temperature.cpp 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. unsigned char soft_pwm_bed;
  74. #ifdef BABYSTEPPING
  75. volatile int babystepsTodo[3]={0,0,0};
  76. #endif
  77. //===========================================================================
  78. //=============================private variables============================
  79. //===========================================================================
  80. static volatile bool temp_meas_ready = false;
  81. #ifdef PIDTEMP
  82. //static cannot be external:
  83. static float iState_sum[EXTRUDERS] = { 0 };
  84. static float dState_last[EXTRUDERS] = { 0 };
  85. static float pTerm[EXTRUDERS];
  86. static float iTerm[EXTRUDERS];
  87. static float dTerm[EXTRUDERS];
  88. //int output;
  89. static float pid_error[EXTRUDERS];
  90. static float iState_sum_min[EXTRUDERS];
  91. static float iState_sum_max[EXTRUDERS];
  92. // static float pid_input[EXTRUDERS];
  93. // static float pid_output[EXTRUDERS];
  94. static bool pid_reset[EXTRUDERS];
  95. #endif //PIDTEMP
  96. #ifdef PIDTEMPBED
  97. //static cannot be external:
  98. static float temp_iState_bed = { 0 };
  99. static float temp_dState_bed = { 0 };
  100. static float pTerm_bed;
  101. static float iTerm_bed;
  102. static float dTerm_bed;
  103. //int output;
  104. static float pid_error_bed;
  105. static float temp_iState_min_bed;
  106. static float temp_iState_max_bed;
  107. #else //PIDTEMPBED
  108. static unsigned long previous_millis_bed_heater;
  109. #endif //PIDTEMPBED
  110. static unsigned char soft_pwm[EXTRUDERS];
  111. #ifdef FAN_SOFT_PWM
  112. static unsigned char soft_pwm_fan;
  113. #endif
  114. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  116. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  117. unsigned long extruder_autofan_last_check = _millis();
  118. uint8_t fanSpeedBckp = 255;
  119. bool fan_measuring = false;
  120. #endif
  121. #if EXTRUDERS > 3
  122. # error Unsupported number of extruders
  123. #elif EXTRUDERS > 2
  124. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  125. #elif EXTRUDERS > 1
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  127. #else
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  129. #endif
  130. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  131. // Init min and max temp with extreme values to prevent false errors during startup
  132. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  133. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  134. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  135. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  136. #ifdef BED_MINTEMP
  137. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  138. #endif
  139. #ifdef BED_MAXTEMP
  140. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  141. #endif
  142. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  143. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  144. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  145. #else
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. #endif
  149. static float analog2temp(int raw, uint8_t e);
  150. static float analog2tempBed(int raw);
  151. static float analog2tempAmbient(int raw);
  152. static void updateTemperaturesFromRawValues();
  153. enum TempRunawayStates
  154. {
  155. TempRunaway_INACTIVE = 0,
  156. TempRunaway_PREHEAT = 1,
  157. TempRunaway_ACTIVE = 2,
  158. };
  159. #ifdef WATCH_TEMP_PERIOD
  160. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. #endif //WATCH_TEMP_PERIOD
  163. #ifndef SOFT_PWM_SCALE
  164. #define SOFT_PWM_SCALE 0
  165. #endif
  166. //===========================================================================
  167. //============================= functions ============================
  168. //===========================================================================
  169. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  170. static float temp_runaway_status[4];
  171. static float temp_runaway_target[4];
  172. static float temp_runaway_timer[4];
  173. static int temp_runaway_error_counter[4];
  174. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  175. static void temp_runaway_stop(bool isPreheat, bool isBed);
  176. #endif
  177. void PID_autotune(float temp, int extruder, int ncycles)
  178. {
  179. pid_number_of_cycles = ncycles;
  180. pid_tuning_finished = false;
  181. float input = 0.0;
  182. pid_cycle=0;
  183. bool heating = true;
  184. unsigned long temp_millis = _millis();
  185. unsigned long t1=temp_millis;
  186. unsigned long t2=temp_millis;
  187. long t_high = 0;
  188. long t_low = 0;
  189. long bias, d;
  190. float Ku, Tu;
  191. float max = 0, min = 10000;
  192. uint8_t safety_check_cycles = 0;
  193. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  194. float temp_ambient;
  195. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  197. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  198. unsigned long extruder_autofan_last_check = _millis();
  199. #endif
  200. if ((extruder >= EXTRUDERS)
  201. #if (TEMP_BED_PIN <= -1)
  202. ||(extruder < 0)
  203. #endif
  204. ){
  205. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  206. pid_tuning_finished = true;
  207. pid_cycle = 0;
  208. return;
  209. }
  210. SERIAL_ECHOLN("PID Autotune start");
  211. disable_heater(); // switch off all heaters.
  212. if (extruder<0)
  213. {
  214. soft_pwm_bed = (MAX_BED_POWER)/2;
  215. timer02_set_pwm0(soft_pwm_bed << 1);
  216. bias = d = (MAX_BED_POWER)/2;
  217. }
  218. else
  219. {
  220. soft_pwm[extruder] = (PID_MAX)/2;
  221. bias = d = (PID_MAX)/2;
  222. }
  223. for(;;) {
  224. #ifdef WATCHDOG
  225. wdt_reset();
  226. #endif //WATCHDOG
  227. if(temp_meas_ready == true) { // temp sample ready
  228. updateTemperaturesFromRawValues();
  229. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  230. max=max(max,input);
  231. min=min(min,input);
  232. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  233. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  234. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  235. if(_millis() - extruder_autofan_last_check > 2500) {
  236. checkExtruderAutoFans();
  237. extruder_autofan_last_check = _millis();
  238. }
  239. #endif
  240. if(heating == true && input > temp) {
  241. if(_millis() - t2 > 5000) {
  242. heating=false;
  243. if (extruder<0)
  244. {
  245. soft_pwm_bed = (bias - d) >> 1;
  246. timer02_set_pwm0(soft_pwm_bed << 1);
  247. }
  248. else
  249. soft_pwm[extruder] = (bias - d) >> 1;
  250. t1=_millis();
  251. t_high=t1 - t2;
  252. max=temp;
  253. }
  254. }
  255. if(heating == false && input < temp) {
  256. if(_millis() - t1 > 5000) {
  257. heating=true;
  258. t2=_millis();
  259. t_low=t2 - t1;
  260. if(pid_cycle > 0) {
  261. bias += (d*(t_high - t_low))/(t_low + t_high);
  262. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  263. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  264. else d = bias;
  265. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  266. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  267. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  268. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  269. if(pid_cycle > 2) {
