // ---------------------------------
  4633. case 28:
  4634. starpos = (strchr(strchr_pointer + 4,'*'));
  4635. if(starpos != NULL){
  4636. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4637. strchr_pointer = strchr(npos,' ') + 1;
  4638. *(starpos) = '\0';
  4639. }
  4640. card.openFile(strchr_pointer+4,false);
  4641. break;
  4642. //! ### M29 - Stop SD write
  4643. // -------------------------------------
  4644. //! Currently has no effect.
  4645. case 29:
  4646. //processed in write to file routine above
  4647. //card,saving = false;
  4648. break;
  4649. //! ### M30 - Delete file <filename>
  4650. // ----------------------------------
  4651. case 30:
  4652. if (card.cardOK){
  4653. card.closefile();
  4654. starpos = (strchr(strchr_pointer + 4,'*'));
  4655. if(starpos != NULL){
  4656. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4657. strchr_pointer = strchr(npos,' ') + 1;
  4658. *(starpos) = '\0';
  4659. }
  4660. card.removeFile(strchr_pointer + 4);
  4661. }
  4662. break;
  4663. //! ### M32 - Select file and start SD print
  4664. // ------------------------------------
  4665. case 32:
  4666. {
  4667. if(card.sdprinting) {
  4668. st_synchronize();
  4669. }
  4670. starpos = (strchr(strchr_pointer + 4,'*'));
  4671. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4672. if(namestartpos==NULL)
  4673. {
  4674. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4675. }
  4676. else
  4677. namestartpos++; //to skip the '!'
  4678. if(starpos!=NULL)
  4679. *(starpos)='\0';
  4680. bool call_procedure=(code_seen('P'));
  4681. if(strchr_pointer>namestartpos)
  4682. call_procedure=false; //false alert, 'P' found within filename
  4683. if( card.cardOK )
  4684. {
  4685. card.openFile(namestartpos,true,!call_procedure);
  4686. if(code_seen('S'))
  4687. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4688. card.setIndex(code_value_long());
  4689. card.startFileprint();
  4690. if(!call_procedure)
  4691. starttime=_millis(); //procedure calls count as normal print time.
  4692. }
  4693. } break;
  4694. //! ### M982 - Start SD write
  4695. // ---------------------------------
  4696. case 928:
  4697. starpos = (strchr(strchr_pointer + 5,'*'));
  4698. if(starpos != NULL){
  4699. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4700. strchr_pointer = strchr(npos,' ') + 1;
  4701. *(starpos) = '\0';
  4702. }
  4703. card.openLogFile(strchr_pointer+5);
  4704. break;
  4705. #endif //SDSUPPORT
  4706. //! ### M31 - Report current print time
  4707. // --------------------------------------------------
  4708. case 31: //M31 take time since the start of the SD print or an M109 command
  4709. {
  4710. stoptime=_millis();
  4711. char time[30];
  4712. unsigned long t=(stoptime-starttime)/1000;
  4713. int sec,min;
  4714. min=t/60;
  4715. sec=t%60;
  4716. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4717. SERIAL_ECHO_START;
  4718. SERIAL_ECHOLN(time);
  4719. lcd_setstatus(time);
  4720. autotempShutdown();
  4721. }
  4722. break;
  4723. //! ### M42 - Set pin state
  4724. // -----------------------------
  4725. case 42:
  4726. if (code_seen('S'))
  4727. {
  4728. int pin_status = code_value();
  4729. int pin_number = LED_PIN;
  4730. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4731. pin_number = code_value();
  4732. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4733. {
  4734. if (sensitive_pins[i] == pin_number)
  4735. {
  4736. pin_number = -1;
  4737. break;
  4738. }
  4739. }
  4740. #if defined(FAN_PIN) && FAN_PIN > -1
  4741. if (pin_number == FAN_PIN)
  4742. fanSpeed = pin_status;
  4743. #endif
  4744. if (pin_number > -1)
  4745. {
  4746. pinMode(pin_number, OUTPUT);
  4747. digitalWrite(pin_number, pin_status);
  4748. analogWrite(pin_number, pin_status);
  4749. }
  4750. }
  4751. break;
  4752. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4753. // --------------------------------------------------------------------
  4754. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4755. // Reset the baby step value and the baby step applied flag.
  4756. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4757. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4758. // Reset the skew and offset in both RAM and EEPROM.
  4759. reset_bed_offset_and_skew();
  4760. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4761. // the planner will not perform any adjustments in the XY plane.
  4762. // Wait for the motors to stop and update the current position with the absolute values.
  4763. world2machine_revert_to_uncorrected();
  4764. break;
  4765. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4766. // ------------------------------------------------------
  4767. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4768. {
  4769. int8_t verbosity_level = 0;
  4770. bool only_Z = code_seen('Z');
  4771. #ifdef SUPPORT_VERBOSITY
  4772. if (code_seen('V'))
  4773. {
  4774. // Just 'V' without a number counts as V1.
  4775. char c = strchr_pointer[1];
  4776. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4777. }
  4778. #endif //SUPPORT_VERBOSITY
  4779. gcode_M45(only_Z, verbosity_level);
  4780. }
  4781. break;
  4782. /*
  4783. case 46:
  4784. {
  4785. // M46: Prusa3D: Show the assigned IP address.
  4786. uint8_t ip[4];
  4787. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4788. if (hasIP) {
  4789. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4790. SERIAL_ECHO(int(ip[0]));
  4791. SERIAL_ECHOPGM(".");
  4792. SERIAL_ECHO(int(ip[1]));
  4793. SERIAL_ECHOPGM(".");
  4794. SERIAL_ECHO(int(ip[2]));
  4795. SERIAL_ECHOPGM(".");
  4796. SERIAL_ECHO(int(ip[3]));
  4797. SERIAL_ECHOLNPGM("");
  4798. } else {
  4799. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4800. }
  4801. break;
  4802. }
  4803. */
  4804. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4805. // ----------------------------------------------------
  4806. case 47:
  4807. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4808. lcd_diag_show_end_stops();
  4809. KEEPALIVE_STATE(IN_HANDLER);
  4810. break;
  4811. #if 0
  4812. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4813. {
  4814. // Disable the default update procedure of the display. We will do a modal dialog.
  4815. lcd_update_enable(false);
  4816. // Let the planner use the uncorrected coordinates.
  4817. mbl.reset();
  4818. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4819. // the planner will not perform any adjustments in the XY plane.
  4820. // Wait for the motors to stop and update the current position with the absolute values.
  4821. world2machine_revert_to_uncorrected();
  4822. // Move the print head close to the bed.
  4823. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4825. st_synchronize();
  4826. // Home in the XY plane.
  4827. set_destination_to_current();
  4828. int l_feedmultiply = setup_for_endstop_move();
  4829. home_xy();
  4830. int8_t verbosity_level = 0;
  4831. if (code_seen('V')) {
  4832. // Just 'V' without a number counts as V1.
  4833. char c = strchr_pointer[1];
  4834. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4835. }
  4836. bool success = scan_bed_induction_points(verbosity_level);
  4837. clean_up_after_endstop_move(l_feedmultiply);
  4838. // Print head up.
  4839. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4841. st_synchronize();
  4842. lcd_update_enable(true);
  4843. break;
  4844. }
  4845. #endif
  4846. #ifdef ENABLE_AUTO_BED_LEVELING
  4847. #ifdef Z_PROBE_REPEATABILITY_TEST
  4848. //! ### M48 - Z-Probe repeatability measurement function.
  4849. // ------------------------------------------------------
  4850. //!
  4851. //! _Usage:_
  4852. //!
  4853. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4854. //!
  4855. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4856. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4857. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4858. //! regenerated.
  4859. //!
  4860. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4861. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4862. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4863. //!
  4864. case 48: // M48 Z-Probe repeatability
  4865. {
  4866. #if Z_MIN_PIN == -1
  4867. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4868. #endif
  4869. double sum=0.0;
  4870. double mean=0.0;
  4871. double sigma=0.0;
  4872. double sample_set[50];
  4873. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4874. double X_current, Y_current, Z_current;
  4875. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4876. if (code_seen('V') || code_seen('v')) {
  4877. verbose_level = code_value();
  4878. if (verbose_level<0 || verbose_level>4 ) {
  4879. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4880. goto Sigma_Exit;
  4881. }
  4882. }
  4883. if (verbose_level > 0) {
  4884. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4885. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4886. }
  4887. if (code_seen('n')) {
  4888. n_samples = code_value();
  4889. if (n_samples<4 || n_samples>50 ) {
  4890. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4891. goto Sigma_Exit;
  4892. }
  4893. }
  4894. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4895. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4896. Z_current = st_get_position_mm(Z_AXIS);
  4897. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4898. ext_position = st_get_position_mm(E_AXIS);
  4899. if (code_seen('X') || code_seen('x') ) {
  4900. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4901. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4902. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4903. goto Sigma_Exit;
  4904. }
  4905. }
  4906. if (code_seen('Y') || code_seen('y') ) {
  4907. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4908. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4909. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4910. goto Sigma_Exit;
  4911. }
  4912. }
  4913. if (code_seen('L') || code_seen('l') ) {
  4914. n_legs = code_value();
  4915. if ( n_legs==1 )
  4916. n_legs = 2;
  4917. if ( n_legs<0 || n_legs>15 ) {
  4918. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4919. goto Sigma_Exit;
  4920. }
  4921. }
  4922. //
  4923. // Do all the preliminary setup work. First raise the probe.
  4924. //
  4925. st_synchronize();
  4926. plan_bed_level_matrix.set_to_identity();
  4927. plan_buffer_line( X_current, Y_current, Z_start_location,
  4928. ext_position,
  4929. homing_feedrate[Z_AXIS]/60,
  4930. active_extruder);
  4931. st_synchronize();
  4932. //
  4933. // Now get everything to the specified probe point So we can safely do a probe to
  4934. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4935. // use that as a starting point for each probe.
  4936. //
  4937. if (verbose_level > 2)
  4938. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4939. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4940. ext_position,
  4941. homing_feedrate[X_AXIS]/60,
  4942. active_extruder);
  4943. st_synchronize();
  4944. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4945. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4946. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4947. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4948. //
  4949. // OK, do the inital probe to get us close to the bed.
  4950. // Then retrace the right amount and use that in subsequent probes
  4951. //
  4952. int l_feedmultiply = setup_for_endstop_move();
  4953. run_z_probe();
  4954. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4955. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4956. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4957. ext_position,
  4958. homing_feedrate[X_AXIS]/60,
  4959. active_extruder);
  4960. st_synchronize();
  4961. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4962. for( n=0; n<n_samples; n++) {
  4963. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4964. if ( n_legs) {
  4965. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4966. int rotational_direction, l;
  4967. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4968. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4969. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4970. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4971. //SERIAL_ECHOPAIR(" theta: ",theta);
  4972. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4973. //SERIAL_PROTOCOLLNPGM("");
  4974. for( l=0; l<n_legs-1; l++) {
  4975. if (rotational_direction==1)
  4976. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4977. else
  4978. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4979. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4980. if ( radius<0.0 )
  4981. radius = -radius;
  4982. X_current = X_probe_location + cos(theta) * radius;
  4983. Y_current = Y_probe_location + sin(theta) * radius;
  4984. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4985. X_current = X_MIN_POS;
  4986. if ( X_current>X_MAX_POS)
  4987. X_current = X_MAX_POS;
  4988. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4989. Y_current = Y_MIN_POS;
  4990. if ( Y_current>Y_MAX_POS)
  4991. Y_current = Y_MAX_POS;
  4992. if (verbose_level>3 ) {
  4993. SERIAL_ECHOPAIR("x: ", X_current);
  4994. SERIAL_ECHOPAIR("y: ", Y_current);
  4995. SERIAL_PROTOCOLLNPGM("");
  4996. }
  4997. do_blocking_move_to( X_current, Y_current, Z_current );
  4998. }
  4999. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5000. }
  5001. int l_feedmultiply = setup_for_endstop_move();
  5002. run_z_probe();
  5003. sample_set[n] = current_position[Z_AXIS];
  5004. //
  5005. // Get the current mean for the data points we have so far
  5006. //
  5007. sum=0.0;
  5008. for( j=0; j<=n; j++) {
  5009. sum = sum + sample_set[j];
  5010. }
  5011. mean = sum / (double (n+1));
  5012. //
  5013. // Now, use that mean to calculate the standard deviation for the
  5014. // data points we have so far
  5015. //
  5016. sum=0.0;
  5017. for( j=0; j<=n; j++) {
  5018. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5019. }
  5020. sigma = sqrt( sum / (double (n+1)) );
  5021. if (verbose_level > 1) {
  5022. SERIAL_PROTOCOL(n+1);
  5023. SERIAL_PROTOCOL(" of ");
  5024. SERIAL_PROTOCOL(n_samples);
  5025. SERIAL_PROTOCOLPGM(" z: ");
  5026. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5027. }
  5028. if (verbose_level > 2) {
  5029. SERIAL_PROTOCOL(" mean: ");
  5030. SERIAL_PROTOCOL_F(mean,6);
  5031. SERIAL_PROTOCOL(" sigma: ");
  5032. SERIAL_PROTOCOL_F(sigma,6);
  5033. }
  5034. if (verbose_level > 0)
  5035. SERIAL_PROTOCOLPGM("\n");
  5036. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5037. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5038. st_synchronize();
  5039. }
  5040. _delay(1000);
  5041. clean_up_after_endstop_move(l_feedmultiply);
  5042. // enable_endstops(true);
  5043. if (verbose_level > 0) {
  5044. SERIAL_PROTOCOLPGM("Mean: ");
  5045. SERIAL_PROTOCOL_F(mean, 6);
  5046. SERIAL_PROTOCOLPGM("\n");
  5047. }
  5048. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5049. SERIAL_PROTOCOL_F(sigma, 6);
  5050. SERIAL_PROTOCOLPGM("\n\n");
  5051. Sigma_Exit:
  5052. break;
  5053. }
  5054. #endif // Z_PROBE_REPEATABILITY_TEST
  5055. #endif // ENABLE_AUTO_BED_LEVELING
  5056. //! ### M73 - Set/get print progress
  5057. // -------------------------------------
  5058. //! _Usage:_
  5059. //!
  5060. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5061. //!
  5062. case 73: //M73 show percent done and time remaining
  5063. if(code_seen('P')) print_percent_done_normal = code_value();
  5064. if(code_seen('R')) print_time_remaining_normal = code_value();
  5065. if(code_seen('Q')) print_percent_done_silent = code_value();
  5066. if(code_seen('S')) print_time_remaining_silent = code_value();
  5067. {
  5068. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5069. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5070. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5071. }
  5072. break;
  5073. //! ### M104 - Set hotend temperature
  5074. // -----------------------------------------
  5075. case 104: // M104
  5076. {
  5077. uint8_t extruder;
  5078. if(setTargetedHotend(104,extruder)){
  5079. break;
  5080. }
  5081. if (code_seen('S'))
  5082. {
  5083. setTargetHotendSafe(code_value(), extruder);
  5084. }
  5085. break;
  5086. }
  5087. //! ### M112 - Emergency stop
  5088. // -----------------------------------------
  5089. case 112:
  5090. kill(_n(""), 3);
  5091. break;
  5092. //! ### M140 - Set bed temperature
  5093. // -----------------------------------------
  5094. case 140:
  5095. if (code_seen('S')) setTargetBed(code_value());
  5096. break;
  5097. //! ### M105 - Report temperatures
  5098. // -----------------------------------------
  5099. case 105:
  5100. {
  5101. uint8_t extruder;
  5102. if(setTargetedHotend(105, extruder)){
  5103. break;
  5104. }
  5105. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5106. SERIAL_PROTOCOLPGM("ok T:");
  5107. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5108. SERIAL_PROTOCOLPGM(" /");
  5109. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5110. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5111. SERIAL_PROTOCOLPGM(" B:");
  5112. SERIAL_PROTOCOL_F(degBed(),1);
  5113. SERIAL_PROTOCOLPGM(" /");
  5114. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5115. #endif //TEMP_BED_PIN
  5116. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5117. SERIAL_PROTOCOLPGM(" T");
  5118. SERIAL_PROTOCOL(cur_extruder);
  5119. SERIAL_PROTOCOLPGM(":");
  5120. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5121. SERIAL_PROTOCOLPGM(" /");
  5122. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5123. }
  5124. #else
  5125. SERIAL_ERROR_START;
  5126. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5127. #endif
  5128. SERIAL_PROTOCOLPGM(" @:");
  5129. #ifdef EXTRUDER_WATTS
  5130. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5131. SERIAL_PROTOCOLPGM("W");
  5132. #else
  5133. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5134. #endif
  5135. SERIAL_PROTOCOLPGM(" B@:");
  5136. #ifdef BED_WATTS
  5137. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5138. SERIAL_PROTOCOLPGM("W");
  5139. #else
  5140. SERIAL_PROTOCOL(getHeaterPower(-1));
  5141. #endif
  5142. #ifdef PINDA_THERMISTOR
  5143. SERIAL_PROTOCOLPGM(" P:");
  5144. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5145. #endif //PINDA_THERMISTOR
  5146. #ifdef AMBIENT_THERMISTOR
  5147. SERIAL_PROTOCOLPGM(" A:");
  5148. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5149. #endif //AMBIENT_THERMISTOR
  5150. #ifdef SHOW_TEMP_ADC_VALUES
  5151. {float raw = 0.0;
  5152. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5153. SERIAL_PROTOCOLPGM(" ADC B:");
  5154. SERIAL_PROTOCOL_F(degBed(),1);
  5155. SERIAL_PROTOCOLPGM("C->");
  5156. raw = rawBedTemp();
  5157. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5158. SERIAL_PROTOCOLPGM(" Rb->");
  5159. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5160. SERIAL_PROTOCOLPGM(" Rxb->");
  5161. SERIAL_PROTOCOL_F(raw, 5);
  5162. #endif
  5163. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5164. SERIAL_PROTOCOLPGM(" T");
  5165. SERIAL_PROTOCOL(cur_extruder);
  5166. SERIAL_PROTOCOLPGM(":");
  5167. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5168. SERIAL_PROTOCOLPGM("C->");
  5169. raw = rawHotendTemp(cur_extruder);
  5170. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5171. SERIAL_PROTOCOLPGM(" Rt");
  5172. SERIAL_PROTOCOL(cur_extruder);
  5173. SERIAL_PROTOCOLPGM("->");
  5174. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5175. SERIAL_PROTOCOLPGM(" Rx");
  5176. SERIAL_PROTOCOL(cur_extruder);
  5177. SERIAL_PROTOCOLPGM("->");
  5178. SERIAL_PROTOCOL_F(raw, 5);
  5179. }}
  5180. #endif
  5181. SERIAL_PROTOCOLLN("");
  5182. KEEPALIVE_STATE(NOT_BUSY);
  5183. return;
  5184. break;
  5185. }
  5186. //! ### M109 - Wait for extruder temperature
  5187. //! Parameters (not mandatory):
  5188. //! * S \<temp\> set extruder temperature
  5189. //! * R \<temp\> set extruder temperature
  5190. //!
