Marlin_main.cpp 258 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool volumetric_enabled = false;
  269. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  270. #if EXTRUDERS > 1
  271. , DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 2
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #endif
  275. #endif
  276. };
  277. float volumetric_multiplier[EXTRUDERS] = {1.0
  278. #if EXTRUDERS > 1
  279. , 1.0
  280. #if EXTRUDERS > 2
  281. , 1.0
  282. #endif
  283. #endif
  284. };
  285. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  286. float add_homing[3]={0,0,0};
  287. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. bool axis_known_position[3] = {false, false, false};
  290. float zprobe_zoffset;
  291. // Extruder offset
  292. #if EXTRUDERS > 1
  293. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  294. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  295. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  296. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  297. #endif
  298. };
  299. #endif
  300. uint8_t active_extruder = 0;
  301. int fanSpeed=0;
  302. #ifdef FWRETRACT
  303. bool autoretract_enabled=false;
  304. bool retracted[EXTRUDERS]={false
  305. #if EXTRUDERS > 1
  306. , false
  307. #if EXTRUDERS > 2
  308. , false
  309. #endif
  310. #endif
  311. };
  312. bool retracted_swap[EXTRUDERS]={false
  313. #if EXTRUDERS > 1
  314. , false
  315. #if EXTRUDERS > 2
  316. , false
  317. #endif
  318. #endif
  319. };
  320. float retract_length = RETRACT_LENGTH;
  321. float retract_length_swap = RETRACT_LENGTH_SWAP;
  322. float retract_feedrate = RETRACT_FEEDRATE;
  323. float retract_zlift = RETRACT_ZLIFT;
  324. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  325. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  326. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  327. #endif
  328. #ifdef ULTIPANEL
  329. #ifdef PS_DEFAULT_OFF
  330. bool powersupply = false;
  331. #else
  332. bool powersupply = true;
  333. #endif
  334. #endif
  335. bool cancel_heatup = false ;
  336. #ifdef HOST_KEEPALIVE_FEATURE
  337. int busy_state = NOT_BUSY;
  338. static long prev_busy_signal_ms = -1;
  339. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  340. #else
  341. #define host_keepalive();
  342. #define KEEPALIVE_STATE(n);
  343. #endif
  344. #ifdef FILAMENT_SENSOR
  345. //Variables for Filament Sensor input
  346. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  347. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  348. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  349. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  350. int delay_index1=0; //index into ring buffer
  351. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  352. float delay_dist=0; //delay distance counter
  353. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  354. #endif
  355. const char errormagic[] PROGMEM = "Error:";
  356. const char echomagic[] PROGMEM = "echo:";
  357. //===========================================================================
  358. //=============================Private Variables=============================
  359. //===========================================================================
  360. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  361. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  362. static float delta[3] = {0.0, 0.0, 0.0};
  363. // For tracing an arc
  364. static float offset[3] = {0.0, 0.0, 0.0};
  365. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  366. // Determines Absolute or Relative Coordinates.
  367. // Also there is bool axis_relative_modes[] per axis flag.
  368. static bool relative_mode = false;
  369. #ifndef _DISABLE_M42_M226
  370. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  371. #endif //_DISABLE_M42_M226
  372. //static float tt = 0;
  373. //static float bt = 0;
  374. //Inactivity shutdown variables
  375. static unsigned long previous_millis_cmd = 0;
  376. unsigned long max_inactive_time = 0;
  377. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  378. unsigned long starttime=0;
  379. unsigned long stoptime=0;
  380. unsigned long _usb_timer = 0;
  381. static uint8_t tmp_extruder;
  382. bool extruder_under_pressure = true;
  383. bool Stopped=false;
  384. #if NUM_SERVOS > 0
  385. Servo servos[NUM_SERVOS];
  386. #endif
  387. bool CooldownNoWait = true;
  388. bool target_direction;
  389. //Insert variables if CHDK is defined
  390. #ifdef CHDK
  391. unsigned long chdkHigh = 0;
  392. boolean chdkActive = false;
  393. #endif
  394. //===========================================================================
  395. //=============================Routines======================================
  396. //===========================================================================
  397. void get_arc_coordinates();
  398. bool setTargetedHotend(int code);
  399. void serial_echopair_P(const char *s_P, float v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. void serial_echopair_P(const char *s_P, double v)
  402. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  403. void serial_echopair_P(const char *s_P, unsigned long v)
  404. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  405. #ifdef SDSUPPORT
  406. #include "SdFatUtil.h"
  407. int freeMemory() { return SdFatUtil::FreeRam(); }
  408. #else
  409. extern "C" {
  410. extern unsigned int __bss_end;
  411. extern unsigned int __heap_start;
  412. extern void *__brkval;
  413. int freeMemory() {
  414. int free_memory;
  415. if ((int)__brkval == 0)
  416. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  417. else
  418. free_memory = ((int)&free_memory) - ((int)__brkval);
  419. return free_memory;
  420. }
  421. }
  422. #endif //!SDSUPPORT
  423. void setup_killpin()
  424. {
  425. #if defined(KILL_PIN) && KILL_PIN > -1
  426. SET_INPUT(KILL_PIN);
  427. WRITE(KILL_PIN,HIGH);
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. SET_OUTPUT(PHOTOGRAPH_PIN);
  442. WRITE(PHOTOGRAPH_PIN, LOW);
  443. #endif
  444. }
  445. void setup_powerhold()
  446. {
  447. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  448. SET_OUTPUT(SUICIDE_PIN);
  449. WRITE(SUICIDE_PIN, HIGH);
  450. #endif
  451. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  452. SET_OUTPUT(PS_ON_PIN);
  453. #if defined(PS_DEFAULT_OFF)
  454. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  455. #else
  456. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  457. #endif
  458. #endif
  459. }
  460. void suicide()
  461. {
  462. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  463. SET_OUTPUT(SUICIDE_PIN);
  464. WRITE(SUICIDE_PIN, LOW);
  465. #endif
  466. }
  467. void servo_init()
  468. {
  469. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  470. servos[0].attach(SERVO0_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  473. servos[1].attach(SERVO1_PIN);
  474. #endif
  475. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  476. servos[2].attach(SERVO2_PIN);
  477. #endif
  478. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  479. servos[3].attach(SERVO3_PIN);
  480. #endif
  481. #if (NUM_SERVOS >= 5)
  482. #error "TODO: enter initalisation code for more servos"
  483. #endif
  484. }
  485. static void lcd_language_menu();
  486. void stop_and_save_print_to_ram(float z_move, float e_move);
  487. void restore_print_from_ram_and_continue(float e_move);
  488. extern int8_t CrashDetectMenu;
  489. void crashdet_enable()
  490. {
  491. MYSERIAL.println("crashdet_enable");
  492. tmc2130_sg_stop_on_crash = true;
  493. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  494. CrashDetectMenu = 1;
  495. }
  496. void crashdet_disable()
  497. {
  498. MYSERIAL.println("crashdet_disable");
  499. tmc2130_sg_stop_on_crash = false;
  500. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  501. CrashDetectMenu = 0;
  502. }
  503. void crashdet_stop_and_save_print()
  504. {
  505. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  506. }
  507. void crashdet_restore_print_and_continue()
  508. {
  509. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  510. // babystep_apply();
  511. }
  512. void crashdet_stop_and_save_print2()
  513. {
  514. cli();
  515. planner_abort_hard(); //abort printing
  516. cmdqueue_reset(); //empty cmdqueue
  517. card.sdprinting = false;
  518. card.closefile();
  519. sei();
  520. }
  521. void crashdet_detected()
  522. {
  523. printf("CRASH_DETECTED");
  524. /* while (!is_buffer_empty())
  525. {
  526. process_commands();
  527. cmdqueue_pop_front();
  528. }*/
  529. st_synchronize();
  530. lcd_update_enable(true);
  531. lcd_implementation_clear();
  532. lcd_update(2);
  533. // Increment crash counter
  534. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  535. crash_count++;
  536. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  537. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  538. bool yesno = true;
  539. #else
  540. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  541. #endif
  542. lcd_update_enable(true);
  543. lcd_update(2);
  544. lcd_setstatuspgm(WELCOME_MSG);
  545. if (yesno)
  546. {
  547. enquecommand_P(PSTR("G28 X"));
  548. enquecommand_P(PSTR("G28 Y"));
  549. enquecommand_P(PSTR("CRASH_RECOVER"));
  550. }
  551. else
  552. {
  553. enquecommand_P(PSTR("CRASH_CANCEL"));
  554. }
  555. }
  556. void crashdet_recover()
  557. {
  558. crashdet_restore_print_and_continue();
  559. tmc2130_sg_stop_on_crash = true;
  560. }
  561. void crashdet_cancel()
  562. {
  563. card.sdprinting = false;
  564. card.closefile();
  565. tmc2130_sg_stop_on_crash = true;
  566. }
  567. #ifdef MESH_BED_LEVELING
  568. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  569. #endif
  570. // Factory reset function
  571. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  572. // Level input parameter sets depth of reset
  573. // Quiet parameter masks all waitings for user interact.
  574. int er_progress = 0;
  575. void factory_reset(char level, bool quiet)
  576. {
  577. lcd_implementation_clear();
  578. int cursor_pos = 0;
  579. switch (level) {
  580. // Level 0: Language reset
  581. case 0:
  582. WRITE(BEEPER, HIGH);
  583. _delay_ms(100);
  584. WRITE(BEEPER, LOW);
  585. lcd_force_language_selection();
  586. break;
  587. //Level 1: Reset statistics
  588. case 1:
  589. WRITE(BEEPER, HIGH);
  590. _delay_ms(100);
  591. WRITE(BEEPER, LOW);
  592. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  593. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  594. lcd_menu_statistics();
  595. break;
  596. // Level 2: Prepare for shipping
  597. case 2:
  598. //lcd_printPGM(PSTR("Factory RESET"));
  599. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  600. // Force language selection at the next boot up.
  601. lcd_force_language_selection();
  602. // Force the "Follow calibration flow" message at the next boot up.
  603. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  604. farm_no = 0;
  605. farm_mode == false;
  606. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  607. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  608. WRITE(BEEPER, HIGH);
  609. _delay_ms(100);
  610. WRITE(BEEPER, LOW);
  611. //_delay_ms(2000);
  612. break;
  613. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  614. case 3:
  615. lcd_printPGM(PSTR("Factory RESET"));
  616. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. er_progress = 0;
  621. lcd_print_at_PGM(3, 3, PSTR(" "));
  622. lcd_implementation_print_at(3, 3, er_progress);
  623. // Erase EEPROM
  624. for (int i = 0; i < 4096; i++) {
  625. eeprom_write_byte((uint8_t*)i, 0xFF);
  626. if (i % 41 == 0) {
  627. er_progress++;
  628. lcd_print_at_PGM(3, 3, PSTR(" "));
  629. lcd_implementation_print_at(3, 3, er_progress);
  630. lcd_printPGM(PSTR("%"));
  631. }
  632. }
  633. break;
  634. case 4:
  635. bowden_menu();
  636. break;
  637. default:
  638. break;
  639. }
  640. }
  641. #include "LiquidCrystal.h"
  642. extern LiquidCrystal lcd;
  643. FILE _lcdout = {0};
  644. int lcd_putchar(char c, FILE *stream)
  645. {
  646. lcd.write(c);
  647. return 0;
  648. }
  649. FILE _uartout = {0};
  650. int uart_putchar(char c, FILE *stream)
  651. {
  652. MYSERIAL.write(c);
  653. return 0;
  654. }
  655. void lcd_splash()
  656. {
  657. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  658. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  659. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  660. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  661. }
  662. // "Setup" function is called by the Arduino framework on startup.
  663. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  664. // are initialized by the main() routine provided by the Arduino framework.
  665. void setup()
  666. {
  667. lcd_init();
  668. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  669. lcd_splash();
  670. setup_killpin();
  671. setup_powerhold();
  672. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  673. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  674. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  675. if (farm_no == 0xFFFF) farm_no = 0;
  676. if (farm_mode)
  677. {
  678. prusa_statistics(8);
  679. selectedSerialPort = 1;
  680. }
  681. else
  682. selectedSerialPort = 0;
  683. MYSERIAL.begin(BAUDRATE);
  684. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  685. stdout = uartout;
  686. SERIAL_PROTOCOLLNPGM("start");
  687. SERIAL_ECHO_START;
  688. #if 0
  689. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  690. for (int i = 0; i < 4096; ++i) {
  691. int b = eeprom_read_byte((unsigned char*)i);
  692. if (b != 255) {
  693. SERIAL_ECHO(i);
  694. SERIAL_ECHO(":");
  695. SERIAL_ECHO(b);
  696. SERIAL_ECHOLN("");
  697. }
  698. }
  699. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  700. #endif
  701. // Check startup - does nothing if bootloader sets MCUSR to 0
  702. byte mcu = MCUSR;
  703. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  704. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  705. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  706. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  707. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  708. if (mcu & 1) puts_P(MSG_POWERUP);
  709. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  710. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  711. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  712. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  713. MCUSR = 0;
  714. //SERIAL_ECHORPGM(MSG_MARLIN);
  715. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  716. #ifdef STRING_VERSION_CONFIG_H
  717. #ifdef STRING_CONFIG_H_AUTHOR
  718. SERIAL_ECHO_START;
  719. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  720. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  721. SERIAL_ECHORPGM(MSG_AUTHOR);
  722. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  723. SERIAL_ECHOPGM("Compiled: ");
  724. SERIAL_ECHOLNPGM(__DATE__);
  725. #endif
  726. #endif
  727. SERIAL_ECHO_START;
  728. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  729. SERIAL_ECHO(freeMemory());
  730. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  731. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  732. //lcd_update_enable(false); // why do we need this?? - andre
  733. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  734. Config_RetrieveSettings(EEPROM_OFFSET);
  735. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  736. tp_init(); // Initialize temperature loop
  737. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  738. plan_init(); // Initialize planner;
  739. watchdog_init();
  740. #ifdef TMC2130
  741. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  742. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  743. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  744. if (crashdet)
  745. {
  746. crashdet_enable();
  747. MYSERIAL.println("CrashDetect ENABLED!");
  748. }
  749. else
  750. {
  751. crashdet_disable();
  752. MYSERIAL.println("CrashDetect DISABLED");
  753. }
  754. #endif //TMC2130
  755. #ifdef PAT9125
  756. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  757. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  758. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  759. if (!pat9125) fsensor = 0; //disable sensor
  760. puts_P(PSTR("FSensor "));
  761. if (fsensor)
  762. {
  763. puts_P(PSTR("ENABLED\n"));
  764. fsensor_enable();
  765. }
  766. else
  767. {
  768. puts_P(PSTR("DISABLED\n"));
  769. fsensor_disable();
  770. }
  771. #endif //PAT9125
  772. st_init(); // Initialize stepper, this enables interrupts!
  773. setup_photpin();
  774. servo_init();
  775. // Reset the machine correction matrix.
  776. // It does not make sense to load the correction matrix until the machine is homed.
  777. world2machine_reset();
  778. KEEPALIVE_STATE(PAUSED_FOR_USER);
  779. if (!READ(BTN_ENC))
  780. {
  781. _delay_ms(1000);
  782. if (!READ(BTN_ENC))
  783. {
  784. lcd_implementation_clear();
  785. lcd_printPGM(PSTR("Factory RESET"));
  786. SET_OUTPUT(BEEPER);
  787. WRITE(BEEPER, HIGH);
  788. while (!READ(BTN_ENC));
  789. WRITE(BEEPER, LOW);
  790. _delay_ms(2000);
  791. char level = reset_menu();
  792. factory_reset(level, false);
  793. switch (level) {
  794. case 0: _delay_ms(0); break;
  795. case 1: _delay_ms(0); break;
  796. case 2: _delay_ms(0); break;
  797. case 3: _delay_ms(0); break;
  798. }
  799. // _delay_ms(100);
  800. /*
  801. #ifdef MESH_BED_LEVELING
  802. _delay_ms(2000);
  803. if (!READ(BTN_ENC))
  804. {
  805. WRITE(BEEPER, HIGH);
  806. _delay_ms(100);
  807. WRITE(BEEPER, LOW);
  808. _delay_ms(200);
  809. WRITE(BEEPER, HIGH);
  810. _delay_ms(100);
  811. WRITE(BEEPER, LOW);
  812. int _z = 0;
  813. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  814. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  815. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  816. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  817. }
  818. else
  819. {
  820. WRITE(BEEPER, HIGH);
  821. _delay_ms(100);
  822. WRITE(BEEPER, LOW);
  823. }
  824. #endif // mesh */
  825. }
  826. }
  827. else
  828. {
  829. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  830. }
  831. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  832. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  833. #endif
  834. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  835. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  836. #endif
  837. #ifdef DIGIPOT_I2C
  838. digipot_i2c_init();
  839. #endif
  840. setup_homepin();
  841. if (1) {
  842. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  843. // try to run to zero phase before powering the Z motor.
  844. // Move in negative direction
  845. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  846. // Round the current micro-micro steps to micro steps.
  847. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  848. // Until the phase counter is reset to zero.
  849. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  850. delay(2);
  851. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  852. delay(2);
  853. }
  854. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  855. }
  856. #if defined(Z_AXIS_ALWAYS_ON)
  857. enable_z();
  858. #endif
  859. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  860. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  861. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  862. if (farm_no == 0xFFFF) farm_no = 0;
  863. if (farm_mode)
  864. {
  865. prusa_statistics(8);
  866. }
  867. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  868. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  869. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  870. // but this times out if a blocking dialog is shown in setup().
  871. card.initsd();
  872. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  873. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  874. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  875. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  876. // where all the EEPROM entries are set to 0x0ff.
  877. // Once a firmware boots up, it forces at least a language selection, which changes
  878. // EEPROM_LANG to number lower than 0x0ff.
  879. // 1) Set a high power mode.
  880. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  881. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  882. }
  883. #ifdef SNMM
  884. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  885. int _z = BOWDEN_LENGTH;
  886. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  887. }
  888. #endif
  889. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  890. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  891. // is being written into the EEPROM, so the update procedure will be triggered only once.
  892. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  893. if (lang_selected >= LANG_NUM){
  894. lcd_mylang();
  895. }
  896. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  897. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  898. temp_cal_active = false;
  899. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  900. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  901. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  902. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  903. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  904. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  905. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  906. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  907. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  908. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  909. temp_cal_active = true;
  910. }
  911. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  912. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  913. }
  914. check_babystep(); //checking if Z babystep is in allowed range
  915. setup_uvlo_interrupt();
  916. setup_fan_interrupt();
  917. fsensor_setup_interrupt();
  918. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  919. #ifndef DEBUG_DISABLE_STARTMSGS
  920. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  921. lcd_wizard(0);
  922. }
  923. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  924. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  925. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  926. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  927. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  928. // Show the message.
  929. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  930. }
  931. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  932. // Show the message.
  933. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  934. lcd_update_enable(true);
  935. }
  936. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  937. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  938. lcd_update_enable(true);
  939. }
  940. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  941. // Show the message.
  942. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  943. }
  944. }
  945. KEEPALIVE_STATE(IN_PROCESS);
  946. #endif //DEBUG_DISABLE_STARTMSGS
  947. lcd_update_enable(true);
  948. lcd_implementation_clear();
  949. lcd_update(2);
  950. // Store the currently running firmware into an eeprom,
  951. // so the next time the firmware gets updated, it will know from which version it has been updated.
  952. update_current_firmware_version_to_eeprom();
  953. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  954. /*
  955. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  956. else {
  957. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  958. lcd_update_enable(true);
  959. lcd_update(2);
  960. lcd_setstatuspgm(WELCOME_MSG);
  961. }
  962. */
  963. manage_heater(); // Update temperatures
  964. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  965. MYSERIAL.println("Power panic detected!");
  966. MYSERIAL.print("Current bed temp:");
  967. MYSERIAL.println(degBed());
  968. MYSERIAL.print("Saved bed temp:");
  969. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  970. #endif
  971. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  972. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  973. MYSERIAL.println("Automatic recovery!");
  974. #endif
  975. recover_print(1);
  976. }
  977. else{
  978. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  979. MYSERIAL.println("Normal recovery!");
  980. #endif
  981. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  982. else {
  983. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  984. lcd_update_enable(true);
  985. lcd_update(2);
  986. lcd_setstatuspgm(WELCOME_MSG);
  987. }
  988. }
  989. }
  990. KEEPALIVE_STATE(NOT_BUSY);
  991. wdt_enable(WDTO_4S);
  992. }
  993. void trace();
  994. #define CHUNK_SIZE 64 // bytes
  995. #define SAFETY_MARGIN 1
  996. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  997. int chunkHead = 0;
  998. int serial_read_stream() {
  999. setTargetHotend(0, 0);
  1000. setTargetBed(0);
  1001. lcd_implementation_clear();
  1002. lcd_printPGM(PSTR(" Upload in progress"));
  1003. // first wait for how many bytes we will receive
  1004. uint32_t bytesToReceive;
  1005. // receive the four bytes
  1006. char bytesToReceiveBuffer[4];
  1007. for (int i=0; i<4; i++) {
  1008. int data;
  1009. while ((data = MYSERIAL.read()) == -1) {};
  1010. bytesToReceiveBuffer[i] = data;
  1011. }
  1012. // make it a uint32
  1013. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1014. // we're ready, notify the sender
  1015. MYSERIAL.write('+');
  1016. // lock in the routine
  1017. uint32_t receivedBytes = 0;
  1018. while (prusa_sd_card_upload) {
  1019. int i;
  1020. for (i=0; i<CHUNK_SIZE; i++) {
  1021. int data;
  1022. // check if we're not done
  1023. if (receivedBytes == bytesToReceive) {
  1024. break;
  1025. }
  1026. // read the next byte
  1027. while ((data = MYSERIAL.read()) == -1) {};
  1028. receivedBytes++;
  1029. // save it to the chunk
  1030. chunk[i] = data;
  1031. }
  1032. // write the chunk to SD
  1033. card.write_command_no_newline(&chunk[0]);
  1034. // notify the sender we're ready for more data
  1035. MYSERIAL.write('+');
  1036. // for safety
  1037. manage_heater();
  1038. // check if we're done
  1039. if(receivedBytes == bytesToReceive) {
  1040. trace(); // beep
  1041. card.closefile();
  1042. prusa_sd_card_upload = false;
  1043. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1044. return 0;
  1045. }
  1046. }
  1047. }
  1048. #ifdef HOST_KEEPALIVE_FEATURE
  1049. /**
  1050. * Output a "busy" message at regular intervals
  1051. * while the machine is not accepting commands.
  1052. */
  1053. void host_keepalive() {
  1054. if (farm_mode) return;
  1055. long ms = millis();
  1056. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1057. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1058. switch (busy_state) {
  1059. case IN_HANDLER:
  1060. case IN_PROCESS:
  1061. SERIAL_ECHO_START;
  1062. SERIAL_ECHOLNPGM("busy: processing");
  1063. break;
  1064. case PAUSED_FOR_USER:
  1065. SERIAL_ECHO_START;
  1066. SERIAL_ECHOLNPGM("busy: paused for user");
  1067. break;
  1068. case PAUSED_FOR_INPUT:
  1069. SERIAL_ECHO_START;
  1070. SERIAL_ECHOLNPGM("busy: paused for input");
  1071. break;
  1072. default:
  1073. break;
  1074. }
  1075. }
  1076. prev_busy_signal_ms = ms;
  1077. }
  1078. #endif
  1079. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1080. // Before loop(), the setup() function is called by the main() routine.
  1081. void loop()
  1082. {
  1083. KEEPALIVE_STATE(NOT_BUSY);
  1084. bool stack_integrity = true;
  1085. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1086. {
  1087. is_usb_printing = true;
  1088. usb_printing_counter--;
  1089. _usb_timer = millis();
  1090. }
  1091. if (usb_printing_counter == 0)
  1092. {
  1093. is_usb_printing = false;
  1094. }
  1095. if (prusa_sd_card_upload)
  1096. {
  1097. //we read byte-by byte
  1098. serial_read_stream();
  1099. } else
  1100. {
  1101. get_command();
  1102. #ifdef SDSUPPORT
  1103. card.checkautostart(false);
  1104. #endif
  1105. if(buflen)
  1106. {
  1107. cmdbuffer_front_already_processed = false;
  1108. #ifdef SDSUPPORT
  1109. if(card.saving)
  1110. {
  1111. // Saving a G-code file onto an SD-card is in progress.
  1112. // Saving starts with M28, saving until M29 is seen.