  270. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  271. Tu = ((float)(t_low + t_high)/1000.0);
  272. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  273. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  274. _Kp = 0.6*Ku;
  275. _Ki = 2*_Kp/Tu;
  276. _Kd = _Kp*Tu/8;
  277. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  278. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  279. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  280. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  281. /*
  282. _Kp = 0.33*Ku;
  283. _Ki = _Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. _Kp = 0.2*Ku;
  290. _Ki = 2*_Kp/Tu;
  291. _Kd = _Kp*Tu/3;
  292. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  293. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  294. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  295. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  296. */
  297. }
  298. }
  299. if (extruder<0)
  300. {
  301. soft_pwm_bed = (bias + d) >> 1;
  302. timer02_set_pwm0(soft_pwm_bed << 1);
  303. }
  304. else
  305. soft_pwm[extruder] = (bias + d) >> 1;
  306. pid_cycle++;
  307. min=temp;
  308. }
  309. }
  310. }
  311. if(input > (temp + 20)) {
  312. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  313. pid_tuning_finished = true;
  314. pid_cycle = 0;
  315. return;
  316. }
  317. if(_millis() - temp_millis > 2000) {
  318. int p;
  319. if (extruder<0){
  320. p=soft_pwm_bed;
  321. SERIAL_PROTOCOLPGM("B:");
  322. }else{
  323. p=soft_pwm[extruder];
  324. SERIAL_PROTOCOLPGM("T:");
  325. }
  326. SERIAL_PROTOCOL(input);
  327. SERIAL_PROTOCOLPGM(" @:");
  328. SERIAL_PROTOCOLLN(p);
  329. if (safety_check_cycles == 0) { //save ambient temp
  330. temp_ambient = input;
  331. //SERIAL_ECHOPGM("Ambient T: ");
  332. //MYSERIAL.println(temp_ambient);
  333. safety_check_cycles++;
  334. }
  335. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  336. safety_check_cycles++;
  337. }
  338. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  339. safety_check_cycles++;
  340. //SERIAL_ECHOPGM("Time from beginning: ");
  341. //MYSERIAL.print(safety_check_cycles_count * 2);
  342. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  343. //MYSERIAL.println(input - temp_ambient);
  344. if (abs(input - temp_ambient) < 5.0) {
  345. temp_runaway_stop(false, (extruder<0));
  346. pid_tuning_finished = true;
  347. return;
  348. }
  349. }
  350. temp_millis = _millis();
  351. }
  352. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  353. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  354. pid_tuning_finished = true;
  355. pid_cycle = 0;
  356. return;
  357. }
  358. if(pid_cycle > ncycles) {
  359. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  360. pid_tuning_finished = true;
  361. pid_cycle = 0;
  362. return;
  363. }
  364. lcd_update(0);
  365. }
  366. }
  367. void updatePID()
  368. {
  369. #ifdef PIDTEMP
  370. for(int e = 0; e < EXTRUDERS; e++) {
  371. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  372. }
  373. #endif
  374. #ifdef PIDTEMPBED
  375. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  376. #endif
  377. }
  378. int getHeaterPower(int heater) {
  379. if (heater<0)
  380. return soft_pwm_bed;
  381. return soft_pwm[heater];
  382. }
  383. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  384. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  385. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  386. #if defined(FAN_PIN) && FAN_PIN > -1
  387. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  388. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  389. #endif
  390. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  391. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  392. #endif
  393. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  394. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  395. #endif
  396. #endif
  397. void setExtruderAutoFanState(int pin, bool state)
  398. {
  399. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  400. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  401. pinMode(pin, OUTPUT);
  402. digitalWrite(pin, newFanSpeed);
  403. //analogWrite(pin, newFanSpeed);
  404. }
  405. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  406. void countFanSpeed()
  407. {
  408. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  409. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  410. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  411. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  412. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  413. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  414. SERIAL_ECHOLNPGM(" ");*/
  415. fan_edge_counter[0] = 0;
  416. fan_edge_counter[1] = 0;
  417. }
  418. void checkFanSpeed()
  419. {
  420. uint8_t max_print_fan_errors = 0;
  421. uint8_t max_extruder_fan_errors = 0;
  422. #ifdef FAN_SOFT_PWM
  423. max_print_fan_errors = 3; //15 seconds
  424. max_extruder_fan_errors = 2; //10seconds
  425. #else //FAN_SOFT_PWM
  426. max_print_fan_errors = 15; //15 seconds
  427. max_extruder_fan_errors = 5; //5 seconds
  428. #endif //FAN_SOFT_PWM
  429. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  430. static unsigned char fan_speed_errors[2] = { 0,0 };
  431. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  432. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  433. else fan_speed_errors[0] = 0;
  434. #endif
  435. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  436. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  437. else fan_speed_errors[1] = 0;
  438. #endif
  439. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  440. fan_speed_errors[0] = 0;
  441. fanSpeedError(0); //extruder fan
  442. }
  443. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  444. fan_speed_errors[1] = 0;
  445. fanSpeedError(1); //print fan
  446. }
  447. }
  448. void fanSpeedError(unsigned char _fan) {
  449. if (get_message_level() != 0 && isPrintPaused) return;
  450. //to ensure that target temp. is not set to zero in case taht we are resuming print
  451. if (card.sdprinting) {
  452. if (heating_status != 0) {
  453. lcd_print_stop();
  454. }
  455. else {
  456. lcd_pause_print();
  457. }
  458. }
  459. else {
  460. setTargetHotend0(0);
  461. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  462. }
  463. switch (_fan) {
  464. case 0:
  465. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  466. if (get_message_level() == 0) {
  467. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  468. WRITE(BEEPER, HIGH);
  469. delayMicroseconds(200);
  470. WRITE(BEEPER, LOW);
  471. delayMicroseconds(100);
  472. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  473. }
  474. break;
  475. case 1:
  476. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  477. if (get_message_level() == 0) {
  478. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  479. WRITE(BEEPER, HIGH);
  480. delayMicroseconds(200);
  481. WRITE(BEEPER, LOW);
  482. delayMicroseconds(100);
  483. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  484. }
  485. break;
  486. }
  487. }
  488. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  489. void checkExtruderAutoFans()
  490. {
  491. uint8_t fanState = 0;
  492. // which fan pins need to be turned on?