  5191. //! Parameters S and R are treated identically.
  5192. //! Command always waits for both cool down and heat up.
  5193. //! If no parameters are supplied waits for previously
  5194. //! set extruder temperature.
  5195. // -------------------------------------------------
  5196. case 109:
  5197. {
  5198. uint8_t extruder;
  5199. if(setTargetedHotend(109, extruder)){
  5200. break;
  5201. }
  5202. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5203. heating_status = 1;
  5204. if (farm_mode) { prusa_statistics(1); };
  5205. #ifdef AUTOTEMP
  5206. autotemp_enabled=false;
  5207. #endif
  5208. if (code_seen('S')) {
  5209. setTargetHotendSafe(code_value(), extruder);
  5210. } else if (code_seen('R')) {
  5211. setTargetHotendSafe(code_value(), extruder);
  5212. }
  5213. #ifdef AUTOTEMP
  5214. if (code_seen('S')) autotemp_min=code_value();
  5215. if (code_seen('B')) autotemp_max=code_value();
  5216. if (code_seen('F'))
  5217. {
  5218. autotemp_factor=code_value();
  5219. autotemp_enabled=true;
  5220. }
  5221. #endif
  5222. codenum = _millis();
  5223. /* See if we are heating up or cooling down */
  5224. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5225. KEEPALIVE_STATE(NOT_BUSY);
  5226. cancel_heatup = false;
  5227. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5228. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5229. KEEPALIVE_STATE(IN_HANDLER);
  5230. heating_status = 2;
  5231. if (farm_mode) { prusa_statistics(2); };
  5232. //starttime=_millis();
  5233. previous_millis_cmd = _millis();
  5234. }
  5235. break;
  5236. //! ### M190 - Wait for bed temperature
  5237. //! Parameters (not mandatory):
  5238. //! * S \<temp\> set extruder temperature and wait for heating
  5239. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5240. //!
  5241. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5242. case 190:
  5243. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5244. {
  5245. bool CooldownNoWait = false;
  5246. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5247. heating_status = 3;
  5248. if (farm_mode) { prusa_statistics(1); };
  5249. if (code_seen('S'))
  5250. {
  5251. setTargetBed(code_value());
  5252. CooldownNoWait = true;
  5253. }
  5254. else if (code_seen('R'))
  5255. {
  5256. setTargetBed(code_value());
  5257. }
  5258. codenum = _millis();
  5259. cancel_heatup = false;
  5260. target_direction = isHeatingBed(); // true if heating, false if cooling
  5261. KEEPALIVE_STATE(NOT_BUSY);
  5262. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5263. {
  5264. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5265. {
  5266. if (!farm_mode) {
  5267. float tt = degHotend(active_extruder);
  5268. SERIAL_PROTOCOLPGM("T:");
  5269. SERIAL_PROTOCOL(tt);
  5270. SERIAL_PROTOCOLPGM(" E:");
  5271. SERIAL_PROTOCOL((int)active_extruder);
  5272. SERIAL_PROTOCOLPGM(" B:");
  5273. SERIAL_PROTOCOL_F(degBed(), 1);
  5274. SERIAL_PROTOCOLLN("");
  5275. }
  5276. codenum = _millis();
  5277. }
  5278. manage_heater();
  5279. manage_inactivity();
  5280. lcd_update(0);
  5281. }
  5282. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5283. KEEPALIVE_STATE(IN_HANDLER);
  5284. heating_status = 4;
  5285. previous_millis_cmd = _millis();
  5286. }
  5287. #endif
  5288. break;
  5289. #if defined(FAN_PIN) && FAN_PIN > -1
  5290. //! ### M106 - Set fan speed
  5291. // -------------------------------------------
  5292. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5293. if (code_seen('S')){
  5294. fanSpeed=constrain(code_value(),0,255);
  5295. }
  5296. else {
  5297. fanSpeed=255;
  5298. }
  5299. break;
  5300. //! ### M107 - Fan off
  5301. // -------------------------------
  5302. case 107:
  5303. fanSpeed = 0;
  5304. break;
  5305. #endif //FAN_PIN
  5306. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5307. //! ### M80 - Turn on the Power Supply
  5308. // -------------------------------
  5309. case 80:
  5310. SET_OUTPUT(PS_ON_PIN); //GND
  5311. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5312. // If you have a switch on suicide pin, this is useful
  5313. // if you want to start another print with suicide feature after
  5314. // a print without suicide...
  5315. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5316. SET_OUTPUT(SUICIDE_PIN);
  5317. WRITE(SUICIDE_PIN, HIGH);
  5318. #endif
  5319. powersupply = true;
  5320. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5321. lcd_update(0);
  5322. break;
  5323. #endif
  5324. //! ### M81 - Turn off Power Supply
  5325. // --------------------------------------
  5326. case 81:
  5327. disable_heater();
  5328. st_synchronize();
  5329. disable_e0();
  5330. disable_e1();
  5331. disable_e2();
  5332. finishAndDisableSteppers();
  5333. fanSpeed = 0;
  5334. _delay(1000); // Wait a little before to switch off
  5335. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5336. st_synchronize();
  5337. suicide();
  5338. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5339. SET_OUTPUT(PS_ON_PIN);
  5340. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5341. #endif
  5342. powersupply = false;
  5343. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5344. lcd_update(0);
  5345. break;
  5346. //! ### M82 - Set E axis to absolute mode
  5347. // ---------------------------------------
  5348. case 82:
  5349. axis_relative_modes[3] = false;
  5350. break;
  5351. //! ### M83 - Set E axis to relative mode
  5352. // ---------------------------------------
  5353. case 83:
  5354. axis_relative_modes[3] = true;
  5355. break;
  5356. //! ### M84, M18 - Disable steppers
  5357. //---------------------------------------
  5358. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5359. //!
  5360. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5361. //!
  5362. case 18: //compatibility
  5363. case 84: // M84
  5364. if(code_seen('S')){
  5365. stepper_inactive_time = code_value() * 1000;
  5366. }
  5367. else
  5368. {
  5369. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5370. if(all_axis)
  5371. {
  5372. st_synchronize();
  5373. disable_e0();
  5374. disable_e1();
  5375. disable_e2();
  5376. finishAndDisableSteppers();
  5377. }
  5378. else
  5379. {
  5380. st_synchronize();
  5381. if (code_seen('X')) disable_x();
  5382. if (code_seen('Y')) disable_y();
  5383. if (code_seen('Z')) disable_z();
  5384. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5385. if (code_seen('E')) {
  5386. disable_e0();
  5387. disable_e1();
  5388. disable_e2();
  5389. }
  5390. #endif
  5391. }
  5392. }
  5393. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5394. print_time_remaining_init();
  5395. snmm_filaments_used = 0;
  5396. break;
  5397. //! ### M85 - Set max inactive time
  5398. // ---------------------------------------
  5399. case 85: // M85
  5400. if(code_seen('S')) {
  5401. max_inactive_time = code_value() * 1000;
  5402. }
  5403. break;
  5404. #ifdef SAFETYTIMER
  5405. //! ### M86 - Set safety timer expiration time
  5406. //!
  5407. //! _Usage:_
  5408. //! M86 S<seconds>
  5409. //!
  5410. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5411. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5412. case 86:
  5413. if (code_seen('S')) {
  5414. safetytimer_inactive_time = code_value() * 1000;
  5415. safetyTimer.start();
  5416. }
  5417. break;
  5418. #endif
  5419. //! ### M92 Set Axis steps-per-unit
  5420. // ---------------------------------------
  5421. //! Same syntax as G92
  5422. case 92:
  5423. for(int8_t i=0; i < NUM_AXIS; i++)
  5424. {
  5425. if(code_seen(axis_codes[i]))
  5426. {
  5427. if(i == 3) { // E
  5428. float value = code_value();
  5429. if(value < 20.0) {
  5430. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5431. cs.max_jerk[E_AXIS] *= factor;
  5432. max_feedrate[i] *= factor;
  5433. axis_steps_per_sqr_second[i] *= factor;
  5434. }
  5435. cs.axis_steps_per_unit[i] = value;
  5436. }
  5437. else {
  5438. cs.axis_steps_per_unit[i] = code_value();
  5439. }
  5440. }
  5441. }
  5442. break;
  5443. //! ### M110 - Set Line number
  5444. // ---------------------------------------
  5445. case 110:
  5446. if (code_seen('N'))
  5447. gcode_LastN = code_value_long();
  5448. break;
  5449. //! ### M113 - Get or set host keep-alive interval
  5450. // ------------------------------------------
  5451. case 113:
  5452. if (code_seen('S')) {
  5453. host_keepalive_interval = (uint8_t)code_value_short();
  5454. // NOMORE(host_keepalive_interval, 60);
  5455. }
  5456. else {
  5457. SERIAL_ECHO_START;
  5458. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5459. SERIAL_PROTOCOLLN("");
  5460. }
  5461. break;
  5462. //! ### M115 - Firmware info
  5463. // --------------------------------------
  5464. //! Print the firmware info and capabilities
  5465. //!
  5466. //! M115 [V] [U<version>]
  5467. //!
  5468. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5469. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5470. //! pause the print for 30s and ask the user to upgrade the firmware.
  5471. case 115: // M115
  5472. if (code_seen('V')) {
  5473. // Report the Prusa version number.
  5474. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5475. } else if (code_seen('U')) {
  5476. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5477. // pause the print for 30s and ask the user to upgrade the firmware.
  5478. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5479. } else {
  5480. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5481. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5482. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5483. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5484. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5485. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5486. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5487. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5488. SERIAL_ECHOPGM(" UUID:");
  5489. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5490. }
  5491. break;
  5492. //! ### M114 - Get current position
  5493. // -------------------------------------
  5494. case 114:
  5495. gcode_M114();
  5496. break;
  5497. //! ### M117 - Set LCD Message
  5498. // --------------------------------------
  5499. /*
  5500. M117 moved up to get the high priority
  5501. case 117: // M117 display message
  5502. starpos = (strchr(strchr_pointer + 5,'*'));
  5503. if(starpos!=NULL)
  5504. *(starpos)='\0';
  5505. lcd_setstatus(strchr_pointer + 5);
  5506. break;*/
  5507. //! ### M120 - Disable endstops
  5508. // ----------------------------------------
  5509. case 120:
  5510. enable_endstops(false) ;
  5511. break;
  5512. //! ### M121 - Enable endstops
  5513. // ----------------------------------------
  5514. case 121:
  5515. enable_endstops(true) ;
  5516. break;
  5517. //! ### M119 - Get endstop states
  5518. // ----------------------------------------
  5519. case 119:
  5520. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5521. SERIAL_PROTOCOLLN("");
  5522. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5523. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5524. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5525. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5526. }else{
  5527. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5528. }
  5529. SERIAL_PROTOCOLLN("");
  5530. #endif
  5531. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5532. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5533. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5534. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5535. }else{
  5536. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5537. }
  5538. SERIAL_PROTOCOLLN("");
  5539. #endif
  5540. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5541. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5542. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5543. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5544. }else{
  5545. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5546. }
  5547. SERIAL_PROTOCOLLN("");
  5548. #endif
  5549. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5550. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5551. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5552. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5553. }else{
  5554. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5555. }
  5556. SERIAL_PROTOCOLLN("");
  5557. #endif
  5558. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5559. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5560. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5561. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5562. }else{
  5563. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5564. }
  5565. SERIAL_PROTOCOLLN("");
  5566. #endif
  5567. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5568. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5569. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5570. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5571. }else{
  5572. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5573. }
  5574. SERIAL_PROTOCOLLN("");
  5575. #endif
  5576. break;
  5577. //TODO: update for all axis, use for loop
  5578. #ifdef BLINKM
  5579. //! ### M150 - Set RGB(W) Color
  5580. // -------------------------------------------
  5581. case 150:
  5582. {
  5583. byte red;
  5584. byte grn;
  5585. byte blu;
  5586. if(code_seen('R')) red = code_value();
  5587. if(code_seen('U')) grn = code_value();
  5588. if(code_seen('B')) blu = code_value();
  5589. SendColors(red,grn,blu);
  5590. }
  5591. break;
  5592. #endif //BLINKM
  5593. //! ### M200 - Set filament diameter
  5594. // ----------------------------------------
  5595. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5596. {
  5597. uint8_t extruder = active_extruder;
  5598. if(code_seen('T')) {
  5599. extruder = code_value();
  5600. if(extruder >= EXTRUDERS) {
  5601. SERIAL_ECHO_START;
  5602. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5603. break;
  5604. }
  5605. }
  5606. if(code_seen('D')) {
  5607. float diameter = (float)code_value();
  5608. if (diameter == 0.0) {
  5609. // setting any extruder filament size disables volumetric on the assumption that
  5610. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5611. // for all extruders
  5612. cs.volumetric_enabled = false;
  5613. } else {
  5614. cs.filament_size[extruder] = (float)code_value();
  5615. // make sure all extruders have some sane value for the filament size
  5616. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5617. #if EXTRUDERS > 1
  5618. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5619. #if EXTRUDERS > 2
  5620. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5621. #endif
  5622. #endif
  5623. cs.volumetric_enabled = true;
  5624. }
  5625. } else {
  5626. //reserved for setting filament diameter via UFID or filament measuring device
  5627. break;
  5628. }
  5629. calculate_extruder_multipliers();
  5630. }
  5631. break;
  5632. //! ### M201 - Set Print Max Acceleration
  5633. // -------------------------------------------
  5634. case 201:
  5635. for (int8_t i = 0; i < NUM_AXIS; i++)
  5636. {
  5637. if (code_seen(axis_codes[i]))
  5638. {
  5639. unsigned long val = code_value();
  5640. #ifdef TMC2130
  5641. unsigned long val_silent = val;
  5642. if ((i == X_AXIS) || (i == Y_AXIS))
  5643. {
  5644. if (val > NORMAL_MAX_ACCEL_XY)
  5645. val = NORMAL_MAX_ACCEL_XY;
  5646. if (val_silent > SILENT_MAX_ACCEL_XY)
  5647. val_silent = SILENT_MAX_ACCEL_XY;
  5648. }
  5649. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5650. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5651. #else //TMC2130
  5652. max_acceleration_units_per_sq_second[i] = val;
  5653. #endif //TMC2130
  5654. }
  5655. }
  5656. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5657. reset_acceleration_rates();
  5658. break;
  5659. #if 0 // Not used for Sprinter/grbl gen6
  5660. case 202: // M202
  5661. for(int8_t i=0; i < NUM_AXIS; i++) {
  5662. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5663. }
  5664. break;
  5665. #endif
  5666. //! ### M203 - Set Max Feedrate
  5667. // ---------------------------------------
  5668. case 203: // M203 max feedrate mm/sec
  5669. for (int8_t i = 0; i < NUM_AXIS; i++)
  5670. {
  5671. if (code_seen(axis_codes[i]))
  5672. {
  5673. float val = code_value();
  5674. #ifdef TMC2130
  5675. float val_silent = val;
  5676. if ((i == X_AXIS) || (i == Y_AXIS))
  5677. {
  5678. if (val > NORMAL_MAX_FEEDRATE_XY)
  5679. val = NORMAL_MAX_FEEDRATE_XY;
  5680. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5681. val_silent = SILENT_MAX_FEEDRATE_XY;
  5682. }
  5683. cs.max_feedrate_normal[i] = val;
  5684. cs.max_feedrate_silent[i] = val_silent;
  5685. #else //TMC2130
  5686. max_feedrate[i] = val;
  5687. #endif //TMC2130
  5688. }
  5689. }
  5690. break;
  5691. //! ### M204 - Acceleration settings
  5692. // ------------------------------------------
  5693. //! Supporting old format:
  5694. //!
  5695. //! M204 S[normal moves] T[filmanent only moves]
  5696. //!
  5697. //! and new format:
  5698. //!
  5699. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5700. case 204:
  5701. {
  5702. if(code_seen('S')) {
  5703. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5704. // and it is also generated by Slic3r to control acceleration per extrusion type
  5705. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5706. cs.acceleration = code_value();
  5707. // Interpret the T value as retract acceleration in the old Marlin format.
  5708. if(code_seen('T'))
  5709. cs.retract_acceleration = code_value();
  5710. } else {
  5711. // New acceleration format, compatible with the upstream Marlin.
  5712. if(code_seen('P'))
  5713. cs.acceleration = code_value();
  5714. if(code_seen('R'))
  5715. cs.retract_acceleration = code_value();
  5716. if(code_seen('T')) {
  5717. // Interpret the T value as the travel acceleration in the new Marlin format.
  5718. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5719. // travel_acceleration = code_value();
  5720. }
  5721. }
  5722. }
  5723. break;
  5724. //! ### M205 - Set advanced settings
  5725. // ---------------------------------------------
  5726. //! Set some advanced settings related to movement.
  5727. //!
  5728. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5729. /*!