  1113. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1114. card.write_command(CMDBUFFER_CURRENT_STRING);
  1115. if(card.logging)
  1116. process_commands();
  1117. else
  1118. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1119. } else {
  1120. card.closefile();
  1121. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1122. }
  1123. } else {
  1124. process_commands();
  1125. }
  1126. #else
  1127. process_commands();
  1128. #endif //SDSUPPORT
  1129. if (! cmdbuffer_front_already_processed && buflen)
  1130. {
  1131. cli();
  1132. union {
  1133. struct {
  1134. char lo;
  1135. char hi;
  1136. } lohi;
  1137. uint16_t value;
  1138. } sdlen;
  1139. sdlen.value = 0;
  1140. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1141. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1142. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1143. }
  1144. cmdqueue_pop_front();
  1145. planner_add_sd_length(sdlen.value);
  1146. sei();
  1147. }
  1148. host_keepalive();
  1149. }
  1150. }
  1151. //check heater every n milliseconds
  1152. manage_heater();
  1153. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1154. checkHitEndstops();
  1155. lcd_update();
  1156. #ifdef PAT9125
  1157. fsensor_update();
  1158. #endif //PAT9125
  1159. #ifdef TMC2130
  1160. tmc2130_check_overtemp();
  1161. if (tmc2130_sg_crash)
  1162. {
  1163. tmc2130_sg_crash = false;
  1164. // crashdet_stop_and_save_print();
  1165. enquecommand_P((PSTR("CRASH_DETECTED")));
  1166. }
  1167. #endif //TMC2130
  1168. }
  1169. #define DEFINE_PGM_READ_ANY(type, reader) \
  1170. static inline type pgm_read_any(const type *p) \
  1171. { return pgm_read_##reader##_near(p); }
  1172. DEFINE_PGM_READ_ANY(float, float);
  1173. DEFINE_PGM_READ_ANY(signed char, byte);
  1174. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1175. static const PROGMEM type array##_P[3] = \
  1176. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1177. static inline type array(int axis) \
  1178. { return pgm_read_any(&array##_P[axis]); } \
  1179. type array##_ext(int axis) \
  1180. { return pgm_read_any(&array##_P[axis]); }
  1181. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1182. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1183. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1184. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1185. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1186. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1187. static void axis_is_at_home(int axis) {
  1188. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1189. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1190. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1191. }
  1192. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1193. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1194. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1195. saved_feedrate = feedrate;
  1196. saved_feedmultiply = feedmultiply;
  1197. feedmultiply = 100;
  1198. previous_millis_cmd = millis();
  1199. enable_endstops(enable_endstops_now);
  1200. }
  1201. static void clean_up_after_endstop_move() {
  1202. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1203. enable_endstops(false);
  1204. #endif
  1205. feedrate = saved_feedrate;
  1206. feedmultiply = saved_feedmultiply;
  1207. previous_millis_cmd = millis();
  1208. }
  1209. #ifdef ENABLE_AUTO_BED_LEVELING
  1210. #ifdef AUTO_BED_LEVELING_GRID
  1211. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1212. {
  1213. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1214. planeNormal.debug("planeNormal");
  1215. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1216. //bedLevel.debug("bedLevel");
  1217. //plan_bed_level_matrix.debug("bed level before");
  1218. //vector_3 uncorrected_position = plan_get_position_mm();
  1219. //uncorrected_position.debug("position before");
  1220. vector_3 corrected_position = plan_get_position();
  1221. // corrected_position.debug("position after");
  1222. current_position[X_AXIS] = corrected_position.x;
  1223. current_position[Y_AXIS] = corrected_position.y;
  1224. current_position[Z_AXIS] = corrected_position.z;
  1225. // put the bed at 0 so we don't go below it.
  1226. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1227. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1228. }
  1229. #else // not AUTO_BED_LEVELING_GRID
  1230. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1231. plan_bed_level_matrix.set_to_identity();
  1232. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1233. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1234. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1235. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1236. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1237. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1238. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1239. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1240. vector_3 corrected_position = plan_get_position();
  1241. current_position[X_AXIS] = corrected_position.x;
  1242. current_position[Y_AXIS] = corrected_position.y;
  1243. current_position[Z_AXIS] = corrected_position.z;
  1244. // put the bed at 0 so we don't go below it.
  1245. current_position[Z_AXIS] = zprobe_zoffset;
  1246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1247. }
  1248. #endif // AUTO_BED_LEVELING_GRID
  1249. static void run_z_probe() {
  1250. plan_bed_level_matrix.set_to_identity();
  1251. feedrate = homing_feedrate[Z_AXIS];
  1252. // move down until you find the bed
  1253. float zPosition = -10;
  1254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1255. st_synchronize();
  1256. // we have to let the planner know where we are right now as it is not where we said to go.
  1257. zPosition = st_get_position_mm(Z_AXIS);
  1258. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1259. // move up the retract distance
  1260. zPosition += home_retract_mm(Z_AXIS);
  1261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1262. st_synchronize();
  1263. // move back down slowly to find bed
  1264. feedrate = homing_feedrate[Z_AXIS]/4;
  1265. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1266. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1267. st_synchronize();
  1268. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1269. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1271. }
  1272. static void do_blocking_move_to(float x, float y, float z) {
  1273. float oldFeedRate = feedrate;
  1274. feedrate = homing_feedrate[Z_AXIS];
  1275. current_position[Z_AXIS] = z;
  1276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1277. st_synchronize();
  1278. feedrate = XY_TRAVEL_SPEED;
  1279. current_position[X_AXIS] = x;
  1280. current_position[Y_AXIS] = y;
  1281. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1282. st_synchronize();
  1283. feedrate = oldFeedRate;
  1284. }
  1285. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1286. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1287. }
  1288. /// Probe bed height at position (x,y), returns the measured z value
  1289. static float probe_pt(float x, float y, float z_before) {
  1290. // move to right place
  1291. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1292. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1293. run_z_probe();
  1294. float measured_z = current_position[Z_AXIS];
  1295. SERIAL_PROTOCOLRPGM(MSG_BED);
  1296. SERIAL_PROTOCOLPGM(" x: ");
  1297. SERIAL_PROTOCOL(x);
  1298. SERIAL_PROTOCOLPGM(" y: ");
  1299. SERIAL_PROTOCOL(y);
  1300. SERIAL_PROTOCOLPGM(" z: ");
  1301. SERIAL_PROTOCOL(measured_z);
  1302. SERIAL_PROTOCOLPGM("\n");
  1303. return measured_z;
  1304. }
  1305. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1306. #ifdef LIN_ADVANCE
  1307. /**
  1308. * M900: Set and/or Get advance K factor and WH/D ratio
  1309. *
  1310. * K<factor> Set advance K factor
  1311. * R<ratio> Set ratio directly (overrides WH/D)
  1312. * W<width> H<height> D<diam> Set ratio from WH/D
  1313. */
  1314. inline void gcode_M900() {
  1315. st_synchronize();
  1316. const float newK = code_seen('K') ? code_value_float() : -1;
  1317. if (newK >= 0) extruder_advance_k = newK;
  1318. float newR = code_seen('R') ? code_value_float() : -1;
  1319. if (newR < 0) {
  1320. const float newD = code_seen('D') ? code_value_float() : -1,
  1321. newW = code_seen('W') ? code_value_float() : -1,
  1322. newH = code_seen('H') ? code_value_float() : -1;
  1323. if (newD >= 0 && newW >= 0 && newH >= 0)
  1324. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1325. }
  1326. if (newR >= 0) advance_ed_ratio = newR;
  1327. SERIAL_ECHO_START;
  1328. SERIAL_ECHOPGM("Advance K=");
  1329. SERIAL_ECHOLN(extruder_advance_k);
  1330. SERIAL_ECHOPGM(" E/D=");
  1331. const float ratio = advance_ed_ratio;
  1332. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1333. }
  1334. #endif // LIN_ADVANCE
  1335. bool check_commands() {
  1336. bool end_command_found = false;
  1337. while (buflen)
  1338. {
  1339. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1340. if (!cmdbuffer_front_already_processed)
  1341. cmdqueue_pop_front();
  1342. cmdbuffer_front_already_processed = false;
  1343. }
  1344. return end_command_found;
  1345. }
  1346. #ifdef TMC2130
  1347. bool calibrate_z_auto()
  1348. {
  1349. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1350. lcd_implementation_clear();
  1351. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1352. bool endstops_enabled = enable_endstops(true);
  1353. int axis_up_dir = -home_dir(Z_AXIS);
  1354. tmc2130_home_enter(Z_AXIS_MASK);
  1355. current_position[Z_AXIS] = 0;
  1356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1357. set_destination_to_current();
  1358. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1359. feedrate = homing_feedrate[Z_AXIS];
  1360. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1361. tmc2130_home_restart(Z_AXIS);
  1362. st_synchronize();
  1363. // current_position[axis] = 0;
  1364. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1365. tmc2130_home_exit();
  1366. enable_endstops(false);
  1367. current_position[Z_AXIS] = 0;
  1368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1369. set_destination_to_current();
  1370. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1371. feedrate = homing_feedrate[Z_AXIS] / 2;
  1372. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1373. st_synchronize();
  1374. enable_endstops(endstops_enabled);
  1375. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1377. return true;
  1378. }
  1379. #endif //TMC2130
  1380. void homeaxis(int axis)
  1381. {
  1382. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1383. #define HOMEAXIS_DO(LETTER) \
  1384. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1385. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1386. {
  1387. int axis_home_dir = home_dir(axis);
  1388. feedrate = homing_feedrate[axis];
  1389. #ifdef TMC2130
  1390. tmc2130_home_enter(X_AXIS_MASK << axis);
  1391. #endif
  1392. // Move right a bit, so that the print head does not touch the left end position,
  1393. // and the following left movement has a chance to achieve the required velocity
  1394. // for the stall guard to work.
  1395. current_position[axis] = 0;
  1396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1397. // destination[axis] = 11.f;
  1398. destination[axis] = 3.f;
  1399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1400. st_synchronize();
  1401. // Move left away from the possible collision with the collision detection disabled.
  1402. endstops_hit_on_purpose();
  1403. enable_endstops(false);
  1404. current_position[axis] = 0;
  1405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1406. destination[axis] = - 1.;
  1407. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1408. st_synchronize();
  1409. // Now continue to move up to the left end stop with the collision detection enabled.
  1410. enable_endstops(true);
  1411. destination[axis] = - 1.1 * max_length(axis);
  1412. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1413. st_synchronize();
  1414. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1415. endstops_hit_on_purpose();
  1416. enable_endstops(false);
  1417. current_position[axis] = 0;
  1418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1419. destination[axis] = 10.f;
  1420. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1421. st_synchronize();
  1422. endstops_hit_on_purpose();
  1423. // Now move left up to the collision, this time with a repeatable velocity.
  1424. enable_endstops(true);
  1425. destination[axis] = - 15.f;
  1426. feedrate = homing_feedrate[axis]/2;
  1427. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1428. st_synchronize();
  1429. axis_is_at_home(axis);
  1430. axis_known_position[axis] = true;
  1431. #ifdef TMC2130
  1432. tmc2130_home_exit();
  1433. #endif
  1434. // Move the X carriage away from the collision.
  1435. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1436. endstops_hit_on_purpose();
  1437. enable_endstops(false);
  1438. {
  1439. // Two full periods (4 full steps).
  1440. float gap = 0.32f * 2.f;
  1441. current_position[axis] -= gap;
  1442. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1443. current_position[axis] += gap;
  1444. }
  1445. destination[axis] = current_position[axis];
  1446. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1447. st_synchronize();
  1448. feedrate = 0.0;
  1449. }
  1450. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1451. {
  1452. int axis_home_dir = home_dir(axis);
  1453. current_position[axis] = 0;
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1456. feedrate = homing_feedrate[axis];
  1457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1458. st_synchronize();
  1459. current_position[axis] = 0;
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1462. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1463. st_synchronize();
  1464. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1465. feedrate = homing_feedrate[axis]/2 ;
  1466. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1467. st_synchronize();
  1468. axis_is_at_home(axis);
  1469. destination[axis] = current_position[axis];
  1470. feedrate = 0.0;
  1471. endstops_hit_on_purpose();
  1472. axis_known_position[axis] = true;
  1473. }
  1474. enable_endstops(endstops_enabled);
  1475. }
  1476. /**/
  1477. void home_xy()
  1478. {
  1479. set_destination_to_current();
  1480. homeaxis(X_AXIS);
  1481. homeaxis(Y_AXIS);
  1482. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1483. endstops_hit_on_purpose();
  1484. }
  1485. void refresh_cmd_timeout(void)
  1486. {
  1487. previous_millis_cmd = millis();
  1488. }
  1489. #ifdef FWRETRACT
  1490. void retract(bool retracting, bool swapretract = false) {
  1491. if(retracting && !retracted[active_extruder]) {
  1492. destination[X_AXIS]=current_position[X_AXIS];
  1493. destination[Y_AXIS]=current_position[Y_AXIS];
  1494. destination[Z_AXIS]=current_position[Z_AXIS];
  1495. destination[E_AXIS]=current_position[E_AXIS];
  1496. if (swapretract) {
  1497. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1498. } else {
  1499. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1500. }
  1501. plan_set_e_position(current_position[E_AXIS]);
  1502. float oldFeedrate = feedrate;
  1503. feedrate=retract_feedrate*60;
  1504. retracted[active_extruder]=true;
  1505. prepare_move();
  1506. current_position[Z_AXIS]-=retract_zlift;
  1507. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1508. prepare_move();
  1509. feedrate = oldFeedrate;
  1510. } else if(!retracting && retracted[active_extruder]) {
  1511. destination[X_AXIS]=current_position[X_AXIS];
  1512. destination[Y_AXIS]=current_position[Y_AXIS];
  1513. destination[Z_AXIS]=current_position[Z_AXIS];
  1514. destination[E_AXIS]=current_position[E_AXIS];
  1515. current_position[Z_AXIS]+=retract_zlift;
  1516. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1517. //prepare_move();
  1518. if (swapretract) {
  1519. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1520. } else {
  1521. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1522. }
  1523. plan_set_e_position(current_position[E_AXIS]);
  1524. float oldFeedrate = feedrate;
  1525. feedrate=retract_recover_feedrate*60;
  1526. retracted[active_extruder]=false;
  1527. prepare_move();
  1528. feedrate = oldFeedrate;
  1529. }
  1530. } //retract
  1531. #endif //FWRETRACT
  1532. void trace() {
  1533. tone(BEEPER, 440);
  1534. delay(25);
  1535. noTone(BEEPER);
  1536. delay(20);
  1537. }
  1538. /*
  1539. void ramming() {
  1540. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1541. if (current_temperature[0] < 230) {
  1542. //PLA
  1543. max_feedrate[E_AXIS] = 50;
  1544. //current_position[E_AXIS] -= 8;
  1545. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1546. //current_position[E_AXIS] += 8;
  1547. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1548. current_position[E_AXIS] += 5.4;
  1549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1550. current_position[E_AXIS] += 3.2;
  1551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1552. current_position[E_AXIS] += 3;
  1553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1554. st_synchronize();
  1555. max_feedrate[E_AXIS] = 80;
  1556. current_position[E_AXIS] -= 82;
  1557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1558. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1559. current_position[E_AXIS] -= 20;
  1560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1561. current_position[E_AXIS] += 5;
  1562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1563. current_position[E_AXIS] += 5;
  1564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1565. current_position[E_AXIS] -= 10;
  1566. st_synchronize();
  1567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1568. current_position[E_AXIS] += 10;
  1569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1570. current_position[E_AXIS] -= 10;
  1571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1572. current_position[E_AXIS] += 10;
  1573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1574. current_position[E_AXIS] -= 10;
  1575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1576. st_synchronize();
  1577. }
  1578. else {
  1579. //ABS
  1580. max_feedrate[E_AXIS] = 50;
  1581. //current_position[E_AXIS] -= 8;
  1582. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1583. //current_position[E_AXIS] += 8;
  1584. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1585. current_position[E_AXIS] += 3.1;
  1586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1587. current_position[E_AXIS] += 3.1;
  1588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1589. current_position[E_AXIS] += 4;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1591. st_synchronize();
  1592. //current_position[X_AXIS] += 23; //delay
  1593. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1594. //current_position[X_AXIS] -= 23; //delay
  1595. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1596. delay(4700);
  1597. max_feedrate[E_AXIS] = 80;
  1598. current_position[E_AXIS] -= 92;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1600. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1601. current_position[E_AXIS] -= 5;
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1603. current_position[E_AXIS] += 5;
  1604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1605. current_position[E_AXIS] -= 5;
  1606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1607. st_synchronize();
  1608. current_position[E_AXIS] += 5;
  1609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1610. current_position[E_AXIS] -= 5;
  1611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1612. current_position[E_AXIS] += 5;
  1613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1614. current_position[E_AXIS] -= 5;
  1615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1616. st_synchronize();
  1617. }
  1618. }
  1619. */
  1620. bool gcode_M45(bool onlyZ) {
  1621. bool final_result = false;
  1622. // Only Z calibration?
  1623. if (!onlyZ) {
  1624. setTargetBed(0);
  1625. setTargetHotend(0, 0);
  1626. setTargetHotend(0, 1);
  1627. setTargetHotend(0, 2);
  1628. adjust_bed_reset(); //reset bed level correction
  1629. }
  1630. // Disable the default update procedure of the display. We will do a modal dialog.
  1631. lcd_update_enable(false);
  1632. // Let the planner use the uncorrected coordinates.
  1633. mbl.reset();
  1634. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1635. // the planner will not perform any adjustments in the XY plane.
  1636. // Wait for the motors to stop and update the current position with the absolute values.
  1637. world2machine_revert_to_uncorrected();
  1638. // Reset the baby step value applied without moving the axes.
  1639. babystep_reset();
  1640. // Mark all axes as in a need for homing.
  1641. memset(axis_known_position, 0, sizeof(axis_known_position));
  1642. // Home in the XY plane.
  1643. //set_destination_to_current();
  1644. setup_for_endstop_move();
  1645. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1646. home_xy();
  1647. // Let the user move the Z axes up to the end stoppers.
  1648. #ifdef TMC2130
  1649. if (calibrate_z_auto()) {
  1650. #else //TMC2130
  1651. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1652. #endif //TMC2130
  1653. refresh_cmd_timeout();
  1654. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1655. // lcd_wait_for_cool_down();
  1656. //}
  1657. if(!onlyZ){
  1658. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1659. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1660. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1661. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1662. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1663. KEEPALIVE_STATE(IN_HANDLER);
  1664. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1665. lcd_implementation_print_at(0, 2, 1);
  1666. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1667. }
  1668. // Move the print head close to the bed.
  1669. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1671. st_synchronize();
  1672. //#ifdef TMC2130
  1673. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1674. //#endif
  1675. int8_t verbosity_level = 0;
  1676. if (code_seen('V')) {
  1677. // Just 'V' without a number counts as V1.
  1678. char c = strchr_pointer[1];
  1679. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1680. }
  1681. if (onlyZ) {
  1682. clean_up_after_endstop_move();
  1683. // Z only calibration.
  1684. // Load the machine correction matrix
  1685. world2machine_initialize();
  1686. // and correct the current_position to match the transformed coordinate system.
  1687. world2machine_update_current();
  1688. //FIXME
  1689. bool result = sample_mesh_and_store_reference();
  1690. if (result) {
  1691. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1692. // Shipped, the nozzle height has been set already. The user can start printing now.
  1693. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1694. // babystep_apply();
  1695. }
  1696. }
  1697. else {
  1698. // Reset the baby step value and the baby step applied flag.
  1699. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1700. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1701. // Complete XYZ calibration.
  1702. uint8_t point_too_far_mask = 0;
  1703. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1704. clean_up_after_endstop_move();
  1705. // Print head up.
  1706. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1708. st_synchronize();
  1709. if (result >= 0) {
  1710. point_too_far_mask = 0;
  1711. // Second half: The fine adjustment.
  1712. // Let the planner use the uncorrected coordinates.
  1713. mbl.reset();
  1714. world2machine_reset();
  1715. // Home in the XY plane.
  1716. setup_for_endstop_move();
  1717. home_xy();
  1718. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1719. clean_up_after_endstop_move();
  1720. // Print head up.
  1721. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1723. st_synchronize();
  1724. // if (result >= 0) babystep_apply();
  1725. }
  1726. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1727. if (result >= 0) {
  1728. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1729. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1730. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1731. final_result = true;
  1732. }
  1733. }
  1734. #ifdef TMC2130
  1735. tmc2130_home_exit();
  1736. #endif
  1737. }
  1738. else {
  1739. // Timeouted.
