planner.cpp 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. unsigned long minsegmenttime;
  54. // Use M203 to override by software
  55. float max_feedrate_silent[NUM_AXIS]; // max speeds for silent mode
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long max_acceleration_units_per_sq_second_silent[NUM_AXIS];
  59. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  60. float minimumfeedrate;
  61. // Jerk is a maximum immediate velocity change.
  62. float max_jerk[NUM_AXIS];
  63. float mintravelfeedrate;
  64. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  65. #ifdef ENABLE_AUTO_BED_LEVELING
  66. // this holds the required transform to compensate for bed level
  67. matrix_3x3 plan_bed_level_matrix = {
  68. 1.0, 0.0, 0.0,
  69. 0.0, 1.0, 0.0,
  70. 0.0, 0.0, 1.0,
  71. };
  72. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  73. // The current position of the tool in absolute steps
  74. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  75. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  76. static float previous_nominal_speed; // Nominal speed of previous path line segment
  77. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  78. uint8_t maxlimit_status;
  79. #ifdef AUTOTEMP
  80. float autotemp_max=250;
  81. float autotemp_min=210;
  82. float autotemp_factor=0.1;
  83. bool autotemp_enabled=false;
  84. #endif
  85. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  86. //===========================================================================
  87. //=================semi-private variables, used in inline functions =====
  88. //===========================================================================
  89. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  90. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  91. volatile unsigned char block_buffer_tail; // Index of the block to process now
  92. #ifdef PLANNER_DIAGNOSTICS
  93. // Diagnostic function: Minimum number of planned moves since the last
  94. static uint8_t g_cntr_planner_queue_min = 0;
  95. #endif /* PLANNER_DIAGNOSTICS */
  96. //===========================================================================
  97. //=============================private variables ============================
  98. //===========================================================================
  99. #ifdef PREVENT_DANGEROUS_EXTRUDE
  100. float extrude_min_temp=EXTRUDE_MINTEMP;
  101. #endif
  102. #ifdef LIN_ADVANCE
  103. float extruder_advance_k = LIN_ADVANCE_K,
  104. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  105. position_float[NUM_AXIS] = { 0 };
  106. #endif
  107. // Returns the index of the next block in the ring buffer
  108. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  109. static inline int8_t next_block_index(int8_t block_index) {
  110. if (++ block_index == BLOCK_BUFFER_SIZE)
  111. block_index = 0;
  112. return block_index;
  113. }
  114. // Returns the index of the previous block in the ring buffer
  115. static inline int8_t prev_block_index(int8_t block_index) {
  116. if (block_index == 0)
  117. block_index = BLOCK_BUFFER_SIZE;
  118. -- block_index;
  119. return block_index;
  120. }
  121. //===========================================================================
  122. //=============================functions ============================
  123. //===========================================================================
  124. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  125. // given acceleration:
  126. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  127. {
  128. if (acceleration!=0) {
  129. return((target_rate*target_rate-initial_rate*initial_rate)/
  130. (2.0*acceleration));
  131. }
  132. else {
  133. return 0.0; // acceleration was 0, set acceleration distance to 0
  134. }
  135. }
  136. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  137. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  138. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  139. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  140. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  141. {
  142. if (acceleration!=0) {
  143. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  144. (4.0*acceleration) );
  145. }
  146. else {
  147. return 0.0; // acceleration was 0, set intersection distance to 0
  148. }
  149. }
  150. // Minimum stepper rate 120Hz.
  151. #define MINIMAL_STEP_RATE 120
  152. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  153. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  154. {
  155. // These two lines are the only floating point calculations performed in this routine.
  156. // initial_rate, final_rate in Hz.
  157. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  158. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  159. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  160. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  161. // Limit minimal step rate (Otherwise the timer will overflow.)
  162. if (initial_rate < MINIMAL_STEP_RATE)
  163. initial_rate = MINIMAL_STEP_RATE;
  164. if (initial_rate > block->nominal_rate)
  165. initial_rate = block->nominal_rate;
  166. if (final_rate < MINIMAL_STEP_RATE)
  167. final_rate = MINIMAL_STEP_RATE;
  168. if (final_rate > block->nominal_rate)
  169. final_rate = block->nominal_rate;
  170. uint32_t acceleration = block->acceleration_st;
  171. if (acceleration == 0)
  172. // Don't allow zero acceleration.
  173. acceleration = 1;
  174. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  175. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  176. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  177. //FIXME assert that this result fits a 64bit unsigned int.
  178. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  179. uint32_t final_rate_sqr = final_rate*final_rate;
  180. uint32_t acceleration_x2 = acceleration << 1;
  181. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  182. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  183. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  184. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  185. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  186. // Size of Plateau of Nominal Rate.
