Marlin_main.cpp 362 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. bool no_response = false;
  240. uint8_t important_status;
  241. uint8_t saved_filament_type;
  242. // save/restore printing in case that mmu was not responding
  243. bool mmu_print_saved = false;
  244. // storing estimated time to end of print counted by slicer
  245. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  246. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  247. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. //===========================================================================
  250. //=============================Private Variables=============================
  251. //===========================================================================
  252. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  253. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  254. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  255. // For tracing an arc
  256. static float offset[3] = {0.0, 0.0, 0.0};
  257. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  258. // Determines Absolute or Relative Coordinates.
  259. // Also there is bool axis_relative_modes[] per axis flag.
  260. static bool relative_mode = false;
  261. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  262. //static float tt = 0;
  263. //static float bt = 0;
  264. //Inactivity shutdown variables
  265. static unsigned long previous_millis_cmd = 0;
  266. unsigned long max_inactive_time = 0;
  267. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  268. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  269. unsigned long starttime=0;
  270. unsigned long stoptime=0;
  271. unsigned long _usb_timer = 0;
  272. bool extruder_under_pressure = true;
  273. bool Stopped=false;
  274. #if NUM_SERVOS > 0
  275. Servo servos[NUM_SERVOS];
  276. #endif
  277. bool target_direction;
  278. //Insert variables if CHDK is defined
  279. #ifdef CHDK
  280. unsigned long chdkHigh = 0;
  281. boolean chdkActive = false;
  282. #endif
  283. //! @name RAM save/restore printing
  284. //! @{
  285. bool saved_printing = false; //!< Print is paused and saved in RAM
  286. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  287. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  288. static float saved_pos[4] = { 0, 0, 0, 0 };
  289. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  290. static float saved_feedrate2 = 0;
  291. static uint8_t saved_active_extruder = 0;
  292. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  293. static bool saved_extruder_under_pressure = false;
  294. static bool saved_extruder_relative_mode = false;
  295. static int saved_fanSpeed = 0; //!< Print fan speed
  296. //! @}
  297. static int saved_feedmultiply_mm = 100;
  298. //===========================================================================
  299. //=============================Routines======================================
  300. //===========================================================================
  301. static void get_arc_coordinates();
  302. static bool setTargetedHotend(int code, uint8_t &extruder);
  303. static void print_time_remaining_init();
  304. static void wait_for_heater(long codenum, uint8_t extruder);
  305. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  306. static void temp_compensation_start();
  307. static void temp_compensation_apply();
  308. uint16_t gcode_in_progress = 0;
  309. uint16_t mcode_in_progress = 0;
  310. void serial_echopair_P(const char *s_P, float v)
  311. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  312. void serial_echopair_P(const char *s_P, double v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, unsigned long v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  317. {
  318. #if 0
  319. char ch=pgm_read_byte(str);
  320. while(ch)
  321. {
  322. MYSERIAL.write(ch);
  323. ch=pgm_read_byte(++str);
  324. }
  325. #else
  326. // hmm, same size as the above version, the compiler did a good job optimizing the above
  327. while( uint8_t ch = pgm_read_byte(str) ){
  328. MYSERIAL.write((char)ch);
  329. ++str;
  330. }
  331. #endif
  332. }
  333. #ifdef SDSUPPORT
  334. #include "SdFatUtil.h"
  335. int freeMemory() { return SdFatUtil::FreeRam(); }
  336. #else
  337. extern "C" {
  338. extern unsigned int __bss_end;
  339. extern unsigned int __heap_start;
  340. extern void *__brkval;
  341. int freeMemory() {
  342. int free_memory;
  343. if ((int)__brkval == 0)
  344. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  345. else
  346. free_memory = ((int)&free_memory) - ((int)__brkval);
  347. return free_memory;
  348. }
  349. }
  350. #endif //!SDSUPPORT
  351. void setup_killpin()
  352. {
  353. #if defined(KILL_PIN) && KILL_PIN > -1
  354. SET_INPUT(KILL_PIN);
  355. WRITE(KILL_PIN,HIGH);
  356. #endif
  357. }
  358. // Set home pin
  359. void setup_homepin(void)
  360. {
  361. #if defined(HOME_PIN) && HOME_PIN > -1
  362. SET_INPUT(HOME_PIN);
  363. WRITE(HOME_PIN,HIGH);
  364. #endif
  365. }
  366. void setup_photpin()
  367. {
  368. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  369. SET_OUTPUT(PHOTOGRAPH_PIN);
  370. WRITE(PHOTOGRAPH_PIN, LOW);
  371. #endif
  372. }
  373. void setup_powerhold()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, HIGH);
  378. #endif
  379. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  380. SET_OUTPUT(PS_ON_PIN);
  381. #if defined(PS_DEFAULT_OFF)
  382. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  383. #else
  384. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  385. #endif
  386. #endif
  387. }
  388. void suicide()
  389. {
  390. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  391. SET_OUTPUT(SUICIDE_PIN);
  392. WRITE(SUICIDE_PIN, LOW);
  393. #endif
  394. }
  395. void servo_init()
  396. {
  397. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  398. servos[0].attach(SERVO0_PIN);
  399. #endif
  400. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  401. servos[1].attach(SERVO1_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  404. servos[2].attach(SERVO2_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  407. servos[3].attach(SERVO3_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 5)
  410. #error "TODO: enter initalisation code for more servos"
  411. #endif
  412. }
  413. bool fans_check_enabled = true;
  414. #ifdef TMC2130
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. Sound_MakeCustom(100,0,false);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. Sound_MakeCustom(100,0,false);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  548. lcd_menu_statistics();
  549. break;
  550. // Level 2: Prepare for shipping
  551. case 2:
  552. //lcd_puts_P(PSTR("Factory RESET"));
  553. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  554. // Force language selection at the next boot up.
  555. lang_reset();
  556. // Force the "Follow calibration flow" message at the next boot up.
  557. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  558. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  559. farm_no = 0;
  560. farm_mode = false;
  561. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  562. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  563. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  564. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  573. #ifdef FILAMENT_SENSOR
  574. fsensor_enable();
  575. fsensor_autoload_set(true);
  576. #endif //FILAMENT_SENSOR
  577. Sound_MakeCustom(100,0,false);
  578. //_delay_ms(2000);
  579. break;
  580. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  581. case 3:
  582. lcd_puts_P(PSTR("Factory RESET"));
  583. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  584. Sound_MakeCustom(100,0,false);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. lcd_clear(); // clears display and homes screen
  619. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if(eSoundMode!=e_SOUND_MODE_SILENT)
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. //! @brief try to check if firmware is on right type of printer
  673. static void check_if_fw_is_on_right_printer(){
  674. #ifdef FILAMENT_SENSOR
  675. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  676. #ifdef IR_SENSOR
  677. swi2c_init();
  678. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  679. if (pat9125_detected){
  680. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  681. #endif //IR_SENSOR
  682. #ifdef PAT9125
  683. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  684. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  685. if (ir_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  687. #endif //PAT9125
  688. }
  689. #endif //FILAMENT_SENSOR
  690. }
  691. uint8_t check_printer_version()
  692. {
  693. uint8_t version_changed = 0;
  694. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  695. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  696. if (printer_type != PRINTER_TYPE) {
  697. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  698. else version_changed |= 0b10;
  699. }
  700. if (motherboard != MOTHERBOARD) {
  701. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  702. else version_changed |= 0b01;
  703. }
  704. return version_changed;
  705. }
  706. #ifdef BOOTAPP
  707. #include "bootapp.h" //bootloader support
  708. #endif //BOOTAPP
  709. #if (LANG_MODE != 0) //secondary language support
  710. #ifdef W25X20CL
  711. // language update from external flash
  712. #define LANGBOOT_BLOCKSIZE 0x1000u
  713. #define LANGBOOT_RAMBUFFER 0x0800
  714. void update_sec_lang_from_external_flash()
  715. {
  716. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  717. {
  718. uint8_t lang = boot_reserved >> 4;
  719. uint8_t state = boot_reserved & 0xf;
  720. lang_table_header_t header;
  721. uint32_t src_addr;
  722. if (lang_get_header(lang, &header, &src_addr))
  723. {
  724. lcd_puts_at_P(1,3,PSTR("Language update."));
  725. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  726. _delay(100);
  727. boot_reserved = (state + 1) | (lang << 4);
  728. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  729. {
  730. cli();
  731. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  732. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  733. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  734. if (state == 0)
  735. {
  736. //TODO - check header integrity
  737. }
  738. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  739. }
  740. else
  741. {
  742. //TODO - check sec lang data integrity
  743. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  744. }
  745. }
  746. }
  747. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  748. }
  749. #ifdef DEBUG_W25X20CL
  750. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  751. {
  752. lang_table_header_t header;
  753. uint8_t count = 0;
  754. uint32_t addr = 0x00000;
  755. while (1)
  756. {
  757. printf_P(_n("LANGTABLE%d:"), count);
  758. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  759. if (header.magic != LANG_MAGIC)
  760. {
  761. printf_P(_n("NG!\n"));
  762. break;
  763. }
  764. printf_P(_n("OK\n"));
  765. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  766. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  767. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  768. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  769. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  770. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  771. addr += header.size;
  772. codes[count] = header.code;
  773. count ++;
  774. }
  775. return count;
  776. }
  777. void list_sec_lang_from_external_flash()
  778. {
  779. uint16_t codes[8];
  780. uint8_t count = lang_xflash_enum_codes(codes);
  781. printf_P(_n("XFlash lang count = %hhd\n"), count);
  782. }
  783. #endif //DEBUG_W25X20CL
  784. #endif //W25X20CL
  785. #endif //(LANG_MODE != 0)
  786. static void w25x20cl_err_msg()
  787. {
  788. lcd_clear();
  789. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. mmu_init();
  797. ultralcd_init();
  798. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  799. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  800. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  801. spi_init();
  802. lcd_splash();
  803. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  804. #ifdef W25X20CL
  805. bool w25x20cl_success = w25x20cl_init();
  806. if (w25x20cl_success)
  807. {
  808. optiboot_w25x20cl_enter();
  809. #if (LANG_MODE != 0) //secondary language support
  810. update_sec_lang_from_external_flash();
  811. #endif //(LANG_MODE != 0)
  812. }
  813. else
  814. {
  815. w25x20cl_err_msg();
  816. }
  817. #else
  818. const bool w25x20cl_success = true;
  819. #endif //W25X20CL
  820. setup_killpin();
  821. setup_powerhold();
  822. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  823. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  824. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  825. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  826. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  827. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  828. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  829. if (farm_mode)
  830. {
  831. no_response = true; //we need confirmation by recieving PRUSA thx
  832. important_status = 8;
  833. prusa_statistics(8);
  834. selectedSerialPort = 1;
  835. #ifdef TMC2130
  836. //increased extruder current (PFW363)
  837. tmc2130_current_h[E_AXIS] = 36;
  838. tmc2130_current_r[E_AXIS] = 36;
  839. #endif //TMC2130
  840. #ifdef FILAMENT_SENSOR
  841. //disabled filament autoload (PFW360)
  842. fsensor_autoload_set(false);
  843. #endif //FILAMENT_SENSOR
  844. // ~ FanCheck -> on
  845. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  846. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  847. }
  848. MYSERIAL.begin(BAUDRATE);
  849. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  850. #ifndef W25X20CL
  851. SERIAL_PROTOCOLLNPGM("start");
  852. #endif //W25X20CL
  853. stdout = uartout;
  854. SERIAL_ECHO_START;
  855. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  856. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  857. #ifdef DEBUG_SEC_LANG
  858. lang_table_header_t header;
  859. uint32_t src_addr = 0x00000;
  860. if (lang_get_header(1, &header, &src_addr))
  861. {
  862. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  863. #define LT_PRINT_TEST 2
  864. // flash usage
  865. // total p.test
  866. //0 252718 t+c text code
  867. //1 253142 424 170 254
  868. //2 253040 322 164 158
  869. //3 253248 530 135 395
  870. #if (LT_PRINT_TEST==1) //not optimized printf
  871. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  872. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  873. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  874. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  875. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  876. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  877. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  878. #elif (LT_PRINT_TEST==2) //optimized printf
  879. printf_P(
  880. _n(
  881. " _src_addr = 0x%08lx\n"
  882. " _lt_magic = 0x%08lx %S\n"
  883. " _lt_size = 0x%04x (%d)\n"
  884. " _lt_count = 0x%04x (%d)\n"
  885. " _lt_chsum = 0x%04x\n"
  886. " _lt_code = 0x%04x (%c%c)\n"
  887. " _lt_resv1 = 0x%08lx\n"
  888. ),
  889. src_addr,
  890. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  891. header.size, header.size,
  892. header.count, header.count,
  893. header.checksum,
  894. header.code, header.code >> 8, header.code & 0xff,
  895. header.signature
  896. );
  897. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  898. MYSERIAL.print(" _src_addr = 0x");
  899. MYSERIAL.println(src_addr, 16);
  900. MYSERIAL.print(" _lt_magic = 0x");
  901. MYSERIAL.print(header.magic, 16);
  902. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  903. MYSERIAL.print(" _lt_size = 0x");
  904. MYSERIAL.print(header.size, 16);
  905. MYSERIAL.print(" (");
  906. MYSERIAL.print(header.size, 10);
  907. MYSERIAL.println(")");
  908. MYSERIAL.print(" _lt_count = 0x");
  909. MYSERIAL.print(header.count, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.count, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_chsum = 0x");
  914. MYSERIAL.println(header.checksum, 16);
  915. MYSERIAL.print(" _lt_code = 0x");
  916. MYSERIAL.print(header.code, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print((char)(header.code >> 8), 0);
  919. MYSERIAL.print((char)(header.code & 0xff), 0);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_resv1 = 0x");
  922. MYSERIAL.println(header.signature, 16);
  923. #endif //(LT_PRINT_TEST==)
  924. #undef LT_PRINT_TEST
  925. #if 0
  926. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  927. for (uint16_t i = 0; i < 1024; i++)
  928. {
  929. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  930. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  931. if ((i % 16) == 15) putchar('\n');
  932. }
  933. #endif
  934. uint16_t sum = 0;
  935. for (uint16_t i = 0; i < header.size; i++)
  936. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum -= header.checksum; //subtract checksum
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  941. if (sum == header.checksum)
  942. printf_P(_n("Checksum OK\n"), sum);
  943. else
  944. printf_P(_n("Checksum NG\n"), sum);
  945. }
  946. else
  947. printf_P(_n("lang_get_header failed!\n"));
  948. #if 0
  949. for (uint16_t i = 0; i < 1024*10; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  952. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. #if 0
  957. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  958. for (int i = 0; i < 4096; ++i) {
  959. int b = eeprom_read_byte((unsigned char*)i);
  960. if (b != 255) {
  961. SERIAL_ECHO(i);
  962. SERIAL_ECHO(":");
  963. SERIAL_ECHO(b);
  964. SERIAL_ECHOLN("");
  965. }
  966. }
  967. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  968. #endif
  969. #endif //DEBUG_SEC_LANG
  970. // Check startup - does nothing if bootloader sets MCUSR to 0
  971. byte mcu = MCUSR;
  972. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  973. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  974. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  975. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  976. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  977. if (mcu & 1) puts_P(MSG_POWERUP);
  978. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  982. MCUSR = 0;
  983. //SERIAL_ECHORPGM(MSG_MARLIN);
  984. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  985. #ifdef STRING_VERSION_CONFIG_H
  986. #ifdef STRING_CONFIG_H_AUTHOR
  987. SERIAL_ECHO_START;
  988. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  989. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  990. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  991. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  992. SERIAL_ECHOPGM("Compiled: ");
  993. SERIAL_ECHOLNPGM(__DATE__);
  994. #endif
  995. #endif
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  998. SERIAL_ECHO(freeMemory());
  999. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1000. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1001. //lcd_update_enable(false); // why do we need this?? - andre
  1002. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1003. bool previous_settings_retrieved = false;
  1004. uint8_t hw_changed = check_printer_version();
  1005. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1006. previous_settings_retrieved = Config_RetrieveSettings();
  1007. }
  1008. else { //printer version was changed so use default settings
  1009. Config_ResetDefault();
  1010. }
  1011. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1012. tp_init(); // Initialize temperature loop
  1013. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1014. else
  1015. {
  1016. w25x20cl_err_msg();
  1017. printf_P(_n("W25X20CL not responding.\n"));
  1018. }
  1019. plan_init(); // Initialize planner;
  1020. factory_reset();
  1021. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1022. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1023. {
  1024. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1025. // where all the EEPROM entries are set to 0x0ff.