  1740. }
  1741. lcd_update_enable(true);
  1742. return final_result;
  1743. }
  1744. void gcode_M701() {
  1745. #ifdef SNMM
  1746. extr_adj(snmm_extruder);//loads current extruder
  1747. #else
  1748. enable_z();
  1749. custom_message = true;
  1750. custom_message_type = 2;
  1751. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1752. current_position[E_AXIS] += 70;
  1753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1754. current_position[E_AXIS] += 25;
  1755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1756. st_synchronize();
  1757. if (!farm_mode && loading_flag) {
  1758. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1759. while (!clean) {
  1760. lcd_update_enable(true);
  1761. lcd_update(2);
  1762. current_position[E_AXIS] += 25;
  1763. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1764. st_synchronize();
  1765. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1766. }
  1767. }
  1768. lcd_update_enable(true);
  1769. lcd_update(2);
  1770. lcd_setstatuspgm(WELCOME_MSG);
  1771. disable_z();
  1772. loading_flag = false;
  1773. custom_message = false;
  1774. custom_message_type = 0;
  1775. #endif
  1776. }
  1777. void process_commands()
  1778. {
  1779. #ifdef FILAMENT_RUNOUT_SUPPORT
  1780. SET_INPUT(FR_SENS);
  1781. #endif
  1782. #ifdef CMDBUFFER_DEBUG
  1783. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1784. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1785. SERIAL_ECHOLNPGM("");
  1786. SERIAL_ECHOPGM("In cmdqueue: ");
  1787. SERIAL_ECHO(buflen);
  1788. SERIAL_ECHOLNPGM("");
  1789. #endif /* CMDBUFFER_DEBUG */
  1790. unsigned long codenum; //throw away variable
  1791. char *starpos = NULL;
  1792. #ifdef ENABLE_AUTO_BED_LEVELING
  1793. float x_tmp, y_tmp, z_tmp, real_z;
  1794. #endif
  1795. // PRUSA GCODES
  1796. KEEPALIVE_STATE(IN_HANDLER);
  1797. #ifdef SNMM
  1798. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1799. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1800. int8_t SilentMode;
  1801. #endif
  1802. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1803. starpos = (strchr(strchr_pointer + 5, '*'));
  1804. if (starpos != NULL)
  1805. *(starpos) = '\0';
  1806. lcd_setstatus(strchr_pointer + 5);
  1807. }
  1808. else if(code_seen("CRASH_DETECTED"))
  1809. crashdet_detected();
  1810. else if(code_seen("CRASH_RECOVER"))
  1811. crashdet_recover();
  1812. else if(code_seen("CRASH_CANCEL"))
  1813. crashdet_cancel();
  1814. else if(code_seen("PRUSA")){
  1815. if (code_seen("Ping")) { //PRUSA Ping
  1816. if (farm_mode) {
  1817. PingTime = millis();
  1818. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1819. }
  1820. }
  1821. else if (code_seen("PRN")) {
  1822. MYSERIAL.println(status_number);
  1823. }else if (code_seen("FAN")) {
  1824. MYSERIAL.print("E0:");
  1825. MYSERIAL.print(60*fan_speed[0]);
  1826. MYSERIAL.println(" RPM");
  1827. MYSERIAL.print("PRN0:");
  1828. MYSERIAL.print(60*fan_speed[1]);
  1829. MYSERIAL.println(" RPM");
  1830. }else if (code_seen("fn")) {
  1831. if (farm_mode) {
  1832. MYSERIAL.println(farm_no);
  1833. }
  1834. else {
  1835. MYSERIAL.println("Not in farm mode.");
  1836. }
  1837. }else if (code_seen("fv")) {
  1838. // get file version
  1839. #ifdef SDSUPPORT
  1840. card.openFile(strchr_pointer + 3,true);
  1841. while (true) {
  1842. uint16_t readByte = card.get();
  1843. MYSERIAL.write(readByte);
  1844. if (readByte=='\n') {
  1845. break;
  1846. }
  1847. }
  1848. card.closefile();
  1849. #endif // SDSUPPORT
  1850. } else if (code_seen("M28")) {
  1851. trace();
  1852. prusa_sd_card_upload = true;
  1853. card.openFile(strchr_pointer+4,false);
  1854. } else if (code_seen("SN")) {
  1855. if (farm_mode) {
  1856. selectedSerialPort = 0;
  1857. MSerial.write(";S");
  1858. // S/N is:CZPX0917X003XC13518
  1859. int numbersRead = 0;
  1860. while (numbersRead < 19) {
  1861. while (MSerial.available() > 0) {
  1862. uint8_t serial_char = MSerial.read();
  1863. selectedSerialPort = 1;
  1864. MSerial.write(serial_char);
  1865. numbersRead++;
  1866. selectedSerialPort = 0;
  1867. }
  1868. }
  1869. selectedSerialPort = 1;
  1870. MSerial.write('\n');
  1871. /*for (int b = 0; b < 3; b++) {
  1872. tone(BEEPER, 110);
  1873. delay(50);
  1874. noTone(BEEPER);
  1875. delay(50);
  1876. }*/
  1877. } else {
  1878. MYSERIAL.println("Not in farm mode.");
  1879. }
  1880. } else if(code_seen("Fir")){
  1881. SERIAL_PROTOCOLLN(FW_version);
  1882. } else if(code_seen("Rev")){
  1883. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1884. } else if(code_seen("Lang")) {
  1885. lcd_force_language_selection();
  1886. } else if(code_seen("Lz")) {
  1887. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1888. } else if (code_seen("SERIAL LOW")) {
  1889. MYSERIAL.println("SERIAL LOW");
  1890. MYSERIAL.begin(BAUDRATE);
  1891. return;
  1892. } else if (code_seen("SERIAL HIGH")) {
  1893. MYSERIAL.println("SERIAL HIGH");
  1894. MYSERIAL.begin(1152000);
  1895. return;
  1896. } else if(code_seen("Beat")) {
  1897. // Kick farm link timer
  1898. kicktime = millis();
  1899. } else if(code_seen("FR")) {
  1900. // Factory full reset
  1901. factory_reset(0,true);
  1902. }
  1903. //else if (code_seen('Cal')) {
  1904. // lcd_calibration();
  1905. // }
  1906. }
  1907. else if (code_seen('^')) {
  1908. // nothing, this is a version line
  1909. } else if(code_seen('G'))
  1910. {
  1911. switch((int)code_value())
  1912. {
  1913. case 0: // G0 -> G1
  1914. case 1: // G1
  1915. if(Stopped == false) {
  1916. #ifdef FILAMENT_RUNOUT_SUPPORT
  1917. if(READ(FR_SENS)){
  1918. feedmultiplyBckp=feedmultiply;
  1919. float target[4];
  1920. float lastpos[4];
  1921. target[X_AXIS]=current_position[X_AXIS];
  1922. target[Y_AXIS]=current_position[Y_AXIS];
  1923. target[Z_AXIS]=current_position[Z_AXIS];
  1924. target[E_AXIS]=current_position[E_AXIS];
  1925. lastpos[X_AXIS]=current_position[X_AXIS];
  1926. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1927. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1928. lastpos[E_AXIS]=current_position[E_AXIS];
  1929. //retract by E
  1930. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1931. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1932. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1933. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1934. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1935. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1936. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1937. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1938. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1939. //finish moves
  1940. st_synchronize();
  1941. //disable extruder steppers so filament can be removed
  1942. disable_e0();
  1943. disable_e1();
  1944. disable_e2();
  1945. delay(100);
  1946. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1947. uint8_t cnt=0;
  1948. int counterBeep = 0;
  1949. lcd_wait_interact();
  1950. while(!lcd_clicked()){
  1951. cnt++;
  1952. manage_heater();
  1953. manage_inactivity(true);
  1954. //lcd_update();
  1955. if(cnt==0)
  1956. {
  1957. #if BEEPER > 0
  1958. if (counterBeep== 500){
  1959. counterBeep = 0;
  1960. }
  1961. SET_OUTPUT(BEEPER);
  1962. if (counterBeep== 0){
  1963. WRITE(BEEPER,HIGH);
  1964. }
  1965. if (counterBeep== 20){
  1966. WRITE(BEEPER,LOW);
  1967. }
  1968. counterBeep++;
  1969. #else
  1970. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1971. lcd_buzz(1000/6,100);
  1972. #else
  1973. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1974. #endif
  1975. #endif
  1976. }
  1977. }
  1978. WRITE(BEEPER,LOW);
  1979. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1980. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1981. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1982. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1983. lcd_change_fil_state = 0;
  1984. lcd_loading_filament();
  1985. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1986. lcd_change_fil_state = 0;
  1987. lcd_alright();
  1988. switch(lcd_change_fil_state){
  1989. case 2:
  1990. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1991. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1992. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1993. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1994. lcd_loading_filament();
  1995. break;
  1996. case 3:
  1997. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1998. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1999. lcd_loading_color();
  2000. break;
  2001. default:
  2002. lcd_change_success();
  2003. break;
  2004. }
  2005. }
  2006. target[E_AXIS]+= 5;
  2007. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2008. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2009. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2010. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2011. //plan_set_e_position(current_position[E_AXIS]);
  2012. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2013. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2014. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2015. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2016. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2017. plan_set_e_position(lastpos[E_AXIS]);
  2018. feedmultiply=feedmultiplyBckp;
  2019. char cmd[9];
  2020. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2021. enquecommand(cmd);
  2022. }
  2023. #endif
  2024. get_coordinates(); // For X Y Z E F
  2025. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2026. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2027. }
  2028. #ifdef FWRETRACT
  2029. if(autoretract_enabled)
  2030. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2031. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2032. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2033. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2034. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2035. retract(!retracted);
  2036. return;
  2037. }
  2038. }
  2039. #endif //FWRETRACT
  2040. prepare_move();
  2041. //ClearToSend();
  2042. }
  2043. break;
  2044. case 2: // G2 - CW ARC
  2045. if(Stopped == false) {
  2046. get_arc_coordinates();
  2047. prepare_arc_move(true);
  2048. }
  2049. break;
  2050. case 3: // G3 - CCW ARC
  2051. if(Stopped == false) {
  2052. get_arc_coordinates();
  2053. prepare_arc_move(false);
  2054. }
  2055. break;
  2056. case 4: // G4 dwell
  2057. codenum = 0;
  2058. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2059. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2060. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2061. st_synchronize();
  2062. codenum += millis(); // keep track of when we started waiting
  2063. previous_millis_cmd = millis();
  2064. while(millis() < codenum) {
  2065. manage_heater();
  2066. manage_inactivity();
  2067. lcd_update();
  2068. }
  2069. break;
  2070. #ifdef FWRETRACT
  2071. case 10: // G10 retract
  2072. #if EXTRUDERS > 1
  2073. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2074. retract(true,retracted_swap[active_extruder]);
  2075. #else
  2076. retract(true);
  2077. #endif
  2078. break;
  2079. case 11: // G11 retract_recover
  2080. #if EXTRUDERS > 1
  2081. retract(false,retracted_swap[active_extruder]);
  2082. #else
  2083. retract(false);
  2084. #endif
  2085. break;
  2086. #endif //FWRETRACT
  2087. case 28: //G28 Home all Axis one at a time
  2088. {
  2089. st_synchronize();
  2090. #if 1
  2091. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2092. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2093. #endif
  2094. // Flag for the display update routine and to disable the print cancelation during homing.
  2095. homing_flag = true;
  2096. // Which axes should be homed?
  2097. bool home_x = code_seen(axis_codes[X_AXIS]);
  2098. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2099. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2100. // Either all X,Y,Z codes are present, or none of them.
  2101. bool home_all_axes = home_x == home_y && home_x == home_z;
  2102. if (home_all_axes)
  2103. // No X/Y/Z code provided means to home all axes.
  2104. home_x = home_y = home_z = true;
  2105. #ifdef ENABLE_AUTO_BED_LEVELING
  2106. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2107. #endif //ENABLE_AUTO_BED_LEVELING
  2108. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2109. // the planner will not perform any adjustments in the XY plane.
  2110. // Wait for the motors to stop and update the current position with the absolute values.
  2111. world2machine_revert_to_uncorrected();
  2112. // For mesh bed leveling deactivate the matrix temporarily.
  2113. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2114. // in a single axis only.
  2115. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2116. #ifdef MESH_BED_LEVELING
  2117. uint8_t mbl_was_active = mbl.active;
  2118. mbl.active = 0;
  2119. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2120. #endif
  2121. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2122. // consumed during the first movements following this statement.
  2123. if (home_z)
  2124. babystep_undo();
  2125. saved_feedrate = feedrate;
  2126. saved_feedmultiply = feedmultiply;
  2127. feedmultiply = 100;
  2128. previous_millis_cmd = millis();
  2129. enable_endstops(true);
  2130. memcpy(destination, current_position, sizeof(destination));
  2131. feedrate = 0.0;
  2132. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2133. if(home_z)
  2134. homeaxis(Z_AXIS);
  2135. #endif
  2136. #ifdef QUICK_HOME
  2137. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2138. if(home_x && home_y) //first diagonal move
  2139. {
  2140. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2141. int x_axis_home_dir = home_dir(X_AXIS);
  2142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2143. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2144. feedrate = homing_feedrate[X_AXIS];
  2145. if(homing_feedrate[Y_AXIS]<feedrate)
  2146. feedrate = homing_feedrate[Y_AXIS];
  2147. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2148. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2149. } else {
  2150. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2151. }
  2152. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2153. st_synchronize();
  2154. axis_is_at_home(X_AXIS);
  2155. axis_is_at_home(Y_AXIS);
  2156. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2157. destination[X_AXIS] = current_position[X_AXIS];
  2158. destination[Y_AXIS] = current_position[Y_AXIS];
  2159. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2160. feedrate = 0.0;
  2161. st_synchronize();
  2162. endstops_hit_on_purpose();
  2163. current_position[X_AXIS] = destination[X_AXIS];
  2164. current_position[Y_AXIS] = destination[Y_AXIS];
  2165. current_position[Z_AXIS] = destination[Z_AXIS];
  2166. }
  2167. #endif /* QUICK_HOME */
  2168. if(home_x)
  2169. homeaxis(X_AXIS);
  2170. if(home_y)
  2171. homeaxis(Y_AXIS);
  2172. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2173. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2174. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2175. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2176. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2177. #ifndef Z_SAFE_HOMING
  2178. if(home_z) {
  2179. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2180. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2181. feedrate = max_feedrate[Z_AXIS];
  2182. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2183. st_synchronize();
  2184. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2185. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2186. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2187. {
  2188. homeaxis(X_AXIS);
  2189. homeaxis(Y_AXIS);
  2190. }
  2191. // 1st mesh bed leveling measurement point, corrected.
  2192. world2machine_initialize();
  2193. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2194. world2machine_reset();
  2195. if (destination[Y_AXIS] < Y_MIN_POS)
  2196. destination[Y_AXIS] = Y_MIN_POS;
  2197. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2198. feedrate = homing_feedrate[Z_AXIS]/10;
  2199. current_position[Z_AXIS] = 0;
  2200. enable_endstops(false);
  2201. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2202. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2203. st_synchronize();
  2204. current_position[X_AXIS] = destination[X_AXIS];
  2205. current_position[Y_AXIS] = destination[Y_AXIS];
  2206. enable_endstops(true);
  2207. endstops_hit_on_purpose();
  2208. homeaxis(Z_AXIS);
  2209. #else // MESH_BED_LEVELING
  2210. homeaxis(Z_AXIS);
  2211. #endif // MESH_BED_LEVELING
  2212. }
  2213. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2214. if(home_all_axes) {
  2215. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2216. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2217. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2218. feedrate = XY_TRAVEL_SPEED/60;
  2219. current_position[Z_AXIS] = 0;
  2220. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2222. st_synchronize();
  2223. current_position[X_AXIS] = destination[X_AXIS];
  2224. current_position[Y_AXIS] = destination[Y_AXIS];
  2225. homeaxis(Z_AXIS);
  2226. }
  2227. // Let's see if X and Y are homed and probe is inside bed area.
  2228. if(home_z) {
  2229. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2230. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2231. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2232. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2233. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2234. current_position[Z_AXIS] = 0;
  2235. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2236. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2237. feedrate = max_feedrate[Z_AXIS];
  2238. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2239. st_synchronize();
  2240. homeaxis(Z_AXIS);
  2241. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2242. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2243. SERIAL_ECHO_START;
  2244. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2245. } else {
  2246. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2247. SERIAL_ECHO_START;
  2248. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2249. }
  2250. }
  2251. #endif // Z_SAFE_HOMING
  2252. #endif // Z_HOME_DIR < 0
  2253. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2254. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2255. #ifdef ENABLE_AUTO_BED_LEVELING
  2256. if(home_z)
  2257. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2258. #endif
  2259. // Set the planner and stepper routine positions.
  2260. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2261. // contains the machine coordinates.
  2262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2263. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2264. enable_endstops(false);
  2265. #endif
  2266. feedrate = saved_feedrate;
  2267. feedmultiply = saved_feedmultiply;
  2268. previous_millis_cmd = millis();
  2269. endstops_hit_on_purpose();
  2270. #ifndef MESH_BED_LEVELING
  2271. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2272. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2273. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2274. lcd_adjust_z();
  2275. #endif
  2276. // Load the machine correction matrix
  2277. world2machine_initialize();
  2278. // and correct the current_position XY axes to match the transformed coordinate system.
  2279. world2machine_update_current();
  2280. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2281. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2282. {
  2283. if (! home_z && mbl_was_active) {
  2284. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2285. mbl.active = true;
  2286. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2287. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2288. }
  2289. }
  2290. else
  2291. {
  2292. st_synchronize();
  2293. homing_flag = false;
  2294. // Push the commands to the front of the message queue in the reverse order!
  2295. // There shall be always enough space reserved for these commands.
  2296. // enquecommand_front_P((PSTR("G80")));
  2297. goto case_G80;
  2298. }
  2299. #endif
  2300. if (farm_mode) { prusa_statistics(20); };
  2301. homing_flag = false;
  2302. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2303. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2304. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2305. break;
  2306. }
  2307. #ifdef ENABLE_AUTO_BED_LEVELING
  2308. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2309. {
  2310. #if Z_MIN_PIN == -1
  2311. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2312. #endif
  2313. // Prevent user from running a G29 without first homing in X and Y
  2314. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2315. {
  2316. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2317. SERIAL_ECHO_START;
  2318. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2319. break; // abort G29, since we don't know where we are
  2320. }
  2321. st_synchronize();
  2322. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2323. //vector_3 corrected_position = plan_get_position_mm();
  2324. //corrected_position.debug("position before G29");
  2325. plan_bed_level_matrix.set_to_identity();
  2326. vector_3 uncorrected_position = plan_get_position();
  2327. //uncorrected_position.debug("position durring G29");
  2328. current_position[X_AXIS] = uncorrected_position.x;
  2329. current_position[Y_AXIS] = uncorrected_position.y;
  2330. current_position[Z_AXIS] = uncorrected_position.z;
  2331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2332. setup_for_endstop_move();
  2333. feedrate = homing_feedrate[Z_AXIS];
  2334. #ifdef AUTO_BED_LEVELING_GRID
  2335. // probe at the points of a lattice grid
  2336. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2337. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2338. // solve the plane equation ax + by + d = z
  2339. // A is the matrix with rows [x y 1] for all the probed points
  2340. // B is the vector of the Z positions
  2341. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2342. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2343. // "A" matrix of the linear system of equations
  2344. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2345. // "B" vector of Z points
  2346. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2347. int probePointCounter = 0;
  2348. bool zig = true;
  2349. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2350. {
  2351. int xProbe, xInc;
  2352. if (zig)
  2353. {
  2354. xProbe = LEFT_PROBE_BED_POSITION;
  2355. //xEnd = RIGHT_PROBE_BED_POSITION;
  2356. xInc = xGridSpacing;
  2357. zig = false;
  2358. } else // zag
  2359. {
  2360. xProbe = RIGHT_PROBE_BED_POSITION;
  2361. //xEnd = LEFT_PROBE_BED_POSITION;
  2362. xInc = -xGridSpacing;
  2363. zig = true;
  2364. }
  2365. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2366. {
  2367. float z_before;
  2368. if (probePointCounter == 0)
  2369. {
  2370. // raise before probing
  2371. z_before = Z_RAISE_BEFORE_PROBING;
  2372. } else
  2373. {
  2374. // raise extruder
  2375. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2376. }
  2377. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2378. eqnBVector[probePointCounter] = measured_z;
  2379. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2380. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2381. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2382. probePointCounter++;
  2383. xProbe += xInc;
  2384. }
  2385. }
  2386. clean_up_after_endstop_move();
  2387. // solve lsq problem
  2388. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2389. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2390. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2391. SERIAL_PROTOCOLPGM(" b: ");
  2392. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2393. SERIAL_PROTOCOLPGM(" d: ");
  2394. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2395. set_bed_level_equation_lsq(plane_equation_coefficients);
  2396. free(plane_equation_coefficients);
  2397. #else // AUTO_BED_LEVELING_GRID not defined
  2398. // Probe at 3 arbitrary points
  2399. // probe 1
  2400. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2401. // probe 2
  2402. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2403. // probe 3
  2404. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2405. clean_up_after_endstop_move();
  2406. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2407. #endif // AUTO_BED_LEVELING_GRID
  2408. st_synchronize();
  2409. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2410. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2411. // When the bed is uneven, this height must be corrected.
  2412. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2413. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2414. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2415. z_tmp = current_position[Z_AXIS];
  2416. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2417. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2419. }
  2420. break;
  2421. #ifndef Z_PROBE_SLED
  2422. case 30: // G30 Single Z Probe
  2423. {
  2424. st_synchronize();
  2425. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2426. setup_for_endstop_move();
  2427. feedrate = homing_feedrate[Z_AXIS];
  2428. run_z_probe();
  2429. SERIAL_PROTOCOLPGM(MSG_BED);
  2430. SERIAL_PROTOCOLPGM(" X: ");
  2431. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2432. SERIAL_PROTOCOLPGM(" Y: ");
  2433. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2434. SERIAL_PROTOCOLPGM(" Z: ");
  2435. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2436. SERIAL_PROTOCOLPGM("\n");
  2437. clean_up_after_endstop_move();
  2438. }
  2439. break;
  2440. #else
  2441. case 31: // dock the sled
  2442. dock_sled(true);
  2443. break;
  2444. case 32: // undock the sled
  2445. dock_sled(false);
  2446. break;
  2447. #endif // Z_PROBE_SLED
  2448. #endif // ENABLE_AUTO_BED_LEVELING
  2449. #ifdef MESH_BED_LEVELING
  2450. case 30: // G30 Single Z Probe
  2451. {
  2452. st_synchronize();
  2453. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2454. setup_for_endstop_move();
  2455. feedrate = homing_feedrate[Z_AXIS];
  2456. find_bed_induction_sensor_point_z(-10.f, 3);
  2457. SERIAL_PROTOCOLRPGM(MSG_BED);
  2458. SERIAL_PROTOCOLPGM(" X: ");
  2459. MYSERIAL.print(current_position[X_AXIS], 5);
  2460. SERIAL_PROTOCOLPGM(" Y: ");
  2461. MYSERIAL.print(current_position[Y_AXIS], 5);
  2462. SERIAL_PROTOCOLPGM(" Z: ");
  2463. MYSERIAL.print(current_position[Z_AXIS], 5);
  2464. SERIAL_PROTOCOLPGM("\n");
  2465. clean_up_after_endstop_move();
  2466. }
  2467. break;
  2468. case 75:
  2469. {
  2470. for (int i = 40; i <= 110; i++) {
  2471. MYSERIAL.print(i);
  2472. MYSERIAL.print(" ");
  2473. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2474. }
  2475. }
  2476. break;
  2477. case 76: //PINDA probe temperature calibration
  2478. {
  2479. #ifdef PINDA_THERMISTOR
  2480. if (true)
  2481. {
  2482. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2483. // We don't know where we are! HOME!
  2484. // Push the commands to the front of the message queue in the reverse order!
  2485. // There shall be always enough space reserved for these commands.
  2486. repeatcommand_front(); // repeat G76 with all its parameters
  2487. enquecommand_front_P((PSTR("G28 W0")));
  2488. break;
  2489. }
  2490. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2491. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2492. float zero_z;
  2493. int z_shift = 0; //unit: steps
  2494. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2495. if (start_temp < 35) start_temp = 35;
  2496. if (start_temp < current_temperature_pinda) start_temp += 5;
  2497. SERIAL_ECHOPGM("start temperature: ");
  2498. MYSERIAL.println(start_temp);
  2499. // setTargetHotend(200, 0);
  2500. setTargetBed(70 + (start_temp - 30));
  2501. custom_message = true;
  2502. custom_message_type = 4;
  2503. custom_message_state = 1;
  2504. custom_message = MSG_TEMP_CALIBRATION;
  2505. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2506. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2507. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2509. st_synchronize();
  2510. while (current_temperature_pinda < start_temp)
  2511. {
  2512. delay_keep_alive(1000);
  2513. serialecho_temperatures();
  2514. }
  2515. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2516. current_position[Z_AXIS] = 5;
  2517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2518. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2519. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2521. st_synchronize();
  2522. find_bed_induction_sensor_point_z(-1.f);
  2523. zero_z = current_position[Z_AXIS];
  2524. //current_position[Z_AXIS]
  2525. SERIAL_ECHOLNPGM("");
  2526. SERIAL_ECHOPGM("ZERO: ");
  2527. MYSERIAL.print(current_position[Z_AXIS]);
  2528. SERIAL_ECHOLNPGM("");
  2529. int i = -1; for (; i < 5; i++)
  2530. {
  2531. float temp = (40 + i * 5);
  2532. SERIAL_ECHOPGM("Step: ");
  2533. MYSERIAL.print(i + 2);
  2534. SERIAL_ECHOLNPGM("/6 (skipped)");
  2535. SERIAL_ECHOPGM("PINDA temperature: ");
  2536. MYSERIAL.print((40 + i*5));
  2537. SERIAL_ECHOPGM(" Z shift (mm):");
  2538. MYSERIAL.print(0);
  2539. SERIAL_ECHOLNPGM("");
  2540. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2541. if (start_temp <= temp) break;
  2542. }
  2543. for (i++; i < 5; i++)
  2544. {
  2545. float temp = (40 + i * 5);
  2546. SERIAL_ECHOPGM("Step: ");
  2547. MYSERIAL.print(i + 2);
  2548. SERIAL_ECHOLNPGM("/6");
  2549. custom_message_state = i + 2;
  2550. setTargetBed(50 + 10 * (temp - 30) / 5);
  2551. // setTargetHotend(255, 0);
  2552. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2553. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2554. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2556. st_synchronize();
  2557. while (current_temperature_pinda < temp)
  2558. {
  2559. delay_keep_alive(1000);
  2560. serialecho_temperatures();
  2561. }
  2562. current_position[Z_AXIS] = 5;
  2563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2564. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2565. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2566. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2567. st_synchronize();
  2568. find_bed_induction_sensor_point_z(-1.f);
  2569. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2570. SERIAL_ECHOLNPGM("");
  2571. SERIAL_ECHOPGM("PINDA temperature: ");
  2572. MYSERIAL.print(current_temperature_pinda);
  2573. SERIAL_ECHOPGM(" Z shift (mm):");
  2574. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2575. SERIAL_ECHOLNPGM("");
  2576. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2577. }
  2578. custom_message_type = 0;
  2579. custom_message = false;
  2580. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2581. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2582. disable_x();
  2583. disable_y();
  2584. disable_z();
  2585. disable_e0();
  2586. disable_e1();
  2587. disable_e2();
  2588. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2589. lcd_update_enable(true);
  2590. lcd_update(2);
  2591. setTargetBed(0); //set bed target temperature back to 0
  2592. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2593. break;
  2594. }
  2595. #endif //PINDA_THERMISTOR
  2596. setTargetBed(PINDA_MIN_T);
  2597. float zero_z;
  2598. int z_shift = 0; //unit: steps
  2599. int t_c; // temperature
  2600. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2601. // We don't know where we are! HOME!
  2602. // Push the commands to the front of the message queue in the reverse order!
  2603. // There shall be always enough space reserved for these commands.
  2604. repeatcommand_front(); // repeat G76 with all its parameters
  2605. enquecommand_front_P((PSTR("G28 W0")));
  2606. break;
  2607. }
  2608. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2609. custom_message = true;
  2610. custom_message_type = 4;
  2611. custom_message_state = 1;
  2612. custom_message = MSG_TEMP_CALIBRATION;
  2613. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2614. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2615. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2617. st_synchronize();
  2618. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2619. delay_keep_alive(1000);
  2620. serialecho_temperatures();
  2621. }
  2622. //enquecommand_P(PSTR("M190 S50"));
  2623. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2624. delay_keep_alive(1000);
  2625. serialecho_temperatures();
  2626. }
  2627. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2628. current_position[Z_AXIS] = 5;
  2629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2630. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2631. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2633. st_synchronize();
  2634. find_bed_induction_sensor_point_z(-1.f);
  2635. zero_z = current_position[Z_AXIS];
  2636. //current_position[Z_AXIS]
  2637. SERIAL_ECHOLNPGM("");
  2638. SERIAL_ECHOPGM("ZERO: ");
  2639. MYSERIAL.print(current_position[Z_AXIS]);
  2640. SERIAL_ECHOLNPGM("");
  2641. for (int i = 0; i<5; i++) {
  2642. SERIAL_ECHOPGM("Step: ");
  2643. MYSERIAL.print(i+2);
  2644. SERIAL_ECHOLNPGM("/6");
  2645. custom_message_state = i + 2;
  2646. t_c = 60 + i * 10;
  2647. setTargetBed(t_c);
  2648. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2649. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2650. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2652. st_synchronize();
  2653. while (degBed() < t_c) {
  2654. delay_keep_alive(1000);
  2655. serialecho_temperatures();
  2656. }
  2657. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2658. delay_keep_alive(1000);
  2659. serialecho_temperatures();
  2660. }
  2661. current_position[Z_AXIS] = 5;
  2662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2663. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2664. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2666. st_synchronize();
  2667. find_bed_induction_sensor_point_z(-1.f);
  2668. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2669. SERIAL_ECHOLNPGM("");
  2670. SERIAL_ECHOPGM("Temperature: ");
  2671. MYSERIAL.print(t_c);
  2672. SERIAL_ECHOPGM(" Z shift (mm):");
  2673. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2674. SERIAL_ECHOLNPGM("");
  2675. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2676. }
  2677. custom_message_type = 0;
  2678. custom_message = false;
  2679. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2680. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2681. disable_x();
  2682. disable_y();
  2683. disable_z();
  2684. disable_e0();
  2685. disable_e1();
  2686. disable_e2();
  2687. setTargetBed(0); //set bed target temperature back to 0
  2688. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2689. lcd_update_enable(true);
  2690. lcd_update(2);
  2691. }
  2692. break;
  2693. #ifdef DIS
  2694. case 77:
  2695. {
  2696. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2697. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2698. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2699. float dimension_x = 40;
  2700. float dimension_y = 40;
  2701. int points_x = 40;
  2702. int points_y = 40;
  2703. float offset_x = 74;
  2704. float offset_y = 33;
  2705. if (code_seen('X')) dimension_x = code_value();
  2706. if (code_seen('Y')) dimension_y = code_value();
  2707. if (code_seen('XP')) points_x = code_value();
  2708. if (code_seen('YP')) points_y = code_value();
  2709. if (code_seen('XO')) offset_x = code_value();
  2710. if (code_seen('YO')) offset_y = code_value();
  2711. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2712. } break;
  2713. #endif
  2714. case 79: {
  2715. for (int i = 255; i > 0; i = i - 5) {
  2716. fanSpeed = i;
  2717. //delay_keep_alive(2000);
  2718. for (int j = 0; j < 100; j++) {
  2719. delay_keep_alive(100);
  2720. }
  2721. fan_speed[1];
  2722. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2723. }
  2724. }break;
  2725. /**
  2726. * G80: Mesh-based Z probe, probes a grid and produces a
  2727. * mesh to compensate for variable bed height
  2728. *
  2729. * The S0 report the points as below
  2730. *
  2731. * +----> X-axis
  2732. * |
  2733. * |
  2734. * v Y-axis
  2735. *
  2736. */
  2737. case 80:
  2738. #ifdef MK1BP
  2739. break;
  2740. #endif //MK1BP
  2741. case_G80:
  2742. {
  2743. mesh_bed_leveling_flag = true;
  2744. int8_t verbosity_level = 0;
  2745. static bool run = false;
  2746. if (code_seen('V')) {
  2747. // Just 'V' without a number counts as V1.