  187. uint32_t plateau_steps = 0;
  188. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  189. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  190. // in order to reach the final_rate exactly at the end of this block.
  191. if (accel_decel_steps < block->step_event_count.wide) {
  192. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  193. } else {
  194. uint32_t acceleration_x4 = acceleration << 2;
  195. // Avoid negative numbers
  196. if (final_rate_sqr >= initial_rate_sqr) {
  197. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  198. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  199. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  200. #if 0
  201. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  202. #else
  203. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  204. if (block->step_event_count.wide & 1)
  205. accelerate_steps += acceleration_x2;
  206. accelerate_steps /= acceleration_x4;
  207. accelerate_steps += (block->step_event_count.wide >> 1);
  208. #endif
  209. if (accelerate_steps > block->step_event_count.wide)
  210. accelerate_steps = block->step_event_count.wide;
  211. } else {
  212. #if 0
  213. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  214. #else
  215. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  216. if (block->step_event_count.wide & 1)
  217. decelerate_steps += acceleration_x2;
  218. decelerate_steps /= acceleration_x4;
  219. decelerate_steps += (block->step_event_count.wide >> 1);
  220. #endif
  221. if (decelerate_steps > block->step_event_count.wide)
  222. decelerate_steps = block->step_event_count.wide;
  223. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  224. }
  225. }
  226. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  227. // This block locks the interrupts globally for 4.38 us,
  228. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  229. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  230. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  231. if (! block->busy) { // Don't update variables if block is busy.
  232. block->accelerate_until = accelerate_steps;
  233. block->decelerate_after = accelerate_steps+plateau_steps;
  234. block->initial_rate = initial_rate;
  235. block->final_rate = final_rate;
  236. }
  237. CRITICAL_SECTION_END;
  238. }
  239. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  240. // decceleration within the allotted distance.
  241. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  242. {
  243. // assert(decceleration < 0);
  244. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  245. }
  246. // Recalculates the motion plan according to the following algorithm:
  247. //
  248. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  249. // so that:
  250. // a. The junction jerk is within the set limit
  251. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  252. // acceleration.
  253. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  254. // a. The speed increase within one block would require faster accelleration than the one, true
  255. // constant acceleration.
  256. //
  257. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  258. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  259. // the set limit. Finally it will:
  260. //
  261. // 3. Recalculate trapezoids for all blocks.
  262. //
  263. //FIXME This routine is called 15x every time a new line is added to the planner,
  264. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  265. // if the CPU is found lacking computational power.
  266. //
  267. // Following sources may be used to optimize the 8-bit AVR code:
  268. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  269. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  270. //
  271. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  272. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  273. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  274. //
  275. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  276. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  277. // https://github.com/rekka/avrmultiplication
  278. //
  279. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  280. // https://courses.cit.cornell.edu/ee476/Math/
  281. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  282. //
  283. void planner_recalculate(const float &safe_final_speed)
  284. {
  285. // Reverse pass
  286. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  287. // by consuming the blocks, therefore shortening the queue.
  288. unsigned char tail = block_buffer_tail;
  289. uint8_t block_index;
  290. block_t *prev, *current, *next;
  291. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  292. // At least three blocks are in the queue?
  293. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  294. if (n_blocks >= 3) {
  295. // Initialize the last tripple of blocks.
  296. block_index = prev_block_index(block_buffer_head);
  297. next = block_buffer + block_index;
  298. current = block_buffer + (block_index = prev_block_index(block_index));
  299. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  300. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  301. // 1) it may already be running at the stepper interrupt,
  302. // 2) there is no way to limit it when going in the forward direction.
  303. while (block_index != tail) {
  304. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  305. // Don't modify the entry velocity of the starting block.
  306. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  307. // for the stepper interrupt routine to use them.
  308. tail = block_index;
  309. // Update the number of blocks to process.
  310. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  311. // SERIAL_ECHOLNPGM("START");
  312. break;
  313. }
  314. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  315. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  316. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  317. if (current->entry_speed != current->max_entry_speed) {
  318. // assert(current->entry_speed < current->max_entry_speed);
  319. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  320. // segment and the maximum acceleration allowed for this segment.
  321. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  322. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  323. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  324. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  325. // together with an assembly 32bit->16bit sqrt function.
  326. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  327. current->max_entry_speed :
  328. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  329. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  330. current->flag |= BLOCK_FLAG_RECALCULATE;
  331. }
  332. next = current;
  333. current = block_buffer + (block_index = prev_block_index(block_index));
  334. }
  335. }
  336. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  337. // Forward pass and recalculate the trapezoids.