  1026. // Once a firmware boots up, it forces at least a language selection, which changes
  1027. // EEPROM_LANG to number lower than 0x0ff.
  1028. // 1) Set a high power mode.
  1029. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1030. #ifdef TMC2130
  1031. tmc2130_mode = TMC2130_MODE_NORMAL;
  1032. #endif //TMC2130
  1033. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1034. }
  1035. lcd_encoder_diff=0;
  1036. #ifdef TMC2130
  1037. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1038. if (silentMode == 0xff) silentMode = 0;
  1039. tmc2130_mode = TMC2130_MODE_NORMAL;
  1040. if (lcd_crash_detect_enabled() && !farm_mode)
  1041. {
  1042. lcd_crash_detect_enable();
  1043. puts_P(_N("CrashDetect ENABLED!"));
  1044. }
  1045. else
  1046. {
  1047. lcd_crash_detect_disable();
  1048. puts_P(_N("CrashDetect DISABLED"));
  1049. }
  1050. #ifdef TMC2130_LINEARITY_CORRECTION
  1051. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1052. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1053. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1054. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1055. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1056. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1057. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1058. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1059. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1060. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1061. #endif //TMC2130_LINEARITY_CORRECTION
  1062. #ifdef TMC2130_VARIABLE_RESOLUTION
  1063. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1064. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1065. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1066. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1067. #else //TMC2130_VARIABLE_RESOLUTION
  1068. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1069. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1070. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1071. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1072. #endif //TMC2130_VARIABLE_RESOLUTION
  1073. #endif //TMC2130
  1074. st_init(); // Initialize stepper, this enables interrupts!
  1075. #ifdef UVLO_SUPPORT
  1076. setup_uvlo_interrupt();
  1077. #endif //UVLO_SUPPORT
  1078. #ifdef TMC2130
  1079. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1080. update_mode_profile();
  1081. tmc2130_init();
  1082. #endif //TMC2130
  1083. #ifdef PSU_Delta
  1084. init_force_z(); // ! important for correct Z-axis initialization
  1085. #endif // PSU_Delta
  1086. setup_photpin();
  1087. servo_init();
  1088. // Reset the machine correction matrix.
  1089. // It does not make sense to load the correction matrix until the machine is homed.
  1090. world2machine_reset();
  1091. #ifdef FILAMENT_SENSOR
  1092. fsensor_init();
  1093. #endif //FILAMENT_SENSOR
  1094. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1095. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1096. #endif
  1097. setup_homepin();
  1098. #ifdef TMC2130
  1099. if (1) {
  1100. // try to run to zero phase before powering the Z motor.
  1101. // Move in negative direction
  1102. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1103. // Round the current micro-micro steps to micro steps.
  1104. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1105. // Until the phase counter is reset to zero.
  1106. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1107. _delay(2);
  1108. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1109. _delay(2);
  1110. }
  1111. }
  1112. #endif //TMC2130
  1113. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1114. enable_z();
  1115. #endif
  1116. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1117. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1118. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1119. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1120. if (farm_mode)
  1121. {
  1122. prusa_statistics(8);
  1123. }
  1124. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1125. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1126. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1127. // but this times out if a blocking dialog is shown in setup().
  1128. card.initsd();
  1129. #ifdef DEBUG_SD_SPEED_TEST
  1130. if (card.cardOK)
  1131. {
  1132. uint8_t* buff = (uint8_t*)block_buffer;
  1133. uint32_t block = 0;
  1134. uint32_t sumr = 0;
  1135. uint32_t sumw = 0;
  1136. for (int i = 0; i < 1024; i++)
  1137. {
  1138. uint32_t u = _micros();
  1139. bool res = card.card.readBlock(i, buff);
  1140. u = _micros() - u;
  1141. if (res)
  1142. {
  1143. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1144. sumr += u;
  1145. u = _micros();
  1146. res = card.card.writeBlock(i, buff);
  1147. u = _micros() - u;
  1148. if (res)
  1149. {
  1150. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1151. sumw += u;
  1152. }
  1153. else
  1154. {
  1155. printf_P(PSTR("writeBlock %4d error\n"), i);
  1156. break;
  1157. }
  1158. }
  1159. else
  1160. {
  1161. printf_P(PSTR("readBlock %4d error\n"), i);
  1162. break;
  1163. }
  1164. }
  1165. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1166. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1167. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1168. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1169. }
  1170. else
  1171. printf_P(PSTR("Card NG!\n"));
  1172. #endif //DEBUG_SD_SPEED_TEST
  1173. eeprom_init();
  1174. #ifdef SNMM
  1175. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1176. int _z = BOWDEN_LENGTH;
  1177. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1178. }
  1179. #endif
  1180. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1181. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1182. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1183. #if (LANG_MODE != 0) //secondary language support
  1184. #ifdef DEBUG_W25X20CL
  1185. W25X20CL_SPI_ENTER();
  1186. uint8_t uid[8]; // 64bit unique id
  1187. w25x20cl_rd_uid(uid);
  1188. puts_P(_n("W25X20CL UID="));
  1189. for (uint8_t i = 0; i < 8; i ++)
  1190. printf_P(PSTR("%02hhx"), uid[i]);
  1191. putchar('\n');
  1192. list_sec_lang_from_external_flash();
  1193. #endif //DEBUG_W25X20CL
  1194. // lang_reset();
  1195. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1196. lcd_language();
  1197. #ifdef DEBUG_SEC_LANG
  1198. uint16_t sec_lang_code = lang_get_code(1);
  1199. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1200. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1201. lang_print_sec_lang(uartout);
  1202. #endif //DEBUG_SEC_LANG
  1203. #endif //(LANG_MODE != 0)
  1204. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1205. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1206. temp_cal_active = false;
  1207. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1208. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1209. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1210. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1211. int16_t z_shift = 0;
  1212. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1213. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1214. temp_cal_active = false;
  1215. }
  1216. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1217. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1218. }
  1219. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1220. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1221. }
  1222. //mbl_mode_init();
  1223. mbl_settings_init();
  1224. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1225. if (SilentModeMenu_MMU == 255) {
  1226. SilentModeMenu_MMU = 1;
  1227. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1228. }
  1229. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1230. setup_fan_interrupt();
  1231. #endif //DEBUG_DISABLE_FANCHECK
  1232. #ifdef PAT9125
  1233. fsensor_setup_interrupt();
  1234. #endif //PAT9125
  1235. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1236. #ifndef DEBUG_DISABLE_STARTMSGS
  1237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1238. if (!farm_mode) {
  1239. check_if_fw_is_on_right_printer();
  1240. show_fw_version_warnings();
  1241. }
  1242. switch (hw_changed) {
  1243. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1244. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1245. case(0b01):
  1246. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1247. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1248. break;
  1249. case(0b10):
  1250. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1251. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1252. break;
  1253. case(0b11):
  1254. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1255. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1256. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1257. break;
  1258. default: break; //no change, show no message
  1259. }
  1260. if (!previous_settings_retrieved) {
  1261. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1262. Config_StoreSettings();
  1263. }
  1264. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1265. lcd_wizard(WizState::Run);
  1266. }
  1267. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1268. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1269. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1270. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1271. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1272. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1273. // Show the message.
  1274. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1275. }
  1276. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1277. // Show the message.
  1278. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1279. lcd_update_enable(true);
  1280. }
  1281. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1282. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1283. lcd_update_enable(true);
  1284. }
  1285. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1286. // Show the message.
  1287. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1288. }
  1289. }
  1290. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1291. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1292. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1293. update_current_firmware_version_to_eeprom();
  1294. lcd_selftest();
  1295. }
  1296. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1297. KEEPALIVE_STATE(IN_PROCESS);
  1298. #endif //DEBUG_DISABLE_STARTMSGS
  1299. lcd_update_enable(true);
  1300. lcd_clear();
  1301. lcd_update(2);
  1302. // Store the currently running firmware into an eeprom,
  1303. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1304. update_current_firmware_version_to_eeprom();
  1305. #ifdef TMC2130
  1306. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1307. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1308. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1309. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1310. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1311. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1312. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1313. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1314. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1315. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1316. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1317. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1318. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1319. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1320. #endif //TMC2130
  1321. #ifdef UVLO_SUPPORT
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1323. /*
  1324. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1325. else {
  1326. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1327. lcd_update_enable(true);
  1328. lcd_update(2);
  1329. lcd_setstatuspgm(_T(WELCOME_MSG));
  1330. }
  1331. */
  1332. manage_heater(); // Update temperatures
  1333. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1334. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1335. #endif
  1336. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1337. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1338. puts_P(_N("Automatic recovery!"));
  1339. #endif
  1340. recover_print(1);
  1341. }
  1342. else{
  1343. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1344. puts_P(_N("Normal recovery!"));
  1345. #endif
  1346. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1347. else {
  1348. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1349. lcd_update_enable(true);
  1350. lcd_update(2);
  1351. lcd_setstatuspgm(_T(WELCOME_MSG));
  1352. }
  1353. }
  1354. }
  1355. #endif //UVLO_SUPPORT
  1356. fCheckModeInit();
  1357. fSetMmuMode(mmu_enabled);
  1358. KEEPALIVE_STATE(NOT_BUSY);
  1359. #ifdef WATCHDOG
  1360. wdt_enable(WDTO_4S);
  1361. #endif //WATCHDOG
  1362. }
  1363. void trace();
  1364. #define CHUNK_SIZE 64 // bytes
  1365. #define SAFETY_MARGIN 1
  1366. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1367. int chunkHead = 0;
  1368. void serial_read_stream() {
  1369. setAllTargetHotends(0);
  1370. setTargetBed(0);
  1371. lcd_clear();
  1372. lcd_puts_P(PSTR(" Upload in progress"));
  1373. // first wait for how many bytes we will receive
  1374. uint32_t bytesToReceive;
  1375. // receive the four bytes
  1376. char bytesToReceiveBuffer[4];
  1377. for (int i=0; i<4; i++) {
  1378. int data;
  1379. while ((data = MYSERIAL.read()) == -1) {};
  1380. bytesToReceiveBuffer[i] = data;
  1381. }
  1382. // make it a uint32
  1383. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1384. // we're ready, notify the sender
  1385. MYSERIAL.write('+');
  1386. // lock in the routine
  1387. uint32_t receivedBytes = 0;
  1388. while (prusa_sd_card_upload) {
  1389. int i;
  1390. for (i=0; i<CHUNK_SIZE; i++) {
  1391. int data;
  1392. // check if we're not done
  1393. if (receivedBytes == bytesToReceive) {
  1394. break;
  1395. }
  1396. // read the next byte
  1397. while ((data = MYSERIAL.read()) == -1) {};
  1398. receivedBytes++;
  1399. // save it to the chunk
  1400. chunk[i] = data;
  1401. }
  1402. // write the chunk to SD
  1403. card.write_command_no_newline(&chunk[0]);
  1404. // notify the sender we're ready for more data
  1405. MYSERIAL.write('+');
  1406. // for safety
  1407. manage_heater();
  1408. // check if we're done
  1409. if(receivedBytes == bytesToReceive) {
  1410. trace(); // beep
  1411. card.closefile();
  1412. prusa_sd_card_upload = false;
  1413. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1414. }
  1415. }
  1416. }
  1417. /**
  1418. * Output a "busy" message at regular intervals
  1419. * while the machine is not accepting commands.
  1420. */
  1421. void host_keepalive() {
  1422. #ifndef HOST_KEEPALIVE_FEATURE
  1423. return;
  1424. #endif //HOST_KEEPALIVE_FEATURE
  1425. if (farm_mode) return;
  1426. long ms = _millis();
  1427. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1428. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1429. switch (busy_state) {
  1430. case IN_HANDLER:
  1431. case IN_PROCESS:
  1432. SERIAL_ECHO_START;
  1433. SERIAL_ECHOLNPGM("busy: processing");
  1434. break;
  1435. case PAUSED_FOR_USER:
  1436. SERIAL_ECHO_START;
  1437. SERIAL_ECHOLNPGM("busy: paused for user");
  1438. break;
  1439. case PAUSED_FOR_INPUT:
  1440. SERIAL_ECHO_START;
  1441. SERIAL_ECHOLNPGM("busy: paused for input");
  1442. break;
  1443. default:
  1444. break;
  1445. }
  1446. }
  1447. prev_busy_signal_ms = ms;
  1448. }
  1449. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1450. // Before loop(), the setup() function is called by the main() routine.
  1451. void loop()
  1452. {
  1453. KEEPALIVE_STATE(NOT_BUSY);
  1454. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1455. {
  1456. is_usb_printing = true;
  1457. usb_printing_counter--;
  1458. _usb_timer = _millis();
  1459. }
  1460. if (usb_printing_counter == 0)
  1461. {
  1462. is_usb_printing = false;
  1463. }
  1464. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1465. {
  1466. is_usb_printing = true;
  1467. }
  1468. #ifdef FANCHECK
  1469. if (fan_check_error && isPrintPaused)
  1470. {
  1471. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1472. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1473. }
  1474. #endif
  1475. if (prusa_sd_card_upload)
  1476. {
  1477. //we read byte-by byte
  1478. serial_read_stream();
  1479. }
  1480. else
  1481. {
  1482. get_command();
  1483. #ifdef SDSUPPORT
  1484. card.checkautostart(false);
  1485. #endif
  1486. if(buflen)
  1487. {
  1488. cmdbuffer_front_already_processed = false;
  1489. #ifdef SDSUPPORT
  1490. if(card.saving)
  1491. {
  1492. // Saving a G-code file onto an SD-card is in progress.
  1493. // Saving starts with M28, saving until M29 is seen.
  1494. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1495. card.write_command(CMDBUFFER_CURRENT_STRING);
  1496. if(card.logging)
  1497. process_commands();
  1498. else
  1499. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1500. } else {
  1501. card.closefile();
  1502. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1503. }
  1504. } else {
  1505. process_commands();
  1506. }
  1507. #else
  1508. process_commands();
  1509. #endif //SDSUPPORT
  1510. if (! cmdbuffer_front_already_processed && buflen)
  1511. {
  1512. // ptr points to the start of the block currently being processed.
  1513. // The first character in the block is the block type.
  1514. char *ptr = cmdbuffer + bufindr;
  1515. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1516. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1517. union {
  1518. struct {
  1519. char lo;
  1520. char hi;
  1521. } lohi;
  1522. uint16_t value;
  1523. } sdlen;
  1524. sdlen.value = 0;
  1525. {
  1526. // This block locks the interrupts globally for 3.25 us,
  1527. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1528. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1529. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1530. cli();
  1531. // Reset the command to something, which will be ignored by the power panic routine,
  1532. // so this buffer length will not be counted twice.
  1533. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1534. // Extract the current buffer length.
  1535. sdlen.lohi.lo = *ptr ++;
  1536. sdlen.lohi.hi = *ptr;
  1537. // and pass it to the planner queue.
  1538. planner_add_sd_length(sdlen.value);
  1539. sei();
  1540. }
  1541. }
  1542. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1543. cli();
  1544. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1545. // and one for each command to previous block in the planner queue.