  2748. char c = strchr_pointer[1];
  2749. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2750. }
  2751. // Firstly check if we know where we are
  2752. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2753. // We don't know where we are! HOME!
  2754. // Push the commands to the front of the message queue in the reverse order!
  2755. // There shall be always enough space reserved for these commands.
  2756. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2757. repeatcommand_front(); // repeat G80 with all its parameters
  2758. enquecommand_front_P((PSTR("G28 W0")));
  2759. }
  2760. else {
  2761. mesh_bed_leveling_flag = false;
  2762. }
  2763. break;
  2764. }
  2765. bool temp_comp_start = true;
  2766. #ifdef PINDA_THERMISTOR
  2767. temp_comp_start = false;
  2768. #endif //PINDA_THERMISTOR
  2769. if (temp_comp_start)
  2770. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2771. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2772. temp_compensation_start();
  2773. run = true;
  2774. repeatcommand_front(); // repeat G80 with all its parameters
  2775. enquecommand_front_P((PSTR("G28 W0")));
  2776. }
  2777. else {
  2778. mesh_bed_leveling_flag = false;
  2779. }
  2780. break;
  2781. }
  2782. run = false;
  2783. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2784. mesh_bed_leveling_flag = false;
  2785. break;
  2786. }
  2787. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2788. bool custom_message_old = custom_message;
  2789. unsigned int custom_message_type_old = custom_message_type;
  2790. unsigned int custom_message_state_old = custom_message_state;
  2791. custom_message = true;
  2792. custom_message_type = 1;
  2793. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2794. lcd_update(1);
  2795. mbl.reset(); //reset mesh bed leveling
  2796. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2797. // consumed during the first movements following this statement.
  2798. babystep_undo();
  2799. // Cycle through all points and probe them
  2800. // First move up. During this first movement, the babystepping will be reverted.
  2801. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2803. // The move to the first calibration point.
  2804. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2805. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2806. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2807. #ifdef SUPPORT_VERBOSITY
  2808. if (verbosity_level >= 1) {
  2809. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2810. }
  2811. #endif //SUPPORT_VERBOSITY
  2812. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2814. // Wait until the move is finished.
  2815. st_synchronize();
  2816. int mesh_point = 0; //index number of calibration point
  2817. int ix = 0;
  2818. int iy = 0;
  2819. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2820. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2821. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2822. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2823. #ifdef SUPPORT_VERBOSITY
  2824. if (verbosity_level >= 1) {
  2825. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2826. }
  2827. #endif // SUPPORT_VERBOSITY
  2828. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2829. const char *kill_message = NULL;
  2830. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2831. // Get coords of a measuring point.
  2832. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2833. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2834. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2835. float z0 = 0.f;
  2836. if (has_z && mesh_point > 0) {
  2837. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2838. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2839. //#if 0
  2840. #ifdef SUPPORT_VERBOSITY
  2841. if (verbosity_level >= 1) {
  2842. SERIAL_ECHOLNPGM("");
  2843. SERIAL_ECHOPGM("Bed leveling, point: ");
  2844. MYSERIAL.print(mesh_point);
  2845. SERIAL_ECHOPGM(", calibration z: ");
  2846. MYSERIAL.print(z0, 5);
  2847. SERIAL_ECHOLNPGM("");
  2848. }
  2849. #endif // SUPPORT_VERBOSITY
  2850. //#endif
  2851. }
  2852. // Move Z up to MESH_HOME_Z_SEARCH.
  2853. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2855. st_synchronize();
  2856. // Move to XY position of the sensor point.
  2857. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2858. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2859. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2860. #ifdef SUPPORT_VERBOSITY
  2861. if (verbosity_level >= 1) {
  2862. SERIAL_PROTOCOL(mesh_point);
  2863. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2864. }
  2865. #endif // SUPPORT_VERBOSITY
  2866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2867. st_synchronize();
  2868. // Go down until endstop is hit
  2869. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2870. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2871. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2872. break;
  2873. }
  2874. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2875. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2876. break;
  2877. }
  2878. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2879. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2880. break;
  2881. }
  2882. #ifdef SUPPORT_VERBOSITY
  2883. if (verbosity_level >= 10) {
  2884. SERIAL_ECHOPGM("X: ");
  2885. MYSERIAL.print(current_position[X_AXIS], 5);
  2886. SERIAL_ECHOLNPGM("");
  2887. SERIAL_ECHOPGM("Y: ");
  2888. MYSERIAL.print(current_position[Y_AXIS], 5);
  2889. SERIAL_PROTOCOLPGM("\n");
  2890. }
  2891. #endif // SUPPORT_VERBOSITY
  2892. float offset_z = 0;
  2893. #ifdef PINDA_THERMISTOR
  2894. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2895. #endif //PINDA_THERMISTOR
  2896. // #ifdef SUPPORT_VERBOSITY
  2897. // if (verbosity_level >= 1)
  2898. {
  2899. SERIAL_ECHOPGM("mesh bed leveling: ");
  2900. MYSERIAL.print(current_position[Z_AXIS], 5);
  2901. SERIAL_ECHOPGM(" offset: ");
  2902. MYSERIAL.print(offset_z, 5);
  2903. SERIAL_ECHOLNPGM("");
  2904. }
  2905. // #endif // SUPPORT_VERBOSITY
  2906. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2907. custom_message_state--;
  2908. mesh_point++;
  2909. lcd_update(1);
  2910. }
  2911. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2912. #ifdef SUPPORT_VERBOSITY
  2913. if (verbosity_level >= 20) {
  2914. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2915. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2916. MYSERIAL.print(current_position[Z_AXIS], 5);
  2917. }
  2918. #endif // SUPPORT_VERBOSITY
  2919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2920. st_synchronize();
  2921. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2922. kill(kill_message);
  2923. SERIAL_ECHOLNPGM("killed");
  2924. }
  2925. clean_up_after_endstop_move();
  2926. SERIAL_ECHOLNPGM("clean up finished ");
  2927. bool apply_temp_comp = true;
  2928. #ifdef PINDA_THERMISTOR
  2929. apply_temp_comp = false;
  2930. #endif
  2931. if (apply_temp_comp)
  2932. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2933. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2934. SERIAL_ECHOLNPGM("babystep applied");
  2935. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2936. #ifdef SUPPORT_VERBOSITY
  2937. if (verbosity_level >= 1) {
  2938. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2939. }
  2940. #endif // SUPPORT_VERBOSITY
  2941. for (uint8_t i = 0; i < 4; ++i) {
  2942. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2943. long correction = 0;
  2944. if (code_seen(codes[i]))
  2945. correction = code_value_long();
  2946. else if (eeprom_bed_correction_valid) {
  2947. unsigned char *addr = (i < 2) ?
  2948. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2949. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2950. correction = eeprom_read_int8(addr);
  2951. }
  2952. if (correction == 0)
  2953. continue;
  2954. float offset = float(correction) * 0.001f;
  2955. if (fabs(offset) > 0.101f) {
  2956. SERIAL_ERROR_START;
  2957. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2958. SERIAL_ECHO(offset);
  2959. SERIAL_ECHOLNPGM(" microns");
  2960. }
  2961. else {
  2962. switch (i) {
  2963. case 0:
  2964. for (uint8_t row = 0; row < 3; ++row) {
  2965. mbl.z_values[row][1] += 0.5f * offset;
  2966. mbl.z_values[row][0] += offset;
  2967. }
  2968. break;
  2969. case 1:
  2970. for (uint8_t row = 0; row < 3; ++row) {
  2971. mbl.z_values[row][1] += 0.5f * offset;
  2972. mbl.z_values[row][2] += offset;
  2973. }
  2974. break;
  2975. case 2:
  2976. for (uint8_t col = 0; col < 3; ++col) {
  2977. mbl.z_values[1][col] += 0.5f * offset;
  2978. mbl.z_values[0][col] += offset;
  2979. }
  2980. break;
  2981. case 3:
  2982. for (uint8_t col = 0; col < 3; ++col) {
  2983. mbl.z_values[1][col] += 0.5f * offset;
  2984. mbl.z_values[2][col] += offset;
  2985. }
  2986. break;
  2987. }
  2988. }
  2989. }
  2990. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2991. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2992. SERIAL_ECHOLNPGM("Upsample finished");
  2993. mbl.active = 1; //activate mesh bed leveling
  2994. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2995. go_home_with_z_lift();
  2996. SERIAL_ECHOLNPGM("Go home finished");
  2997. //unretract (after PINDA preheat retraction)
  2998. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2999. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3001. }
  3002. KEEPALIVE_STATE(NOT_BUSY);
  3003. // Restore custom message state
  3004. custom_message = custom_message_old;
  3005. custom_message_type = custom_message_type_old;
  3006. custom_message_state = custom_message_state_old;
  3007. mesh_bed_leveling_flag = false;
  3008. mesh_bed_run_from_menu = false;
  3009. lcd_update(2);
  3010. }
  3011. break;
  3012. /**
  3013. * G81: Print mesh bed leveling status and bed profile if activated
  3014. */
  3015. case 81:
  3016. if (mbl.active) {
  3017. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3018. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3019. SERIAL_PROTOCOLPGM(",");
  3020. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3021. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3022. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3023. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3024. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3025. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3026. SERIAL_PROTOCOLPGM(" ");
  3027. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3028. }
  3029. SERIAL_PROTOCOLPGM("\n");
  3030. }
  3031. }
  3032. else
  3033. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3034. break;
  3035. #if 0
  3036. /**
  3037. * G82: Single Z probe at current location
  3038. *
  3039. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3040. *
  3041. */
  3042. case 82:
  3043. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3044. setup_for_endstop_move();
  3045. find_bed_induction_sensor_point_z();
  3046. clean_up_after_endstop_move();
  3047. SERIAL_PROTOCOLPGM("Bed found at: ");
  3048. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3049. SERIAL_PROTOCOLPGM("\n");
  3050. break;
  3051. /**
  3052. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3053. */
  3054. case 83:
  3055. {
  3056. int babystepz = code_seen('S') ? code_value() : 0;
  3057. int BabyPosition = code_seen('P') ? code_value() : 0;
  3058. if (babystepz != 0) {
  3059. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3060. // Is the axis indexed starting with zero or one?
  3061. if (BabyPosition > 4) {
  3062. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3063. }else{
  3064. // Save it to the eeprom
  3065. babystepLoadZ = babystepz;
  3066. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3067. // adjust the Z
  3068. babystepsTodoZadd(babystepLoadZ);
  3069. }
  3070. }
  3071. }
  3072. break;
  3073. /**
  3074. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3075. */
  3076. case 84:
  3077. babystepsTodoZsubtract(babystepLoadZ);
  3078. // babystepLoadZ = 0;
  3079. break;
  3080. /**
  3081. * G85: Prusa3D specific: Pick best babystep
  3082. */
  3083. case 85:
  3084. lcd_pick_babystep();
  3085. break;
  3086. #endif
  3087. /**
  3088. * G86: Prusa3D specific: Disable babystep correction after home.
  3089. * This G-code will be performed at the start of a calibration script.
  3090. */
  3091. case 86:
  3092. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3093. break;
  3094. /**
  3095. * G87: Prusa3D specific: Enable babystep correction after home
  3096. * This G-code will be performed at the end of a calibration script.
  3097. */
  3098. case 87:
  3099. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3100. break;
  3101. /**
  3102. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3103. */
  3104. case 88:
  3105. break;
  3106. #endif // ENABLE_MESH_BED_LEVELING
  3107. case 90: // G90
  3108. relative_mode = false;
  3109. break;
  3110. case 91: // G91
  3111. relative_mode = true;
  3112. break;
  3113. case 92: // G92
  3114. if(!code_seen(axis_codes[E_AXIS]))
  3115. st_synchronize();
  3116. for(int8_t i=0; i < NUM_AXIS; i++) {
  3117. if(code_seen(axis_codes[i])) {
  3118. if(i == E_AXIS) {
  3119. current_position[i] = code_value();
  3120. plan_set_e_position(current_position[E_AXIS]);
  3121. }
  3122. else {
  3123. current_position[i] = code_value()+add_homing[i];
  3124. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3125. }
  3126. }
  3127. }
  3128. break;
  3129. case 98: //activate farm mode
  3130. farm_mode = 1;
  3131. PingTime = millis();
  3132. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3133. break;
  3134. case 99: //deactivate farm mode
  3135. farm_mode = 0;
  3136. lcd_printer_connected();
  3137. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3138. lcd_update(2);
  3139. break;
  3140. }
  3141. } // end if(code_seen('G'))
  3142. else if(code_seen('M'))
  3143. {
  3144. int index;
  3145. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3146. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3147. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3148. SERIAL_ECHOLNPGM("Invalid M code");
  3149. } else
  3150. switch((int)code_value())
  3151. {
  3152. #ifdef ULTIPANEL
  3153. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3154. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3155. {
  3156. char *src = strchr_pointer + 2;
  3157. codenum = 0;
  3158. bool hasP = false, hasS = false;
  3159. if (code_seen('P')) {
  3160. codenum = code_value(); // milliseconds to wait
  3161. hasP = codenum > 0;
  3162. }
  3163. if (code_seen('S')) {
  3164. codenum = code_value() * 1000; // seconds to wait
  3165. hasS = codenum > 0;
  3166. }
  3167. starpos = strchr(src, '*');
  3168. if (starpos != NULL) *(starpos) = '\0';
  3169. while (*src == ' ') ++src;
  3170. if (!hasP && !hasS && *src != '\0') {
  3171. lcd_setstatus(src);
  3172. } else {
  3173. LCD_MESSAGERPGM(MSG_USERWAIT);
  3174. }
  3175. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3176. st_synchronize();
  3177. previous_millis_cmd = millis();
  3178. if (codenum > 0){
  3179. codenum += millis(); // keep track of when we started waiting
  3180. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3181. while(millis() < codenum && !lcd_clicked()){
  3182. manage_heater();
  3183. manage_inactivity(true);
  3184. lcd_update();
  3185. }
  3186. KEEPALIVE_STATE(IN_HANDLER);
  3187. lcd_ignore_click(false);
  3188. }else{
  3189. if (!lcd_detected())
  3190. break;
  3191. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3192. while(!lcd_clicked()){
  3193. manage_heater();
  3194. manage_inactivity(true);
  3195. lcd_update();
  3196. }
  3197. KEEPALIVE_STATE(IN_HANDLER);
  3198. }
  3199. if (IS_SD_PRINTING)
  3200. LCD_MESSAGERPGM(MSG_RESUMING);
  3201. else
  3202. LCD_MESSAGERPGM(WELCOME_MSG);
  3203. }
  3204. break;
  3205. #endif
  3206. case 17:
  3207. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3208. enable_x();
  3209. enable_y();
  3210. enable_z();
  3211. enable_e0();
  3212. enable_e1();
  3213. enable_e2();
  3214. break;
  3215. #ifdef SDSUPPORT
  3216. case 20: // M20 - list SD card
  3217. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3218. card.ls();
  3219. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3220. break;
  3221. case 21: // M21 - init SD card
  3222. card.initsd();
  3223. break;
  3224. case 22: //M22 - release SD card
  3225. card.release();
  3226. break;
  3227. case 23: //M23 - Select file
  3228. starpos = (strchr(strchr_pointer + 4,'*'));
  3229. if(starpos!=NULL)
  3230. *(starpos)='\0';
  3231. card.openFile(strchr_pointer + 4,true);
  3232. break;
  3233. case 24: //M24 - Start SD print
  3234. card.startFileprint();
  3235. starttime=millis();
  3236. break;
  3237. case 25: //M25 - Pause SD print
  3238. card.pauseSDPrint();
  3239. break;
  3240. case 26: //M26 - Set SD index
  3241. if(card.cardOK && code_seen('S')) {
  3242. card.setIndex(code_value_long());
  3243. }
  3244. break;
  3245. case 27: //M27 - Get SD status
  3246. card.getStatus();
  3247. break;
  3248. case 28: //M28 - Start SD write
  3249. starpos = (strchr(strchr_pointer + 4,'*'));
  3250. if(starpos != NULL){
  3251. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3252. strchr_pointer = strchr(npos,' ') + 1;
  3253. *(starpos) = '\0';
  3254. }
  3255. card.openFile(strchr_pointer+4,false);
  3256. break;
  3257. case 29: //M29 - Stop SD write
  3258. //processed in write to file routine above
  3259. //card,saving = false;
  3260. break;
  3261. case 30: //M30 <filename> Delete File
  3262. if (card.cardOK){
  3263. card.closefile();
  3264. starpos = (strchr(strchr_pointer + 4,'*'));
  3265. if(starpos != NULL){
  3266. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3267. strchr_pointer = strchr(npos,' ') + 1;
  3268. *(starpos) = '\0';
  3269. }
  3270. card.removeFile(strchr_pointer + 4);
  3271. }
  3272. break;
  3273. case 32: //M32 - Select file and start SD print
  3274. {
  3275. if(card.sdprinting) {
  3276. st_synchronize();
  3277. }
  3278. starpos = (strchr(strchr_pointer + 4,'*'));
  3279. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3280. if(namestartpos==NULL)
  3281. {
  3282. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3283. }
  3284. else
  3285. namestartpos++; //to skip the '!'
  3286. if(starpos!=NULL)
  3287. *(starpos)='\0';
  3288. bool call_procedure=(code_seen('P'));
  3289. if(strchr_pointer>namestartpos)
  3290. call_procedure=false; //false alert, 'P' found within filename
  3291. if( card.cardOK )
  3292. {
  3293. card.openFile(namestartpos,true,!call_procedure);
  3294. if(code_seen('S'))
  3295. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3296. card.setIndex(code_value_long());
  3297. card.startFileprint();
  3298. if(!call_procedure)
  3299. starttime=millis(); //procedure calls count as normal print time.
  3300. }
  3301. } break;
  3302. case 928: //M928 - Start SD write
  3303. starpos = (strchr(strchr_pointer + 5,'*'));
  3304. if(starpos != NULL){
  3305. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3306. strchr_pointer = strchr(npos,' ') + 1;
  3307. *(starpos) = '\0';
  3308. }
  3309. card.openLogFile(strchr_pointer+5);
  3310. break;
  3311. #endif //SDSUPPORT
  3312. case 31: //M31 take time since the start of the SD print or an M109 command
  3313. {
  3314. stoptime=millis();
  3315. char time[30];
  3316. unsigned long t=(stoptime-starttime)/1000;
  3317. int sec,min;
  3318. min=t/60;
  3319. sec=t%60;
  3320. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3321. SERIAL_ECHO_START;
  3322. SERIAL_ECHOLN(time);
  3323. lcd_setstatus(time);
  3324. autotempShutdown();
  3325. }
  3326. break;
  3327. #ifndef _DISABLE_M42_M226
  3328. case 42: //M42 -Change pin status via gcode
  3329. if (code_seen('S'))
  3330. {
  3331. int pin_status = code_value();
  3332. int pin_number = LED_PIN;
  3333. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3334. pin_number = code_value();
  3335. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3336. {
  3337. if (sensitive_pins[i] == pin_number)
  3338. {
  3339. pin_number = -1;
  3340. break;
  3341. }
  3342. }
  3343. #if defined(FAN_PIN) && FAN_PIN > -1
  3344. if (pin_number == FAN_PIN)
  3345. fanSpeed = pin_status;
  3346. #endif
  3347. if (pin_number > -1)
  3348. {
  3349. pinMode(pin_number, OUTPUT);
  3350. digitalWrite(pin_number, pin_status);
  3351. analogWrite(pin_number, pin_status);
  3352. }
  3353. }
  3354. break;
  3355. #endif //_DISABLE_M42_M226
  3356. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3357. // Reset the baby step value and the baby step applied flag.
  3358. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3359. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3360. // Reset the skew and offset in both RAM and EEPROM.
  3361. reset_bed_offset_and_skew();
  3362. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3363. // the planner will not perform any adjustments in the XY plane.
  3364. // Wait for the motors to stop and update the current position with the absolute values.
  3365. world2machine_revert_to_uncorrected();
  3366. break;
  3367. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3368. {
  3369. bool only_Z = code_seen('Z');
  3370. gcode_M45(only_Z);
  3371. }
  3372. break;
  3373. /*
  3374. case 46:
  3375. {
  3376. // M46: Prusa3D: Show the assigned IP address.
  3377. uint8_t ip[4];
  3378. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3379. if (hasIP) {
  3380. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3381. SERIAL_ECHO(int(ip[0]));
  3382. SERIAL_ECHOPGM(".");
  3383. SERIAL_ECHO(int(ip[1]));
  3384. SERIAL_ECHOPGM(".");
  3385. SERIAL_ECHO(int(ip[2]));
  3386. SERIAL_ECHOPGM(".");
  3387. SERIAL_ECHO(int(ip[3]));
  3388. SERIAL_ECHOLNPGM("");
  3389. } else {
  3390. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3391. }
  3392. break;
  3393. }
  3394. */
  3395. case 47:
  3396. // M47: Prusa3D: Show end stops dialog on the display.
  3397. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3398. lcd_diag_show_end_stops();
  3399. KEEPALIVE_STATE(IN_HANDLER);
  3400. break;
  3401. #if 0
  3402. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3403. {
  3404. // Disable the default update procedure of the display. We will do a modal dialog.
  3405. lcd_update_enable(false);
  3406. // Let the planner use the uncorrected coordinates.
  3407. mbl.reset();
  3408. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3409. // the planner will not perform any adjustments in the XY plane.
  3410. // Wait for the motors to stop and update the current position with the absolute values.
  3411. world2machine_revert_to_uncorrected();
  3412. // Move the print head close to the bed.
  3413. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3415. st_synchronize();
  3416. // Home in the XY plane.
  3417. set_destination_to_current();
  3418. setup_for_endstop_move();
  3419. home_xy();
  3420. int8_t verbosity_level = 0;
  3421. if (code_seen('V')) {
  3422. // Just 'V' without a number counts as V1.
  3423. char c = strchr_pointer[1];
  3424. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3425. }
  3426. bool success = scan_bed_induction_points(verbosity_level);
  3427. clean_up_after_endstop_move();
  3428. // Print head up.
  3429. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3431. st_synchronize();
  3432. lcd_update_enable(true);
  3433. break;
  3434. }
  3435. #endif
  3436. // M48 Z-Probe repeatability measurement function.
  3437. //
  3438. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3439. //
  3440. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3441. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3442. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3443. // regenerated.