  338. if (n_blocks >= 2) {
  339. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  340. block_index = tail;
  341. prev = block_buffer + block_index;
  342. current = block_buffer + (block_index = next_block_index(block_index));
  343. do {
  344. // If the previous block is an acceleration block, but it is not long enough to complete the
  345. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  346. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  347. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  348. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  349. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  350. // Check for junction speed change
  351. if (current->entry_speed != entry_speed) {
  352. current->entry_speed = entry_speed;
  353. current->flag |= BLOCK_FLAG_RECALCULATE;
  354. }
  355. }
  356. // Recalculate if current block entry or exit junction speed has changed.
  357. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  358. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  359. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  360. // Reset current only to ensure next trapezoid is computed.
  361. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  362. }
  363. prev = current;
  364. current = block_buffer + (block_index = next_block_index(block_index));
  365. } while (block_index != block_buffer_head);
  366. }
  367. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  368. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  369. current = block_buffer + prev_block_index(block_buffer_head);
  370. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  371. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  372. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  373. }
  374. void plan_init() {
  375. block_buffer_head = 0;
  376. block_buffer_tail = 0;
  377. memset(position, 0, sizeof(position)); // clear position
  378. #ifdef LIN_ADVANCE
  379. memset(position_float, 0, sizeof(position)); // clear position
  380. #endif
  381. previous_speed[0] = 0.0;
  382. previous_speed[1] = 0.0;
  383. previous_speed[2] = 0.0;
  384. previous_speed[3] = 0.0;
  385. previous_nominal_speed = 0.0;
  386. }
  387. #ifdef AUTOTEMP
  388. void getHighESpeed()
  389. {
  390. static float oldt=0;
  391. if(!autotemp_enabled){
  392. return;
  393. }
  394. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  395. return; //do nothing
  396. }
  397. float high=0.0;
  398. uint8_t block_index = block_buffer_tail;
  399. while(block_index != block_buffer_head) {
  400. if((block_buffer[block_index].steps_x.wide != 0) ||
  401. (block_buffer[block_index].steps_y.wide != 0) ||
  402. (block_buffer[block_index].steps_z.wide != 0)) {
  403. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  404. //se; mm/sec;
  405. if(se>high)
  406. {
  407. high=se;
  408. }
  409. }
  410. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  411. }
  412. float g=autotemp_min+high*autotemp_factor;
  413. float t=g;
  414. if(t<autotemp_min)
  415. t=autotemp_min;
  416. if(t>autotemp_max)
  417. t=autotemp_max;
  418. if(oldt>t)
  419. {
  420. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  421. }
  422. oldt=t;
  423. setTargetHotend0(t);
  424. }
  425. #endif
  426. bool e_active()
  427. {
  428. unsigned char e_active = 0;
  429. block_t *block;
  430. if(block_buffer_tail != block_buffer_head)
  431. {
  432. uint8_t block_index = block_buffer_tail;
  433. while(block_index != block_buffer_head)
  434. {
  435. block = &block_buffer[block_index];
  436. if(block->steps_e.wide != 0) e_active++;
  437. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  438. }
  439. }
  440. return (e_active > 0) ? true : false ;
  441. }
  442. void check_axes_activity()
  443. {
  444. unsigned char x_active = 0;
  445. unsigned char y_active = 0;
  446. unsigned char z_active = 0;
  447. unsigned char e_active = 0;
  448. unsigned char tail_fan_speed = fanSpeed;
  449. block_t *block;
  450. if(block_buffer_tail != block_buffer_head)
  451. {
  452. uint8_t block_index = block_buffer_tail;
  453. tail_fan_speed = block_buffer[block_index].fan_speed;
  454. while(block_index != block_buffer_head)
  455. {
  456. block = &block_buffer[block_index];
  457. if(block->steps_x.wide != 0) x_active++;
  458. if(block->steps_y.wide != 0) y_active++;
  459. if(block->steps_z.wide != 0) z_active++;
  460. if(block->steps_e.wide != 0) e_active++;
  461. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  462. }
  463. }
  464. if((DISABLE_X) && (x_active == 0)) disable_x();
  465. if((DISABLE_Y) && (y_active == 0)) disable_y();
  466. if((DISABLE_Z) && (z_active == 0)) disable_z();
  467. if((DISABLE_E) && (e_active == 0))
  468. {
  469. disable_e0();
  470. disable_e1();
  471. disable_e2();
  472. }
  473. #if defined(FAN_PIN) && FAN_PIN > -1
  474. #ifdef FAN_KICKSTART_TIME
  475. static unsigned long fan_kick_end;
  476. if (tail_fan_speed) {
  477. if (fan_kick_end == 0) {
  478. // Just starting up fan - run at full power.
  479. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  480. tail_fan_speed = 255;
  481. } else if (fan_kick_end > millis())
  482. // Fan still spinning up.