  493. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  494. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  495. fanState |= 1;
  496. #endif
  497. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  498. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  499. {
  500. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  501. fanState |= 1;
  502. else
  503. fanState |= 2;
  504. }
  505. #endif
  506. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  507. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  508. {
  509. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  510. fanState |= 1;
  511. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  512. fanState |= 2;
  513. else
  514. fanState |= 4;
  515. }
  516. #endif
  517. // update extruder auto fan states
  518. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  519. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  520. #endif
  521. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  522. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  523. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  524. #endif
  525. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  526. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  527. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  528. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  529. #endif
  530. }
  531. #endif // any extruder auto fan pins set
  532. // ready for eventually parameters adjusting
  533. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  534. //void resetPID(uint8_t extruder)
  535. {
  536. }
  537. void manage_heater()
  538. {
  539. #ifdef WATCHDOG
  540. wdt_reset();
  541. #endif //WATCHDOG
  542. float pid_input;
  543. float pid_output;
  544. if(temp_meas_ready != true) //better readability
  545. return;
  546. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  547. updateTemperaturesFromRawValues();
  548. check_max_temp();
  549. check_min_temp();
  550. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  551. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  552. #endif
  553. for(int e = 0; e < EXTRUDERS; e++)
  554. {
  555. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  556. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  557. #endif
  558. #ifdef PIDTEMP
  559. pid_input = current_temperature[e];
  560. #ifndef PID_OPENLOOP
  561. if(target_temperature[e] == 0) {
  562. pid_output = 0;
  563. pid_reset[e] = true;
  564. } else {
  565. pid_error[e] = target_temperature[e] - pid_input;
  566. if(pid_reset[e]) {
  567. iState_sum[e] = 0.0;
  568. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  569. pid_reset[e] = false;
  570. }
  571. #ifndef PonM
  572. pTerm[e] = cs.Kp * pid_error[e];
  573. iState_sum[e] += pid_error[e];
  574. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  575. iTerm[e] = cs.Ki * iState_sum[e];
  576. // PID_K1 defined in Configuration.h in the PID settings
  577. #define K2 (1.0-PID_K1)
  578. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  579. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  580. if (pid_output > PID_MAX) {
  581. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  582. pid_output=PID_MAX;
  583. } else if (pid_output < 0) {
  584. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  585. pid_output=0;
  586. }
  587. #else // PonM ("Proportional on Measurement" method)
  588. iState_sum[e] += cs.Ki * pid_error[e];
  589. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  590. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  591. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  592. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. pid_output = constrain(pid_output, 0, PID_MAX);
  594. #endif // PonM
  595. }
  596. dState_last[e] = pid_input;
  597. #else
  598. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  599. #endif //PID_OPENLOOP
  600. #ifdef PID_DEBUG
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHO(" PID_DEBUG ");
  603. SERIAL_ECHO(e);
  604. SERIAL_ECHO(": Input ");
  605. SERIAL_ECHO(pid_input);
  606. SERIAL_ECHO(" Output ");
  607. SERIAL_ECHO(pid_output);
  608. SERIAL_ECHO(" pTerm ");
  609. SERIAL_ECHO(pTerm[e]);
  610. SERIAL_ECHO(" iTerm ");
  611. SERIAL_ECHO(iTerm[e]);
  612. SERIAL_ECHO(" dTerm ");
  613. SERIAL_ECHOLN(-dTerm[e]);
  614. #endif //PID_DEBUG
  615. #else /* PID off */
  616. pid_output = 0;
  617. if(current_temperature[e] < target_temperature[e]) {
  618. pid_output = PID_MAX;
  619. }
  620. #endif
  621. // Check if temperature is within the correct range
  622. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  623. {
  624. soft_pwm[e] = (int)pid_output >> 1;
  625. }
  626. else
  627. {
  628. soft_pwm[e] = 0;
  629. }
  630. #ifdef WATCH_TEMP_PERIOD
  631. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  632. {
  633. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  634. {
  635. setTargetHotend(0, e);
  636. LCD_MESSAGEPGM("Heating failed");
  637. SERIAL_ECHO_START;
  638. SERIAL_ECHOLN("Heating failed");
  639. }else{
  640. watchmillis[e] = 0;
  641. }
  642. }
  643. #endif
  644. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  645. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  646. disable_heater();
  647. if(IsStopped() == false) {
  648. SERIAL_ERROR_START;
  649. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  650. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  651. }
  652. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  653. Stop();
  654. #endif
  655. }
  656. #endif
  657. } // End extruder for loop
  658. #define FAN_CHECK_PERIOD 5000 //5s
  659. #define FAN_CHECK_DURATION 100 //100ms
  660. #ifndef DEBUG_DISABLE_FANCHECK
  661. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  662. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  663. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  664. #ifdef FAN_SOFT_PWM
  665. #ifdef FANCHECK
  666. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  667. extruder_autofan_last_check = _millis();
  668. fanSpeedBckp = fanSpeedSoftPwm;
  669. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  670. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  671. fanSpeedSoftPwm = 255;
  672. }
  673. fan_measuring = true;
  674. }
  675. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  676. countFanSpeed();
  677. checkFanSpeed();
  678. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  679. fanSpeedSoftPwm = fanSpeedBckp;
  680. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  681. extruder_autofan_last_check = _millis();
  682. fan_measuring = false;
  683. }
  684. #endif //FANCHECK
  685. checkExtruderAutoFans();
  686. #else //FAN_SOFT_PWM
  687. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  688. {
  689. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  690. countFanSpeed();
  691. checkFanSpeed();
  692. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  693. checkExtruderAutoFans();
  694. extruder_autofan_last_check = _millis();
  695. }
  696. #endif //FAN_SOFT_PWM
  697. #endif
  698. #endif //DEBUG_DISABLE_FANCHECK
  699. #ifndef PIDTEMPBED
  700. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  701. return;
  702. previous_millis_bed_heater = _millis();
  703. #endif
  704. #if TEMP_SENSOR_BED != 0
  705. #ifdef PIDTEMPBED
  706. pid_input = current_temperature_bed;
  707. #ifndef PID_OPENLOOP
  708. pid_error_bed = target_temperature_bed - pid_input;
  709. pTerm_bed = cs.bedKp * pid_error_bed;
  710. temp_iState_bed += pid_error_bed;
  711. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  712. iTerm_bed = cs.bedKi * temp_iState_bed;
  713. //PID_K1 defined in Configuration.h in the PID settings
  714. #define K2 (1.0-PID_K1)
  715. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  716. temp_dState_bed = pid_input;
  717. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  718. if (pid_output > MAX_BED_POWER) {
  719. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  720. pid_output=MAX_BED_POWER;
  721. } else if (pid_output < 0){
  722. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  723. pid_output=0;
  724. }
  725. #else
  726. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  727. #endif //PID_OPENLOOP
  728. if(current_temperature_bed < BED_MAXTEMP)
  729. {
  730. soft_pwm_bed = (int)pid_output >> 1;
  731. timer02_set_pwm0(soft_pwm_bed << 1);
  732. }
  733. else {
  734. soft_pwm_bed = 0;
  735. timer02_set_pwm0(soft_pwm_bed << 1);
  736. }
  737. #elif !defined(BED_LIMIT_SWITCHING)
  738. // Check if temperature is within the correct range
  739. if(current_temperature_bed < BED_MAXTEMP)
  740. {
  741. if(current_temperature_bed >= target_temperature_bed)
  742. {
  743. soft_pwm_bed = 0;
  744. timer02_set_pwm0(soft_pwm_bed << 1);
  745. }
  746. else
  747. {
  748. soft_pwm_bed = MAX_BED_POWER>>1;
  749. timer02_set_pwm0(soft_pwm_bed << 1);
  750. }
  751. }
  752. else
  753. {
  754. soft_pwm_bed = 0;
  755. timer02_set_pwm0(soft_pwm_bed << 1);
  756. WRITE(HEATER_BED_PIN,LOW);
  757. }
  758. #else //#ifdef BED_LIMIT_SWITCHING
  759. // Check if temperature is within the correct band
  760. if(current_temperature_bed < BED_MAXTEMP)
  761. {
  762. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  763. {
  764. soft_pwm_bed = 0;
  765. timer02_set_pwm0(soft_pwm_bed << 1);
  766. }
  767. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  768. {
  769. soft_pwm_bed = MAX_BED_POWER>>1;
  770. timer02_set_pwm0(soft_pwm_bed << 1);
  771. }
  772. }
  773. else
  774. {
  775. soft_pwm_bed = 0;
  776. timer02_set_pwm0(soft_pwm_bed << 1);
  777. WRITE(HEATER_BED_PIN,LOW);
  778. }
  779. #endif
  780. if(target_temperature_bed==0)
  781. {
  782. soft_pwm_bed = 0;
  783. timer02_set_pwm0(soft_pwm_bed << 1);
  784. }
  785. #endif
  786. host_keepalive();
  787. }
  788. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  789. // Derived from RepRap FiveD extruder::getTemperature()
  790. // For hot end temperature measurement.