  3444. //
  3445. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3446. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3447. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3448. //
  3449. #ifdef ENABLE_AUTO_BED_LEVELING
  3450. #ifdef Z_PROBE_REPEATABILITY_TEST
  3451. case 48: // M48 Z-Probe repeatability
  3452. {
  3453. #if Z_MIN_PIN == -1
  3454. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3455. #endif
  3456. double sum=0.0;
  3457. double mean=0.0;
  3458. double sigma=0.0;
  3459. double sample_set[50];
  3460. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3461. double X_current, Y_current, Z_current;
  3462. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3463. if (code_seen('V') || code_seen('v')) {
  3464. verbose_level = code_value();
  3465. if (verbose_level<0 || verbose_level>4 ) {
  3466. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3467. goto Sigma_Exit;
  3468. }
  3469. }
  3470. if (verbose_level > 0) {
  3471. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3472. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3473. }
  3474. if (code_seen('n')) {
  3475. n_samples = code_value();
  3476. if (n_samples<4 || n_samples>50 ) {
  3477. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3478. goto Sigma_Exit;
  3479. }
  3480. }
  3481. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3482. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3483. Z_current = st_get_position_mm(Z_AXIS);
  3484. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3485. ext_position = st_get_position_mm(E_AXIS);
  3486. if (code_seen('X') || code_seen('x') ) {
  3487. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3488. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3489. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3490. goto Sigma_Exit;
  3491. }
  3492. }
  3493. if (code_seen('Y') || code_seen('y') ) {
  3494. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3495. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3496. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3497. goto Sigma_Exit;
  3498. }
  3499. }
  3500. if (code_seen('L') || code_seen('l') ) {
  3501. n_legs = code_value();
  3502. if ( n_legs==1 )
  3503. n_legs = 2;
  3504. if ( n_legs<0 || n_legs>15 ) {
  3505. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3506. goto Sigma_Exit;
  3507. }
  3508. }
  3509. //
  3510. // Do all the preliminary setup work. First raise the probe.
  3511. //
  3512. st_synchronize();
  3513. plan_bed_level_matrix.set_to_identity();
  3514. plan_buffer_line( X_current, Y_current, Z_start_location,
  3515. ext_position,
  3516. homing_feedrate[Z_AXIS]/60,
  3517. active_extruder);
  3518. st_synchronize();
  3519. //
  3520. // Now get everything to the specified probe point So we can safely do a probe to
  3521. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3522. // use that as a starting point for each probe.
  3523. //
  3524. if (verbose_level > 2)
  3525. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3526. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3527. ext_position,
  3528. homing_feedrate[X_AXIS]/60,
  3529. active_extruder);
  3530. st_synchronize();
  3531. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3532. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3533. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3534. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3535. //
  3536. // OK, do the inital probe to get us close to the bed.
  3537. // Then retrace the right amount and use that in subsequent probes
  3538. //
  3539. setup_for_endstop_move();
  3540. run_z_probe();
  3541. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3542. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3543. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3544. ext_position,
  3545. homing_feedrate[X_AXIS]/60,
  3546. active_extruder);
  3547. st_synchronize();
  3548. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3549. for( n=0; n<n_samples; n++) {
  3550. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3551. if ( n_legs) {
  3552. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3553. int rotational_direction, l;
  3554. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3555. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3556. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3557. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3558. //SERIAL_ECHOPAIR(" theta: ",theta);
  3559. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3560. //SERIAL_PROTOCOLLNPGM("");
  3561. for( l=0; l<n_legs-1; l++) {
  3562. if (rotational_direction==1)
  3563. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3564. else
  3565. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3566. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3567. if ( radius<0.0 )
  3568. radius = -radius;
  3569. X_current = X_probe_location + cos(theta) * radius;
  3570. Y_current = Y_probe_location + sin(theta) * radius;
  3571. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3572. X_current = X_MIN_POS;
  3573. if ( X_current>X_MAX_POS)
  3574. X_current = X_MAX_POS;
  3575. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3576. Y_current = Y_MIN_POS;
  3577. if ( Y_current>Y_MAX_POS)
  3578. Y_current = Y_MAX_POS;
  3579. if (verbose_level>3 ) {
  3580. SERIAL_ECHOPAIR("x: ", X_current);
  3581. SERIAL_ECHOPAIR("y: ", Y_current);
  3582. SERIAL_PROTOCOLLNPGM("");
  3583. }
  3584. do_blocking_move_to( X_current, Y_current, Z_current );
  3585. }
  3586. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3587. }
  3588. setup_for_endstop_move();
  3589. run_z_probe();
  3590. sample_set[n] = current_position[Z_AXIS];
  3591. //
  3592. // Get the current mean for the data points we have so far
  3593. //
  3594. sum=0.0;
  3595. for( j=0; j<=n; j++) {
  3596. sum = sum + sample_set[j];
  3597. }
  3598. mean = sum / (double (n+1));
  3599. //
  3600. // Now, use that mean to calculate the standard deviation for the
  3601. // data points we have so far
  3602. //
  3603. sum=0.0;
  3604. for( j=0; j<=n; j++) {
  3605. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3606. }
  3607. sigma = sqrt( sum / (double (n+1)) );
  3608. if (verbose_level > 1) {
  3609. SERIAL_PROTOCOL(n+1);
  3610. SERIAL_PROTOCOL(" of ");
  3611. SERIAL_PROTOCOL(n_samples);
  3612. SERIAL_PROTOCOLPGM(" z: ");
  3613. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3614. }
  3615. if (verbose_level > 2) {
  3616. SERIAL_PROTOCOL(" mean: ");
  3617. SERIAL_PROTOCOL_F(mean,6);
  3618. SERIAL_PROTOCOL(" sigma: ");
  3619. SERIAL_PROTOCOL_F(sigma,6);
  3620. }
  3621. if (verbose_level > 0)
  3622. SERIAL_PROTOCOLPGM("\n");
  3623. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3624. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3625. st_synchronize();
  3626. }
  3627. delay(1000);
  3628. clean_up_after_endstop_move();
  3629. // enable_endstops(true);
  3630. if (verbose_level > 0) {
  3631. SERIAL_PROTOCOLPGM("Mean: ");
  3632. SERIAL_PROTOCOL_F(mean, 6);
  3633. SERIAL_PROTOCOLPGM("\n");
  3634. }
  3635. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3636. SERIAL_PROTOCOL_F(sigma, 6);
  3637. SERIAL_PROTOCOLPGM("\n\n");
  3638. Sigma_Exit:
  3639. break;
  3640. }
  3641. #endif // Z_PROBE_REPEATABILITY_TEST
  3642. #endif // ENABLE_AUTO_BED_LEVELING
  3643. case 104: // M104
  3644. if(setTargetedHotend(104)){
  3645. break;
  3646. }
  3647. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3648. setWatch();
  3649. break;
  3650. case 112: // M112 -Emergency Stop
  3651. kill("", 3);
  3652. break;
  3653. case 140: // M140 set bed temp
  3654. if (code_seen('S')) setTargetBed(code_value());
  3655. break;
  3656. case 105 : // M105
  3657. if(setTargetedHotend(105)){
  3658. break;
  3659. }
  3660. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3661. SERIAL_PROTOCOLPGM("ok T:");
  3662. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3663. SERIAL_PROTOCOLPGM(" /");
  3664. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3665. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3666. SERIAL_PROTOCOLPGM(" B:");
  3667. SERIAL_PROTOCOL_F(degBed(),1);
  3668. SERIAL_PROTOCOLPGM(" /");
  3669. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3670. #endif //TEMP_BED_PIN
  3671. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3672. SERIAL_PROTOCOLPGM(" T");
  3673. SERIAL_PROTOCOL(cur_extruder);
  3674. SERIAL_PROTOCOLPGM(":");
  3675. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3676. SERIAL_PROTOCOLPGM(" /");
  3677. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3678. }
  3679. #else
  3680. SERIAL_ERROR_START;
  3681. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3682. #endif
  3683. SERIAL_PROTOCOLPGM(" @:");
  3684. #ifdef EXTRUDER_WATTS
  3685. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3686. SERIAL_PROTOCOLPGM("W");
  3687. #else
  3688. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3689. #endif
  3690. SERIAL_PROTOCOLPGM(" B@:");
  3691. #ifdef BED_WATTS
  3692. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3693. SERIAL_PROTOCOLPGM("W");
  3694. #else
  3695. SERIAL_PROTOCOL(getHeaterPower(-1));
  3696. #endif
  3697. #ifdef PINDA_THERMISTOR
  3698. SERIAL_PROTOCOLPGM(" P:");
  3699. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3700. #endif //PINDA_THERMISTOR
  3701. #ifdef AMBIENT_THERMISTOR
  3702. SERIAL_PROTOCOLPGM(" A:");
  3703. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3704. #endif //AMBIENT_THERMISTOR
  3705. #ifdef SHOW_TEMP_ADC_VALUES
  3706. {float raw = 0.0;
  3707. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3708. SERIAL_PROTOCOLPGM(" ADC B:");
  3709. SERIAL_PROTOCOL_F(degBed(),1);
  3710. SERIAL_PROTOCOLPGM("C->");
  3711. raw = rawBedTemp();
  3712. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3713. SERIAL_PROTOCOLPGM(" Rb->");
  3714. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3715. SERIAL_PROTOCOLPGM(" Rxb->");
  3716. SERIAL_PROTOCOL_F(raw, 5);
  3717. #endif
  3718. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3719. SERIAL_PROTOCOLPGM(" T");
  3720. SERIAL_PROTOCOL(cur_extruder);
  3721. SERIAL_PROTOCOLPGM(":");
  3722. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3723. SERIAL_PROTOCOLPGM("C->");
  3724. raw = rawHotendTemp(cur_extruder);
  3725. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3726. SERIAL_PROTOCOLPGM(" Rt");
  3727. SERIAL_PROTOCOL(cur_extruder);
  3728. SERIAL_PROTOCOLPGM("->");
  3729. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3730. SERIAL_PROTOCOLPGM(" Rx");
  3731. SERIAL_PROTOCOL(cur_extruder);
  3732. SERIAL_PROTOCOLPGM("->");
  3733. SERIAL_PROTOCOL_F(raw, 5);
  3734. }}
  3735. #endif
  3736. SERIAL_PROTOCOLLN("");
  3737. KEEPALIVE_STATE(NOT_BUSY);
  3738. return;
  3739. break;
  3740. case 109:
  3741. {// M109 - Wait for extruder heater to reach target.
  3742. if(setTargetedHotend(109)){
  3743. break;
  3744. }
  3745. LCD_MESSAGERPGM(MSG_HEATING);
  3746. heating_status = 1;
  3747. if (farm_mode) { prusa_statistics(1); };
  3748. #ifdef AUTOTEMP
  3749. autotemp_enabled=false;
  3750. #endif
  3751. if (code_seen('S')) {
  3752. setTargetHotend(code_value(), tmp_extruder);
  3753. CooldownNoWait = true;
  3754. } else if (code_seen('R')) {
  3755. setTargetHotend(code_value(), tmp_extruder);
  3756. CooldownNoWait = false;
  3757. }
  3758. #ifdef AUTOTEMP
  3759. if (code_seen('S')) autotemp_min=code_value();
  3760. if (code_seen('B')) autotemp_max=code_value();
  3761. if (code_seen('F'))
  3762. {
  3763. autotemp_factor=code_value();
  3764. autotemp_enabled=true;
  3765. }
  3766. #endif
  3767. setWatch();
  3768. codenum = millis();
  3769. /* See if we are heating up or cooling down */
  3770. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3771. KEEPALIVE_STATE(NOT_BUSY);
  3772. cancel_heatup = false;
  3773. wait_for_heater(codenum); //loops until target temperature is reached
  3774. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3775. KEEPALIVE_STATE(IN_HANDLER);
  3776. heating_status = 2;
  3777. if (farm_mode) { prusa_statistics(2); };
  3778. //starttime=millis();
  3779. previous_millis_cmd = millis();
  3780. }
  3781. break;
  3782. case 190: // M190 - Wait for bed heater to reach target.
  3783. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3784. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3785. heating_status = 3;
  3786. if (farm_mode) { prusa_statistics(1); };
  3787. if (code_seen('S'))
  3788. {
  3789. setTargetBed(code_value());
  3790. CooldownNoWait = true;
  3791. }
  3792. else if (code_seen('R'))
  3793. {
  3794. setTargetBed(code_value());
  3795. CooldownNoWait = false;
  3796. }
  3797. codenum = millis();
  3798. cancel_heatup = false;
  3799. target_direction = isHeatingBed(); // true if heating, false if cooling
  3800. KEEPALIVE_STATE(NOT_BUSY);
  3801. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3802. {
  3803. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3804. {
  3805. if (!farm_mode) {
  3806. float tt = degHotend(active_extruder);
  3807. SERIAL_PROTOCOLPGM("T:");
  3808. SERIAL_PROTOCOL(tt);
  3809. SERIAL_PROTOCOLPGM(" E:");
  3810. SERIAL_PROTOCOL((int)active_extruder);
  3811. SERIAL_PROTOCOLPGM(" B:");
  3812. SERIAL_PROTOCOL_F(degBed(), 1);
  3813. SERIAL_PROTOCOLLN("");
  3814. }
  3815. codenum = millis();
  3816. }
  3817. manage_heater();
  3818. manage_inactivity();
  3819. lcd_update();
  3820. }
  3821. LCD_MESSAGERPGM(MSG_BED_DONE);
  3822. KEEPALIVE_STATE(IN_HANDLER);
  3823. heating_status = 4;
  3824. previous_millis_cmd = millis();
  3825. #endif
  3826. break;
  3827. #if defined(FAN_PIN) && FAN_PIN > -1
  3828. case 106: //M106 Fan On
  3829. if (code_seen('S')){
  3830. fanSpeed=constrain(code_value(),0,255);
  3831. }
  3832. else {
  3833. fanSpeed=255;
  3834. }
  3835. break;
  3836. case 107: //M107 Fan Off
  3837. fanSpeed = 0;
  3838. break;
  3839. #endif //FAN_PIN
  3840. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3841. case 80: // M80 - Turn on Power Supply
  3842. SET_OUTPUT(PS_ON_PIN); //GND
  3843. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3844. // If you have a switch on suicide pin, this is useful
  3845. // if you want to start another print with suicide feature after
  3846. // a print without suicide...
  3847. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3848. SET_OUTPUT(SUICIDE_PIN);
  3849. WRITE(SUICIDE_PIN, HIGH);
  3850. #endif
  3851. #ifdef ULTIPANEL
  3852. powersupply = true;
  3853. LCD_MESSAGERPGM(WELCOME_MSG);
  3854. lcd_update();
  3855. #endif
  3856. break;
  3857. #endif
  3858. case 81: // M81 - Turn off Power Supply
  3859. disable_heater();
  3860. st_synchronize();
  3861. disable_e0();
  3862. disable_e1();
  3863. disable_e2();
  3864. finishAndDisableSteppers();
  3865. fanSpeed = 0;
  3866. delay(1000); // Wait a little before to switch off
  3867. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3868. st_synchronize();
  3869. suicide();
  3870. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3871. SET_OUTPUT(PS_ON_PIN);
  3872. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3873. #endif
  3874. #ifdef ULTIPANEL
  3875. powersupply = false;
  3876. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3877. /*
  3878. MACHNAME = "Prusa i3"
  3879. MSGOFF = "Vypnuto"
  3880. "Prusai3"" ""vypnuto""."
  3881. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3882. */
  3883. lcd_update();
  3884. #endif
  3885. break;
  3886. case 82:
  3887. axis_relative_modes[3] = false;
  3888. break;
  3889. case 83:
  3890. axis_relative_modes[3] = true;
  3891. break;
  3892. case 18: //compatibility
  3893. case 84: // M84
  3894. if(code_seen('S')){
  3895. stepper_inactive_time = code_value() * 1000;
  3896. }
  3897. else
  3898. {
  3899. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3900. if(all_axis)
  3901. {
  3902. st_synchronize();
  3903. disable_e0();
  3904. disable_e1();
  3905. disable_e2();
  3906. finishAndDisableSteppers();
  3907. }
  3908. else
  3909. {
  3910. st_synchronize();
  3911. if (code_seen('X')) disable_x();
  3912. if (code_seen('Y')) disable_y();
  3913. if (code_seen('Z')) disable_z();
  3914. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3915. if (code_seen('E')) {
  3916. disable_e0();
  3917. disable_e1();
  3918. disable_e2();
  3919. }
  3920. #endif
  3921. }
  3922. }
  3923. snmm_filaments_used = 0;
  3924. break;
  3925. case 85: // M85
  3926. if(code_seen('S')) {
  3927. max_inactive_time = code_value() * 1000;
  3928. }
  3929. break;
  3930. case 92: // M92
  3931. for(int8_t i=0; i < NUM_AXIS; i++)
  3932. {
  3933. if(code_seen(axis_codes[i]))
  3934. {
  3935. if(i == 3) { // E
  3936. float value = code_value();
  3937. if(value < 20.0) {
  3938. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3939. max_jerk[E_AXIS] *= factor;
  3940. max_feedrate[i] *= factor;
  3941. axis_steps_per_sqr_second[i] *= factor;
  3942. }
  3943. axis_steps_per_unit[i] = value;
  3944. }
  3945. else {
  3946. axis_steps_per_unit[i] = code_value();
  3947. }
  3948. }
  3949. }
  3950. break;
  3951. #ifdef HOST_KEEPALIVE_FEATURE
  3952. case 113: // M113 - Get or set Host Keepalive interval
  3953. if (code_seen('S')) {
  3954. host_keepalive_interval = (uint8_t)code_value_short();
  3955. // NOMORE(host_keepalive_interval, 60);
  3956. }
  3957. else {
  3958. SERIAL_ECHO_START;
  3959. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3960. SERIAL_PROTOCOLLN("");
  3961. }
  3962. break;
  3963. #endif
  3964. case 115: // M115
  3965. if (code_seen('V')) {
  3966. // Report the Prusa version number.
  3967. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3968. } else if (code_seen('U')) {
  3969. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3970. // pause the print and ask the user to upgrade the firmware.
  3971. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3972. } else {
  3973. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3974. }
  3975. break;
  3976. /* case 117: // M117 display message
  3977. starpos = (strchr(strchr_pointer + 5,'*'));
  3978. if(starpos!=NULL)
  3979. *(starpos)='\0';
  3980. lcd_setstatus(strchr_pointer + 5);
  3981. break;*/
  3982. case 114: // M114
  3983. SERIAL_PROTOCOLPGM("X:");
  3984. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3985. SERIAL_PROTOCOLPGM(" Y:");
  3986. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3987. SERIAL_PROTOCOLPGM(" Z:");
  3988. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3989. SERIAL_PROTOCOLPGM(" E:");
  3990. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3991. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3992. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3993. SERIAL_PROTOCOLPGM(" Y:");
  3994. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3995. SERIAL_PROTOCOLPGM(" Z:");
  3996. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3997. SERIAL_PROTOCOLPGM(" E:");
  3998. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3999. SERIAL_PROTOCOLLN("");
  4000. break;
  4001. case 120: // M120
  4002. enable_endstops(false) ;
  4003. break;
  4004. case 121: // M121
  4005. enable_endstops(true) ;
  4006. break;
  4007. case 119: // M119
  4008. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4009. SERIAL_PROTOCOLLN("");
  4010. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4011. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4012. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4013. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4014. }else{
  4015. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4016. }
  4017. SERIAL_PROTOCOLLN("");
  4018. #endif
  4019. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4020. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4021. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4022. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4023. }else{
  4024. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4025. }
  4026. SERIAL_PROTOCOLLN("");
  4027. #endif
  4028. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4029. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4030. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4031. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4032. }else{
  4033. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4034. }
  4035. SERIAL_PROTOCOLLN("");
  4036. #endif
  4037. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4038. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4039. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4040. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4041. }else{
  4042. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4043. }
  4044. SERIAL_PROTOCOLLN("");
  4045. #endif
  4046. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4047. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4048. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4049. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4050. }else{
  4051. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4052. }
  4053. SERIAL_PROTOCOLLN("");
  4054. #endif
  4055. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4056. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4057. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4058. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4059. }else{
  4060. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4061. }
  4062. SERIAL_PROTOCOLLN("");
  4063. #endif
  4064. break;
  4065. //TODO: update for all axis, use for loop
  4066. #ifdef BLINKM
  4067. case 150: // M150
  4068. {
  4069. byte red;
  4070. byte grn;
  4071. byte blu;
  4072. if(code_seen('R')) red = code_value();
  4073. if(code_seen('U')) grn = code_value();
  4074. if(code_seen('B')) blu = code_value();
  4075. SendColors(red,grn,blu);
  4076. }
  4077. break;
  4078. #endif //BLINKM
  4079. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4080. {
  4081. tmp_extruder = active_extruder;
  4082. if(code_seen('T')) {
  4083. tmp_extruder = code_value();
  4084. if(tmp_extruder >= EXTRUDERS) {
  4085. SERIAL_ECHO_START;
  4086. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4087. break;
  4088. }
  4089. }
  4090. float area = .0;
  4091. if(code_seen('D')) {
  4092. float diameter = (float)code_value();
  4093. if (diameter == 0.0) {
  4094. // setting any extruder filament size disables volumetric on the assumption that
  4095. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4096. // for all extruders
  4097. volumetric_enabled = false;
  4098. } else {
  4099. filament_size[tmp_extruder] = (float)code_value();
  4100. // make sure all extruders have some sane value for the filament size
  4101. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4102. #if EXTRUDERS > 1
  4103. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4104. #if EXTRUDERS > 2
  4105. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4106. #endif
  4107. #endif
  4108. volumetric_enabled = true;
  4109. }
  4110. } else {
  4111. //reserved for setting filament diameter via UFID or filament measuring device
  4112. break;
  4113. }
  4114. calculate_volumetric_multipliers();
  4115. }
  4116. break;
  4117. case 201: // M201
  4118. for(int8_t i=0; i < NUM_AXIS; i++)
  4119. {
  4120. if(code_seen(axis_codes[i]))
  4121. {
  4122. max_acceleration_units_per_sq_second[i] = code_value();
  4123. }
  4124. }
  4125. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4126. reset_acceleration_rates();
  4127. break;
  4128. #if 0 // Not used for Sprinter/grbl gen6
  4129. case 202: // M202
  4130. for(int8_t i=0; i < NUM_AXIS; i++) {
  4131. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4132. }
  4133. break;
  4134. #endif
  4135. case 203: // M203 max feedrate mm/sec
  4136. for(int8_t i=0; i < NUM_AXIS; i++) {
  4137. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4138. }
  4139. break;
  4140. case 204: // M204 acclereration S normal moves T filmanent only moves
  4141. {
  4142. if(code_seen('S')) acceleration = code_value() ;
  4143. if(code_seen('T')) retract_acceleration = code_value() ;
  4144. }
  4145. break;
  4146. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4147. {
  4148. if(code_seen('S')) minimumfeedrate = code_value();
  4149. if(code_seen('T')) mintravelfeedrate = code_value();
  4150. if(code_seen('B')) minsegmenttime = code_value() ;
  4151. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4152. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4153. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4154. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4155. }
