Marlin_main.cpp 232 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  180. // M907 - Set digital trimpot motor current using axis codes.
  181. // M908 - Control digital trimpot directly.
  182. // M350 - Set microstepping mode.
  183. // M351 - Toggle MS1 MS2 pins directly.
  184. // M928 - Start SD logging (M928 filename.g) - ended by M29
  185. // M999 - Restart after being stopped by error
  186. //Stepper Movement Variables
  187. //===========================================================================
  188. //=============================imported variables============================
  189. //===========================================================================
  190. //===========================================================================
  191. //=============================public variables=============================
  192. //===========================================================================
  193. #ifdef SDSUPPORT
  194. CardReader card;
  195. #endif
  196. unsigned long TimeSent = millis();
  197. unsigned long TimeNow = millis();
  198. unsigned long PingTime = millis();
  199. unsigned long NcTime;
  200. union Data
  201. {
  202. byte b[2];
  203. int value;
  204. };
  205. float homing_feedrate[] = HOMING_FEEDRATE;
  206. // Currently only the extruder axis may be switched to a relative mode.
  207. // Other axes are always absolute or relative based on the common relative_mode flag.
  208. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  209. int feedmultiply=100; //100->1 200->2
  210. int saved_feedmultiply;
  211. int extrudemultiply=100; //100->1 200->2
  212. int extruder_multiply[EXTRUDERS] = {100
  213. #if EXTRUDERS > 1
  214. , 100
  215. #if EXTRUDERS > 2
  216. , 100
  217. #endif
  218. #endif
  219. };
  220. int bowden_length[4];
  221. bool is_usb_printing = false;
  222. bool homing_flag = false;
  223. bool temp_cal_active = false;
  224. unsigned long kicktime = millis()+100000;
  225. unsigned int usb_printing_counter;
  226. int lcd_change_fil_state = 0;
  227. int feedmultiplyBckp = 100;
  228. float HotendTempBckp = 0;
  229. int fanSpeedBckp = 0;
  230. float pause_lastpos[4];
  231. unsigned long pause_time = 0;
  232. unsigned long start_pause_print = millis();
  233. unsigned long load_filament_time;
  234. bool mesh_bed_leveling_flag = false;
  235. bool mesh_bed_run_from_menu = false;
  236. unsigned char lang_selected = 0;
  237. bool prusa_sd_card_upload = false;
  238. unsigned int status_number = 0;
  239. unsigned long total_filament_used;
  240. unsigned int heating_status;
  241. unsigned int heating_status_counter;
  242. bool custom_message;
  243. bool loading_flag = false;
  244. unsigned int custom_message_type;
  245. unsigned int custom_message_state;
  246. char snmm_filaments_used = 0;
  247. int selectedSerialPort;
  248. float distance_from_min[3];
  249. bool sortAlpha = false;
  250. bool volumetric_enabled = false;
  251. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  252. #if EXTRUDERS > 1
  253. , DEFAULT_NOMINAL_FILAMENT_DIA
  254. #if EXTRUDERS > 2
  255. , DEFAULT_NOMINAL_FILAMENT_DIA
  256. #endif
  257. #endif
  258. };
  259. float volumetric_multiplier[EXTRUDERS] = {1.0
  260. #if EXTRUDERS > 1
  261. , 1.0
  262. #if EXTRUDERS > 2
  263. , 1.0
  264. #endif
  265. #endif
  266. };
  267. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  268. float add_homing[3]={0,0,0};
  269. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  270. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  271. bool axis_known_position[3] = {false, false, false};
  272. float zprobe_zoffset;
  273. // Extruder offset
  274. #if EXTRUDERS > 1
  275. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  276. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  277. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  278. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  279. #endif
  280. };
  281. #endif
  282. uint8_t active_extruder = 0;
  283. int fanSpeed=0;
  284. #ifdef FWRETRACT
  285. bool autoretract_enabled=false;
  286. bool retracted[EXTRUDERS]={false
  287. #if EXTRUDERS > 1
  288. , false
  289. #if EXTRUDERS > 2
  290. , false
  291. #endif
  292. #endif
  293. };
  294. bool retracted_swap[EXTRUDERS]={false
  295. #if EXTRUDERS > 1
  296. , false
  297. #if EXTRUDERS > 2
  298. , false
  299. #endif
  300. #endif
  301. };
  302. float retract_length = RETRACT_LENGTH;
  303. float retract_length_swap = RETRACT_LENGTH_SWAP;
  304. float retract_feedrate = RETRACT_FEEDRATE;
  305. float retract_zlift = RETRACT_ZLIFT;
  306. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  307. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  308. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  309. #endif
  310. #ifdef ULTIPANEL
  311. #ifdef PS_DEFAULT_OFF
  312. bool powersupply = false;
  313. #else
  314. bool powersupply = true;
  315. #endif
  316. #endif
  317. bool cancel_heatup = false ;
  318. #ifdef HOST_KEEPALIVE_FEATURE
  319. MarlinBusyState busy_state = NOT_BUSY;
  320. static long prev_busy_signal_ms = -1;
  321. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  322. #else
  323. #define host_keepalive();
  324. #define KEEPALIVE_STATE(n);
  325. #endif
  326. #ifdef FILAMENT_SENSOR
  327. //Variables for Filament Sensor input
  328. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  329. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  330. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  331. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  332. int delay_index1=0; //index into ring buffer
  333. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  334. float delay_dist=0; //delay distance counter
  335. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  336. #endif
  337. const char errormagic[] PROGMEM = "Error:";
  338. const char echomagic[] PROGMEM = "echo:";
  339. bool no_response = false;
  340. uint8_t important_status;
  341. uint8_t saved_filament_type;
  342. //===========================================================================
  343. //=============================Private Variables=============================
  344. //===========================================================================
  345. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  346. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  347. // For tracing an arc
  348. static float offset[3] = {0.0, 0.0, 0.0};
  349. static bool home_all_axis = true;
  350. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  351. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  352. // Determines Absolute or Relative Coordinates.
  353. // Also there is bool axis_relative_modes[] per axis flag.
  354. static bool relative_mode = false;
  355. // String circular buffer. Commands may be pushed to the buffer from both sides:
  356. // Chained commands will be pushed to the front, interactive (from LCD menu)
  357. // and printing commands (from serial line or from SD card) are pushed to the tail.
  358. // First character of each entry indicates the type of the entry:
  359. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  360. // Command in cmdbuffer was sent over USB.
  361. #define CMDBUFFER_CURRENT_TYPE_USB 1
  362. // Command in cmdbuffer was read from SDCARD.
  363. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  364. // Command in cmdbuffer was generated by the UI.
  365. #define CMDBUFFER_CURRENT_TYPE_UI 3
  366. // Command in cmdbuffer was generated by another G-code.
  367. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  368. // How much space to reserve for the chained commands
  369. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  370. // which are pushed to the front of the queue?
  371. // Maximum 5 commands of max length 20 + null terminator.
  372. #define CMDBUFFER_RESERVE_FRONT (5*21)
  373. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  374. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  375. // Head of the circular buffer, where to read.
  376. static int bufindr = 0;
  377. // Tail of the buffer, where to write.
  378. static int bufindw = 0;
  379. // Number of lines in cmdbuffer.
  380. static int buflen = 0;
  381. // Flag for processing the current command inside the main Arduino loop().
  382. // If a new command was pushed to the front of a command buffer while
  383. // processing another command, this replaces the command on the top.
  384. // Therefore don't remove the command from the queue in the loop() function.
  385. static bool cmdbuffer_front_already_processed = false;
  386. // Type of a command, which is to be executed right now.
  387. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  388. // String of a command, which is to be executed right now.
  389. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  390. // Enable debugging of the command buffer.
  391. // Debugging information will be sent to serial line.
  392. // #define CMDBUFFER_DEBUG
  393. static int serial_count = 0; //index of character read from serial line
  394. static boolean comment_mode = false;
  395. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  396. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  397. //static float tt = 0;
  398. //static float bt = 0;
  399. //Inactivity shutdown variables
  400. static unsigned long previous_millis_cmd = 0;
  401. unsigned long max_inactive_time = 0;
  402. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  403. unsigned long starttime=0;
  404. unsigned long stoptime=0;
  405. unsigned long _usb_timer = 0;
  406. static uint8_t tmp_extruder;
  407. bool Stopped=false;
  408. #if NUM_SERVOS > 0
  409. Servo servos[NUM_SERVOS];
  410. #endif
  411. bool CooldownNoWait = true;
  412. bool target_direction;
  413. //Insert variables if CHDK is defined
  414. #ifdef CHDK
  415. unsigned long chdkHigh = 0;
  416. boolean chdkActive = false;
  417. #endif
  418. static int saved_feedmultiply_mm = 100;
  419. //===========================================================================
  420. //=============================Routines======================================
  421. //===========================================================================
  422. void get_arc_coordinates();
  423. bool setTargetedHotend(int code);
  424. void serial_echopair_P(const char *s_P, float v)
  425. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. void serial_echopair_P(const char *s_P, double v)
  427. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char *s_P, unsigned long v)
  429. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. #ifdef SDSUPPORT
  431. #include "SdFatUtil.h"
  432. int freeMemory() { return SdFatUtil::FreeRam(); }
  433. #else
  434. extern "C" {
  435. extern unsigned int __bss_end;
  436. extern unsigned int __heap_start;
  437. extern void *__brkval;
  438. int freeMemory() {
  439. int free_memory;
  440. if ((int)__brkval == 0)
  441. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  442. else
  443. free_memory = ((int)&free_memory) - ((int)__brkval);
  444. return free_memory;
  445. }
  446. }
  447. #endif //!SDSUPPORT
  448. // Pop the currently processed command from the queue.
  449. // It is expected, that there is at least one command in the queue.
  450. bool cmdqueue_pop_front()
  451. {
  452. if (buflen > 0) {
  453. #ifdef CMDBUFFER_DEBUG
  454. SERIAL_ECHOPGM("Dequeing ");
  455. SERIAL_ECHO(cmdbuffer+bufindr+1);
  456. SERIAL_ECHOLNPGM("");
  457. SERIAL_ECHOPGM("Old indices: buflen ");
  458. SERIAL_ECHO(buflen);
  459. SERIAL_ECHOPGM(", bufindr ");
  460. SERIAL_ECHO(bufindr);
  461. SERIAL_ECHOPGM(", bufindw ");
  462. SERIAL_ECHO(bufindw);
  463. SERIAL_ECHOPGM(", serial_count ");
  464. SERIAL_ECHO(serial_count);
  465. SERIAL_ECHOPGM(", bufsize ");
  466. SERIAL_ECHO(sizeof(cmdbuffer));
  467. SERIAL_ECHOLNPGM("");
  468. #endif /* CMDBUFFER_DEBUG */
  469. if (-- buflen == 0) {
  470. // Empty buffer.
  471. if (serial_count == 0)
  472. // No serial communication is pending. Reset both pointers to zero.
  473. bufindw = 0;
  474. bufindr = bufindw;
  475. } else {
  476. // There is at least one ready line in the buffer.
  477. // First skip the current command ID and iterate up to the end of the string.
  478. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  479. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  480. for (++ bufindr; (bufindr < (int)sizeof(cmdbuffer)) && (cmdbuffer[bufindr] == 0); ++ bufindr) ;
  481. // If the end of the buffer was empty,
  482. if (bufindr == sizeof(cmdbuffer)) {
  483. // skip to the start and find the nonzero command.
  484. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  485. }
  486. #ifdef CMDBUFFER_DEBUG
  487. SERIAL_ECHOPGM("New indices: buflen ");
  488. SERIAL_ECHO(buflen);
  489. SERIAL_ECHOPGM(", bufindr ");
  490. SERIAL_ECHO(bufindr);
  491. SERIAL_ECHOPGM(", bufindw ");
  492. SERIAL_ECHO(bufindw);
  493. SERIAL_ECHOPGM(", serial_count ");
  494. SERIAL_ECHO(serial_count);
  495. SERIAL_ECHOPGM(" new command on the top: ");
  496. SERIAL_ECHO(cmdbuffer+bufindr+1);
  497. SERIAL_ECHOLNPGM("");
  498. #endif /* CMDBUFFER_DEBUG */
  499. }
  500. return true;
  501. }
  502. return false;
  503. }
  504. void cmdqueue_reset()
  505. {
  506. while (cmdqueue_pop_front()) ;
  507. }
  508. // How long a string could be pushed to the front of the command queue?
  509. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  510. // len_asked does not contain the zero terminator size.
  511. bool cmdqueue_could_enqueue_front(int len_asked)
  512. {
  513. // MAX_CMD_SIZE has to accommodate the zero terminator.
  514. if (len_asked >= MAX_CMD_SIZE)
  515. return false;
  516. // Remove the currently processed command from the queue.
  517. if (! cmdbuffer_front_already_processed) {
  518. cmdqueue_pop_front();
  519. cmdbuffer_front_already_processed = true;
  520. }
  521. if (bufindr == bufindw && buflen > 0)
  522. // Full buffer.
  523. return false;
  524. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  525. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  526. if (bufindw < bufindr) {
  527. int bufindr_new = bufindr - len_asked - 2;
  528. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  529. if (endw <= bufindr_new) {
  530. bufindr = bufindr_new;
  531. return true;
  532. }
  533. } else {
  534. // Otherwise the free space is split between the start and end.
  535. if (len_asked + 2 <= bufindr) {
  536. // Could fit at the start.
  537. bufindr -= len_asked + 2;
  538. return true;
  539. }
  540. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  541. if (endw <= bufindr_new) {
  542. memset(cmdbuffer, 0, bufindr);
  543. bufindr = bufindr_new;
  544. return true;
  545. }
  546. }
  547. return false;
  548. }
  549. // Could one enqueue a command of lenthg len_asked into the buffer,
  550. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  551. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  552. // len_asked does not contain the zero terminator size.
  553. bool cmdqueue_could_enqueue_back(int len_asked)
  554. {
  555. // MAX_CMD_SIZE has to accommodate the zero terminator.
  556. if (len_asked >= MAX_CMD_SIZE)
  557. return false;
  558. if (bufindr == bufindw && buflen > 0)
  559. // Full buffer.
  560. return false;
  561. if (serial_count > 0) {
  562. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  563. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  564. // serial data.
  565. // How much memory to reserve for the commands pushed to the front?
  566. // End of the queue, when pushing to the end.
  567. int endw = bufindw + len_asked + 2;
  568. if (bufindw < bufindr)
  569. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  570. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  571. // Otherwise the free space is split between the start and end.
  572. if (// Could one fit to the end, including the reserve?
  573. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  574. // Could one fit to the end, and the reserve to the start?
  575. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  576. return true;
  577. // Could one fit both to the start?
  578. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  579. // Mark the rest of the buffer as used.
  580. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  581. // and point to the start.
  582. bufindw = 0;
  583. return true;
  584. }
  585. } else {
  586. // How much memory to reserve for the commands pushed to the front?
  587. // End of the queue, when pushing to the end.
  588. int endw = bufindw + len_asked + 2;
  589. if (bufindw < bufindr)
  590. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  591. return ((endw + CMDBUFFER_RESERVE_FRONT) <= bufindr);
  592. // Otherwise the free space is split between the start and end.
  593. if (// Could one fit to the end, including the reserve?
  594. (endw + CMDBUFFER_RESERVE_FRONT <= (int)sizeof(cmdbuffer)) ||
  595. // Could one fit to the end, and the reserve to the start?
  596. ((endw <= (int)sizeof(cmdbuffer)) && (CMDBUFFER_RESERVE_FRONT <= bufindr)))
  597. return true;
  598. // Could one fit both to the start?
  599. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  600. // Mark the rest of the buffer as used.
  601. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  602. // and point to the start.
  603. bufindw = 0;
  604. return true;
  605. }
  606. }
  607. return false;
  608. }
  609. #ifdef CMDBUFFER_DEBUG
  610. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  611. {
  612. SERIAL_ECHOPGM("Entry nr: ");
  613. SERIAL_ECHO(nr);
  614. SERIAL_ECHOPGM(", type: ");
  615. SERIAL_ECHO(int(*p));
  616. SERIAL_ECHOPGM(", cmd: ");
  617. SERIAL_ECHO(p+1);
  618. SERIAL_ECHOLNPGM("");
  619. }
  620. static void cmdqueue_dump_to_serial()
  621. {
  622. if (buflen == 0) {
  623. SERIAL_ECHOLNPGM("The command buffer is empty.");
  624. } else {
  625. SERIAL_ECHOPGM("Content of the buffer: entries ");
  626. SERIAL_ECHO(buflen);
  627. SERIAL_ECHOPGM(", indr ");
  628. SERIAL_ECHO(bufindr);
  629. SERIAL_ECHOPGM(", indw ");
  630. SERIAL_ECHO(bufindw);
  631. SERIAL_ECHOLNPGM("");
  632. int nr = 0;
  633. if (bufindr < bufindw) {
  634. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  635. cmdqueue_dump_to_serial_single_line(nr, p);
  636. // Skip the command.
  637. for (++p; *p != 0; ++ p);
  638. // Skip the gaps.
  639. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  640. }
  641. } else {
  642. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  643. cmdqueue_dump_to_serial_single_line(nr, p);
  644. // Skip the command.
  645. for (++p; *p != 0; ++ p);
  646. // Skip the gaps.
  647. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  648. }
  649. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  650. cmdqueue_dump_to_serial_single_line(nr, p);
  651. // Skip the command.
  652. for (++p; *p != 0; ++ p);
  653. // Skip the gaps.
  654. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  655. }
  656. }
  657. SERIAL_ECHOLNPGM("End of the buffer.");
  658. }
  659. }
  660. #endif /* CMDBUFFER_DEBUG */
  661. //adds an command to the main command buffer
  662. //thats really done in a non-safe way.
  663. //needs overworking someday
  664. // Currently the maximum length of a command piped through this function is around 20 characters
  665. void enquecommand(const char *cmd, bool from_progmem)
  666. {
  667. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  668. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  669. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  670. if (cmdqueue_could_enqueue_back(len)) {
  671. // This is dangerous if a mixing of serial and this happens
  672. // This may easily be tested: If serial_count > 0, we have a problem.
  673. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  674. if (from_progmem)
  675. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  676. else
  677. strcpy(cmdbuffer + bufindw + 1, cmd);
  678. if (!farm_mode) {
  679. SERIAL_ECHO_START;
  680. SERIAL_ECHORPGM(MSG_Enqueing);
  681. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  682. SERIAL_ECHOLNPGM("\"");
  683. }
  684. bufindw += len + 2;
  685. if (bufindw == sizeof(cmdbuffer))
  686. bufindw = 0;
  687. ++ buflen;
  688. #ifdef CMDBUFFER_DEBUG
  689. cmdqueue_dump_to_serial();
  690. #endif /* CMDBUFFER_DEBUG */
  691. } else {
  692. SERIAL_ERROR_START;
  693. SERIAL_ECHORPGM(MSG_Enqueing);
  694. if (from_progmem)
  695. SERIAL_PROTOCOLRPGM(cmd);
  696. else
  697. SERIAL_ECHO(cmd);
  698. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  699. #ifdef CMDBUFFER_DEBUG
  700. cmdqueue_dump_to_serial();
  701. #endif /* CMDBUFFER_DEBUG */
  702. }
  703. }
  704. bool cmd_buffer_empty()
  705. {
  706. return (buflen == 0);
  707. }
  708. void enquecommand_front(const char *cmd, bool from_progmem)
  709. {
  710. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  711. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  712. if (cmdqueue_could_enqueue_front(len)) {
  713. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  714. if (from_progmem)
  715. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  716. else
  717. strcpy(cmdbuffer + bufindr + 1, cmd);
  718. ++ buflen;
  719. if (!farm_mode) {
  720. SERIAL_ECHO_START;
  721. SERIAL_ECHOPGM("Enqueing to the front: \"");
  722. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  723. SERIAL_ECHOLNPGM("\"");
  724. }
  725. #ifdef CMDBUFFER_DEBUG
  726. cmdqueue_dump_to_serial();
  727. #endif /* CMDBUFFER_DEBUG */
  728. } else {
  729. SERIAL_ERROR_START;
  730. SERIAL_ECHOPGM("Enqueing to the front: \"");
  731. if (from_progmem)
  732. SERIAL_PROTOCOLRPGM(cmd);
  733. else
  734. SERIAL_ECHO(cmd);
  735. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  736. #ifdef CMDBUFFER_DEBUG
  737. cmdqueue_dump_to_serial();
  738. #endif /* CMDBUFFER_DEBUG */
  739. }
  740. }
  741. // Mark the command at the top of the command queue as new.
  742. // Therefore it will not be removed from the queue.
  743. void repeatcommand_front()
  744. {
  745. cmdbuffer_front_already_processed = true;
  746. }
  747. bool is_buffer_empty()
  748. {
  749. if (buflen == 0) return true;
  750. else return false;
  751. }
  752. void setup_killpin()
  753. {
  754. #if defined(KILL_PIN) && KILL_PIN > -1
  755. SET_INPUT(KILL_PIN);
  756. WRITE(KILL_PIN,HIGH);
  757. #endif
  758. }
  759. // Set home pin
  760. void setup_homepin(void)
  761. {
  762. #if defined(HOME_PIN) && HOME_PIN > -1
  763. SET_INPUT(HOME_PIN);
  764. WRITE(HOME_PIN,HIGH);
  765. #endif
  766. }
  767. void setup_photpin()
  768. {
  769. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  770. SET_OUTPUT(PHOTOGRAPH_PIN);
  771. WRITE(PHOTOGRAPH_PIN, LOW);
  772. #endif
  773. }
  774. void setup_powerhold()
  775. {
  776. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  777. SET_OUTPUT(SUICIDE_PIN);
  778. WRITE(SUICIDE_PIN, HIGH);
  779. #endif
  780. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  781. SET_OUTPUT(PS_ON_PIN);
  782. #if defined(PS_DEFAULT_OFF)
  783. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  784. #else
  785. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  786. #endif
  787. #endif
  788. }
  789. void suicide()
  790. {
  791. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  792. SET_OUTPUT(SUICIDE_PIN);
  793. WRITE(SUICIDE_PIN, LOW);
  794. #endif
  795. }
  796. void servo_init()
  797. {
  798. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  799. servos[0].attach(SERVO0_PIN);
  800. #endif
  801. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  802. servos[1].attach(SERVO1_PIN);
  803. #endif
  804. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  805. servos[2].attach(SERVO2_PIN);
  806. #endif
  807. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  808. servos[3].attach(SERVO3_PIN);
  809. #endif
  810. #if (NUM_SERVOS >= 5)
  811. #error "TODO: enter initalisation code for more servos"
  812. #endif
  813. }
  814. #ifdef MESH_BED_LEVELING
  815. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  816. #endif
  817. // Factory reset function
  818. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  819. // Level input parameter sets depth of reset
  820. // Quiet parameter masks all waitings for user interact.
  821. int er_progress = 0;
  822. void factory_reset(char level, bool quiet)
  823. {
  824. lcd_implementation_clear();
  825. switch (level) {
  826. // Level 0: Language reset
  827. case 0:
  828. WRITE(BEEPER, HIGH);
  829. _delay_ms(100);
  830. WRITE(BEEPER, LOW);
  831. lcd_force_language_selection();
  832. break;
  833. //Level 1: Reset statistics
  834. case 1:
  835. WRITE(BEEPER, HIGH);
  836. _delay_ms(100);
  837. WRITE(BEEPER, LOW);
  838. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  839. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  840. lcd_menu_statistics();
  841. break;
  842. // Level 2: Prepare for shipping
  843. case 2:
  844. //lcd_printPGM(PSTR("Factory RESET"));
  845. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  846. // Force language selection at the next boot up.