  791. static float analog2temp(int raw, uint8_t e) {
  792. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  793. if(e > EXTRUDERS)
  794. #else
  795. if(e >= EXTRUDERS)
  796. #endif
  797. {
  798. SERIAL_ERROR_START;
  799. SERIAL_ERROR((int)e);
  800. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  801. kill(PSTR(""), 6);
  802. return 0.0;
  803. }
  804. #ifdef HEATER_0_USES_MAX6675
  805. if (e == 0)
  806. {
  807. return 0.25 * raw;
  808. }
  809. #endif
  810. if(heater_ttbl_map[e] != NULL)
  811. {
  812. float celsius = 0;
  813. uint8_t i;
  814. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  815. for (i=1; i<heater_ttbllen_map[e]; i++)
  816. {
  817. if (PGM_RD_W((*tt)[i][0]) > raw)
  818. {
  819. celsius = PGM_RD_W((*tt)[i-1][1]) +
  820. (raw - PGM_RD_W((*tt)[i-1][0])) *
  821. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  822. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  823. break;
  824. }
  825. }
  826. // Overflow: Set to last value in the table
  827. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  828. return celsius;
  829. }
  830. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  831. }
  832. // Derived from RepRap FiveD extruder::getTemperature()
  833. // For bed temperature measurement.
  834. static float analog2tempBed(int raw) {
  835. #ifdef BED_USES_THERMISTOR
  836. float celsius = 0;
  837. byte i;
  838. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  839. {
  840. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  841. {
  842. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  843. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  844. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  845. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  846. break;
  847. }
  848. }
  849. // Overflow: Set to last value in the table
  850. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  851. // temperature offset adjustment
  852. #ifdef BED_OFFSET
  853. float _offset = BED_OFFSET;
  854. float _offset_center = BED_OFFSET_CENTER;
  855. float _offset_start = BED_OFFSET_START;
  856. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  857. float _second_koef = (_offset / 2) / (100 - _offset_center);
  858. if (celsius >= _offset_start && celsius <= _offset_center)
  859. {
  860. celsius = celsius + (_first_koef * (celsius - _offset_start));
  861. }
  862. else if (celsius > _offset_center && celsius <= 100)
  863. {
  864. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  865. }
  866. else if (celsius > 100)
  867. {
  868. celsius = celsius + _offset;
  869. }
  870. #endif
  871. return celsius;
  872. #elif defined BED_USES_AD595
  873. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  874. #else
  875. return 0;
  876. #endif
  877. }
  878. #ifdef AMBIENT_THERMISTOR
  879. static float analog2tempAmbient(int raw)
  880. {
  881. float celsius = 0;
  882. byte i;
  883. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  884. {
  885. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  886. {
  887. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  888. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  889. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  890. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  891. break;
  892. }
  893. }
  894. // Overflow: Set to last value in the table
  895. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  896. return celsius;
  897. }
  898. #endif //AMBIENT_THERMISTOR
  899. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  900. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  901. static void updateTemperaturesFromRawValues()
  902. {
  903. for(uint8_t e=0;e<EXTRUDERS;e++)
  904. {
  905. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  906. }
  907. #ifdef PINDA_THERMISTOR
  908. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  909. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  910. #endif
  911. #ifdef AMBIENT_THERMISTOR
  912. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  913. #endif
  914. #ifdef DEBUG_HEATER_BED_SIM
  915. current_temperature_bed = target_temperature_bed;
  916. #else //DEBUG_HEATER_BED_SIM
  917. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  918. #endif //DEBUG_HEATER_BED_SIM
  919. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  920. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  921. #endif
  922. //Reset the watchdog after we know we have a temperature measurement.
  923. #ifdef WATCHDOG
  924. wdt_reset();
  925. #endif //WATCHDOG
  926. CRITICAL_SECTION_START;
  927. temp_meas_ready = false;
  928. CRITICAL_SECTION_END;
  929. }
  930. void tp_init()
  931. {
  932. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  933. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  934. MCUCR=(1<<JTD);
  935. MCUCR=(1<<JTD);
  936. #endif
  937. // Finish init of mult extruder arrays
  938. for(int e = 0; e < EXTRUDERS; e++) {
  939. // populate with the first value
  940. maxttemp[e] = maxttemp[0];
  941. #ifdef PIDTEMP
  942. iState_sum_min[e] = 0.0;
  943. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  944. #endif //PIDTEMP
  945. #ifdef PIDTEMPBED
  946. temp_iState_min_bed = 0.0;
  947. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  948. #endif //PIDTEMPBED
  949. }
  950. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  951. SET_OUTPUT(HEATER_0_PIN);
  952. #endif
  953. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  954. SET_OUTPUT(HEATER_1_PIN);
  955. #endif
  956. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  957. SET_OUTPUT(HEATER_2_PIN);
  958. #endif
  959. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  960. SET_OUTPUT(HEATER_BED_PIN);
  961. #endif
  962. #if defined(FAN_PIN) && (FAN_PIN > -1)
  963. SET_OUTPUT(FAN_PIN);
  964. #ifdef FAST_PWM_FAN
  965. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  966. #endif
  967. #ifdef FAN_SOFT_PWM
  968. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  969. #endif
  970. #endif
  971. #ifdef HEATER_0_USES_MAX6675
  972. #ifndef SDSUPPORT
  973. SET_OUTPUT(SCK_PIN);
  974. WRITE(SCK_PIN,0);
  975. SET_OUTPUT(MOSI_PIN);
  976. WRITE(MOSI_PIN,1);
  977. SET_INPUT(MISO_PIN);
  978. WRITE(MISO_PIN,1);
  979. #endif
  980. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  981. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  982. pinMode(SS_PIN, OUTPUT);
  983. digitalWrite(SS_PIN,0);
  984. pinMode(MAX6675_SS, OUTPUT);
  985. digitalWrite(MAX6675_SS,1);
  986. #endif
  987. adc_init();
  988. #ifdef SYSTEM_TIMER_2
  989. timer02_init();
  990. OCR2B = 128;
  991. TIMSK2 |= (1<<OCIE2B);
  992. #else //SYSTEM_TIMER_2
  993. // Use timer0 for temperature measurement
  994. // Interleave temperature interrupt with millies interrupt
  995. OCR0B = 128;
  996. TIMSK0 |= (1<<OCIE0B);
  997. #endif //SYSTEM_TIMER_2
  998. // Wait for temperature measurement to settle
  999. _delay(250);
  1000. #ifdef HEATER_0_MINTEMP
  1001. minttemp[0] = HEATER_0_MINTEMP;