  5730. - `S` - Minimum feedrate for print moves (unit/s)
  5731. - `T` - Minimum feedrate for travel moves (units/s)
  5732. - `B` - Minimum segment time (us)
  5733. - `X` - Maximum X jerk (units/s), similarly for other axes
  5734. */
  5735. case 205:
  5736. {
  5737. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5738. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5739. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5740. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5741. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5742. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5743. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5744. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5745. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5746. }
  5747. break;
  5748. //! ### M206 - Set additional homing offsets
  5749. // ----------------------------------------------
  5750. case 206:
  5751. for(int8_t i=0; i < 3; i++)
  5752. {
  5753. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5754. }
  5755. break;
  5756. #ifdef FWRETRACT
  5757. //! ### M207 - Set firmware retraction
  5758. // --------------------------------------------------
  5759. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5760. {
  5761. if(code_seen('S'))
  5762. {
  5763. cs.retract_length = code_value() ;
  5764. }
  5765. if(code_seen('F'))
  5766. {
  5767. cs.retract_feedrate = code_value()/60 ;
  5768. }
  5769. if(code_seen('Z'))
  5770. {
  5771. cs.retract_zlift = code_value() ;
  5772. }
  5773. }break;
  5774. //! ### M208 - Set retract recover length
  5775. // --------------------------------------------
  5776. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5777. {
  5778. if(code_seen('S'))
  5779. {
  5780. cs.retract_recover_length = code_value() ;
  5781. }
  5782. if(code_seen('F'))
  5783. {
  5784. cs.retract_recover_feedrate = code_value()/60 ;
  5785. }
  5786. }break;
  5787. //! ### M209 - Enable/disable automatict retract
  5788. // ---------------------------------------------
  5789. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5790. {
  5791. if(code_seen('S'))
  5792. {
  5793. int t= code_value() ;
  5794. switch(t)
  5795. {
  5796. case 0:
  5797. {
  5798. cs.autoretract_enabled=false;
  5799. retracted[0]=false;
  5800. #if EXTRUDERS > 1
  5801. retracted[1]=false;
  5802. #endif
  5803. #if EXTRUDERS > 2
  5804. retracted[2]=false;
  5805. #endif
  5806. }break;
  5807. case 1:
  5808. {
  5809. cs.autoretract_enabled=true;
  5810. retracted[0]=false;
  5811. #if EXTRUDERS > 1
  5812. retracted[1]=false;
  5813. #endif
  5814. #if EXTRUDERS > 2
  5815. retracted[2]=false;
  5816. #endif
  5817. }break;
  5818. default:
  5819. SERIAL_ECHO_START;
  5820. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5821. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5822. SERIAL_ECHOLNPGM("\"(1)");
  5823. }
  5824. }
  5825. }break;
  5826. #endif // FWRETRACT
  5827. #if EXTRUDERS > 1
  5828. // ### M218 - Set hotend offset
  5829. // ----------------------------------------
  5830. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5831. {
  5832. uint8_t extruder;
  5833. if(setTargetedHotend(218, extruder)){
  5834. break;
  5835. }
  5836. if(code_seen('X'))
  5837. {
  5838. extruder_offset[X_AXIS][extruder] = code_value();
  5839. }
  5840. if(code_seen('Y'))
  5841. {
  5842. extruder_offset[Y_AXIS][extruder] = code_value();
  5843. }
  5844. SERIAL_ECHO_START;
  5845. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5846. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5847. {
  5848. SERIAL_ECHO(" ");
  5849. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5850. SERIAL_ECHO(",");
  5851. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5852. }
  5853. SERIAL_ECHOLN("");
  5854. }break;
  5855. #endif
  5856. //! ### M220 Set feedrate percentage
  5857. // -----------------------------------------------
  5858. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5859. {
  5860. if (code_seen('B')) //backup current speed factor
  5861. {
  5862. saved_feedmultiply_mm = feedmultiply;
  5863. }
  5864. if(code_seen('S'))
  5865. {
  5866. feedmultiply = code_value() ;
  5867. }
  5868. if (code_seen('R')) { //restore previous feedmultiply
  5869. feedmultiply = saved_feedmultiply_mm;
  5870. }
  5871. }
  5872. break;
  5873. //! ### M221 - Set extrude factor override percentage
  5874. // ----------------------------------------------------
  5875. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5876. {
  5877. if(code_seen('S'))
  5878. {
  5879. int tmp_code = code_value();
  5880. if (code_seen('T'))
  5881. {
  5882. uint8_t extruder;
  5883. if(setTargetedHotend(221, extruder)){
  5884. break;
  5885. }
  5886. extruder_multiply[extruder] = tmp_code;
  5887. }
  5888. else
  5889. {
  5890. extrudemultiply = tmp_code ;
  5891. }
  5892. }
  5893. calculate_extruder_multipliers();
  5894. }
  5895. break;
  5896. //! ### M226 - Wait for Pin state
  5897. // ------------------------------------------
  5898. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5899. {
  5900. if(code_seen('P')){
  5901. int pin_number = code_value(); // pin number
  5902. int pin_state = -1; // required pin state - default is inverted
  5903. if(code_seen('S')) pin_state = code_value(); // required pin state
  5904. if(pin_state >= -1 && pin_state <= 1){
  5905. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5906. {
  5907. if (sensitive_pins[i] == pin_number)
  5908. {
  5909. pin_number = -1;
  5910. break;
  5911. }
  5912. }
  5913. if (pin_number > -1)
  5914. {
  5915. int target = LOW;
  5916. st_synchronize();
  5917. pinMode(pin_number, INPUT);
  5918. switch(pin_state){
  5919. case 1:
  5920. target = HIGH;
  5921. break;
  5922. case 0:
  5923. target = LOW;
  5924. break;
  5925. case -1:
  5926. target = !digitalRead(pin_number);
  5927. break;
  5928. }
  5929. while(digitalRead(pin_number) != target){
  5930. manage_heater();
  5931. manage_inactivity();
  5932. lcd_update(0);
  5933. }
  5934. }
  5935. }
  5936. }
  5937. }
  5938. break;
  5939. #if NUM_SERVOS > 0
  5940. //! ### M280 - Set/Get servo position
  5941. // --------------------------------------------
  5942. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5943. {
  5944. int servo_index = -1;
  5945. int servo_position = 0;
  5946. if (code_seen('P'))
  5947. servo_index = code_value();
  5948. if (code_seen('S')) {
  5949. servo_position = code_value();
  5950. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5951. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5952. servos[servo_index].attach(0);
  5953. #endif
  5954. servos[servo_index].write(servo_position);
  5955. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5956. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5957. servos[servo_index].detach();
  5958. #endif
  5959. }
  5960. else {
  5961. SERIAL_ECHO_START;
  5962. SERIAL_ECHO("Servo ");
  5963. SERIAL_ECHO(servo_index);
  5964. SERIAL_ECHOLN(" out of range");
  5965. }
  5966. }
  5967. else if (servo_index >= 0) {
  5968. SERIAL_PROTOCOL(MSG_OK);
  5969. SERIAL_PROTOCOL(" Servo ");
  5970. SERIAL_PROTOCOL(servo_index);
  5971. SERIAL_PROTOCOL(": ");
  5972. SERIAL_PROTOCOL(servos[servo_index].read());
  5973. SERIAL_PROTOCOLLN("");
  5974. }
  5975. }
  5976. break;
  5977. #endif // NUM_SERVOS > 0
  5978. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5979. //! ### M300 - Play tone
  5980. // -----------------------
  5981. case 300: // M300
  5982. {
  5983. int beepS = code_seen('S') ? code_value() : 110;
  5984. int beepP = code_seen('P') ? code_value() : 1000;
  5985. if (beepS > 0)
  5986. {
  5987. #if BEEPER > 0
  5988. Sound_MakeCustom(beepP,beepS,false);
  5989. #endif
  5990. }
  5991. else
  5992. {
  5993. _delay(beepP);
  5994. }
  5995. }
  5996. break;
  5997. #endif // M300
  5998. #ifdef PIDTEMP
  5999. //! ### M301 - Set hotend PID
  6000. // ---------------------------------------
  6001. case 301:
  6002. {
  6003. if(code_seen('P')) cs.Kp = code_value();
  6004. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6005. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6006. #ifdef PID_ADD_EXTRUSION_RATE
  6007. if(code_seen('C')) Kc = code_value();
  6008. #endif
  6009. updatePID();
  6010. SERIAL_PROTOCOLRPGM(MSG_OK);
  6011. SERIAL_PROTOCOL(" p:");
  6012. SERIAL_PROTOCOL(cs.Kp);
  6013. SERIAL_PROTOCOL(" i:");
  6014. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6015. SERIAL_PROTOCOL(" d:");
  6016. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6017. #ifdef PID_ADD_EXTRUSION_RATE
  6018. SERIAL_PROTOCOL(" c:");
  6019. //Kc does not have scaling applied above, or in resetting defaults
  6020. SERIAL_PROTOCOL(Kc);
  6021. #endif
  6022. SERIAL_PROTOCOLLN("");
  6023. }
  6024. break;
  6025. #endif //PIDTEMP
  6026. #ifdef PIDTEMPBED
  6027. //! ### M304 - Set bed PID
  6028. // --------------------------------------
  6029. case 304:
  6030. {
  6031. if(code_seen('P')) cs.bedKp = code_value();
  6032. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6033. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6034. updatePID();
  6035. SERIAL_PROTOCOLRPGM(MSG_OK);
  6036. SERIAL_PROTOCOL(" p:");
  6037. SERIAL_PROTOCOL(cs.bedKp);
  6038. SERIAL_PROTOCOL(" i:");
  6039. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6040. SERIAL_PROTOCOL(" d:");
  6041. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6042. SERIAL_PROTOCOLLN("");
  6043. }
  6044. break;
  6045. #endif //PIDTEMP
  6046. //! ### M240 - Trigger camera
  6047. // --------------------------------------------
  6048. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6049. {
  6050. #ifdef CHDK
  6051. SET_OUTPUT(CHDK);
  6052. WRITE(CHDK, HIGH);
  6053. chdkHigh = _millis();
  6054. chdkActive = true;
  6055. #else
  6056. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6057. const uint8_t NUM_PULSES=16;
  6058. const float PULSE_LENGTH=0.01524;
  6059. for(int i=0; i < NUM_PULSES; i++) {
  6060. WRITE(PHOTOGRAPH_PIN, HIGH);
  6061. _delay_ms(PULSE_LENGTH);
  6062. WRITE(PHOTOGRAPH_PIN, LOW);
  6063. _delay_ms(PULSE_LENGTH);
  6064. }
  6065. _delay(7.33);
  6066. for(int i=0; i < NUM_PULSES; i++) {
  6067. WRITE(PHOTOGRAPH_PIN, HIGH);
  6068. _delay_ms(PULSE_LENGTH);
  6069. WRITE(PHOTOGRAPH_PIN, LOW);
  6070. _delay_ms(PULSE_LENGTH);
  6071. }
  6072. #endif
  6073. #endif //chdk end if
  6074. }
  6075. break;
  6076. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6077. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6078. // -------------------------------------------------------------------
  6079. case 302:
  6080. {
  6081. float temp = .0;
  6082. if (code_seen('S')) temp=code_value();
  6083. set_extrude_min_temp(temp);
  6084. }
  6085. break;
  6086. #endif
  6087. //! ### M303 - PID autotune
  6088. // -------------------------------------
  6089. case 303:
  6090. {
  6091. float temp = 150.0;
  6092. int e=0;
  6093. int c=5;
  6094. if (code_seen('E')) e=code_value();
  6095. if (e<0)
  6096. temp=70;
  6097. if (code_seen('S')) temp=code_value();
  6098. if (code_seen('C')) c=code_value();
  6099. PID_autotune(temp, e, c);
  6100. }
  6101. break;
  6102. //! ### M400 - Wait for all moves to finish
  6103. // -----------------------------------------
  6104. case 400:
  6105. {
  6106. st_synchronize();
  6107. }
  6108. break;
  6109. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6110. // ----------------------------------------------
  6111. case 403:
  6112. {
  6113. // currently three different materials are needed (default, flex and PVA)
  6114. // add storing this information for different load/unload profiles etc. in the future
  6115. // firmware does not wait for "ok" from mmu
  6116. if (mmu_enabled)
  6117. {
  6118. uint8_t extruder = 255;
  6119. uint8_t filament = FILAMENT_UNDEFINED;
  6120. if(code_seen('E')) extruder = code_value();
  6121. if(code_seen('F')) filament = code_value();
  6122. mmu_set_filament_type(extruder, filament);
  6123. }
  6124. }
  6125. break;
  6126. //! ### M500 - Store settings in EEPROM
  6127. // -----------------------------------------
  6128. case 500:
  6129. {
  6130. Config_StoreSettings();
  6131. }
  6132. break;
  6133. //! ### M501 - Read settings from EEPROM
  6134. // ----------------------------------------
  6135. case 501:
  6136. {
  6137. Config_RetrieveSettings();
  6138. }
  6139. break;
  6140. //! ### M502 - Revert all settings to factory default
  6141. // -------------------------------------------------
  6142. case 502:
  6143. {
  6144. Config_ResetDefault();
  6145. }
  6146. break;
  6147. //! ### M503 - Repport all settings currently in memory
  6148. // -------------------------------------------------
  6149. case 503:
  6150. {
  6151. Config_PrintSettings();
  6152. }
  6153. break;
  6154. //! ### M509 - Force language selection
  6155. // ------------------------------------------------
  6156. case 509:
  6157. {
  6158. lang_reset();
  6159. SERIAL_ECHO_START;
  6160. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6161. }
  6162. break;
  6163. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6164. //! ### M540 - Abort print on endstop hit (enable/disable)
  6165. // -----------------------------------------------------
  6166. case 540:
  6167. {
  6168. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6169. }
  6170. break;
  6171. #endif
  6172. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6173. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6174. {
  6175. float value;
  6176. if (code_seen('Z'))
  6177. {
  6178. value = code_value();
  6179. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6180. {
  6181. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6182. SERIAL_ECHO_START;
  6183. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6184. SERIAL_PROTOCOLLN("");
  6185. }
  6186. else
  6187. {
  6188. SERIAL_ECHO_START;
  6189. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6190. SERIAL_ECHORPGM(MSG_Z_MIN);
  6191. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6192. SERIAL_ECHORPGM(MSG_Z_MAX);
  6193. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6194. SERIAL_PROTOCOLLN("");
  6195. }
  6196. }
  6197. else
  6198. {
  6199. SERIAL_ECHO_START;
  6200. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6201. SERIAL_ECHO(-cs.zprobe_zoffset);
  6202. SERIAL_PROTOCOLLN("");
  6203. }
  6204. break;
  6205. }
  6206. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6207. #ifdef FILAMENTCHANGEENABLE
  6208. //! ### M600 - Initiate Filament change procedure
  6209. // --------------------------------------
  6210. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6211. {
  6212. st_synchronize();
  6213. float x_position = current_position[X_AXIS];
  6214. float y_position = current_position[Y_AXIS];
  6215. float z_shift = 0; // is it necessary to be a float?
  6216. float e_shift_init = 0;
  6217. float e_shift_late = 0;
  6218. bool automatic = false;
  6219. //Retract extruder
  6220. if(code_seen('E'))
  6221. {
  6222. e_shift_init = code_value();
  6223. }
  6224. else
  6225. {
  6226. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6227. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6228. #endif
  6229. }
  6230. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6231. if (code_seen('L'))
  6232. {
  6233. e_shift_late = code_value();
  6234. }
  6235. else
  6236. {
  6237. #ifdef FILAMENTCHANGE_FINALRETRACT
  6238. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6239. #endif
  6240. }
  6241. //Lift Z
  6242. if(code_seen('Z'))
  6243. {
  6244. z_shift = code_value();
  6245. }
  6246. else
  6247. {
  6248. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6249. }
  6250. //Move XY to side
  6251. if(code_seen('X'))
  6252. {
  6253. x_position = code_value();
  6254. }
  6255. else
  6256. {
  6257. #ifdef FILAMENTCHANGE_XPOS
  6258. x_position = FILAMENTCHANGE_XPOS;
  6259. #endif
  6260. }
  6261. if(code_seen('Y'))
  6262. {
  6263. y_position = code_value();
  6264. }
  6265. else
  6266. {
  6267. #ifdef FILAMENTCHANGE_YPOS
  6268. y_position = FILAMENTCHANGE_YPOS ;
  6269. #endif
  6270. }
  6271. if (mmu_enabled && code_seen("AUTO"))
  6272. automatic = true;
  6273. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6274. }
  6275. break;
  6276. #endif //FILAMENTCHANGEENABLE
  6277. //! ### M601 - Pause print
  6278. // -------------------------------
  6279. case 601:
  6280. {
  6281. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6282. lcd_pause_print();
  6283. }
  6284. break;
  6285. //! ### M602 - Resume print
  6286. // -------------------------------
  6287. case 602: {
  6288. lcd_resume_print();
  6289. }
  6290. break;
  6291. //! ### M603 - Stop print
  6292. // -------------------------------
  6293. case 603: {
  6294. lcd_print_stop();
  6295. }
  6296. #ifdef PINDA_THERMISTOR
  6297. //! ### M860 - Wait for extruder temperature (PINDA)
  6298. // --------------------------------------------------------------
  6299. /*!
  6300. Wait for PINDA thermistor to reach target temperature
  6301. M860 [S<target_temperature>]
  6302. */
  6303. case 860:
  6304. {
  6305. int set_target_pinda = 0;
  6306. if (code_seen('S')) {
  6307. set_target_pinda = code_value();
  6308. }
  6309. else {
  6310. break;
  6311. }
  6312. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6313. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6314. SERIAL_PROTOCOL(set_target_pinda);
  6315. SERIAL_PROTOCOLLN("");
  6316. codenum = _millis();
  6317. cancel_heatup = false;
  6318. bool is_pinda_cooling = false;
  6319. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6320. is_pinda_cooling = true;
  6321. }
  6322. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6323. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6324. {
  6325. SERIAL_PROTOCOLPGM("P:");
  6326. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6327. SERIAL_PROTOCOLPGM("/");
  6328. SERIAL_PROTOCOL(set_target_pinda);
  6329. SERIAL_PROTOCOLLN("");
  6330. codenum = _millis();
  6331. }
  6332. manage_heater();
  6333. manage_inactivity();
  6334. lcd_update(0);
  6335. }
  6336. LCD_MESSAGERPGM(MSG_OK);
  6337. break;
  6338. }
  6339. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6340. // -----------------------------------------------------------
  6341. /*!