  847. lcd_force_language_selection();
  848. // Force the "Follow calibration flow" message at the next boot up.
  849. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  850. farm_no = 0;
  851. farm_mode = 0;
  852. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  853. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  854. WRITE(BEEPER, HIGH);
  855. _delay_ms(100);
  856. WRITE(BEEPER, LOW);
  857. //_delay_ms(2000);
  858. break;
  859. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  860. case 3:
  861. lcd_printPGM(PSTR("Factory RESET"));
  862. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  863. WRITE(BEEPER, HIGH);
  864. _delay_ms(100);
  865. WRITE(BEEPER, LOW);
  866. er_progress = 0;
  867. lcd_print_at_PGM(3, 3, PSTR(" "));
  868. lcd_implementation_print_at(3, 3, er_progress);
  869. // Erase EEPROM
  870. for (int i = 0; i < 4096; i++) {
  871. eeprom_write_byte((uint8_t*)i, 0xFF);
  872. if (i % 41 == 0) {
  873. er_progress++;
  874. lcd_print_at_PGM(3, 3, PSTR(" "));
  875. lcd_implementation_print_at(3, 3, er_progress);
  876. lcd_printPGM(PSTR("%"));
  877. }
  878. }
  879. break;
  880. case 4:
  881. bowden_menu();
  882. break;
  883. default:
  884. break;
  885. }
  886. }
  887. // "Setup" function is called by the Arduino framework on startup.
  888. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  889. // are initialized by the main() routine provided by the Arduino framework.
  890. void setup()
  891. {
  892. lcd_init();
  893. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  894. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  895. setup_killpin();
  896. setup_powerhold();
  897. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  898. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  899. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  900. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  901. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  902. if (farm_mode)
  903. {
  904. prusa_statistics(8);
  905. no_response = true; //we need confirmation by recieving PRUSA thx
  906. important_status = 8;
  907. selectedSerialPort = 1;
  908. } else {
  909. selectedSerialPort = 0;
  910. }
  911. MYSERIAL.begin(BAUDRATE);
  912. SERIAL_PROTOCOLLNPGM("start");
  913. SERIAL_ECHO_START;
  914. #if 0
  915. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  916. for (int i = 0; i < 4096; ++i) {
  917. int b = eeprom_read_byte((unsigned char*)i);
  918. if (b != 255) {
  919. SERIAL_ECHO(i);
  920. SERIAL_ECHO(":");
  921. SERIAL_ECHO(b);
  922. SERIAL_ECHOLN("");
  923. }
  924. }
  925. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  926. #endif
  927. // Check startup - does nothing if bootloader sets MCUSR to 0
  928. byte mcu = MCUSR;
  929. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  930. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  931. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  932. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  933. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  934. MCUSR = 0;
  935. //SERIAL_ECHORPGM(MSG_MARLIN);
  936. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  937. #ifdef STRING_VERSION_CONFIG_H
  938. #ifdef STRING_CONFIG_H_AUTHOR
  939. SERIAL_ECHO_START;
  940. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  941. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  942. SERIAL_ECHORPGM(MSG_AUTHOR);
  943. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  944. SERIAL_ECHOPGM("Compiled: ");
  945. SERIAL_ECHOLNPGM(__DATE__);
  946. #endif
  947. #endif
  948. SERIAL_ECHO_START;
  949. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  950. SERIAL_ECHO(freeMemory());
  951. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  952. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  953. lcd_update_enable(false);
  954. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  955. bool previous_settings_retrieved = Config_RetrieveSettings();
  956. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  957. tp_init(); // Initialize temperature loop
  958. plan_init(); // Initialize planner;
  959. watchdog_init();
  960. st_init(); // Initialize stepper, this enables interrupts!
  961. setup_photpin();
  962. servo_init();
  963. // Reset the machine correction matrix.
  964. // It does not make sense to load the correction matrix until the machine is homed.
  965. world2machine_reset();
  966. lcd_init();
  967. KEEPALIVE_STATE(PAUSED_FOR_USER);
  968. if (!READ(BTN_ENC))
  969. {
  970. _delay_ms(1000);
  971. if (!READ(BTN_ENC))
  972. {
  973. lcd_implementation_clear();
  974. lcd_printPGM(PSTR("Factory RESET"));
  975. SET_OUTPUT(BEEPER);
  976. WRITE(BEEPER, HIGH);
  977. while (!READ(BTN_ENC));
  978. WRITE(BEEPER, LOW);
  979. _delay_ms(2000);
  980. char level = reset_menu();
  981. factory_reset(level, false);
  982. switch (level) {
  983. case 0: _delay_ms(0); break;
  984. case 1: _delay_ms(0); break;
  985. case 2: _delay_ms(0); break;
  986. case 3: _delay_ms(0); break;
  987. }
  988. // _delay_ms(100);
  989. /*
  990. #ifdef MESH_BED_LEVELING
  991. _delay_ms(2000);
  992. if (!READ(BTN_ENC))
  993. {
  994. WRITE(BEEPER, HIGH);
  995. _delay_ms(100);
  996. WRITE(BEEPER, LOW);
  997. _delay_ms(200);
  998. WRITE(BEEPER, HIGH);
  999. _delay_ms(100);
  1000. WRITE(BEEPER, LOW);
  1001. int _z = 0;
  1002. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1003. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  1004. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  1005. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  1006. }
  1007. else
  1008. {
  1009. WRITE(BEEPER, HIGH);
  1010. _delay_ms(100);
  1011. WRITE(BEEPER, LOW);
  1012. }
  1013. #endif // mesh */
  1014. }
  1015. }
  1016. else
  1017. {
  1018. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1019. }
  1020. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1021. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1022. #endif
  1023. #ifdef DIGIPOT_I2C
  1024. digipot_i2c_init();
  1025. #endif
  1026. setup_homepin();
  1027. #if defined(Z_AXIS_ALWAYS_ON)
  1028. enable_z();
  1029. #endif
  1030. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1031. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1032. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1033. // but this times out if a blocking dialog is shown in setup().
  1034. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  1035. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  1036. card.initsd();
  1037. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1038. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1039. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1040. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1041. // where all the EEPROM entries are set to 0x0ff.
  1042. // Once a firmware boots up, it forces at least a language selection, which changes
  1043. // EEPROM_LANG to number lower than 0x0ff.
  1044. // 1) Set a high power mode.
  1045. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1046. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1047. }
  1048. #ifdef SNMM
  1049. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1050. int _z = BOWDEN_LENGTH;
  1051. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1052. }
  1053. #endif
  1054. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1055. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1056. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1057. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1058. if (lang_selected >= LANG_NUM){
  1059. lcd_mylang();
  1060. }
  1061. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1062. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1063. temp_cal_active = false;
  1064. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1065. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1066. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1067. }
  1068. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1069. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1070. }
  1071. #ifndef DEBUG_DISABLE_STARTMSGS
  1072. check_babystep(); //checking if Z babystep is in allowed range
  1073. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1074. lcd_wizard(0);
  1075. }
  1076. else if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1077. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1078. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1079. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION){
  1080. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1081. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1082. // Show the message.
  1083. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1084. }
  1085. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1086. // Show the message.
  1087. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1088. lcd_update_enable(true);
  1089. }
  1090. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1091. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1092. lcd_update_enable(true);
  1093. }
  1094. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1095. // Show the message.
  1096. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1097. }
  1098. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1099. if (!previous_settings_retrieved) {
  1100. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1101. }
  1102. }
  1103. for (int i = 0; i < 4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1104. #endif //DEBUG_DISABLE_STARTMSGS
  1105. lcd_update_enable(true);
  1106. // Store the currently running firmware into an eeprom,
  1107. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1108. update_current_firmware_version_to_eeprom();
  1109. KEEPALIVE_STATE(NOT_BUSY);
  1110. }
  1111. void trace();
  1112. #define CHUNK_SIZE 64 // bytes
  1113. #define SAFETY_MARGIN 1
  1114. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1115. int chunkHead = 0;
  1116. void serial_read_stream() {
  1117. setTargetHotend(0, 0);
  1118. setTargetBed(0);
  1119. lcd_implementation_clear();
  1120. lcd_printPGM(PSTR(" Upload in progress"));
  1121. // first wait for how many bytes we will receive
  1122. uint32_t bytesToReceive;
  1123. // receive the four bytes
  1124. char bytesToReceiveBuffer[4];
  1125. for (int i=0; i<4; i++) {
  1126. int data;
  1127. while ((data = MYSERIAL.read()) == -1) {};
  1128. bytesToReceiveBuffer[i] = data;
  1129. }
  1130. // make it a uint32
  1131. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1132. // we're ready, notify the sender
  1133. MYSERIAL.write('+');
  1134. // lock in the routine
  1135. uint32_t receivedBytes = 0;
  1136. while (prusa_sd_card_upload) {
  1137. int i;
  1138. for (i=0; i<CHUNK_SIZE; i++) {
  1139. int data;
  1140. // check if we're not done
  1141. if (receivedBytes == bytesToReceive) {
  1142. break;
  1143. }
  1144. // read the next byte
  1145. while ((data = MYSERIAL.read()) == -1) {};
  1146. receivedBytes++;
  1147. // save it to the chunk
  1148. chunk[i] = data;
  1149. }
  1150. // write the chunk to SD
  1151. card.write_command_no_newline(&chunk[0]);
  1152. // notify the sender we're ready for more data
  1153. MYSERIAL.write('+');
  1154. // for safety
  1155. manage_heater();
  1156. // check if we're done
  1157. if(receivedBytes == bytesToReceive) {
  1158. trace(); // beep
  1159. card.closefile();
  1160. prusa_sd_card_upload = false;
  1161. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1162. return;
  1163. }
  1164. }
  1165. }
  1166. #ifdef HOST_KEEPALIVE_FEATURE
  1167. /**
  1168. * Output a "busy" message at regular intervals
  1169. * while the machine is not accepting commands.
  1170. */
  1171. void host_keepalive() {
  1172. if (farm_mode) return;
  1173. long ms = millis();
  1174. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1175. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1176. switch (busy_state) {
  1177. case IN_HANDLER:
  1178. case IN_PROCESS:
  1179. SERIAL_ECHO_START;
  1180. SERIAL_ECHOLNPGM("busy: processing");
  1181. break;
  1182. case PAUSED_FOR_USER:
  1183. SERIAL_ECHO_START;
  1184. SERIAL_ECHOLNPGM("busy: paused for user");
  1185. break;
  1186. case PAUSED_FOR_INPUT:
  1187. SERIAL_ECHO_START;
  1188. SERIAL_ECHOLNPGM("busy: paused for input");
  1189. break;
  1190. default:
  1191. break;
  1192. }
  1193. }
  1194. prev_busy_signal_ms = ms;
  1195. }
  1196. #endif
  1197. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1198. // Before loop(), the setup() function is called by the main() routine.
  1199. void loop()
  1200. {
  1201. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1202. {
  1203. is_usb_printing = true;
  1204. usb_printing_counter--;
  1205. _usb_timer = millis();
  1206. }
  1207. if (usb_printing_counter == 0)
  1208. {
  1209. is_usb_printing = false;
  1210. }
  1211. if (prusa_sd_card_upload)
  1212. {
  1213. //we read byte-by byte
  1214. serial_read_stream();
  1215. } else
  1216. {
  1217. get_command();
  1218. #ifdef SDSUPPORT
  1219. card.checkautostart(false);
  1220. #endif
  1221. if(buflen)
  1222. {
  1223. #ifdef SDSUPPORT
  1224. if(card.saving)
  1225. {
  1226. // Saving a G-code file onto an SD-card is in progress.
  1227. // Saving starts with M28, saving until M29 is seen.
  1228. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1229. card.write_command(CMDBUFFER_CURRENT_STRING);
  1230. if(card.logging)
  1231. process_commands();
  1232. else
  1233. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1234. } else {
  1235. card.closefile();
  1236. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1237. }
  1238. } else {
  1239. process_commands();
  1240. }
  1241. #else
  1242. process_commands();
  1243. #endif //SDSUPPORT
  1244. if (! cmdbuffer_front_already_processed)
  1245. cmdqueue_pop_front();
  1246. cmdbuffer_front_already_processed = false;
  1247. host_keepalive();
  1248. }
  1249. }
  1250. //check heater every n milliseconds
  1251. manage_heater();
  1252. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1253. checkHitEndstops();
  1254. lcd_update();
  1255. }
  1256. void proc_commands() {
  1257. if (buflen)
  1258. {
  1259. process_commands();
  1260. if (!cmdbuffer_front_already_processed)
  1261. cmdqueue_pop_front();
  1262. cmdbuffer_front_already_processed = false;
  1263. }
  1264. }
  1265. void get_command()
  1266. {
  1267. // Test and reserve space for the new command string.
  1268. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1269. return;
  1270. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1271. while (MYSERIAL.available() > 0) {
  1272. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1273. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1274. rx_buffer_full = true; //sets flag that buffer was full
  1275. }
  1276. char serial_char = MYSERIAL.read();
  1277. if (selectedSerialPort == 1) {
  1278. selectedSerialPort = 0;
  1279. MYSERIAL.write(serial_char);
  1280. selectedSerialPort = 1;
  1281. }
  1282. TimeSent = millis();
  1283. TimeNow = millis();
  1284. if (serial_char < 0)
  1285. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1286. // and Marlin does not support such file names anyway.
  1287. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1288. // to a hang-up of the print process from an SD card.
  1289. continue;
  1290. if(serial_char == '\n' ||
  1291. serial_char == '\r' ||
  1292. (serial_char == ':' && comment_mode == false) ||
  1293. serial_count >= (MAX_CMD_SIZE - 1) )
  1294. {
  1295. if(!serial_count) { //if empty line
  1296. comment_mode = false; //for new command
  1297. return;
  1298. }
  1299. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1300. if(!comment_mode){
  1301. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1302. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1303. {
  1304. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1305. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1306. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1307. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1308. // M110 - set current line number.
  1309. // Line numbers not sent in succession.
  1310. SERIAL_ERROR_START;
  1311. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1312. SERIAL_ERRORLN(gcode_LastN);
  1313. //Serial.println(gcode_N);
  1314. FlushSerialRequestResend();
  1315. serial_count = 0;
  1316. return;
  1317. }
  1318. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1319. {
  1320. byte checksum = 0;
  1321. char *p = cmdbuffer+bufindw+1;
  1322. while (p != strchr_pointer)
  1323. checksum = checksum^(*p++);
  1324. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1325. SERIAL_ERROR_START;
  1326. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1327. SERIAL_ERRORLN(gcode_LastN);
  1328. FlushSerialRequestResend();
  1329. serial_count = 0;
  1330. return;
  1331. }
  1332. // If no errors, remove the checksum and continue parsing.
  1333. *strchr_pointer = 0;
  1334. }
  1335. else
  1336. {
  1337. SERIAL_ERROR_START;
  1338. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1339. SERIAL_ERRORLN(gcode_LastN);
  1340. FlushSerialRequestResend();
  1341. serial_count = 0;
  1342. return;
  1343. }
  1344. gcode_LastN = gcode_N;
  1345. //if no errors, continue parsing
  1346. } // end of 'N' command
  1347. }
  1348. else // if we don't receive 'N' but still see '*'
  1349. {
  1350. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1351. {
  1352. SERIAL_ERROR_START;
  1353. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1354. SERIAL_ERRORLN(gcode_LastN);
  1355. serial_count = 0;
  1356. return;
  1357. }
  1358. } // end of '*' command
  1359. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1360. if (! IS_SD_PRINTING) {
  1361. usb_printing_counter = 10;
  1362. is_usb_printing = true;
  1363. }
  1364. if (Stopped == true) {
  1365. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1366. if (gcode >= 0 && gcode <= 3) {
  1367. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1368. LCD_MESSAGERPGM(MSG_STOPPED);
  1369. }
  1370. }
  1371. } // end of 'G' command
  1372. //If command was e-stop process now
  1373. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1374. kill();
  1375. // Store the current line into buffer, move to the next line.
  1376. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1377. #ifdef CMDBUFFER_DEBUG
  1378. SERIAL_ECHO_START;
  1379. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1380. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1381. SERIAL_ECHOLNPGM("");
  1382. #endif /* CMDBUFFER_DEBUG */
  1383. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1384. if (bufindw == sizeof(cmdbuffer))
  1385. bufindw = 0;
  1386. ++ buflen;
  1387. #ifdef CMDBUFFER_DEBUG
  1388. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1389. SERIAL_ECHO(buflen);
  1390. SERIAL_ECHOLNPGM("");
  1391. #endif /* CMDBUFFER_DEBUG */
  1392. } // end of 'not comment mode'
  1393. serial_count = 0; //clear buffer
  1394. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1395. // in the queue, as this function will reserve the memory.
  1396. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1397. return;
  1398. } // end of "end of line" processing
  1399. else {
  1400. // Not an "end of line" symbol. Store the new character into a buffer.
  1401. if(serial_char == ';') comment_mode = true;
  1402. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1403. }
  1404. } // end of serial line processing loop
  1405. if(farm_mode){
  1406. TimeNow = millis();
  1407. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1408. cmdbuffer[bufindw+serial_count+1] = 0;
  1409. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1410. if (bufindw == sizeof(cmdbuffer))
  1411. bufindw = 0;
  1412. ++ buflen;
  1413. serial_count = 0;
  1414. SERIAL_ECHOPGM("TIMEOUT:");
  1415. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1416. return;
  1417. }
  1418. }
  1419. //add comment
  1420. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1421. rx_buffer_full = false;
  1422. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1423. serial_count = 0;
  1424. }
  1425. #ifdef SDSUPPORT
  1426. if(!card.sdprinting || serial_count!=0){
  1427. // If there is a half filled buffer from serial line, wait until return before
  1428. // continuing with the serial line.
  1429. return;
  1430. }
  1431. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1432. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1433. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1434. static bool stop_buffering=false;
  1435. if(buflen==0) stop_buffering=false;
  1436. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1437. while( !card.eof() && !stop_buffering) {
  1438. int16_t n=card.get();
  1439. char serial_char = (char)n;
  1440. if(serial_char == '\n' ||
  1441. serial_char == '\r' ||
  1442. (serial_char == '#' && comment_mode == false) ||
  1443. (serial_char == ':' && comment_mode == false) ||
  1444. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1445. {
  1446. if(card.eof()){
  1447. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1448. stoptime=millis();
  1449. char time[30];
  1450. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1451. pause_time = 0;
  1452. int hours, minutes;
  1453. minutes=(t/60)%60;
  1454. hours=t/60/60;
  1455. save_statistics(total_filament_used, t);
  1456. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1457. SERIAL_ECHO_START;
  1458. SERIAL_ECHOLN(time);
  1459. lcd_setstatus(time);
  1460. card.printingHasFinished();
  1461. card.checkautostart(true);
  1462. if (farm_mode)
  1463. {
  1464. prusa_statistics(6);
  1465. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1466. }
  1467. }
  1468. if(serial_char=='#')
  1469. stop_buffering=true;
  1470. if(!serial_count)
  1471. {
  1472. comment_mode = false; //for new command
  1473. return; //if empty line
  1474. }
  1475. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1476. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1477. ++ buflen;
  1478. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1479. if (bufindw == sizeof(cmdbuffer))
  1480. bufindw = 0;
  1481. comment_mode = false; //for new command
  1482. serial_count = 0; //clear buffer
  1483. // The following line will reserve buffer space if available.
  1484. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1485. return;
  1486. }
  1487. else
  1488. {
  1489. if(serial_char == ';') comment_mode = true;
  1490. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1491. }
  1492. }
  1493. #endif //SDSUPPORT
  1494. }
  1495. // Return True if a character was found
  1496. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1497. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1498. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1499. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1500. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1501. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1502. static inline float code_value_float() {
  1503. char* e = strchr(strchr_pointer, 'E');
  1504. if (!e) return strtod(strchr_pointer + 1, NULL);
  1505. *e = 0;
  1506. float ret = strtod(strchr_pointer + 1, NULL);
  1507. *e = 'E';
  1508. return ret;
  1509. }
  1510. #define DEFINE_PGM_READ_ANY(type, reader) \
  1511. static inline type pgm_read_any(const type *p) \
  1512. { return pgm_read_##reader##_near(p); }
  1513. DEFINE_PGM_READ_ANY(float, float);
  1514. DEFINE_PGM_READ_ANY(signed char, byte);
  1515. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1516. static const PROGMEM type array##_P[3] = \
  1517. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1518. static inline type array(int axis) \
  1519. { return pgm_read_any(&array##_P[axis]); } \
  1520. type array##_ext(int axis) \
  1521. { return pgm_read_any(&array##_P[axis]); }
  1522. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1523. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1524. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1525. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1526. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1527. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1528. static void axis_is_at_home(int axis) {
  1529. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1530. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1531. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1532. }
  1533. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1534. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1535. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1536. saved_feedrate = feedrate;
  1537. saved_feedmultiply = feedmultiply;
  1538. feedmultiply = 100;
  1539. previous_millis_cmd = millis();
  1540. enable_endstops(enable_endstops_now);
  1541. }
  1542. static void clean_up_after_endstop_move() {
  1543. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1544. enable_endstops(false);
  1545. #endif
  1546. feedrate = saved_feedrate;
  1547. feedmultiply = saved_feedmultiply;
  1548. previous_millis_cmd = millis();
  1549. }
  1550. #ifdef ENABLE_AUTO_BED_LEVELING
  1551. #ifdef AUTO_BED_LEVELING_GRID
  1552. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1553. {
  1554. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1555. planeNormal.debug("planeNormal");
  1556. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1557. //bedLevel.debug("bedLevel");
  1558. //plan_bed_level_matrix.debug("bed level before");
  1559. //vector_3 uncorrected_position = plan_get_position_mm();
  1560. //uncorrected_position.debug("position before");
  1561. vector_3 corrected_position = plan_get_position();
  1562. // corrected_position.debug("position after");
  1563. current_position[X_AXIS] = corrected_position.x;
  1564. current_position[Y_AXIS] = corrected_position.y;
  1565. current_position[Z_AXIS] = corrected_position.z;
  1566. // put the bed at 0 so we don't go below it.
  1567. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1568. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1569. }
  1570. #else // not AUTO_BED_LEVELING_GRID
  1571. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1572. plan_bed_level_matrix.set_to_identity();
  1573. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1574. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1575. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1576. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1577. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1578. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1579. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1580. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1581. vector_3 corrected_position = plan_get_position();
  1582. current_position[X_AXIS] = corrected_position.x;
  1583. current_position[Y_AXIS] = corrected_position.y;
  1584. current_position[Z_AXIS] = corrected_position.z;
  1585. // put the bed at 0 so we don't go below it.
  1586. current_position[Z_AXIS] = zprobe_zoffset;
  1587. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1588. }
  1589. #endif // AUTO_BED_LEVELING_GRID
  1590. static void run_z_probe() {
  1591. plan_bed_level_matrix.set_to_identity();
  1592. feedrate = homing_feedrate[Z_AXIS];
  1593. // move down until you find the bed
  1594. float zPosition = -10;
  1595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1596. st_synchronize();
  1597. // we have to let the planner know where we are right now as it is not where we said to go.