  1002. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1003. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1004. minttemp_raw[0] += OVERSAMPLENR;
  1005. #else
  1006. minttemp_raw[0] -= OVERSAMPLENR;
  1007. #endif
  1008. }
  1009. #endif //MINTEMP
  1010. #ifdef HEATER_0_MAXTEMP
  1011. maxttemp[0] = HEATER_0_MAXTEMP;
  1012. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1013. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1014. maxttemp_raw[0] -= OVERSAMPLENR;
  1015. #else
  1016. maxttemp_raw[0] += OVERSAMPLENR;
  1017. #endif
  1018. }
  1019. #endif //MAXTEMP
  1020. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1021. minttemp[1] = HEATER_1_MINTEMP;
  1022. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1023. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1024. minttemp_raw[1] += OVERSAMPLENR;
  1025. #else
  1026. minttemp_raw[1] -= OVERSAMPLENR;
  1027. #endif
  1028. }
  1029. #endif // MINTEMP 1
  1030. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1031. maxttemp[1] = HEATER_1_MAXTEMP;
  1032. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1033. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1034. maxttemp_raw[1] -= OVERSAMPLENR;
  1035. #else
  1036. maxttemp_raw[1] += OVERSAMPLENR;
  1037. #endif
  1038. }
  1039. #endif //MAXTEMP 1
  1040. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1041. minttemp[2] = HEATER_2_MINTEMP;
  1042. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1043. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1044. minttemp_raw[2] += OVERSAMPLENR;
  1045. #else
  1046. minttemp_raw[2] -= OVERSAMPLENR;
  1047. #endif
  1048. }
  1049. #endif //MINTEMP 2
  1050. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1051. maxttemp[2] = HEATER_2_MAXTEMP;
  1052. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1053. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1054. maxttemp_raw[2] -= OVERSAMPLENR;
  1055. #else
  1056. maxttemp_raw[2] += OVERSAMPLENR;
  1057. #endif
  1058. }
  1059. #endif //MAXTEMP 2
  1060. #ifdef BED_MINTEMP
  1061. /* No bed MINTEMP error implemented?!? */
  1062. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1063. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1064. bed_minttemp_raw += OVERSAMPLENR;
  1065. #else
  1066. bed_minttemp_raw -= OVERSAMPLENR;
  1067. #endif
  1068. }
  1069. #endif //BED_MINTEMP
  1070. #ifdef BED_MAXTEMP
  1071. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1072. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1073. bed_maxttemp_raw -= OVERSAMPLENR;
  1074. #else
  1075. bed_maxttemp_raw += OVERSAMPLENR;
  1076. #endif
  1077. }
  1078. #endif //BED_MAXTEMP
  1079. }
  1080. void setWatch()
  1081. {
  1082. #ifdef WATCH_TEMP_PERIOD
  1083. for (int e = 0; e < EXTRUDERS; e++)
  1084. {
  1085. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1086. {
  1087. watch_start_temp[e] = degHotend(e);
  1088. watchmillis[e] = _millis();
  1089. }
  1090. }
  1091. #endif
  1092. }
  1093. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1094. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1095. {
  1096. float __delta;
  1097. float __hysteresis = 0;
  1098. int __timeout = 0;
  1099. bool temp_runaway_check_active = false;
  1100. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1101. static int __preheat_counter[2] = { 0,0};
  1102. static int __preheat_errors[2] = { 0,0};
  1103. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1104. {
  1105. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1106. if (_isbed)
  1107. {
  1108. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1109. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1110. }
  1111. #endif
  1112. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1113. if (!_isbed)
  1114. {
  1115. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1116. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1117. }
  1118. #endif
  1119. temp_runaway_timer[_heater_id] = _millis();
  1120. if (_output == 0)
  1121. {
  1122. temp_runaway_check_active = false;
  1123. temp_runaway_error_counter[_heater_id] = 0;
  1124. }
  1125. if (temp_runaway_target[_heater_id] != _target_temperature)
  1126. {
  1127. if (_target_temperature > 0)
  1128. {
  1129. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1130. temp_runaway_target[_heater_id] = _target_temperature;
  1131. __preheat_start[_heater_id] = _current_temperature;
  1132. __preheat_counter[_heater_id] = 0;
  1133. }
  1134. else
  1135. {
  1136. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1137. temp_runaway_target[_heater_id] = _target_temperature;
  1138. }
  1139. }
  1140. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1141. {
  1142. __preheat_counter[_heater_id]++;
  1143. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1144. {
  1145. /*SERIAL_ECHOPGM("Heater:");
  1146. MYSERIAL.print(_heater_id);
  1147. SERIAL_ECHOPGM(" T:");
  1148. MYSERIAL.print(_current_temperature);
  1149. SERIAL_ECHOPGM(" Tstart:");
  1150. MYSERIAL.print(__preheat_start[_heater_id]);
  1151. SERIAL_ECHOPGM(" delta:");
  1152. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1153. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1154. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1155. __delta=2.0;
  1156. if(_isbed)
  1157. {
  1158. __delta=3.0;
  1159. if(_current_temperature>90.0) __delta=2.0;
  1160. if(_current_temperature>105.0) __delta=0.6;
  1161. }
  1162. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1163. __preheat_errors[_heater_id]++;
  1164. /*SERIAL_ECHOPGM(" Preheat errors:");
  1165. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1166. }
  1167. else {
  1168. //SERIAL_ECHOLNPGM("");
  1169. __preheat_errors[_heater_id] = 0;
  1170. }
  1171. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1172. {
  1173. if (farm_mode) { prusa_statistics(0); }
  1174. temp_runaway_stop(true, _isbed);
  1175. if (farm_mode) { prusa_statistics(91); }
  1176. }
  1177. __preheat_start[_heater_id] = _current_temperature;
  1178. __preheat_counter[_heater_id] = 0;
  1179. }
  1180. }
  1181. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1182. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1183. {
  1184. /*SERIAL_ECHOPGM("Heater:");
  1185. MYSERIAL.print(_heater_id);
  1186. MYSERIAL.println(" ->tempRunaway");*/
  1187. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1188. temp_runaway_check_active = false;
  1189. temp_runaway_error_counter[_heater_id] = 0;
  1190. }
  1191. if (_output > 0)
  1192. {
  1193. temp_runaway_check_active = true;
  1194. }
  1195. if (temp_runaway_check_active)
  1196. {
  1197. // we are in range
  1198. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1199. {
  1200. temp_runaway_check_active = false;
  1201. temp_runaway_error_counter[_heater_id] = 0;
  1202. }
  1203. else
  1204. {
  1205. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1206. {
  1207. temp_runaway_error_counter[_heater_id]++;
  1208. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1209. {
  1210. if (farm_mode) { prusa_statistics(0); }