  483. tail_fan_speed = 255;
  484. } else {
  485. fan_kick_end = 0;
  486. }
  487. #endif//FAN_KICKSTART_TIME
  488. #ifdef FAN_SOFT_PWM
  489. fanSpeedSoftPwm = tail_fan_speed;
  490. #else
  491. analogWrite(FAN_PIN,tail_fan_speed);
  492. #endif//!FAN_SOFT_PWM
  493. #endif//FAN_PIN > -1
  494. #ifdef AUTOTEMP
  495. getHighESpeed();
  496. #endif
  497. }
  498. bool waiting_inside_plan_buffer_line_print_aborted = false;
  499. /*
  500. void planner_abort_soft()
  501. {
  502. // Empty the queue.
  503. while (blocks_queued()) plan_discard_current_block();
  504. // Relay to planner wait routine, that the current line shall be canceled.
  505. waiting_inside_plan_buffer_line_print_aborted = true;
  506. //current_position[i]
  507. }
  508. */
  509. #ifdef PLANNER_DIAGNOSTICS
  510. static inline void planner_update_queue_min_counter()
  511. {
  512. uint8_t new_counter = moves_planned();
  513. if (new_counter < g_cntr_planner_queue_min)
  514. g_cntr_planner_queue_min = new_counter;
  515. }
  516. #endif /* PLANNER_DIAGNOSTICS */
  517. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  518. void planner_abort_hard()
  519. {
  520. // Abort the stepper routine and flush the planner queue.
  521. DISABLE_STEPPER_DRIVER_INTERRUPT();
  522. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  523. // First update the planner's current position in the physical motor steps.
  524. position[X_AXIS] = st_get_position(X_AXIS);
  525. position[Y_AXIS] = st_get_position(Y_AXIS);
  526. position[Z_AXIS] = st_get_position(Z_AXIS);
  527. position[E_AXIS] = st_get_position(E_AXIS);
  528. // Second update the current position of the front end.
  529. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  530. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  531. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  532. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  533. // Apply the mesh bed leveling correction to the Z axis.
  534. #ifdef MESH_BED_LEVELING
  535. if (mbl.active) {
  536. #if 1
  537. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  538. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  539. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  540. #else
  541. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  542. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  543. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  544. else {
  545. float t = float(step_events_completed) / float(current_block->step_event_count);
  546. float vec[3] = {
  547. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  548. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  549. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  550. };
  551. float pos1[3], pos2[3];
  552. for (int8_t i = 0; i < 3; ++ i) {
  553. if (current_block->direction_bits & (1<<i))
  554. vec[i] = - vec[i];
  555. pos1[i] = current_position[i] - vec[i] * t;
  556. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  557. }
  558. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  559. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  560. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  561. }
  562. #endif
  563. }
  564. #endif
  565. // Clear the planner queue, reset and re-enable the stepper timer.
  566. quickStop();
  567. // Apply inverse world correction matrix.
  568. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  569. memcpy(destination, current_position, sizeof(destination));
  570. // Resets planner junction speeds. Assumes start from rest.
  571. previous_nominal_speed = 0.0;
  572. previous_speed[0] = 0.0;
  573. previous_speed[1] = 0.0;
  574. previous_speed[2] = 0.0;
  575. previous_speed[3] = 0.0;
  576. // Relay to planner wait routine, that the current line shall be canceled.
  577. waiting_inside_plan_buffer_line_print_aborted = true;
  578. }
  579. float junction_deviation = 0.1;
  580. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  581. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  582. // calculation the caller must also provide the physical length of the line in millimeters.
  583. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  584. {
  585. // Calculate the buffer head after we push this byte
  586. int next_buffer_head = next_block_index(block_buffer_head);
  587. // If the buffer is full: good! That means we are well ahead of the robot.
  588. // Rest here until there is room in the buffer.
  589. if (block_buffer_tail == next_buffer_head) {
  590. waiting_inside_plan_buffer_line_print_aborted = false;
  591. do {
  592. manage_heater();
  593. // Vojtech: Don't disable motors inside the planner!
  594. manage_inactivity(false);
  595. lcd_update(0);
  596. } while (block_buffer_tail == next_buffer_head);
  597. if (waiting_inside_plan_buffer_line_print_aborted) {
  598. // Inside the lcd_update(0) routine the print has been aborted.
  599. // Cancel the print, do not plan the current line this routine is waiting on.
  600. #ifdef PLANNER_DIAGNOSTICS
  601. planner_update_queue_min_counter();
  602. #endif /* PLANNER_DIAGNOSTICS */
  603. return;
  604. }
  605. }
  606. #ifdef PLANNER_DIAGNOSTICS
  607. planner_update_queue_min_counter();
  608. #endif /* PLANNER_DIAGNOSTICS */
  609. #ifdef ENABLE_AUTO_BED_LEVELING
  610. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  611. #endif // ENABLE_AUTO_BED_LEVELING
  612. // Apply the machine correction matrix.