  1598. zPosition = st_get_position_mm(Z_AXIS);
  1599. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1600. // move up the retract distance
  1601. zPosition += home_retract_mm(Z_AXIS);
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1603. st_synchronize();
  1604. // move back down slowly to find bed
  1605. feedrate = homing_feedrate[Z_AXIS]/4;
  1606. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1608. st_synchronize();
  1609. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1610. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1612. }
  1613. static void do_blocking_move_to(float x, float y, float z) {
  1614. float oldFeedRate = feedrate;
  1615. feedrate = homing_feedrate[Z_AXIS];
  1616. current_position[Z_AXIS] = z;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1618. st_synchronize();
  1619. feedrate = XY_TRAVEL_SPEED;
  1620. current_position[X_AXIS] = x;
  1621. current_position[Y_AXIS] = y;
  1622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1623. st_synchronize();
  1624. feedrate = oldFeedRate;
  1625. }
  1626. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1627. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1628. }
  1629. /// Probe bed height at position (x,y), returns the measured z value
  1630. static float probe_pt(float x, float y, float z_before) {
  1631. // move to right place
  1632. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1633. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1634. run_z_probe();
  1635. float measured_z = current_position[Z_AXIS];
  1636. SERIAL_PROTOCOLRPGM(MSG_BED);
  1637. SERIAL_PROTOCOLPGM(" x: ");
  1638. SERIAL_PROTOCOL(x);
  1639. SERIAL_PROTOCOLPGM(" y: ");
  1640. SERIAL_PROTOCOL(y);
  1641. SERIAL_PROTOCOLPGM(" z: ");
  1642. SERIAL_PROTOCOL(measured_z);
  1643. SERIAL_PROTOCOLPGM("\n");
  1644. return measured_z;
  1645. }
  1646. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1647. #ifdef LIN_ADVANCE
  1648. /**
  1649. * M900: Set and/or Get advance K factor and WH/D ratio
  1650. *
  1651. * K<factor> Set advance K factor
  1652. * R<ratio> Set ratio directly (overrides WH/D)
  1653. * W<width> H<height> D<diam> Set ratio from WH/D
  1654. */
  1655. inline void gcode_M900() {
  1656. st_synchronize();
  1657. const float newK = code_seen('K') ? code_value_float() : -1;
  1658. if (newK >= 0) extruder_advance_k = newK;
  1659. float newR = code_seen('R') ? code_value_float() : -1;
  1660. if (newR < 0) {
  1661. const float newD = code_seen('D') ? code_value_float() : -1,
  1662. newW = code_seen('W') ? code_value_float() : -1,
  1663. newH = code_seen('H') ? code_value_float() : -1;
  1664. if (newD >= 0 && newW >= 0 && newH >= 0)
  1665. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1666. }
  1667. if (newR >= 0) advance_ed_ratio = newR;
  1668. SERIAL_ECHO_START;
  1669. SERIAL_ECHOPGM("Advance K=");
  1670. SERIAL_ECHOLN(extruder_advance_k);
  1671. SERIAL_ECHOPGM(" E/D=");
  1672. const float ratio = advance_ed_ratio;
  1673. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1674. }
  1675. #endif // LIN_ADVANCE
  1676. bool check_commands() {
  1677. bool end_command_found = false;
  1678. if (buflen)
  1679. {
  1680. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1681. if (!cmdbuffer_front_already_processed)
  1682. cmdqueue_pop_front();
  1683. cmdbuffer_front_already_processed = false;
  1684. }
  1685. return end_command_found;
  1686. }
  1687. void homeaxis(int axis) {
  1688. #define HOMEAXIS_DO(LETTER) \
  1689. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1690. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1691. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1692. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1693. 0) {
  1694. int axis_home_dir = home_dir(axis);
  1695. current_position[axis] = 0;
  1696. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1697. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1698. feedrate = homing_feedrate[axis];
  1699. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1700. st_synchronize();
  1701. current_position[axis] = 0;
  1702. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1703. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1704. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1705. st_synchronize();
  1706. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1707. feedrate = homing_feedrate[axis]/2 ;
  1708. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1709. st_synchronize();
  1710. axis_is_at_home(axis);
  1711. destination[axis] = current_position[axis];
  1712. feedrate = 0.0;
  1713. endstops_hit_on_purpose();
  1714. axis_known_position[axis] = true;
  1715. }
  1716. }
  1717. void home_xy()
  1718. {
  1719. set_destination_to_current();
  1720. homeaxis(X_AXIS);
  1721. homeaxis(Y_AXIS);
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. endstops_hit_on_purpose();
  1724. }
  1725. void refresh_cmd_timeout(void)
  1726. {
  1727. previous_millis_cmd = millis();
  1728. }
  1729. #ifdef FWRETRACT
  1730. void retract(bool retracting, bool swapretract = false) {
  1731. if(retracting && !retracted[active_extruder]) {
  1732. destination[X_AXIS]=current_position[X_AXIS];
  1733. destination[Y_AXIS]=current_position[Y_AXIS];
  1734. destination[Z_AXIS]=current_position[Z_AXIS];
  1735. destination[E_AXIS]=current_position[E_AXIS];
  1736. if (swapretract) {
  1737. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1738. } else {
  1739. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1740. }
  1741. plan_set_e_position(current_position[E_AXIS]);
  1742. float oldFeedrate = feedrate;
  1743. feedrate=retract_feedrate*60;
  1744. retracted[active_extruder]=true;
  1745. prepare_move();
  1746. current_position[Z_AXIS]-=retract_zlift;
  1747. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1748. prepare_move();
  1749. feedrate = oldFeedrate;
  1750. } else if(!retracting && retracted[active_extruder]) {
  1751. destination[X_AXIS]=current_position[X_AXIS];
  1752. destination[Y_AXIS]=current_position[Y_AXIS];
  1753. destination[Z_AXIS]=current_position[Z_AXIS];
  1754. destination[E_AXIS]=current_position[E_AXIS];
  1755. current_position[Z_AXIS]+=retract_zlift;
  1756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1757. //prepare_move();
  1758. if (swapretract) {
  1759. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1760. } else {
  1761. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1762. }
  1763. plan_set_e_position(current_position[E_AXIS]);
  1764. float oldFeedrate = feedrate;
  1765. feedrate=retract_recover_feedrate*60;
  1766. retracted[active_extruder]=false;
  1767. prepare_move();
  1768. feedrate = oldFeedrate;
  1769. }
  1770. } //retract
  1771. #endif //FWRETRACT
  1772. void trace() {
  1773. tone(BEEPER, 440);
  1774. delay(25);
  1775. noTone(BEEPER);
  1776. delay(20);
  1777. }
  1778. /*
  1779. void ramming() {
  1780. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1781. if (current_temperature[0] < 230) {
  1782. //PLA
  1783. max_feedrate[E_AXIS] = 50;
  1784. //current_position[E_AXIS] -= 8;
  1785. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1786. //current_position[E_AXIS] += 8;
  1787. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1788. current_position[E_AXIS] += 5.4;
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1790. current_position[E_AXIS] += 3.2;
  1791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1792. current_position[E_AXIS] += 3;
  1793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1794. st_synchronize();
  1795. max_feedrate[E_AXIS] = 80;
  1796. current_position[E_AXIS] -= 82;
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1798. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1799. current_position[E_AXIS] -= 20;
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1801. current_position[E_AXIS] += 5;
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1803. current_position[E_AXIS] += 5;
  1804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1805. current_position[E_AXIS] -= 10;
  1806. st_synchronize();
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1808. current_position[E_AXIS] += 10;
  1809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1810. current_position[E_AXIS] -= 10;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1812. current_position[E_AXIS] += 10;
  1813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1814. current_position[E_AXIS] -= 10;
  1815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1816. st_synchronize();
  1817. }
  1818. else {
  1819. //ABS
  1820. max_feedrate[E_AXIS] = 50;
  1821. //current_position[E_AXIS] -= 8;
  1822. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1823. //current_position[E_AXIS] += 8;
  1824. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1825. current_position[E_AXIS] += 3.1;
  1826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1827. current_position[E_AXIS] += 3.1;
  1828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1829. current_position[E_AXIS] += 4;
  1830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1831. st_synchronize();
  1832. //current_position[X_AXIS] += 23; //delay
  1833. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1834. //current_position[X_AXIS] -= 23; //delay
  1835. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1836. delay(4700);
  1837. max_feedrate[E_AXIS] = 80;
  1838. current_position[E_AXIS] -= 92;
  1839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1840. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1841. current_position[E_AXIS] -= 5;
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1843. current_position[E_AXIS] += 5;
  1844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1845. current_position[E_AXIS] -= 5;
  1846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1847. st_synchronize();
  1848. current_position[E_AXIS] += 5;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1850. current_position[E_AXIS] -= 5;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1852. current_position[E_AXIS] += 5;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1854. current_position[E_AXIS] -= 5;
  1855. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1856. st_synchronize();
  1857. }
  1858. }
  1859. */
  1860. void gcode_M701() {
  1861. #ifdef SNMM
  1862. extr_adj(snmm_extruder);//loads current extruder
  1863. #else
  1864. enable_z();
  1865. custom_message = true;
  1866. custom_message_type = 2;
  1867. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1868. current_position[E_AXIS] += 70;
  1869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1870. current_position[E_AXIS] += 25;
  1871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1872. st_synchronize();
  1873. if (!farm_mode && loading_flag) {
  1874. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1875. while (!clean) {
  1876. lcd_update_enable(true);
  1877. lcd_update(2);
  1878. current_position[E_AXIS] += 25;
  1879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1880. st_synchronize();
  1881. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1882. }
  1883. }
  1884. lcd_update_enable(true);
  1885. lcd_update(2);
  1886. lcd_setstatuspgm(WELCOME_MSG);
  1887. disable_z();
  1888. loading_flag = false;
  1889. custom_message = false;
  1890. custom_message_type = 0;
  1891. #endif
  1892. }
  1893. bool gcode_M45(bool onlyZ) {
  1894. bool final_result = false;
  1895. if (!onlyZ) {
  1896. setTargetBed(0);
  1897. setTargetHotend(0, 0);
  1898. setTargetHotend(0, 1);
  1899. setTargetHotend(0, 2);
  1900. adjust_bed_reset(); //reset bed level correction
  1901. }
  1902. // Disable the default update procedure of the display. We will do a modal dialog.
  1903. lcd_update_enable(false);
  1904. // Let the planner use the uncorrected coordinates.
  1905. mbl.reset();
  1906. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1907. // the planner will not perform any adjustments in the XY plane.
  1908. // Wait for the motors to stop and update the current position with the absolute values.
  1909. world2machine_revert_to_uncorrected();
  1910. // Reset the baby step value applied without moving the axes.
  1911. babystep_reset();
  1912. // Mark all axes as in a need for homing.
  1913. memset(axis_known_position, 0, sizeof(axis_known_position));
  1914. // Let the user move the Z axes up to the end stoppers.
  1915. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1916. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1917. KEEPALIVE_STATE(IN_HANDLER);
  1918. refresh_cmd_timeout();
  1919. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1920. lcd_wait_for_cool_down();
  1921. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1922. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1923. lcd_implementation_print_at(0, 2, 1);
  1924. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1925. }
  1926. // Move the print head close to the bed.
  1927. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1929. st_synchronize();
  1930. // Home in the XY plane.
  1931. set_destination_to_current();
  1932. setup_for_endstop_move();
  1933. home_xy();
  1934. int8_t verbosity_level = 0;
  1935. if (code_seen('V')) {
  1936. // Just 'V' without a number counts as V1.
  1937. char c = strchr_pointer[1];
  1938. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1939. }
  1940. if (onlyZ) {
  1941. clean_up_after_endstop_move();
  1942. // Z only calibration.
  1943. // Load the machine correction matrix
  1944. world2machine_initialize();
  1945. // and correct the current_position to match the transformed coordinate system.
  1946. world2machine_update_current();
  1947. //FIXME
  1948. bool result = sample_mesh_and_store_reference();
  1949. if (result) {
  1950. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1951. // Shipped, the nozzle height has been set already. The user can start printing now.
  1952. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1953. // babystep_apply();
  1954. final_result = true;
  1955. }
  1956. }
  1957. else {
  1958. //if wizard is active and selftest was succefully completed, we dont want to loose information about it
  1959. if (calibration_status() != 250 || eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) {
  1960. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1961. }
  1962. // Reset the baby step value and the baby step applied flag.
  1963. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1964. // Complete XYZ calibration.
  1965. uint8_t point_too_far_mask = 0;
  1966. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1967. clean_up_after_endstop_move();
  1968. // Print head up.
  1969. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1971. st_synchronize();
  1972. if (result >= 0) {
  1973. point_too_far_mask = 0;
  1974. // Second half: The fine adjustment.
  1975. // Let the planner use the uncorrected coordinates.
  1976. mbl.reset();
  1977. world2machine_reset();
  1978. // Home in the XY plane.
  1979. setup_for_endstop_move();
  1980. home_xy();
  1981. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1982. clean_up_after_endstop_move();
  1983. // Print head up.
  1984. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1986. st_synchronize();
  1987. // if (result >= 0) babystep_apply();
  1988. }
  1989. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1990. if (result >= 0) {
  1991. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1992. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1993. if(eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1994. final_result = true;
  1995. }
  1996. }
  1997. }
  1998. else {
  1999. // Timeouted.
  2000. KEEPALIVE_STATE(IN_HANDLER);
  2001. }
  2002. lcd_update_enable(true);
  2003. return final_result;
  2004. }
  2005. void process_commands()
  2006. {
  2007. #ifdef FILAMENT_RUNOUT_SUPPORT
  2008. SET_INPUT(FR_SENS);
  2009. #endif
  2010. #ifdef CMDBUFFER_DEBUG
  2011. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2012. SERIAL_ECHO(cmdbuffer+bufindr+1);
  2013. SERIAL_ECHOLNPGM("");
  2014. SERIAL_ECHOPGM("In cmdqueue: ");
  2015. SERIAL_ECHO(buflen);
  2016. SERIAL_ECHOLNPGM("");
  2017. #endif /* CMDBUFFER_DEBUG */
  2018. unsigned long codenum; //throw away variable
  2019. char *starpos = NULL;
  2020. #ifdef ENABLE_AUTO_BED_LEVELING
  2021. float x_tmp, y_tmp, z_tmp, real_z;
  2022. #endif
  2023. // PRUSA GCODES
  2024. KEEPALIVE_STATE(IN_HANDLER);
  2025. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2026. custom_message = true; //fixes using M117 during SD print, but needs to be be updated in future
  2027. custom_message_type = 2; //fixes using M117 during SD print, but needs to be be updated in future
  2028. starpos = (strchr(strchr_pointer + 5, '*'));
  2029. if (starpos != NULL)
  2030. *(starpos) = '\0';
  2031. lcd_setstatus(strchr_pointer + 5);
  2032. custom_message = false;
  2033. custom_message_type = 0;
  2034. }
  2035. else if(code_seen("PRUSA")){
  2036. if (code_seen("Ping")) { //PRUSA Ping
  2037. if (farm_mode) {
  2038. PingTime = millis();
  2039. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2040. }
  2041. } else if (code_seen("PRN")) {
  2042. MYSERIAL.println(status_number);
  2043. } else if (code_seen("RESET")) {
  2044. // careful!
  2045. if (farm_mode) {
  2046. asm volatile(" jmp 0x3E000");
  2047. }
  2048. else {
  2049. MYSERIAL.println("Not in farm mode.");
  2050. }
  2051. } else if (code_seen("fn")) {
  2052. if (farm_mode) {
  2053. MYSERIAL.println(farm_no);
  2054. }
  2055. else {
  2056. MYSERIAL.println("Not in farm mode.");
  2057. }
  2058. }
  2059. else if (code_seen("thx")) {
  2060. no_response = false;
  2061. }else if (code_seen("fv")) {
  2062. // get file version
  2063. #ifdef SDSUPPORT
  2064. card.openFile(strchr_pointer + 3,true);
  2065. while (true) {
  2066. uint16_t readByte = card.get();
  2067. MYSERIAL.write(readByte);
  2068. if (readByte=='\n') {
  2069. break;
  2070. }
  2071. }
  2072. card.closefile();
  2073. #endif // SDSUPPORT
  2074. } else if (code_seen("M28")) {
  2075. trace();
  2076. prusa_sd_card_upload = true;
  2077. card.openFile(strchr_pointer+4,false);
  2078. } else if (code_seen("SN")) {
  2079. if (farm_mode) {
  2080. selectedSerialPort = 0;
  2081. MSerial.write(";S");
  2082. // S/N is:CZPX0917X003XC13518
  2083. int numbersRead = 0;
  2084. while (numbersRead < 19) {
  2085. while (MSerial.available() > 0) {
  2086. uint8_t serial_char = MSerial.read();
  2087. selectedSerialPort = 1;
  2088. MSerial.write(serial_char);
  2089. numbersRead++;
  2090. selectedSerialPort = 0;
  2091. }
  2092. }
  2093. selectedSerialPort = 1;
  2094. MSerial.write('\n');
  2095. /*for (int b = 0; b < 3; b++) {
  2096. tone(BEEPER, 110);
  2097. delay(50);
  2098. noTone(BEEPER);
  2099. delay(50);
  2100. }*/
  2101. } else {
  2102. MYSERIAL.println("Not in farm mode.");
  2103. }
  2104. } else if(code_seen("Fir")){
  2105. SERIAL_PROTOCOLLN(FW_version);
  2106. } else if(code_seen("Rev")){
  2107. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2108. } else if(code_seen("Lang")) {
  2109. lcd_force_language_selection();
  2110. } else if(code_seen("Lz")) {
  2111. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2112. } else if (code_seen("SERIAL LOW")) {
  2113. MYSERIAL.println("SERIAL LOW");
  2114. MYSERIAL.begin(BAUDRATE);
  2115. return;
  2116. } else if (code_seen("SERIAL HIGH")) {
  2117. MYSERIAL.println("SERIAL HIGH");
  2118. MYSERIAL.begin(1152000);
  2119. return;
  2120. } else if(code_seen("Beat")) {
  2121. // Kick farm link timer
  2122. kicktime = millis();
  2123. } else if(code_seen("FR")) {
  2124. // Factory full reset
  2125. factory_reset(0,true);
  2126. }
  2127. //else if (code_seen('Cal')) {
  2128. // lcd_calibration();
  2129. // }
  2130. }
  2131. else if (code_seen('^')) {
  2132. // nothing, this is a version line
  2133. } else if(code_seen('G'))
  2134. {
  2135. switch((int)code_value())
  2136. {
  2137. case 0: // G0 -> G1
  2138. case 1: // G1
  2139. if(Stopped == false) {
  2140. #ifdef FILAMENT_RUNOUT_SUPPORT
  2141. if(READ(FR_SENS)){
  2142. feedmultiplyBckp=feedmultiply;
  2143. float target[4];
  2144. float lastpos[4];
  2145. target[X_AXIS]=current_position[X_AXIS];
  2146. target[Y_AXIS]=current_position[Y_AXIS];
  2147. target[Z_AXIS]=current_position[Z_AXIS];
  2148. target[E_AXIS]=current_position[E_AXIS];
  2149. lastpos[X_AXIS]=current_position[X_AXIS];
  2150. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2151. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2152. lastpos[E_AXIS]=current_position[E_AXIS];
  2153. //retract by E
  2154. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2156. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2158. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2159. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2160. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2161. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2162. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2163. //finish moves
  2164. st_synchronize();
  2165. //disable extruder steppers so filament can be removed
  2166. disable_e0();
  2167. disable_e1();
  2168. disable_e2();
  2169. delay(100);
  2170. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2171. uint8_t cnt=0;
  2172. int counterBeep = 0;
  2173. lcd_wait_interact();
  2174. while(!lcd_clicked()){
  2175. cnt++;
  2176. manage_heater();
  2177. manage_inactivity(true);
  2178. //lcd_update();
  2179. if(cnt==0)
  2180. {
  2181. #if BEEPER > 0
  2182. if (counterBeep== 500){
  2183. counterBeep = 0;
  2184. }
  2185. SET_OUTPUT(BEEPER);
  2186. if (counterBeep== 0){
  2187. WRITE(BEEPER,HIGH);
  2188. }
  2189. if (counterBeep== 20){
  2190. WRITE(BEEPER,LOW);
  2191. }
  2192. counterBeep++;
  2193. #else
  2194. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2195. lcd_buzz(1000/6,100);
  2196. #else
  2197. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2198. #endif
  2199. #endif
  2200. }
  2201. }
  2202. WRITE(BEEPER,LOW);
  2203. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2204. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2205. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2206. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2207. lcd_change_fil_state = 0;
  2208. lcd_loading_filament();
  2209. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2210. lcd_change_fil_state = 0;
  2211. lcd_alright();
  2212. switch(lcd_change_fil_state){
  2213. case 2:
  2214. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2215. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2216. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2217. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2218. lcd_loading_filament();
  2219. break;
  2220. case 3:
  2221. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2222. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2223. lcd_loading_color();
  2224. break;
  2225. default:
  2226. lcd_change_success();
  2227. break;
  2228. }
  2229. }
  2230. target[E_AXIS]+= 5;
  2231. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2232. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2233. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2234. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2235. //plan_set_e_position(current_position[E_AXIS]);
  2236. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2237. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2238. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2239. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2240. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2241. plan_set_e_position(lastpos[E_AXIS]);
  2242. feedmultiply=feedmultiplyBckp;
  2243. char cmd[9];
  2244. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2245. enquecommand(cmd);
  2246. }
  2247. #endif
  2248. get_coordinates(); // For X Y Z E F
  2249. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2250. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2251. }
  2252. #ifdef FWRETRACT
  2253. if(autoretract_enabled)
  2254. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2255. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2256. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2257. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2258. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2259. retract(!retracted[active_extruder]);
  2260. return;
  2261. }
  2262. }
  2263. #endif //FWRETRACT
  2264. prepare_move();
  2265. //ClearToSend();
  2266. }
  2267. break;
  2268. case 2: // G2 - CW ARC
  2269. if(Stopped == false) {
  2270. get_arc_coordinates();
  2271. prepare_arc_move(true);
  2272. }
  2273. break;
  2274. case 3: // G3 - CCW ARC
  2275. if(Stopped == false) {
  2276. get_arc_coordinates();
  2277. prepare_arc_move(false);
  2278. }
  2279. break;
  2280. case 4: // G4 dwell
  2281. codenum = 0;
  2282. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2283. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2284. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2285. st_synchronize();
  2286. codenum += millis(); // keep track of when we started waiting
  2287. previous_millis_cmd = millis();
  2288. while(millis() < codenum) {
  2289. manage_heater();
  2290. manage_inactivity();
  2291. lcd_update();
  2292. }
  2293. break;
  2294. #ifdef FWRETRACT
  2295. case 10: // G10 retract
  2296. #if EXTRUDERS > 1
  2297. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2298. retract(true,retracted_swap[active_extruder]);
  2299. #else
  2300. retract(true);
  2301. #endif
  2302. break;
  2303. case 11: // G11 retract_recover
  2304. #if EXTRUDERS > 1
  2305. retract(false,retracted_swap[active_extruder]);
  2306. #else
  2307. retract(false);
  2308. #endif
  2309. break;
  2310. #endif //FWRETRACT
  2311. case 28: //G28 Home all Axis one at a time
  2312. homing_flag = true;
  2313. #ifdef ENABLE_AUTO_BED_LEVELING
  2314. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2315. #endif //ENABLE_AUTO_BED_LEVELING
  2316. // For mesh bed leveling deactivate the matrix temporarily
  2317. #ifdef MESH_BED_LEVELING
  2318. mbl.active = 0;
  2319. #endif
  2320. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2321. // the planner will not perform any adjustments in the XY plane.
  2322. // Wait for the motors to stop and update the current position with the absolute values.
  2323. world2machine_revert_to_uncorrected();
  2324. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2325. // consumed during the first movements following this statement.