  1546. planner_add_sd_length(1);
  1547. sei();
  1548. }
  1549. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1550. // this block's SD card length will not be counted twice as its command type has been replaced
  1551. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1552. cmdqueue_pop_front();
  1553. }
  1554. host_keepalive();
  1555. }
  1556. }
  1557. //check heater every n milliseconds
  1558. manage_heater();
  1559. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1560. checkHitEndstops();
  1561. lcd_update(0);
  1562. #ifdef TMC2130
  1563. tmc2130_check_overtemp();
  1564. if (tmc2130_sg_crash)
  1565. {
  1566. uint8_t crash = tmc2130_sg_crash;
  1567. tmc2130_sg_crash = 0;
  1568. // crashdet_stop_and_save_print();
  1569. switch (crash)
  1570. {
  1571. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1572. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1573. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1574. }
  1575. }
  1576. #endif //TMC2130
  1577. mmu_loop();
  1578. }
  1579. #define DEFINE_PGM_READ_ANY(type, reader) \
  1580. static inline type pgm_read_any(const type *p) \
  1581. { return pgm_read_##reader##_near(p); }
  1582. DEFINE_PGM_READ_ANY(float, float);
  1583. DEFINE_PGM_READ_ANY(signed char, byte);
  1584. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1585. static const PROGMEM type array##_P[3] = \
  1586. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1587. static inline type array(int axis) \
  1588. { return pgm_read_any(&array##_P[axis]); } \
  1589. type array##_ext(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); }
  1591. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1592. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1595. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1596. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1597. static void axis_is_at_home(int axis) {
  1598. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1599. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1600. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1601. }
  1602. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1603. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1604. //! @return original feedmultiply
  1605. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1606. saved_feedrate = feedrate;
  1607. int l_feedmultiply = feedmultiply;
  1608. feedmultiply = 100;
  1609. previous_millis_cmd = _millis();
  1610. enable_endstops(enable_endstops_now);
  1611. return l_feedmultiply;
  1612. }
  1613. //! @param original_feedmultiply feedmultiply to restore
  1614. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1615. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1616. enable_endstops(false);
  1617. #endif
  1618. feedrate = saved_feedrate;
  1619. feedmultiply = original_feedmultiply;
  1620. previous_millis_cmd = _millis();
  1621. }
  1622. #ifdef ENABLE_AUTO_BED_LEVELING
  1623. #ifdef AUTO_BED_LEVELING_GRID
  1624. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1625. {
  1626. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1627. planeNormal.debug("planeNormal");
  1628. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1629. //bedLevel.debug("bedLevel");
  1630. //plan_bed_level_matrix.debug("bed level before");
  1631. //vector_3 uncorrected_position = plan_get_position_mm();
  1632. //uncorrected_position.debug("position before");
  1633. vector_3 corrected_position = plan_get_position();
  1634. // corrected_position.debug("position after");
  1635. current_position[X_AXIS] = corrected_position.x;
  1636. current_position[Y_AXIS] = corrected_position.y;
  1637. current_position[Z_AXIS] = corrected_position.z;
  1638. // put the bed at 0 so we don't go below it.
  1639. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1641. }
  1642. #else // not AUTO_BED_LEVELING_GRID
  1643. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1644. plan_bed_level_matrix.set_to_identity();
  1645. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1646. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1647. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1648. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1649. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1650. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1651. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1652. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1653. vector_3 corrected_position = plan_get_position();
  1654. current_position[X_AXIS] = corrected_position.x;
  1655. current_position[Y_AXIS] = corrected_position.y;
  1656. current_position[Z_AXIS] = corrected_position.z;
  1657. // put the bed at 0 so we don't go below it.
  1658. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1659. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1660. }
  1661. #endif // AUTO_BED_LEVELING_GRID
  1662. static void run_z_probe() {
  1663. plan_bed_level_matrix.set_to_identity();
  1664. feedrate = homing_feedrate[Z_AXIS];
  1665. // move down until you find the bed
  1666. float zPosition = -10;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1668. st_synchronize();
  1669. // we have to let the planner know where we are right now as it is not where we said to go.
  1670. zPosition = st_get_position_mm(Z_AXIS);
  1671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1672. // move up the retract distance
  1673. zPosition += home_retract_mm(Z_AXIS);
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1675. st_synchronize();
  1676. // move back down slowly to find bed
  1677. feedrate = homing_feedrate[Z_AXIS]/4;
  1678. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1682. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. }
  1685. static void do_blocking_move_to(float x, float y, float z) {
  1686. float oldFeedRate = feedrate;
  1687. feedrate = homing_feedrate[Z_AXIS];
  1688. current_position[Z_AXIS] = z;
  1689. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. feedrate = XY_TRAVEL_SPEED;
  1692. current_position[X_AXIS] = x;
  1693. current_position[Y_AXIS] = y;
  1694. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1695. st_synchronize();
  1696. feedrate = oldFeedRate;
  1697. }
  1698. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1699. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1700. }
  1701. /// Probe bed height at position (x,y), returns the measured z value
  1702. static float probe_pt(float x, float y, float z_before) {
  1703. // move to right place
  1704. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1705. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1706. run_z_probe();
  1707. float measured_z = current_position[Z_AXIS];
  1708. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1709. SERIAL_PROTOCOLPGM(" x: ");
  1710. SERIAL_PROTOCOL(x);
  1711. SERIAL_PROTOCOLPGM(" y: ");
  1712. SERIAL_PROTOCOL(y);
  1713. SERIAL_PROTOCOLPGM(" z: ");
  1714. SERIAL_PROTOCOL(measured_z);
  1715. SERIAL_PROTOCOLPGM("\n");
  1716. return measured_z;
  1717. }
  1718. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1719. #ifdef LIN_ADVANCE
  1720. /**
  1721. * M900: Set and/or Get advance K factor and WH/D ratio
  1722. *
  1723. * K<factor> Set advance K factor
  1724. * R<ratio> Set ratio directly (overrides WH/D)
  1725. * W<width> H<height> D<diam> Set ratio from WH/D
  1726. */
  1727. inline void gcode_M900() {
  1728. st_synchronize();
  1729. const float newK = code_seen('K') ? code_value_float() : -1;
  1730. if (newK >= 0) extruder_advance_k = newK;
  1731. float newR = code_seen('R') ? code_value_float() : -1;
  1732. if (newR < 0) {
  1733. const float newD = code_seen('D') ? code_value_float() : -1,
  1734. newW = code_seen('W') ? code_value_float() : -1,
  1735. newH = code_seen('H') ? code_value_float() : -1;
  1736. if (newD >= 0 && newW >= 0 && newH >= 0)
  1737. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1738. }
  1739. if (newR >= 0) advance_ed_ratio = newR;
  1740. SERIAL_ECHO_START;
  1741. SERIAL_ECHOPGM("Advance K=");
  1742. SERIAL_ECHOLN(extruder_advance_k);
  1743. SERIAL_ECHOPGM(" E/D=");
  1744. const float ratio = advance_ed_ratio;
  1745. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1746. }
  1747. #endif // LIN_ADVANCE
  1748. bool check_commands() {
  1749. bool end_command_found = false;
  1750. while (buflen)
  1751. {
  1752. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1753. if (!cmdbuffer_front_already_processed)
  1754. cmdqueue_pop_front();
  1755. cmdbuffer_front_already_processed = false;
  1756. }
  1757. return end_command_found;
  1758. }
  1759. #ifdef TMC2130
  1760. bool calibrate_z_auto()
  1761. {
  1762. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1763. lcd_clear();
  1764. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1765. bool endstops_enabled = enable_endstops(true);
  1766. int axis_up_dir = -home_dir(Z_AXIS);
  1767. tmc2130_home_enter(Z_AXIS_MASK);
  1768. current_position[Z_AXIS] = 0;
  1769. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1770. set_destination_to_current();
  1771. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1772. feedrate = homing_feedrate[Z_AXIS];
  1773. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1774. st_synchronize();
  1775. // current_position[axis] = 0;
  1776. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1777. tmc2130_home_exit();
  1778. enable_endstops(false);
  1779. current_position[Z_AXIS] = 0;
  1780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. set_destination_to_current();
  1782. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1783. feedrate = homing_feedrate[Z_AXIS] / 2;
  1784. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1785. st_synchronize();
  1786. enable_endstops(endstops_enabled);
  1787. if (PRINTER_TYPE == PRINTER_MK3) {
  1788. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1789. }
  1790. else {
  1791. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1792. }
  1793. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1794. return true;
  1795. }
  1796. #endif //TMC2130
  1797. #ifdef TMC2130
  1798. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1799. #else
  1800. void homeaxis(int axis, uint8_t cnt)
  1801. #endif //TMC2130
  1802. {
  1803. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1804. #define HOMEAXIS_DO(LETTER) \
  1805. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1806. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1807. {
  1808. int axis_home_dir = home_dir(axis);
  1809. feedrate = homing_feedrate[axis];
  1810. #ifdef TMC2130
  1811. tmc2130_home_enter(X_AXIS_MASK << axis);
  1812. #endif //TMC2130
  1813. // Move away a bit, so that the print head does not touch the end position,
  1814. // and the following movement to endstop has a chance to achieve the required velocity
  1815. // for the stall guard to work.
  1816. current_position[axis] = 0;
  1817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1818. set_destination_to_current();
  1819. // destination[axis] = 11.f;
  1820. destination[axis] = -3.f * axis_home_dir;
  1821. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1822. st_synchronize();
  1823. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1824. endstops_hit_on_purpose();
  1825. enable_endstops(false);
  1826. current_position[axis] = 0;
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1828. destination[axis] = 1. * axis_home_dir;
  1829. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1830. st_synchronize();
  1831. // Now continue to move up to the left end stop with the collision detection enabled.
  1832. enable_endstops(true);
  1833. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. for (uint8_t i = 0; i < cnt; i++)
  1837. {
  1838. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1839. endstops_hit_on_purpose();
  1840. enable_endstops(false);
  1841. current_position[axis] = 0;
  1842. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1843. destination[axis] = -10.f * axis_home_dir;
  1844. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1845. st_synchronize();
  1846. endstops_hit_on_purpose();
  1847. // Now move left up to the collision, this time with a repeatable velocity.
  1848. enable_endstops(true);
  1849. destination[axis] = 11.f * axis_home_dir;
  1850. #ifdef TMC2130
  1851. feedrate = homing_feedrate[axis];
  1852. #else //TMC2130
  1853. feedrate = homing_feedrate[axis] / 2;
  1854. #endif //TMC2130
  1855. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1856. st_synchronize();
  1857. #ifdef TMC2130
  1858. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1859. if (pstep) pstep[i] = mscnt >> 4;
  1860. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1861. #endif //TMC2130
  1862. }
  1863. endstops_hit_on_purpose();
  1864. enable_endstops(false);
  1865. #ifdef TMC2130
  1866. uint8_t orig = tmc2130_home_origin[axis];
  1867. uint8_t back = tmc2130_home_bsteps[axis];
  1868. if (tmc2130_home_enabled && (orig <= 63))
  1869. {
  1870. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1871. if (back > 0)
  1872. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1873. }
  1874. else
  1875. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1876. tmc2130_home_exit();
  1877. #endif //TMC2130
  1878. axis_is_at_home(axis);
  1879. axis_known_position[axis] = true;
  1880. // Move from minimum
  1881. #ifdef TMC2130
  1882. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1883. #else //TMC2130
  1884. float dist = - axis_home_dir * 0.01f * 64;
  1885. #endif //TMC2130
  1886. current_position[axis] -= dist;
  1887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1888. current_position[axis] += dist;
  1889. destination[axis] = current_position[axis];
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. feedrate = 0.0;
  1893. }
  1894. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1895. {
  1896. #ifdef TMC2130
  1897. FORCE_HIGH_POWER_START;
  1898. #endif
  1899. int axis_home_dir = home_dir(axis);
  1900. current_position[axis] = 0;
  1901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1902. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1903. feedrate = homing_feedrate[axis];
  1904. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1905. st_synchronize();
  1906. #ifdef TMC2130
  1907. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1908. FORCE_HIGH_POWER_END;
  1909. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1910. return;
  1911. }
  1912. #endif //TMC2130
  1913. current_position[axis] = 0;
  1914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1915. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1916. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1917. st_synchronize();
  1918. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1919. feedrate = homing_feedrate[axis]/2 ;
  1920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1921. st_synchronize();
  1922. #ifdef TMC2130
  1923. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1924. FORCE_HIGH_POWER_END;
  1925. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1926. return;
  1927. }
  1928. #endif //TMC2130
  1929. axis_is_at_home(axis);
  1930. destination[axis] = current_position[axis];
  1931. feedrate = 0.0;
  1932. endstops_hit_on_purpose();
  1933. axis_known_position[axis] = true;
  1934. #ifdef TMC2130
  1935. FORCE_HIGH_POWER_END;
  1936. #endif
  1937. }
  1938. enable_endstops(endstops_enabled);
  1939. }
  1940. /**/
  1941. void home_xy()
  1942. {
  1943. set_destination_to_current();
  1944. homeaxis(X_AXIS);
  1945. homeaxis(Y_AXIS);
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. endstops_hit_on_purpose();
  1948. }
  1949. void refresh_cmd_timeout(void)
  1950. {
  1951. previous_millis_cmd = _millis();
  1952. }
  1953. #ifdef FWRETRACT
  1954. void retract(bool retracting, bool swapretract = false) {
  1955. if(retracting && !retracted[active_extruder]) {
  1956. destination[X_AXIS]=current_position[X_AXIS];
  1957. destination[Y_AXIS]=current_position[Y_AXIS];
  1958. destination[Z_AXIS]=current_position[Z_AXIS];
  1959. destination[E_AXIS]=current_position[E_AXIS];
  1960. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1961. plan_set_e_position(current_position[E_AXIS]);
  1962. float oldFeedrate = feedrate;
  1963. feedrate=cs.retract_feedrate*60;
  1964. retracted[active_extruder]=true;
  1965. prepare_move();
  1966. current_position[Z_AXIS]-=cs.retract_zlift;
  1967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1968. prepare_move();
  1969. feedrate = oldFeedrate;
  1970. } else if(!retracting && retracted[active_extruder]) {
  1971. destination[X_AXIS]=current_position[X_AXIS];
  1972. destination[Y_AXIS]=current_position[Y_AXIS];
  1973. destination[Z_AXIS]=current_position[Z_AXIS];
  1974. destination[E_AXIS]=current_position[E_AXIS];
  1975. current_position[Z_AXIS]+=cs.retract_zlift;
  1976. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1977. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1978. plan_set_e_position(current_position[E_AXIS]);
  1979. float oldFeedrate = feedrate;
  1980. feedrate=cs.retract_recover_feedrate*60;
  1981. retracted[active_extruder]=false;
  1982. prepare_move();
  1983. feedrate = oldFeedrate;
  1984. }
  1985. } //retract
  1986. #endif //FWRETRACT
  1987. void trace() {
  1988. Sound_MakeCustom(25,440,true);
  1989. }
  1990. /*
  1991. void ramming() {
  1992. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1993. if (current_temperature[0] < 230) {
  1994. //PLA
  1995. max_feedrate[E_AXIS] = 50;
  1996. //current_position[E_AXIS] -= 8;
  1997. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  1998. //current_position[E_AXIS] += 8;
  1999. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2000. current_position[E_AXIS] += 5.4;
  2001. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2002. current_position[E_AXIS] += 3.2;
  2003. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2004. current_position[E_AXIS] += 3;
  2005. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2006. st_synchronize();
  2007. max_feedrate[E_AXIS] = 80;
  2008. current_position[E_AXIS] -= 82;
  2009. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2010. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2011. current_position[E_AXIS] -= 20;
  2012. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2013. current_position[E_AXIS] += 5;
  2014. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2015. current_position[E_AXIS] += 5;
  2016. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2017. current_position[E_AXIS] -= 10;
  2018. st_synchronize();
  2019. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2020. current_position[E_AXIS] += 10;
  2021. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2022. current_position[E_AXIS] -= 10;
  2023. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2024. current_position[E_AXIS] += 10;
  2025. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2026. current_position[E_AXIS] -= 10;
  2027. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2028. st_synchronize();
  2029. }
  2030. else {
  2031. //ABS
  2032. max_feedrate[E_AXIS] = 50;
  2033. //current_position[E_AXIS] -= 8;
  2034. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2035. //current_position[E_AXIS] += 8;
  2036. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2037. current_position[E_AXIS] += 3.1;
  2038. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2039. current_position[E_AXIS] += 3.1;
  2040. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2041. current_position[E_AXIS] += 4;
  2042. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2043. st_synchronize();
  2044. //current_position[X_AXIS] += 23; //delay
  2045. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2046. //current_position[X_AXIS] -= 23; //delay
  2047. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2048. _delay(4700);
  2049. max_feedrate[E_AXIS] = 80;
  2050. current_position[E_AXIS] -= 92;
  2051. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2052. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2053. current_position[E_AXIS] -= 5;
  2054. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2055. current_position[E_AXIS] += 5;
  2056. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2057. current_position[E_AXIS] -= 5;
  2058. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2059. st_synchronize();
  2060. current_position[E_AXIS] += 5;
  2061. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2062. current_position[E_AXIS] -= 5;
  2063. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2064. current_position[E_AXIS] += 5;
  2065. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2066. current_position[E_AXIS] -= 5;
  2067. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2068. st_synchronize();
  2069. }
  2070. }
  2071. */
  2072. #ifdef TMC2130
  2073. void force_high_power_mode(bool start_high_power_section) {
  2074. #ifdef PSU_Delta
  2075. if (start_high_power_section == true) enable_force_z();
  2076. #endif //PSU_Delta
  2077. uint8_t silent;
  2078. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2079. if (silent == 1) {
  2080. //we are in silent mode, set to normal mode to enable crash detection
  2081. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2082. st_synchronize();
  2083. cli();
  2084. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2085. update_mode_profile();
  2086. tmc2130_init();
  2087. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2088. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2089. st_reset_timer();
  2090. sei();
  2091. }
  2092. }
  2093. #endif //TMC2130
  2094. #ifdef TMC2130
  2095. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2096. #else
  2097. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2098. #endif //TMC2130
  2099. {
  2100. st_synchronize();
  2101. #if 0
  2102. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2103. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2104. #endif
  2105. // Flag for the display update routine and to disable the print cancelation during homing.