  613. {
  614. #if 0
  615. SERIAL_ECHOPGM("Planner, current position - servos: ");
  616. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  617. SERIAL_ECHOPGM(", ");
  618. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  619. SERIAL_ECHOPGM(", ");
  620. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  621. SERIAL_ECHOLNPGM("");
  622. SERIAL_ECHOPGM("Planner, target position, initial: ");
  623. MYSERIAL.print(x, 5);
  624. SERIAL_ECHOPGM(", ");
  625. MYSERIAL.print(y, 5);
  626. SERIAL_ECHOLNPGM("");
  627. SERIAL_ECHOPGM("Planner, world2machine: ");
  628. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  629. SERIAL_ECHOPGM(", ");
  630. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  631. SERIAL_ECHOPGM(", ");
  632. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  633. SERIAL_ECHOPGM(", ");
  634. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  635. SERIAL_ECHOLNPGM("");
  636. SERIAL_ECHOPGM("Planner, offset: ");
  637. MYSERIAL.print(world2machine_shift[0], 5);
  638. SERIAL_ECHOPGM(", ");
  639. MYSERIAL.print(world2machine_shift[1], 5);
  640. SERIAL_ECHOLNPGM("");
  641. #endif
  642. world2machine(x, y);
  643. #if 0
  644. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  645. MYSERIAL.print(x, 5);
  646. SERIAL_ECHOPGM(", ");
  647. MYSERIAL.print(y, 5);
  648. SERIAL_ECHOLNPGM("");
  649. #endif
  650. }
  651. // The target position of the tool in absolute steps
  652. // Calculate target position in absolute steps
  653. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  654. long target[4];
  655. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  656. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  657. #ifdef MESH_BED_LEVELING
  658. if (mbl.active){
  659. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  660. }else{
  661. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  662. }
  663. #else
  664. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  665. #endif // ENABLE_MESH_BED_LEVELING
  666. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  667. #ifdef LIN_ADVANCE
  668. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  669. float de_float = e - position_float[E_AXIS];
  670. #endif
  671. #ifdef PREVENT_DANGEROUS_EXTRUDE
  672. if(target[E_AXIS]!=position[E_AXIS])
  673. {
  674. if(degHotend(active_extruder)<extrude_min_temp)
  675. {
  676. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  677. #ifdef LIN_ADVANCE
  678. position_float[E_AXIS] = e;
  679. de_float = 0;
  680. #endif
  681. SERIAL_ECHO_START;
  682. SERIAL_ECHOLNRPGM(_i(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP c=0 r=0
  683. }
  684. #ifdef PREVENT_LENGTHY_EXTRUDE
  685. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  686. {
  687. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  688. #ifdef LIN_ADVANCE
  689. position_float[E_AXIS] = e;
  690. de_float = 0;
  691. #endif
  692. SERIAL_ECHO_START;
  693. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
  694. }
  695. #endif
  696. }
  697. #endif
  698. // Prepare to set up new block
  699. block_t *block = &block_buffer[block_buffer_head];
  700. // Set sdlen for calculating sd position
  701. block->sdlen = 0;
  702. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  703. block->busy = false;
  704. // Number of steps for each axis
  705. #ifndef COREXY
  706. // default non-h-bot planning
  707. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  708. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  709. #else
  710. // corexy planning
  711. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  712. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  713. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  714. #endif
  715. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  716. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  717. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  718. // Bail if this is a zero-length block
  719. if (block->step_event_count.wide <= dropsegments)
  720. {
  721. #ifdef PLANNER_DIAGNOSTICS
  722. planner_update_queue_min_counter();
  723. #endif /* PLANNER_DIAGNOSTICS */
  724. return;
  725. }
  726. block->fan_speed = fanSpeed;
  727. // Compute direction bits for this block
  728. block->direction_bits = 0;
  729. #ifndef COREXY
  730. if (target[X_AXIS] < position[X_AXIS])
  731. {
  732. block->direction_bits |= (1<<X_AXIS);
  733. }
  734. if (target[Y_AXIS] < position[Y_AXIS])
  735. {
  736. block->direction_bits |= (1<<Y_AXIS);
  737. }
  738. #else
  739. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  740. {
  741. block->direction_bits |= (1<<X_AXIS);
  742. }
  743. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  744. {
  745. block->direction_bits |= (1<<Y_AXIS);
  746. }
  747. #endif
  748. if (target[Z_AXIS] < position[Z_AXIS])
  749. {
  750. block->direction_bits |= (1<<Z_AXIS);
  751. }
  752. if (target[E_AXIS] < position[E_AXIS])
  753. {
  754. block->direction_bits |= (1<<E_AXIS);
  755. }
  756. block->active_extruder = extruder;
  757. //enable active axes
  758. #ifdef COREXY
  759. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  760. {
  761. enable_x();
  762. enable_y();
  763. }
  764. #else
  765. if(block->steps_x.wide != 0) enable_x();
  766. if(block->steps_y.wide != 0) enable_y();
  767. #endif
  768. if(block->steps_z.wide != 0) enable_z();
  769. // Enable extruder(s)
  770. if(block->steps_e.wide != 0)
  771. {
  772. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  773. {
  774. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  775. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  776. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  777. switch(extruder)
  778. {
  779. case 0:
  780. enable_e0();
  781. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  782. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  783. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  784. break;
  785. case 1:
  786. enable_e1();
  787. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  788. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  789. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  790. break;
  791. case 2:
  792. enable_e2();
  793. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  794. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  795. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  796. break;
  797. }
  798. }
  799. else //enable all
  800. {
  801. enable_e0();
  802. enable_e1();
  803. enable_e2();
  804. }
  805. }
  806. if (block->steps_e.wide == 0)
  807. {
  808. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  809. }
  810. else
  811. {
  812. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  813. }
  814. /* This part of the code calculates the total length of the movement.