  2326. babystep_undo();
  2327. saved_feedrate = feedrate;
  2328. saved_feedmultiply = feedmultiply;
  2329. feedmultiply = 100;
  2330. previous_millis_cmd = millis();
  2331. enable_endstops(true);
  2332. for(int8_t i=0; i < NUM_AXIS; i++)
  2333. destination[i] = current_position[i];
  2334. feedrate = 0.0;
  2335. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2336. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2337. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2338. homeaxis(Z_AXIS);
  2339. }
  2340. #endif
  2341. #ifdef QUICK_HOME
  2342. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2343. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2344. {
  2345. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2346. int x_axis_home_dir = home_dir(X_AXIS);
  2347. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2348. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2349. feedrate = homing_feedrate[X_AXIS];
  2350. if(homing_feedrate[Y_AXIS]<feedrate)
  2351. feedrate = homing_feedrate[Y_AXIS];
  2352. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2353. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2354. } else {
  2355. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2356. }
  2357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2358. st_synchronize();
  2359. axis_is_at_home(X_AXIS);
  2360. axis_is_at_home(Y_AXIS);
  2361. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2362. destination[X_AXIS] = current_position[X_AXIS];
  2363. destination[Y_AXIS] = current_position[Y_AXIS];
  2364. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2365. feedrate = 0.0;
  2366. st_synchronize();
  2367. endstops_hit_on_purpose();
  2368. current_position[X_AXIS] = destination[X_AXIS];
  2369. current_position[Y_AXIS] = destination[Y_AXIS];
  2370. current_position[Z_AXIS] = destination[Z_AXIS];
  2371. }
  2372. #endif /* QUICK_HOME */
  2373. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2374. homeaxis(X_AXIS);
  2375. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2376. homeaxis(Y_AXIS);
  2377. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2378. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2379. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2380. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2381. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2382. #ifndef Z_SAFE_HOMING
  2383. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2384. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2385. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2386. feedrate = max_feedrate[Z_AXIS];
  2387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2388. st_synchronize();
  2389. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2390. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2391. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2392. {
  2393. homeaxis(X_AXIS);
  2394. homeaxis(Y_AXIS);
  2395. }
  2396. // 1st mesh bed leveling measurement point, corrected.
  2397. world2machine_initialize();
  2398. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2399. world2machine_reset();
  2400. if (destination[Y_AXIS] < Y_MIN_POS)
  2401. destination[Y_AXIS] = Y_MIN_POS;
  2402. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2403. feedrate = homing_feedrate[Z_AXIS]/10;
  2404. current_position[Z_AXIS] = 0;
  2405. enable_endstops(false);
  2406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2407. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2408. st_synchronize();
  2409. current_position[X_AXIS] = destination[X_AXIS];
  2410. current_position[Y_AXIS] = destination[Y_AXIS];
  2411. enable_endstops(true);
  2412. endstops_hit_on_purpose();
  2413. homeaxis(Z_AXIS);
  2414. #else // MESH_BED_LEVELING
  2415. homeaxis(Z_AXIS);
  2416. #endif // MESH_BED_LEVELING
  2417. }
  2418. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2419. if(home_all_axis) {
  2420. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2421. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2422. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2423. feedrate = XY_TRAVEL_SPEED/60;
  2424. current_position[Z_AXIS] = 0;
  2425. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2426. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2427. st_synchronize();
  2428. current_position[X_AXIS] = destination[X_AXIS];
  2429. current_position[Y_AXIS] = destination[Y_AXIS];
  2430. homeaxis(Z_AXIS);
  2431. }
  2432. // Let's see if X and Y are homed and probe is inside bed area.
  2433. if(code_seen(axis_codes[Z_AXIS])) {
  2434. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2435. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2436. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2437. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2438. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2439. current_position[Z_AXIS] = 0;
  2440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2441. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2442. feedrate = max_feedrate[Z_AXIS];
  2443. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2444. st_synchronize();
  2445. homeaxis(Z_AXIS);
  2446. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2447. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2448. SERIAL_ECHO_START;
  2449. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2450. } else {
  2451. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2452. SERIAL_ECHO_START;
  2453. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2454. }
  2455. }
  2456. #endif // Z_SAFE_HOMING
  2457. #endif // Z_HOME_DIR < 0
  2458. if(code_seen(axis_codes[Z_AXIS])) {
  2459. if(code_value_long() != 0) {
  2460. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2461. }
  2462. }
  2463. #ifdef ENABLE_AUTO_BED_LEVELING
  2464. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2465. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2466. }
  2467. #endif
  2468. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2469. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2470. enable_endstops(false);
  2471. #endif
  2472. feedrate = saved_feedrate;
  2473. feedmultiply = saved_feedmultiply;
  2474. previous_millis_cmd = millis();
  2475. endstops_hit_on_purpose();
  2476. #ifndef MESH_BED_LEVELING
  2477. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2478. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2479. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2480. lcd_adjust_z();
  2481. #endif
  2482. // Load the machine correction matrix
  2483. world2machine_initialize();
  2484. // and correct the current_position to match the transformed coordinate system.
  2485. world2machine_update_current();
  2486. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2487. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2488. {
  2489. }
  2490. else
  2491. {
  2492. st_synchronize();
  2493. homing_flag = false;
  2494. // Push the commands to the front of the message queue in the reverse order!
  2495. // There shall be always enough space reserved for these commands.
  2496. // enquecommand_front_P((PSTR("G80")));
  2497. goto case_G80;
  2498. }
  2499. #endif
  2500. if (farm_mode) { prusa_statistics(20); };
  2501. homing_flag = false;
  2502. break;
  2503. #ifdef ENABLE_AUTO_BED_LEVELING
  2504. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2505. {
  2506. #if Z_MIN_PIN == -1
  2507. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2508. #endif
  2509. // Prevent user from running a G29 without first homing in X and Y
  2510. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2511. {
  2512. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2513. SERIAL_ECHO_START;
  2514. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2515. break; // abort G29, since we don't know where we are
  2516. }
  2517. st_synchronize();
  2518. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2519. //vector_3 corrected_position = plan_get_position_mm();
  2520. //corrected_position.debug("position before G29");
  2521. plan_bed_level_matrix.set_to_identity();
  2522. vector_3 uncorrected_position = plan_get_position();
  2523. //uncorrected_position.debug("position durring G29");
  2524. current_position[X_AXIS] = uncorrected_position.x;
  2525. current_position[Y_AXIS] = uncorrected_position.y;
  2526. current_position[Z_AXIS] = uncorrected_position.z;
  2527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2528. setup_for_endstop_move();
  2529. feedrate = homing_feedrate[Z_AXIS];
  2530. #ifdef AUTO_BED_LEVELING_GRID
  2531. // probe at the points of a lattice grid
  2532. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2533. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2534. // solve the plane equation ax + by + d = z
  2535. // A is the matrix with rows [x y 1] for all the probed points
  2536. // B is the vector of the Z positions
  2537. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2538. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2539. // "A" matrix of the linear system of equations
  2540. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2541. // "B" vector of Z points
  2542. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2543. int probePointCounter = 0;
  2544. bool zig = true;
  2545. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2546. {
  2547. int xProbe, xInc;
  2548. if (zig)
  2549. {
  2550. xProbe = LEFT_PROBE_BED_POSITION;
  2551. //xEnd = RIGHT_PROBE_BED_POSITION;
  2552. xInc = xGridSpacing;
  2553. zig = false;
  2554. } else // zag
  2555. {
  2556. xProbe = RIGHT_PROBE_BED_POSITION;
  2557. //xEnd = LEFT_PROBE_BED_POSITION;
  2558. xInc = -xGridSpacing;
  2559. zig = true;
  2560. }
  2561. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2562. {
  2563. float z_before;
  2564. if (probePointCounter == 0)
  2565. {
  2566. // raise before probing
  2567. z_before = Z_RAISE_BEFORE_PROBING;
  2568. } else
  2569. {
  2570. // raise extruder
  2571. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2572. }
  2573. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2574. eqnBVector[probePointCounter] = measured_z;
  2575. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2576. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2577. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2578. probePointCounter++;
  2579. xProbe += xInc;
  2580. }
  2581. }
  2582. clean_up_after_endstop_move();
  2583. // solve lsq problem
  2584. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2585. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2586. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2587. SERIAL_PROTOCOLPGM(" b: ");
  2588. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2589. SERIAL_PROTOCOLPGM(" d: ");
  2590. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2591. set_bed_level_equation_lsq(plane_equation_coefficients);
  2592. free(plane_equation_coefficients);
  2593. #else // AUTO_BED_LEVELING_GRID not defined
  2594. // Probe at 3 arbitrary points
  2595. // probe 1
  2596. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2597. // probe 2
  2598. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2599. // probe 3
  2600. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2601. clean_up_after_endstop_move();
  2602. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2603. #endif // AUTO_BED_LEVELING_GRID
  2604. st_synchronize();
  2605. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2606. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2607. // When the bed is uneven, this height must be corrected.
  2608. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2609. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2610. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2611. z_tmp = current_position[Z_AXIS];
  2612. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2613. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2614. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2615. }
  2616. break;
  2617. #ifndef Z_PROBE_SLED
  2618. case 30: // G30 Single Z Probe
  2619. {
  2620. st_synchronize();
  2621. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2622. setup_for_endstop_move();
  2623. feedrate = homing_feedrate[Z_AXIS];
  2624. run_z_probe();
  2625. SERIAL_PROTOCOLPGM(MSG_BED);
  2626. SERIAL_PROTOCOLPGM(" X: ");
  2627. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2628. SERIAL_PROTOCOLPGM(" Y: ");
  2629. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2630. SERIAL_PROTOCOLPGM(" Z: ");
  2631. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2632. SERIAL_PROTOCOLPGM("\n");
  2633. clean_up_after_endstop_move();
  2634. }
  2635. break;
  2636. #else
  2637. case 31: // dock the sled
  2638. dock_sled(true);
  2639. break;
  2640. case 32: // undock the sled
  2641. dock_sled(false);
  2642. break;
  2643. #endif // Z_PROBE_SLED
  2644. #endif // ENABLE_AUTO_BED_LEVELING
  2645. #ifdef MESH_BED_LEVELING
  2646. case 30: // G30 Single Z Probe
  2647. {
  2648. st_synchronize();
  2649. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2650. setup_for_endstop_move();
  2651. feedrate = homing_feedrate[Z_AXIS];
  2652. find_bed_induction_sensor_point_z(-10.f, 3);
  2653. SERIAL_PROTOCOLRPGM(MSG_BED);
  2654. SERIAL_PROTOCOLPGM(" X: ");
  2655. MYSERIAL.print(current_position[X_AXIS], 5);
  2656. SERIAL_PROTOCOLPGM(" Y: ");
  2657. MYSERIAL.print(current_position[Y_AXIS], 5);
  2658. SERIAL_PROTOCOLPGM(" Z: ");
  2659. MYSERIAL.print(current_position[Z_AXIS], 5);
  2660. SERIAL_PROTOCOLPGM("\n");
  2661. clean_up_after_endstop_move();
  2662. }
  2663. break;
  2664. case 75:
  2665. {
  2666. for (int i = 40; i <= 110; i++) {
  2667. MYSERIAL.print(i);
  2668. MYSERIAL.print(" ");
  2669. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2670. }
  2671. }
  2672. break;
  2673. case 76: //PINDA probe temperature calibration
  2674. {
  2675. setTargetBed(PINDA_MIN_T);
  2676. float zero_z;
  2677. int z_shift = 0; //unit: steps
  2678. int t_c; // temperature
  2679. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2680. // We don't know where we are! HOME!
  2681. // Push the commands to the front of the message queue in the reverse order!
  2682. // There shall be always enough space reserved for these commands.
  2683. repeatcommand_front(); // repeat G76 with all its parameters
  2684. enquecommand_front_P((PSTR("G28 W0")));
  2685. break;
  2686. }
  2687. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2688. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2689. custom_message = true;
  2690. custom_message_type = 4;
  2691. custom_message_state = 1;
  2692. custom_message = MSG_TEMP_CALIBRATION;
  2693. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2694. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2695. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2697. st_synchronize();
  2698. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2699. delay_keep_alive(1000);
  2700. serialecho_temperatures();
  2701. }
  2702. //enquecommand_P(PSTR("M190 S50"));
  2703. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2704. delay_keep_alive(1000);
  2705. serialecho_temperatures();
  2706. }
  2707. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2708. current_position[Z_AXIS] = 5;
  2709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2710. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2711. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2713. st_synchronize();
  2714. find_bed_induction_sensor_point_z(-1.f);
  2715. zero_z = current_position[Z_AXIS];
  2716. //current_position[Z_AXIS]
  2717. SERIAL_ECHOLNPGM("");
  2718. SERIAL_ECHOPGM("ZERO: ");
  2719. MYSERIAL.print(current_position[Z_AXIS]);
  2720. SERIAL_ECHOLNPGM("");
  2721. for (int i = 0; i<5; i++) {
  2722. SERIAL_ECHOPGM("Step: ");
  2723. MYSERIAL.print(i+2);
  2724. SERIAL_ECHOLNPGM("/6");
  2725. custom_message_state = i + 2;
  2726. t_c = 60 + i * 10;
  2727. setTargetBed(t_c);
  2728. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2729. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2730. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2732. st_synchronize();
  2733. while (degBed() < t_c) {
  2734. delay_keep_alive(1000);
  2735. serialecho_temperatures();
  2736. }
  2737. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2738. delay_keep_alive(1000);
  2739. serialecho_temperatures();
  2740. }
  2741. current_position[Z_AXIS] = 5;
  2742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2743. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2744. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2746. st_synchronize();
  2747. find_bed_induction_sensor_point_z(-1.f);
  2748. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2749. SERIAL_ECHOLNPGM("");
  2750. SERIAL_ECHOPGM("Temperature: ");
  2751. MYSERIAL.print(t_c);
  2752. SERIAL_ECHOPGM(" Z shift (mm):");
  2753. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2754. SERIAL_ECHOLNPGM("");
  2755. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2756. }
  2757. custom_message_type = 0;
  2758. custom_message = false;
  2759. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2760. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2761. disable_x();
  2762. disable_y();
  2763. disable_z();
  2764. disable_e0();
  2765. disable_e1();
  2766. disable_e2();
  2767. setTargetBed(0); //set bed target temperature back to 0
  2768. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2769. lcd_update_enable(true);
  2770. lcd_update(2);
  2771. }
  2772. break;
  2773. #ifdef DIS
  2774. case 77:
  2775. {
  2776. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2777. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2778. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2779. float dimension_x = 40;
  2780. float dimension_y = 40;
  2781. int points_x = 40;
  2782. int points_y = 40;
  2783. float offset_x = 74;
  2784. float offset_y = 33;
  2785. if (code_seen('X')) dimension_x = code_value();
  2786. if (code_seen('Y')) dimension_y = code_value();
  2787. if (code_seen('XP')) points_x = code_value();
  2788. if (code_seen('YP')) points_y = code_value();
  2789. if (code_seen('XO')) offset_x = code_value();
  2790. if (code_seen('YO')) offset_y = code_value();
  2791. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2792. } break;
  2793. #endif
  2794. /**
  2795. * G80: Mesh-based Z probe, probes a grid and produces a
  2796. * mesh to compensate for variable bed height
  2797. *
  2798. * The S0 report the points as below
  2799. *
  2800. * +----> X-axis
  2801. * |
  2802. * |
  2803. * v Y-axis
  2804. *
  2805. */
  2806. case 80:
  2807. #ifdef MK1BP
  2808. break;
  2809. #endif //MK1BP
  2810. case_G80:
  2811. {
  2812. mesh_bed_leveling_flag = true;
  2813. int8_t verbosity_level = 0;
  2814. static bool run = false;
  2815. if (code_seen('V')) {
  2816. // Just 'V' without a number counts as V1.
  2817. char c = strchr_pointer[1];
  2818. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2819. }
  2820. // Firstly check if we know where we are
  2821. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2822. // We don't know where we are! HOME!
  2823. // Push the commands to the front of the message queue in the reverse order!
  2824. // There shall be always enough space reserved for these commands.
  2825. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2826. repeatcommand_front(); // repeat G80 with all its parameters
  2827. enquecommand_front_P((PSTR("G28 W0")));
  2828. }
  2829. else {
  2830. mesh_bed_leveling_flag = false;
  2831. }
  2832. break;
  2833. }
  2834. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2835. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2836. temp_compensation_start();
  2837. run = true;
  2838. repeatcommand_front(); // repeat G80 with all its parameters
  2839. enquecommand_front_P((PSTR("G28 W0")));
  2840. }
  2841. else {
  2842. mesh_bed_leveling_flag = false;
  2843. }
  2844. break;
  2845. }
  2846. run = false;
  2847. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2848. mesh_bed_leveling_flag = false;
  2849. break;
  2850. }
  2851. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2852. bool custom_message_old = custom_message;
  2853. unsigned int custom_message_type_old = custom_message_type;
  2854. unsigned int custom_message_state_old = custom_message_state;
  2855. custom_message = true;
  2856. custom_message_type = 1;
  2857. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2858. lcd_update(1);
  2859. mbl.reset(); //reset mesh bed leveling
  2860. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2861. // consumed during the first movements following this statement.
  2862. babystep_undo();
  2863. // Cycle through all points and probe them
  2864. // First move up. During this first movement, the babystepping will be reverted.
  2865. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2867. // The move to the first calibration point.
  2868. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2869. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2870. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2871. if (verbosity_level >= 1) {
  2872. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2873. }
  2874. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2876. // Wait until the move is finished.
  2877. st_synchronize();
  2878. int mesh_point = 0; //index number of calibration point
  2879. int ix = 0;
  2880. int iy = 0;
  2881. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2882. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2883. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2884. if (verbosity_level >= 1) {
  2885. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2886. }
  2887. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2888. const char *kill_message = NULL;
  2889. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2890. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2891. // Get coords of a measuring point.
  2892. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2893. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2894. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2895. float z0 = 0.f;
  2896. if (has_z && mesh_point > 0) {
  2897. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2898. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2899. //#if 0
  2900. if (verbosity_level >= 1) {
  2901. SERIAL_ECHOPGM("Bed leveling, point: ");
  2902. MYSERIAL.print(mesh_point);
  2903. SERIAL_ECHOPGM(", calibration z: ");
  2904. MYSERIAL.print(z0, 5);
  2905. SERIAL_ECHOLNPGM("");
  2906. }
  2907. //#endif
  2908. }
  2909. // Move Z up to MESH_HOME_Z_SEARCH.
  2910. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2912. st_synchronize();
  2913. // Move to XY position of the sensor point.
  2914. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2915. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2916. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2917. if (verbosity_level >= 1) {
  2918. SERIAL_PROTOCOL(mesh_point);
  2919. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2920. }
  2921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2922. st_synchronize();
  2923. // Go down until endstop is hit
  2924. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2925. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2926. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2927. break;
  2928. }
  2929. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2930. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2931. break;
  2932. }
  2933. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2934. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2935. break;
  2936. }
  2937. if (verbosity_level >= 10) {
  2938. SERIAL_ECHOPGM("X: ");
  2939. MYSERIAL.print(current_position[X_AXIS], 5);
  2940. SERIAL_ECHOLNPGM("");
  2941. SERIAL_ECHOPGM("Y: ");
  2942. MYSERIAL.print(current_position[Y_AXIS], 5);
  2943. SERIAL_PROTOCOLPGM("\n");
  2944. }
  2945. if (verbosity_level >= 1) {
  2946. SERIAL_ECHOPGM("mesh bed leveling: ");
  2947. MYSERIAL.print(current_position[Z_AXIS], 5);
  2948. SERIAL_ECHOLNPGM("");
  2949. }
  2950. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2951. custom_message_state--;
  2952. mesh_point++;
  2953. lcd_update(1);
  2954. }
  2955. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2956. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2957. if (verbosity_level >= 20) {
  2958. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2959. MYSERIAL.print(current_position[Z_AXIS], 5);
  2960. }
  2961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2962. st_synchronize();
  2963. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2964. kill(kill_message);
  2965. SERIAL_ECHOLNPGM("killed");
  2966. }
  2967. clean_up_after_endstop_move();
  2968. SERIAL_ECHOLNPGM("clean up finished ");
  2969. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2970. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2971. SERIAL_ECHOLNPGM("babystep applied");
  2972. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2973. if (verbosity_level >= 1) {
  2974. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2975. }
  2976. for (uint8_t i = 0; i < 4; ++i) {
  2977. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2978. long correction = 0;
  2979. if (code_seen(codes[i]))
  2980. correction = code_value_long();
  2981. else if (eeprom_bed_correction_valid) {
  2982. unsigned char *addr = (i < 2) ?
  2983. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2984. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2985. correction = eeprom_read_int8(addr);
  2986. }
  2987. if (correction == 0)
  2988. continue;
  2989. float offset = float(correction) * 0.001f;
  2990. if (fabs(offset) > 0.101f) {
  2991. SERIAL_ERROR_START;
  2992. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2993. SERIAL_ECHO(offset);
  2994. SERIAL_ECHOLNPGM(" microns");
  2995. }
  2996. else {
  2997. switch (i) {
  2998. case 0:
  2999. for (uint8_t row = 0; row < 3; ++row) {
  3000. mbl.z_values[row][1] += 0.5f * offset;
  3001. mbl.z_values[row][0] += offset;
  3002. }
  3003. break;
  3004. case 1:
  3005. for (uint8_t row = 0; row < 3; ++row) {
  3006. mbl.z_values[row][1] += 0.5f * offset;
  3007. mbl.z_values[row][2] += offset;
  3008. }
  3009. break;
  3010. case 2:
  3011. for (uint8_t col = 0; col < 3; ++col) {
  3012. mbl.z_values[1][col] += 0.5f * offset;
  3013. mbl.z_values[0][col] += offset;
  3014. }
  3015. break;
  3016. case 3:
  3017. for (uint8_t col = 0; col < 3; ++col) {
  3018. mbl.z_values[1][col] += 0.5f * offset;
  3019. mbl.z_values[2][col] += offset;
  3020. }
  3021. break;
  3022. }
  3023. }
  3024. }
  3025. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3026. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3027. SERIAL_ECHOLNPGM("Upsample finished");
  3028. mbl.active = 1; //activate mesh bed leveling
  3029. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3030. go_home_with_z_lift();
  3031. SERIAL_ECHOLNPGM("Go home finished");
  3032. //unretract (after PINDA preheat retraction)
  3033. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3034. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3036. }
  3037. KEEPALIVE_STATE(NOT_BUSY);
  3038. // Restore custom message state
  3039. custom_message = custom_message_old;
  3040. custom_message_type = custom_message_type_old;
  3041. custom_message_state = custom_message_state_old;
  3042. mesh_bed_leveling_flag = false;
  3043. mesh_bed_run_from_menu = false;
  3044. lcd_update(2);
  3045. }
  3046. break;
  3047. /**
  3048. * G81: Print mesh bed leveling status and bed profile if activated
  3049. */
  3050. case 81:
  3051. if (mbl.active) {
  3052. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3053. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3054. SERIAL_PROTOCOLPGM(",");
  3055. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3056. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3057. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3058. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3059. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3060. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3061. SERIAL_PROTOCOLPGM(" ");
  3062. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3063. }
  3064. SERIAL_PROTOCOLPGM("\n");
  3065. }
  3066. }
  3067. else
  3068. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3069. break;
  3070. #if 0
  3071. /**
  3072. * G82: Single Z probe at current location
  3073. *
  3074. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3075. *
  3076. */
  3077. case 82:
  3078. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3079. setup_for_endstop_move();
  3080. find_bed_induction_sensor_point_z();
  3081. clean_up_after_endstop_move();
  3082. SERIAL_PROTOCOLPGM("Bed found at: ");
  3083. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3084. SERIAL_PROTOCOLPGM("\n");
  3085. break;
  3086. /**
  3087. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3088. */
  3089. case 83:
  3090. {
  3091. int babystepz = code_seen('S') ? code_value() : 0;
  3092. int BabyPosition = code_seen('P') ? code_value() : 0;
  3093. if (babystepz != 0) {
  3094. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3095. // Is the axis indexed starting with zero or one?