  6342. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6343. - `?` - Print current EEPROM offset values
  6344. - `!` - Set factory default values
  6345. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6346. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6347. */
  6348. case 861:
  6349. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6350. uint8_t cal_status = calibration_status_pinda();
  6351. int16_t usteps = 0;
  6352. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6353. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6354. for (uint8_t i = 0; i < 6; i++)
  6355. {
  6356. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6357. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6358. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6359. SERIAL_PROTOCOLPGM(", ");
  6360. SERIAL_PROTOCOL(35 + (i * 5));
  6361. SERIAL_PROTOCOLPGM(", ");
  6362. SERIAL_PROTOCOL(usteps);
  6363. SERIAL_PROTOCOLPGM(", ");
  6364. SERIAL_PROTOCOL(mm * 1000);
  6365. SERIAL_PROTOCOLLN("");
  6366. }
  6367. }
  6368. else if (code_seen('!')) { // ! - Set factory default values
  6369. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6370. int16_t z_shift = 8; //40C - 20um - 8usteps
  6371. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6372. z_shift = 24; //45C - 60um - 24usteps
  6373. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6374. z_shift = 48; //50C - 120um - 48usteps
  6375. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6376. z_shift = 80; //55C - 200um - 80usteps
  6377. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6378. z_shift = 120; //60C - 300um - 120usteps
  6379. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6380. SERIAL_PROTOCOLLN("factory restored");
  6381. }
  6382. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6383. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6384. int16_t z_shift = 0;
  6385. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6386. SERIAL_PROTOCOLLN("zerorized");
  6387. }
  6388. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6389. int16_t usteps = code_value();
  6390. if (code_seen('I')) {
  6391. uint8_t index = code_value();
  6392. if (index < 5) {
  6393. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6394. SERIAL_PROTOCOLLN("OK");
  6395. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6396. for (uint8_t i = 0; i < 6; i++)
  6397. {
  6398. usteps = 0;
  6399. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6400. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6401. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6402. SERIAL_PROTOCOLPGM(", ");
  6403. SERIAL_PROTOCOL(35 + (i * 5));
  6404. SERIAL_PROTOCOLPGM(", ");
  6405. SERIAL_PROTOCOL(usteps);
  6406. SERIAL_PROTOCOLPGM(", ");
  6407. SERIAL_PROTOCOL(mm * 1000);
  6408. SERIAL_PROTOCOLLN("");
  6409. }
  6410. }
  6411. }
  6412. }
  6413. else {
  6414. SERIAL_PROTOCOLPGM("no valid command");
  6415. }
  6416. break;
  6417. #endif //PINDA_THERMISTOR
  6418. //! ### M862 - Print checking
  6419. // ----------------------------------------------
  6420. /*!
  6421. Checks the parameters of the printer and gcode and performs compatibility check
  6422. - M862.1 { P<nozzle_diameter> | Q }
  6423. - M862.2 { P<model_code> | Q }
  6424. - M862.3 { P"<model_name>" | Q }
  6425. - M862.4 { P<fw_version> | Q }
  6426. - M862.5 { P<gcode_level> | Q }
  6427. When run with P<> argument, the check is performed against the input value.
  6428. When run with Q argument, the current value is shown.
  6429. M862.3 accepts text identifiers of printer types too.
  6430. The syntax of M862.3 is (note the quotes around the type):
  6431. M862.3 P "MK3S"
  6432. Accepted printer type identifiers and their numeric counterparts:
  6433. - MK1 (100)
  6434. - MK2 (200)
  6435. - MK2MM (201)
  6436. - MK2S (202)
  6437. - MK2SMM (203)
  6438. - MK2.5 (250)
  6439. - MK2.5MMU2 (20250)
  6440. - MK2.5S (252)
  6441. - MK2.5SMMU2S (20252)
  6442. - MK3 (300)
  6443. - MK3MMU2 (20300)
  6444. - MK3S (302)
  6445. - MK3SMMU2S (20302)
  6446. */
  6447. case 862: // M862: print checking
  6448. float nDummy;
  6449. uint8_t nCommand;
  6450. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6451. switch((ClPrintChecking)nCommand)
  6452. {
  6453. case ClPrintChecking::_Nozzle: // ~ .1
  6454. uint16_t nDiameter;
  6455. if(code_seen('P'))
  6456. {
  6457. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6458. nozzle_diameter_check(nDiameter);
  6459. }
  6460. /*
  6461. else if(code_seen('S')&&farm_mode)
  6462. {
  6463. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6464. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6465. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6466. }
  6467. */
  6468. else if(code_seen('Q'))
  6469. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6470. break;
  6471. case ClPrintChecking::_Model: // ~ .2
  6472. if(code_seen('P'))
  6473. {
  6474. uint16_t nPrinterModel;
  6475. nPrinterModel=(uint16_t)code_value_long();
  6476. printer_model_check(nPrinterModel);
  6477. }
  6478. else if(code_seen('Q'))
  6479. SERIAL_PROTOCOLLN(nPrinterType);
  6480. break;
  6481. case ClPrintChecking::_Smodel: // ~ .3
  6482. if(code_seen('P'))
  6483. printer_smodel_check(strchr_pointer);
  6484. else if(code_seen('Q'))
  6485. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6486. break;
  6487. case ClPrintChecking::_Version: // ~ .4
  6488. if(code_seen('P'))
  6489. fw_version_check(++strchr_pointer);
  6490. else if(code_seen('Q'))
  6491. SERIAL_PROTOCOLLN(FW_VERSION);
  6492. break;
  6493. case ClPrintChecking::_Gcode: // ~ .5
  6494. if(code_seen('P'))
  6495. {
  6496. uint16_t nGcodeLevel;
  6497. nGcodeLevel=(uint16_t)code_value_long();
  6498. gcode_level_check(nGcodeLevel);
  6499. }
  6500. else if(code_seen('Q'))
  6501. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6502. break;
  6503. }
  6504. break;
  6505. #ifdef LIN_ADVANCE
  6506. //! ### M900 - Set Linear advance options
  6507. // ----------------------------------------------
  6508. case 900:
  6509. gcode_M900();
  6510. break;
  6511. #endif
  6512. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6513. // ---------------------------------------------------------------
  6514. case 907:
  6515. {
  6516. #ifdef TMC2130
  6517. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6518. for (int i = 0; i < NUM_AXIS; i++)
  6519. if(code_seen(axis_codes[i]))
  6520. {
  6521. long cur_mA = code_value_long();
  6522. uint8_t val = tmc2130_cur2val(cur_mA);
  6523. tmc2130_set_current_h(i, val);
  6524. tmc2130_set_current_r(i, val);
  6525. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6526. }
  6527. #else //TMC2130
  6528. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6529. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6530. if(code_seen('B')) st_current_set(4,code_value());
  6531. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6532. #endif
  6533. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6534. if(code_seen('X')) st_current_set(0, code_value());
  6535. #endif
  6536. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6537. if(code_seen('Z')) st_current_set(1, code_value());
  6538. #endif
  6539. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6540. if(code_seen('E')) st_current_set(2, code_value());
  6541. #endif
  6542. #endif //TMC2130
  6543. }
  6544. break;
  6545. //! ### M908 - Control digital trimpot directly
  6546. // ---------------------------------------------------------
  6547. case 908:
  6548. {
  6549. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6550. uint8_t channel,current;
  6551. if(code_seen('P')) channel=code_value();
  6552. if(code_seen('S')) current=code_value();
  6553. digitalPotWrite(channel, current);
  6554. #endif
  6555. }
  6556. break;
  6557. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6558. //! ### M910 - TMC2130 init
  6559. // -----------------------------------------------
  6560. case 910:
  6561. {
  6562. tmc2130_init();
  6563. }
  6564. break;
  6565. //! ### M911 - Set TMC2130 holding currents
  6566. // -------------------------------------------------
  6567. case 911:
  6568. {
  6569. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6570. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6571. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6572. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6573. }
  6574. break;
  6575. //! ### M912 - Set TMC2130 running currents
  6576. // -----------------------------------------------
  6577. case 912:
  6578. {
  6579. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6580. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6581. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6582. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6583. }
  6584. break;
  6585. //! ### M913 - Print TMC2130 currents
  6586. // -----------------------------
  6587. case 913:
  6588. {
  6589. tmc2130_print_currents();
  6590. }
  6591. break;
  6592. //! ### M914 - Set TMC2130 normal mode
  6593. // ------------------------------
  6594. case 914:
  6595. {
  6596. tmc2130_mode = TMC2130_MODE_NORMAL;
  6597. update_mode_profile();
  6598. tmc2130_init();
  6599. }
  6600. break;
  6601. //! ### M95 - Set TMC2130 silent mode
  6602. // ------------------------------
  6603. case 915:
  6604. {
  6605. tmc2130_mode = TMC2130_MODE_SILENT;
  6606. update_mode_profile();
  6607. tmc2130_init();
  6608. }
  6609. break;
  6610. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6611. // -------------------------------------------------------
  6612. case 916:
  6613. {
  6614. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6615. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6616. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6617. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6618. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6619. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6620. }
  6621. break;
  6622. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6623. // --------------------------------------------------------------
  6624. case 917:
  6625. {
  6626. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6627. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6628. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6629. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6630. }
  6631. break;
  6632. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6633. // -------------------------------------------------------------
  6634. case 918:
  6635. {
  6636. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6637. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6638. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6639. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6640. }
  6641. break;
  6642. #endif //TMC2130_SERVICE_CODES_M910_M918
  6643. //! ### M350 - Set microstepping mode
  6644. // ---------------------------------------------------
  6645. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6646. case 350:
  6647. {
  6648. #ifdef TMC2130
  6649. if(code_seen('E'))
  6650. {
  6651. uint16_t res_new = code_value();
  6652. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6653. {
  6654. st_synchronize();
  6655. uint8_t axis = E_AXIS;
  6656. uint16_t res = tmc2130_get_res(axis);
  6657. tmc2130_set_res(axis, res_new);
  6658. cs.axis_ustep_resolution[axis] = res_new;
  6659. if (res_new > res)
  6660. {
  6661. uint16_t fac = (res_new / res);
  6662. cs.axis_steps_per_unit[axis] *= fac;
  6663. position[E_AXIS] *= fac;
  6664. }
  6665. else
  6666. {
  6667. uint16_t fac = (res / res_new);
  6668. cs.axis_steps_per_unit[axis] /= fac;
  6669. position[E_AXIS] /= fac;
  6670. }
  6671. }
  6672. }
  6673. #else //TMC2130
  6674. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6675. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6676. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6677. if(code_seen('B')) microstep_mode(4,code_value());
  6678. microstep_readings();
  6679. #endif
  6680. #endif //TMC2130
  6681. }
  6682. break;
  6683. //! ### M351 - Toggle Microstep Pins
  6684. // -----------------------------------
  6685. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6686. //!
  6687. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6688. case 351:
  6689. {
  6690. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6691. if(code_seen('S')) switch((int)code_value())
  6692. {
  6693. case 1:
  6694. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6695. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6696. break;
  6697. case 2:
  6698. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6699. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6700. break;
  6701. }
  6702. microstep_readings();
  6703. #endif
  6704. }
  6705. break;
  6706. //! ### M701 - Load filament
  6707. // -------------------------
  6708. case 701:
  6709. {
  6710. if (mmu_enabled && code_seen('E'))
  6711. tmp_extruder = code_value();
  6712. gcode_M701();
  6713. }
  6714. break;
  6715. //! ### M702 - Unload filament
  6716. // ------------------------
  6717. /*!
  6718. M702 [U C]
  6719. - `U` Unload all filaments used in current print
  6720. - `C` Unload just current filament
  6721. - without any parameters unload all filaments
  6722. */
  6723. case 702:
  6724. {
  6725. #ifdef SNMM
  6726. if (code_seen('U'))
  6727. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6728. else if (code_seen('C'))
  6729. extr_unload(); //! if "C" unload just current filament
  6730. else
  6731. extr_unload_all(); //! otherwise unload all filaments
  6732. #else
  6733. if (code_seen('C')) {
  6734. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6735. }
  6736. else {
  6737. if(mmu_enabled) extr_unload(); //! unload current filament
  6738. else unload_filament();
  6739. }
  6740. #endif //SNMM
  6741. }
  6742. break;
  6743. //! ### M999 - Restart after being stopped
  6744. // ------------------------------------
  6745. case 999:
  6746. Stopped = false;
  6747. lcd_reset_alert_level();
  6748. gcode_LastN = Stopped_gcode_LastN;
  6749. FlushSerialRequestResend();
  6750. break;
  6751. default:
  6752. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6753. }
  6754. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6755. mcode_in_progress = 0;
  6756. }
  6757. }
  6758. // end if(code_seen('M')) (end of M codes)
  6759. //! -----------------------------------------------------------------------------------------
  6760. //! T Codes
  6761. //!
  6762. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6763. //! select filament in case of MMU_V2
  6764. //! if extruder is "?", open menu to let the user select extruder/filament
  6765. //!
  6766. //! For MMU_V2:
  6767. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6768. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6769. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6770. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6771. else if(code_seen('T'))
  6772. {
  6773. int index;
  6774. bool load_to_nozzle = false;
  6775. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6776. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6777. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6778. SERIAL_ECHOLNPGM("Invalid T code.");
  6779. }
  6780. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6781. if (mmu_enabled)
  6782. {
  6783. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6784. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6785. {
  6786. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6787. }
  6788. else
  6789. {
  6790. st_synchronize();
  6791. mmu_command(MmuCmd::T0 + tmp_extruder);
  6792. manage_response(true, true, MMU_TCODE_MOVE);
  6793. }
  6794. }
  6795. }
  6796. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6797. if (mmu_enabled)
  6798. {
  6799. st_synchronize();
  6800. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6801. mmu_extruder = tmp_extruder; //filament change is finished
  6802. mmu_load_to_nozzle();
  6803. }
  6804. }
  6805. else {
  6806. if (*(strchr_pointer + index) == '?')
  6807. {
  6808. if(mmu_enabled)
  6809. {
  6810. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6811. load_to_nozzle = true;
  6812. } else
  6813. {
  6814. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6815. }
  6816. }
  6817. else {
  6818. tmp_extruder = code_value();
  6819. if (mmu_enabled && lcd_autoDepleteEnabled())
  6820. {
  6821. tmp_extruder = ad_getAlternative(tmp_extruder);
  6822. }
  6823. }
  6824. st_synchronize();
  6825. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6826. if (mmu_enabled)
  6827. {
  6828. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6829. {
  6830. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6831. }
  6832. else
  6833. {
  6834. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6835. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6836. {
  6837. mmu_command(MmuCmd::K0 + tmp_extruder);
  6838. manage_response(true, true, MMU_UNLOAD_MOVE);
  6839. }
  6840. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6841. mmu_command(MmuCmd::T0 + tmp_extruder);
  6842. manage_response(true, true, MMU_TCODE_MOVE);
  6843. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6844. mmu_extruder = tmp_extruder; //filament change is finished
  6845. if (load_to_nozzle)// for single material usage with mmu
  6846. {
  6847. mmu_load_to_nozzle();
  6848. }
  6849. }
  6850. }
  6851. else
  6852. {
  6853. #ifdef SNMM
  6854. #ifdef LIN_ADVANCE
  6855. if (mmu_extruder != tmp_extruder)
  6856. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6857. #endif
  6858. mmu_extruder = tmp_extruder;
  6859. _delay(100);
  6860. disable_e0();
  6861. disable_e1();
  6862. disable_e2();
  6863. pinMode(E_MUX0_PIN, OUTPUT);
  6864. pinMode(E_MUX1_PIN, OUTPUT);
  6865. _delay(100);
  6866. SERIAL_ECHO_START;
  6867. SERIAL_ECHO("T:");
  6868. SERIAL_ECHOLN((int)tmp_extruder);
  6869. switch (tmp_extruder) {
  6870. case 1:
  6871. WRITE(E_MUX0_PIN, HIGH);
  6872. WRITE(E_MUX1_PIN, LOW);
  6873. break;
  6874. case 2:
  6875. WRITE(E_MUX0_PIN, LOW);
  6876. WRITE(E_MUX1_PIN, HIGH);
  6877. break;
  6878. case 3:
  6879. WRITE(E_MUX0_PIN, HIGH);
  6880. WRITE(E_MUX1_PIN, HIGH);
  6881. break;
  6882. default:
  6883. WRITE(E_MUX0_PIN, LOW);
  6884. WRITE(E_MUX1_PIN, LOW);
  6885. break;
  6886. }
  6887. _delay(100);
  6888. #else //SNMM
  6889. if (tmp_extruder >= EXTRUDERS) {
  6890. SERIAL_ECHO_START;
  6891. SERIAL_ECHOPGM("T");
  6892. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6893. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6894. }
  6895. else {
  6896. #if EXTRUDERS > 1
  6897. boolean make_move = false;
  6898. #endif
  6899. if (code_seen('F')) {
  6900. #if EXTRUDERS > 1
  6901. make_move = true;
  6902. #endif
  6903. next_feedrate = code_value();
  6904. if (next_feedrate > 0.0) {
  6905. feedrate = next_feedrate;
  6906. }
  6907. }
  6908. #if EXTRUDERS > 1
  6909. if (tmp_extruder != active_extruder) {
  6910. // Save current position to return to after applying extruder offset
  6911. memcpy(destination, current_position, sizeof(destination));
  6912. // Offset extruder (only by XY)
  6913. int i;
  6914. for (i = 0; i < 2; i++) {
  6915. current_position[i] = current_position[i] -
  6916. extruder_offset[i][active_extruder] +
  6917. extruder_offset[i][tmp_extruder];
  6918. }
  6919. // Set the new active extruder and position
  6920. active_extruder = tmp_extruder;
  6921. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6922. // Move to the old position if 'F' was in the parameters
  6923. if (make_move && Stopped == false) {
  6924. prepare_move();
  6925. }
  6926. }
  6927. #endif
  6928. SERIAL_ECHO_START;
  6929. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6930. SERIAL_PROTOCOLLN((int)active_extruder);
  6931. }
  6932. #endif //SNMM
  6933. }
  6934. }
  6935. } // end if(code_seen('T')) (end of T codes)
  6936. //! ----------------------------------------------------------------------------------------------
  6937. else if (code_seen('D')) // D codes (debug)
  6938. {
  6939. switch((int)code_value())
  6940. {
  6941. //! ### D-1 - Endless loop
  6942. // -------------------
  6943. case -1:
  6944. dcode__1(); break;
  6945. #ifdef DEBUG_DCODES
  6946. //! ### D0 - Reset
  6947. // --------------
  6948. case 0:
  6949. dcode_0(); break;
  6950. //! ### D1 - Clear EEPROM
  6951. // ------------------
  6952. case 1:
  6953. dcode_1(); break;
  6954. //! ### D2 - Read/Write RAM
  6955. // --------------------
  6956. case 2:
  6957. dcode_2(); break;
  6958. #endif //DEBUG_DCODES
  6959. #ifdef DEBUG_DCODE3
  6960. //! ### D3 - Read/Write EEPROM
  6961. // -----------------------
  6962. case 3:
  6963. dcode_3(); break;
  6964. #endif //DEBUG_DCODE3
  6965. #ifdef DEBUG_DCODES
  6966. //! ### D4 - Read/Write PIN
  6967. // ---------------------
  6968. case 4:
  6969. dcode_4(); break;
  6970. #endif //DEBUG_DCODES
  6971. #ifdef DEBUG_DCODE5
  6972. //! ### D5 - Read/Write FLASH
  6973. // ------------------------
  6974. case 5:
  6975. dcode_5(); break;
  6976. break;
  6977. #endif //DEBUG_DCODE5
  6978. #ifdef DEBUG_DCODES
  6979. //! ### D6 - Read/Write external FLASH
  6980. // ---------------------------------------
  6981. case 6:
  6982. dcode_6(); break;
  6983. //! ### D7 - Read/Write Bootloader
  6984. // -------------------------------
  6985. case 7:
  6986. dcode_7(); break;
  6987. //! ### D8 - Read/Write PINDA
  6988. // ---------------------------
  6989. case 8:
  6990. dcode_8(); break;
  6991. // ### D9 - Read/Write ADC
  6992. // ------------------------
  6993. case 9:
  6994. dcode_9(); break;
  6995. //! ### D10 - XYZ calibration = OK
  6996. // ------------------------------
  6997. case 10:
  6998. dcode_10(); break;
  6999. #endif //DEBUG_DCODES
  7000. #ifdef HEATBED_ANALYSIS
  7001. //! ### D80 - Bed check
  7002. // ---------------------
  7003. /*!