  815. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  816. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  817. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  818. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  819. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  820. */
  821. #ifndef COREXY
  822. float delta_mm[4];
  823. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  824. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  825. #else
  826. float delta_mm[6];
  827. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  828. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  829. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  830. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  831. #endif
  832. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  833. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  834. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  835. {
  836. block->millimeters = fabs(delta_mm[E_AXIS]);
  837. }
  838. else
  839. {
  840. #ifndef COREXY
  841. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  842. #else
  843. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  844. #endif
  845. }
  846. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  847. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  848. float inverse_second = feed_rate * inverse_millimeters;
  849. int moves_queued = moves_planned();
  850. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  851. #ifdef SLOWDOWN
  852. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  853. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  854. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  855. // segment time in micro seconds
  856. unsigned long segment_time = lround(1000000.0/inverse_second);
  857. if (segment_time < minsegmenttime)
  858. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  859. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  860. }
  861. #endif // SLOWDOWN
  862. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  863. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  864. // Calculate and limit speed in mm/sec for each axis
  865. float current_speed[4];
  866. float speed_factor = 1.0; //factor <=1 do decrease speed
  867. // maxlimit_status &= ~0xf;
  868. for(int i=0; i < 4; i++)
  869. {
  870. current_speed[i] = delta_mm[i] * inverse_second;
  871. if(fabs(current_speed[i]) > max_feedrate[i])
  872. {
  873. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  874. maxlimit_status |= (1 << i);
  875. }
  876. }
  877. // Correct the speed
  878. if( speed_factor < 1.0)
  879. {
  880. for(unsigned char i=0; i < 4; i++)
  881. {
  882. current_speed[i] *= speed_factor;
  883. }
  884. block->nominal_speed *= speed_factor;
  885. block->nominal_rate *= speed_factor;
  886. }
  887. // Compute and limit the acceleration rate for the trapezoid generator.
  888. // block->step_event_count ... event count of the fastest axis
  889. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  890. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  891. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  892. {
  893. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  894. }
  895. else
  896. {
  897. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  898. // Limit acceleration per axis
  899. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  900. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  901. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  902. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  903. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  904. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  905. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  906. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  907. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  908. }
  909. // Acceleration of the segment, in mm/sec^2
  910. block->acceleration = block->acceleration_st / steps_per_mm;
  911. #if 0
  912. // Oversample diagonal movements by a power of 2 up to 8x
  913. // to achieve more accurate diagonal movements.
  914. uint8_t bresenham_oversample = 1;
  915. for (uint8_t i = 0; i < 3; ++ i) {
  916. if (block->nominal_rate >= 5000) // 5kHz
  917. break;
  918. block->nominal_rate << 1;
  919. bresenham_oversample << 1;
  920. block->step_event_count << 1;
  921. }
  922. if (bresenham_oversample > 1)
  923. // Lower the acceleration steps/sec^2 to account for the oversampling.
  924. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  925. #endif
  926. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  927. // Start with a safe speed.
  928. // Safe speed is the speed, from which the machine may halt to stop immediately.
  929. float safe_speed = block->nominal_speed;
  930. bool limited = false;
  931. for (uint8_t axis = 0; axis < 4; ++ axis) {
  932. float jerk = fabs(current_speed[axis]);
  933. if (jerk > max_jerk[axis]) {
  934. // The actual jerk is lower, if it has been limited by the XY jerk.
  935. if (limited) {
  936. // Spare one division by a following gymnastics:
  937. // Instead of jerk *= safe_speed / block->nominal_speed,
  938. // multiply max_jerk[axis] by the divisor.