  2106. homing_flag = true;
  2107. // Which axes should be homed?
  2108. bool home_x = home_x_axis;
  2109. bool home_y = home_y_axis;
  2110. bool home_z = home_z_axis;
  2111. // Either all X,Y,Z codes are present, or none of them.
  2112. bool home_all_axes = home_x == home_y && home_x == home_z;
  2113. if (home_all_axes)
  2114. // No X/Y/Z code provided means to home all axes.
  2115. home_x = home_y = home_z = true;
  2116. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2117. if (home_all_axes) {
  2118. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2119. feedrate = homing_feedrate[Z_AXIS];
  2120. plan_buffer_line_curposXYZE(feedrate / 60, active_extruder);
  2121. st_synchronize();
  2122. }
  2123. #ifdef ENABLE_AUTO_BED_LEVELING
  2124. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2125. #endif //ENABLE_AUTO_BED_LEVELING
  2126. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2127. // the planner will not perform any adjustments in the XY plane.
  2128. // Wait for the motors to stop and update the current position with the absolute values.
  2129. world2machine_revert_to_uncorrected();
  2130. // For mesh bed leveling deactivate the matrix temporarily.
  2131. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2132. // in a single axis only.
  2133. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2134. #ifdef MESH_BED_LEVELING
  2135. uint8_t mbl_was_active = mbl.active;
  2136. mbl.active = 0;
  2137. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2138. #endif
  2139. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2140. // consumed during the first movements following this statement.
  2141. if (home_z)
  2142. babystep_undo();
  2143. saved_feedrate = feedrate;
  2144. int l_feedmultiply = feedmultiply;
  2145. feedmultiply = 100;
  2146. previous_millis_cmd = _millis();
  2147. enable_endstops(true);
  2148. memcpy(destination, current_position, sizeof(destination));
  2149. feedrate = 0.0;
  2150. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2151. if(home_z)
  2152. homeaxis(Z_AXIS);
  2153. #endif
  2154. #ifdef QUICK_HOME
  2155. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2156. if(home_x && home_y) //first diagonal move
  2157. {
  2158. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2159. int x_axis_home_dir = home_dir(X_AXIS);
  2160. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2161. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2162. feedrate = homing_feedrate[X_AXIS];
  2163. if(homing_feedrate[Y_AXIS]<feedrate)
  2164. feedrate = homing_feedrate[Y_AXIS];
  2165. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2166. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2167. } else {
  2168. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2169. }
  2170. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2171. st_synchronize();
  2172. axis_is_at_home(X_AXIS);
  2173. axis_is_at_home(Y_AXIS);
  2174. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2175. destination[X_AXIS] = current_position[X_AXIS];
  2176. destination[Y_AXIS] = current_position[Y_AXIS];
  2177. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2178. feedrate = 0.0;
  2179. st_synchronize();
  2180. endstops_hit_on_purpose();
  2181. current_position[X_AXIS] = destination[X_AXIS];
  2182. current_position[Y_AXIS] = destination[Y_AXIS];
  2183. current_position[Z_AXIS] = destination[Z_AXIS];
  2184. }
  2185. #endif /* QUICK_HOME */
  2186. #ifdef TMC2130
  2187. if(home_x)
  2188. {
  2189. if (!calib)
  2190. homeaxis(X_AXIS);
  2191. else
  2192. tmc2130_home_calibrate(X_AXIS);
  2193. }
  2194. if(home_y)
  2195. {
  2196. if (!calib)
  2197. homeaxis(Y_AXIS);
  2198. else
  2199. tmc2130_home_calibrate(Y_AXIS);
  2200. }
  2201. #else //TMC2130
  2202. if(home_x) homeaxis(X_AXIS);
  2203. if(home_y) homeaxis(Y_AXIS);
  2204. #endif //TMC2130
  2205. if(home_x_axis && home_x_value != 0)
  2206. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2207. if(home_y_axis && home_y_value != 0)
  2208. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2209. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2210. #ifndef Z_SAFE_HOMING
  2211. if(home_z) {
  2212. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2213. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2214. feedrate = max_feedrate[Z_AXIS];
  2215. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2216. st_synchronize();
  2217. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2218. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2219. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2220. {
  2221. homeaxis(X_AXIS);
  2222. homeaxis(Y_AXIS);
  2223. }
  2224. // 1st mesh bed leveling measurement point, corrected.
  2225. world2machine_initialize();
  2226. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2227. world2machine_reset();
  2228. if (destination[Y_AXIS] < Y_MIN_POS)
  2229. destination[Y_AXIS] = Y_MIN_POS;
  2230. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2231. feedrate = homing_feedrate[Z_AXIS]/10;
  2232. current_position[Z_AXIS] = 0;
  2233. enable_endstops(false);
  2234. #ifdef DEBUG_BUILD
  2235. SERIAL_ECHOLNPGM("plan_set_position()");
  2236. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2237. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2238. #endif
  2239. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2240. #ifdef DEBUG_BUILD
  2241. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2242. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2243. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2244. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2245. #endif
  2246. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2247. st_synchronize();
  2248. current_position[X_AXIS] = destination[X_AXIS];
  2249. current_position[Y_AXIS] = destination[Y_AXIS];
  2250. enable_endstops(true);
  2251. endstops_hit_on_purpose();
  2252. homeaxis(Z_AXIS);
  2253. #else // MESH_BED_LEVELING
  2254. homeaxis(Z_AXIS);
  2255. #endif // MESH_BED_LEVELING
  2256. }
  2257. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2258. if(home_all_axes) {
  2259. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2260. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2261. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2262. feedrate = XY_TRAVEL_SPEED/60;
  2263. current_position[Z_AXIS] = 0;
  2264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2265. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2266. st_synchronize();
  2267. current_position[X_AXIS] = destination[X_AXIS];
  2268. current_position[Y_AXIS] = destination[Y_AXIS];
  2269. homeaxis(Z_AXIS);
  2270. }
  2271. // Let's see if X and Y are homed and probe is inside bed area.
  2272. if(home_z) {
  2273. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2274. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2275. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2276. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2277. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2278. current_position[Z_AXIS] = 0;
  2279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2280. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2281. feedrate = max_feedrate[Z_AXIS];
  2282. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2283. st_synchronize();
  2284. homeaxis(Z_AXIS);
  2285. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2286. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2287. SERIAL_ECHO_START;
  2288. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2289. } else {
  2290. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2291. SERIAL_ECHO_START;
  2292. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2293. }
  2294. }
  2295. #endif // Z_SAFE_HOMING
  2296. #endif // Z_HOME_DIR < 0
  2297. if(home_z_axis && home_z_value != 0)
  2298. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2299. #ifdef ENABLE_AUTO_BED_LEVELING
  2300. if(home_z)
  2301. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2302. #endif
  2303. // Set the planner and stepper routine positions.
  2304. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2305. // contains the machine coordinates.
  2306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2307. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2308. enable_endstops(false);
  2309. #endif
  2310. feedrate = saved_feedrate;
  2311. feedmultiply = l_feedmultiply;
  2312. previous_millis_cmd = _millis();
  2313. endstops_hit_on_purpose();
  2314. #ifndef MESH_BED_LEVELING
  2315. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2316. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2317. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2318. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2319. lcd_adjust_z();
  2320. #endif
  2321. // Load the machine correction matrix
  2322. world2machine_initialize();
  2323. // and correct the current_position XY axes to match the transformed coordinate system.
  2324. world2machine_update_current();
  2325. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2326. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2327. {
  2328. if (! home_z && mbl_was_active) {
  2329. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2330. mbl.active = true;
  2331. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2332. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2333. }
  2334. }
  2335. else
  2336. {
  2337. st_synchronize();
  2338. homing_flag = false;
  2339. }
  2340. #endif
  2341. if (farm_mode) { prusa_statistics(20); };
  2342. homing_flag = false;
  2343. #if 0
  2344. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2345. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2346. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2347. #endif
  2348. }
  2349. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2350. {
  2351. #ifdef TMC2130
  2352. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2353. #else
  2354. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2355. #endif //TMC2130
  2356. }
  2357. void adjust_bed_reset()
  2358. {
  2359. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2360. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2361. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2362. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2363. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2364. }
  2365. //! @brief Calibrate XYZ
  2366. //! @param onlyZ if true, calibrate only Z axis
  2367. //! @param verbosity_level
  2368. //! @retval true Succeeded
  2369. //! @retval false Failed
  2370. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2371. {
  2372. bool final_result = false;
  2373. #ifdef TMC2130
  2374. FORCE_HIGH_POWER_START;
  2375. #endif // TMC2130
  2376. // Only Z calibration?
  2377. if (!onlyZ)
  2378. {
  2379. setTargetBed(0);
  2380. setAllTargetHotends(0);
  2381. adjust_bed_reset(); //reset bed level correction
  2382. }
  2383. // Disable the default update procedure of the display. We will do a modal dialog.
  2384. lcd_update_enable(false);
  2385. // Let the planner use the uncorrected coordinates.
  2386. mbl.reset();
  2387. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2388. // the planner will not perform any adjustments in the XY plane.
  2389. // Wait for the motors to stop and update the current position with the absolute values.
  2390. world2machine_revert_to_uncorrected();
  2391. // Reset the baby step value applied without moving the axes.
  2392. babystep_reset();
  2393. // Mark all axes as in a need for homing.
  2394. memset(axis_known_position, 0, sizeof(axis_known_position));
  2395. // Home in the XY plane.
  2396. //set_destination_to_current();
  2397. int l_feedmultiply = setup_for_endstop_move();
  2398. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2399. home_xy();
  2400. enable_endstops(false);
  2401. current_position[X_AXIS] += 5;
  2402. current_position[Y_AXIS] += 5;
  2403. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2404. st_synchronize();
  2405. // Let the user move the Z axes up to the end stoppers.
  2406. #ifdef TMC2130
  2407. if (calibrate_z_auto())
  2408. {
  2409. #else //TMC2130
  2410. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2411. {
  2412. #endif //TMC2130
  2413. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2414. if(onlyZ){
  2415. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2416. lcd_set_cursor(0, 3);
  2417. lcd_print(1);
  2418. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2419. }else{
  2420. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2421. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2422. lcd_set_cursor(0, 2);
  2423. lcd_print(1);
  2424. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2425. }
  2426. refresh_cmd_timeout();
  2427. #ifndef STEEL_SHEET
  2428. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2429. {
  2430. lcd_wait_for_cool_down();
  2431. }
  2432. #endif //STEEL_SHEET
  2433. if(!onlyZ)
  2434. {
  2435. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2436. #ifdef STEEL_SHEET
  2437. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2438. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2439. #endif //STEEL_SHEET
  2440. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2441. KEEPALIVE_STATE(IN_HANDLER);
  2442. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2443. lcd_set_cursor(0, 2);
  2444. lcd_print(1);
  2445. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2446. }
  2447. bool endstops_enabled = enable_endstops(false);
  2448. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2449. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2450. st_synchronize();
  2451. // Move the print head close to the bed.
  2452. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2453. enable_endstops(true);
  2454. #ifdef TMC2130
  2455. tmc2130_home_enter(Z_AXIS_MASK);
  2456. #endif //TMC2130
  2457. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2458. st_synchronize();
  2459. #ifdef TMC2130
  2460. tmc2130_home_exit();
  2461. #endif //TMC2130
  2462. enable_endstops(endstops_enabled);
  2463. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2464. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2465. {
  2466. if (onlyZ)
  2467. {
  2468. clean_up_after_endstop_move(l_feedmultiply);
  2469. // Z only calibration.
  2470. // Load the machine correction matrix
  2471. world2machine_initialize();
  2472. // and correct the current_position to match the transformed coordinate system.
  2473. world2machine_update_current();
  2474. //FIXME
  2475. bool result = sample_mesh_and_store_reference();
  2476. if (result)
  2477. {
  2478. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2479. // Shipped, the nozzle height has been set already. The user can start printing now.
  2480. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2481. final_result = true;
  2482. // babystep_apply();
  2483. }
  2484. }
  2485. else
  2486. {
  2487. // Reset the baby step value and the baby step applied flag.
  2488. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2489. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2490. // Complete XYZ calibration.
  2491. uint8_t point_too_far_mask = 0;
  2492. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2493. clean_up_after_endstop_move(l_feedmultiply);
  2494. // Print head up.
  2495. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2496. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2497. st_synchronize();
  2498. //#ifndef NEW_XYZCAL
  2499. if (result >= 0)
  2500. {
  2501. #ifdef HEATBED_V2
  2502. sample_z();
  2503. #else //HEATBED_V2
  2504. point_too_far_mask = 0;
  2505. // Second half: The fine adjustment.
  2506. // Let the planner use the uncorrected coordinates.
  2507. mbl.reset();
  2508. world2machine_reset();
  2509. // Home in the XY plane.
  2510. int l_feedmultiply = setup_for_endstop_move();
  2511. home_xy();
  2512. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2513. clean_up_after_endstop_move(l_feedmultiply);
  2514. // Print head up.
  2515. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2516. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2517. st_synchronize();
  2518. // if (result >= 0) babystep_apply();
  2519. #endif //HEATBED_V2
  2520. }
  2521. //#endif //NEW_XYZCAL
  2522. lcd_update_enable(true);
  2523. lcd_update(2);
  2524. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2525. if (result >= 0)
  2526. {
  2527. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2528. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2529. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2530. final_result = true;
  2531. }
  2532. }
  2533. #ifdef TMC2130
  2534. tmc2130_home_exit();
  2535. #endif
  2536. }
  2537. else
  2538. {
  2539. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2540. final_result = false;
  2541. }
  2542. }
  2543. else
  2544. {
  2545. // Timeouted.