  3096. if (BabyPosition > 4) {
  3097. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3098. }else{
  3099. // Save it to the eeprom
  3100. babystepLoadZ = babystepz;
  3101. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3102. // adjust the Z
  3103. babystepsTodoZadd(babystepLoadZ);
  3104. }
  3105. }
  3106. }
  3107. break;
  3108. /**
  3109. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3110. */
  3111. case 84:
  3112. babystepsTodoZsubtract(babystepLoadZ);
  3113. // babystepLoadZ = 0;
  3114. break;
  3115. /**
  3116. * G85: Prusa3D specific: Pick best babystep
  3117. */
  3118. case 85:
  3119. lcd_pick_babystep();
  3120. break;
  3121. #endif
  3122. /**
  3123. * G86: Prusa3D specific: Disable babystep correction after home.
  3124. * This G-code will be performed at the start of a calibration script.
  3125. */
  3126. case 86:
  3127. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3128. break;
  3129. /**
  3130. * G87: Prusa3D specific: Enable babystep correction after home
  3131. * This G-code will be performed at the end of a calibration script.
  3132. */
  3133. case 87:
  3134. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3135. break;
  3136. /*case 88: //just for test
  3137. SERIAL_ECHOPGM("Calibration status:");
  3138. MYSERIAL.println(int(calibration_status()));
  3139. if (code_seen('S')) codenum = code_value();
  3140. calibration_status_store(codenum);
  3141. SERIAL_ECHOPGM("Calibration status:");
  3142. MYSERIAL.println(int(calibration_status()));
  3143. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  3144. break;
  3145. */
  3146. #endif // ENABLE_MESH_BED_LEVELING
  3147. case 90: // G90
  3148. relative_mode = false;
  3149. break;
  3150. case 91: // G91
  3151. relative_mode = true;
  3152. break;
  3153. case 92: // G92
  3154. if(!code_seen(axis_codes[E_AXIS]))
  3155. st_synchronize();
  3156. for(int8_t i=0; i < NUM_AXIS; i++) {
  3157. if(code_seen(axis_codes[i])) {
  3158. if(i == E_AXIS) {
  3159. current_position[i] = code_value();
  3160. plan_set_e_position(current_position[E_AXIS]);
  3161. }
  3162. else {
  3163. current_position[i] = code_value()+add_homing[i];
  3164. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3165. }
  3166. }
  3167. }
  3168. break;
  3169. case 98: //activate farm mode
  3170. farm_mode = 1;
  3171. PingTime = millis();
  3172. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  3173. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3174. break;
  3175. case 99: //deactivate farm mode
  3176. farm_mode = 0;
  3177. lcd_printer_connected();
  3178. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3179. lcd_update(2);
  3180. break;
  3181. }
  3182. } // end if(code_seen('G'))
  3183. else if(code_seen('M'))
  3184. {
  3185. int index;
  3186. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3187. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3188. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3189. SERIAL_ECHOLNPGM("Invalid M code");
  3190. } else
  3191. switch((int)code_value())
  3192. {
  3193. #ifdef ULTIPANEL
  3194. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3195. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3196. {
  3197. custom_message = true; //fixes using M1 during SD print, but needs to be be updated in future
  3198. custom_message_type = 2; //fixes using M1 during SD print, but needs to be be updated in future
  3199. char *src = strchr_pointer + 2;
  3200. codenum = 0;
  3201. bool hasP = false, hasS = false;
  3202. if (code_seen('P')) {
  3203. codenum = code_value(); // milliseconds to wait
  3204. hasP = codenum > 0;
  3205. }
  3206. if (code_seen('S')) {
  3207. codenum = code_value() * 1000; // seconds to wait
  3208. hasS = codenum > 0;
  3209. }
  3210. starpos = strchr(src, '*');
  3211. if (starpos != NULL) *(starpos) = '\0';
  3212. while (*src == ' ') ++src;
  3213. if (!hasP && !hasS && *src != '\0') {
  3214. lcd_setstatus(src);
  3215. } else {
  3216. LCD_MESSAGERPGM(MSG_USERWAIT);
  3217. }
  3218. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3219. st_synchronize();
  3220. previous_millis_cmd = millis();
  3221. if (codenum > 0){
  3222. codenum += millis(); // keep track of when we started waiting
  3223. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3224. while(millis() < codenum && !lcd_clicked()){
  3225. manage_heater();
  3226. manage_inactivity(true);
  3227. lcd_update();
  3228. }
  3229. KEEPALIVE_STATE(IN_HANDLER);
  3230. lcd_ignore_click(false);
  3231. }else{
  3232. if (!lcd_detected())
  3233. break;
  3234. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3235. while(!lcd_clicked()){
  3236. manage_heater();
  3237. manage_inactivity(true);
  3238. lcd_update();
  3239. }
  3240. KEEPALIVE_STATE(IN_HANDLER);
  3241. }
  3242. if (IS_SD_PRINTING)
  3243. LCD_MESSAGERPGM(MSG_RESUMING);
  3244. else
  3245. LCD_MESSAGERPGM(WELCOME_MSG);
  3246. custom_message = false;
  3247. custom_message_type = 0;
  3248. }
  3249. break;
  3250. #endif
  3251. case 17:
  3252. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3253. enable_x();
  3254. enable_y();
  3255. enable_z();
  3256. enable_e0();
  3257. enable_e1();
  3258. enable_e2();
  3259. break;
  3260. #ifdef SDSUPPORT
  3261. case 20: // M20 - list SD card
  3262. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3263. card.ls();
  3264. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3265. break;
  3266. case 21: // M21 - init SD card
  3267. card.initsd();
  3268. break;
  3269. case 22: //M22 - release SD card
  3270. card.release();
  3271. break;
  3272. case 23: //M23 - Select file
  3273. starpos = (strchr(strchr_pointer + 4,'*'));
  3274. if(starpos!=NULL)
  3275. *(starpos)='\0';
  3276. card.openFile(strchr_pointer + 4,true);
  3277. break;
  3278. case 24: //M24 - Start SD print
  3279. card.startFileprint();
  3280. starttime=millis();
  3281. break;
  3282. case 25: //M25 - Pause SD print
  3283. card.pauseSDPrint();
  3284. break;
  3285. case 26: //M26 - Set SD index
  3286. if(card.cardOK && code_seen('S')) {
  3287. card.setIndex(code_value_long());
  3288. }
  3289. break;
  3290. case 27: //M27 - Get SD status
  3291. card.getStatus();
  3292. break;
  3293. case 28: //M28 - Start SD write
  3294. starpos = (strchr(strchr_pointer + 4,'*'));
  3295. if(starpos != NULL){
  3296. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3297. strchr_pointer = strchr(npos,' ') + 1;
  3298. *(starpos) = '\0';
  3299. }
  3300. card.openFile(strchr_pointer+4,false);
  3301. break;
  3302. case 29: //M29 - Stop SD write
  3303. //processed in write to file routine above
  3304. //card,saving = false;
  3305. break;
  3306. case 30: //M30 <filename> Delete File
  3307. if (card.cardOK){
  3308. card.closefile();
  3309. starpos = (strchr(strchr_pointer + 4,'*'));
  3310. if(starpos != NULL){
  3311. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3312. strchr_pointer = strchr(npos,' ') + 1;
  3313. *(starpos) = '\0';
  3314. }
  3315. card.removeFile(strchr_pointer + 4);
  3316. }
  3317. break;
  3318. case 32: //M32 - Select file and start SD print
  3319. {
  3320. if(card.sdprinting) {
  3321. st_synchronize();
  3322. }
  3323. starpos = (strchr(strchr_pointer + 4,'*'));
  3324. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3325. if(namestartpos==NULL)
  3326. {
  3327. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3328. }
  3329. else
  3330. namestartpos++; //to skip the '!'
  3331. if(starpos!=NULL)
  3332. *(starpos)='\0';
  3333. bool call_procedure=(code_seen('P'));
  3334. if(strchr_pointer>namestartpos)
  3335. call_procedure=false; //false alert, 'P' found within filename
  3336. if( card.cardOK )
  3337. {
  3338. card.openFile(namestartpos,true,!call_procedure);
  3339. if(code_seen('S'))
  3340. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3341. card.setIndex(code_value_long());
  3342. card.startFileprint();
  3343. if(!call_procedure)
  3344. starttime=millis(); //procedure calls count as normal print time.
  3345. }
  3346. } break;
  3347. case 928: //M928 - Start SD write
  3348. starpos = (strchr(strchr_pointer + 5,'*'));
  3349. if(starpos != NULL){
  3350. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3351. strchr_pointer = strchr(npos,' ') + 1;
  3352. *(starpos) = '\0';
  3353. }
  3354. card.openLogFile(strchr_pointer+5);
  3355. break;
  3356. #endif //SDSUPPORT
  3357. case 31: //M31 take time since the start of the SD print or an M109 command
  3358. {
  3359. stoptime=millis();
  3360. char time[30];
  3361. unsigned long t=(stoptime-starttime)/1000;
  3362. int sec,min;
  3363. min=t/60;
  3364. sec=t%60;
  3365. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3366. SERIAL_ECHO_START;
  3367. SERIAL_ECHOLN(time);
  3368. lcd_setstatus(time);
  3369. autotempShutdown();
  3370. }
  3371. break;
  3372. case 42: //M42 -Change pin status via gcode
  3373. if (code_seen('S'))
  3374. {
  3375. int pin_status = code_value();
  3376. int pin_number = LED_PIN;
  3377. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3378. pin_number = code_value();
  3379. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3380. {
  3381. if (sensitive_pins[i] == pin_number)
  3382. {
  3383. pin_number = -1;
  3384. break;
  3385. }
  3386. }
  3387. #if defined(FAN_PIN) && FAN_PIN > -1
  3388. if (pin_number == FAN_PIN)
  3389. fanSpeed = pin_status;
  3390. #endif
  3391. if (pin_number > -1)
  3392. {
  3393. pinMode(pin_number, OUTPUT);
  3394. digitalWrite(pin_number, pin_status);
  3395. analogWrite(pin_number, pin_status);
  3396. }
  3397. }
  3398. break;
  3399. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3400. // Reset the baby step value and the baby step applied flag.
  3401. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3402. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3403. // Reset the skew and offset in both RAM and EEPROM.
  3404. reset_bed_offset_and_skew();
  3405. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3406. // the planner will not perform any adjustments in the XY plane.
  3407. // Wait for the motors to stop and update the current position with the absolute values.
  3408. world2machine_revert_to_uncorrected();
  3409. break;
  3410. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3411. {
  3412. // Only Z calibration?
  3413. bool only_Z = code_seen('Z');
  3414. gcode_M45(only_Z);
  3415. break;
  3416. }
  3417. /*
  3418. case 46:
  3419. {
  3420. // M46: Prusa3D: Show the assigned IP address.
  3421. uint8_t ip[4];
  3422. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3423. if (hasIP) {
  3424. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3425. SERIAL_ECHO(int(ip[0]));
  3426. SERIAL_ECHOPGM(".");
  3427. SERIAL_ECHO(int(ip[1]));
  3428. SERIAL_ECHOPGM(".");
  3429. SERIAL_ECHO(int(ip[2]));
  3430. SERIAL_ECHOPGM(".");
  3431. SERIAL_ECHO(int(ip[3]));
  3432. SERIAL_ECHOLNPGM("");
  3433. } else {
  3434. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3435. }
  3436. break;
  3437. }
  3438. */
  3439. case 47:
  3440. // M47: Prusa3D: Show end stops dialog on the display.
  3441. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3442. lcd_diag_show_end_stops();
  3443. KEEPALIVE_STATE(IN_HANDLER);
  3444. break;
  3445. #if 0
  3446. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3447. {
  3448. // Disable the default update procedure of the display. We will do a modal dialog.
  3449. lcd_update_enable(false);
  3450. // Let the planner use the uncorrected coordinates.
  3451. mbl.reset();
  3452. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3453. // the planner will not perform any adjustments in the XY plane.
  3454. // Wait for the motors to stop and update the current position with the absolute values.
  3455. world2machine_revert_to_uncorrected();
  3456. // Move the print head close to the bed.
  3457. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3458. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3459. st_synchronize();
  3460. // Home in the XY plane.
  3461. set_destination_to_current();
  3462. setup_for_endstop_move();
  3463. home_xy();
  3464. int8_t verbosity_level = 0;
  3465. if (code_seen('V')) {
  3466. // Just 'V' without a number counts as V1.
  3467. char c = strchr_pointer[1];
  3468. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3469. }
  3470. bool success = scan_bed_induction_points(verbosity_level);
  3471. clean_up_after_endstop_move();
  3472. // Print head up.
  3473. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3475. st_synchronize();
  3476. lcd_update_enable(true);
  3477. break;
  3478. }
  3479. #endif
  3480. // M48 Z-Probe repeatability measurement function.
  3481. //
  3482. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3483. //
  3484. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3485. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3486. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3487. // regenerated.
  3488. //
  3489. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3490. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3491. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3492. //
  3493. #ifdef ENABLE_AUTO_BED_LEVELING
  3494. #ifdef Z_PROBE_REPEATABILITY_TEST
  3495. case 48: // M48 Z-Probe repeatability
  3496. {
  3497. #if Z_MIN_PIN == -1
  3498. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3499. #endif
  3500. double sum=0.0;
  3501. double mean=0.0;
  3502. double sigma=0.0;
  3503. double sample_set[50];
  3504. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3505. double X_current, Y_current, Z_current;
  3506. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3507. if (code_seen('V') || code_seen('v')) {
  3508. verbose_level = code_value();
  3509. if (verbose_level<0 || verbose_level>4 ) {
  3510. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3511. goto Sigma_Exit;
  3512. }
  3513. }
  3514. if (verbose_level > 0) {
  3515. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3516. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3517. }
  3518. if (code_seen('n')) {
  3519. n_samples = code_value();
  3520. if (n_samples<4 || n_samples>50 ) {
  3521. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3522. goto Sigma_Exit;
  3523. }
  3524. }
  3525. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3526. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3527. Z_current = st_get_position_mm(Z_AXIS);
  3528. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3529. ext_position = st_get_position_mm(E_AXIS);
  3530. if (code_seen('X') || code_seen('x') ) {
  3531. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3532. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3533. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3534. goto Sigma_Exit;
  3535. }
  3536. }
  3537. if (code_seen('Y') || code_seen('y') ) {
  3538. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3539. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3540. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3541. goto Sigma_Exit;
  3542. }
  3543. }
  3544. if (code_seen('L') || code_seen('l') ) {
  3545. n_legs = code_value();
  3546. if ( n_legs==1 )
  3547. n_legs = 2;
  3548. if ( n_legs<0 || n_legs>15 ) {
  3549. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3550. goto Sigma_Exit;
  3551. }
  3552. }
  3553. //
  3554. // Do all the preliminary setup work. First raise the probe.
  3555. //
  3556. st_synchronize();
  3557. plan_bed_level_matrix.set_to_identity();
  3558. plan_buffer_line( X_current, Y_current, Z_start_location,
  3559. ext_position,
  3560. homing_feedrate[Z_AXIS]/60,
  3561. active_extruder);
  3562. st_synchronize();
  3563. //
  3564. // Now get everything to the specified probe point So we can safely do a probe to
  3565. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3566. // use that as a starting point for each probe.
  3567. //
  3568. if (verbose_level > 2)
  3569. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3570. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3571. ext_position,
  3572. homing_feedrate[X_AXIS]/60,
  3573. active_extruder);
  3574. st_synchronize();
  3575. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3576. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3577. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3578. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3579. //
  3580. // OK, do the inital probe to get us close to the bed.
  3581. // Then retrace the right amount and use that in subsequent probes
  3582. //
  3583. setup_for_endstop_move();
  3584. run_z_probe();
  3585. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3586. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3587. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3588. ext_position,
  3589. homing_feedrate[X_AXIS]/60,
  3590. active_extruder);
  3591. st_synchronize();
  3592. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3593. for( n=0; n<n_samples; n++) {
  3594. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3595. if ( n_legs) {
  3596. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3597. int rotational_direction, l;
  3598. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3599. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3600. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3601. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3602. //SERIAL_ECHOPAIR(" theta: ",theta);
  3603. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3604. //SERIAL_PROTOCOLLNPGM("");
  3605. for( l=0; l<n_legs-1; l++) {
  3606. if (rotational_direction==1)
  3607. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3608. else
  3609. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3610. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3611. if ( radius<0.0 )
  3612. radius = -radius;
  3613. X_current = X_probe_location + cos(theta) * radius;
  3614. Y_current = Y_probe_location + sin(theta) * radius;
  3615. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3616. X_current = X_MIN_POS;
  3617. if ( X_current>X_MAX_POS)
  3618. X_current = X_MAX_POS;
  3619. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3620. Y_current = Y_MIN_POS;
  3621. if ( Y_current>Y_MAX_POS)
  3622. Y_current = Y_MAX_POS;
  3623. if (verbose_level>3 ) {
  3624. SERIAL_ECHOPAIR("x: ", X_current);
  3625. SERIAL_ECHOPAIR("y: ", Y_current);
  3626. SERIAL_PROTOCOLLNPGM("");
  3627. }
  3628. do_blocking_move_to( X_current, Y_current, Z_current );
  3629. }
  3630. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3631. }
  3632. setup_for_endstop_move();
  3633. run_z_probe();
  3634. sample_set[n] = current_position[Z_AXIS];
  3635. //
  3636. // Get the current mean for the data points we have so far
  3637. //
  3638. sum=0.0;
  3639. for( j=0; j<=n; j++) {
  3640. sum = sum + sample_set[j];
  3641. }
  3642. mean = sum / (double (n+1));
  3643. //
  3644. // Now, use that mean to calculate the standard deviation for the
  3645. // data points we have so far
  3646. //
  3647. sum=0.0;
  3648. for( j=0; j<=n; j++) {
  3649. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3650. }
  3651. sigma = sqrt( sum / (double (n+1)) );
  3652. if (verbose_level > 1) {
  3653. SERIAL_PROTOCOL(n+1);
  3654. SERIAL_PROTOCOL(" of ");
  3655. SERIAL_PROTOCOL(n_samples);
  3656. SERIAL_PROTOCOLPGM(" z: ");
  3657. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3658. }
  3659. if (verbose_level > 2) {
  3660. SERIAL_PROTOCOL(" mean: ");
  3661. SERIAL_PROTOCOL_F(mean,6);
  3662. SERIAL_PROTOCOL(" sigma: ");
  3663. SERIAL_PROTOCOL_F(sigma,6);
  3664. }
  3665. if (verbose_level > 0)
  3666. SERIAL_PROTOCOLPGM("\n");
  3667. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3668. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3669. st_synchronize();
  3670. }
  3671. delay(1000);
  3672. clean_up_after_endstop_move();
  3673. // enable_endstops(true);
  3674. if (verbose_level > 0) {
  3675. SERIAL_PROTOCOLPGM("Mean: ");
  3676. SERIAL_PROTOCOL_F(mean, 6);
  3677. SERIAL_PROTOCOLPGM("\n");
  3678. }
  3679. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3680. SERIAL_PROTOCOL_F(sigma, 6);
  3681. SERIAL_PROTOCOLPGM("\n\n");
  3682. Sigma_Exit:
  3683. break;
  3684. }
  3685. #endif // Z_PROBE_REPEATABILITY_TEST
  3686. #endif // ENABLE_AUTO_BED_LEVELING
  3687. case 104: // M104
  3688. if(setTargetedHotend(104)){
  3689. break;
  3690. }
  3691. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3692. setWatch();
  3693. break;
  3694. case 112: // M112 -Emergency Stop
  3695. kill();
  3696. break;
  3697. case 140: // M140 set bed temp
  3698. if (code_seen('S')) setTargetBed(code_value());
  3699. break;
  3700. case 105 : // M105
  3701. if(setTargetedHotend(105)){
  3702. break;
  3703. }
  3704. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3705. SERIAL_PROTOCOLPGM("ok T:");
  3706. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3707. SERIAL_PROTOCOLPGM(" /");
  3708. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3709. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3710. SERIAL_PROTOCOLPGM(" B:");
  3711. SERIAL_PROTOCOL_F(degBed(),1);
  3712. SERIAL_PROTOCOLPGM(" /");
  3713. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3714. #endif //TEMP_BED_PIN
  3715. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3716. SERIAL_PROTOCOLPGM(" T");
  3717. SERIAL_PROTOCOL(cur_extruder);
  3718. SERIAL_PROTOCOLPGM(":");
  3719. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3720. SERIAL_PROTOCOLPGM(" /");
  3721. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3722. }
  3723. #else
  3724. SERIAL_ERROR_START;
  3725. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3726. #endif
  3727. SERIAL_PROTOCOLPGM(" @:");
  3728. #ifdef EXTRUDER_WATTS
  3729. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3730. SERIAL_PROTOCOLPGM("W");
  3731. #else
  3732. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3733. #endif
  3734. SERIAL_PROTOCOLPGM(" B@:");
  3735. #ifdef BED_WATTS
  3736. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3737. SERIAL_PROTOCOLPGM("W");
  3738. #else
  3739. SERIAL_PROTOCOL(getHeaterPower(-1));
  3740. #endif
  3741. #ifdef SHOW_TEMP_ADC_VALUES
  3742. {float raw = 0.0;
  3743. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3744. SERIAL_PROTOCOLPGM(" ADC B:");
  3745. SERIAL_PROTOCOL_F(degBed(),1);
  3746. SERIAL_PROTOCOLPGM("C->");
  3747. raw = rawBedTemp();
  3748. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3749. SERIAL_PROTOCOLPGM(" Rb->");
  3750. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3751. SERIAL_PROTOCOLPGM(" Rxb->");
  3752. SERIAL_PROTOCOL_F(raw, 5);
  3753. #endif
  3754. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3755. SERIAL_PROTOCOLPGM(" T");
  3756. SERIAL_PROTOCOL(cur_extruder);
  3757. SERIAL_PROTOCOLPGM(":");
  3758. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3759. SERIAL_PROTOCOLPGM("C->");
  3760. raw = rawHotendTemp(cur_extruder);
  3761. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3762. SERIAL_PROTOCOLPGM(" Rt");
  3763. SERIAL_PROTOCOL(cur_extruder);
  3764. SERIAL_PROTOCOLPGM("->");
  3765. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3766. SERIAL_PROTOCOLPGM(" Rx");
  3767. SERIAL_PROTOCOL(cur_extruder);
  3768. SERIAL_PROTOCOLPGM("->");
  3769. SERIAL_PROTOCOL_F(raw, 5);
  3770. }}
  3771. #endif
  3772. SERIAL_PROTOCOLLN("");
  3773. KEEPALIVE_STATE(NOT_BUSY);
  3774. return;
  3775. break;
  3776. case 109:
  3777. {// M109 - Wait for extruder heater to reach target.