  1211. temp_runaway_stop(false, _isbed);
  1212. if (farm_mode) { prusa_statistics(90); }
  1213. }
  1214. }
  1215. }
  1216. }
  1217. }
  1218. }
  1219. void temp_runaway_stop(bool isPreheat, bool isBed)
  1220. {
  1221. cancel_heatup = true;
  1222. quickStop();
  1223. if (card.sdprinting)
  1224. {
  1225. card.sdprinting = false;
  1226. card.closefile();
  1227. }
  1228. // Clean the input command queue
  1229. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1230. cmdqueue_reset();
  1231. disable_heater();
  1232. disable_x();
  1233. disable_y();
  1234. disable_e0();
  1235. disable_e1();
  1236. disable_e2();
  1237. manage_heater();
  1238. lcd_update(0);
  1239. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1240. WRITE(BEEPER, HIGH);
  1241. delayMicroseconds(500);
  1242. WRITE(BEEPER, LOW);
  1243. delayMicroseconds(100);
  1244. if (isPreheat)
  1245. {
  1246. Stop();
  1247. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1248. SERIAL_ERROR_START;
  1249. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1250. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1251. SET_OUTPUT(FAN_PIN);
  1252. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1253. #ifdef FAN_SOFT_PWM
  1254. fanSpeedSoftPwm = 255;
  1255. #else //FAN_SOFT_PWM
  1256. analogWrite(FAN_PIN, 255);
  1257. #endif //FAN_SOFT_PWM
  1258. fanSpeed = 255;
  1259. delayMicroseconds(2000);
  1260. }
  1261. else
  1262. {
  1263. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1264. SERIAL_ERROR_START;
  1265. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1266. }
  1267. }
  1268. #endif
  1269. void disable_heater()
  1270. {
  1271. setAllTargetHotends(0);
  1272. setTargetBed(0);
  1273. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1274. target_temperature[0]=0;
  1275. soft_pwm[0]=0;
  1276. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1277. WRITE(HEATER_0_PIN,LOW);
  1278. #endif
  1279. #endif
  1280. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1281. target_temperature[1]=0;
  1282. soft_pwm[1]=0;
  1283. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1284. WRITE(HEATER_1_PIN,LOW);
  1285. #endif
  1286. #endif
  1287. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1288. target_temperature[2]=0;
  1289. soft_pwm[2]=0;
  1290. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1291. WRITE(HEATER_2_PIN,LOW);
  1292. #endif
  1293. #endif
  1294. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1295. target_temperature_bed=0;
  1296. soft_pwm_bed=0;
  1297. timer02_set_pwm0(soft_pwm_bed << 1);
  1298. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1299. WRITE(HEATER_BED_PIN,LOW);
  1300. #endif
  1301. #endif
  1302. }
  1303. void max_temp_error(uint8_t e) {
  1304. disable_heater();
  1305. if(IsStopped() == false) {
  1306. SERIAL_ERROR_START;
  1307. SERIAL_ERRORLN((int)e);
  1308. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1309. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1310. }
  1311. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1312. Stop();
  1313. #endif
  1314. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1315. SET_OUTPUT(FAN_PIN);
  1316. SET_OUTPUT(BEEPER);
  1317. WRITE(FAN_PIN, 1);
  1318. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1319. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1320. WRITE(BEEPER, 1);
  1321. // fanSpeed will consumed by the check_axes_activity() routine.
  1322. fanSpeed=255;
  1323. if (farm_mode) { prusa_statistics(93); }
  1324. }
  1325. void min_temp_error(uint8_t e) {
  1326. #ifdef DEBUG_DISABLE_MINTEMP
  1327. return;
  1328. #endif
  1329. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1330. disable_heater();
  1331. if(IsStopped() == false) {
  1332. SERIAL_ERROR_START;
  1333. SERIAL_ERRORLN((int)e);
  1334. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1335. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1336. }
  1337. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1338. Stop();
  1339. #endif
  1340. if (farm_mode) { prusa_statistics(92); }
  1341. }
  1342. void bed_max_temp_error(void) {
  1343. #if HEATER_BED_PIN > -1
  1344. WRITE(HEATER_BED_PIN, 0);
  1345. #endif
  1346. if(IsStopped() == false) {
  1347. SERIAL_ERROR_START;
  1348. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1349. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1350. }
  1351. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1352. Stop();
  1353. #endif
  1354. }
  1355. void bed_min_temp_error(void) {
  1356. #ifdef DEBUG_DISABLE_MINTEMP
  1357. return;
  1358. #endif
  1359. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1360. #if HEATER_BED_PIN > -1
  1361. WRITE(HEATER_BED_PIN, 0);
  1362. #endif
  1363. if(IsStopped() == false) {
  1364. SERIAL_ERROR_START;
  1365. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1366. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1367. }
  1368. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1369. Stop();
  1370. #endif
  1371. }
  1372. #ifdef HEATER_0_USES_MAX6675
  1373. #define MAX6675_HEAT_INTERVAL 250
  1374. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1375. int max6675_temp = 2000;
  1376. int read_max6675()
  1377. {
  1378. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1379. return max6675_temp;
  1380. max6675_previous_millis = _millis();
  1381. max6675_temp = 0;
  1382. #ifdef PRR
  1383. PRR &= ~(1<<PRSPI);
  1384. #elif defined PRR0
  1385. PRR0 &= ~(1<<PRSPI);
  1386. #endif
  1387. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1388. // enable TT_MAX6675
  1389. WRITE(MAX6675_SS, 0);
  1390. // ensure 100ns delay - a bit extra is fine
  1391. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1392. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1393. // read MSB
  1394. SPDR = 0;
  1395. for (;(SPSR & (1<<SPIF)) == 0;);
  1396. max6675_temp = SPDR;
  1397. max6675_temp <<= 8;
  1398. // read LSB
  1399. SPDR = 0;
  1400. for (;(SPSR & (1<<SPIF)) == 0;);
  1401. max6675_temp |= SPDR;
  1402. // disable TT_MAX6675
  1403. WRITE(MAX6675_SS, 1);
  1404. if (max6675_temp & 4)
  1405. {
  1406. // thermocouple open
  1407. max6675_temp = 2000;
  1408. }
  1409. else
  1410. {
  1411. max6675_temp = max6675_temp >> 3;
  1412. }
  1413. return max6675_temp;
  1414. }
  1415. #endif
  1416. extern "C" {
  1417. void adc_ready(void) //callback from adc when sampling finished
  1418. {
  1419. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1420. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1421. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1422. #ifdef VOLT_PWR_PIN
  1423. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1424. #endif
  1425. #ifdef AMBIENT_THERMISTOR
  1426. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1427. #endif //AMBIENT_THERMISTOR
  1428. #ifdef VOLT_BED_PIN
  1429. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1430. #endif
  1431. temp_meas_ready = true;
  1432. }
  1433. } // extern "C"
  1434. // Timer2 (originaly timer0) is shared with millies