  2546. }
  2547. lcd_update_enable(true);
  2548. #ifdef TMC2130
  2549. FORCE_HIGH_POWER_END;
  2550. #endif // TMC2130
  2551. return final_result;
  2552. }
  2553. void gcode_M114()
  2554. {
  2555. SERIAL_PROTOCOLPGM("X:");
  2556. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2557. SERIAL_PROTOCOLPGM(" Y:");
  2558. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2559. SERIAL_PROTOCOLPGM(" Z:");
  2560. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2561. SERIAL_PROTOCOLPGM(" E:");
  2562. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2563. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2564. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2565. SERIAL_PROTOCOLPGM(" Y:");
  2566. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2567. SERIAL_PROTOCOLPGM(" Z:");
  2568. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2569. SERIAL_PROTOCOLPGM(" E:");
  2570. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2571. SERIAL_PROTOCOLLN("");
  2572. }
  2573. //! extracted code to compute z_shift for M600 in case of filament change operation
  2574. //! requested from fsensors.
  2575. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2576. //! unlike the previous implementation, which was adding 25mm even when the head was
  2577. //! printing at e.g. 24mm height.
  2578. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2579. //! the printout.
  2580. //! This function is templated to enable fast change of computation data type.
  2581. //! @return new z_shift value
  2582. template<typename T>
  2583. static T gcode_M600_filament_change_z_shift()
  2584. {
  2585. #ifdef FILAMENTCHANGE_ZADD
  2586. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2587. // avoid floating point arithmetics when not necessary - results in shorter code
  2588. T ztmp = T( current_position[Z_AXIS] );
  2589. T z_shift = 0;
  2590. if(ztmp < T(25)){
  2591. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2592. }
  2593. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2594. #else
  2595. return T(0);
  2596. #endif
  2597. }
  2598. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2599. {
  2600. st_synchronize();
  2601. float lastpos[4];
  2602. if (farm_mode)
  2603. {
  2604. prusa_statistics(22);
  2605. }
  2606. //First backup current position and settings
  2607. int feedmultiplyBckp = feedmultiply;
  2608. float HotendTempBckp = degTargetHotend(active_extruder);
  2609. int fanSpeedBckp = fanSpeed;
  2610. lastpos[X_AXIS] = current_position[X_AXIS];
  2611. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2612. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2613. lastpos[E_AXIS] = current_position[E_AXIS];
  2614. //Retract E
  2615. current_position[E_AXIS] += e_shift;
  2616. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2617. st_synchronize();
  2618. //Lift Z
  2619. current_position[Z_AXIS] += z_shift;
  2620. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2621. st_synchronize();
  2622. //Move XY to side
  2623. current_position[X_AXIS] = x_position;
  2624. current_position[Y_AXIS] = y_position;
  2625. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2626. st_synchronize();
  2627. //Beep, manage nozzle heater and wait for user to start unload filament
  2628. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2629. lcd_change_fil_state = 0;
  2630. // Unload filament
  2631. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2632. else unload_filament(); //unload filament for single material (used also in M702)
  2633. //finish moves
  2634. st_synchronize();
  2635. if (!mmu_enabled)
  2636. {
  2637. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2638. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2639. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2640. if (lcd_change_fil_state == 0)
  2641. {
  2642. lcd_clear();
  2643. lcd_set_cursor(0, 2);
  2644. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2645. current_position[X_AXIS] -= 100;
  2646. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2647. st_synchronize();
  2648. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2649. }
  2650. }
  2651. if (mmu_enabled)
  2652. {
  2653. if (!automatic) {
  2654. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2655. mmu_M600_wait_and_beep();
  2656. if (saved_printing) {
  2657. lcd_clear();
  2658. lcd_set_cursor(0, 2);
  2659. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2660. mmu_command(MmuCmd::R0);
  2661. manage_response(false, false);
  2662. }
  2663. }
  2664. mmu_M600_load_filament(automatic, HotendTempBckp);
  2665. }
  2666. else
  2667. M600_load_filament();
  2668. if (!automatic) M600_check_state(HotendTempBckp);
  2669. lcd_update_enable(true);
  2670. //Not let's go back to print
  2671. fanSpeed = fanSpeedBckp;
  2672. //Feed a little of filament to stabilize pressure
  2673. if (!automatic)
  2674. {
  2675. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2676. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2677. }
  2678. //Move XY back
  2679. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2680. FILAMENTCHANGE_XYFEED, active_extruder);
  2681. st_synchronize();
  2682. //Move Z back
  2683. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2684. FILAMENTCHANGE_ZFEED, active_extruder);
  2685. st_synchronize();
  2686. //Set E position to original
  2687. plan_set_e_position(lastpos[E_AXIS]);
  2688. memcpy(current_position, lastpos, sizeof(lastpos));
  2689. memcpy(destination, current_position, sizeof(current_position));
  2690. //Recover feed rate
  2691. feedmultiply = feedmultiplyBckp;
  2692. char cmd[9];
  2693. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2694. enquecommand(cmd);
  2695. #ifdef IR_SENSOR
  2696. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2697. fsensor_check_autoload();
  2698. #endif //IR_SENSOR
  2699. lcd_setstatuspgm(_T(WELCOME_MSG));
  2700. custom_message_type = CustomMsg::Status;
  2701. }
  2702. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2703. //!
  2704. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2705. //! during extruding (loading) filament.
  2706. void marlin_rise_z(void)
  2707. {
  2708. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2709. }
  2710. void gcode_M701()
  2711. {
  2712. printf_P(PSTR("gcode_M701 begin\n"));
  2713. if (farm_mode)
  2714. {
  2715. prusa_statistics(22);
  2716. }
  2717. if (mmu_enabled)
  2718. {
  2719. extr_adj(tmp_extruder);//loads current extruder
  2720. mmu_extruder = tmp_extruder;
  2721. }
  2722. else
  2723. {
  2724. enable_z();
  2725. custom_message_type = CustomMsg::FilamentLoading;
  2726. #ifdef FSENSOR_QUALITY
  2727. fsensor_oq_meassure_start(40);
  2728. #endif //FSENSOR_QUALITY
  2729. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2730. current_position[E_AXIS] += 40;
  2731. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2732. st_synchronize();
  2733. marlin_rise_z();
  2734. current_position[E_AXIS] += 30;
  2735. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2736. load_filament_final_feed(); //slow sequence
  2737. st_synchronize();
  2738. Sound_MakeCustom(50,500,false);
  2739. if (!farm_mode && loading_flag) {
  2740. lcd_load_filament_color_check();
  2741. }
  2742. lcd_update_enable(true);
  2743. lcd_update(2);
  2744. lcd_setstatuspgm(_T(WELCOME_MSG));
  2745. disable_z();
  2746. loading_flag = false;
  2747. custom_message_type = CustomMsg::Status;
  2748. #ifdef FSENSOR_QUALITY
  2749. fsensor_oq_meassure_stop();
  2750. if (!fsensor_oq_result())
  2751. {
  2752. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2753. lcd_update_enable(true);
  2754. lcd_update(2);
  2755. if (disable)
  2756. fsensor_disable();
  2757. }
  2758. #endif //FSENSOR_QUALITY
  2759. }
  2760. }
  2761. /**
  2762. * @brief Get serial number from 32U2 processor
  2763. *
  2764. * Typical format of S/N is:CZPX0917X003XC13518
  2765. *
  2766. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2767. *
  2768. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2769. * reply is transmitted to serial port 1 character by character.
  2770. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2771. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2772. * in any case.
  2773. */
  2774. static void gcode_PRUSA_SN()
  2775. {
  2776. if (farm_mode) {
  2777. selectedSerialPort = 0;
  2778. putchar(';');
  2779. putchar('S');
  2780. int numbersRead = 0;
  2781. ShortTimer timeout;
  2782. timeout.start();
  2783. while (numbersRead < 19) {
  2784. while (MSerial.available() > 0) {
  2785. uint8_t serial_char = MSerial.read();
  2786. selectedSerialPort = 1;
  2787. putchar(serial_char);
  2788. numbersRead++;
  2789. selectedSerialPort = 0;
  2790. }
  2791. if (timeout.expired(100u)) break;
  2792. }
  2793. selectedSerialPort = 1;
  2794. putchar('\n');
  2795. #if 0
  2796. for (int b = 0; b < 3; b++) {
  2797. _tone(BEEPER, 110);
  2798. _delay(50);
  2799. _noTone(BEEPER);
  2800. _delay(50);
  2801. }
  2802. #endif
  2803. } else {
  2804. puts_P(_N("Not in farm mode."));
  2805. }
  2806. }
  2807. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2808. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2809. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2810. //! it may even interfere with other functions of the printer! You have been warned!
  2811. //! The test idea is to measure the time necessary to charge the capacitor.
  2812. //! So the algorithm is as follows:
  2813. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2814. //! 2. Wait a few ms
  2815. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2816. //! Repeat 1.-3. several times
  2817. //! Good RAMBo's times are in the range of approx. 260-320 us
  2818. //! Bad RAMBo's times are approx. 260-1200 us
  2819. //! So basically we are interested in maximum time, the minima are mostly the same.
  2820. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2821. static void gcode_PRUSA_BadRAMBoFanTest(){
  2822. //printf_P(PSTR("Enter fan pin test\n"));
  2823. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2824. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2825. unsigned long tach1max = 0;
  2826. uint8_t tach1cntr = 0;
  2827. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2828. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2829. SET_OUTPUT(TACH_1);
  2830. WRITE(TACH_1, LOW);
  2831. _delay(20); // the delay may be lower
  2832. unsigned long tachMeasure = _micros();
  2833. cli();
  2834. SET_INPUT(TACH_1);
  2835. // just wait brutally in an endless cycle until we reach HIGH
  2836. // if this becomes a problem it may be improved to non-endless cycle
  2837. while( READ(TACH_1) == 0 ) ;
  2838. sei();
  2839. tachMeasure = _micros() - tachMeasure;
  2840. if( tach1max < tachMeasure )
  2841. tach1max = tachMeasure;
  2842. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2843. }
  2844. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2845. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2846. if( tach1max > 500 ){
  2847. // bad RAMBo
  2848. SERIAL_PROTOCOLLNPGM("BAD");
  2849. } else {
  2850. SERIAL_PROTOCOLLNPGM("OK");
  2851. }
  2852. // cleanup after the test function
  2853. SET_INPUT(TACH_1);
  2854. WRITE(TACH_1, HIGH);
  2855. #endif
  2856. }
  2857. #ifdef BACKLASH_X
  2858. extern uint8_t st_backlash_x;
  2859. #endif //BACKLASH_X
  2860. #ifdef BACKLASH_Y
  2861. extern uint8_t st_backlash_y;
  2862. #endif //BACKLASH_Y
  2863. //! \ingroup marlin_main
  2864. //! @brief Parse and process commands
  2865. //!
  2866. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  2867. //!
  2868. //!
  2869. //! Implemented Codes
  2870. //! -------------------
  2871. //!
  2872. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2873. //!
  2874. //!@n PRUSA CODES
  2875. //!@n P F - Returns FW versions
  2876. //!@n P R - Returns revision of printer
  2877. //!
  2878. //!@n G0 -> G1
  2879. //!@n G1 - Coordinated Movement X Y Z E
  2880. //!@n G2 - CW ARC
  2881. //!@n G3 - CCW ARC
  2882. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2883. //!@n G10 - retract filament according to settings of M207
  2884. //!@n G11 - retract recover filament according to settings of M208
  2885. //!@n G28 - Home all Axis
  2886. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2887. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2888. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2889. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2890. //!@n G80 - Automatic mesh bed leveling
  2891. //!@n G81 - Print bed profile
  2892. //!@n G90 - Use Absolute Coordinates
  2893. //!@n G91 - Use Relative Coordinates
  2894. //!@n G92 - Set current position to coordinates given
  2895. //!
  2896. //!@n M Codes
  2897. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2898. //!@n M1 - Same as M0
  2899. //!@n M17 - Enable/Power all stepper motors
  2900. //!@n M18 - Disable all stepper motors; same as M84
  2901. //!@n M20 - List SD card
  2902. //!@n M21 - Init SD card
  2903. //!@n M22 - Release SD card
  2904. //!@n M23 - Select SD file (M23 filename.g)
  2905. //!@n M24 - Start/resume SD print
  2906. //!@n M25 - Pause SD print
  2907. //!@n M26 - Set SD position in bytes (M26 S12345)
  2908. //!@n M27 - Report SD print status
  2909. //!@n M28 - Start SD write (M28 filename.g)
  2910. //!@n M29 - Stop SD write
  2911. //!@n M30 - Delete file from SD (M30 filename.g)
  2912. //!@n M31 - Output time since last M109 or SD card start to serial
  2913. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2914. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2915. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2916. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2917. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2918. //!@n M73 - Show percent done and print time remaining
  2919. //!@n M80 - Turn on Power Supply
  2920. //!@n M81 - Turn off Power Supply
  2921. //!@n M82 - Set E codes absolute (default)
  2922. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2923. //!@n M84 - Disable steppers until next move,
  2924. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2925. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2926. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2927. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2928. //!@n M104 - Set extruder target temp
  2929. //!@n M105 - Read current temp
  2930. //!@n M106 - Fan on
  2931. //!@n M107 - Fan off
  2932. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2933. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2934. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2935. //!@n M112 - Emergency stop
  2936. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2937. //!@n M114 - Output current position to serial port
  2938. //!@n M115 - Capabilities string
  2939. //!@n M117 - display message
  2940. //!@n M119 - Output Endstop status to serial port
  2941. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2942. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2943. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2944. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2945. //!@n M140 - Set bed target temp
  2946. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2947. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2948. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2949. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2950. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2951. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2952. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2953. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2954. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2955. //!@n M206 - set additional homing offset
  2956. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2957. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2958. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2959. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2960. //!@n M220 S<factor in percent>- set speed factor override percentage
  2961. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2962. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2963. //!@n M240 - Trigger a camera to take a photograph
  2964. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2965. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2966. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2967. //!@n M301 - Set PID parameters P I and D
  2968. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2969. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2970. //!@n M304 - Set bed PID parameters P I and D
  2971. //!@n M400 - Finish all moves
  2972. //!@n M401 - Lower z-probe if present
  2973. //!@n M402 - Raise z-probe if present
  2974. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2975. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2976. //!@n M406 - Turn off Filament Sensor extrusion control
  2977. //!@n M407 - Displays measured filament diameter
  2978. //!@n M500 - stores parameters in EEPROM
  2979. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2980. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2981. //!@n M503 - print the current settings (from memory not from EEPROM)
  2982. //!@n M509 - force language selection on next restart
  2983. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2984. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2985. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2986. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2987. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2988. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2989. //!@n M907 - Set digital trimpot motor current using axis codes.
  2990. //!@n M908 - Control digital trimpot directly.
  2991. //!@n M350 - Set microstepping mode.
  2992. //!@n M351 - Toggle MS1 MS2 pins directly.
  2993. //!