  7004. - `E` - dimension x
  7005. - `F` - dimention y
  7006. - `G` - points_x
  7007. - `H` - points_y
  7008. - `I` - offset_x
  7009. - `J` - offset_y
  7010. */
  7011. case 80:
  7012. {
  7013. float dimension_x = 40;
  7014. float dimension_y = 40;
  7015. int points_x = 40;
  7016. int points_y = 40;
  7017. float offset_x = 74;
  7018. float offset_y = 33;
  7019. if (code_seen('E')) dimension_x = code_value();
  7020. if (code_seen('F')) dimension_y = code_value();
  7021. if (code_seen('G')) {points_x = code_value(); }
  7022. if (code_seen('H')) {points_y = code_value(); }
  7023. if (code_seen('I')) {offset_x = code_value(); }
  7024. if (code_seen('J')) {offset_y = code_value(); }
  7025. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7026. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7027. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7028. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7029. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7030. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7031. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7032. }break;
  7033. //! ### D81 - Bed analysis
  7034. // -----------------------------
  7035. /*!
  7036. - `E` - dimension x
  7037. - `F` - dimention y
  7038. - `G` - points_x
  7039. - `H` - points_y
  7040. - `I` - offset_x
  7041. - `J` - offset_y
  7042. */
  7043. case 81:
  7044. {
  7045. float dimension_x = 40;
  7046. float dimension_y = 40;
  7047. int points_x = 40;
  7048. int points_y = 40;
  7049. float offset_x = 74;
  7050. float offset_y = 33;
  7051. if (code_seen('E')) dimension_x = code_value();
  7052. if (code_seen('F')) dimension_y = code_value();
  7053. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7054. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7055. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7056. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7057. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7058. } break;
  7059. #endif //HEATBED_ANALYSIS
  7060. #ifdef DEBUG_DCODES
  7061. //! ### D106 print measured fan speed for different pwm values
  7062. // --------------------------------------------------------------
  7063. case 106:
  7064. {
  7065. for (int i = 255; i > 0; i = i - 5) {
  7066. fanSpeed = i;
  7067. //delay_keep_alive(2000);
  7068. for (int j = 0; j < 100; j++) {
  7069. delay_keep_alive(100);
  7070. }
  7071. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7072. }
  7073. }break;
  7074. #ifdef TMC2130
  7075. //! ### D2130 - TMC2130 Trinamic stepper controller
  7076. // ---------------------------
  7077. /*!
  7078. D2130<axis><command>[subcommand][value]
  7079. - <command>:
  7080. - '0' current off
  7081. - '1' current on
  7082. - '+' single step
  7083. - * value sereval steps
  7084. - '-' dtto oposite direction
  7085. - '?' read register
  7086. - * "mres"
  7087. - * "step"
  7088. - * "mscnt"
  7089. - * "mscuract"
  7090. - * "wave"
  7091. - '!' set register
  7092. - * "mres"
  7093. - * "step"
  7094. - * "wave"
  7095. - '@' home calibrate axis
  7096. Example:
  7097. D2130E?wave ... print extruder microstep linearity compensation curve
  7098. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7099. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7100. */
  7101. case 2130:
  7102. dcode_2130(); break;
  7103. #endif //TMC2130
  7104. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7105. //! ### D9125 - FILAMENT_SENSOR
  7106. // ---------------------------------
  7107. case 9125:
  7108. dcode_9125(); break;
  7109. #endif //FILAMENT_SENSOR
  7110. #endif //DEBUG_DCODES
  7111. }
  7112. }
  7113. else
  7114. {
  7115. SERIAL_ECHO_START;
  7116. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7117. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7118. SERIAL_ECHOLNPGM("\"(2)");
  7119. }
  7120. KEEPALIVE_STATE(NOT_BUSY);
  7121. ClearToSend();
  7122. }
  7123. /** @defgroup GCodes G-Code List
  7124. */
  7125. // ---------------------------------------------------
  7126. void FlushSerialRequestResend()
  7127. {
  7128. //char cmdbuffer[bufindr][100]="Resend:";
  7129. MYSERIAL.flush();
  7130. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7131. }
  7132. // Confirm the execution of a command, if sent from a serial line.
  7133. // Execution of a command from a SD card will not be confirmed.
  7134. void ClearToSend()
  7135. {
  7136. previous_millis_cmd = _millis();
  7137. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7138. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7139. }
  7140. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7141. void update_currents() {
  7142. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7143. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7144. float tmp_motor[3];
  7145. //SERIAL_ECHOLNPGM("Currents updated: ");
  7146. if (destination[Z_AXIS] < Z_SILENT) {
  7147. //SERIAL_ECHOLNPGM("LOW");
  7148. for (uint8_t i = 0; i < 3; i++) {
  7149. st_current_set(i, current_low[i]);
  7150. /*MYSERIAL.print(int(i));
  7151. SERIAL_ECHOPGM(": ");
  7152. MYSERIAL.println(current_low[i]);*/
  7153. }
  7154. }
  7155. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7156. //SERIAL_ECHOLNPGM("HIGH");
  7157. for (uint8_t i = 0; i < 3; i++) {
  7158. st_current_set(i, current_high[i]);
  7159. /*MYSERIAL.print(int(i));
  7160. SERIAL_ECHOPGM(": ");
  7161. MYSERIAL.println(current_high[i]);*/
  7162. }
  7163. }
  7164. else {
  7165. for (uint8_t i = 0; i < 3; i++) {
  7166. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7167. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7168. st_current_set(i, tmp_motor[i]);
  7169. /*MYSERIAL.print(int(i));
  7170. SERIAL_ECHOPGM(": ");
  7171. MYSERIAL.println(tmp_motor[i]);*/
  7172. }
  7173. }
  7174. }
  7175. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7176. void get_coordinates()
  7177. {
  7178. bool seen[4]={false,false,false,false};
  7179. for(int8_t i=0; i < NUM_AXIS; i++) {
  7180. if(code_seen(axis_codes[i]))
  7181. {
  7182. bool relative = axis_relative_modes[i] || relative_mode;
  7183. destination[i] = (float)code_value();
  7184. if (i == E_AXIS) {
  7185. float emult = extruder_multiplier[active_extruder];
  7186. if (emult != 1.) {
  7187. if (! relative) {
  7188. destination[i] -= current_position[i];
  7189. relative = true;
  7190. }
  7191. destination[i] *= emult;
  7192. }
  7193. }
  7194. if (relative)
  7195. destination[i] += current_position[i];
  7196. seen[i]=true;
  7197. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7198. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7199. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7200. }
  7201. else destination[i] = current_position[i]; //Are these else lines really needed?
  7202. }
  7203. if(code_seen('F')) {
  7204. next_feedrate = code_value();
  7205. #ifdef MAX_SILENT_FEEDRATE
  7206. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7207. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7208. #endif //MAX_SILENT_FEEDRATE
  7209. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7210. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7211. {
  7212. // float e_max_speed =
  7213. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7214. }
  7215. }
  7216. }
  7217. void get_arc_coordinates()
  7218. {
  7219. #ifdef SF_ARC_FIX
  7220. bool relative_mode_backup = relative_mode;
  7221. relative_mode = true;
  7222. #endif
  7223. get_coordinates();
  7224. #ifdef SF_ARC_FIX
  7225. relative_mode=relative_mode_backup;
  7226. #endif
  7227. if(code_seen('I')) {
  7228. offset[0] = code_value();
  7229. }
  7230. else {
  7231. offset[0] = 0.0;
  7232. }
  7233. if(code_seen('J')) {
  7234. offset[1] = code_value();
  7235. }
  7236. else {
  7237. offset[1] = 0.0;
  7238. }
  7239. }
  7240. void clamp_to_software_endstops(float target[3])
  7241. {
  7242. #ifdef DEBUG_DISABLE_SWLIMITS
  7243. return;
  7244. #endif //DEBUG_DISABLE_SWLIMITS
  7245. world2machine_clamp(target[0], target[1]);
  7246. // Clamp the Z coordinate.
  7247. if (min_software_endstops) {
  7248. float negative_z_offset = 0;
  7249. #ifdef ENABLE_AUTO_BED_LEVELING
  7250. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7251. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7252. #endif
  7253. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7254. }
  7255. if (max_software_endstops) {
  7256. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7257. }
  7258. }
  7259. #ifdef MESH_BED_LEVELING
  7260. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7261. float dx = x - current_position[X_AXIS];
  7262. float dy = y - current_position[Y_AXIS];
  7263. float dz = z - current_position[Z_AXIS];
  7264. int n_segments = 0;
  7265. if (mbl.active) {
  7266. float len = abs(dx) + abs(dy);
  7267. if (len > 0)
  7268. // Split to 3cm segments or shorter.
  7269. n_segments = int(ceil(len / 30.f));
  7270. }
  7271. if (n_segments > 1) {
  7272. float de = e - current_position[E_AXIS];
  7273. for (int i = 1; i < n_segments; ++ i) {
  7274. float t = float(i) / float(n_segments);
  7275. if (saved_printing || (mbl.active == false)) return;
  7276. plan_buffer_line(
  7277. current_position[X_AXIS] + t * dx,
  7278. current_position[Y_AXIS] + t * dy,
  7279. current_position[Z_AXIS] + t * dz,
  7280. current_position[E_AXIS] + t * de,
  7281. feed_rate, extruder);
  7282. }
  7283. }
  7284. // The rest of the path.
  7285. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7286. current_position[X_AXIS] = x;
  7287. current_position[Y_AXIS] = y;
  7288. current_position[Z_AXIS] = z;
  7289. current_position[E_AXIS] = e;
  7290. }
  7291. #endif // MESH_BED_LEVELING
  7292. void prepare_move()
  7293. {
  7294. clamp_to_software_endstops(destination);
  7295. previous_millis_cmd = _millis();
  7296. // Do not use feedmultiply for E or Z only moves
  7297. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7298. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7299. }
  7300. else {
  7301. #ifdef MESH_BED_LEVELING
  7302. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7303. #else
  7304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7305. #endif
  7306. }
  7307. for(int8_t i=0; i < NUM_AXIS; i++) {
  7308. current_position[i] = destination[i];
  7309. }
  7310. }
  7311. void prepare_arc_move(char isclockwise) {
  7312. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7313. // Trace the arc
  7314. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7315. // As far as the parser is concerned, the position is now == target. In reality the
  7316. // motion control system might still be processing the action and the real tool position
  7317. // in any intermediate location.
  7318. for(int8_t i=0; i < NUM_AXIS; i++) {
  7319. current_position[i] = destination[i];
  7320. }
  7321. previous_millis_cmd = _millis();
  7322. }
  7323. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7324. #if defined(FAN_PIN)
  7325. #if CONTROLLERFAN_PIN == FAN_PIN
  7326. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7327. #endif
  7328. #endif
  7329. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7330. unsigned long lastMotorCheck = 0;
  7331. void controllerFan()
  7332. {
  7333. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7334. {
  7335. lastMotorCheck = _millis();
  7336. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7337. #if EXTRUDERS > 2
  7338. || !READ(E2_ENABLE_PIN)
  7339. #endif
  7340. #if EXTRUDER > 1
  7341. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7342. || !READ(X2_ENABLE_PIN)
  7343. #endif
  7344. || !READ(E1_ENABLE_PIN)
  7345. #endif
  7346. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7347. {
  7348. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7349. }
  7350. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7351. {
  7352. digitalWrite(CONTROLLERFAN_PIN, 0);
  7353. analogWrite(CONTROLLERFAN_PIN, 0);
  7354. }
  7355. else
  7356. {
  7357. // allows digital or PWM fan output to be used (see M42 handling)
  7358. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7359. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7360. }
  7361. }
  7362. }
  7363. #endif
  7364. #ifdef TEMP_STAT_LEDS
  7365. static bool blue_led = false;
  7366. static bool red_led = false;
  7367. static uint32_t stat_update = 0;
  7368. void handle_status_leds(void) {
  7369. float max_temp = 0.0;
  7370. if(_millis() > stat_update) {
  7371. stat_update += 500; // Update every 0.5s
  7372. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7373. max_temp = max(max_temp, degHotend(cur_extruder));
  7374. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7375. }
  7376. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7377. max_temp = max(max_temp, degTargetBed());
  7378. max_temp = max(max_temp, degBed());
  7379. #endif
  7380. if((max_temp > 55.0) && (red_led == false)) {
  7381. digitalWrite(STAT_LED_RED, 1);
  7382. digitalWrite(STAT_LED_BLUE, 0);
  7383. red_led = true;
  7384. blue_led = false;
  7385. }
  7386. if((max_temp < 54.0) && (blue_led == false)) {
  7387. digitalWrite(STAT_LED_RED, 0);
  7388. digitalWrite(STAT_LED_BLUE, 1);
  7389. red_led = false;
  7390. blue_led = true;
  7391. }
  7392. }
  7393. }
  7394. #endif
  7395. #ifdef SAFETYTIMER
  7396. /**
  7397. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7398. *
  7399. * Full screen blocking notification message is shown after heater turning off.
  7400. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7401. * damage print.
  7402. *
  7403. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7404. */
  7405. static void handleSafetyTimer()
  7406. {
  7407. #if (EXTRUDERS > 1)
  7408. #error Implemented only for one extruder.