  939. jerk *= safe_speed;
  940. float mjerk = max_jerk[axis] * block->nominal_speed;
  941. if (jerk > mjerk) {
  942. safe_speed *= mjerk / jerk;
  943. limited = true;
  944. }
  945. } else {
  946. safe_speed = max_jerk[axis];
  947. limited = true;
  948. }
  949. }
  950. }
  951. // Reset the block flag.
  952. block->flag = 0;
  953. // Initial limit on the segment entry velocity.
  954. float vmax_junction;
  955. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  956. // Is it because we don't want to tinker with the first buffer line, which
  957. // is likely to be executed by the stepper interrupt routine soon?
  958. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  959. // Estimate a maximum velocity allowed at a joint of two successive segments.
  960. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  961. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  962. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  963. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  964. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  965. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  966. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  967. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  968. float v_factor = 1.f;
  969. limited = false;
  970. // Now limit the jerk in all axes.
  971. for (uint8_t axis = 0; axis < 4; ++ axis) {
  972. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  973. float v_exit = previous_speed[axis];
  974. float v_entry = current_speed [axis];
  975. if (prev_speed_larger)
  976. v_exit *= smaller_speed_factor;
  977. if (limited) {
  978. v_exit *= v_factor;
  979. v_entry *= v_factor;
  980. }
  981. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  982. float jerk =
  983. (v_exit > v_entry) ?
  984. ((v_entry > 0.f || v_exit < 0.f) ?
  985. // coasting
  986. (v_exit - v_entry) :
  987. // axis reversal
  988. max(v_exit, - v_entry)) :
  989. // v_exit <= v_entry
  990. ((v_entry < 0.f || v_exit > 0.f) ?
  991. // coasting
  992. (v_entry - v_exit) :
  993. // axis reversal
  994. max(- v_exit, v_entry));
  995. if (jerk > max_jerk[axis]) {
  996. v_factor *= max_jerk[axis] / jerk;
  997. limited = true;
  998. }
  999. }
  1000. if (limited)
  1001. vmax_junction *= v_factor;
  1002. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1003. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1004. float vmax_junction_threshold = vmax_junction * 0.99f;
  1005. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1006. // Not coasting. The machine will stop and start the movements anyway,
  1007. // better to start the segment from start.
  1008. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1009. vmax_junction = safe_speed;
  1010. }
  1011. } else {
  1012. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1013. vmax_junction = safe_speed;
  1014. }
  1015. // Max entry speed of this block equals the max exit speed of the previous block.
  1016. block->max_entry_speed = vmax_junction;
  1017. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1018. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1019. block->entry_speed = min(vmax_junction, v_allowable);
  1020. // Initialize planner efficiency flags
  1021. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1022. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1023. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1024. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1025. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1026. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1027. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1028. // Always calculate trapezoid for new block
  1029. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1030. // Update previous path unit_vector and nominal speed
  1031. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1032. previous_nominal_speed = block->nominal_speed;
  1033. previous_safe_speed = safe_speed;
  1034. #ifdef LIN_ADVANCE
  1035. //
  1036. // Use LIN_ADVANCE for blocks if all these are true:
  1037. //
  1038. // esteps : We have E steps todo (a printing move)
  1039. //
  1040. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1041. //
  1042. // extruder_advance_k : There is an advance factor set.
  1043. //
  1044. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1045. // In that case, the retract and move will be executed together.
  1046. // This leads to too many advance steps due to a huge e_acceleration.
  1047. // The math is good, but we must avoid retract moves with advance!
  1048. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1049. //
  1050. block->use_advance_lead = block->steps_e.wide
  1051. && (block->steps_x.wide || block->steps_y.wide)
  1052. && extruder_advance_k
  1053. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1054. && de_float > 0.0;
  1055. if (block->use_advance_lead)
  1056. block->abs_adv_steps_multiplier8 = lround(
  1057. extruder_advance_k
  1058. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1059. * (block->nominal_speed / (float)block->nominal_rate)
  1060. * cs.axis_steps_per_unit[E_AXIS] * 256.0
  1061. );
  1062. #endif
  1063. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1064. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1065. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1066. if (block->step_event_count.wide <= 32767)
  1067. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1068. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1069. block_buffer_head = next_buffer_head;
  1070. // Update position
  1071. memcpy(position, target, sizeof(target)); // position[] = target[]
  1072. #ifdef LIN_ADVANCE
  1073. position_float[X_AXIS] = x;
  1074. position_float[Y_AXIS] = y;
  1075. position_float[Z_AXIS] = z;
  1076. position_float[E_AXIS] = e;
  1077. #endif
  1078. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1079. // the machine limits (maximum acceleration and maximum jerk).