  2994. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2995. //!@n M999 - Restart after being stopped by error
  2996. //! <br><br>
  2997. /** @defgroup marlin_main Marlin main */
  2998. /** \ingroup GCodes */
  2999. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3000. /**
  3001. They are shown in order of appierence in the code.
  3002. There are reasons why some G Codes aren't in numerical order.
  3003. */
  3004. void process_commands()
  3005. {
  3006. #ifdef FANCHECK
  3007. if(fan_check_error){
  3008. if(fan_check_error == EFCE_DETECTED){
  3009. fan_check_error = EFCE_REPORTED;
  3010. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3011. lcd_pause_print();
  3012. } // otherwise it has already been reported, so just ignore further processing
  3013. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3014. }
  3015. #endif
  3016. if (!buflen) return; //empty command
  3017. #ifdef FILAMENT_RUNOUT_SUPPORT
  3018. SET_INPUT(FR_SENS);
  3019. #endif
  3020. #ifdef CMDBUFFER_DEBUG
  3021. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3022. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3023. SERIAL_ECHOLNPGM("");
  3024. SERIAL_ECHOPGM("In cmdqueue: ");
  3025. SERIAL_ECHO(buflen);
  3026. SERIAL_ECHOLNPGM("");
  3027. #endif /* CMDBUFFER_DEBUG */
  3028. unsigned long codenum; //throw away variable
  3029. char *starpos = NULL;
  3030. #ifdef ENABLE_AUTO_BED_LEVELING
  3031. float x_tmp, y_tmp, z_tmp, real_z;
  3032. #endif
  3033. // PRUSA GCODES
  3034. KEEPALIVE_STATE(IN_HANDLER);
  3035. #ifdef SNMM
  3036. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3037. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3038. int8_t SilentMode;
  3039. #endif
  3040. /*!
  3041. ---------------------------------------------------------------------------------
  3042. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3043. This causes the given message to be shown in the status line on an attached LCD.
  3044. It is also used by internal to display status messages on LCD.
  3045. Here the internal status messages:
  3046. Only on MK3/s (TMC2130)
  3047. - CRASH DETECTED
  3048. - CRASH RECOVER
  3049. - CRASH_CANCEL
  3050. - TMC_SET_WAVE
  3051. - TMC_SET_STEP
  3052. - TMC_SET_CHOP
  3053. */
  3054. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3055. starpos = (strchr(strchr_pointer + 5, '*'));
  3056. if (starpos != NULL)
  3057. *(starpos) = '\0';
  3058. lcd_setstatus(strchr_pointer + 5);
  3059. }
  3060. #ifdef TMC2130
  3061. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3062. {
  3063. // ### CRASH_DETECTED - TMC2130
  3064. // ---------------------------------
  3065. if(code_seen("CRASH_DETECTED"))
  3066. {
  3067. uint8_t mask = 0;
  3068. if (code_seen('X')) mask |= X_AXIS_MASK;
  3069. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3070. crashdet_detected(mask);
  3071. }
  3072. // ### CRASH_RECOVER - TMC2130
  3073. // ----------------------------------
  3074. else if(code_seen("CRASH_RECOVER"))
  3075. crashdet_recover();
  3076. // ### CRASH_CANCEL - TMC2130
  3077. // ----------------------------------
  3078. else if(code_seen("CRASH_CANCEL"))
  3079. crashdet_cancel();
  3080. }
  3081. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3082. {
  3083. // ### TMC_SET_WAVE_
  3084. // --------------------
  3085. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3086. {
  3087. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3088. axis = (axis == 'E')?3:(axis - 'X');
  3089. if (axis < 4)
  3090. {
  3091. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3092. tmc2130_set_wave(axis, 247, fac);
  3093. }
  3094. }
  3095. // ### TMC_SET_STEP_
  3096. // ------------------
  3097. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3098. {
  3099. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3100. axis = (axis == 'E')?3:(axis - 'X');
  3101. if (axis < 4)
  3102. {
  3103. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3104. uint16_t res = tmc2130_get_res(axis);
  3105. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3106. }
  3107. }
  3108. // ### TMC_SET_CHOP_
  3109. // -------------------
  3110. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3111. {
  3112. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3113. axis = (axis == 'E')?3:(axis - 'X');
  3114. if (axis < 4)
  3115. {
  3116. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3117. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3118. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3119. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3120. char* str_end = 0;
  3121. if (CMDBUFFER_CURRENT_STRING[14])
  3122. {
  3123. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3124. if (str_end && *str_end)
  3125. {
  3126. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3127. if (str_end && *str_end)
  3128. {
  3129. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3130. if (str_end && *str_end)
  3131. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3132. }
  3133. }
  3134. }
  3135. tmc2130_chopper_config[axis].toff = chop0;
  3136. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3137. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3138. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3139. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3140. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3141. }
  3142. }
  3143. }
  3144. #ifdef BACKLASH_X
  3145. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3146. {
  3147. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3148. st_backlash_x = bl;
  3149. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3150. }
  3151. #endif //BACKLASH_X
  3152. #ifdef BACKLASH_Y
  3153. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3154. {
  3155. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3156. st_backlash_y = bl;
  3157. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3158. }
  3159. #endif //BACKLASH_Y
  3160. #endif //TMC2130
  3161. else if(code_seen("PRUSA")){
  3162. /*!
  3163. ---------------------------------------------------------------------------------
  3164. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3165. Set of internal PRUSA commands
  3166. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3167. - `Ping`
  3168. - `PRN` - Prints revision of the printer
  3169. - `FAN` - Prints fan details
  3170. - `fn` - Prints farm no.
  3171. - `thx`
  3172. - `uvlo`
  3173. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3174. - `MMURES` - Reset MMU
  3175. - `RESET` - (Careful!)
  3176. - `fv` - ?
  3177. - `M28`
  3178. - `SN`
  3179. - `Fir` - Prints firmware version
  3180. - `Rev`- Prints filament size, elelectronics, nozzle type
  3181. - `Lang` - Reset the language
  3182. - `Lz`
  3183. - `Beat` - Kick farm link timer
  3184. - `FR` - Full factory reset
  3185. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3186. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3187. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3188. */
  3189. if (code_seen("Ping")) { // PRUSA Ping
  3190. if (farm_mode) {
  3191. PingTime = _millis();
  3192. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3193. }
  3194. }
  3195. else if (code_seen("PRN")) { // PRUSA PRN
  3196. printf_P(_N("%d"), status_number);
  3197. } else if( code_seen("FANPINTST") ){
  3198. gcode_PRUSA_BadRAMBoFanTest();
  3199. }else if (code_seen("FAN")) { // PRUSA FAN
  3200. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3201. }else if (code_seen("fn")) { // PRUSA fn
  3202. if (farm_mode) {
  3203. printf_P(_N("%d"), farm_no);
  3204. }
  3205. else {
  3206. puts_P(_N("Not in farm mode."));
  3207. }
  3208. }
  3209. else if (code_seen("thx")) // PRUSA thx
  3210. {
  3211. no_response = false;
  3212. }
  3213. else if (code_seen("uvlo")) // PRUSA uvlo
  3214. {
  3215. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3216. enquecommand_P(PSTR("M24"));
  3217. }
  3218. #ifdef FILAMENT_SENSOR
  3219. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3220. {
  3221. fsensor_restore_print_and_continue();
  3222. }
  3223. #endif //FILAMENT_SENSOR
  3224. else if (code_seen("MMURES")) // PRUSA MMURES
  3225. {
  3226. mmu_reset();
  3227. }
  3228. else if (code_seen("RESET")) { // PRUSA RESET
  3229. // careful!
  3230. if (farm_mode) {
  3231. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3232. boot_app_magic = BOOT_APP_MAGIC;
  3233. boot_app_flags = BOOT_APP_FLG_RUN;
  3234. wdt_enable(WDTO_15MS);
  3235. cli();
  3236. while(1);
  3237. #else //WATCHDOG
  3238. asm volatile("jmp 0x3E000");
  3239. #endif //WATCHDOG
  3240. }
  3241. else {
  3242. MYSERIAL.println("Not in farm mode.");
  3243. }
  3244. }else if (code_seen("fv")) { // PRUSA fv
  3245. // get file version
  3246. #ifdef SDSUPPORT
  3247. card.openFile(strchr_pointer + 3,true);
  3248. while (true) {
  3249. uint16_t readByte = card.get();
  3250. MYSERIAL.write(readByte);
  3251. if (readByte=='\n') {
  3252. break;
  3253. }
  3254. }
  3255. card.closefile();
  3256. #endif // SDSUPPORT
  3257. } else if (code_seen("M28")) { // PRUSA M28
  3258. trace();
  3259. prusa_sd_card_upload = true;
  3260. card.openFile(strchr_pointer+4,false);
  3261. } else if (code_seen("SN")) { // PRUSA SN
  3262. gcode_PRUSA_SN();
  3263. } else if(code_seen("Fir")){ // PRUSA Fir
  3264. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3265. } else if(code_seen("Rev")){ // PRUSA Rev
  3266. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3267. } else if(code_seen("Lang")) { // PRUSA Lang
  3268. lang_reset();
  3269. } else if(code_seen("Lz")) { // PRUSA Lz
  3270. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3271. } else if(code_seen("Beat")) { // PRUSA Beat
  3272. // Kick farm link timer
  3273. kicktime = _millis();
  3274. } else if(code_seen("FR")) { // PRUSA FR
  3275. // Factory full reset
  3276. factory_reset(0);
  3277. //-//
  3278. /*
  3279. } else if(code_seen("rrr")) {
  3280. MYSERIAL.println("=== checking ===");
  3281. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3282. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3283. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3284. MYSERIAL.println(farm_mode,DEC);
  3285. MYSERIAL.println(eCheckMode,DEC);
  3286. } else if(code_seen("www")) {
  3287. MYSERIAL.println("=== @ FF ===");
  3288. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3289. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3290. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3291. */
  3292. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3293. uint16_t nDiameter;
  3294. if(code_seen('D'))
  3295. {
  3296. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3297. nozzle_diameter_check(nDiameter);
  3298. }
  3299. else if(code_seen("set") && farm_mode)
  3300. {
  3301. strchr_pointer++; // skip 1st char (~ 's')
  3302. strchr_pointer++; // skip 2nd char (~ 'e')
  3303. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3304. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3305. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3306. }
  3307. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3308. //-// !!! SupportMenu
  3309. /*
  3310. // musi byt PRED "PRUSA model"
  3311. } else if (code_seen("smodel")) { //! PRUSA smodel
  3312. size_t nOffset;
  3313. // ! -> "l"
  3314. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3315. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3316. if(*(strchr_pointer+1+nOffset))
  3317. printer_smodel_check(strchr_pointer);
  3318. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3319. } else if (code_seen("model")) { //! PRUSA model
  3320. uint16_t nPrinterModel;
  3321. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3322. nPrinterModel=(uint16_t)code_value_long();
  3323. if(nPrinterModel!=0)
  3324. printer_model_check(nPrinterModel);
  3325. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3326. } else if (code_seen("version")) { //! PRUSA version
  3327. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3328. while(*strchr_pointer==' ') // skip leading spaces
  3329. strchr_pointer++;
  3330. if(*strchr_pointer!=0)
  3331. fw_version_check(strchr_pointer);
  3332. else SERIAL_PROTOCOLLN(FW_VERSION);
  3333. } else if (code_seen("gcode")) { //! PRUSA gcode
  3334. uint16_t nGcodeLevel;
  3335. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3336. nGcodeLevel=(uint16_t)code_value_long();
  3337. if(nGcodeLevel!=0)
  3338. gcode_level_check(nGcodeLevel);
  3339. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3340. */
  3341. }
  3342. //else if (code_seen('Cal')) {
  3343. // lcd_calibration();
  3344. // }
  3345. }
  3346. // This prevents reading files with "^" in their names.
  3347. // Since it is unclear, if there is some usage of this construct,
  3348. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3349. // else if (code_seen('^')) {
  3350. // // nothing, this is a version line
  3351. // }
  3352. else if(code_seen('G'))
  3353. {
  3354. gcode_in_progress = (int)code_value();
  3355. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3356. switch (gcode_in_progress)
  3357. {
  3358. /*!
  3359. ---------------------------------------------------------------------------------
  3360. # G Codes
  3361. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3362. */ --------------------------------------
  3363. case 0: // G0 -> G1
  3364. case 1: // G1
  3365. if(Stopped == false) {
  3366. #ifdef FILAMENT_RUNOUT_SUPPORT
  3367. if(READ(FR_SENS)){
  3368. int feedmultiplyBckp=feedmultiply;
  3369. float target[4];
  3370. float lastpos[4];
  3371. target[X_AXIS]=current_position[X_AXIS];
  3372. target[Y_AXIS]=current_position[Y_AXIS];
  3373. target[Z_AXIS]=current_position[Z_AXIS];
  3374. target[E_AXIS]=current_position[E_AXIS];
  3375. lastpos[X_AXIS]=current_position[X_AXIS];
  3376. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3377. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3378. lastpos[E_AXIS]=current_position[E_AXIS];
  3379. //retract by E
  3380. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3381. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3382. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3384. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3385. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3386. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3387. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3388. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3389. //finish moves
  3390. st_synchronize();
  3391. //disable extruder steppers so filament can be removed
  3392. disable_e0();
  3393. disable_e1();
  3394. disable_e2();
  3395. _delay(100);
  3396. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3397. uint8_t cnt=0;
  3398. int counterBeep = 0;
  3399. lcd_wait_interact();
  3400. while(!lcd_clicked()){
  3401. cnt++;
  3402. manage_heater();
  3403. manage_inactivity(true);
  3404. //lcd_update(0);
  3405. if(cnt==0)
  3406. {
  3407. #if BEEPER > 0
  3408. if (counterBeep== 500){
  3409. counterBeep = 0;
  3410. }
  3411. SET_OUTPUT(BEEPER);
  3412. if (counterBeep== 0){
  3413. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3414. WRITE(BEEPER,HIGH);
  3415. }
  3416. if (counterBeep== 20){
  3417. WRITE(BEEPER,LOW);
  3418. }
  3419. counterBeep++;
  3420. #else
  3421. #endif
  3422. }
  3423. }
  3424. WRITE(BEEPER,LOW);
  3425. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3426. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3427. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3428. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3429. lcd_change_fil_state = 0;
  3430. lcd_loading_filament();
  3431. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3432. lcd_change_fil_state = 0;
  3433. lcd_alright();
  3434. switch(lcd_change_fil_state){
  3435. case 2:
  3436. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3437. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3438. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3440. lcd_loading_filament();
  3441. break;
  3442. case 3:
  3443. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3445. lcd_loading_color();
  3446. break;
  3447. default:
  3448. lcd_change_success();
  3449. break;
  3450. }
  3451. }
  3452. target[E_AXIS]+= 5;
  3453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3454. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3455. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3456. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3457. //plan_set_e_position(current_position[E_AXIS]);
  3458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3459. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3460. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3461. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3462. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3463. plan_set_e_position(lastpos[E_AXIS]);
  3464. feedmultiply=feedmultiplyBckp;
  3465. char cmd[9];
  3466. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3467. enquecommand(cmd);
  3468. }
  3469. #endif
  3470. get_coordinates(); // For X Y Z E F
  3471. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3472. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3473. }
  3474. #ifdef FWRETRACT
  3475. if(cs.autoretract_enabled)
  3476. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3477. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3478. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3479. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3480. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3481. retract(!retracted[active_extruder]);
  3482. return;
  3483. }
  3484. }
  3485. #endif //FWRETRACT
  3486. prepare_move();
  3487. //ClearToSend();
  3488. }
  3489. break;
  3490. /*!
  3491. ### G2 - CW ARC <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3492. */ ------------------------------
  3493. case 2:
  3494. if(Stopped == false) {
  3495. get_arc_coordinates();
  3496. prepare_arc_move(true);
  3497. }
  3498. break;
  3499. /*!
  3500. ### G3 - CCW ARC <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3501. */ -------------------------------
  3502. case 3:
  3503. if(Stopped == false) {
  3504. get_arc_coordinates();
  3505. prepare_arc_move(false);
  3506. }
  3507. break;
  3508. /*!
  3509. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3510. */ -------------------------------
  3511. case 4:
  3512. codenum = 0;
  3513. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3514. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3515. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3516. st_synchronize();
  3517. codenum += _millis(); // keep track of when we started waiting
  3518. previous_millis_cmd = _millis();
  3519. while(_millis() < codenum) {
  3520. manage_heater();
  3521. manage_inactivity();
  3522. lcd_update(0);
  3523. }
  3524. break;
  3525. #ifdef FWRETRACT
  3526. /*!