  4156. break;
  4157. case 206: // M206 additional homing offset
  4158. for(int8_t i=0; i < 3; i++)
  4159. {
  4160. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4161. }
  4162. break;
  4163. #ifdef FWRETRACT
  4164. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4165. {
  4166. if(code_seen('S'))
  4167. {
  4168. retract_length = code_value() ;
  4169. }
  4170. if(code_seen('F'))
  4171. {
  4172. retract_feedrate = code_value()/60 ;
  4173. }
  4174. if(code_seen('Z'))
  4175. {
  4176. retract_zlift = code_value() ;
  4177. }
  4178. }break;
  4179. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4180. {
  4181. if(code_seen('S'))
  4182. {
  4183. retract_recover_length = code_value() ;
  4184. }
  4185. if(code_seen('F'))
  4186. {
  4187. retract_recover_feedrate = code_value()/60 ;
  4188. }
  4189. }break;
  4190. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4191. {
  4192. if(code_seen('S'))
  4193. {
  4194. int t= code_value() ;
  4195. switch(t)
  4196. {
  4197. case 0:
  4198. {
  4199. autoretract_enabled=false;
  4200. retracted[0]=false;
  4201. #if EXTRUDERS > 1
  4202. retracted[1]=false;
  4203. #endif
  4204. #if EXTRUDERS > 2
  4205. retracted[2]=false;
  4206. #endif
  4207. }break;
  4208. case 1:
  4209. {
  4210. autoretract_enabled=true;
  4211. retracted[0]=false;
  4212. #if EXTRUDERS > 1
  4213. retracted[1]=false;
  4214. #endif
  4215. #if EXTRUDERS > 2
  4216. retracted[2]=false;
  4217. #endif
  4218. }break;
  4219. default:
  4220. SERIAL_ECHO_START;
  4221. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4222. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4223. SERIAL_ECHOLNPGM("\"(1)");
  4224. }
  4225. }
  4226. }break;
  4227. #endif // FWRETRACT
  4228. #if EXTRUDERS > 1
  4229. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4230. {
  4231. if(setTargetedHotend(218)){
  4232. break;
  4233. }
  4234. if(code_seen('X'))
  4235. {
  4236. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4237. }
  4238. if(code_seen('Y'))
  4239. {
  4240. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4241. }
  4242. SERIAL_ECHO_START;
  4243. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4244. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4245. {
  4246. SERIAL_ECHO(" ");
  4247. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4248. SERIAL_ECHO(",");
  4249. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4250. }
  4251. SERIAL_ECHOLN("");
  4252. }break;
  4253. #endif
  4254. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4255. {
  4256. if(code_seen('S'))
  4257. {
  4258. feedmultiply = code_value() ;
  4259. }
  4260. }
  4261. break;
  4262. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4263. {
  4264. if(code_seen('S'))
  4265. {
  4266. int tmp_code = code_value();
  4267. if (code_seen('T'))
  4268. {
  4269. if(setTargetedHotend(221)){
  4270. break;
  4271. }
  4272. extruder_multiply[tmp_extruder] = tmp_code;
  4273. }
  4274. else
  4275. {
  4276. extrudemultiply = tmp_code ;
  4277. }
  4278. }
  4279. }
  4280. break;
  4281. #ifndef _DISABLE_M42_M226
  4282. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4283. {
  4284. if(code_seen('P')){
  4285. int pin_number = code_value(); // pin number
  4286. int pin_state = -1; // required pin state - default is inverted
  4287. if(code_seen('S')) pin_state = code_value(); // required pin state
  4288. if(pin_state >= -1 && pin_state <= 1){
  4289. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4290. {
  4291. if (sensitive_pins[i] == pin_number)
  4292. {
  4293. pin_number = -1;
  4294. break;
  4295. }
  4296. }
  4297. if (pin_number > -1)
  4298. {
  4299. int target = LOW;
  4300. st_synchronize();
  4301. pinMode(pin_number, INPUT);
  4302. switch(pin_state){
  4303. case 1:
  4304. target = HIGH;
  4305. break;
  4306. case 0:
  4307. target = LOW;
  4308. break;
  4309. case -1:
  4310. target = !digitalRead(pin_number);
  4311. break;
  4312. }
  4313. while(digitalRead(pin_number) != target){
  4314. manage_heater();
  4315. manage_inactivity();
  4316. lcd_update();
  4317. }
  4318. }
  4319. }
  4320. }
  4321. }
  4322. break;
  4323. #endif //_DISABLE_M42_M226
  4324. #if NUM_SERVOS > 0
  4325. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4326. {
  4327. int servo_index = -1;
  4328. int servo_position = 0;
  4329. if (code_seen('P'))
  4330. servo_index = code_value();
  4331. if (code_seen('S')) {
  4332. servo_position = code_value();
  4333. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4334. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4335. servos[servo_index].attach(0);
  4336. #endif
  4337. servos[servo_index].write(servo_position);
  4338. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4339. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4340. servos[servo_index].detach();
  4341. #endif
  4342. }
  4343. else {
  4344. SERIAL_ECHO_START;
  4345. SERIAL_ECHO("Servo ");
  4346. SERIAL_ECHO(servo_index);
  4347. SERIAL_ECHOLN(" out of range");
  4348. }
  4349. }
  4350. else if (servo_index >= 0) {
  4351. SERIAL_PROTOCOL(MSG_OK);
  4352. SERIAL_PROTOCOL(" Servo ");
  4353. SERIAL_PROTOCOL(servo_index);
  4354. SERIAL_PROTOCOL(": ");
  4355. SERIAL_PROTOCOL(servos[servo_index].read());
  4356. SERIAL_PROTOCOLLN("");
  4357. }
  4358. }
  4359. break;
  4360. #endif // NUM_SERVOS > 0
  4361. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4362. case 300: // M300
  4363. {
  4364. int beepS = code_seen('S') ? code_value() : 110;
  4365. int beepP = code_seen('P') ? code_value() : 1000;
  4366. if (beepS > 0)
  4367. {
  4368. #if BEEPER > 0
  4369. tone(BEEPER, beepS);
  4370. delay(beepP);
  4371. noTone(BEEPER);
  4372. #elif defined(ULTRALCD)
  4373. lcd_buzz(beepS, beepP);
  4374. #elif defined(LCD_USE_I2C_BUZZER)
  4375. lcd_buzz(beepP, beepS);
  4376. #endif
  4377. }
  4378. else
  4379. {
  4380. delay(beepP);
  4381. }
  4382. }
  4383. break;
  4384. #endif // M300
  4385. #ifdef PIDTEMP
  4386. case 301: // M301
  4387. {
  4388. if(code_seen('P')) Kp = code_value();
  4389. if(code_seen('I')) Ki = scalePID_i(code_value());
  4390. if(code_seen('D')) Kd = scalePID_d(code_value());
  4391. #ifdef PID_ADD_EXTRUSION_RATE
  4392. if(code_seen('C')) Kc = code_value();
  4393. #endif
  4394. updatePID();
  4395. SERIAL_PROTOCOLRPGM(MSG_OK);
  4396. SERIAL_PROTOCOL(" p:");
  4397. SERIAL_PROTOCOL(Kp);
  4398. SERIAL_PROTOCOL(" i:");
  4399. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4400. SERIAL_PROTOCOL(" d:");
  4401. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4402. #ifdef PID_ADD_EXTRUSION_RATE
  4403. SERIAL_PROTOCOL(" c:");
  4404. //Kc does not have scaling applied above, or in resetting defaults
  4405. SERIAL_PROTOCOL(Kc);
  4406. #endif
  4407. SERIAL_PROTOCOLLN("");
  4408. }
  4409. break;
  4410. #endif //PIDTEMP
  4411. #ifdef PIDTEMPBED
  4412. case 304: // M304
  4413. {
  4414. if(code_seen('P')) bedKp = code_value();
  4415. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4416. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4417. updatePID();
  4418. SERIAL_PROTOCOLRPGM(MSG_OK);
  4419. SERIAL_PROTOCOL(" p:");
  4420. SERIAL_PROTOCOL(bedKp);
  4421. SERIAL_PROTOCOL(" i:");
  4422. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4423. SERIAL_PROTOCOL(" d:");
  4424. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4425. SERIAL_PROTOCOLLN("");
  4426. }
  4427. break;
  4428. #endif //PIDTEMP
  4429. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4430. {
  4431. #ifdef CHDK
  4432. SET_OUTPUT(CHDK);
  4433. WRITE(CHDK, HIGH);
  4434. chdkHigh = millis();
  4435. chdkActive = true;
  4436. #else
  4437. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4438. const uint8_t NUM_PULSES=16;
  4439. const float PULSE_LENGTH=0.01524;
  4440. for(int i=0; i < NUM_PULSES; i++) {
  4441. WRITE(PHOTOGRAPH_PIN, HIGH);
  4442. _delay_ms(PULSE_LENGTH);
  4443. WRITE(PHOTOGRAPH_PIN, LOW);
  4444. _delay_ms(PULSE_LENGTH);
  4445. }
  4446. delay(7.33);
  4447. for(int i=0; i < NUM_PULSES; i++) {
  4448. WRITE(PHOTOGRAPH_PIN, HIGH);
  4449. _delay_ms(PULSE_LENGTH);
  4450. WRITE(PHOTOGRAPH_PIN, LOW);
  4451. _delay_ms(PULSE_LENGTH);
  4452. }
  4453. #endif
  4454. #endif //chdk end if
  4455. }
  4456. break;
  4457. #ifdef DOGLCD
  4458. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4459. {
  4460. if (code_seen('C')) {
  4461. lcd_setcontrast( ((int)code_value())&63 );
  4462. }
  4463. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4464. SERIAL_PROTOCOL(lcd_contrast);
  4465. SERIAL_PROTOCOLLN("");
  4466. }
  4467. break;
  4468. #endif
  4469. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4470. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4471. {
  4472. float temp = .0;
  4473. if (code_seen('S')) temp=code_value();
  4474. set_extrude_min_temp(temp);
  4475. }
  4476. break;
  4477. #endif
  4478. case 303: // M303 PID autotune
  4479. {
  4480. float temp = 150.0;
  4481. int e=0;
  4482. int c=5;
  4483. if (code_seen('E')) e=code_value();
  4484. if (e<0)
  4485. temp=70;
  4486. if (code_seen('S')) temp=code_value();
  4487. if (code_seen('C')) c=code_value();
  4488. PID_autotune(temp, e, c);
  4489. }
  4490. break;
  4491. case 400: // M400 finish all moves
  4492. {
  4493. st_synchronize();
  4494. }
  4495. break;
  4496. #ifdef FILAMENT_SENSOR
  4497. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4498. {
  4499. #if (FILWIDTH_PIN > -1)
  4500. if(code_seen('N')) filament_width_nominal=code_value();
  4501. else{
  4502. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4503. SERIAL_PROTOCOLLN(filament_width_nominal);
  4504. }
  4505. #endif
  4506. }
  4507. break;
  4508. case 405: //M405 Turn on filament sensor for control
  4509. {
  4510. if(code_seen('D')) meas_delay_cm=code_value();
  4511. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4512. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4513. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4514. {
  4515. int temp_ratio = widthFil_to_size_ratio();
  4516. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4517. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4518. }
  4519. delay_index1=0;
  4520. delay_index2=0;
  4521. }
  4522. filament_sensor = true ;
  4523. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4524. //SERIAL_PROTOCOL(filament_width_meas);
  4525. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4526. //SERIAL_PROTOCOL(extrudemultiply);
  4527. }
  4528. break;
  4529. case 406: //M406 Turn off filament sensor for control
  4530. {
  4531. filament_sensor = false ;
  4532. }
  4533. break;
  4534. case 407: //M407 Display measured filament diameter
  4535. {
  4536. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4537. SERIAL_PROTOCOLLN(filament_width_meas);
  4538. }
  4539. break;
  4540. #endif
  4541. case 500: // M500 Store settings in EEPROM
  4542. {
  4543. Config_StoreSettings(EEPROM_OFFSET);
  4544. }
  4545. break;
  4546. case 501: // M501 Read settings from EEPROM
  4547. {
  4548. Config_RetrieveSettings(EEPROM_OFFSET);
  4549. }
  4550. break;
  4551. case 502: // M502 Revert to default settings
  4552. {
  4553. Config_ResetDefault();
  4554. }
  4555. break;
  4556. case 503: // M503 print settings currently in memory
  4557. {
  4558. Config_PrintSettings();
  4559. }
  4560. break;
  4561. case 509: //M509 Force language selection
  4562. {
  4563. lcd_force_language_selection();
  4564. SERIAL_ECHO_START;
  4565. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4566. }
  4567. break;
  4568. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4569. case 540:
  4570. {
  4571. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4572. }
  4573. break;
  4574. #endif
  4575. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4576. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4577. {
  4578. float value;
  4579. if (code_seen('Z'))
  4580. {
  4581. value = code_value();
  4582. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4583. {
  4584. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4585. SERIAL_ECHO_START;
  4586. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4587. SERIAL_PROTOCOLLN("");
  4588. }
  4589. else
  4590. {
  4591. SERIAL_ECHO_START;
  4592. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4593. SERIAL_ECHORPGM(MSG_Z_MIN);
  4594. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4595. SERIAL_ECHORPGM(MSG_Z_MAX);
  4596. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4597. SERIAL_PROTOCOLLN("");
  4598. }
  4599. }
  4600. else
  4601. {
  4602. SERIAL_ECHO_START;
  4603. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4604. SERIAL_ECHO(-zprobe_zoffset);
  4605. SERIAL_PROTOCOLLN("");
  4606. }
  4607. break;
  4608. }
  4609. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4610. #ifdef FILAMENTCHANGEENABLE
  4611. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4612. {
  4613. MYSERIAL.println("!!!!M600!!!!");
  4614. bool old_fsensor_enabled = fsensor_enabled;
  4615. fsensor_enabled = false; //temporary solution for unexpected restarting
  4616. st_synchronize();
  4617. float target[4];
  4618. float lastpos[4];
  4619. if (farm_mode)
  4620. {
  4621. prusa_statistics(22);
  4622. }
  4623. feedmultiplyBckp=feedmultiply;
  4624. int8_t TooLowZ = 0;
  4625. target[X_AXIS]=current_position[X_AXIS];
  4626. target[Y_AXIS]=current_position[Y_AXIS];
  4627. target[Z_AXIS]=current_position[Z_AXIS];
  4628. target[E_AXIS]=current_position[E_AXIS];
  4629. lastpos[X_AXIS]=current_position[X_AXIS];
  4630. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4631. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4632. lastpos[E_AXIS]=current_position[E_AXIS];
  4633. //Restract extruder
  4634. if(code_seen('E'))
  4635. {
  4636. target[E_AXIS]+= code_value();
  4637. }
  4638. else
  4639. {
  4640. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4641. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4642. #endif
  4643. }
  4644. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4645. //Lift Z
  4646. if(code_seen('Z'))
  4647. {
  4648. target[Z_AXIS]+= code_value();
  4649. }
  4650. else
  4651. {
  4652. #ifdef FILAMENTCHANGE_ZADD
  4653. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4654. if(target[Z_AXIS] < 10){
  4655. target[Z_AXIS]+= 10 ;
  4656. TooLowZ = 1;
  4657. }else{
  4658. TooLowZ = 0;
  4659. }
  4660. #endif
  4661. }
  4662. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4663. //Move XY to side
  4664. if(code_seen('X'))
  4665. {
  4666. target[X_AXIS]+= code_value();
  4667. }
  4668. else
  4669. {
  4670. #ifdef FILAMENTCHANGE_XPOS
  4671. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4672. #endif
  4673. }
  4674. if(code_seen('Y'))
  4675. {
  4676. target[Y_AXIS]= code_value();
  4677. }
  4678. else
  4679. {
  4680. #ifdef FILAMENTCHANGE_YPOS
  4681. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4682. #endif
  4683. }
  4684. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4685. st_synchronize();
  4686. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4687. uint8_t cnt = 0;
  4688. int counterBeep = 0;
  4689. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4690. while (!lcd_clicked()) {
  4691. cnt++;
  4692. manage_heater();
  4693. manage_inactivity(true);
  4694. /*#ifdef SNMM
  4695. target[E_AXIS] += 0.002;
  4696. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4697. #endif // SNMM*/
  4698. if (cnt == 0)
  4699. {
  4700. #if BEEPER > 0
  4701. if (counterBeep == 500) {
  4702. counterBeep = 0;
  4703. }
  4704. SET_OUTPUT(BEEPER);
  4705. if (counterBeep == 0) {
  4706. WRITE(BEEPER, HIGH);
  4707. }
  4708. if (counterBeep == 20) {
  4709. WRITE(BEEPER, LOW);
  4710. }
  4711. counterBeep++;
  4712. #else
  4713. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4714. lcd_buzz(1000 / 6, 100);
  4715. #else
  4716. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4717. #endif
  4718. #endif
  4719. }
  4720. }
  4721. WRITE(BEEPER, LOW);
  4722. lcd_change_fil_state = 0;
  4723. while (lcd_change_fil_state == 0) {
  4724. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4725. KEEPALIVE_STATE(IN_HANDLER);
  4726. custom_message = true;
  4727. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4728. // Unload filament
  4729. if (code_seen('L'))
  4730. {
  4731. target[E_AXIS] += code_value();
  4732. }
  4733. else
  4734. {
  4735. #ifdef SNMM
  4736. #else
  4737. #ifdef FILAMENTCHANGE_FINALRETRACT
  4738. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4739. #endif
  4740. #endif // SNMM
  4741. }
  4742. #ifdef SNMM
  4743. target[E_AXIS] += 12;
  4744. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4745. target[E_AXIS] += 6;
  4746. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4747. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4749. st_synchronize();
  4750. target[E_AXIS] += (FIL_COOLING);
  4751. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4752. target[E_AXIS] += (FIL_COOLING*-1);
  4753. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4754. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4755. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4756. st_synchronize();
  4757. #else
  4758. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4760. #endif // SNMM
  4761. //finish moves
  4762. st_synchronize();
  4763. //disable extruder steppers so filament can be removed
  4764. disable_e0();
  4765. disable_e1();
  4766. disable_e2();
  4767. delay(100);
  4768. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4769. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4770. //lcd_return_to_status();
  4771. lcd_update_enable(true);
  4772. }
  4773. //Wait for user to insert filament
  4774. lcd_wait_interact();
  4775. //load_filament_time = millis();
  4776. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4777. pat9125_update_y(); //update sensor
  4778. uint16_t y_old = pat9125_y; //save current y value
  4779. uint8_t change_cnt = 0; //reset number of changes counter
  4780. while(!lcd_clicked())
  4781. {
  4782. manage_heater();
  4783. manage_inactivity(true);
  4784. pat9125_update_y(); //update sensor
  4785. if (y_old != pat9125_y) //? y value is different
  4786. {
  4787. if ((y_old - pat9125_y) > 0) //? delta-y value is positive (inserting)
  4788. change_cnt++; //increment change counter
  4789. y_old = pat9125_y; //save current value
  4790. if (change_cnt > 20) break; //number of positive changes > 20, start loading
  4791. }
  4792. /*#ifdef SNMM
  4793. target[E_AXIS] += 0.002;
  4794. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4795. #endif // SNMM*/
  4796. }
  4797. //WRITE(BEEPER, LOW);
  4798. KEEPALIVE_STATE(IN_HANDLER);
  4799. #ifdef SNMM
  4800. display_loading();
  4801. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4802. do {
  4803. target[E_AXIS] += 0.002;
  4804. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4805. delay_keep_alive(2);
  4806. } while (!lcd_clicked());
  4807. KEEPALIVE_STATE(IN_HANDLER);
  4808. /*if (millis() - load_filament_time > 2) {
  4809. load_filament_time = millis();
  4810. target[E_AXIS] += 0.001;
  4811. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4812. }*/
  4813. //Filament inserted
  4814. //Feed the filament to the end of nozzle quickly
  4815. st_synchronize();
  4816. target[E_AXIS] += bowden_length[snmm_extruder];
  4817. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4818. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4819. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4820. target[E_AXIS] += 40;
  4821. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4822. target[E_AXIS] += 10;
  4823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4824. #else
  4825. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4826. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4827. #endif // SNMM
  4828. //Extrude some filament
  4829. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4830. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4831. //Wait for user to check the state
  4832. lcd_change_fil_state = 0;
  4833. lcd_loading_filament();
  4834. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4835. lcd_change_fil_state = 0;
  4836. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4837. lcd_alright();
  4838. KEEPALIVE_STATE(IN_HANDLER);
  4839. switch(lcd_change_fil_state){
  4840. // Filament failed to load so load it again
  4841. case 2:
  4842. #ifdef SNMM
  4843. display_loading();
  4844. do {
  4845. target[E_AXIS] += 0.002;
  4846. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4847. delay_keep_alive(2);
  4848. } while (!lcd_clicked());
  4849. st_synchronize();
  4850. target[E_AXIS] += bowden_length[snmm_extruder];
  4851. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4852. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4854. target[E_AXIS] += 40;
  4855. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4856. target[E_AXIS] += 10;
  4857. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4858. #else
  4859. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4860. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4861. #endif
  4862. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4863. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4864. lcd_loading_filament();
  4865. break;
  4866. // Filament loaded properly but color is not clear
  4867. case 3:
  4868. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4869. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4870. lcd_loading_color();
  4871. break;
  4872. // Everything good
  4873. default:
  4874. lcd_change_success();
  4875. lcd_update_enable(true);
  4876. break;
  4877. }
  4878. }
  4879. //Not let's go back to print
  4880. //Feed a little of filament to stabilize pressure
  4881. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4883. //Retract
  4884. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4886. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4887. //Move XY back
  4888. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4889. //Move Z back
  4890. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4891. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4892. //Unretract
  4893. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4894. //Set E position to original
  4895. plan_set_e_position(lastpos[E_AXIS]);
  4896. //Recover feed rate
  4897. feedmultiply=feedmultiplyBckp;
  4898. char cmd[9];
  4899. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4900. enquecommand(cmd);
  4901. lcd_setstatuspgm(WELCOME_MSG);
  4902. custom_message = false;
  4903. custom_message_type = 0;
  4904. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  4905. #ifdef PAT9125
  4906. if (fsensor_M600)
  4907. {
  4908. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4909. st_synchronize();
  4910. while (!is_buffer_empty())
  4911. {
  4912. process_commands();
  4913. cmdqueue_pop_front();
  4914. }
  4915. fsensor_enable();
  4916. fsensor_restore_print_and_continue();
  4917. }
  4918. #endif //PAT9125
  4919. }
  4920. break;
  4921. #endif //FILAMENTCHANGEENABLE
  4922. case 601: {
  4923. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4924. }
  4925. break;
  4926. case 602: {
  4927. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4928. }
  4929. break;
  4930. #ifdef LIN_ADVANCE
  4931. case 900: // M900: Set LIN_ADVANCE options.
  4932. gcode_M900();
  4933. break;
  4934. #endif
  4935. case 907: // M907 Set digital trimpot motor current using axis codes.
  4936. {
  4937. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4938. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4939. if(code_seen('B')) digipot_current(4,code_value());
  4940. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4941. #endif
  4942. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4943. if(code_seen('X')) digipot_current(0, code_value());
  4944. #endif
  4945. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4946. if(code_seen('Z')) digipot_current(1, code_value());
  4947. #endif
  4948. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4949. if(code_seen('E')) digipot_current(2, code_value());
  4950. #endif
  4951. #ifdef DIGIPOT_I2C
  4952. // this one uses actual amps in floating point
  4953. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4954. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4955. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4956. #endif
  4957. }
  4958. break;
  4959. case 908: // M908 Control digital trimpot directly.