  3778. if(setTargetedHotend(109)){
  3779. break;
  3780. }
  3781. LCD_MESSAGERPGM(MSG_HEATING);
  3782. heating_status = 1;
  3783. if (farm_mode) { prusa_statistics(1); };
  3784. #ifdef AUTOTEMP
  3785. autotemp_enabled=false;
  3786. #endif
  3787. if (code_seen('S')) {
  3788. setTargetHotend(code_value(), tmp_extruder);
  3789. CooldownNoWait = true;
  3790. } else if (code_seen('R')) {
  3791. setTargetHotend(code_value(), tmp_extruder);
  3792. CooldownNoWait = false;
  3793. }
  3794. #ifdef AUTOTEMP
  3795. if (code_seen('S')) autotemp_min=code_value();
  3796. if (code_seen('B')) autotemp_max=code_value();
  3797. if (code_seen('F'))
  3798. {
  3799. autotemp_factor=code_value();
  3800. autotemp_enabled=true;
  3801. }
  3802. #endif
  3803. setWatch();
  3804. codenum = millis();
  3805. /* See if we are heating up or cooling down */
  3806. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3807. KEEPALIVE_STATE(NOT_BUSY);
  3808. cancel_heatup = false;
  3809. wait_for_heater(codenum); //loops until target temperature is reached
  3810. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3811. KEEPALIVE_STATE(IN_HANDLER);
  3812. heating_status = 2;
  3813. if (farm_mode) { prusa_statistics(2); };
  3814. //starttime=millis();
  3815. previous_millis_cmd = millis();
  3816. }
  3817. break;
  3818. case 190: // M190 - Wait for bed heater to reach target.
  3819. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3820. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3821. heating_status = 3;
  3822. if (farm_mode) { prusa_statistics(1); };
  3823. if (code_seen('S'))
  3824. {
  3825. setTargetBed(code_value());
  3826. CooldownNoWait = true;
  3827. }
  3828. else if (code_seen('R'))
  3829. {
  3830. setTargetBed(code_value());
  3831. CooldownNoWait = false;
  3832. }
  3833. codenum = millis();
  3834. cancel_heatup = false;
  3835. target_direction = isHeatingBed(); // true if heating, false if cooling
  3836. KEEPALIVE_STATE(NOT_BUSY);
  3837. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3838. {
  3839. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3840. {
  3841. if (!farm_mode) {
  3842. float tt = degHotend(active_extruder);
  3843. SERIAL_PROTOCOLPGM("T:");
  3844. SERIAL_PROTOCOL(tt);
  3845. SERIAL_PROTOCOLPGM(" E:");
  3846. SERIAL_PROTOCOL((int)active_extruder);
  3847. SERIAL_PROTOCOLPGM(" B:");
  3848. SERIAL_PROTOCOL_F(degBed(), 1);
  3849. SERIAL_PROTOCOLLN("");
  3850. }
  3851. codenum = millis();
  3852. }
  3853. manage_heater();
  3854. manage_inactivity();
  3855. lcd_update();
  3856. }
  3857. LCD_MESSAGERPGM(MSG_BED_DONE);
  3858. KEEPALIVE_STATE(IN_HANDLER);
  3859. heating_status = 4;
  3860. previous_millis_cmd = millis();
  3861. #endif
  3862. break;
  3863. #if defined(FAN_PIN) && FAN_PIN > -1
  3864. case 106: //M106 Fan On
  3865. if (code_seen('S')){
  3866. fanSpeed=constrain(code_value(),0,255);
  3867. }
  3868. else {
  3869. fanSpeed=255;
  3870. }
  3871. break;
  3872. case 107: //M107 Fan Off
  3873. fanSpeed = 0;
  3874. break;
  3875. #endif //FAN_PIN
  3876. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3877. case 80: // M80 - Turn on Power Supply
  3878. SET_OUTPUT(PS_ON_PIN); //GND
  3879. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3880. // If you have a switch on suicide pin, this is useful
  3881. // if you want to start another print with suicide feature after
  3882. // a print without suicide...
  3883. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3884. SET_OUTPUT(SUICIDE_PIN);
  3885. WRITE(SUICIDE_PIN, HIGH);
  3886. #endif
  3887. #ifdef ULTIPANEL
  3888. powersupply = true;
  3889. LCD_MESSAGERPGM(WELCOME_MSG);
  3890. lcd_update();
  3891. #endif
  3892. break;
  3893. #endif
  3894. case 81: // M81 - Turn off Power Supply
  3895. disable_heater();
  3896. st_synchronize();
  3897. disable_e0();
  3898. disable_e1();
  3899. disable_e2();
  3900. finishAndDisableSteppers();
  3901. fanSpeed = 0;
  3902. delay(1000); // Wait a little before to switch off
  3903. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3904. st_synchronize();
  3905. suicide();
  3906. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3907. SET_OUTPUT(PS_ON_PIN);
  3908. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3909. #endif
  3910. #ifdef ULTIPANEL
  3911. powersupply = false;
  3912. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3913. /*
  3914. MACHNAME = "Prusa i3"
  3915. MSGOFF = "Vypnuto"
  3916. "Prusai3"" ""vypnuto""."
  3917. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3918. */
  3919. lcd_update();
  3920. #endif
  3921. break;
  3922. case 82:
  3923. axis_relative_modes[3] = false;
  3924. break;
  3925. case 83:
  3926. axis_relative_modes[3] = true;
  3927. break;
  3928. case 18: //compatibility
  3929. case 84: // M84
  3930. if(code_seen('S')){
  3931. stepper_inactive_time = code_value() * 1000;
  3932. }
  3933. else
  3934. {
  3935. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3936. if(all_axis)
  3937. {
  3938. st_synchronize();
  3939. disable_e0();
  3940. disable_e1();
  3941. disable_e2();
  3942. finishAndDisableSteppers();
  3943. }
  3944. else
  3945. {
  3946. st_synchronize();
  3947. if (code_seen('X')) disable_x();
  3948. if (code_seen('Y')) disable_y();
  3949. if (code_seen('Z')) disable_z();
  3950. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3951. if (code_seen('E')) {
  3952. disable_e0();
  3953. disable_e1();
  3954. disable_e2();
  3955. }
  3956. #endif
  3957. }
  3958. }
  3959. snmm_filaments_used = 0;
  3960. break;
  3961. case 85: // M85
  3962. if(code_seen('S')) {
  3963. max_inactive_time = code_value() * 1000;
  3964. }
  3965. break;
  3966. case 92: // M92
  3967. for(int8_t i=0; i < NUM_AXIS; i++)
  3968. {
  3969. if(code_seen(axis_codes[i]))
  3970. {
  3971. if(i == 3) { // E
  3972. float value = code_value();
  3973. if(value < 20.0) {
  3974. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3975. max_jerk[E_AXIS] *= factor;
  3976. max_feedrate[i] *= factor;
  3977. axis_steps_per_sqr_second[i] *= factor;
  3978. }
  3979. axis_steps_per_unit[i] = value;
  3980. }
  3981. else {
  3982. axis_steps_per_unit[i] = code_value();
  3983. }
  3984. }
  3985. }
  3986. break;
  3987. case 110: // M110 - reset line pos
  3988. if (code_seen('N'))
  3989. gcode_LastN = code_value_long();
  3990. else
  3991. gcode_LastN = 0;
  3992. break;
  3993. #ifdef HOST_KEEPALIVE_FEATURE
  3994. case 113: // M113 - Get or set Host Keepalive interval
  3995. if (code_seen('S')) {
  3996. host_keepalive_interval = (uint8_t)code_value_short();
  3997. NOMORE(host_keepalive_interval, 60);
  3998. } else {
  3999. SERIAL_ECHO_START;
  4000. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4001. SERIAL_PROTOCOLLN("");
  4002. }
  4003. break;
  4004. #endif
  4005. case 115: // M115
  4006. if (code_seen('V')) {
  4007. // Report the Prusa version number.
  4008. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4009. } else if (code_seen('U')) {
  4010. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4011. // pause the print and ask the user to upgrade the firmware.
  4012. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4013. } else {
  4014. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4015. }
  4016. break;
  4017. /* case 117: // M117 display message
  4018. starpos = (strchr(strchr_pointer + 5,'*'));
  4019. if(starpos!=NULL)
  4020. *(starpos)='\0';
  4021. lcd_setstatus(strchr_pointer + 5);
  4022. break;*/
  4023. case 114: // M114
  4024. SERIAL_PROTOCOLPGM("X:");
  4025. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4026. SERIAL_PROTOCOLPGM(" Y:");
  4027. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4028. SERIAL_PROTOCOLPGM(" Z:");
  4029. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4030. SERIAL_PROTOCOLPGM(" E:");
  4031. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4032. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4033. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4034. SERIAL_PROTOCOLPGM(" Y:");
  4035. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4036. SERIAL_PROTOCOLPGM(" Z:");
  4037. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4038. SERIAL_PROTOCOLLN("");
  4039. break;
  4040. case 120: // M120
  4041. enable_endstops(false) ;
  4042. break;
  4043. case 121: // M121
  4044. enable_endstops(true) ;
  4045. break;
  4046. case 119: // M119
  4047. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4048. SERIAL_PROTOCOLLN("");
  4049. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4050. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4051. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4052. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4053. }else{
  4054. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4055. }
  4056. SERIAL_PROTOCOLLN("");
  4057. #endif
  4058. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4059. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4060. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4061. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4062. }else{
  4063. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4064. }
  4065. SERIAL_PROTOCOLLN("");
  4066. #endif
  4067. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4068. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4069. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4070. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4071. }else{
  4072. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4073. }
  4074. SERIAL_PROTOCOLLN("");
  4075. #endif
  4076. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4077. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4078. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4079. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4080. }else{
  4081. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4082. }
  4083. SERIAL_PROTOCOLLN("");
  4084. #endif
  4085. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4086. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4087. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4088. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4089. }else{
  4090. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4091. }
  4092. SERIAL_PROTOCOLLN("");
  4093. #endif
  4094. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4095. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4096. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4097. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4098. }else{
  4099. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4100. }
  4101. SERIAL_PROTOCOLLN("");
  4102. #endif
  4103. break;
  4104. //TODO: update for all axis, use for loop
  4105. #ifdef BLINKM
  4106. case 150: // M150
  4107. {
  4108. byte red;
  4109. byte grn;
  4110. byte blu;
  4111. if(code_seen('R')) red = code_value();
  4112. if(code_seen('U')) grn = code_value();
  4113. if(code_seen('B')) blu = code_value();
  4114. SendColors(red,grn,blu);
  4115. }
  4116. break;
  4117. #endif //BLINKM
  4118. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4119. {
  4120. tmp_extruder = active_extruder;
  4121. if(code_seen('T')) {
  4122. tmp_extruder = code_value();
  4123. if(tmp_extruder >= EXTRUDERS) {
  4124. SERIAL_ECHO_START;
  4125. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4126. break;
  4127. }
  4128. }
  4129. if(code_seen('D')) {
  4130. float diameter = (float)code_value();
  4131. if (diameter == 0.0) {
  4132. // setting any extruder filament size disables volumetric on the assumption that
  4133. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4134. // for all extruders
  4135. volumetric_enabled = false;
  4136. } else {
  4137. filament_size[tmp_extruder] = (float)code_value();
  4138. // make sure all extruders have some sane value for the filament size
  4139. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4140. #if EXTRUDERS > 1
  4141. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4142. #if EXTRUDERS > 2
  4143. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4144. #endif
  4145. #endif
  4146. volumetric_enabled = true;
  4147. }
  4148. } else {
  4149. //reserved for setting filament diameter via UFID or filament measuring device
  4150. break;
  4151. }
  4152. calculate_volumetric_multipliers();
  4153. }
  4154. break;
  4155. case 201: // M201
  4156. for(int8_t i=0; i < NUM_AXIS; i++)
  4157. {
  4158. if(code_seen(axis_codes[i]))
  4159. {
  4160. max_acceleration_units_per_sq_second[i] = code_value();
  4161. }
  4162. }
  4163. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4164. reset_acceleration_rates();
  4165. break;
  4166. #if 0 // Not used for Sprinter/grbl gen6
  4167. case 202: // M202
  4168. for(int8_t i=0; i < NUM_AXIS; i++) {
  4169. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4170. }
  4171. break;
  4172. #endif
  4173. case 203: // M203 max feedrate mm/sec
  4174. for(int8_t i=0; i < NUM_AXIS; i++) {
  4175. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4176. }
  4177. break;
  4178. case 204: // M204 acclereration S normal moves T filmanent only moves
  4179. {
  4180. if(code_seen('S')) acceleration = code_value() ;
  4181. if(code_seen('T')) retract_acceleration = code_value() ;
  4182. }
  4183. break;
  4184. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4185. {
  4186. if(code_seen('S')) minimumfeedrate = code_value();
  4187. if(code_seen('T')) mintravelfeedrate = code_value();
  4188. if(code_seen('B')) minsegmenttime = code_value() ;
  4189. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4190. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4191. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4192. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4193. }
  4194. break;
  4195. case 206: // M206 additional homing offset
  4196. for(int8_t i=0; i < 3; i++)
  4197. {
  4198. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4199. }
  4200. break;
  4201. #ifdef FWRETRACT
  4202. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4203. {
  4204. if(code_seen('S'))
  4205. {
  4206. retract_length = code_value() ;
  4207. }
  4208. if(code_seen('F'))
  4209. {
  4210. retract_feedrate = code_value()/60 ;
  4211. }
  4212. if(code_seen('Z'))
  4213. {
  4214. retract_zlift = code_value() ;
  4215. }
  4216. }break;
  4217. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4218. {
  4219. if(code_seen('S'))
  4220. {
  4221. retract_recover_length = code_value() ;
  4222. }
  4223. if(code_seen('F'))
  4224. {
  4225. retract_recover_feedrate = code_value()/60 ;
  4226. }
  4227. }break;
  4228. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4229. {
  4230. if(code_seen('S'))
  4231. {
  4232. int t= code_value() ;
  4233. switch(t)
  4234. {
  4235. case 0:
  4236. {
  4237. autoretract_enabled=false;
  4238. retracted[0]=false;
  4239. #if EXTRUDERS > 1
  4240. retracted[1]=false;
  4241. #endif
  4242. #if EXTRUDERS > 2
  4243. retracted[2]=false;
  4244. #endif
  4245. }break;
  4246. case 1:
  4247. {
  4248. autoretract_enabled=true;
  4249. retracted[0]=false;
  4250. #if EXTRUDERS > 1
  4251. retracted[1]=false;
  4252. #endif
  4253. #if EXTRUDERS > 2
  4254. retracted[2]=false;
  4255. #endif
  4256. }break;
  4257. default:
  4258. SERIAL_ECHO_START;
  4259. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4260. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4261. SERIAL_ECHOLNPGM("\"");
  4262. }
  4263. }
  4264. }break;
  4265. #endif // FWRETRACT
  4266. #if EXTRUDERS > 1
  4267. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4268. {
  4269. if(setTargetedHotend(218)){
  4270. break;
  4271. }
  4272. if(code_seen('X'))
  4273. {
  4274. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4275. }
  4276. if(code_seen('Y'))
  4277. {
  4278. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4279. }
  4280. SERIAL_ECHO_START;
  4281. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4282. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4283. {
  4284. SERIAL_ECHO(" ");
  4285. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4286. SERIAL_ECHO(",");
  4287. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4288. }
  4289. SERIAL_ECHOLN("");
  4290. }break;
  4291. #endif
  4292. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4293. {
  4294. if (code_seen('B')) //backup current speed factor
  4295. {
  4296. saved_feedmultiply_mm = feedmultiply;
  4297. }
  4298. if(code_seen('S'))
  4299. {
  4300. feedmultiply = code_value() ;
  4301. }
  4302. if (code_seen('R')) { //restore previous feedmultiply
  4303. feedmultiply = saved_feedmultiply_mm;
  4304. }
  4305. }
  4306. break;
  4307. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4308. {
  4309. if(code_seen('S'))
  4310. {
  4311. int tmp_code = code_value();
  4312. if (code_seen('T'))
  4313. {
  4314. if(setTargetedHotend(221)){
  4315. break;
  4316. }
  4317. extruder_multiply[tmp_extruder] = tmp_code;
  4318. }
  4319. else
  4320. {
  4321. extrudemultiply = tmp_code ;
  4322. }
  4323. }
  4324. }
  4325. break;
  4326. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4327. {
  4328. if(code_seen('P')){
  4329. int pin_number = code_value(); // pin number
  4330. int pin_state = -1; // required pin state - default is inverted
  4331. if(code_seen('S')) pin_state = code_value(); // required pin state
  4332. if(pin_state >= -1 && pin_state <= 1){
  4333. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4334. {
  4335. if (sensitive_pins[i] == pin_number)
  4336. {
  4337. pin_number = -1;
  4338. break;
  4339. }
  4340. }
  4341. if (pin_number > -1)
  4342. {
  4343. int target = LOW;
  4344. st_synchronize();
  4345. pinMode(pin_number, INPUT);
  4346. switch(pin_state){
  4347. case 1:
  4348. target = HIGH;
  4349. break;
  4350. case 0:
  4351. target = LOW;
  4352. break;
  4353. case -1:
  4354. target = !digitalRead(pin_number);
  4355. break;
  4356. }
  4357. while(digitalRead(pin_number) != target){
  4358. manage_heater();
  4359. manage_inactivity();
  4360. lcd_update();
  4361. }
  4362. }
  4363. }
  4364. }
  4365. }
  4366. break;
  4367. #if NUM_SERVOS > 0
  4368. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4369. {
  4370. int servo_index = -1;
  4371. int servo_position = 0;
  4372. if (code_seen('P'))
  4373. servo_index = code_value();
  4374. if (code_seen('S')) {
  4375. servo_position = code_value();
  4376. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4377. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4378. servos[servo_index].attach(0);
  4379. #endif
  4380. servos[servo_index].write(servo_position);
  4381. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4382. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4383. servos[servo_index].detach();
  4384. #endif
  4385. }
  4386. else {
  4387. SERIAL_ECHO_START;
  4388. SERIAL_ECHO("Servo ");
  4389. SERIAL_ECHO(servo_index);
  4390. SERIAL_ECHOLN(" out of range");
  4391. }
  4392. }
  4393. else if (servo_index >= 0) {
  4394. SERIAL_PROTOCOL(MSG_OK);
  4395. SERIAL_PROTOCOL(" Servo ");
  4396. SERIAL_PROTOCOL(servo_index);
  4397. SERIAL_PROTOCOL(": ");
  4398. SERIAL_PROTOCOL(servos[servo_index].read());
  4399. SERIAL_PROTOCOLLN("");
  4400. }
  4401. }
  4402. break;
  4403. #endif // NUM_SERVOS > 0
  4404. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4405. case 300: // M300
  4406. {
  4407. int beepS = code_seen('S') ? code_value() : 110;
  4408. int beepP = code_seen('P') ? code_value() : 1000;
  4409. if (beepS > 0)
  4410. {
  4411. #if BEEPER > 0
  4412. tone(BEEPER, beepS);
  4413. delay(beepP);
  4414. noTone(BEEPER);
  4415. #elif defined(ULTRALCD)
  4416. lcd_buzz(beepS, beepP);
  4417. #elif defined(LCD_USE_I2C_BUZZER)
  4418. lcd_buzz(beepP, beepS);
  4419. #endif
  4420. }
  4421. else
  4422. {
  4423. delay(beepP);
  4424. }
  4425. }
  4426. break;
  4427. #endif // M300
  4428. #ifdef PIDTEMP
  4429. case 301: // M301
  4430. {
  4431. if(code_seen('P')) Kp = code_value();
  4432. if(code_seen('I')) Ki = scalePID_i(code_value());
  4433. if(code_seen('D')) Kd = scalePID_d(code_value());
  4434. #ifdef PID_ADD_EXTRUSION_RATE
  4435. if(code_seen('C')) Kc = code_value();
  4436. #endif
  4437. updatePID();
  4438. SERIAL_PROTOCOLRPGM(MSG_OK);
  4439. SERIAL_PROTOCOL(" p:");
  4440. SERIAL_PROTOCOL(Kp);
  4441. SERIAL_PROTOCOL(" i:");
  4442. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4443. SERIAL_PROTOCOL(" d:");
  4444. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4445. #ifdef PID_ADD_EXTRUSION_RATE
  4446. SERIAL_PROTOCOL(" c:");
  4447. //Kc does not have scaling applied above, or in resetting defaults
  4448. SERIAL_PROTOCOL(Kc);
  4449. #endif
  4450. SERIAL_PROTOCOLLN("");
  4451. }
  4452. break;
  4453. #endif //PIDTEMP
  4454. #ifdef PIDTEMPBED
  4455. case 304: // M304
  4456. {
  4457. if(code_seen('P')) bedKp = code_value();
  4458. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4459. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4460. updatePID();
  4461. SERIAL_PROTOCOLRPGM(MSG_OK);
  4462. SERIAL_PROTOCOL(" p:");
  4463. SERIAL_PROTOCOL(bedKp);
  4464. SERIAL_PROTOCOL(" i:");
  4465. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4466. SERIAL_PROTOCOL(" d:");
  4467. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4468. SERIAL_PROTOCOLLN("");
  4469. }
  4470. break;
  4471. #endif //PIDTEMP
  4472. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4473. {
  4474. #ifdef CHDK
  4475. SET_OUTPUT(CHDK);
  4476. WRITE(CHDK, HIGH);
  4477. chdkHigh = millis();
  4478. chdkActive = true;
  4479. #else
  4480. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4481. const uint8_t NUM_PULSES=16;
  4482. const float PULSE_LENGTH=0.01524;
  4483. for(int i=0; i < NUM_PULSES; i++) {
  4484. WRITE(PHOTOGRAPH_PIN, HIGH);
  4485. _delay_ms(PULSE_LENGTH);
  4486. WRITE(PHOTOGRAPH_PIN, LOW);
  4487. _delay_ms(PULSE_LENGTH);
  4488. }
  4489. delay(7.33);
  4490. for(int i=0; i < NUM_PULSES; i++) {
  4491. WRITE(PHOTOGRAPH_PIN, HIGH);
  4492. _delay_ms(PULSE_LENGTH);
  4493. WRITE(PHOTOGRAPH_PIN, LOW);
  4494. _delay_ms(PULSE_LENGTH);
  4495. }
  4496. #endif
  4497. #endif //chdk end if
  4498. }
  4499. break;
  4500. #ifdef DOGLCD
  4501. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4502. {
  4503. if (code_seen('C')) {
  4504. lcd_setcontrast( ((int)code_value())&63 );
  4505. }
  4506. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4507. SERIAL_PROTOCOL(lcd_contrast);
  4508. SERIAL_PROTOCOLLN("");
  4509. }
  4510. break;
  4511. #endif
  4512. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4513. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4514. {
  4515. float temp = .0;
  4516. if (code_seen('S')) temp=code_value();
  4517. set_extrude_min_temp(temp);
  4518. }
  4519. break;
  4520. #endif
  4521. case 303: // M303 PID autotune
  4522. {
  4523. float temp = 150.0;
  4524. int e=0;
  4525. int c=5;
  4526. if (code_seen('E')) e=code_value();
  4527. if (e<0)
  4528. temp=70;
  4529. if (code_seen('S')) temp=code_value();
  4530. if (code_seen('C')) c=code_value();
  4531. PID_autotune(temp, e, c);
  4532. }
  4533. break;
  4534. case 400: // M400 finish all moves
  4535. {
  4536. st_synchronize();
  4537. }
  4538. break;
  4539. #ifdef FILAMENT_SENSOR
  4540. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4541. {
  4542. #if (FILWIDTH_PIN > -1)
  4543. if(code_seen('N')) filament_width_nominal=code_value();
  4544. else{
  4545. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4546. SERIAL_PROTOCOLLN(filament_width_nominal);
  4547. }
  4548. #endif
  4549. }
  4550. break;
  4551. case 405: //M405 Turn on filament sensor for control
  4552. {
  4553. if(code_seen('D')) meas_delay_cm=code_value();
  4554. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4555. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4556. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4557. {
  4558. int temp_ratio = widthFil_to_size_ratio();
  4559. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4560. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4561. }