  3527. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3528. */ ------------------------------
  3529. case 10:
  3530. #if EXTRUDERS > 1
  3531. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3532. retract(true,retracted_swap[active_extruder]);
  3533. #else
  3534. retract(true);
  3535. #endif
  3536. break;
  3537. /*!
  3538. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3539. */ -----------------------------
  3540. case 11:
  3541. #if EXTRUDERS > 1
  3542. retract(false,retracted_swap[active_extruder]);
  3543. #else
  3544. retract(false);
  3545. #endif
  3546. break;
  3547. #endif //FWRETRACT
  3548. /*!
  3549. ### G28 - Home all Axis one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3550. Unsing G28 without any paramters will perfom on the Prusa i3 printers home AND mesh bed leveling, while the default G-code G28 is just homeing the printer
  3551. G28 [ X | Y | Z | W | C ]
  3552. - `X` - Flag to go back to the X axis origin
  3553. - `Y` - Flag to go back to the Y axis origin
  3554. - `Z` - Flag to go back to the Z axis origin
  3555. - `W` - Suppress mesh bed leveling
  3556. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3557. */
  3558. // ------------------------------
  3559. case 28:
  3560. {
  3561. long home_x_value = 0;
  3562. long home_y_value = 0;
  3563. long home_z_value = 0;
  3564. // Which axes should be homed?
  3565. bool home_x = code_seen(axis_codes[X_AXIS]);
  3566. home_x_value = code_value_long();
  3567. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3568. home_y_value = code_value_long();
  3569. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3570. home_z_value = code_value_long();
  3571. bool without_mbl = code_seen('W');
  3572. // calibrate?
  3573. #ifdef TMC2130
  3574. bool calib = code_seen('C');
  3575. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3576. #else
  3577. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3578. #endif //TMC2130
  3579. if ((home_x || home_y || without_mbl || home_z) == false) {
  3580. // Push the commands to the front of the message queue in the reverse order!
  3581. // There shall be always enough space reserved for these commands.
  3582. goto case_G80;
  3583. }
  3584. break;
  3585. }
  3586. #ifdef ENABLE_AUTO_BED_LEVELING
  3587. /*!
  3588. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3589. See G81
  3590. */ --------------------------------
  3591. case 29:
  3592. {
  3593. #if Z_MIN_PIN == -1
  3594. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3595. #endif
  3596. // Prevent user from running a G29 without first homing in X and Y
  3597. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3598. {
  3599. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3600. SERIAL_ECHO_START;
  3601. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3602. break; // abort G29, since we don't know where we are
  3603. }
  3604. st_synchronize();
  3605. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3606. //vector_3 corrected_position = plan_get_position_mm();
  3607. //corrected_position.debug("position before G29");
  3608. plan_bed_level_matrix.set_to_identity();
  3609. vector_3 uncorrected_position = plan_get_position();
  3610. //uncorrected_position.debug("position durring G29");
  3611. current_position[X_AXIS] = uncorrected_position.x;
  3612. current_position[Y_AXIS] = uncorrected_position.y;
  3613. current_position[Z_AXIS] = uncorrected_position.z;
  3614. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3615. int l_feedmultiply = setup_for_endstop_move();
  3616. feedrate = homing_feedrate[Z_AXIS];
  3617. #ifdef AUTO_BED_LEVELING_GRID
  3618. // probe at the points of a lattice grid
  3619. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3620. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3621. // solve the plane equation ax + by + d = z
  3622. // A is the matrix with rows [x y 1] for all the probed points
  3623. // B is the vector of the Z positions
  3624. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3625. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3626. // "A" matrix of the linear system of equations
  3627. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3628. // "B" vector of Z points
  3629. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3630. int probePointCounter = 0;
  3631. bool zig = true;
  3632. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3633. {
  3634. int xProbe, xInc;
  3635. if (zig)
  3636. {
  3637. xProbe = LEFT_PROBE_BED_POSITION;
  3638. //xEnd = RIGHT_PROBE_BED_POSITION;
  3639. xInc = xGridSpacing;
  3640. zig = false;
  3641. } else // zag
  3642. {
  3643. xProbe = RIGHT_PROBE_BED_POSITION;
  3644. //xEnd = LEFT_PROBE_BED_POSITION;
  3645. xInc = -xGridSpacing;
  3646. zig = true;
  3647. }
  3648. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3649. {
  3650. float z_before;
  3651. if (probePointCounter == 0)
  3652. {
  3653. // raise before probing
  3654. z_before = Z_RAISE_BEFORE_PROBING;
  3655. } else
  3656. {
  3657. // raise extruder
  3658. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3659. }
  3660. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3661. eqnBVector[probePointCounter] = measured_z;
  3662. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3663. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3664. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3665. probePointCounter++;
  3666. xProbe += xInc;
  3667. }
  3668. }
  3669. clean_up_after_endstop_move(l_feedmultiply);
  3670. // solve lsq problem
  3671. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3672. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3673. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3674. SERIAL_PROTOCOLPGM(" b: ");
  3675. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3676. SERIAL_PROTOCOLPGM(" d: ");
  3677. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3678. set_bed_level_equation_lsq(plane_equation_coefficients);
  3679. free(plane_equation_coefficients);
  3680. #else // AUTO_BED_LEVELING_GRID not defined
  3681. // Probe at 3 arbitrary points
  3682. // probe 1
  3683. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3684. // probe 2
  3685. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3686. // probe 3
  3687. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3688. clean_up_after_endstop_move(l_feedmultiply);
  3689. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3690. #endif // AUTO_BED_LEVELING_GRID
  3691. st_synchronize();
  3692. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3693. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3694. // When the bed is uneven, this height must be corrected.
  3695. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3696. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3697. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3698. z_tmp = current_position[Z_AXIS];
  3699. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3700. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3701. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3702. }
  3703. break;
  3704. #ifndef Z_PROBE_SLED
  3705. /*!
  3706. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3707. */ ------------------------------------
  3708. case 30:
  3709. {
  3710. st_synchronize();
  3711. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3712. int l_feedmultiply = setup_for_endstop_move();
  3713. feedrate = homing_feedrate[Z_AXIS];
  3714. run_z_probe();
  3715. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3716. SERIAL_PROTOCOLPGM(" X: ");
  3717. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3718. SERIAL_PROTOCOLPGM(" Y: ");
  3719. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3720. SERIAL_PROTOCOLPGM(" Z: ");
  3721. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3722. SERIAL_PROTOCOLPGM("\n");
  3723. clean_up_after_endstop_move(l_feedmultiply);
  3724. }
  3725. break;
  3726. #else
  3727. /*!
  3728. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3729. */ ---------------------------
  3730. case 31:
  3731. dock_sled(true);
  3732. break;
  3733. /*!
  3734. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3735. */ ----------------------------
  3736. case 32:
  3737. dock_sled(false);
  3738. break;
  3739. #endif // Z_PROBE_SLED
  3740. #endif // ENABLE_AUTO_BED_LEVELING
  3741. #ifdef MESH_BED_LEVELING
  3742. /*!
  3743. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3744. */ ----------------------------
  3745. case 30:
  3746. {
  3747. st_synchronize();
  3748. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3749. int l_feedmultiply = setup_for_endstop_move();
  3750. feedrate = homing_feedrate[Z_AXIS];
  3751. find_bed_induction_sensor_point_z(-10.f, 3);
  3752. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3753. clean_up_after_endstop_move(l_feedmultiply);
  3754. }
  3755. break;
  3756. /*!
  3757. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  3758. Show/print PINDA temperature interpolating.
  3759. */ ---------------------------------------------
  3760. case 75:
  3761. {
  3762. for (int i = 40; i <= 110; i++)
  3763. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3764. }
  3765. break;
  3766. /*!
  3767. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  3768. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  3769. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  3770. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  3771. */
  3772. ------------------------------------------------
  3773. case 76:
  3774. {
  3775. #ifdef PINDA_THERMISTOR
  3776. if (true)
  3777. {
  3778. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3779. //we need to know accurate position of first calibration point
  3780. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3781. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3782. break;
  3783. }
  3784. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3785. {
  3786. // We don't know where we are! HOME!
  3787. // Push the commands to the front of the message queue in the reverse order!
  3788. // There shall be always enough space reserved for these commands.
  3789. repeatcommand_front(); // repeat G76 with all its parameters
  3790. enquecommand_front_P((PSTR("G28 W0")));
  3791. break;
  3792. }
  3793. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3794. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3795. if (result)
  3796. {
  3797. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3798. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3799. current_position[Z_AXIS] = 50;
  3800. current_position[Y_AXIS] = 180;
  3801. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3802. st_synchronize();
  3803. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3804. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3805. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3806. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3807. st_synchronize();
  3808. gcode_G28(false, false, true);
  3809. }
  3810. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3811. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3812. current_position[Z_AXIS] = 100;
  3813. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3814. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3815. lcd_temp_cal_show_result(false);
  3816. break;
  3817. }
  3818. }
  3819. lcd_update_enable(true);
  3820. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3821. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3822. float zero_z;
  3823. int z_shift = 0; //unit: steps
  3824. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3825. if (start_temp < 35) start_temp = 35;
  3826. if (start_temp < current_temperature_pinda) start_temp += 5;
  3827. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3828. // setTargetHotend(200, 0);
  3829. setTargetBed(70 + (start_temp - 30));
  3830. custom_message_type = CustomMsg::TempCal;
  3831. custom_message_state = 1;
  3832. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3833. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3834. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3835. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3836. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3837. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3838. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3839. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3840. st_synchronize();
  3841. while (current_temperature_pinda < start_temp)
  3842. {
  3843. delay_keep_alive(1000);
  3844. serialecho_temperatures();
  3845. }
  3846. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3847. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3848. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3849. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3850. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3851. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3852. st_synchronize();
  3853. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3854. if (find_z_result == false) {
  3855. lcd_temp_cal_show_result(find_z_result);
  3856. break;
  3857. }
  3858. zero_z = current_position[Z_AXIS];
  3859. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3860. int i = -1; for (; i < 5; i++)
  3861. {
  3862. float temp = (40 + i * 5);
  3863. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3864. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3865. if (start_temp <= temp) break;
  3866. }
  3867. for (i++; i < 5; i++)
  3868. {
  3869. float temp = (40 + i * 5);
  3870. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3871. custom_message_state = i + 2;
  3872. setTargetBed(50 + 10 * (temp - 30) / 5);
  3873. // setTargetHotend(255, 0);
  3874. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3875. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3876. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3877. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3878. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3879. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3880. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3881. st_synchronize();
  3882. while (current_temperature_pinda < temp)
  3883. {
  3884. delay_keep_alive(1000);
  3885. serialecho_temperatures();
  3886. }
  3887. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3888. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3889. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3890. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3891. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3892. st_synchronize();
  3893. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3894. if (find_z_result == false) {
  3895. lcd_temp_cal_show_result(find_z_result);
  3896. break;
  3897. }
  3898. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3899. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3900. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3901. }
  3902. lcd_temp_cal_show_result(true);
  3903. break;
  3904. }
  3905. #endif //PINDA_THERMISTOR
  3906. setTargetBed(PINDA_MIN_T);
  3907. float zero_z;
  3908. int z_shift = 0; //unit: steps
  3909. int t_c; // temperature
  3910. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3911. // We don't know where we are! HOME!
  3912. // Push the commands to the front of the message queue in the reverse order!
  3913. // There shall be always enough space reserved for these commands.
  3914. repeatcommand_front(); // repeat G76 with all its parameters
  3915. enquecommand_front_P((PSTR("G28 W0")));
  3916. break;
  3917. }
  3918. puts_P(_N("PINDA probe calibration start"));
  3919. custom_message_type = CustomMsg::TempCal;
  3920. custom_message_state = 1;
  3921. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3922. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3923. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3924. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3925. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3926. st_synchronize();
  3927. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3928. delay_keep_alive(1000);
  3929. serialecho_temperatures();
  3930. }
  3931. //enquecommand_P(PSTR("M190 S50"));
  3932. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3933. delay_keep_alive(1000);
  3934. serialecho_temperatures();
  3935. }
  3936. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3937. current_position[Z_AXIS] = 5;
  3938. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3939. current_position[X_AXIS] = BED_X0;
  3940. current_position[Y_AXIS] = BED_Y0;
  3941. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3942. st_synchronize();
  3943. find_bed_induction_sensor_point_z(-1.f);
  3944. zero_z = current_position[Z_AXIS];
  3945. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3946. for (int i = 0; i<5; i++) {
  3947. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3948. custom_message_state = i + 2;
  3949. t_c = 60 + i * 10;
  3950. setTargetBed(t_c);
  3951. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3952. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3953. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3954. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3955. st_synchronize();
  3956. while (degBed() < t_c) {
  3957. delay_keep_alive(1000);
  3958. serialecho_temperatures();
  3959. }
  3960. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3961. delay_keep_alive(1000);
  3962. serialecho_temperatures();
  3963. }
  3964. current_position[Z_AXIS] = 5;
  3965. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3966. current_position[X_AXIS] = BED_X0;
  3967. current_position[Y_AXIS] = BED_Y0;
  3968. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3969. st_synchronize();
  3970. find_bed_induction_sensor_point_z(-1.f);
  3971. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3972. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3973. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3974. }
  3975. custom_message_type = CustomMsg::Status;
  3976. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3977. puts_P(_N("Temperature calibration done."));
  3978. disable_x();
  3979. disable_y();
  3980. disable_z();
  3981. disable_e0();
  3982. disable_e1();
  3983. disable_e2();
  3984. setTargetBed(0); //set bed target temperature back to 0
  3985. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3986. temp_cal_active = true;
  3987. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3988. lcd_update_enable(true);
  3989. lcd_update(2);
  3990. }
  3991. break;
  3992. /*!
  3993. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  3994. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  3995. G80 [ N | R | V | L | R | F | B ]
  3996. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  3997. - `R` - Probe retries. Default 3 max. 10
  3998. - `V` - Verbosity level 1=low, 10=mid, 20=high. It can be only used if firmware has been compiled with SUPPORT_VERBOSITY active.
  3999. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4000. - `L` - Left Bed Level correct value in um.
  4001. - `R` - Right Bed Level correct value in um.
  4002. - `F` - Front Bed Level correct value in um.
  4003. - `B` - Back Bed Level correct value in um.
  4004. */
  4005. // -----------------------------------
  4006. /*
  4007. * Probes a grid and produces a mesh to compensate for variable bed height
  4008. * The S0 report the points as below
  4009. * +----> X-axis
  4010. * |
  4011. * |
  4012. * v Y-axis
  4013. */
  4014. case 80:
  4015. #ifdef MK1BP
  4016. break;
  4017. #endif //MK1BP
  4018. case_G80:
  4019. {
  4020. mesh_bed_leveling_flag = true;
  4021. #ifndef PINDA_THERMISTOR
  4022. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4023. #endif // ndef PINDA_THERMISTOR
  4024. #ifdef SUPPORT_VERBOSITY
  4025. int8_t verbosity_level = 0;
  4026. if (code_seen('V')) {
  4027. // Just 'V' without a number counts as V1.
  4028. char c = strchr_pointer[1];
  4029. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4030. }
  4031. #endif //SUPPORT_VERBOSITY
  4032. // Firstly check if we know where we are
  4033. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4034. // We don't know where we are! HOME!
  4035. // Push the commands to the front of the message queue in the reverse order!
  4036. // There shall be always enough space reserved for these commands.