  7409. #endif //(EXTRUDERS > 1)
  7410. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7411. {
  7412. safetyTimer.stop();
  7413. }
  7414. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7415. {
  7416. safetyTimer.start();
  7417. }
  7418. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7419. {
  7420. setTargetBed(0);
  7421. setAllTargetHotends(0);
  7422. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7423. }
  7424. }
  7425. #endif //SAFETYTIMER
  7426. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7427. {
  7428. bool bInhibitFlag;
  7429. #ifdef FILAMENT_SENSOR
  7430. if (mmu_enabled == false)
  7431. {
  7432. //-// if (mcode_in_progress != 600) //M600 not in progress
  7433. #ifdef PAT9125
  7434. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7435. #endif // PAT9125
  7436. #ifdef IR_SENSOR
  7437. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7438. #endif // IR_SENSOR
  7439. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7440. {
  7441. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7442. {
  7443. if (fsensor_check_autoload())
  7444. {
  7445. #ifdef PAT9125
  7446. fsensor_autoload_check_stop();
  7447. #endif //PAT9125
  7448. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7449. if(0)
  7450. {
  7451. Sound_MakeCustom(50,1000,false);
  7452. loading_flag = true;
  7453. enquecommand_front_P((PSTR("M701")));
  7454. }
  7455. else
  7456. {
  7457. /*
  7458. lcd_update_enable(false);
  7459. show_preheat_nozzle_warning();
  7460. lcd_update_enable(true);
  7461. */
  7462. eFilamentAction=FilamentAction::AutoLoad;
  7463. bFilamentFirstRun=false;
  7464. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7465. {
  7466. bFilamentPreheatState=true;
  7467. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7468. menu_submenu(mFilamentItemForce);
  7469. }
  7470. else
  7471. {
  7472. menu_submenu(lcd_generic_preheat_menu);
  7473. lcd_timeoutToStatus.start();
  7474. }
  7475. }
  7476. }
  7477. }
  7478. else
  7479. {
  7480. #ifdef PAT9125
  7481. fsensor_autoload_check_stop();
  7482. #endif //PAT9125
  7483. fsensor_update();
  7484. }
  7485. }
  7486. }
  7487. #endif //FILAMENT_SENSOR
  7488. #ifdef SAFETYTIMER
  7489. handleSafetyTimer();
  7490. #endif //SAFETYTIMER
  7491. #if defined(KILL_PIN) && KILL_PIN > -1
  7492. static int killCount = 0; // make the inactivity button a bit less responsive
  7493. const int KILL_DELAY = 10000;
  7494. #endif
  7495. if(buflen < (BUFSIZE-1)){
  7496. get_command();
  7497. }
  7498. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7499. if(max_inactive_time)
  7500. kill(_n(""), 4);
  7501. if(stepper_inactive_time) {
  7502. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7503. {
  7504. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7505. disable_x();
  7506. disable_y();
  7507. disable_z();
  7508. disable_e0();
  7509. disable_e1();
  7510. disable_e2();
  7511. }
  7512. }
  7513. }
  7514. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7515. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7516. {
  7517. chdkActive = false;
  7518. WRITE(CHDK, LOW);
  7519. }
  7520. #endif
  7521. #if defined(KILL_PIN) && KILL_PIN > -1
  7522. // Check if the kill button was pressed and wait just in case it was an accidental
  7523. // key kill key press
  7524. // -------------------------------------------------------------------------------
  7525. if( 0 == READ(KILL_PIN) )
  7526. {
  7527. killCount++;
  7528. }
  7529. else if (killCount > 0)
  7530. {
  7531. killCount--;
  7532. }
  7533. // Exceeded threshold and we can confirm that it was not accidental
  7534. // KILL the machine
  7535. // ----------------------------------------------------------------
  7536. if ( killCount >= KILL_DELAY)
  7537. {
  7538. kill("", 5);
  7539. }
  7540. #endif
  7541. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7542. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7543. #endif
  7544. #ifdef EXTRUDER_RUNOUT_PREVENT
  7545. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7546. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7547. {
  7548. bool oldstatus=READ(E0_ENABLE_PIN);
  7549. enable_e0();
  7550. float oldepos=current_position[E_AXIS];
  7551. float oldedes=destination[E_AXIS];
  7552. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7553. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7554. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7555. current_position[E_AXIS]=oldepos;
  7556. destination[E_AXIS]=oldedes;
  7557. plan_set_e_position(oldepos);
  7558. previous_millis_cmd=_millis();
  7559. st_synchronize();
  7560. WRITE(E0_ENABLE_PIN,oldstatus);
  7561. }
  7562. #endif
  7563. #ifdef TEMP_STAT_LEDS
  7564. handle_status_leds();
  7565. #endif
  7566. check_axes_activity();
  7567. mmu_loop();
  7568. }
  7569. void kill(const char *full_screen_message, unsigned char id)
  7570. {
  7571. printf_P(_N("KILL: %d\n"), id);
  7572. //return;
  7573. cli(); // Stop interrupts
  7574. disable_heater();
  7575. disable_x();
  7576. // SERIAL_ECHOLNPGM("kill - disable Y");
  7577. disable_y();
  7578. disable_z();
  7579. disable_e0();
  7580. disable_e1();
  7581. disable_e2();
  7582. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7583. pinMode(PS_ON_PIN,INPUT);
  7584. #endif
  7585. SERIAL_ERROR_START;
  7586. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7587. if (full_screen_message != NULL) {
  7588. SERIAL_ERRORLNRPGM(full_screen_message);
  7589. lcd_display_message_fullscreen_P(full_screen_message);
  7590. } else {
  7591. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7592. }
  7593. // FMC small patch to update the LCD before ending
  7594. sei(); // enable interrupts
  7595. for ( int i=5; i--; lcd_update(0))
  7596. {
  7597. _delay(200);
  7598. }
  7599. cli(); // disable interrupts
  7600. suicide();
  7601. while(1)
  7602. {
  7603. #ifdef WATCHDOG
  7604. wdt_reset();
  7605. #endif //WATCHDOG
  7606. /* Intentionally left empty */
  7607. } // Wait for reset
  7608. }
  7609. void Stop()
  7610. {
  7611. disable_heater();
  7612. if(Stopped == false) {
  7613. Stopped = true;
  7614. lcd_print_stop();
  7615. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7616. SERIAL_ERROR_START;
  7617. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7618. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7619. }
  7620. }
  7621. bool IsStopped() { return Stopped; };
  7622. #ifdef FAST_PWM_FAN
  7623. void setPwmFrequency(uint8_t pin, int val)
  7624. {
  7625. val &= 0x07;
  7626. switch(digitalPinToTimer(pin))
  7627. {
  7628. #if defined(TCCR0A)
  7629. case TIMER0A:
  7630. case TIMER0B:
  7631. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7632. // TCCR0B |= val;
  7633. break;
  7634. #endif
  7635. #if defined(TCCR1A)
  7636. case TIMER1A:
  7637. case TIMER1B:
  7638. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7639. // TCCR1B |= val;
  7640. break;
  7641. #endif
  7642. #if defined(TCCR2)
  7643. case TIMER2:
  7644. case TIMER2:
  7645. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7646. TCCR2 |= val;
  7647. break;
  7648. #endif
  7649. #if defined(TCCR2A)
  7650. case TIMER2A:
  7651. case TIMER2B:
  7652. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7653. TCCR2B |= val;
  7654. break;
  7655. #endif
  7656. #if defined(TCCR3A)
  7657. case TIMER3A:
  7658. case TIMER3B:
  7659. case TIMER3C:
  7660. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7661. TCCR3B |= val;
  7662. break;
  7663. #endif
  7664. #if defined(TCCR4A)
  7665. case TIMER4A:
  7666. case TIMER4B:
  7667. case TIMER4C:
  7668. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7669. TCCR4B |= val;
  7670. break;
  7671. #endif
  7672. #if defined(TCCR5A)
  7673. case TIMER5A:
  7674. case TIMER5B:
  7675. case TIMER5C:
  7676. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7677. TCCR5B |= val;
  7678. break;
  7679. #endif
  7680. }
  7681. }
  7682. #endif //FAST_PWM_FAN
  7683. //! @brief Get and validate extruder number
  7684. //!
  7685. //! If it is not specified, active_extruder is returned in parameter extruder.
  7686. //! @param [in] code M code number
  7687. //! @param [out] extruder
  7688. //! @return error
  7689. //! @retval true Invalid extruder specified in T code
  7690. //! @retval false Valid extruder specified in T code, or not specifiead
  7691. bool setTargetedHotend(int code, uint8_t &extruder)
  7692. {
  7693. extruder = active_extruder;
  7694. if(code_seen('T')) {
  7695. extruder = code_value();
  7696. if(extruder >= EXTRUDERS) {
  7697. SERIAL_ECHO_START;
  7698. switch(code){
  7699. case 104:
  7700. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7701. break;
  7702. case 105:
  7703. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7704. break;
  7705. case 109:
  7706. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7707. break;
  7708. case 218:
  7709. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7710. break;
  7711. case 221:
  7712. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7713. break;
  7714. }
  7715. SERIAL_PROTOCOLLN((int)extruder);
  7716. return true;
  7717. }
  7718. }
  7719. return false;
  7720. }
  7721. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7722. {
  7723. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7724. {
  7725. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7726. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7727. }
  7728. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7729. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7730. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7731. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7732. total_filament_used = 0;
  7733. }
  7734. float calculate_extruder_multiplier(float diameter) {
  7735. float out = 1.f;
  7736. if (cs.volumetric_enabled && diameter > 0.f) {
  7737. float area = M_PI * diameter * diameter * 0.25;
  7738. out = 1.f / area;
  7739. }
  7740. if (extrudemultiply != 100)
  7741. out *= float(extrudemultiply) * 0.01f;
  7742. return out;
  7743. }
  7744. void calculate_extruder_multipliers() {
  7745. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7746. #if EXTRUDERS > 1
  7747. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7748. #if EXTRUDERS > 2
  7749. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7750. #endif
  7751. #endif
  7752. }
  7753. void delay_keep_alive(unsigned int ms)
  7754. {
  7755. for (;;) {
  7756. manage_heater();
  7757. // Manage inactivity, but don't disable steppers on timeout.
  7758. manage_inactivity(true);
  7759. lcd_update(0);
  7760. if (ms == 0)
  7761. break;
  7762. else if (ms >= 50) {
  7763. _delay(50);
  7764. ms -= 50;
  7765. } else {
  7766. _delay(ms);
  7767. ms = 0;
  7768. }
  7769. }
  7770. }
  7771. static void wait_for_heater(long codenum, uint8_t extruder) {
  7772. #ifdef TEMP_RESIDENCY_TIME
  7773. long residencyStart;
  7774. residencyStart = -1;
  7775. /* continue to loop until we have reached the target temp
  7776. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7777. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7778. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7779. #else
  7780. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7781. #endif //TEMP_RESIDENCY_TIME
  7782. if ((_millis() - codenum) > 1000UL)
  7783. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7784. if (!farm_mode) {
  7785. SERIAL_PROTOCOLPGM("T:");
  7786. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7787. SERIAL_PROTOCOLPGM(" E:");
  7788. SERIAL_PROTOCOL((int)extruder);
  7789. #ifdef TEMP_RESIDENCY_TIME
  7790. SERIAL_PROTOCOLPGM(" W:");
  7791. if (residencyStart > -1)
  7792. {
  7793. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7794. SERIAL_PROTOCOLLN(codenum);
  7795. }
  7796. else
  7797. {
  7798. SERIAL_PROTOCOLLN("?");
  7799. }
  7800. }
  7801. #else
  7802. SERIAL_PROTOCOLLN("");
  7803. #endif
  7804. codenum = _millis();
  7805. }
  7806. manage_heater();
  7807. manage_inactivity(true); //do not disable steppers
  7808. lcd_update(0);
  7809. #ifdef TEMP_RESIDENCY_TIME
  7810. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7811. or when current temp falls outside the hysteresis after target temp was reached */
  7812. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7813. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7814. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7815. {
  7816. residencyStart = _millis();
  7817. }
  7818. #endif //TEMP_RESIDENCY_TIME
  7819. }
  7820. }
  7821. void check_babystep()
  7822. {
  7823. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7824. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7825. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7826. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7827. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7828. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7829. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7830. babystep_z);
  7831. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7832. lcd_update_enable(true);
  7833. }
  7834. }
  7835. #ifdef HEATBED_ANALYSIS
  7836. void d_setup()
  7837. {
  7838. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7839. pinMode(D_DATA, INPUT_PULLUP);
  7840. pinMode(D_REQUIRE, OUTPUT);
  7841. digitalWrite(D_REQUIRE, HIGH);
  7842. }
  7843. float d_ReadData()
  7844. {
  7845. int digit[13];
  7846. String mergeOutput;
  7847. float output;
  7848. digitalWrite(D_REQUIRE, HIGH);
  7849. for (int i = 0; i<13; i++)
  7850. {
  7851. for (int j = 0; j < 4; j++)
  7852. {
  7853. while (digitalRead(D_DATACLOCK) == LOW) {}
  7854. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7855. bitWrite(digit[i], j, digitalRead(D_DATA));
  7856. }
  7857. }
  7858. digitalWrite(D_REQUIRE, LOW);
  7859. mergeOutput = "";
  7860. output = 0;
  7861. for (int r = 5; r <= 10; r++) //Merge digits
  7862. {
  7863. mergeOutput += digit[r];
  7864. }
  7865. output = mergeOutput.toFloat();
  7866. if (digit[4] == 8) //Handle sign
  7867. {
  7868. output *= -1;
  7869. }
  7870. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7871. {
  7872. output /= 10;
  7873. }
  7874. return output;
  7875. }
  7876. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7877. int t1 = 0;
  7878. int t_delay = 0;
  7879. int digit[13];
  7880. int m;
  7881. char str[3];
  7882. //String mergeOutput;
  7883. char mergeOutput[15];
  7884. float output;
  7885. int mesh_point = 0; //index number of calibration point
  7886. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7887. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7888. float mesh_home_z_search = 4;
  7889. float measure_z_height = 0.2f;
  7890. float row[x_points_num];
  7891. int ix = 0;
  7892. int iy = 0;
  7893. const char* filename_wldsd = "mesh.txt";
  7894. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7895. char numb_wldsd[8]; // (" -A.BCD" + null)
  7896. #ifdef MICROMETER_LOGGING
  7897. d_setup();
  7898. #endif //MICROMETER_LOGGING
  7899. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7900. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7901. unsigned int custom_message_type_old = custom_message_type;
  7902. unsigned int custom_message_state_old = custom_message_state;
  7903. custom_message_type = CustomMsg::MeshBedLeveling;
  7904. custom_message_state = (x_points_num * y_points_num) + 10;
  7905. lcd_update(1);
  7906. //mbl.reset();
  7907. babystep_undo();
  7908. card.openFile(filename_wldsd, false);
  7909. /*destination[Z_AXIS] = mesh_home_z_search;
  7910. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7912. for(int8_t i=0; i < NUM_AXIS; i++) {
  7913. current_position[i] = destination[i];
  7914. }
  7915. st_synchronize();
  7916. */
  7917. destination[Z_AXIS] = measure_z_height;
  7918. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7919. for(int8_t i=0; i < NUM_AXIS; i++) {
  7920. current_position[i] = destination[i];
  7921. }
  7922. st_synchronize();
  7923. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7924. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7925. SERIAL_PROTOCOL(x_points_num);
  7926. SERIAL_PROTOCOLPGM(",");
  7927. SERIAL_PROTOCOL(y_points_num);
  7928. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7929. SERIAL_PROTOCOL(mesh_home_z_search);
  7930. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7931. SERIAL_PROTOCOL(x_dimension);
  7932. SERIAL_PROTOCOLPGM(",");
  7933. SERIAL_PROTOCOL(y_dimension);
  7934. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7935. while (mesh_point != x_points_num * y_points_num) {
  7936. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7937. iy = mesh_point / x_points_num;
  7938. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7939. float z0 = 0.f;
  7940. /*destination[Z_AXIS] = mesh_home_z_search;
  7941. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7942. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7943. for(int8_t i=0; i < NUM_AXIS; i++) {
  7944. current_position[i] = destination[i];
  7945. }
  7946. st_synchronize();*/
  7947. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7948. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7949. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7950. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7951. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7952. for(int8_t i=0; i < NUM_AXIS; i++) {
  7953. current_position[i] = destination[i];
  7954. }
  7955. st_synchronize();
  7956. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7957. delay_keep_alive(1000);
  7958. #ifdef MICROMETER_LOGGING
  7959. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7960. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7961. //strcat(data_wldsd, numb_wldsd);
  7962. //MYSERIAL.println(data_wldsd);
  7963. //delay(1000);
  7964. //delay(3000);
  7965. //t1 = millis();
  7966. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7967. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7968. memset(digit, 0, sizeof(digit));
  7969. //cli();
  7970. digitalWrite(D_REQUIRE, LOW);
  7971. for (int i = 0; i<13; i++)
  7972. {
  7973. //t1 = millis();
  7974. for (int j = 0; j < 4; j++)
  7975. {
  7976. while (digitalRead(D_DATACLOCK) == LOW) {}
  7977. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7978. //printf_P(PSTR("Done %d\n"), j);
  7979. bitWrite(digit[i], j, digitalRead(D_DATA));
  7980. }
  7981. //t_delay = (millis() - t1);
  7982. //SERIAL_PROTOCOLPGM(" ");
  7983. //SERIAL_PROTOCOL_F(t_delay, 5);
  7984. //SERIAL_PROTOCOLPGM(" ");
  7985. }
  7986. //sei();
  7987. digitalWrite(D_REQUIRE, HIGH);
  7988. mergeOutput[0] = '\0';
  7989. output = 0;
  7990. for (int r = 5; r <= 10; r++) //Merge digits
  7991. {
  7992. sprintf(str, "%d", digit[r]);
  7993. strcat(mergeOutput, str);
  7994. }
  7995. output = atof(mergeOutput);
  7996. if (digit[4] == 8) //Handle sign
  7997. {
  7998. output *= -1;
  7999. }
  8000. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8001. {
  8002. output *= 0.1;
  8003. }
  8004. //output = d_ReadData();
  8005. //row[ix] = current_position[Z_AXIS];
  8006. //row[ix] = d_ReadData();
  8007. row[ix] = output;
  8008. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8009. memset(data_wldsd, 0, sizeof(data_wldsd));
  8010. for (int i = 0; i < x_points_num; i++) {
  8011. SERIAL_PROTOCOLPGM(" ");
  8012. SERIAL_PROTOCOL_F(row[i], 5);
  8013. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8014. dtostrf(row[i], 7, 3, numb_wldsd);
  8015. strcat(data_wldsd, numb_wldsd);
  8016. }
  8017. card.write_command(data_wldsd);
  8018. SERIAL_PROTOCOLPGM("\n");
  8019. }
  8020. custom_message_state--;
  8021. mesh_point++;
  8022. lcd_update(1);
  8023. }
  8024. #endif //MICROMETER_LOGGING
  8025. card.closefile();
  8026. //clean_up_after_endstop_move(l_feedmultiply);
  8027. }
  8028. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8029. int t1 = 0;
  8030. int t_delay = 0;
  8031. int digit[13];
  8032. int m;
  8033. char str[3];
  8034. //String mergeOutput;
  8035. char mergeOutput[15];
  8036. float output;
  8037. int mesh_point = 0; //index number of calibration point
  8038. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8039. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8040. float mesh_home_z_search = 4;
  8041. float row[x_points_num];
  8042. int ix = 0;
  8043. int iy = 0;
  8044. const char* filename_wldsd = "wldsd.txt";
  8045. char data_wldsd[70];
  8046. char numb_wldsd[10];
  8047. d_setup();
  8048. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8049. // We don't know where we are! HOME!
  8050. // Push the commands to the front of the message queue in the reverse order!
  8051. // There shall be always enough space reserved for these commands.