  1080. // This runs asynchronously with the stepper interrupt controller, which may
  1081. // interfere with the process.
  1082. planner_recalculate(safe_speed);
  1083. // SERIAL_ECHOPGM("Q");
  1084. // SERIAL_ECHO(int(moves_planned()));
  1085. // SERIAL_ECHOLNPGM("");
  1086. #ifdef PLANNER_DIAGNOSTICS
  1087. planner_update_queue_min_counter();
  1088. #endif /* PLANNER_DIAGNOSTIC */
  1089. // The stepper timer interrupt will run continuously from now on.
  1090. // If there are no planner blocks to be executed by the stepper routine,
  1091. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1092. // from the planner queue if available.
  1093. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1094. }
  1095. #ifdef ENABLE_AUTO_BED_LEVELING
  1096. vector_3 plan_get_position() {
  1097. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1098. //position.debug("in plan_get position");
  1099. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1100. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1101. //inverse.debug("in plan_get inverse");
  1102. position.apply_rotation(inverse);
  1103. //position.debug("after rotation");
  1104. return position;
  1105. }
  1106. #endif // ENABLE_AUTO_BED_LEVELING
  1107. void plan_set_position(float x, float y, float z, const float &e)
  1108. {
  1109. #ifdef ENABLE_AUTO_BED_LEVELING
  1110. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1111. #endif // ENABLE_AUTO_BED_LEVELING
  1112. // Apply the machine correction matrix.
  1113. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1114. {
  1115. float tmpx = x;
  1116. float tmpy = y;
  1117. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1118. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1119. }
  1120. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1121. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1122. #ifdef MESH_BED_LEVELING
  1123. position[Z_AXIS] = mbl.active ?
  1124. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1125. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1126. #else
  1127. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1128. #endif // ENABLE_MESH_BED_LEVELING
  1129. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1130. #ifdef LIN_ADVANCE
  1131. position_float[X_AXIS] = x;
  1132. position_float[Y_AXIS] = y;
  1133. position_float[Z_AXIS] = z;
  1134. position_float[E_AXIS] = e;
  1135. #endif
  1136. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1137. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1138. previous_speed[0] = 0.0;
  1139. previous_speed[1] = 0.0;
  1140. previous_speed[2] = 0.0;
  1141. previous_speed[3] = 0.0;
  1142. }
  1143. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1144. void plan_set_z_position(const float &z)
  1145. {
  1146. #ifdef LIN_ADVANCE
  1147. position_float[Z_AXIS] = z;
  1148. #endif
  1149. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1150. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1151. }
  1152. void plan_set_e_position(const float &e)
  1153. {
  1154. #ifdef LIN_ADVANCE
  1155. position_float[E_AXIS] = e;
  1156. #endif
  1157. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1158. st_set_e_position(position[E_AXIS]);
  1159. }
  1160. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1161. void set_extrude_min_temp(float temp)
  1162. {
  1163. extrude_min_temp=temp;
  1164. }
  1165. #endif
  1166. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1167. void reset_acceleration_rates()
  1168. {
  1169. for(int8_t i=0; i < NUM_AXIS; i++)
  1170. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1171. }
  1172. #ifdef TMC2130
  1173. void update_mode_profile()
  1174. {
  1175. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1176. {
  1177. max_feedrate = cs.max_feedrate_normal;
  1178. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1179. }
  1180. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1181. {
  1182. max_feedrate = max_feedrate_silent;
  1183. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_silent;
  1184. }
  1185. reset_acceleration_rates();
  1186. }
  1187. #endif //TMC2130
  1188. unsigned char number_of_blocks()
  1189. {
  1190. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1191. }
  1192. #ifdef PLANNER_DIAGNOSTICS
  1193. uint8_t planner_queue_min()
  1194. {
  1195. return g_cntr_planner_queue_min;
  1196. }
  1197. void planner_queue_min_reset()
  1198. {
  1199. g_cntr_planner_queue_min = moves_planned();
  1200. }
  1201. #endif /* PLANNER_DIAGNOSTICS */
  1202. void planner_add_sd_length(uint16_t sdlen)
  1203. {
  1204. if (block_buffer_head != block_buffer_tail) {
  1205. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1206. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1207. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1208. } else {
  1209. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1210. // at a power panic, so the length of this command may be forgotten.
  1211. }
  1212. }
  1213. uint16_t planner_calc_sd_length()
  1214. {
  1215. unsigned char _block_buffer_head = block_buffer_head;
  1216. unsigned char _block_buffer_tail = block_buffer_tail;
  1217. uint16_t sdlen = 0;
  1218. while (_block_buffer_head != _block_buffer_tail)
  1219. {
  1220. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1221. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1222. }
  1223. return sdlen;
  1224. }