  1435. #ifdef SYSTEM_TIMER_2
  1436. ISR(TIMER2_COMPB_vect)
  1437. #else //SYSTEM_TIMER_2
  1438. ISR(TIMER0_COMPB_vect)
  1439. #endif //SYSTEM_TIMER_2
  1440. {
  1441. static bool _lock = false;
  1442. if (_lock) return;
  1443. _lock = true;
  1444. asm("sei");
  1445. if (!temp_meas_ready) adc_cycle();
  1446. lcd_buttons_update();
  1447. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1448. static unsigned char soft_pwm_0;
  1449. #ifdef SLOW_PWM_HEATERS
  1450. static unsigned char slow_pwm_count = 0;
  1451. static unsigned char state_heater_0 = 0;
  1452. static unsigned char state_timer_heater_0 = 0;
  1453. #endif
  1454. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1455. static unsigned char soft_pwm_1;
  1456. #ifdef SLOW_PWM_HEATERS
  1457. static unsigned char state_heater_1 = 0;
  1458. static unsigned char state_timer_heater_1 = 0;
  1459. #endif
  1460. #endif
  1461. #if EXTRUDERS > 2
  1462. static unsigned char soft_pwm_2;
  1463. #ifdef SLOW_PWM_HEATERS
  1464. static unsigned char state_heater_2 = 0;
  1465. static unsigned char state_timer_heater_2 = 0;
  1466. #endif
  1467. #endif
  1468. #if HEATER_BED_PIN > -1
  1469. static unsigned char soft_pwm_b;
  1470. #ifdef SLOW_PWM_HEATERS
  1471. static unsigned char state_heater_b = 0;
  1472. static unsigned char state_timer_heater_b = 0;
  1473. #endif
  1474. #endif
  1475. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1476. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1477. #endif
  1478. #ifndef SLOW_PWM_HEATERS
  1479. /*
  1480. * standard PWM modulation
  1481. */
  1482. if (pwm_count == 0)
  1483. {
  1484. soft_pwm_0 = soft_pwm[0];
  1485. if(soft_pwm_0 > 0)
  1486. {
  1487. WRITE(HEATER_0_PIN,1);
  1488. #ifdef HEATERS_PARALLEL
  1489. WRITE(HEATER_1_PIN,1);
  1490. #endif
  1491. } else WRITE(HEATER_0_PIN,0);
  1492. #if EXTRUDERS > 1
  1493. soft_pwm_1 = soft_pwm[1];
  1494. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1495. #endif
  1496. #if EXTRUDERS > 2
  1497. soft_pwm_2 = soft_pwm[2];
  1498. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1499. #endif
  1500. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1501. soft_pwm_b = soft_pwm_bed;
  1502. #ifndef SYSTEM_TIMER_2
  1503. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1504. #endif //SYSTEM_TIMER_2
  1505. #endif
  1506. }
  1507. #ifdef FAN_SOFT_PWM
  1508. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1509. {
  1510. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1511. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1512. }
  1513. #endif
  1514. if(soft_pwm_0 < pwm_count)
  1515. {
  1516. WRITE(HEATER_0_PIN,0);
  1517. #ifdef HEATERS_PARALLEL
  1518. WRITE(HEATER_1_PIN,0);
  1519. #endif
  1520. }
  1521. #if EXTRUDERS > 1
  1522. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1523. #endif
  1524. #if EXTRUDERS > 2
  1525. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1526. #endif
  1527. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1528. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1529. #endif
  1530. #ifdef FAN_SOFT_PWM
  1531. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1532. #endif
  1533. pwm_count += (1 << SOFT_PWM_SCALE);
  1534. pwm_count &= 0x7f;
  1535. #else //ifndef SLOW_PWM_HEATERS
  1536. /*
  1537. * SLOW PWM HEATERS
  1538. *
  1539. * for heaters drived by relay
  1540. */
  1541. #ifndef MIN_STATE_TIME
  1542. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1543. #endif
  1544. if (slow_pwm_count == 0) {
  1545. // EXTRUDER 0
  1546. soft_pwm_0 = soft_pwm[0];
  1547. if (soft_pwm_0 > 0) {
  1548. // turn ON heather only if the minimum time is up
  1549. if (state_timer_heater_0 == 0) {
  1550. // if change state set timer
  1551. if (state_heater_0 == 0) {
  1552. state_timer_heater_0 = MIN_STATE_TIME;
  1553. }
  1554. state_heater_0 = 1;
  1555. WRITE(HEATER_0_PIN, 1);
  1556. #ifdef HEATERS_PARALLEL
  1557. WRITE(HEATER_1_PIN, 1);
  1558. #endif
  1559. }
  1560. } else {
  1561. // turn OFF heather only if the minimum time is up
  1562. if (state_timer_heater_0 == 0) {
  1563. // if change state set timer
  1564. if (state_heater_0 == 1) {
  1565. state_timer_heater_0 = MIN_STATE_TIME;
  1566. }
  1567. state_heater_0 = 0;
  1568. WRITE(HEATER_0_PIN, 0);
  1569. #ifdef HEATERS_PARALLEL
  1570. WRITE(HEATER_1_PIN, 0);
  1571. #endif
  1572. }
  1573. }
  1574. #if EXTRUDERS > 1
  1575. // EXTRUDER 1
  1576. soft_pwm_1 = soft_pwm[1];
  1577. if (soft_pwm_1 > 0) {
  1578. // turn ON heather only if the minimum time is up
  1579. if (state_timer_heater_1 == 0) {
  1580. // if change state set timer
  1581. if (state_heater_1 == 0) {
  1582. state_timer_heater_1 = MIN_STATE_TIME;
  1583. }
  1584. state_heater_1 = 1;
  1585. WRITE(HEATER_1_PIN, 1);
  1586. }
  1587. } else {
  1588. // turn OFF heather only if the minimum time is up
  1589. if (state_timer_heater_1 == 0) {
  1590. // if change state set timer
  1591. if (state_heater_1 == 1) {
  1592. state_timer_heater_1 = MIN_STATE_TIME;
  1593. }
  1594. state_heater_1 = 0;
  1595. WRITE(HEATER_1_PIN, 0);
  1596. }
  1597. }
  1598. #endif
  1599. #if EXTRUDERS > 2
  1600. // EXTRUDER 2
  1601. soft_pwm_2 = soft_pwm[2];
  1602. if (soft_pwm_2 > 0) {
  1603. // turn ON heather only if the minimum time is up
  1604. if (state_timer_heater_2 == 0) {
  1605. // if change state set timer
  1606. if (state_heater_2 == 0) {
  1607. state_timer_heater_2 = MIN_STATE_TIME;
  1608. }
  1609. state_heater_2 = 1;
  1610. WRITE(HEATER_2_PIN, 1);
  1611. }
  1612. } else {
  1613. // turn OFF heather only if the minimum time is up
  1614. if (state_timer_heater_2 == 0) {
  1615. // if change state set timer
  1616. if (state_heater_2 == 1) {
  1617. state_timer_heater_2 = MIN_STATE_TIME;
  1618. }
  1619. state_heater_2 = 0;
  1620. WRITE(HEATER_2_PIN, 0);
  1621. }
  1622. }
  1623. #endif
  1624. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1625. // BED
  1626. soft_pwm_b = soft_pwm_bed;
  1627. if (soft_pwm_b > 0) {
  1628. // turn ON heather only if the minimum time is up
  1629. if (state_timer_heater_b == 0) {
  1630. // if change state set timer
  1631. if (state_heater_b == 0) {
  1632. state_timer_heater_b = MIN_STATE_TIME;
  1633. }
  1634. state_heater_b = 1;
  1635. //WRITE(HEATER_BED_PIN, 1);
  1636. }
  1637. } else {
  1638. // turn OFF heather only if the minimum time is up
  1639. if (state_timer_heater_b == 0) {
  1640. // if change state set timer
  1641. if (state_heater_b == 1) {
  1642. state_timer_heater_b = MIN_STATE_TIME;
  1643. }
  1644. state_heater_b = 0;
  1645. WRITE(HEATER_BED_PIN, 0);
  1646. }
  1647. }
  1648. #endif
  1649. } // if (slow_pwm_count == 0)
  1650. // EXTRUDER 0
  1651. if (soft_pwm_0 < slow_pwm_count) {
  1652. // turn OFF heather only if the minimum time is up
  1653. if (state_timer_heater_0 == 0) {
  1654. // if change state set timer
  1655. if (state_heater_0 == 1) {
  1656. state_timer_heater_0 = MIN_STATE_TIME;
  1657. }
  1658. state_heater_0 = 0;