  8052. repeatcommand_front(); // repeat G80 with all its parameters
  8053. enquecommand_front_P((PSTR("G28 W0")));
  8054. enquecommand_front_P((PSTR("G1 Z5")));
  8055. return;
  8056. }
  8057. unsigned int custom_message_type_old = custom_message_type;
  8058. unsigned int custom_message_state_old = custom_message_state;
  8059. custom_message_type = CustomMsg::MeshBedLeveling;
  8060. custom_message_state = (x_points_num * y_points_num) + 10;
  8061. lcd_update(1);
  8062. mbl.reset();
  8063. babystep_undo();
  8064. card.openFile(filename_wldsd, false);
  8065. current_position[Z_AXIS] = mesh_home_z_search;
  8066. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8067. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8068. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8069. int l_feedmultiply = setup_for_endstop_move(false);
  8070. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8071. SERIAL_PROTOCOL(x_points_num);
  8072. SERIAL_PROTOCOLPGM(",");
  8073. SERIAL_PROTOCOL(y_points_num);
  8074. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8075. SERIAL_PROTOCOL(mesh_home_z_search);
  8076. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8077. SERIAL_PROTOCOL(x_dimension);
  8078. SERIAL_PROTOCOLPGM(",");
  8079. SERIAL_PROTOCOL(y_dimension);
  8080. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8081. while (mesh_point != x_points_num * y_points_num) {
  8082. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8083. iy = mesh_point / x_points_num;
  8084. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8085. float z0 = 0.f;
  8086. current_position[Z_AXIS] = mesh_home_z_search;
  8087. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8088. st_synchronize();
  8089. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8090. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8091. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8092. st_synchronize();
  8093. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8094. break;
  8095. card.closefile();
  8096. }
  8097. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8098. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8099. //strcat(data_wldsd, numb_wldsd);
  8100. //MYSERIAL.println(data_wldsd);
  8101. //_delay(1000);
  8102. //_delay(3000);
  8103. //t1 = _millis();
  8104. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8105. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8106. memset(digit, 0, sizeof(digit));
  8107. //cli();
  8108. digitalWrite(D_REQUIRE, LOW);
  8109. for (int i = 0; i<13; i++)
  8110. {
  8111. //t1 = _millis();
  8112. for (int j = 0; j < 4; j++)
  8113. {
  8114. while (digitalRead(D_DATACLOCK) == LOW) {}
  8115. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8116. bitWrite(digit[i], j, digitalRead(D_DATA));
  8117. }
  8118. //t_delay = (_millis() - t1);
  8119. //SERIAL_PROTOCOLPGM(" ");
  8120. //SERIAL_PROTOCOL_F(t_delay, 5);
  8121. //SERIAL_PROTOCOLPGM(" ");
  8122. }
  8123. //sei();
  8124. digitalWrite(D_REQUIRE, HIGH);
  8125. mergeOutput[0] = '\0';
  8126. output = 0;
  8127. for (int r = 5; r <= 10; r++) //Merge digits
  8128. {
  8129. sprintf(str, "%d", digit[r]);
  8130. strcat(mergeOutput, str);
  8131. }
  8132. output = atof(mergeOutput);
  8133. if (digit[4] == 8) //Handle sign
  8134. {
  8135. output *= -1;
  8136. }
  8137. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8138. {
  8139. output *= 0.1;
  8140. }
  8141. //output = d_ReadData();
  8142. //row[ix] = current_position[Z_AXIS];
  8143. memset(data_wldsd, 0, sizeof(data_wldsd));
  8144. for (int i = 0; i <3; i++) {
  8145. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8146. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8147. strcat(data_wldsd, numb_wldsd);
  8148. strcat(data_wldsd, ";");
  8149. }
  8150. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8151. dtostrf(output, 8, 5, numb_wldsd);
  8152. strcat(data_wldsd, numb_wldsd);
  8153. //strcat(data_wldsd, ";");
  8154. card.write_command(data_wldsd);
  8155. //row[ix] = d_ReadData();
  8156. row[ix] = output; // current_position[Z_AXIS];
  8157. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8158. for (int i = 0; i < x_points_num; i++) {
  8159. SERIAL_PROTOCOLPGM(" ");
  8160. SERIAL_PROTOCOL_F(row[i], 5);
  8161. }
  8162. SERIAL_PROTOCOLPGM("\n");
  8163. }
  8164. custom_message_state--;
  8165. mesh_point++;
  8166. lcd_update(1);
  8167. }
  8168. card.closefile();
  8169. clean_up_after_endstop_move(l_feedmultiply);
  8170. }
  8171. #endif //HEATBED_ANALYSIS
  8172. #ifndef PINDA_THERMISTOR
  8173. static void temp_compensation_start() {
  8174. custom_message_type = CustomMsg::TempCompPreheat;
  8175. custom_message_state = PINDA_HEAT_T + 1;
  8176. lcd_update(2);
  8177. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8178. current_position[E_AXIS] -= default_retraction;
  8179. }
  8180. plan_buffer_line_curposXYZE(400, active_extruder);
  8181. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8182. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8183. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8184. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8185. st_synchronize();
  8186. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8187. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8188. delay_keep_alive(1000);
  8189. custom_message_state = PINDA_HEAT_T - i;
  8190. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8191. else lcd_update(1);
  8192. }
  8193. custom_message_type = CustomMsg::Status;
  8194. custom_message_state = 0;
  8195. }
  8196. static void temp_compensation_apply() {
  8197. int i_add;
  8198. int z_shift = 0;
  8199. float z_shift_mm;
  8200. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8201. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8202. i_add = (target_temperature_bed - 60) / 10;
  8203. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8204. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8205. }else {
  8206. //interpolation
  8207. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8208. }
  8209. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8211. st_synchronize();
  8212. plan_set_z_position(current_position[Z_AXIS]);
  8213. }
  8214. else {
  8215. //we have no temp compensation data
  8216. }
  8217. }
  8218. #endif //ndef PINDA_THERMISTOR
  8219. float temp_comp_interpolation(float inp_temperature) {
  8220. //cubic spline interpolation
  8221. int n, i, j;
  8222. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8223. int shift[10];
  8224. int temp_C[10];
  8225. n = 6; //number of measured points
  8226. shift[0] = 0;
  8227. for (i = 0; i < n; i++) {
  8228. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8229. temp_C[i] = 50 + i * 10; //temperature in C
  8230. #ifdef PINDA_THERMISTOR
  8231. temp_C[i] = 35 + i * 5; //temperature in C
  8232. #else
  8233. temp_C[i] = 50 + i * 10; //temperature in C
  8234. #endif
  8235. x[i] = (float)temp_C[i];
  8236. f[i] = (float)shift[i];
  8237. }
  8238. if (inp_temperature < x[0]) return 0;
  8239. for (i = n - 1; i>0; i--) {
  8240. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8241. h[i - 1] = x[i] - x[i - 1];
  8242. }
  8243. //*********** formation of h, s , f matrix **************
  8244. for (i = 1; i<n - 1; i++) {
  8245. m[i][i] = 2 * (h[i - 1] + h[i]);
  8246. if (i != 1) {
  8247. m[i][i - 1] = h[i - 1];
  8248. m[i - 1][i] = h[i - 1];
  8249. }
  8250. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8251. }
  8252. //*********** forward elimination **************
  8253. for (i = 1; i<n - 2; i++) {
  8254. temp = (m[i + 1][i] / m[i][i]);
  8255. for (j = 1; j <= n - 1; j++)
  8256. m[i + 1][j] -= temp*m[i][j];
  8257. }
  8258. //*********** backward substitution *********
  8259. for (i = n - 2; i>0; i--) {
  8260. sum = 0;
  8261. for (j = i; j <= n - 2; j++)
  8262. sum += m[i][j] * s[j];
  8263. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8264. }
  8265. for (i = 0; i<n - 1; i++)
  8266. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8267. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8268. b = s[i] / 2;
  8269. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8270. d = f[i];
  8271. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8272. }
  8273. return sum;
  8274. }
  8275. #ifdef PINDA_THERMISTOR
  8276. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8277. {
  8278. if (!temp_cal_active) return 0;
  8279. if (!calibration_status_pinda()) return 0;
  8280. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8281. }
  8282. #endif //PINDA_THERMISTOR
  8283. void long_pause() //long pause print
  8284. {
  8285. st_synchronize();
  8286. start_pause_print = _millis();
  8287. //retract
  8288. current_position[E_AXIS] -= default_retraction;
  8289. plan_buffer_line_curposXYZE(400, active_extruder);
  8290. //lift z
  8291. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8292. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8293. plan_buffer_line_curposXYZE(15, active_extruder);
  8294. //Move XY to side
  8295. current_position[X_AXIS] = X_PAUSE_POS;
  8296. current_position[Y_AXIS] = Y_PAUSE_POS;
  8297. plan_buffer_line_curposXYZE(50, active_extruder);
  8298. // Turn off the print fan
  8299. fanSpeed = 0;
  8300. st_synchronize();
  8301. }
  8302. void serialecho_temperatures() {
  8303. float tt = degHotend(active_extruder);
  8304. SERIAL_PROTOCOLPGM("T:");
  8305. SERIAL_PROTOCOL(tt);
  8306. SERIAL_PROTOCOLPGM(" E:");
  8307. SERIAL_PROTOCOL((int)active_extruder);
  8308. SERIAL_PROTOCOLPGM(" B:");
  8309. SERIAL_PROTOCOL_F(degBed(), 1);
  8310. SERIAL_PROTOCOLLN("");
  8311. }
  8312. #ifdef UVLO_SUPPORT
  8313. void uvlo_()
  8314. {
  8315. unsigned long time_start = _millis();
  8316. bool sd_print = card.sdprinting;
  8317. // Conserve power as soon as possible.
  8318. disable_x();
  8319. disable_y();
  8320. #ifdef TMC2130
  8321. tmc2130_set_current_h(Z_AXIS, 20);
  8322. tmc2130_set_current_r(Z_AXIS, 20);
  8323. tmc2130_set_current_h(E_AXIS, 20);
  8324. tmc2130_set_current_r(E_AXIS, 20);
  8325. #endif //TMC2130
  8326. // Indicate that the interrupt has been triggered.
  8327. // SERIAL_ECHOLNPGM("UVLO");
  8328. // Read out the current Z motor microstep counter. This will be later used
  8329. // for reaching the zero full step before powering off.
  8330. uint16_t z_microsteps = 0;
  8331. #ifdef TMC2130
  8332. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8333. #endif //TMC2130
  8334. // Calculate the file position, from which to resume this print.
  8335. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8336. {
  8337. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8338. sd_position -= sdlen_planner;
  8339. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8340. sd_position -= sdlen_cmdqueue;
  8341. if (sd_position < 0) sd_position = 0;
  8342. }
  8343. // Backup the feedrate in mm/min.
  8344. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8345. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8346. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8347. // are in action.
  8348. planner_abort_hard();
  8349. // Store the current extruder position.
  8350. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8351. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8352. // Clean the input command queue.
  8353. cmdqueue_reset();
  8354. card.sdprinting = false;
  8355. // card.closefile();
  8356. // Enable stepper driver interrupt to move Z axis.
  8357. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8358. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8359. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8360. sei();
  8361. plan_buffer_line(
  8362. current_position[X_AXIS],
  8363. current_position[Y_AXIS],
  8364. current_position[Z_AXIS],
  8365. current_position[E_AXIS] - default_retraction,
  8366. 95, active_extruder);
  8367. st_synchronize();
  8368. disable_e0();
  8369. plan_buffer_line(
  8370. current_position[X_AXIS],
  8371. current_position[Y_AXIS],
  8372. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8373. current_position[E_AXIS] - default_retraction,
  8374. 40, active_extruder);
  8375. st_synchronize();
  8376. disable_e0();
  8377. plan_buffer_line(
  8378. current_position[X_AXIS],
  8379. current_position[Y_AXIS],
  8380. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8381. current_position[E_AXIS] - default_retraction,
  8382. 40, active_extruder);
  8383. st_synchronize();
  8384. disable_e0();
  8385. // Move Z up to the next 0th full step.
  8386. // Write the file position.
  8387. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8388. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8389. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8390. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8391. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8392. // Scale the z value to 1u resolution.
  8393. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8394. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8395. }
  8396. // Read out the current Z motor microstep counter. This will be later used
  8397. // for reaching the zero full step before powering off.
  8398. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8399. // Store the current position.
  8400. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8401. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8402. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8403. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8404. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8405. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8406. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8407. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8408. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8409. #if EXTRUDERS > 1
  8410. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8411. #if EXTRUDERS > 2
  8412. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8413. #endif
  8414. #endif
  8415. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8416. // Finaly store the "power outage" flag.
  8417. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8418. st_synchronize();
  8419. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8420. // Increment power failure counter
  8421. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8422. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8423. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8424. #if 0
  8425. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8426. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8427. plan_buffer_line_curposXYZE(500, active_extruder);
  8428. st_synchronize();
  8429. #endif
  8430. wdt_enable(WDTO_500MS);
  8431. WRITE(BEEPER,HIGH);
  8432. while(1)
  8433. ;
  8434. }
  8435. void uvlo_tiny()
  8436. {
  8437. uint16_t z_microsteps=0;
  8438. // Conserve power as soon as possible.
  8439. disable_x();
  8440. disable_y();
  8441. disable_e0();
  8442. #ifdef TMC2130
  8443. tmc2130_set_current_h(Z_AXIS, 20);
  8444. tmc2130_set_current_r(Z_AXIS, 20);
  8445. #endif //TMC2130
  8446. // Read out the current Z motor microstep counter
  8447. #ifdef TMC2130
  8448. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8449. #endif //TMC2130
  8450. planner_abort_hard();
  8451. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8452. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8453. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8454. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8455. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8456. }
  8457. //after multiple power panics current Z axis is unknow
  8458. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8459. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8460. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8461. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8462. }
  8463. // Finaly store the "power outage" flag.
  8464. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8465. // Increment power failure counter
  8466. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8467. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8468. wdt_enable(WDTO_500MS);
  8469. WRITE(BEEPER,HIGH);
  8470. while(1)
  8471. ;
  8472. }
  8473. #endif //UVLO_SUPPORT
  8474. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8475. void setup_fan_interrupt() {
  8476. //INT7
  8477. DDRE &= ~(1 << 7); //input pin
  8478. PORTE &= ~(1 << 7); //no internal pull-up
  8479. //start with sensing rising edge
  8480. EICRB &= ~(1 << 6);
  8481. EICRB |= (1 << 7);
  8482. //enable INT7 interrupt
  8483. EIMSK |= (1 << 7);
  8484. }
  8485. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8486. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8487. ISR(INT7_vect) {
  8488. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8489. #ifdef FAN_SOFT_PWM
  8490. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8491. #else //FAN_SOFT_PWM
  8492. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8493. #endif //FAN_SOFT_PWM
  8494. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8495. t_fan_rising_edge = millis_nc();
  8496. }
  8497. else { //interrupt was triggered by falling edge
  8498. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8499. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8500. }
  8501. }
  8502. EICRB ^= (1 << 6); //change edge
  8503. }
  8504. #endif
  8505. #ifdef UVLO_SUPPORT
  8506. void setup_uvlo_interrupt() {
  8507. DDRE &= ~(1 << 4); //input pin
  8508. PORTE &= ~(1 << 4); //no internal pull-up
  8509. //sensing falling edge
  8510. EICRB |= (1 << 0);
  8511. EICRB &= ~(1 << 1);
  8512. //enable INT4 interrupt
  8513. EIMSK |= (1 << 4);
  8514. }
  8515. ISR(INT4_vect) {
  8516. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8517. SERIAL_ECHOLNPGM("INT4");
  8518. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8519. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8520. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8521. }
  8522. void recover_print(uint8_t automatic) {
  8523. char cmd[30];
  8524. lcd_update_enable(true);
  8525. lcd_update(2);
  8526. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8527. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8528. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8529. // Lift the print head, so one may remove the excess priming material.
  8530. if(!bTiny&&(current_position[Z_AXIS]<25))
  8531. enquecommand_P(PSTR("G1 Z25 F800"));
  8532. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8533. enquecommand_P(PSTR("G28 X Y"));
  8534. // Set the target bed and nozzle temperatures and wait.
  8535. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8536. enquecommand(cmd);
  8537. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8538. enquecommand(cmd);
  8539. enquecommand_P(PSTR("M83")); //E axis relative mode
  8540. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8541. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8542. if(automatic == 0){
  8543. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8544. }
  8545. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8546. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8547. // Restart the print.
  8548. restore_print_from_eeprom();
  8549. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8550. }
  8551. void recover_machine_state_after_power_panic(bool bTiny)
  8552. {
  8553. char cmd[30];
  8554. // 1) Recover the logical cordinates at the time of the power panic.
  8555. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8556. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8557. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8558. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8559. mbl.active = false;
  8560. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8561. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8562. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8563. // Scale the z value to 10u resolution.
  8564. int16_t v;
  8565. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8566. if (v != 0)
  8567. mbl.active = true;
  8568. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8569. }
  8570. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8571. // The current position after power panic is moved to the next closest 0th full step.
  8572. if(bTiny){
  8573. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8574. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8575. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8576. //after multiple power panics the print is slightly in the air so get it little bit down.
  8577. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8578. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8579. }
  8580. else{
  8581. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8582. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8583. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8584. }
  8585. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8586. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8587. sprintf_P(cmd, PSTR("G92 E"));
  8588. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8589. enquecommand(cmd);
  8590. }
  8591. memcpy(destination, current_position, sizeof(destination));
  8592. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8593. print_world_coordinates();
  8594. // 3) Initialize the logical to physical coordinate system transformation.
  8595. world2machine_initialize();
  8596. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8597. // print_mesh_bed_leveling_table();
  8598. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8599. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8600. babystep_load();
  8601. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8602. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8603. // 6) Power up the motors, mark their positions as known.
  8604. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8605. axis_known_position[X_AXIS] = true; enable_x();
  8606. axis_known_position[Y_AXIS] = true; enable_y();
  8607. axis_known_position[Z_AXIS] = true; enable_z();
  8608. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8609. print_physical_coordinates();
  8610. // 7) Recover the target temperatures.
  8611. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8612. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8613. // 8) Recover extruder multipilers
  8614. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8615. #if EXTRUDERS > 1
  8616. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8617. #if EXTRUDERS > 2
  8618. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8619. #endif
  8620. #endif
  8621. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8622. }
  8623. void restore_print_from_eeprom() {
  8624. int feedrate_rec;
  8625. uint8_t fan_speed_rec;
  8626. char cmd[30];
  8627. char filename[13];
  8628. uint8_t depth = 0;
  8629. char dir_name[9];
  8630. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8631. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8632. SERIAL_ECHOPGM("Feedrate:");
  8633. MYSERIAL.println(feedrate_rec);
  8634. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8635. MYSERIAL.println(int(depth));
  8636. for (int i = 0; i < depth; i++) {
  8637. for (int j = 0; j < 8; j++) {
  8638. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8639. }
  8640. dir_name[8] = '\0';
  8641. MYSERIAL.println(dir_name);
  8642. strcpy(dir_names[i], dir_name);
  8643. card.chdir(dir_name);
  8644. }
  8645. for (int i = 0; i < 8; i++) {
  8646. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8647. }
  8648. filename[8] = '\0';
  8649. MYSERIAL.print(filename);
  8650. strcat_P(filename, PSTR(".gco"));
  8651. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8652. enquecommand(cmd);
  8653. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8654. SERIAL_ECHOPGM("Position read from eeprom:");
  8655. MYSERIAL.println(position);
  8656. // E axis relative mode.