  4562. delay_index1=0;
  4563. delay_index2=0;
  4564. }
  4565. filament_sensor = true ;
  4566. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4567. //SERIAL_PROTOCOL(filament_width_meas);
  4568. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4569. //SERIAL_PROTOCOL(extrudemultiply);
  4570. }
  4571. break;
  4572. case 406: //M406 Turn off filament sensor for control
  4573. {
  4574. filament_sensor = false ;
  4575. }
  4576. break;
  4577. case 407: //M407 Display measured filament diameter
  4578. {
  4579. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4580. SERIAL_PROTOCOLLN(filament_width_meas);
  4581. }
  4582. break;
  4583. #endif
  4584. case 500: // M500 Store settings in EEPROM
  4585. {
  4586. Config_StoreSettings();
  4587. }
  4588. break;
  4589. case 501: // M501 Read settings from EEPROM
  4590. {
  4591. Config_RetrieveSettings();
  4592. }
  4593. break;
  4594. case 502: // M502 Revert to default settings
  4595. {
  4596. Config_ResetDefault();
  4597. }
  4598. break;
  4599. case 503: // M503 print settings currently in memory
  4600. {
  4601. Config_PrintSettings();
  4602. }
  4603. break;
  4604. case 509: //M509 Force language selection
  4605. {
  4606. lcd_force_language_selection();
  4607. SERIAL_ECHO_START;
  4608. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4609. }
  4610. break;
  4611. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4612. case 540:
  4613. {
  4614. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4615. }
  4616. break;
  4617. #endif
  4618. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4619. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4620. {
  4621. float value;
  4622. if (code_seen('Z'))
  4623. {
  4624. value = code_value();
  4625. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4626. {
  4627. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4628. SERIAL_ECHO_START;
  4629. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4630. SERIAL_PROTOCOLLN("");
  4631. }
  4632. else
  4633. {
  4634. SERIAL_ECHO_START;
  4635. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4636. SERIAL_ECHORPGM(MSG_Z_MIN);
  4637. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4638. SERIAL_ECHORPGM(MSG_Z_MAX);
  4639. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4640. SERIAL_PROTOCOLLN("");
  4641. }
  4642. }
  4643. else
  4644. {
  4645. SERIAL_ECHO_START;
  4646. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4647. SERIAL_ECHO(-zprobe_zoffset);
  4648. SERIAL_PROTOCOLLN("");
  4649. }
  4650. break;
  4651. }
  4652. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4653. #ifdef FILAMENTCHANGEENABLE
  4654. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4655. {
  4656. st_synchronize();
  4657. float target[4];
  4658. float lastpos[4];
  4659. if (farm_mode)
  4660. {
  4661. prusa_statistics(22);
  4662. }
  4663. feedmultiplyBckp=feedmultiply;
  4664. target[X_AXIS]=current_position[X_AXIS];
  4665. target[Y_AXIS]=current_position[Y_AXIS];
  4666. target[Z_AXIS]=current_position[Z_AXIS];
  4667. target[E_AXIS]=current_position[E_AXIS];
  4668. lastpos[X_AXIS]=current_position[X_AXIS];
  4669. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4670. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4671. lastpos[E_AXIS]=current_position[E_AXIS];
  4672. //Retract extruder
  4673. if(code_seen('E'))
  4674. {
  4675. target[E_AXIS]+= code_value();
  4676. }
  4677. else
  4678. {
  4679. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4680. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4681. #endif
  4682. }
  4683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4684. //Lift Z
  4685. if(code_seen('Z'))
  4686. {
  4687. target[Z_AXIS]+= code_value();
  4688. }
  4689. else
  4690. {
  4691. #ifdef FILAMENTCHANGE_ZADD
  4692. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4693. // XXX: Removed unused var 'TooLowZ'
  4694. if(target[Z_AXIS] < 10){
  4695. target[Z_AXIS]+= 10 ;
  4696. }
  4697. #endif
  4698. }
  4699. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4700. //Move XY to side
  4701. if(code_seen('X'))
  4702. {
  4703. target[X_AXIS]+= code_value();
  4704. }
  4705. else
  4706. {
  4707. #ifdef FILAMENTCHANGE_XPOS
  4708. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4709. #endif
  4710. }
  4711. if(code_seen('Y'))
  4712. {
  4713. target[Y_AXIS]= code_value();
  4714. }
  4715. else
  4716. {
  4717. #ifdef FILAMENTCHANGE_YPOS
  4718. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4719. #endif
  4720. }
  4721. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4722. st_synchronize();
  4723. custom_message = true;
  4724. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4725. // Unload filament
  4726. if(code_seen('L'))
  4727. {
  4728. target[E_AXIS]+= code_value();
  4729. }
  4730. else
  4731. {
  4732. #ifdef SNMM
  4733. #else
  4734. #ifdef FILAMENTCHANGE_FINALRETRACT
  4735. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4736. #endif
  4737. #endif // SNMM
  4738. }
  4739. #ifdef SNMM
  4740. target[E_AXIS] += 12;
  4741. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4742. target[E_AXIS] += 6;
  4743. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4744. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4745. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4746. st_synchronize();
  4747. target[E_AXIS] += (FIL_COOLING);
  4748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4749. target[E_AXIS] += (FIL_COOLING*-1);
  4750. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4751. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4752. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4753. st_synchronize();
  4754. #else
  4755. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4756. #endif // SNMM
  4757. //finish moves
  4758. st_synchronize();
  4759. //disable extruder steppers so filament can be removed
  4760. disable_e0();
  4761. disable_e1();
  4762. disable_e2();
  4763. delay(100);
  4764. //Wait for user to insert filament
  4765. uint8_t cnt=0;
  4766. int counterBeep = 0;
  4767. lcd_wait_interact();
  4768. load_filament_time = millis();
  4769. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4770. while(!lcd_clicked()){
  4771. cnt++;
  4772. manage_heater();
  4773. manage_inactivity(true);
  4774. /*#ifdef SNMM
  4775. target[E_AXIS] += 0.002;
  4776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4777. #endif // SNMM*/
  4778. if(cnt==0)
  4779. {
  4780. #if BEEPER > 0
  4781. if (counterBeep== 500){
  4782. counterBeep = 0;
  4783. }
  4784. SET_OUTPUT(BEEPER);
  4785. if (counterBeep== 0){
  4786. WRITE(BEEPER,HIGH);
  4787. }
  4788. if (counterBeep== 20){
  4789. WRITE(BEEPER,LOW);
  4790. }
  4791. counterBeep++;
  4792. #else
  4793. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4794. lcd_buzz(1000/6,100);
  4795. #else
  4796. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4797. #endif
  4798. #endif
  4799. }
  4800. }
  4801. KEEPALIVE_STATE(IN_HANDLER);
  4802. WRITE(BEEPER, LOW);
  4803. #ifdef SNMM
  4804. display_loading();
  4805. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4806. do {
  4807. target[E_AXIS] += 0.002;
  4808. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4809. delay_keep_alive(2);
  4810. } while (!lcd_clicked());
  4811. KEEPALIVE_STATE(IN_HANDLER);
  4812. /*if (millis() - load_filament_time > 2) {
  4813. load_filament_time = millis();
  4814. target[E_AXIS] += 0.001;
  4815. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4816. }*/
  4817. #endif
  4818. //Filament inserted
  4819. //Feed the filament to the end of nozzle quickly
  4820. #ifdef SNMM
  4821. st_synchronize();
  4822. target[E_AXIS] += bowden_length[snmm_extruder];
  4823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4824. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4826. target[E_AXIS] += 40;
  4827. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4828. target[E_AXIS] += 10;
  4829. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4830. #else
  4831. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4832. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4833. #endif // SNMM
  4834. //Extrude some filament
  4835. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4837. //Wait for user to check the state
  4838. lcd_change_fil_state = 0;
  4839. lcd_loading_filament();
  4840. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4841. lcd_change_fil_state = 0;
  4842. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4843. lcd_alright();
  4844. KEEPALIVE_STATE(IN_HANDLER);
  4845. switch(lcd_change_fil_state){
  4846. // Filament failed to load so load it again
  4847. case 2:
  4848. #ifdef SNMM
  4849. display_loading();
  4850. do {
  4851. target[E_AXIS] += 0.002;
  4852. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4853. delay_keep_alive(2);
  4854. } while (!lcd_clicked());
  4855. st_synchronize();
  4856. target[E_AXIS] += bowden_length[snmm_extruder];
  4857. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4858. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4859. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4860. target[E_AXIS] += 40;
  4861. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4862. target[E_AXIS] += 10;
  4863. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4864. #else
  4865. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4866. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4867. #endif
  4868. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4869. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4870. lcd_loading_filament();
  4871. break;
  4872. // Filament loaded properly but color is not clear
  4873. case 3:
  4874. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4875. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4876. lcd_loading_color();
  4877. break;
  4878. // Everything good
  4879. default:
  4880. lcd_change_success();
  4881. lcd_update_enable(true);
  4882. break;
  4883. }
  4884. }
  4885. //Not let's go back to print
  4886. //Feed a little of filament to stabilize pressure
  4887. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4888. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4889. //Retract
  4890. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4892. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4893. //Move XY back
  4894. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4895. //Move Z back
  4896. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4897. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4898. //Unretract
  4899. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4900. //Set E position to original
  4901. plan_set_e_position(lastpos[E_AXIS]);
  4902. //Recover feed rate
  4903. feedmultiply=feedmultiplyBckp;
  4904. char cmd[9];
  4905. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4906. enquecommand(cmd);
  4907. lcd_setstatuspgm(WELCOME_MSG);
  4908. custom_message = false;
  4909. custom_message_type = 0;
  4910. }
  4911. break;
  4912. #endif //FILAMENTCHANGEENABLE
  4913. case 601: {
  4914. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4915. }
  4916. break;
  4917. case 602: {
  4918. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4919. }
  4920. break;
  4921. #ifdef LIN_ADVANCE
  4922. case 900: // M900: Set LIN_ADVANCE options.
  4923. gcode_M900();
  4924. break;
  4925. #endif
  4926. case 907: // M907 Set digital trimpot motor current using axis codes.
  4927. {
  4928. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4929. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4930. if(code_seen('B')) digipot_current(4,code_value());
  4931. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4932. #endif
  4933. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4934. if(code_seen('X')) digipot_current(0, code_value());
  4935. #endif
  4936. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4937. if(code_seen('Z')) digipot_current(1, code_value());
  4938. #endif
  4939. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4940. if(code_seen('E')) digipot_current(2, code_value());
  4941. #endif
  4942. #ifdef DIGIPOT_I2C
  4943. // this one uses actual amps in floating point
  4944. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4945. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4946. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4947. #endif
  4948. }
  4949. break;
  4950. case 908: // M908 Control digital trimpot directly.
  4951. {
  4952. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4953. uint8_t channel,current;
  4954. if(code_seen('P')) channel=code_value();
  4955. if(code_seen('S')) current=code_value();
  4956. digitalPotWrite(channel, current);
  4957. #endif
  4958. }
  4959. break;
  4960. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4961. {
  4962. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4963. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4964. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4965. if(code_seen('B')) microstep_mode(4,code_value());
  4966. microstep_readings();
  4967. #endif
  4968. }
  4969. break;
  4970. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4971. {
  4972. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4973. if(code_seen('S')) switch((int)code_value())
  4974. {
  4975. case 1:
  4976. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4977. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4978. break;
  4979. case 2:
  4980. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4981. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4982. break;
  4983. }
  4984. microstep_readings();
  4985. #endif
  4986. }
  4987. break;
  4988. case 701: //M701: load filament
  4989. {
  4990. gcode_M701();
  4991. }
  4992. break;
  4993. case 702:
  4994. {
  4995. #ifdef SNMM
  4996. if (code_seen('U')) {
  4997. extr_unload_used(); //unload all filaments which were used in current print
  4998. }
  4999. else if (code_seen('C')) {
  5000. extr_unload(); //unload just current filament
  5001. }
  5002. else {
  5003. extr_unload_all(); //unload all filaments
  5004. }
  5005. #else
  5006. custom_message = true;
  5007. custom_message_type = 2;
  5008. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5009. current_position[E_AXIS] -= 80;
  5010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5011. st_synchronize();
  5012. lcd_setstatuspgm(WELCOME_MSG);
  5013. custom_message = false;
  5014. custom_message_type = 0;
  5015. #endif
  5016. }
  5017. break;
  5018. case 999: // M999: Restart after being stopped
  5019. Stopped = false;
  5020. lcd_reset_alert_level();
  5021. gcode_LastN = Stopped_gcode_LastN;
  5022. FlushSerialRequestResend();
  5023. break;
  5024. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5025. }
  5026. } // end if(code_seen('M')) (end of M codes)
  5027. else if(code_seen('T'))
  5028. {
  5029. int index;
  5030. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5031. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5032. SERIAL_ECHOLNPGM("Invalid T code.");
  5033. }
  5034. else {
  5035. if (*(strchr_pointer + index) == '?') {
  5036. tmp_extruder = choose_extruder_menu();
  5037. }
  5038. else {
  5039. tmp_extruder = code_value();
  5040. }
  5041. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5042. #ifdef SNMM
  5043. #ifdef LIN_ADVANCE
  5044. if (snmm_extruder != tmp_extruder)
  5045. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5046. #endif
  5047. snmm_extruder = tmp_extruder;
  5048. st_synchronize();
  5049. delay(100);
  5050. disable_e0();
  5051. disable_e1();
  5052. disable_e2();
  5053. pinMode(E_MUX0_PIN, OUTPUT);
  5054. pinMode(E_MUX1_PIN, OUTPUT);
  5055. delay(100);
  5056. SERIAL_ECHO_START;
  5057. SERIAL_ECHO("T:");
  5058. SERIAL_ECHOLN((int)tmp_extruder);
  5059. switch (tmp_extruder) {
  5060. case 1:
  5061. WRITE(E_MUX0_PIN, HIGH);
  5062. WRITE(E_MUX1_PIN, LOW);
  5063. break;
  5064. case 2:
  5065. WRITE(E_MUX0_PIN, LOW);
  5066. WRITE(E_MUX1_PIN, HIGH);
  5067. break;
  5068. case 3:
  5069. WRITE(E_MUX0_PIN, HIGH);
  5070. WRITE(E_MUX1_PIN, HIGH);
  5071. break;
  5072. default:
  5073. WRITE(E_MUX0_PIN, LOW);
  5074. WRITE(E_MUX1_PIN, LOW);
  5075. break;
  5076. }
  5077. delay(100);
  5078. #else
  5079. if (tmp_extruder >= EXTRUDERS) {
  5080. SERIAL_ECHO_START;
  5081. SERIAL_ECHOPGM("T");
  5082. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5083. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5084. }
  5085. else {
  5086. #if EXTRUDERS == 1
  5087. if (code_seen('F')) {
  5088. next_feedrate = code_value();
  5089. if (next_feedrate > 0.0) {
  5090. feedrate = next_feedrate;
  5091. }
  5092. }
  5093. #else
  5094. boolean make_move = false;
  5095. if (code_seen('F')) {
  5096. make_move = true;
  5097. next_feedrate = code_value();
  5098. if (next_feedrate > 0.0) {
  5099. feedrate = next_feedrate;
  5100. }
  5101. }
  5102. if (tmp_extruder != active_extruder) {
  5103. // Save current position to return to after applying extruder offset
  5104. memcpy(destination, current_position, sizeof(destination));
  5105. // Offset extruder (only by XY)
  5106. int i;
  5107. for (i = 0; i < 2; i++) {
  5108. current_position[i] = current_position[i] -
  5109. extruder_offset[i][active_extruder] +
  5110. extruder_offset[i][tmp_extruder];
  5111. }
  5112. // Set the new active extruder and position
  5113. active_extruder = tmp_extruder;
  5114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5115. // Move to the old position if 'F' was in the parameters
  5116. if (make_move && Stopped == false) {
  5117. prepare_move();
  5118. }
  5119. }
  5120. #endif
  5121. SERIAL_ECHO_START;
  5122. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5123. SERIAL_PROTOCOLLN((int)active_extruder);
  5124. }
  5125. #endif
  5126. }
  5127. } // end if(code_seen('T')) (end of T codes)
  5128. #ifdef DEBUG_DCODES
  5129. else if (code_seen('D')) // D codes (debug)
  5130. {
  5131. switch((int)code_value_uint8())
  5132. {
  5133. case 0: // D0 - Reset
  5134. if (*(strchr_pointer + 1) == 0) break;
  5135. MYSERIAL.println("D0 - Reset");
  5136. asm volatile("jmp 0x00000");
  5137. break;
  5138. case 1: // D1 - Clear EEPROM
  5139. {
  5140. MYSERIAL.println("D1 - Clear EEPROM");
  5141. cli();
  5142. for (int i = 0; i < 4096; i++)
  5143. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5144. sei();
  5145. }
  5146. break;
  5147. case 2: // D2 - Read/Write PIN
  5148. {
  5149. if (code_seen('P')) // Pin (0-255)
  5150. {
  5151. int pin = (int)code_value();
  5152. if ((pin >= 0) && (pin <= 255))
  5153. {
  5154. if (code_seen('F')) // Function in/out (0/1)
  5155. {
  5156. int fnc = (int)code_value();
  5157. if (fnc == 0) pinMode(pin, INPUT);
  5158. else if (fnc == 1) pinMode(pin, OUTPUT);
  5159. }
  5160. if (code_seen('V')) // Value (0/1)
  5161. {
  5162. int val = (int)code_value();
  5163. if (val == 0) digitalWrite(pin, LOW);
  5164. else if (val == 1) digitalWrite(pin, HIGH);
  5165. }
  5166. else
  5167. {
  5168. int val = (digitalRead(pin) != LOW)?1:0;
  5169. MYSERIAL.print("PIN");
  5170. MYSERIAL.print(pin);
  5171. MYSERIAL.print("=");
  5172. MYSERIAL.println(val);
  5173. }
  5174. }
  5175. }
  5176. }
  5177. break;
  5178. }
  5179. }
  5180. #endif //DEBUG_DCODES
  5181. else
  5182. {
  5183. SERIAL_ECHO_START;
  5184. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5185. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5186. SERIAL_ECHOLNPGM("\"");
  5187. }
  5188. KEEPALIVE_STATE(NOT_BUSY);
  5189. ClearToSend();
  5190. }
  5191. void FlushSerialRequestResend()
  5192. {
  5193. //char cmdbuffer[bufindr][100]="Resend:";
  5194. MYSERIAL.flush();
  5195. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5196. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5197. ClearToSend();
  5198. }
  5199. // Confirm the execution of a command, if sent from a serial line.
  5200. // Execution of a command from a SD card will not be confirmed.
  5201. void ClearToSend()
  5202. {
  5203. previous_millis_cmd = millis();
  5204. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5205. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5206. }
  5207. void update_currents() {
  5208. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5209. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5210. float tmp_motor[3];
  5211. //SERIAL_ECHOLNPGM("Currents updated: ");
  5212. if (destination[Z_AXIS] < Z_SILENT) {
  5213. //SERIAL_ECHOLNPGM("LOW");
  5214. for (uint8_t i = 0; i < 3; i++) {
  5215. digipot_current(i, current_low[i]);
  5216. /*MYSERIAL.print(int(i));
  5217. SERIAL_ECHOPGM(": ");
  5218. MYSERIAL.println(current_low[i]);*/
  5219. }
  5220. }
  5221. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5222. //SERIAL_ECHOLNPGM("HIGH");
  5223. for (uint8_t i = 0; i < 3; i++) {
  5224. digipot_current(i, current_high[i]);
  5225. /*MYSERIAL.print(int(i));
  5226. SERIAL_ECHOPGM(": ");
  5227. MYSERIAL.println(current_high[i]);*/
  5228. }
  5229. }
  5230. else {
  5231. for (uint8_t i = 0; i < 3; i++) {
  5232. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5233. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5234. digipot_current(i, tmp_motor[i]);
  5235. /*MYSERIAL.print(int(i));
  5236. SERIAL_ECHOPGM(": ");
  5237. MYSERIAL.println(tmp_motor[i]);*/
  5238. }
  5239. }
  5240. }
  5241. void get_coordinates()
  5242. {
  5243. // XXX: Unused var (set but not ref)
  5244. // bool seen[4]={false,false,false,false};
  5245. for(int8_t i=0; i < NUM_AXIS; i++) {
  5246. if(code_seen(axis_codes[i]))
  5247. {
  5248. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5249. // seen[i]=true;
  5250. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5251. }
  5252. else destination[i] = current_position[i]; //Are these else lines really needed?
  5253. }
  5254. if(code_seen('F')) {
  5255. next_feedrate = code_value();
  5256. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5257. }
  5258. }
  5259. void get_arc_coordinates()
  5260. {
  5261. #ifdef SF_ARC_FIX
  5262. bool relative_mode_backup = relative_mode;
  5263. relative_mode = true;
  5264. #endif
  5265. get_coordinates();
  5266. #ifdef SF_ARC_FIX
  5267. relative_mode=relative_mode_backup;
  5268. #endif
  5269. if(code_seen('I')) {
  5270. offset[0] = code_value();
  5271. }
  5272. else {
  5273. offset[0] = 0.0;
  5274. }
  5275. if(code_seen('J')) {
  5276. offset[1] = code_value();
  5277. }
  5278. else {
  5279. offset[1] = 0.0;
  5280. }
  5281. }
  5282. void clamp_to_software_endstops(float target[3])
  5283. {
  5284. #ifdef DEBUG_DISABLE_SWLIMITS
  5285. return;
  5286. #endif //DEBUG_DISABLE_SWLIMITS
  5287. world2machine_clamp(target[0], target[1]);
  5288. // Clamp the Z coordinate.
  5289. if (min_software_endstops) {
  5290. float negative_z_offset = 0;
  5291. #ifdef ENABLE_AUTO_BED_LEVELING
  5292. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5293. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5294. #endif
  5295. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5296. }
  5297. if (max_software_endstops) {
  5298. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5299. }
  5300. }
  5301. #ifdef MESH_BED_LEVELING
  5302. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5303. float dx = x - current_position[X_AXIS];
  5304. float dy = y - current_position[Y_AXIS];
  5305. float dz = z - current_position[Z_AXIS];
  5306. int n_segments = 0;
  5307. if (mbl.active) {
  5308. float len = abs(dx) + abs(dy);
  5309. if (len > 0)
  5310. // Split to 3cm segments or shorter.
  5311. n_segments = int(ceil(len / 30.f));
  5312. }
  5313. if (n_segments > 1) {
  5314. float de = e - current_position[E_AXIS];
  5315. for (int i = 1; i < n_segments; ++ i) {
  5316. float t = float(i) / float(n_segments);
  5317. plan_buffer_line(
  5318. current_position[X_AXIS] + t * dx,
  5319. current_position[Y_AXIS] + t * dy,
  5320. current_position[Z_AXIS] + t * dz,
  5321. current_position[E_AXIS] + t * de,
  5322. feed_rate, extruder);
  5323. }
  5324. }
  5325. // The rest of the path.