  1659. WRITE(HEATER_0_PIN, 0);
  1660. #ifdef HEATERS_PARALLEL
  1661. WRITE(HEATER_1_PIN, 0);
  1662. #endif
  1663. }
  1664. }
  1665. #if EXTRUDERS > 1
  1666. // EXTRUDER 1
  1667. if (soft_pwm_1 < slow_pwm_count) {
  1668. // turn OFF heather only if the minimum time is up
  1669. if (state_timer_heater_1 == 0) {
  1670. // if change state set timer
  1671. if (state_heater_1 == 1) {
  1672. state_timer_heater_1 = MIN_STATE_TIME;
  1673. }
  1674. state_heater_1 = 0;
  1675. WRITE(HEATER_1_PIN, 0);
  1676. }
  1677. }
  1678. #endif
  1679. #if EXTRUDERS > 2
  1680. // EXTRUDER 2
  1681. if (soft_pwm_2 < slow_pwm_count) {
  1682. // turn OFF heather only if the minimum time is up
  1683. if (state_timer_heater_2 == 0) {
  1684. // if change state set timer
  1685. if (state_heater_2 == 1) {
  1686. state_timer_heater_2 = MIN_STATE_TIME;
  1687. }
  1688. state_heater_2 = 0;
  1689. WRITE(HEATER_2_PIN, 0);
  1690. }
  1691. }
  1692. #endif
  1693. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1694. // BED
  1695. if (soft_pwm_b < slow_pwm_count) {
  1696. // turn OFF heather only if the minimum time is up
  1697. if (state_timer_heater_b == 0) {
  1698. // if change state set timer
  1699. if (state_heater_b == 1) {
  1700. state_timer_heater_b = MIN_STATE_TIME;
  1701. }
  1702. state_heater_b = 0;
  1703. WRITE(HEATER_BED_PIN, 0);
  1704. }
  1705. }
  1706. #endif
  1707. #ifdef FAN_SOFT_PWM
  1708. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1709. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1710. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1711. }
  1712. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1713. #endif
  1714. pwm_count += (1 << SOFT_PWM_SCALE);
  1715. pwm_count &= 0x7f;
  1716. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1717. if ((pwm_count % 64) == 0) {
  1718. slow_pwm_count++;
  1719. slow_pwm_count &= 0x7f;
  1720. // Extruder 0
  1721. if (state_timer_heater_0 > 0) {
  1722. state_timer_heater_0--;
  1723. }
  1724. #if EXTRUDERS > 1
  1725. // Extruder 1
  1726. if (state_timer_heater_1 > 0)
  1727. state_timer_heater_1--;
  1728. #endif
  1729. #if EXTRUDERS > 2
  1730. // Extruder 2
  1731. if (state_timer_heater_2 > 0)
  1732. state_timer_heater_2--;
  1733. #endif
  1734. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1735. // Bed
  1736. if (state_timer_heater_b > 0)
  1737. state_timer_heater_b--;
  1738. #endif
  1739. } //if ((pwm_count % 64) == 0) {
  1740. #endif //ifndef SLOW_PWM_HEATERS
  1741. #ifdef BABYSTEPPING
  1742. for(uint8_t axis=0;axis<3;axis++)
  1743. {
  1744. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1745. if(curTodo>0)
  1746. {
  1747. asm("cli");
  1748. babystep(axis,/*fwd*/true);
  1749. babystepsTodo[axis]--; //less to do next time
  1750. asm("sei");
  1751. }
  1752. else
  1753. if(curTodo<0)
  1754. {
  1755. asm("cli");
  1756. babystep(axis,/*fwd*/false);
  1757. babystepsTodo[axis]++; //less to do next time
  1758. asm("sei");
  1759. }
  1760. }
  1761. #endif //BABYSTEPPING
  1762. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1763. check_fans();
  1764. #endif //(defined(TACH_0))
  1765. _lock = false;
  1766. }
  1767. void check_max_temp()
  1768. {
  1769. //heater
  1770. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1771. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1772. #else
  1773. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1774. #endif
  1775. max_temp_error(0);
  1776. }
  1777. //bed
  1778. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1779. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1780. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1781. #else
  1782. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1783. #endif
  1784. target_temperature_bed = 0;
  1785. bed_max_temp_error();
  1786. }
  1787. #endif
  1788. }
  1789. void check_min_temp_heater0()
  1790. {
  1791. //heater
  1792. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1793. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1794. #else
  1795. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1796. #endif
  1797. min_temp_error(0);
  1798. }
  1799. }
  1800. void check_min_temp_bed()
  1801. {
  1802. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1803. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1804. #else
  1805. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1806. #endif
  1807. bed_min_temp_error();
  1808. }
  1809. }
  1810. void check_min_temp()
  1811. {
  1812. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1813. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1814. #ifdef AMBIENT_THERMISTOR
  1815. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1816. { // ambient temperature is low
  1817. #endif //AMBIENT_THERMISTOR
  1818. // *** 'common' part of code for MK2.5 & MK3
  1819. // * nozzle checking
  1820. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1821. { // ~ nozzle heating is on
  1822. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1823. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1824. {
  1825. bCheckingOnHeater=true; // not necessary
  1826. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1827. }
  1828. }
  1829. else { // ~ nozzle heating is off
  1830. oTimer4minTempHeater.start();
  1831. bCheckingOnHeater=false;
  1832. }
  1833. // * bed checking
  1834. if(target_temperature_bed>BED_MINTEMP)
  1835. { // ~ bed heating is on
  1836. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1837. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1838. {
  1839. bCheckingOnBed=true; // not necessary
  1840. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1841. }
  1842. }
  1843. else { // ~ bed heating is off
  1844. oTimer4minTempBed.start();
  1845. bCheckingOnBed=false;
  1846. }
  1847. // *** end of 'common' part
  1848. #ifdef AMBIENT_THERMISTOR
  1849. }
  1850. else { // ambient temperature is standard
  1851. check_min_temp_heater0();
  1852. check_min_temp_bed();
  1853. }
  1854. #endif //AMBIENT_THERMISTOR
  1855. }
  1856. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1857. void check_fans() {
  1858. #ifdef FAN_SOFT_PWM
  1859. if (READ(TACH_0) != fan_state[0]) {
  1860. if(fan_measuring) fan_edge_counter[0] ++;
  1861. fan_state[0] = !fan_state[0];
  1862. }
  1863. #else //FAN_SOFT_PWM
  1864. if (READ(TACH_0) != fan_state[0]) {
  1865. fan_edge_counter[0] ++;
  1866. fan_state[0] = !fan_state[0];
  1867. }
  1868. #endif
  1869. //if (READ(TACH_1) != fan_state[1]) {
  1870. // fan_edge_counter[1] ++;
  1871. // fan_state[1] = !fan_state[1];
  1872. //}
  1873. }
  1874. #endif //TACH_0
  1875. #ifdef PIDTEMP
  1876. // Apply the scale factors to the PID values
  1877. float scalePID_i(float i)
  1878. {
  1879. return i*PID_dT;
  1880. }
  1881. float unscalePID_i(float i)
  1882. {
  1883. return i/PID_dT;
  1884. }
  1885. float scalePID_d(float d)
  1886. {
  1887. return d/PID_dT;
  1888. }
  1889. float unscalePID_d(float d)
  1890. {
  1891. return d*PID_dT;
  1892. }
  1893. #endif //PIDTEMP