  8657. enquecommand_P(PSTR("M83"));
  8658. // Move to the XY print position in logical coordinates, where the print has been killed.
  8659. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8660. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8661. strcat_P(cmd, PSTR(" F2000"));
  8662. enquecommand(cmd);
  8663. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8664. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8665. // Move the Z axis down to the print, in logical coordinates.
  8666. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8667. enquecommand(cmd);
  8668. // Unretract.
  8669. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8670. // Set the feedrate saved at the power panic.
  8671. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8672. enquecommand(cmd);
  8673. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8674. {
  8675. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8676. }
  8677. // Set the fan speed saved at the power panic.
  8678. strcpy_P(cmd, PSTR("M106 S"));
  8679. strcat(cmd, itostr3(int(fan_speed_rec)));
  8680. enquecommand(cmd);
  8681. // Set a position in the file.
  8682. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8683. enquecommand(cmd);
  8684. enquecommand_P(PSTR("G4 S0"));
  8685. enquecommand_P(PSTR("PRUSA uvlo"));
  8686. }
  8687. #endif //UVLO_SUPPORT
  8688. //! @brief Immediately stop print moves
  8689. //!
  8690. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8691. //! If printing from sd card, position in file is saved.
  8692. //! If printing from USB, line number is saved.
  8693. //!
  8694. //! @param z_move
  8695. //! @param e_move
  8696. void stop_and_save_print_to_ram(float z_move, float e_move)
  8697. {
  8698. if (saved_printing) return;
  8699. #if 0
  8700. unsigned char nplanner_blocks;
  8701. #endif
  8702. unsigned char nlines;
  8703. uint16_t sdlen_planner;
  8704. uint16_t sdlen_cmdqueue;
  8705. cli();
  8706. if (card.sdprinting) {
  8707. #if 0
  8708. nplanner_blocks = number_of_blocks();
  8709. #endif
  8710. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8711. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8712. saved_sdpos -= sdlen_planner;
  8713. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8714. saved_sdpos -= sdlen_cmdqueue;
  8715. saved_printing_type = PRINTING_TYPE_SD;
  8716. }
  8717. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8718. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8719. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8720. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8721. saved_sdpos -= nlines;
  8722. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8723. saved_printing_type = PRINTING_TYPE_USB;
  8724. }
  8725. else {
  8726. saved_printing_type = PRINTING_TYPE_NONE;
  8727. //not sd printing nor usb printing
  8728. }
  8729. #if 0
  8730. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8731. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8732. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8733. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8734. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8735. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8736. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8737. {
  8738. card.setIndex(saved_sdpos);
  8739. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8740. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8741. MYSERIAL.print(char(card.get()));
  8742. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8743. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8744. MYSERIAL.print(char(card.get()));
  8745. SERIAL_ECHOLNPGM("End of command buffer");
  8746. }
  8747. {
  8748. // Print the content of the planner buffer, line by line:
  8749. card.setIndex(saved_sdpos);
  8750. int8_t iline = 0;
  8751. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8752. SERIAL_ECHOPGM("Planner line (from file): ");
  8753. MYSERIAL.print(int(iline), DEC);
  8754. SERIAL_ECHOPGM(", length: ");
  8755. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8756. SERIAL_ECHOPGM(", steps: (");
  8757. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8758. SERIAL_ECHOPGM(",");
  8759. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8760. SERIAL_ECHOPGM(",");
  8761. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8762. SERIAL_ECHOPGM(",");
  8763. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8764. SERIAL_ECHOPGM("), events: ");
  8765. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8766. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8767. MYSERIAL.print(char(card.get()));
  8768. }
  8769. }
  8770. {
  8771. // Print the content of the command buffer, line by line:
  8772. int8_t iline = 0;
  8773. union {
  8774. struct {
  8775. char lo;
  8776. char hi;
  8777. } lohi;
  8778. uint16_t value;
  8779. } sdlen_single;
  8780. int _bufindr = bufindr;
  8781. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8782. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8783. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8784. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8785. }
  8786. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8787. MYSERIAL.print(int(iline), DEC);
  8788. SERIAL_ECHOPGM(", type: ");
  8789. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8790. SERIAL_ECHOPGM(", len: ");
  8791. MYSERIAL.println(sdlen_single.value, DEC);
  8792. // Print the content of the buffer line.
  8793. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8794. SERIAL_ECHOPGM("Buffer line (from file): ");
  8795. MYSERIAL.println(int(iline), DEC);
  8796. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8797. MYSERIAL.print(char(card.get()));
  8798. if (-- _buflen == 0)
  8799. break;
  8800. // First skip the current command ID and iterate up to the end of the string.
  8801. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8802. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8803. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8804. // If the end of the buffer was empty,
  8805. if (_bufindr == sizeof(cmdbuffer)) {
  8806. // skip to the start and find the nonzero command.
  8807. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8808. }
  8809. }
  8810. }
  8811. #endif
  8812. #if 0
  8813. saved_feedrate2 = feedrate; //save feedrate
  8814. #else
  8815. // Try to deduce the feedrate from the first block of the planner.
  8816. // Speed is in mm/min.
  8817. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8818. #endif
  8819. planner_abort_hard(); //abort printing
  8820. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8821. saved_active_extruder = active_extruder; //save active_extruder
  8822. saved_extruder_temperature = degTargetHotend(active_extruder);
  8823. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8824. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8825. saved_fanSpeed = fanSpeed;
  8826. cmdqueue_reset(); //empty cmdqueue
  8827. card.sdprinting = false;
  8828. // card.closefile();
  8829. saved_printing = true;
  8830. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8831. st_reset_timer();
  8832. sei();
  8833. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8834. #if 1
  8835. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8836. char buf[48];
  8837. // First unretract (relative extrusion)
  8838. if(!saved_extruder_relative_mode){
  8839. enquecommand(PSTR("M83"), true);
  8840. }
  8841. //retract 45mm/s
  8842. // A single sprintf may not be faster, but is definitely 20B shorter
  8843. // than a sequence of commands building the string piece by piece
  8844. // A snprintf would have been a safer call, but since it is not used
  8845. // in the whole program, its implementation would bring more bytes to the total size
  8846. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8847. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8848. enquecommand(buf, false);
  8849. // Then lift Z axis
  8850. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8851. // At this point the command queue is empty.
  8852. enquecommand(buf, false);
  8853. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8854. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8855. repeatcommand_front();
  8856. #else
  8857. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8858. st_synchronize(); //wait moving
  8859. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8860. memcpy(destination, current_position, sizeof(destination));
  8861. #endif
  8862. }
  8863. }
  8864. //! @brief Restore print from ram
  8865. //!
  8866. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8867. //! print fan speed, waits for extruder temperature restore, then restores
  8868. //! position and continues print moves.
  8869. //!
  8870. //! Internally lcd_update() is called by wait_for_heater().
  8871. //!
  8872. //! @param e_move
  8873. void restore_print_from_ram_and_continue(float e_move)
  8874. {
  8875. if (!saved_printing) return;
  8876. #ifdef FANCHECK
  8877. // Do not allow resume printing if fans are still not ok
  8878. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8879. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8880. #endif
  8881. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8882. // current_position[axis] = st_get_position_mm(axis);
  8883. active_extruder = saved_active_extruder; //restore active_extruder
  8884. fanSpeed = saved_fanSpeed;
  8885. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8886. {
  8887. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8888. heating_status = 1;
  8889. wait_for_heater(_millis(), saved_active_extruder);
  8890. heating_status = 2;
  8891. }
  8892. feedrate = saved_feedrate2; //restore feedrate
  8893. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8894. float e = saved_pos[E_AXIS] - e_move;
  8895. plan_set_e_position(e);
  8896. #ifdef FANCHECK
  8897. fans_check_enabled = false;
  8898. #endif
  8899. //first move print head in XY to the saved position:
  8900. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8901. st_synchronize();
  8902. //then move Z
  8903. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8904. st_synchronize();
  8905. //and finaly unretract (35mm/s)
  8906. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8907. st_synchronize();
  8908. #ifdef FANCHECK
  8909. fans_check_enabled = true;
  8910. #endif
  8911. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8912. memcpy(destination, current_position, sizeof(destination));
  8913. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8914. card.setIndex(saved_sdpos);
  8915. sdpos_atomic = saved_sdpos;
  8916. card.sdprinting = true;
  8917. }
  8918. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8919. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8920. serial_count = 0;
  8921. FlushSerialRequestResend();
  8922. }
  8923. else {
  8924. //not sd printing nor usb printing
  8925. }
  8926. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  8927. lcd_setstatuspgm(_T(WELCOME_MSG));
  8928. saved_printing_type = PRINTING_TYPE_NONE;
  8929. saved_printing = false;
  8930. }
  8931. void print_world_coordinates()
  8932. {
  8933. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8934. }
  8935. void print_physical_coordinates()
  8936. {
  8937. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8938. }
  8939. void print_mesh_bed_leveling_table()
  8940. {
  8941. SERIAL_ECHOPGM("mesh bed leveling: ");
  8942. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8943. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8944. MYSERIAL.print(mbl.z_values[y][x], 3);
  8945. SERIAL_ECHOPGM(" ");
  8946. }
  8947. SERIAL_ECHOLNPGM("");
  8948. }
  8949. uint16_t print_time_remaining() {
  8950. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8951. #ifdef TMC2130
  8952. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8953. else print_t = print_time_remaining_silent;
  8954. #else
  8955. print_t = print_time_remaining_normal;
  8956. #endif //TMC2130
  8957. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8958. return print_t;
  8959. }
  8960. uint8_t calc_percent_done()
  8961. {
  8962. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8963. uint8_t percent_done = 0;
  8964. #ifdef TMC2130
  8965. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8966. percent_done = print_percent_done_normal;
  8967. }
  8968. else if (print_percent_done_silent <= 100) {
  8969. percent_done = print_percent_done_silent;
  8970. }
  8971. #else
  8972. if (print_percent_done_normal <= 100) {
  8973. percent_done = print_percent_done_normal;
  8974. }
  8975. #endif //TMC2130
  8976. else {
  8977. percent_done = card.percentDone();
  8978. }
  8979. return percent_done;
  8980. }
  8981. static void print_time_remaining_init()
  8982. {
  8983. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8984. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8985. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8986. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8987. }
  8988. void load_filament_final_feed()
  8989. {
  8990. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8991. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8992. }
  8993. //! @brief Wait for user to check the state
  8994. //! @par nozzle_temp nozzle temperature to load filament
  8995. void M600_check_state(float nozzle_temp)
  8996. {
  8997. lcd_change_fil_state = 0;
  8998. while (lcd_change_fil_state != 1)
  8999. {
  9000. lcd_change_fil_state = 0;
  9001. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9002. lcd_alright();
  9003. KEEPALIVE_STATE(IN_HANDLER);
  9004. switch(lcd_change_fil_state)
  9005. {
  9006. // Filament failed to load so load it again
  9007. case 2:
  9008. if (mmu_enabled)
  9009. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9010. else
  9011. M600_load_filament_movements();
  9012. break;
  9013. // Filament loaded properly but color is not clear
  9014. case 3:
  9015. st_synchronize();
  9016. load_filament_final_feed();
  9017. lcd_loading_color();
  9018. st_synchronize();
  9019. break;
  9020. // Everything good
  9021. default:
  9022. lcd_change_success();
  9023. break;
  9024. }
  9025. }
  9026. }
  9027. //! @brief Wait for user action
  9028. //!
  9029. //! Beep, manage nozzle heater and wait for user to start unload filament
  9030. //! If times out, active extruder temperature is set to 0.
  9031. //!
  9032. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9033. void M600_wait_for_user(float HotendTempBckp) {
  9034. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9035. int counterBeep = 0;
  9036. unsigned long waiting_start_time = _millis();
  9037. uint8_t wait_for_user_state = 0;
  9038. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9039. bool bFirst=true;
  9040. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9041. manage_heater();
  9042. manage_inactivity(true);
  9043. #if BEEPER > 0
  9044. if (counterBeep == 500) {
  9045. counterBeep = 0;
  9046. }
  9047. SET_OUTPUT(BEEPER);
  9048. if (counterBeep == 0) {
  9049. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9050. {
  9051. bFirst=false;
  9052. WRITE(BEEPER, HIGH);
  9053. }
  9054. }
  9055. if (counterBeep == 20) {
  9056. WRITE(BEEPER, LOW);
  9057. }
  9058. counterBeep++;
  9059. #endif //BEEPER > 0
  9060. switch (wait_for_user_state) {
  9061. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9062. delay_keep_alive(4);
  9063. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9064. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9065. wait_for_user_state = 1;
  9066. setAllTargetHotends(0);
  9067. st_synchronize();
  9068. disable_e0();
  9069. disable_e1();
  9070. disable_e2();
  9071. }
  9072. break;
  9073. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9074. delay_keep_alive(4);
  9075. if (lcd_clicked()) {
  9076. setTargetHotend(HotendTempBckp, active_extruder);
  9077. lcd_wait_for_heater();
  9078. wait_for_user_state = 2;
  9079. }
  9080. break;
  9081. case 2: //waiting for nozzle to reach target temperature
  9082. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9083. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9084. waiting_start_time = _millis();
  9085. wait_for_user_state = 0;
  9086. }
  9087. else {
  9088. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9089. lcd_set_cursor(1, 4);
  9090. lcd_print(ftostr3(degHotend(active_extruder)));
  9091. }
  9092. break;
  9093. }
  9094. }
  9095. WRITE(BEEPER, LOW);
  9096. }
  9097. void M600_load_filament_movements()
  9098. {
  9099. #ifdef SNMM
  9100. display_loading();
  9101. do
  9102. {
  9103. current_position[E_AXIS] += 0.002;
  9104. plan_buffer_line_curposXYZE(500, active_extruder);
  9105. delay_keep_alive(2);
  9106. }
  9107. while (!lcd_clicked());
  9108. st_synchronize();
  9109. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9110. plan_buffer_line_curposXYZE(3000, active_extruder);
  9111. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9112. plan_buffer_line_curposXYZE(1400, active_extruder);
  9113. current_position[E_AXIS] += 40;
  9114. plan_buffer_line_curposXYZE(400, active_extruder);
  9115. current_position[E_AXIS] += 10;
  9116. plan_buffer_line_curposXYZE(50, active_extruder);
  9117. #else
  9118. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9119. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9120. #endif
  9121. load_filament_final_feed();
  9122. lcd_loading_filament();
  9123. st_synchronize();
  9124. }
  9125. void M600_load_filament() {
  9126. //load filament for single material and SNMM
  9127. lcd_wait_interact();
  9128. //load_filament_time = _millis();
  9129. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9130. #ifdef PAT9125
  9131. fsensor_autoload_check_start();
  9132. #endif //PAT9125
  9133. while(!lcd_clicked())
  9134. {
  9135. manage_heater();
  9136. manage_inactivity(true);
  9137. #ifdef FILAMENT_SENSOR
  9138. if (fsensor_check_autoload())
  9139. {
  9140. Sound_MakeCustom(50,1000,false);
  9141. break;
  9142. }
  9143. #endif //FILAMENT_SENSOR
  9144. }
  9145. #ifdef PAT9125
  9146. fsensor_autoload_check_stop();
  9147. #endif //PAT9125
  9148. KEEPALIVE_STATE(IN_HANDLER);
  9149. #ifdef FSENSOR_QUALITY
  9150. fsensor_oq_meassure_start(70);
  9151. #endif //FSENSOR_QUALITY
  9152. M600_load_filament_movements();
  9153. Sound_MakeCustom(50,1000,false);
  9154. #ifdef FSENSOR_QUALITY
  9155. fsensor_oq_meassure_stop();
  9156. if (!fsensor_oq_result())
  9157. {
  9158. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9159. lcd_update_enable(true);
  9160. lcd_update(2);
  9161. if (disable)
  9162. fsensor_disable();
  9163. }
  9164. #endif //FSENSOR_QUALITY
  9165. lcd_update_enable(false);
  9166. }
  9167. //! @brief Wait for click
  9168. //!
  9169. //! Set
  9170. void marlin_wait_for_click()
  9171. {
  9172. int8_t busy_state_backup = busy_state;
  9173. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9174. lcd_consume_click();
  9175. while(!lcd_clicked())
  9176. {
  9177. manage_heater();
  9178. manage_inactivity(true);
  9179. lcd_update(0);
  9180. }
  9181. KEEPALIVE_STATE(busy_state_backup);
  9182. }
  9183. #define FIL_LOAD_LENGTH 60
  9184. #ifdef PSU_Delta
  9185. bool bEnableForce_z;
  9186. void init_force_z()
  9187. {
  9188. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9189. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9190. disable_force_z();
  9191. }
  9192. void check_force_z()
  9193. {
  9194. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9195. init_force_z(); // causes enforced switching into disable-state
  9196. }
  9197. void disable_force_z()
  9198. {
  9199. uint16_t z_microsteps=0;
  9200. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9201. bEnableForce_z=false;
  9202. // switching to silent mode
  9203. #ifdef TMC2130
  9204. tmc2130_mode=TMC2130_MODE_SILENT;
  9205. update_mode_profile();
  9206. tmc2130_init(true);
  9207. #endif // TMC2130
  9208. axis_known_position[Z_AXIS]=false;
  9209. }
  9210. void enable_force_z()
  9211. {
  9212. if(bEnableForce_z)
  9213. return; // motor already enabled (may be ;-p )
  9214. bEnableForce_z=true;
  9215. // mode recovering
  9216. #ifdef TMC2130
  9217. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9218. update_mode_profile();
  9219. tmc2130_init(true);
  9220. #endif // TMC2130
  9221. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9222. }
  9223. #endif // PSU_Delta