  5326. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5327. current_position[X_AXIS] = x;
  5328. current_position[Y_AXIS] = y;
  5329. current_position[Z_AXIS] = z;
  5330. current_position[E_AXIS] = e;
  5331. }
  5332. #endif // MESH_BED_LEVELING
  5333. void prepare_move()
  5334. {
  5335. clamp_to_software_endstops(destination);
  5336. previous_millis_cmd = millis();
  5337. // Do not use feedmultiply for E or Z only moves
  5338. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5339. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5340. }
  5341. else {
  5342. #ifdef MESH_BED_LEVELING
  5343. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5344. #else
  5345. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5346. #endif
  5347. }
  5348. for(int8_t i=0; i < NUM_AXIS; i++) {
  5349. current_position[i] = destination[i];
  5350. }
  5351. }
  5352. void prepare_arc_move(char isclockwise) {
  5353. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5354. // Trace the arc
  5355. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5356. // As far as the parser is concerned, the position is now == target. In reality the
  5357. // motion control system might still be processing the action and the real tool position
  5358. // in any intermediate location.
  5359. for(int8_t i=0; i < NUM_AXIS; i++) {
  5360. current_position[i] = destination[i];
  5361. }
  5362. previous_millis_cmd = millis();
  5363. }
  5364. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5365. #if defined(FAN_PIN)
  5366. #if CONTROLLERFAN_PIN == FAN_PIN
  5367. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5368. #endif
  5369. #endif
  5370. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5371. unsigned long lastMotorCheck = 0;
  5372. void controllerFan()
  5373. {
  5374. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5375. {
  5376. lastMotorCheck = millis();
  5377. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5378. #if EXTRUDERS > 2
  5379. || !READ(E2_ENABLE_PIN)
  5380. #endif
  5381. #if EXTRUDER > 1
  5382. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5383. || !READ(X2_ENABLE_PIN)
  5384. #endif
  5385. || !READ(E1_ENABLE_PIN)
  5386. #endif
  5387. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5388. {
  5389. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5390. }
  5391. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5392. {
  5393. digitalWrite(CONTROLLERFAN_PIN, 0);
  5394. analogWrite(CONTROLLERFAN_PIN, 0);
  5395. }
  5396. else
  5397. {
  5398. // allows digital or PWM fan output to be used (see M42 handling)
  5399. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5400. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5401. }
  5402. }
  5403. }
  5404. #endif
  5405. #ifdef TEMP_STAT_LEDS
  5406. static bool blue_led = false;
  5407. static bool red_led = false;
  5408. static uint32_t stat_update = 0;
  5409. void handle_status_leds(void) {
  5410. float max_temp = 0.0;
  5411. if(millis() > stat_update) {
  5412. stat_update += 500; // Update every 0.5s
  5413. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5414. max_temp = max(max_temp, degHotend(cur_extruder));
  5415. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5416. }
  5417. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5418. max_temp = max(max_temp, degTargetBed());
  5419. max_temp = max(max_temp, degBed());
  5420. #endif
  5421. if((max_temp > 55.0) && (red_led == false)) {
  5422. digitalWrite(STAT_LED_RED, 1);
  5423. digitalWrite(STAT_LED_BLUE, 0);
  5424. red_led = true;
  5425. blue_led = false;
  5426. }
  5427. if((max_temp < 54.0) && (blue_led == false)) {
  5428. digitalWrite(STAT_LED_RED, 0);
  5429. digitalWrite(STAT_LED_BLUE, 1);
  5430. red_led = false;
  5431. blue_led = true;
  5432. }
  5433. }
  5434. }
  5435. #endif
  5436. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5437. {
  5438. #if defined(KILL_PIN) && KILL_PIN > -1
  5439. static int killCount = 0; // make the inactivity button a bit less responsive
  5440. const int KILL_DELAY = 10000;
  5441. #endif
  5442. if(buflen < (BUFSIZE-1)){
  5443. get_command();
  5444. }
  5445. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5446. if(max_inactive_time)
  5447. kill();
  5448. if(stepper_inactive_time) {
  5449. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5450. {
  5451. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5452. disable_x();
  5453. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5454. disable_y();
  5455. disable_z();
  5456. disable_e0();
  5457. disable_e1();
  5458. disable_e2();
  5459. }
  5460. }
  5461. }
  5462. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5463. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5464. {
  5465. chdkActive = false;
  5466. WRITE(CHDK, LOW);
  5467. }
  5468. #endif
  5469. #if defined(KILL_PIN) && KILL_PIN > -1
  5470. // Check if the kill button was pressed and wait just in case it was an accidental
  5471. // key kill key press
  5472. // -------------------------------------------------------------------------------
  5473. if( 0 == READ(KILL_PIN) )
  5474. {
  5475. killCount++;
  5476. }
  5477. else if (killCount > 0)
  5478. {
  5479. killCount--;
  5480. }
  5481. // Exceeded threshold and we can confirm that it was not accidental
  5482. // KILL the machine
  5483. // ----------------------------------------------------------------
  5484. if ( killCount >= KILL_DELAY)
  5485. {
  5486. kill();
  5487. }
  5488. #endif
  5489. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5490. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5491. #endif
  5492. #ifdef EXTRUDER_RUNOUT_PREVENT
  5493. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5494. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5495. {
  5496. bool oldstatus=READ(E0_ENABLE_PIN);
  5497. enable_e0();
  5498. float oldepos=current_position[E_AXIS];
  5499. float oldedes=destination[E_AXIS];
  5500. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5501. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5502. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5503. current_position[E_AXIS]=oldepos;
  5504. destination[E_AXIS]=oldedes;
  5505. plan_set_e_position(oldepos);
  5506. previous_millis_cmd=millis();
  5507. st_synchronize();
  5508. WRITE(E0_ENABLE_PIN,oldstatus);
  5509. }
  5510. #endif
  5511. #ifdef TEMP_STAT_LEDS
  5512. handle_status_leds();
  5513. #endif
  5514. check_axes_activity();
  5515. }
  5516. void kill(const char *full_screen_message)
  5517. {
  5518. cli(); // Stop interrupts
  5519. disable_heater();
  5520. disable_x();
  5521. // SERIAL_ECHOLNPGM("kill - disable Y");
  5522. disable_y();
  5523. disable_z();
  5524. disable_e0();
  5525. disable_e1();
  5526. disable_e2();
  5527. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5528. pinMode(PS_ON_PIN,INPUT);
  5529. #endif
  5530. SERIAL_ERROR_START;
  5531. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5532. if (full_screen_message != NULL) {
  5533. SERIAL_ERRORLNRPGM(full_screen_message);
  5534. lcd_display_message_fullscreen_P(full_screen_message);
  5535. } else {
  5536. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5537. }
  5538. // FMC small patch to update the LCD before ending
  5539. sei(); // enable interrupts
  5540. for ( int i=5; i--; lcd_update())
  5541. {
  5542. delay(200);
  5543. }
  5544. cli(); // disable interrupts
  5545. suicide();
  5546. while(1) { /* Intentionally left empty */ } // Wait for reset
  5547. }
  5548. void Stop()
  5549. {
  5550. disable_heater();
  5551. if(Stopped == false) {
  5552. Stopped = true;
  5553. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5554. SERIAL_ERROR_START;
  5555. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5556. LCD_MESSAGERPGM(MSG_STOPPED);
  5557. }
  5558. }
  5559. bool IsStopped() { return Stopped; };
  5560. #ifdef FAST_PWM_FAN
  5561. void setPwmFrequency(uint8_t pin, int val)
  5562. {
  5563. val &= 0x07;
  5564. switch(digitalPinToTimer(pin))
  5565. {
  5566. #if defined(TCCR0A)
  5567. case TIMER0A:
  5568. case TIMER0B:
  5569. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5570. // TCCR0B |= val;
  5571. break;
  5572. #endif
  5573. #if defined(TCCR1A)
  5574. case TIMER1A:
  5575. case TIMER1B:
  5576. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5577. // TCCR1B |= val;
  5578. break;
  5579. #endif
  5580. #if defined(TCCR2)
  5581. case TIMER2:
  5582. case TIMER2:
  5583. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5584. TCCR2 |= val;
  5585. break;
  5586. #endif
  5587. #if defined(TCCR2A)
  5588. case TIMER2A:
  5589. case TIMER2B:
  5590. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5591. TCCR2B |= val;
  5592. break;
  5593. #endif
  5594. #if defined(TCCR3A)
  5595. case TIMER3A:
  5596. case TIMER3B:
  5597. case TIMER3C:
  5598. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5599. TCCR3B |= val;
  5600. break;
  5601. #endif
  5602. #if defined(TCCR4A)
  5603. case TIMER4A:
  5604. case TIMER4B:
  5605. case TIMER4C:
  5606. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5607. TCCR4B |= val;
  5608. break;
  5609. #endif
  5610. #if defined(TCCR5A)
  5611. case TIMER5A:
  5612. case TIMER5B:
  5613. case TIMER5C:
  5614. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5615. TCCR5B |= val;
  5616. break;
  5617. #endif
  5618. }
  5619. }
  5620. #endif //FAST_PWM_FAN
  5621. bool setTargetedHotend(int code){
  5622. tmp_extruder = active_extruder;
  5623. if(code_seen('T')) {
  5624. tmp_extruder = code_value();
  5625. if(tmp_extruder >= EXTRUDERS) {
  5626. SERIAL_ECHO_START;
  5627. switch(code){
  5628. case 104:
  5629. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5630. break;
  5631. case 105:
  5632. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5633. break;
  5634. case 109:
  5635. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5636. break;
  5637. case 218:
  5638. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5639. break;
  5640. case 221:
  5641. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5642. break;
  5643. }
  5644. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5645. return true;
  5646. }
  5647. }
  5648. return false;
  5649. }
  5650. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5651. {
  5652. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5653. {
  5654. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5655. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5656. }
  5657. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5658. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5659. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5660. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5661. total_filament_used = 0;
  5662. }
  5663. float calculate_volumetric_multiplier(float diameter) {
  5664. float area = .0;
  5665. float radius = .0;
  5666. radius = diameter * .5;
  5667. if (! volumetric_enabled || radius == 0) {
  5668. area = 1;
  5669. }
  5670. else {
  5671. area = M_PI * pow(radius, 2);
  5672. }
  5673. return 1.0 / area;
  5674. }
  5675. void calculate_volumetric_multipliers() {
  5676. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5677. #if EXTRUDERS > 1
  5678. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5679. #if EXTRUDERS > 2
  5680. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5681. #endif
  5682. #endif
  5683. }
  5684. void delay_keep_alive(unsigned int ms)
  5685. {
  5686. for (;;) {
  5687. manage_heater();
  5688. // Manage inactivity, but don't disable steppers on timeout.
  5689. manage_inactivity(true);
  5690. lcd_update();
  5691. if (ms == 0)
  5692. break;
  5693. else if (ms >= 50) {
  5694. delay(50);
  5695. ms -= 50;
  5696. } else {
  5697. delay(ms);
  5698. ms = 0;
  5699. }
  5700. }
  5701. }
  5702. void wait_for_heater(long codenum) {
  5703. #ifdef TEMP_RESIDENCY_TIME
  5704. long residencyStart;
  5705. residencyStart = -1;
  5706. /* continue to loop until we have reached the target temp
  5707. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5708. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5709. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5710. #else
  5711. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5712. #endif //TEMP_RESIDENCY_TIME
  5713. if ((millis() - codenum) > 1000UL)
  5714. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5715. if (!farm_mode) {
  5716. SERIAL_PROTOCOLPGM("T:");
  5717. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5718. SERIAL_PROTOCOLPGM(" E:");
  5719. SERIAL_PROTOCOL((int)tmp_extruder);
  5720. #ifdef TEMP_RESIDENCY_TIME
  5721. SERIAL_PROTOCOLPGM(" W:");
  5722. if (residencyStart > -1)
  5723. {
  5724. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5725. SERIAL_PROTOCOLLN(codenum);
  5726. }
  5727. else
  5728. {
  5729. SERIAL_PROTOCOLLN("?");
  5730. }
  5731. }
  5732. #else
  5733. SERIAL_PROTOCOLLN("");
  5734. #endif
  5735. codenum = millis();
  5736. }
  5737. manage_heater();
  5738. manage_inactivity();
  5739. lcd_update();
  5740. #ifdef TEMP_RESIDENCY_TIME
  5741. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5742. or when current temp falls outside the hysteresis after target temp was reached */
  5743. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5744. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5745. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5746. {
  5747. residencyStart = millis();
  5748. }
  5749. #endif //TEMP_RESIDENCY_TIME
  5750. }
  5751. }
  5752. void check_babystep() {
  5753. int babystep_z;
  5754. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5755. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5756. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5757. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5758. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5759. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5760. lcd_update_enable(true);
  5761. }
  5762. }
  5763. #ifdef DIS
  5764. void d_setup()
  5765. {
  5766. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5767. pinMode(D_DATA, INPUT_PULLUP);
  5768. pinMode(D_REQUIRE, OUTPUT);
  5769. digitalWrite(D_REQUIRE, HIGH);
  5770. }
  5771. float d_ReadData()
  5772. {
  5773. int digit[13];
  5774. String mergeOutput;
  5775. float output;
  5776. digitalWrite(D_REQUIRE, HIGH);
  5777. for (int i = 0; i<13; i++)
  5778. {
  5779. for (int j = 0; j < 4; j++)
  5780. {
  5781. while (digitalRead(D_DATACLOCK) == LOW) {}
  5782. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5783. bitWrite(digit[i], j, digitalRead(D_DATA));
  5784. }
  5785. }
  5786. digitalWrite(D_REQUIRE, LOW);
  5787. mergeOutput = "";
  5788. output = 0;
  5789. for (int r = 5; r <= 10; r++) //Merge digits
  5790. {
  5791. mergeOutput += digit[r];
  5792. }
  5793. output = mergeOutput.toFloat();
  5794. if (digit[4] == 8) //Handle sign
  5795. {
  5796. output *= -1;
  5797. }
  5798. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5799. {
  5800. output /= 10;
  5801. }
  5802. return output;
  5803. }
  5804. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5805. int t1 = 0;
  5806. int t_delay = 0;
  5807. int digit[13];
  5808. int m;
  5809. char str[3];
  5810. //String mergeOutput;
  5811. char mergeOutput[15];
  5812. float output;
  5813. int mesh_point = 0; //index number of calibration point
  5814. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5815. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5816. float mesh_home_z_search = 4;
  5817. float row[x_points_num];
  5818. int ix = 0;
  5819. int iy = 0;
  5820. char* filename_wldsd = "wldsd.txt";
  5821. char data_wldsd[70];
  5822. char numb_wldsd[10];
  5823. d_setup();
  5824. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5825. // We don't know where we are! HOME!
  5826. // Push the commands to the front of the message queue in the reverse order!
  5827. // There shall be always enough space reserved for these commands.
  5828. repeatcommand_front(); // repeat G80 with all its parameters
  5829. enquecommand_front_P((PSTR("G28 W0")));
  5830. enquecommand_front_P((PSTR("G1 Z5")));
  5831. return;
  5832. }
  5833. bool custom_message_old = custom_message;
  5834. unsigned int custom_message_type_old = custom_message_type;
  5835. unsigned int custom_message_state_old = custom_message_state;
  5836. custom_message = true;
  5837. custom_message_type = 1;
  5838. custom_message_state = (x_points_num * y_points_num) + 10;
  5839. lcd_update(1);
  5840. mbl.reset();
  5841. babystep_undo();
  5842. card.openFile(filename_wldsd, false);
  5843. current_position[Z_AXIS] = mesh_home_z_search;
  5844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5845. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5846. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5847. setup_for_endstop_move(false);
  5848. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5849. SERIAL_PROTOCOL(x_points_num);
  5850. SERIAL_PROTOCOLPGM(",");
  5851. SERIAL_PROTOCOL(y_points_num);
  5852. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5853. SERIAL_PROTOCOL(mesh_home_z_search);
  5854. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5855. SERIAL_PROTOCOL(x_dimension);
  5856. SERIAL_PROTOCOLPGM(",");
  5857. SERIAL_PROTOCOL(y_dimension);
  5858. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5859. while (mesh_point != x_points_num * y_points_num) {
  5860. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5861. iy = mesh_point / x_points_num;
  5862. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5863. float z0 = 0.f;
  5864. current_position[Z_AXIS] = mesh_home_z_search;
  5865. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5866. st_synchronize();
  5867. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5868. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5870. st_synchronize();
  5871. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5872. break;
  5873. card.closefile();
  5874. }
  5875. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5876. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5877. //strcat(data_wldsd, numb_wldsd);
  5878. //MYSERIAL.println(data_wldsd);
  5879. //delay(1000);
  5880. //delay(3000);
  5881. //t1 = millis();
  5882. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5883. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5884. memset(digit, 0, sizeof(digit));
  5885. //cli();
  5886. digitalWrite(D_REQUIRE, LOW);
  5887. for (int i = 0; i<13; i++)
  5888. {
  5889. //t1 = millis();
  5890. for (int j = 0; j < 4; j++)
  5891. {
  5892. while (digitalRead(D_DATACLOCK) == LOW) {}
  5893. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5894. bitWrite(digit[i], j, digitalRead(D_DATA));
  5895. }
  5896. //t_delay = (millis() - t1);
  5897. //SERIAL_PROTOCOLPGM(" ");
  5898. //SERIAL_PROTOCOL_F(t_delay, 5);
  5899. //SERIAL_PROTOCOLPGM(" ");
  5900. }
  5901. //sei();
  5902. digitalWrite(D_REQUIRE, HIGH);
  5903. mergeOutput[0] = '\0';
  5904. output = 0;
  5905. for (int r = 5; r <= 10; r++) //Merge digits
  5906. {
  5907. sprintf(str, "%d", digit[r]);
  5908. strcat(mergeOutput, str);
  5909. }
  5910. output = atof(mergeOutput);
  5911. if (digit[4] == 8) //Handle sign
  5912. {
  5913. output *= -1;
  5914. }
  5915. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5916. {
  5917. output *= 0.1;
  5918. }
  5919. //output = d_ReadData();
  5920. //row[ix] = current_position[Z_AXIS];
  5921. memset(data_wldsd, 0, sizeof(data_wldsd));
  5922. for (int i = 0; i <3; i++) {
  5923. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5924. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5925. strcat(data_wldsd, numb_wldsd);
  5926. strcat(data_wldsd, ";");
  5927. }
  5928. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5929. dtostrf(output, 8, 5, numb_wldsd);
  5930. strcat(data_wldsd, numb_wldsd);
  5931. //strcat(data_wldsd, ";");
  5932. card.write_command(data_wldsd);
  5933. //row[ix] = d_ReadData();
  5934. row[ix] = output; // current_position[Z_AXIS];
  5935. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5936. for (int i = 0; i < x_points_num; i++) {
  5937. SERIAL_PROTOCOLPGM(" ");
  5938. SERIAL_PROTOCOL_F(row[i], 5);
  5939. }
  5940. SERIAL_PROTOCOLPGM("\n");
  5941. }
  5942. custom_message_state--;
  5943. mesh_point++;
  5944. lcd_update(1);
  5945. }
  5946. card.closefile();
  5947. }
  5948. #endif
  5949. void temp_compensation_start() {
  5950. custom_message = true;
  5951. custom_message_type = 5;
  5952. custom_message_state = PINDA_HEAT_T + 1;
  5953. lcd_update(2);
  5954. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5955. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5956. }
  5957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5958. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5959. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5960. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5962. st_synchronize();
  5963. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5964. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5965. delay_keep_alive(1000);
  5966. custom_message_state = PINDA_HEAT_T - i;
  5967. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5968. else lcd_update(1);
  5969. }
  5970. custom_message_type = 0;
  5971. custom_message_state = 0;
  5972. custom_message = false;
  5973. }
  5974. void temp_compensation_apply() {
  5975. int i_add;
  5976. int z_shift = 0;
  5977. float z_shift_mm;
  5978. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5979. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5980. i_add = (target_temperature_bed - 60) / 10;
  5981. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5982. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5983. }else {
  5984. //interpolation
  5985. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5986. }
  5987. SERIAL_PROTOCOLPGM("\n");
  5988. SERIAL_PROTOCOLPGM("Z shift applied:");
  5989. MYSERIAL.print(z_shift_mm);
  5990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5991. st_synchronize();
  5992. plan_set_z_position(current_position[Z_AXIS]);
  5993. }
  5994. else {
  5995. //we have no temp compensation data
  5996. }
  5997. }
  5998. float temp_comp_interpolation(float inp_temperature) {
  5999. //cubic spline interpolation
  6000. int n, i, j;
  6001. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6002. int shift[10];
  6003. int temp_C[10];
  6004. n = 6; //number of measured points
  6005. shift[0] = 0;
  6006. for (i = 0; i < n; i++) {
  6007. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6008. temp_C[i] = 50 + i * 10; //temperature in C
  6009. x[i] = (float)temp_C[i];
  6010. f[i] = (float)shift[i];
  6011. }
  6012. if (inp_temperature < x[0]) return 0;
  6013. for (i = n - 1; i>0; i--) {
  6014. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6015. h[i - 1] = x[i] - x[i - 1];
  6016. }
  6017. //*********** formation of h, s , f matrix **************
  6018. for (i = 1; i<n - 1; i++) {
  6019. m[i][i] = 2 * (h[i - 1] + h[i]);
  6020. if (i != 1) {
  6021. m[i][i - 1] = h[i - 1];
  6022. m[i - 1][i] = h[i - 1];
  6023. }
  6024. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6025. }
  6026. //*********** forward elimination **************
  6027. for (i = 1; i<n - 2; i++) {
  6028. temp = (m[i + 1][i] / m[i][i]);
  6029. for (j = 1; j <= n - 1; j++)
  6030. m[i + 1][j] -= temp*m[i][j];
  6031. }
  6032. //*********** backward substitution *********
  6033. for (i = n - 2; i>0; i--) {
  6034. sum = 0;
  6035. for (j = i; j <= n - 2; j++)
  6036. sum += m[i][j] * s[j];
  6037. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6038. }
  6039. for (i = 0; i<n - 1; i++)
  6040. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6041. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6042. b = s[i] / 2;
  6043. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6044. d = f[i];
  6045. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6046. }
  6047. return sum;
  6048. }
  6049. void long_pause() //long pause print
  6050. {
  6051. st_synchronize();
  6052. //save currently set parameters to global variables
  6053. saved_feedmultiply = feedmultiply;
  6054. HotendTempBckp = degTargetHotend(active_extruder);
  6055. fanSpeedBckp = fanSpeed;
  6056. start_pause_print = millis();
  6057. //save position
  6058. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6059. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6060. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6061. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6062. //retract
  6063. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6065. //lift z
  6066. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6067. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6069. //set nozzle target temperature to 0
  6070. setTargetHotend(0, 0);
  6071. setTargetHotend(0, 1);
  6072. setTargetHotend(0, 2);
  6073. //Move XY to side
  6074. current_position[X_AXIS] = X_PAUSE_POS;
  6075. current_position[Y_AXIS] = Y_PAUSE_POS;
  6076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6077. // Turn off the print fan
  6078. fanSpeed = 0;
  6079. st_synchronize();
  6080. }
  6081. void serialecho_temperatures() {
  6082. float tt = degHotend(active_extruder);
  6083. SERIAL_PROTOCOLPGM("T:");
  6084. SERIAL_PROTOCOL(tt);
  6085. SERIAL_PROTOCOLPGM(" E:");
  6086. SERIAL_PROTOCOL((int)active_extruder);
  6087. SERIAL_PROTOCOLPGM(" B:");
  6088. SERIAL_PROTOCOL_F(degBed(), 1);
  6089. SERIAL_PROTOCOLLN("");
  6090. }