  4960. {
  4961. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4962. uint8_t channel,current;
  4963. if(code_seen('P')) channel=code_value();
  4964. if(code_seen('S')) current=code_value();
  4965. digitalPotWrite(channel, current);
  4966. #endif
  4967. }
  4968. break;
  4969. case 910: // M910 TMC2130 init
  4970. {
  4971. tmc2130_init();
  4972. }
  4973. break;
  4974. case 911: // M911 Set TMC2130 holding currents
  4975. {
  4976. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4977. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4978. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4979. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4980. }
  4981. break;
  4982. case 912: // M912 Set TMC2130 running currents
  4983. {
  4984. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4985. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4986. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4987. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4988. }
  4989. break;
  4990. case 913: // M913 Print TMC2130 currents
  4991. {
  4992. tmc2130_print_currents();
  4993. }
  4994. break;
  4995. case 914: // M914 Set normal mode
  4996. {
  4997. tmc2130_mode = TMC2130_MODE_NORMAL;
  4998. tmc2130_init();
  4999. }
  5000. break;
  5001. case 915: // M915 Set silent mode
  5002. {
  5003. tmc2130_mode = TMC2130_MODE_SILENT;
  5004. tmc2130_init();
  5005. }
  5006. break;
  5007. case 916: // M916 Set sg_thrs
  5008. {
  5009. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5010. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5011. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5012. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5013. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5014. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5015. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5016. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5017. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5018. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5019. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5020. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5021. }
  5022. break;
  5023. case 917: // M917 Set TMC2130 pwm_ampl
  5024. {
  5025. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5026. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5027. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5028. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5029. }
  5030. break;
  5031. case 918: // M918 Set TMC2130 pwm_grad
  5032. {
  5033. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5034. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5035. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5036. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5037. }
  5038. break;
  5039. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5040. {
  5041. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5042. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5043. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5044. if(code_seen('B')) microstep_mode(4,code_value());
  5045. microstep_readings();
  5046. #endif
  5047. }
  5048. break;
  5049. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5050. {
  5051. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5052. if(code_seen('S')) switch((int)code_value())
  5053. {
  5054. case 1:
  5055. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5056. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5057. break;
  5058. case 2:
  5059. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5060. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5061. break;
  5062. }
  5063. microstep_readings();
  5064. #endif
  5065. }
  5066. break;
  5067. case 701: //M701: load filament
  5068. {
  5069. gcode_M701();
  5070. }
  5071. break;
  5072. case 702:
  5073. {
  5074. #ifdef SNMM
  5075. if (code_seen('U')) {
  5076. extr_unload_used(); //unload all filaments which were used in current print
  5077. }
  5078. else if (code_seen('C')) {
  5079. extr_unload(); //unload just current filament
  5080. }
  5081. else {
  5082. extr_unload_all(); //unload all filaments
  5083. }
  5084. #else
  5085. bool old_fsensor_enabled = fsensor_enabled;
  5086. fsensor_enabled = false;
  5087. custom_message = true;
  5088. custom_message_type = 2;
  5089. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5090. // extr_unload2();
  5091. current_position[E_AXIS] -= 80;
  5092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5093. st_synchronize();
  5094. lcd_setstatuspgm(WELCOME_MSG);
  5095. custom_message = false;
  5096. custom_message_type = 0;
  5097. fsensor_enabled = old_fsensor_enabled;
  5098. #endif
  5099. }
  5100. break;
  5101. case 999: // M999: Restart after being stopped
  5102. Stopped = false;
  5103. lcd_reset_alert_level();
  5104. gcode_LastN = Stopped_gcode_LastN;
  5105. FlushSerialRequestResend();
  5106. break;
  5107. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5108. }
  5109. } // end if(code_seen('M')) (end of M codes)
  5110. else if(code_seen('T'))
  5111. {
  5112. int index;
  5113. st_synchronize();
  5114. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5115. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5116. SERIAL_ECHOLNPGM("Invalid T code.");
  5117. }
  5118. else {
  5119. if (*(strchr_pointer + index) == '?') {
  5120. tmp_extruder = choose_extruder_menu();
  5121. }
  5122. else {
  5123. tmp_extruder = code_value();
  5124. }
  5125. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5126. #ifdef SNMM
  5127. #ifdef LIN_ADVANCE
  5128. if (snmm_extruder != tmp_extruder)
  5129. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5130. #endif
  5131. snmm_extruder = tmp_extruder;
  5132. delay(100);
  5133. disable_e0();
  5134. disable_e1();
  5135. disable_e2();
  5136. pinMode(E_MUX0_PIN, OUTPUT);
  5137. pinMode(E_MUX1_PIN, OUTPUT);
  5138. pinMode(E_MUX2_PIN, OUTPUT);
  5139. delay(100);
  5140. SERIAL_ECHO_START;
  5141. SERIAL_ECHO("T:");
  5142. SERIAL_ECHOLN((int)tmp_extruder);
  5143. switch (tmp_extruder) {
  5144. case 1:
  5145. WRITE(E_MUX0_PIN, HIGH);
  5146. WRITE(E_MUX1_PIN, LOW);
  5147. WRITE(E_MUX2_PIN, LOW);
  5148. break;
  5149. case 2:
  5150. WRITE(E_MUX0_PIN, LOW);
  5151. WRITE(E_MUX1_PIN, HIGH);
  5152. WRITE(E_MUX2_PIN, LOW);
  5153. break;
  5154. case 3:
  5155. WRITE(E_MUX0_PIN, HIGH);
  5156. WRITE(E_MUX1_PIN, HIGH);
  5157. WRITE(E_MUX2_PIN, LOW);
  5158. break;
  5159. default:
  5160. WRITE(E_MUX0_PIN, LOW);
  5161. WRITE(E_MUX1_PIN, LOW);
  5162. WRITE(E_MUX2_PIN, LOW);
  5163. break;
  5164. }
  5165. delay(100);
  5166. #else
  5167. if (tmp_extruder >= EXTRUDERS) {
  5168. SERIAL_ECHO_START;
  5169. SERIAL_ECHOPGM("T");
  5170. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5171. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5172. }
  5173. else {
  5174. boolean make_move = false;
  5175. if (code_seen('F')) {
  5176. make_move = true;
  5177. next_feedrate = code_value();
  5178. if (next_feedrate > 0.0) {
  5179. feedrate = next_feedrate;
  5180. }
  5181. }
  5182. #if EXTRUDERS > 1
  5183. if (tmp_extruder != active_extruder) {
  5184. // Save current position to return to after applying extruder offset
  5185. memcpy(destination, current_position, sizeof(destination));
  5186. // Offset extruder (only by XY)
  5187. int i;
  5188. for (i = 0; i < 2; i++) {
  5189. current_position[i] = current_position[i] -
  5190. extruder_offset[i][active_extruder] +
  5191. extruder_offset[i][tmp_extruder];
  5192. }
  5193. // Set the new active extruder and position
  5194. active_extruder = tmp_extruder;
  5195. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5196. // Move to the old position if 'F' was in the parameters
  5197. if (make_move && Stopped == false) {
  5198. prepare_move();
  5199. }
  5200. }
  5201. #endif
  5202. SERIAL_ECHO_START;
  5203. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5204. SERIAL_PROTOCOLLN((int)active_extruder);
  5205. }
  5206. #endif
  5207. }
  5208. } // end if(code_seen('T')) (end of T codes)
  5209. #ifdef DEBUG_DCODES
  5210. else if (code_seen('D')) // D codes (debug)
  5211. {
  5212. switch((int)code_value())
  5213. {
  5214. case -1: // D-1 - Endless loop
  5215. dcode__1(); break;
  5216. case 0: // D0 - Reset
  5217. dcode_0(); break;
  5218. case 1: // D1 - Clear EEPROM
  5219. dcode_1(); break;
  5220. case 2: // D2 - Read/Write RAM
  5221. dcode_2(); break;
  5222. case 3: // D3 - Read/Write EEPROM
  5223. dcode_3(); break;
  5224. case 4: // D4 - Read/Write PIN
  5225. dcode_4(); break;
  5226. case 5: // D5 - Read/Write FLASH
  5227. // dcode_5(); break;
  5228. break;
  5229. case 6: // D6 - Read/Write external FLASH
  5230. dcode_6(); break;
  5231. case 7: // D7 - Read/Write Bootloader
  5232. dcode_7(); break;
  5233. case 8: // D8 - Read/Write PINDA
  5234. dcode_8(); break;
  5235. case 10: // D10 - XYZ calibration = OK
  5236. dcode_10(); break;
  5237. case 12: //D12 - Reset failstat counters
  5238. dcode_12(); break;
  5239. case 2130: // D9125 - TMC2130
  5240. dcode_2130(); break;
  5241. case 9125: // D9125 - PAT9125
  5242. dcode_9125(); break;
  5243. }
  5244. }
  5245. #endif //DEBUG_DCODES
  5246. else
  5247. {
  5248. SERIAL_ECHO_START;
  5249. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5250. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5251. SERIAL_ECHOLNPGM("\"(2)");
  5252. }
  5253. KEEPALIVE_STATE(NOT_BUSY);
  5254. ClearToSend();
  5255. }
  5256. void FlushSerialRequestResend()
  5257. {
  5258. //char cmdbuffer[bufindr][100]="Resend:";
  5259. MYSERIAL.flush();
  5260. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5261. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5262. ClearToSend();
  5263. }
  5264. // Confirm the execution of a command, if sent from a serial line.
  5265. // Execution of a command from a SD card will not be confirmed.
  5266. void ClearToSend()
  5267. {
  5268. previous_millis_cmd = millis();
  5269. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5270. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5271. }
  5272. void get_coordinates()
  5273. {
  5274. bool seen[4]={false,false,false,false};
  5275. for(int8_t i=0; i < NUM_AXIS; i++) {
  5276. if(code_seen(axis_codes[i]))
  5277. {
  5278. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5279. seen[i]=true;
  5280. }
  5281. else destination[i] = current_position[i]; //Are these else lines really needed?
  5282. }
  5283. if(code_seen('F')) {
  5284. next_feedrate = code_value();
  5285. #ifdef MAX_SILENT_FEEDRATE
  5286. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5287. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5288. #endif //MAX_SILENT_FEEDRATE
  5289. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5290. }
  5291. }
  5292. void get_arc_coordinates()
  5293. {
  5294. #ifdef SF_ARC_FIX
  5295. bool relative_mode_backup = relative_mode;
  5296. relative_mode = true;
  5297. #endif
  5298. get_coordinates();
  5299. #ifdef SF_ARC_FIX
  5300. relative_mode=relative_mode_backup;
  5301. #endif
  5302. if(code_seen('I')) {
  5303. offset[0] = code_value();
  5304. }
  5305. else {
  5306. offset[0] = 0.0;
  5307. }
  5308. if(code_seen('J')) {
  5309. offset[1] = code_value();
  5310. }
  5311. else {
  5312. offset[1] = 0.0;
  5313. }
  5314. }
  5315. void clamp_to_software_endstops(float target[3])
  5316. {
  5317. #ifdef DEBUG_DISABLE_SWLIMITS
  5318. return;
  5319. #endif //DEBUG_DISABLE_SWLIMITS
  5320. world2machine_clamp(target[0], target[1]);
  5321. // Clamp the Z coordinate.
  5322. if (min_software_endstops) {
  5323. float negative_z_offset = 0;
  5324. #ifdef ENABLE_AUTO_BED_LEVELING
  5325. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5326. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5327. #endif
  5328. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5329. }
  5330. if (max_software_endstops) {
  5331. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5332. }
  5333. }
  5334. #ifdef MESH_BED_LEVELING
  5335. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5336. float dx = x - current_position[X_AXIS];
  5337. float dy = y - current_position[Y_AXIS];
  5338. float dz = z - current_position[Z_AXIS];
  5339. int n_segments = 0;
  5340. if (mbl.active) {
  5341. float len = abs(dx) + abs(dy);
  5342. if (len > 0)
  5343. // Split to 3cm segments or shorter.
  5344. n_segments = int(ceil(len / 30.f));
  5345. }
  5346. if (n_segments > 1) {
  5347. float de = e - current_position[E_AXIS];
  5348. for (int i = 1; i < n_segments; ++ i) {
  5349. float t = float(i) / float(n_segments);
  5350. plan_buffer_line(
  5351. current_position[X_AXIS] + t * dx,
  5352. current_position[Y_AXIS] + t * dy,
  5353. current_position[Z_AXIS] + t * dz,
  5354. current_position[E_AXIS] + t * de,
  5355. feed_rate, extruder);
  5356. }
  5357. }
  5358. // The rest of the path.
  5359. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5360. current_position[X_AXIS] = x;
  5361. current_position[Y_AXIS] = y;
  5362. current_position[Z_AXIS] = z;
  5363. current_position[E_AXIS] = e;
  5364. }
  5365. #endif // MESH_BED_LEVELING
  5366. void prepare_move()
  5367. {
  5368. clamp_to_software_endstops(destination);
  5369. previous_millis_cmd = millis();
  5370. // Do not use feedmultiply for E or Z only moves
  5371. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5372. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5373. }
  5374. else {
  5375. #ifdef MESH_BED_LEVELING
  5376. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5377. #else
  5378. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5379. #endif
  5380. }
  5381. for(int8_t i=0; i < NUM_AXIS; i++) {
  5382. current_position[i] = destination[i];
  5383. }
  5384. }
  5385. void prepare_arc_move(char isclockwise) {
  5386. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5387. // Trace the arc
  5388. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5389. // As far as the parser is concerned, the position is now == target. In reality the
  5390. // motion control system might still be processing the action and the real tool position
  5391. // in any intermediate location.
  5392. for(int8_t i=0; i < NUM_AXIS; i++) {
  5393. current_position[i] = destination[i];
  5394. }
  5395. previous_millis_cmd = millis();
  5396. }
  5397. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5398. #if defined(FAN_PIN)
  5399. #if CONTROLLERFAN_PIN == FAN_PIN
  5400. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5401. #endif
  5402. #endif
  5403. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5404. unsigned long lastMotorCheck = 0;
  5405. void controllerFan()
  5406. {
  5407. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5408. {
  5409. lastMotorCheck = millis();
  5410. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5411. #if EXTRUDERS > 2
  5412. || !READ(E2_ENABLE_PIN)
  5413. #endif
  5414. #if EXTRUDER > 1
  5415. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5416. || !READ(X2_ENABLE_PIN)
  5417. #endif
  5418. || !READ(E1_ENABLE_PIN)
  5419. #endif
  5420. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5421. {
  5422. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5423. }
  5424. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5425. {
  5426. digitalWrite(CONTROLLERFAN_PIN, 0);
  5427. analogWrite(CONTROLLERFAN_PIN, 0);
  5428. }
  5429. else
  5430. {
  5431. // allows digital or PWM fan output to be used (see M42 handling)
  5432. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5433. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5434. }
  5435. }
  5436. }
  5437. #endif
  5438. #ifdef TEMP_STAT_LEDS
  5439. static bool blue_led = false;
  5440. static bool red_led = false;
  5441. static uint32_t stat_update = 0;
  5442. void handle_status_leds(void) {
  5443. float max_temp = 0.0;
  5444. if(millis() > stat_update) {
  5445. stat_update += 500; // Update every 0.5s
  5446. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5447. max_temp = max(max_temp, degHotend(cur_extruder));
  5448. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5449. }
  5450. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5451. max_temp = max(max_temp, degTargetBed());
  5452. max_temp = max(max_temp, degBed());
  5453. #endif
  5454. if((max_temp > 55.0) && (red_led == false)) {
  5455. digitalWrite(STAT_LED_RED, 1);
  5456. digitalWrite(STAT_LED_BLUE, 0);
  5457. red_led = true;
  5458. blue_led = false;
  5459. }
  5460. if((max_temp < 54.0) && (blue_led == false)) {
  5461. digitalWrite(STAT_LED_RED, 0);
  5462. digitalWrite(STAT_LED_BLUE, 1);
  5463. red_led = false;
  5464. blue_led = true;
  5465. }
  5466. }
  5467. }
  5468. #endif
  5469. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5470. {
  5471. #if defined(KILL_PIN) && KILL_PIN > -1
  5472. static int killCount = 0; // make the inactivity button a bit less responsive
  5473. const int KILL_DELAY = 10000;
  5474. #endif
  5475. if(buflen < (BUFSIZE-1)){
  5476. get_command();
  5477. }
  5478. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5479. if(max_inactive_time)
  5480. kill("", 4);
  5481. if(stepper_inactive_time) {
  5482. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5483. {
  5484. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5485. disable_x();
  5486. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5487. disable_y();
  5488. disable_z();
  5489. disable_e0();
  5490. disable_e1();
  5491. disable_e2();
  5492. }
  5493. }
  5494. }
  5495. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5496. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5497. {
  5498. chdkActive = false;
  5499. WRITE(CHDK, LOW);
  5500. }
  5501. #endif
  5502. #if defined(KILL_PIN) && KILL_PIN > -1
  5503. // Check if the kill button was pressed and wait just in case it was an accidental
  5504. // key kill key press
  5505. // -------------------------------------------------------------------------------
  5506. if( 0 == READ(KILL_PIN) )
  5507. {
  5508. killCount++;
  5509. }
  5510. else if (killCount > 0)
  5511. {
  5512. killCount--;
  5513. }
  5514. // Exceeded threshold and we can confirm that it was not accidental
  5515. // KILL the machine
  5516. // ----------------------------------------------------------------
  5517. if ( killCount >= KILL_DELAY)
  5518. {
  5519. kill("", 5);
  5520. }
  5521. #endif
  5522. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5523. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5524. #endif
  5525. #ifdef EXTRUDER_RUNOUT_PREVENT
  5526. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5527. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5528. {
  5529. bool oldstatus=READ(E0_ENABLE_PIN);
  5530. enable_e0();
  5531. float oldepos=current_position[E_AXIS];
  5532. float oldedes=destination[E_AXIS];
  5533. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5534. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5535. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5536. current_position[E_AXIS]=oldepos;
  5537. destination[E_AXIS]=oldedes;
  5538. plan_set_e_position(oldepos);
  5539. previous_millis_cmd=millis();
  5540. st_synchronize();
  5541. WRITE(E0_ENABLE_PIN,oldstatus);
  5542. }
  5543. #endif
  5544. #ifdef TEMP_STAT_LEDS
  5545. handle_status_leds();
  5546. #endif
  5547. check_axes_activity();
  5548. }
  5549. void kill(const char *full_screen_message, unsigned char id)
  5550. {
  5551. SERIAL_ECHOPGM("KILL: ");
  5552. MYSERIAL.println(int(id));
  5553. //return;
  5554. cli(); // Stop interrupts
  5555. disable_heater();
  5556. disable_x();
  5557. // SERIAL_ECHOLNPGM("kill - disable Y");
  5558. disable_y();
  5559. disable_z();
  5560. disable_e0();
  5561. disable_e1();
  5562. disable_e2();
  5563. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5564. pinMode(PS_ON_PIN,INPUT);
  5565. #endif
  5566. SERIAL_ERROR_START;
  5567. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5568. if (full_screen_message != NULL) {
  5569. SERIAL_ERRORLNRPGM(full_screen_message);
  5570. lcd_display_message_fullscreen_P(full_screen_message);
  5571. } else {
  5572. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5573. }
  5574. // FMC small patch to update the LCD before ending
  5575. sei(); // enable interrupts
  5576. for ( int i=5; i--; lcd_update())
  5577. {
  5578. delay(200);
  5579. }
  5580. cli(); // disable interrupts
  5581. suicide();
  5582. while(1)
  5583. {
  5584. wdt_reset();
  5585. /* Intentionally left empty */
  5586. } // Wait for reset
  5587. }
  5588. void Stop()
  5589. {
  5590. disable_heater();
  5591. if(Stopped == false) {
  5592. Stopped = true;
  5593. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5594. SERIAL_ERROR_START;
  5595. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5596. LCD_MESSAGERPGM(MSG_STOPPED);
  5597. }
  5598. }
  5599. bool IsStopped() { return Stopped; };
  5600. #ifdef FAST_PWM_FAN
  5601. void setPwmFrequency(uint8_t pin, int val)
  5602. {
  5603. val &= 0x07;
  5604. switch(digitalPinToTimer(pin))
  5605. {
  5606. #if defined(TCCR0A)
  5607. case TIMER0A:
  5608. case TIMER0B:
  5609. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5610. // TCCR0B |= val;
  5611. break;
  5612. #endif
  5613. #if defined(TCCR1A)
  5614. case TIMER1A:
  5615. case TIMER1B:
  5616. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5617. // TCCR1B |= val;
  5618. break;
  5619. #endif
  5620. #if defined(TCCR2)
  5621. case TIMER2:
  5622. case TIMER2:
  5623. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5624. TCCR2 |= val;
  5625. break;
  5626. #endif
  5627. #if defined(TCCR2A)
  5628. case TIMER2A:
  5629. case TIMER2B:
  5630. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5631. TCCR2B |= val;
  5632. break;
  5633. #endif
  5634. #if defined(TCCR3A)
  5635. case TIMER3A:
  5636. case TIMER3B:
  5637. case TIMER3C:
  5638. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5639. TCCR3B |= val;
  5640. break;
  5641. #endif
  5642. #if defined(TCCR4A)
  5643. case TIMER4A:
  5644. case TIMER4B:
  5645. case TIMER4C:
  5646. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5647. TCCR4B |= val;
  5648. break;
  5649. #endif
  5650. #if defined(TCCR5A)
  5651. case TIMER5A:
  5652. case TIMER5B:
  5653. case TIMER5C:
  5654. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5655. TCCR5B |= val;
  5656. break;
  5657. #endif
  5658. }
  5659. }
  5660. #endif //FAST_PWM_FAN
  5661. bool setTargetedHotend(int code){
  5662. tmp_extruder = active_extruder;
  5663. if(code_seen('T')) {
  5664. tmp_extruder = code_value();
  5665. if(tmp_extruder >= EXTRUDERS) {
  5666. SERIAL_ECHO_START;
  5667. switch(code){
  5668. case 104:
  5669. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5670. break;
  5671. case 105:
  5672. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5673. break;
  5674. case 109:
  5675. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5676. break;
  5677. case 218:
  5678. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5679. break;
  5680. case 221:
  5681. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5682. break;
  5683. }
  5684. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5685. return true;
  5686. }
  5687. }
  5688. return false;
  5689. }
  5690. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5691. {
  5692. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5693. {
  5694. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5695. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5696. }
  5697. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5698. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5699. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5700. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5701. total_filament_used = 0;
  5702. }
  5703. float calculate_volumetric_multiplier(float diameter) {
  5704. float area = .0;
  5705. float radius = .0;
  5706. radius = diameter * .5;
  5707. if (! volumetric_enabled || radius == 0) {
  5708. area = 1;
  5709. }
  5710. else {
  5711. area = M_PI * pow(radius, 2);
  5712. }
  5713. return 1.0 / area;
  5714. }
  5715. void calculate_volumetric_multipliers() {
  5716. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5717. #if EXTRUDERS > 1
  5718. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5719. #if EXTRUDERS > 2
  5720. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5721. #endif
  5722. #endif
  5723. }
  5724. void delay_keep_alive(unsigned int ms)
  5725. {
  5726. for (;;) {
  5727. manage_heater();
  5728. // Manage inactivity, but don't disable steppers on timeout.
  5729. manage_inactivity(true);
  5730. lcd_update();
  5731. if (ms == 0)
  5732. break;
  5733. else if (ms >= 50) {
  5734. delay(50);
  5735. ms -= 50;
  5736. } else {
  5737. delay(ms);
  5738. ms = 0;
  5739. }
  5740. }
  5741. }
  5742. void wait_for_heater(long codenum) {
  5743. #ifdef TEMP_RESIDENCY_TIME
  5744. long residencyStart;
  5745. residencyStart = -1;
  5746. /* continue to loop until we have reached the target temp
  5747. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5748. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5749. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5750. #else
  5751. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5752. #endif //TEMP_RESIDENCY_TIME
  5753. if ((millis() - codenum) > 1000UL)
  5754. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5755. if (!farm_mode) {
  5756. SERIAL_PROTOCOLPGM("T:");
  5757. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5758. SERIAL_PROTOCOLPGM(" E:");
  5759. SERIAL_PROTOCOL((int)tmp_extruder);
  5760. #ifdef TEMP_RESIDENCY_TIME
  5761. SERIAL_PROTOCOLPGM(" W:");
  5762. if (residencyStart > -1)
  5763. {
  5764. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5765. SERIAL_PROTOCOLLN(codenum);
  5766. }
  5767. else
  5768. {
  5769. SERIAL_PROTOCOLLN("?");
  5770. }
  5771. }
  5772. #else
  5773. SERIAL_PROTOCOLLN("");
  5774. #endif
  5775. codenum = millis();
  5776. }
  5777. manage_heater();
  5778. manage_inactivity();
  5779. lcd_update();
  5780. #ifdef TEMP_RESIDENCY_TIME
  5781. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5782. or when current temp falls outside the hysteresis after target temp was reached */
  5783. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5784. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5785. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5786. {
  5787. residencyStart = millis();
  5788. }
  5789. #endif //TEMP_RESIDENCY_TIME
  5790. }
  5791. }
  5792. void check_babystep() {
  5793. int babystep_z;
  5794. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5795. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5796. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5797. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5798. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5799. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5800. lcd_update_enable(true);
  5801. }
  5802. }
  5803. #ifdef DIS
  5804. void d_setup()
  5805. {
  5806. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5807. pinMode(D_DATA, INPUT_PULLUP);
  5808. pinMode(D_REQUIRE, OUTPUT);
  5809. digitalWrite(D_REQUIRE, HIGH);
  5810. }
  5811. float d_ReadData()
  5812. {
  5813. int digit[13];
  5814. String mergeOutput;
  5815. float output;
  5816. digitalWrite(D_REQUIRE, HIGH);
  5817. for (int i = 0; i<13; i++)
  5818. {
  5819. for (int j = 0; j < 4; j++)
  5820. {
  5821. while (digitalRead(D_DATACLOCK) == LOW) {}
  5822. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5823. bitWrite(digit[i], j, digitalRead(D_DATA));
  5824. }
  5825. }
  5826. digitalWrite(D_REQUIRE, LOW);
  5827. mergeOutput = "";
  5828. output = 0;
  5829. for (int r = 5; r <= 10; r++) //Merge digits
  5830. {
  5831. mergeOutput += digit[r];
  5832. }
  5833. output = mergeOutput.toFloat();
  5834. if (digit[4] == 8) //Handle sign
  5835. {
  5836. output *= -1;
  5837. }
  5838. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5839. {
  5840. output /= 10;
  5841. }
  5842. return output;
  5843. }
  5844. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5845. int t1 = 0;
  5846. int t_delay = 0;
  5847. int digit[13];
  5848. int m;
  5849. char str[3];
  5850. //String mergeOutput;
  5851. char mergeOutput[15];
  5852. float output;
  5853. int mesh_point = 0; //index number of calibration point
  5854. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5855. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5856. float mesh_home_z_search = 4;
  5857. float row[x_points_num];
  5858. int ix = 0;
  5859. int iy = 0;
  5860. char* filename_wldsd = "wldsd.txt";
  5861. char data_wldsd[70];
  5862. char numb_wldsd[10];
  5863. d_setup();
  5864. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5865. // We don't know where we are! HOME!
  5866. // Push the commands to the front of the message queue in the reverse order!
  5867. // There shall be always enough space reserved for these commands.
  5868. repeatcommand_front(); // repeat G80 with all its parameters
  5869. enquecommand_front_P((PSTR("G28 W0")));
  5870. enquecommand_front_P((PSTR("G1 Z5")));
  5871. return;
  5872. }
  5873. bool custom_message_old = custom_message;
  5874. unsigned int custom_message_type_old = custom_message_type;
  5875. unsigned int custom_message_state_old = custom_message_state;
  5876. custom_message = true;
  5877. custom_message_type = 1;
  5878. custom_message_state = (x_points_num * y_points_num) + 10;
  5879. lcd_update(1);
  5880. mbl.reset();
  5881. babystep_undo();
  5882. card.openFile(filename_wldsd, false);
  5883. current_position[Z_AXIS] = mesh_home_z_search;
  5884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5885. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5886. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5887. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5888. setup_for_endstop_move(false);
  5889. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5890. SERIAL_PROTOCOL(x_points_num);
  5891. SERIAL_PROTOCOLPGM(",");
  5892. SERIAL_PROTOCOL(y_points_num);
  5893. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5894. SERIAL_PROTOCOL(mesh_home_z_search);
  5895. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5896. SERIAL_PROTOCOL(x_dimension);
  5897. SERIAL_PROTOCOLPGM(",");
  5898. SERIAL_PROTOCOL(y_dimension);
  5899. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5900. while (mesh_point != x_points_num * y_points_num) {
  5901. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5902. iy = mesh_point / x_points_num;
  5903. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5904. float z0 = 0.f;
  5905. current_position[Z_AXIS] = mesh_home_z_search;
  5906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5907. st_synchronize();
  5908. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5909. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5911. st_synchronize();
  5912. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5913. break;
  5914. card.closefile();
  5915. }
  5916. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5917. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5918. //strcat(data_wldsd, numb_wldsd);
  5919. //MYSERIAL.println(data_wldsd);
  5920. //delay(1000);
  5921. //delay(3000);
  5922. //t1 = millis();
  5923. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5924. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5925. memset(digit, 0, sizeof(digit));
  5926. //cli();
  5927. digitalWrite(D_REQUIRE, LOW);
  5928. for (int i = 0; i<13; i++)
  5929. {
  5930. //t1 = millis();
  5931. for (int j = 0; j < 4; j++)
  5932. {
  5933. while (digitalRead(D_DATACLOCK) == LOW) {}
  5934. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5935. bitWrite(digit[i], j, digitalRead(D_DATA));
  5936. }
  5937. //t_delay = (millis() - t1);
  5938. //SERIAL_PROTOCOLPGM(" ");
  5939. //SERIAL_PROTOCOL_F(t_delay, 5);
  5940. //SERIAL_PROTOCOLPGM(" ");
  5941. }
  5942. //sei();
  5943. digitalWrite(D_REQUIRE, HIGH);
  5944. mergeOutput[0] = '\0';
  5945. output = 0;
  5946. for (int r = 5; r <= 10; r++) //Merge digits
  5947. {
  5948. sprintf(str, "%d", digit[r]);
  5949. strcat(mergeOutput, str);
  5950. }
  5951. output = atof(mergeOutput);
  5952. if (digit[4] == 8) //Handle sign
  5953. {
  5954. output *= -1;
  5955. }
  5956. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5957. {
  5958. output *= 0.1;
  5959. }
  5960. //output = d_ReadData();
  5961. //row[ix] = current_position[Z_AXIS];
  5962. memset(data_wldsd, 0, sizeof(data_wldsd));
  5963. for (int i = 0; i <3; i++) {
  5964. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5965. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5966. strcat(data_wldsd, numb_wldsd);
  5967. strcat(data_wldsd, ";");
  5968. }
  5969. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5970. dtostrf(output, 8, 5, numb_wldsd);
  5971. strcat(data_wldsd, numb_wldsd);
  5972. //strcat(data_wldsd, ";");
  5973. card.write_command(data_wldsd);
  5974. //row[ix] = d_ReadData();
  5975. row[ix] = output; // current_position[Z_AXIS];
  5976. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5977. for (int i = 0; i < x_points_num; i++) {
  5978. SERIAL_PROTOCOLPGM(" ");
  5979. SERIAL_PROTOCOL_F(row[i], 5);
  5980. }
  5981. SERIAL_PROTOCOLPGM("\n");
  5982. }
  5983. custom_message_state--;
  5984. mesh_point++;
  5985. lcd_update(1);
  5986. }
  5987. card.closefile();
  5988. }
  5989. #endif
  5990. void temp_compensation_start() {
  5991. custom_message = true;
  5992. custom_message_type = 5;
  5993. custom_message_state = PINDA_HEAT_T + 1;
  5994. lcd_update(2);
  5995. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5996. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5997. }
  5998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5999. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6000. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6001. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6003. st_synchronize();
  6004. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6005. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6006. delay_keep_alive(1000);
  6007. custom_message_state = PINDA_HEAT_T - i;
  6008. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6009. else lcd_update(1);
  6010. }
  6011. custom_message_type = 0;
  6012. custom_message_state = 0;
  6013. custom_message = false;
  6014. }
  6015. void temp_compensation_apply() {
  6016. int i_add;
  6017. int compensation_value;
  6018. int z_shift = 0;
  6019. float z_shift_mm;
  6020. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6021. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6022. i_add = (target_temperature_bed - 60) / 10;
  6023. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6024. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6025. }else {
  6026. //interpolation
  6027. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6028. }
  6029. SERIAL_PROTOCOLPGM("\n");
  6030. SERIAL_PROTOCOLPGM("Z shift applied:");
  6031. MYSERIAL.print(z_shift_mm);
  6032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6033. st_synchronize();
  6034. plan_set_z_position(current_position[Z_AXIS]);
  6035. }
  6036. else {
  6037. //we have no temp compensation data
  6038. }
  6039. }
  6040. float temp_comp_interpolation(float inp_temperature) {
  6041. //cubic spline interpolation
  6042. int n, i, j, k;
  6043. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6044. int shift[10];
  6045. int temp_C[10];
  6046. n = 6; //number of measured points
  6047. shift[0] = 0;
  6048. for (i = 0; i < n; i++) {
  6049. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6050. temp_C[i] = 50 + i * 10; //temperature in C
  6051. #ifdef PINDA_THERMISTOR
  6052. temp_C[i] = 35 + i * 5; //temperature in C
  6053. #else
  6054. temp_C[i] = 50 + i * 10; //temperature in C
  6055. #endif
  6056. x[i] = (float)temp_C[i];
  6057. f[i] = (float)shift[i];
  6058. }
  6059. if (inp_temperature < x[0]) return 0;
  6060. for (i = n - 1; i>0; i--) {
  6061. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6062. h[i - 1] = x[i] - x[i - 1];
  6063. }
  6064. //*********** formation of h, s , f matrix **************
  6065. for (i = 1; i<n - 1; i++) {
  6066. m[i][i] = 2 * (h[i - 1] + h[i]);
  6067. if (i != 1) {
  6068. m[i][i - 1] = h[i - 1];
  6069. m[i - 1][i] = h[i - 1];
  6070. }
  6071. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6072. }
  6073. //*********** forward elimination **************
  6074. for (i = 1; i<n - 2; i++) {
  6075. temp = (m[i + 1][i] / m[i][i]);
  6076. for (j = 1; j <= n - 1; j++)
  6077. m[i + 1][j] -= temp*m[i][j];
  6078. }
  6079. //*********** backward substitution *********
  6080. for (i = n - 2; i>0; i--) {
  6081. sum = 0;
  6082. for (j = i; j <= n - 2; j++)
  6083. sum += m[i][j] * s[j];
  6084. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6085. }
  6086. for (i = 0; i<n - 1; i++)
  6087. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6088. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6089. b = s[i] / 2;
  6090. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6091. d = f[i];
  6092. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6093. }
  6094. return sum;
  6095. }
  6096. #ifdef PINDA_THERMISTOR
  6097. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6098. {
  6099. if (!temp_cal_active) return 0;
  6100. if (!calibration_status_pinda()) return 0;
  6101. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6102. }
  6103. #endif //PINDA_THERMISTOR
  6104. void long_pause() //long pause print
  6105. {
  6106. st_synchronize();
  6107. //save currently set parameters to global variables
  6108. saved_feedmultiply = feedmultiply;
  6109. HotendTempBckp = degTargetHotend(active_extruder);
  6110. fanSpeedBckp = fanSpeed;
  6111. start_pause_print = millis();
  6112. //save position
  6113. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6114. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6115. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6116. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6117. //retract
  6118. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6120. //lift z
  6121. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6122. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6124. //set nozzle target temperature to 0
  6125. setTargetHotend(0, 0);
  6126. setTargetHotend(0, 1);
  6127. setTargetHotend(0, 2);
  6128. //Move XY to side
  6129. current_position[X_AXIS] = X_PAUSE_POS;
  6130. current_position[Y_AXIS] = Y_PAUSE_POS;
  6131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6132. // Turn off the print fan
  6133. fanSpeed = 0;
  6134. st_synchronize();
  6135. }
  6136. void serialecho_temperatures() {
  6137. float tt = degHotend(active_extruder);
  6138. SERIAL_PROTOCOLPGM("T:");
  6139. SERIAL_PROTOCOL(tt);
  6140. SERIAL_PROTOCOLPGM(" E:");
  6141. SERIAL_PROTOCOL((int)active_extruder);
  6142. SERIAL_PROTOCOLPGM(" B:");
  6143. SERIAL_PROTOCOL_F(degBed(), 1);
  6144. SERIAL_PROTOCOLLN("");
  6145. }
  6146. extern uint32_t sdpos_atomic;
  6147. void uvlo_()
  6148. {
  6149. unsigned long time_start = millis();
  6150. bool sd_print = card.sdprinting;
  6151. // Conserve power as soon as possible.
  6152. disable_x();
  6153. disable_y();
  6154. tmc2130_set_current_h(Z_AXIS, 12);
  6155. tmc2130_set_current_r(Z_AXIS, 12);
  6156. tmc2130_set_current_h(E_AXIS, 20);
  6157. tmc2130_set_current_r(E_AXIS, 20);
  6158. // Indicate that the interrupt has been triggered.
  6159. SERIAL_ECHOLNPGM("UVLO");
  6160. // Read out the current Z motor microstep counter. This will be later used
  6161. // for reaching the zero full step before powering off.
  6162. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6163. // Calculate the file position, from which to resume this print.
  6164. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6165. {
  6166. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6167. sd_position -= sdlen_planner;
  6168. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6169. sd_position -= sdlen_cmdqueue;
  6170. if (sd_position < 0) sd_position = 0;
  6171. }
  6172. // Backup the feedrate in mm/min.
  6173. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6174. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6175. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6176. // are in action.
  6177. planner_abort_hard();
  6178. // Store the current extruder position.
  6179. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6180. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6181. // Clean the input command queue.
  6182. cmdqueue_reset();
  6183. card.sdprinting = false;
  6184. // card.closefile();
  6185. // Enable stepper driver interrupt to move Z axis.
  6186. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6187. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6188. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6189. sei();
  6190. plan_buffer_line(
  6191. current_position[X_AXIS],
  6192. current_position[Y_AXIS],
  6193. current_position[Z_AXIS],
  6194. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6195. 400, active_extruder);
  6196. plan_buffer_line(
  6197. current_position[X_AXIS],
  6198. current_position[Y_AXIS],
  6199. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6200. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6201. 40, active_extruder);
  6202. // Move Z up to the next 0th full step.
  6203. // Write the file position.
  6204. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6205. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6206. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6207. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6208. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6209. // Scale the z value to 1u resolution.
  6210. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6211. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6212. }
  6213. // Read out the current Z motor microstep counter. This will be later used
  6214. // for reaching the zero full step before powering off.
  6215. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6216. // Store the current position.
  6217. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6218. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6219. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6220. // Store the current feed rate, temperatures and fan speed.
  6221. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6222. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6223. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6224. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6225. // Finaly store the "power outage" flag.
  6226. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6227. st_synchronize();
  6228. SERIAL_ECHOPGM("stps");
  6229. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6230. #if 0
  6231. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6232. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6233. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6234. st_synchronize();
  6235. #endif
  6236. disable_z();
  6237. // Increment power failure counter
  6238. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6239. power_count++;
  6240. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6241. SERIAL_ECHOLNPGM("UVLO - end");
  6242. MYSERIAL.println(millis() - time_start);
  6243. cli();
  6244. while(1);
  6245. }
  6246. void setup_fan_interrupt() {
  6247. //INT7
  6248. DDRE &= ~(1 << 7); //input pin
  6249. PORTE &= ~(1 << 7); //no internal pull-up
  6250. //start with sensing rising edge
  6251. EICRB &= ~(1 << 6);
  6252. EICRB |= (1 << 7);
  6253. //enable INT7 interrupt
  6254. EIMSK |= (1 << 7);
  6255. }
  6256. ISR(INT7_vect) {
  6257. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6258. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6259. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6260. t_fan_rising_edge = millis();
  6261. }
  6262. else { //interrupt was triggered by falling edge
  6263. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6264. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6265. }
  6266. }
  6267. EICRB ^= (1 << 6); //change edge
  6268. }
  6269. void setup_uvlo_interrupt() {
  6270. DDRE &= ~(1 << 4); //input pin
  6271. PORTE &= ~(1 << 4); //no internal pull-up
  6272. //sensing falling edge
  6273. EICRB |= (1 << 0);
  6274. EICRB &= ~(1 << 1);
  6275. //enable INT4 interrupt
  6276. EIMSK |= (1 << 4);
  6277. }
  6278. ISR(INT4_vect) {
  6279. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6280. SERIAL_ECHOLNPGM("INT4");
  6281. if (IS_SD_PRINTING) uvlo_();
  6282. }
  6283. void recover_print(uint8_t automatic) {
  6284. char cmd[30];
  6285. lcd_update_enable(true);
  6286. lcd_update(2);
  6287. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6288. recover_machine_state_after_power_panic();
  6289. // Set the target bed and nozzle temperatures.
  6290. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6291. enquecommand(cmd);
  6292. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6293. enquecommand(cmd);
  6294. // Lift the print head, so one may remove the excess priming material.
  6295. if (current_position[Z_AXIS] < 25)
  6296. enquecommand_P(PSTR("G1 Z25 F800"));
  6297. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6298. enquecommand_P(PSTR("G28 X Y"));
  6299. // Set the target bed and nozzle temperatures and wait.
  6300. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6301. enquecommand(cmd);
  6302. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6303. enquecommand(cmd);
  6304. enquecommand_P(PSTR("M83")); //E axis relative mode
  6305. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6306. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6307. if(automatic == 0){
  6308. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6309. }
  6310. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6311. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6312. {
  6313. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6314. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6315. // current_position[E_AXIS] = extruder_abs_pos;
  6316. // plan_set_e_position(extruder_abs_pos);
  6317. sprintf_P(cmd, PSTR("G92 E"));
  6318. dtostrf(extruder_abs_pos, 6, 3, cmd + strlen(cmd));
  6319. enquecommand(cmd);
  6320. }
  6321. // Mark the power panic status as inactive.
  6322. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6323. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6324. delay_keep_alive(1000);
  6325. }*/
  6326. SERIAL_ECHOPGM("After waiting for temp:");
  6327. SERIAL_ECHOPGM("Current position X_AXIS:");
  6328. MYSERIAL.println(current_position[X_AXIS]);
  6329. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6330. MYSERIAL.println(current_position[Y_AXIS]);
  6331. // Restart the print.
  6332. restore_print_from_eeprom();
  6333. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6334. MYSERIAL.print(current_position[Z_AXIS]);
  6335. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6336. MYSERIAL.print(current_position[E_AXIS]);
  6337. }
  6338. void recover_machine_state_after_power_panic()
  6339. {
  6340. // 1) Recover the logical cordinates at the time of the power panic.
  6341. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6342. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6343. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6344. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6345. // The current position after power panic is moved to the next closest 0th full step.
  6346. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6347. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6348. memcpy(destination, current_position, sizeof(destination));
  6349. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6350. print_world_coordinates();
  6351. // 2) Initialize the logical to physical coordinate system transformation.
  6352. world2machine_initialize();
  6353. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6354. mbl.active = false;
  6355. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6356. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6357. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6358. // Scale the z value to 10u resolution.
  6359. int16_t v;
  6360. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6361. if (v != 0)
  6362. mbl.active = true;
  6363. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6364. }
  6365. if (mbl.active)
  6366. mbl.upsample_3x3();
  6367. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6368. print_mesh_bed_leveling_table();
  6369. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6370. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6371. babystep_load();
  6372. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6374. // 6) Power up the motors, mark their positions as known.
  6375. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6376. axis_known_position[X_AXIS] = true; enable_x();
  6377. axis_known_position[Y_AXIS] = true; enable_y();
  6378. axis_known_position[Z_AXIS] = true; enable_z();
  6379. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6380. print_physical_coordinates();
  6381. // 7) Recover the target temperatures.
  6382. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6383. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6384. }
  6385. void restore_print_from_eeprom() {
  6386. float x_rec, y_rec, z_pos;
  6387. int feedrate_rec;
  6388. uint8_t fan_speed_rec;
  6389. char cmd[30];
  6390. char* c;
  6391. char filename[13];
  6392. uint8_t depth = 0;
  6393. char dir_name[9];
  6394. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6395. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6396. SERIAL_ECHOPGM("Feedrate:");
  6397. MYSERIAL.println(feedrate_rec);
  6398. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6399. MYSERIAL.println(int(depth));
  6400. for (int i = 0; i < depth; i++) {
  6401. for (int j = 0; j < 8; j++) {
  6402. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6403. }
  6404. dir_name[8] = '\0';
  6405. MYSERIAL.println(dir_name);
  6406. card.chdir(dir_name);
  6407. }
  6408. for (int i = 0; i < 8; i++) {
  6409. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6410. }
  6411. filename[8] = '\0';
  6412. MYSERIAL.print(filename);
  6413. strcat_P(filename, PSTR(".gco"));
  6414. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6415. for (c = &cmd[4]; *c; c++)
  6416. *c = tolower(*c);
  6417. enquecommand(cmd);
  6418. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6419. SERIAL_ECHOPGM("Position read from eeprom:");
  6420. MYSERIAL.println(position);
  6421. // E axis relative mode.
  6422. enquecommand_P(PSTR("M83"));
  6423. // Move to the XY print position in logical coordinates, where the print has been killed.
  6424. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6425. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6426. strcat_P(cmd, PSTR(" F2000"));
  6427. enquecommand(cmd);
  6428. // Move the Z axis down to the print, in logical coordinates.
  6429. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6430. enquecommand(cmd);
  6431. // Unretract.
  6432. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6433. // Set the feedrate saved at the power panic.
  6434. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6435. enquecommand(cmd);
  6436. // Set the fan speed saved at the power panic.
  6437. strcpy_P(cmd, PSTR("M106 S"));
  6438. strcat(cmd, itostr3(int(fan_speed_rec)));
  6439. enquecommand(cmd);
  6440. // Set a position in the file.
  6441. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6442. enquecommand(cmd);
  6443. // Start SD print.
  6444. enquecommand_P(PSTR("M24"));
  6445. }
  6446. ////////////////////////////////////////////////////////////////////////////////
  6447. // new save/restore printing
  6448. //extern uint32_t sdpos_atomic;
  6449. bool saved_printing = false;
  6450. uint32_t saved_sdpos = 0;
  6451. float saved_pos[4] = {0, 0, 0, 0};
  6452. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6453. float saved_feedrate2 = 0;
  6454. uint8_t saved_active_extruder = 0;
  6455. bool saved_extruder_under_pressure = false;
  6456. void stop_and_save_print_to_ram(float z_move, float e_move)
  6457. {
  6458. if (saved_printing) return;
  6459. cli();
  6460. unsigned char nplanner_blocks = number_of_blocks();
  6461. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6462. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6463. saved_sdpos -= sdlen_planner;
  6464. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6465. saved_sdpos -= sdlen_cmdqueue;
  6466. #if 0
  6467. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6468. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6469. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6470. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6471. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6472. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6473. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6474. {
  6475. card.setIndex(saved_sdpos);
  6476. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6477. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6478. MYSERIAL.print(char(card.get()));
  6479. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6480. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6481. MYSERIAL.print(char(card.get()));
  6482. SERIAL_ECHOLNPGM("End of command buffer");
  6483. }
  6484. {
  6485. // Print the content of the planner buffer, line by line:
  6486. card.setIndex(saved_sdpos);
  6487. int8_t iline = 0;
  6488. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6489. SERIAL_ECHOPGM("Planner line (from file): ");
  6490. MYSERIAL.print(int(iline), DEC);
  6491. SERIAL_ECHOPGM(", length: ");
  6492. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6493. SERIAL_ECHOPGM(", steps: (");
  6494. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6495. SERIAL_ECHOPGM(",");
  6496. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6497. SERIAL_ECHOPGM(",");
  6498. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6499. SERIAL_ECHOPGM(",");
  6500. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6501. SERIAL_ECHOPGM("), events: ");
  6502. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6503. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6504. MYSERIAL.print(char(card.get()));
  6505. }
  6506. }
  6507. {
  6508. // Print the content of the command buffer, line by line:
  6509. int8_t iline = 0;
  6510. union {
  6511. struct {
  6512. char lo;
  6513. char hi;
  6514. } lohi;
  6515. uint16_t value;
  6516. } sdlen_single;
  6517. int _bufindr = bufindr;
  6518. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6519. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6520. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6521. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6522. }
  6523. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6524. MYSERIAL.print(int(iline), DEC);
  6525. SERIAL_ECHOPGM(", type: ");
  6526. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6527. SERIAL_ECHOPGM(", len: ");
  6528. MYSERIAL.println(sdlen_single.value, DEC);
  6529. // Print the content of the buffer line.
  6530. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6531. SERIAL_ECHOPGM("Buffer line (from file): ");
  6532. MYSERIAL.print(int(iline), DEC);
  6533. MYSERIAL.println(int(iline), DEC);
  6534. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6535. MYSERIAL.print(char(card.get()));
  6536. if (-- _buflen == 0)
  6537. break;
  6538. // First skip the current command ID and iterate up to the end of the string.
  6539. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6540. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6541. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6542. // If the end of the buffer was empty,
  6543. if (_bufindr == sizeof(cmdbuffer)) {
  6544. // skip to the start and find the nonzero command.
  6545. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6546. }
  6547. }
  6548. }
  6549. #endif
  6550. #if 0
  6551. saved_feedrate2 = feedrate; //save feedrate
  6552. #else
  6553. // Try to deduce the feedrate from the first block of the planner.
  6554. // Speed is in mm/min.
  6555. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6556. #endif
  6557. planner_abort_hard(); //abort printing
  6558. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6559. saved_active_extruder = active_extruder; //save active_extruder
  6560. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6561. cmdqueue_reset(); //empty cmdqueue
  6562. card.sdprinting = false;
  6563. // card.closefile();
  6564. saved_printing = true;
  6565. sei();
  6566. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6567. #if 1
  6568. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6569. char buf[48];
  6570. strcpy_P(buf, PSTR("G1 Z"));
  6571. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6572. strcat_P(buf, PSTR(" E"));
  6573. // Relative extrusion
  6574. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6575. strcat_P(buf, PSTR(" F"));
  6576. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6577. // At this point the command queue is empty.
  6578. enquecommand(buf, false);
  6579. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6580. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6581. repeatcommand_front();
  6582. #else
  6583. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6584. st_synchronize(); //wait moving
  6585. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6586. memcpy(destination, current_position, sizeof(destination));
  6587. #endif
  6588. }
  6589. }
  6590. void restore_print_from_ram_and_continue(float e_move)
  6591. {
  6592. if (!saved_printing) return;
  6593. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6594. // current_position[axis] = st_get_position_mm(axis);
  6595. active_extruder = saved_active_extruder; //restore active_extruder
  6596. feedrate = saved_feedrate2; //restore feedrate
  6597. float e = saved_pos[E_AXIS] - e_move;
  6598. plan_set_e_position(e);
  6599. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6600. st_synchronize();
  6601. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6602. memcpy(destination, current_position, sizeof(destination));
  6603. card.setIndex(saved_sdpos);
  6604. sdpos_atomic = saved_sdpos;
  6605. card.sdprinting = true;
  6606. saved_printing = false;
  6607. }
  6608. void print_world_coordinates()
  6609. {
  6610. SERIAL_ECHOPGM("world coordinates: (");
  6611. MYSERIAL.print(current_position[X_AXIS], 3);
  6612. SERIAL_ECHOPGM(", ");
  6613. MYSERIAL.print(current_position[Y_AXIS], 3);
  6614. SERIAL_ECHOPGM(", ");
  6615. MYSERIAL.print(current_position[Z_AXIS], 3);
  6616. SERIAL_ECHOLNPGM(")");
  6617. }
  6618. void print_physical_coordinates()
  6619. {
  6620. SERIAL_ECHOPGM("physical coordinates: (");
  6621. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6622. SERIAL_ECHOPGM(", ");
  6623. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6624. SERIAL_ECHOPGM(", ");
  6625. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6626. SERIAL_ECHOLNPGM(")");
  6627. }
  6628. void print_mesh_bed_leveling_table()
  6629. {
  6630. SERIAL_ECHOPGM("mesh bed leveling: ");
  6631. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6632. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6633. MYSERIAL.print(mbl.z_values[y][x], 3);
  6634. SERIAL_ECHOPGM(" ");
  6635. }
  6636. SERIAL_ECHOLNPGM("");
  6637. }
  6638. #define FIL_LOAD_LENGTH 60
  6639. void extr_unload2() { //unloads filament
  6640. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6641. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6642. // int8_t SilentMode;
  6643. uint8_t snmm_extruder = 0;
  6644. if (degHotend0() > EXTRUDE_MINTEMP) {
  6645. lcd_implementation_clear();
  6646. lcd_display_message_fullscreen_P(PSTR(""));
  6647. max_feedrate[E_AXIS] = 50;
  6648. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6649. // lcd.print(" ");
  6650. // lcd.print(snmm_extruder + 1);
  6651. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6652. if (current_position[Z_AXIS] < 15) {
  6653. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6655. }
  6656. current_position[E_AXIS] += 10; //extrusion
  6657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6658. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6659. if (current_temperature[0] < 230) { //PLA & all other filaments
  6660. current_position[E_AXIS] += 5.4;
  6661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6662. current_position[E_AXIS] += 3.2;
  6663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6664. current_position[E_AXIS] += 3;
  6665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6666. }
  6667. else { //ABS
  6668. current_position[E_AXIS] += 3.1;
  6669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6670. current_position[E_AXIS] += 3.1;
  6671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6672. current_position[E_AXIS] += 4;
  6673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6674. /*current_position[X_AXIS] += 23; //delay
  6675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6676. current_position[X_AXIS] -= 23; //delay
  6677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6678. delay_keep_alive(4700);
  6679. }
  6680. max_feedrate[E_AXIS] = 80;
  6681. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6683. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6685. st_synchronize();
  6686. //digipot_init();
  6687. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6688. // else digipot_current(2, tmp_motor_loud[2]);
  6689. lcd_update_enable(true);
  6690. // lcd_return_to_status();
  6691. max_feedrate[E_AXIS] = 50;
  6692. }
  6693. else {
  6694. lcd_implementation_clear();
  6695. lcd.setCursor(0, 0);
  6696. lcd_printPGM(MSG_ERROR);
  6697. lcd.setCursor(0, 2);
  6698. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6699. delay(2000);
  6700. lcd_implementation_clear();
  6701. }
  6702. // lcd_return_to_status();
  6703. }