  4037. if (lcd_commands_type != LcdCommands::StopPrint) {
  4038. repeatcommand_front(); // repeat G80 with all its parameters
  4039. enquecommand_front_P((PSTR("G28 W0")));
  4040. }
  4041. else {
  4042. mesh_bed_leveling_flag = false;
  4043. }
  4044. break;
  4045. }
  4046. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4047. if (code_seen('N')) {
  4048. nMeasPoints = code_value_uint8();
  4049. if (nMeasPoints != 7) {
  4050. nMeasPoints = 3;
  4051. }
  4052. }
  4053. else {
  4054. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4055. }
  4056. uint8_t nProbeRetry = 3;
  4057. if (code_seen('R')) {
  4058. nProbeRetry = code_value_uint8();
  4059. if (nProbeRetry > 10) {
  4060. nProbeRetry = 10;
  4061. }
  4062. }
  4063. else {
  4064. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4065. }
  4066. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4067. #ifndef PINDA_THERMISTOR
  4068. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4069. {
  4070. if (lcd_commands_type != LcdCommands::StopPrint) {
  4071. temp_compensation_start();
  4072. run = true;
  4073. repeatcommand_front(); // repeat G80 with all its parameters
  4074. enquecommand_front_P((PSTR("G28 W0")));
  4075. }
  4076. else {
  4077. mesh_bed_leveling_flag = false;
  4078. }
  4079. break;
  4080. }
  4081. run = false;
  4082. #endif //PINDA_THERMISTOR
  4083. if (lcd_commands_type == LcdCommands::StopPrint) {
  4084. mesh_bed_leveling_flag = false;
  4085. break;
  4086. }
  4087. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4088. CustomMsg custom_message_type_old = custom_message_type;
  4089. unsigned int custom_message_state_old = custom_message_state;
  4090. custom_message_type = CustomMsg::MeshBedLeveling;
  4091. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4092. lcd_update(1);
  4093. mbl.reset(); //reset mesh bed leveling
  4094. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4095. // consumed during the first movements following this statement.
  4096. babystep_undo();
  4097. // Cycle through all points and probe them
  4098. // First move up. During this first movement, the babystepping will be reverted.
  4099. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4100. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4101. // The move to the first calibration point.
  4102. current_position[X_AXIS] = BED_X0;
  4103. current_position[Y_AXIS] = BED_Y0;
  4104. #ifdef SUPPORT_VERBOSITY
  4105. if (verbosity_level >= 1)
  4106. {
  4107. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4108. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4109. }
  4110. #else //SUPPORT_VERBOSITY
  4111. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4112. #endif //SUPPORT_VERBOSITY
  4113. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4114. // Wait until the move is finished.
  4115. st_synchronize();
  4116. uint8_t mesh_point = 0; //index number of calibration point
  4117. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4118. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4119. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4120. #ifdef SUPPORT_VERBOSITY
  4121. if (verbosity_level >= 1) {
  4122. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4123. }
  4124. #endif // SUPPORT_VERBOSITY
  4125. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4126. const char *kill_message = NULL;
  4127. while (mesh_point != nMeasPoints * nMeasPoints) {
  4128. // Get coords of a measuring point.
  4129. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4130. uint8_t iy = mesh_point / nMeasPoints;
  4131. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4132. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4133. custom_message_state--;
  4134. mesh_point++;
  4135. continue; //skip
  4136. }*/
  4137. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4138. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4139. {
  4140. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4141. }
  4142. float z0 = 0.f;
  4143. if (has_z && (mesh_point > 0)) {
  4144. uint16_t z_offset_u = 0;
  4145. if (nMeasPoints == 7) {
  4146. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4147. }
  4148. else {
  4149. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4150. }
  4151. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4152. #ifdef SUPPORT_VERBOSITY
  4153. if (verbosity_level >= 1) {
  4154. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4155. }
  4156. #endif // SUPPORT_VERBOSITY
  4157. }
  4158. // Move Z up to MESH_HOME_Z_SEARCH.
  4159. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4160. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4161. float init_z_bckp = current_position[Z_AXIS];
  4162. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4163. st_synchronize();
  4164. // Move to XY position of the sensor point.
  4165. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4166. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4167. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4168. #ifdef SUPPORT_VERBOSITY
  4169. if (verbosity_level >= 1) {
  4170. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4171. SERIAL_PROTOCOL(mesh_point);
  4172. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4173. }
  4174. #else //SUPPORT_VERBOSITY
  4175. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4176. #endif // SUPPORT_VERBOSITY
  4177. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4178. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4179. st_synchronize();
  4180. // Go down until endstop is hit
  4181. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4182. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4183. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4184. break;
  4185. }
  4186. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4187. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4188. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4189. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4190. st_synchronize();
  4191. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4192. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4193. break;
  4194. }
  4195. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4196. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4197. break;
  4198. }
  4199. }
  4200. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4201. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4202. break;
  4203. }
  4204. #ifdef SUPPORT_VERBOSITY
  4205. if (verbosity_level >= 10) {
  4206. SERIAL_ECHOPGM("X: ");
  4207. MYSERIAL.print(current_position[X_AXIS], 5);
  4208. SERIAL_ECHOLNPGM("");
  4209. SERIAL_ECHOPGM("Y: ");
  4210. MYSERIAL.print(current_position[Y_AXIS], 5);
  4211. SERIAL_PROTOCOLPGM("\n");
  4212. }
  4213. #endif // SUPPORT_VERBOSITY
  4214. float offset_z = 0;
  4215. #ifdef PINDA_THERMISTOR
  4216. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4217. #endif //PINDA_THERMISTOR
  4218. // #ifdef SUPPORT_VERBOSITY
  4219. /* if (verbosity_level >= 1)
  4220. {
  4221. SERIAL_ECHOPGM("mesh bed leveling: ");
  4222. MYSERIAL.print(current_position[Z_AXIS], 5);
  4223. SERIAL_ECHOPGM(" offset: ");
  4224. MYSERIAL.print(offset_z, 5);
  4225. SERIAL_ECHOLNPGM("");
  4226. }*/
  4227. // #endif // SUPPORT_VERBOSITY
  4228. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4229. custom_message_state--;
  4230. mesh_point++;
  4231. lcd_update(1);
  4232. }
  4233. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4234. #ifdef SUPPORT_VERBOSITY
  4235. if (verbosity_level >= 20) {
  4236. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4237. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4238. MYSERIAL.print(current_position[Z_AXIS], 5);
  4239. }
  4240. #endif // SUPPORT_VERBOSITY
  4241. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4242. st_synchronize();
  4243. if (mesh_point != nMeasPoints * nMeasPoints) {
  4244. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4245. bool bState;
  4246. do { // repeat until Z-leveling o.k.
  4247. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4248. #ifdef TMC2130
  4249. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4250. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4251. #else // TMC2130
  4252. lcd_wait_for_click_delay(0); // ~ no timeout
  4253. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4254. #endif // TMC2130
  4255. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4256. bState=enable_z_endstop(false);
  4257. current_position[Z_AXIS] -= 1;
  4258. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4259. st_synchronize();
  4260. enable_z_endstop(true);
  4261. #ifdef TMC2130
  4262. tmc2130_home_enter(Z_AXIS_MASK);
  4263. #endif // TMC2130
  4264. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4265. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4266. st_synchronize();
  4267. #ifdef TMC2130
  4268. tmc2130_home_exit();
  4269. #endif // TMC2130
  4270. enable_z_endstop(bState);
  4271. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4272. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4273. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4274. lcd_update_enable(true); // display / status-line recovery
  4275. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4276. repeatcommand_front(); // re-run (i.e. of "G80")
  4277. break;
  4278. }
  4279. clean_up_after_endstop_move(l_feedmultiply);
  4280. // SERIAL_ECHOLNPGM("clean up finished ");
  4281. #ifndef PINDA_THERMISTOR
  4282. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4283. #endif
  4284. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4285. // SERIAL_ECHOLNPGM("babystep applied");
  4286. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4287. #ifdef SUPPORT_VERBOSITY
  4288. if (verbosity_level >= 1) {
  4289. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4290. }
  4291. #endif // SUPPORT_VERBOSITY
  4292. for (uint8_t i = 0; i < 4; ++i) {
  4293. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4294. long correction = 0;
  4295. if (code_seen(codes[i]))
  4296. correction = code_value_long();
  4297. else if (eeprom_bed_correction_valid) {
  4298. unsigned char *addr = (i < 2) ?
  4299. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4300. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4301. correction = eeprom_read_int8(addr);
  4302. }
  4303. if (correction == 0)
  4304. continue;
  4305. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4306. SERIAL_ERROR_START;
  4307. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4308. SERIAL_ECHO(correction);
  4309. SERIAL_ECHOLNPGM(" microns");
  4310. }
  4311. else {
  4312. float offset = float(correction) * 0.001f;
  4313. switch (i) {
  4314. case 0:
  4315. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4316. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4317. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4318. }
  4319. }
  4320. break;
  4321. case 1:
  4322. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4323. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4324. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4325. }
  4326. }
  4327. break;
  4328. case 2:
  4329. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4330. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4331. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4332. }
  4333. }
  4334. break;
  4335. case 3:
  4336. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4337. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4338. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4339. }
  4340. }
  4341. break;
  4342. }
  4343. }
  4344. }
  4345. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4346. if (nMeasPoints == 3) {
  4347. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4348. }
  4349. /*
  4350. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4351. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4352. SERIAL_PROTOCOLPGM(",");
  4353. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4354. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4355. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4356. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4357. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4358. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4359. SERIAL_PROTOCOLPGM(" ");
  4360. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4361. }
  4362. SERIAL_PROTOCOLPGM("\n");
  4363. }
  4364. */
  4365. if (nMeasPoints == 7 && magnet_elimination) {
  4366. mbl_interpolation(nMeasPoints);
  4367. }
  4368. /*
  4369. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4370. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4371. SERIAL_PROTOCOLPGM(",");
  4372. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4373. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4374. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4375. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4376. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4377. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4378. SERIAL_PROTOCOLPGM(" ");
  4379. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4380. }
  4381. SERIAL_PROTOCOLPGM("\n");
  4382. }
  4383. */
  4384. // SERIAL_ECHOLNPGM("Upsample finished");
  4385. mbl.active = 1; //activate mesh bed leveling
  4386. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4387. go_home_with_z_lift();
  4388. // SERIAL_ECHOLNPGM("Go home finished");
  4389. //unretract (after PINDA preheat retraction)
  4390. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4391. current_position[E_AXIS] += default_retraction;
  4392. plan_buffer_line_curposXYZE(400, active_extruder);
  4393. }
  4394. KEEPALIVE_STATE(NOT_BUSY);
  4395. // Restore custom message state
  4396. lcd_setstatuspgm(_T(WELCOME_MSG));
  4397. custom_message_type = custom_message_type_old;
  4398. custom_message_state = custom_message_state_old;
  4399. mesh_bed_leveling_flag = false;
  4400. mesh_bed_run_from_menu = false;
  4401. lcd_update(2);
  4402. }
  4403. break;
  4404. /*!
  4405. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4406. Prints mesh bed leveling status and bed profile if activated.
  4407. */ -----------------------------------------
  4408. /*
  4409. * Prints mesh bed leveling status and bed profile if activated
  4410. */
  4411. case 81:
  4412. if (mbl.active) {
  4413. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4414. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4415. SERIAL_PROTOCOLPGM(",");
  4416. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4417. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4418. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4419. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4420. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4421. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4422. SERIAL_PROTOCOLPGM(" ");
  4423. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4424. }
  4425. SERIAL_PROTOCOLPGM("\n");
  4426. }
  4427. }
  4428. else
  4429. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4430. break;
  4431. #if 0
  4432. /*!
  4433. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4434. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4435. */
  4436. case 82:
  4437. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4438. int l_feedmultiply = setup_for_endstop_move();
  4439. find_bed_induction_sensor_point_z();
  4440. clean_up_after_endstop_move(l_feedmultiply);
  4441. SERIAL_PROTOCOLPGM("Bed found at: ");
  4442. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4443. SERIAL_PROTOCOLPGM("\n");
  4444. break;
  4445. /*!
  4446. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4447. */
  4448. case 83:
  4449. {
  4450. int babystepz = code_seen('S') ? code_value() : 0;
  4451. int BabyPosition = code_seen('P') ? code_value() : 0;
  4452. if (babystepz != 0) {
  4453. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4454. // Is the axis indexed starting with zero or one?
  4455. if (BabyPosition > 4) {
  4456. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4457. }else{
  4458. // Save it to the eeprom
  4459. babystepLoadZ = babystepz;
  4460. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4461. // adjust the Z
  4462. babystepsTodoZadd(babystepLoadZ);
  4463. }
  4464. }
  4465. }
  4466. break;
  4467. /*!
  4468. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4469. */
  4470. case 84:
  4471. babystepsTodoZsubtract(babystepLoadZ);
  4472. // babystepLoadZ = 0;
  4473. break;
  4474. /*!
  4475. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep>G85: Pick best babystep</a>
  4476. */
  4477. case 85:
  4478. lcd_pick_babystep();
  4479. break;
  4480. #endif
  4481. /*!
  4482. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4483. This G-code will be performed at the start of a calibration script.
  4484. (Prusa3D specific)
  4485. */
  4486. case 86:
  4487. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4488. break;
  4489. /*!
  4490. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4491. This G-code will be performed at the end of a calibration script.
  4492. (Prusa3D specific)
  4493. */
  4494. case 87:
  4495. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4496. break;
  4497. /*!
  4498. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4499. Currently has no effect.
  4500. */
  4501. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4502. case 88:
  4503. break;
  4504. #endif // ENABLE_MESH_BED_LEVELING
  4505. /*!
  4506. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4507. */ -------------------------------
  4508. case 90:
  4509. relative_mode = false;
  4510. break;
  4511. /*! ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4512. */ -------------------------------
  4513. case 91:
  4514. relative_mode = true;
  4515. break;
  4516. /*!
  4517. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4518. */ -----------------------------
  4519. case 92:
  4520. if(!code_seen(axis_codes[E_AXIS]))
  4521. st_synchronize();
  4522. for(int8_t i=0; i < NUM_AXIS; i++) {
  4523. if(code_seen(axis_codes[i])) {
  4524. if(i == E_AXIS) {
  4525. current_position[i] = code_value();
  4526. plan_set_e_position(current_position[E_AXIS]);
  4527. }
  4528. else {
  4529. current_position[i] = code_value()+cs.add_homing[i];
  4530. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4531. }
  4532. }
  4533. }
  4534. break;
  4535. /*!
  4536. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4537. */ -----------------------------------
  4538. case 98:
  4539. farm_mode = 1;
  4540. PingTime = _millis();
  4541. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4542. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4543. SilentModeMenu = SILENT_MODE_OFF;
  4544. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4545. fCheckModeInit(); // alternatively invoke printer reset
  4546. break;
  4547. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4548. */ -------------------------------------
  4549. case 99:
  4550. farm_mode = 0;
  4551. lcd_printer_connected();
  4552. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4553. lcd_update(2);
  4554. fCheckModeInit(); // alternatively invoke printer reset
  4555. break;
  4556. default:
  4557. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4558. }
  4559. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4560. gcode_in_progress = 0;
  4561. } // end if(code_seen('G'))
  4562. /*!
  4563. ---------------------------------------------------------------------------------
  4564. # M Commands
  4565. */
  4566. else if(code_seen('M'))
  4567. {
  4568. int index;
  4569. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4570. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4571. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4572. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4573. } else
  4574. {
  4575. mcode_in_progress = (int)code_value();
  4576. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4577. switch(mcode_in_progress)
  4578. {
  4579. /*!
  4580. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4581. */ ---------------------------------------------------------------
  4582. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4583. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4584. {
  4585. char *src = strchr_pointer + 2;
  4586. codenum = 0;
  4587. bool hasP = false, hasS = false;
  4588. if (code_seen('P')) {
  4589. codenum = code_value(); // milliseconds to wait
  4590. hasP = codenum > 0;
  4591. }
  4592. if (code_seen('S')) {
  4593. codenum = code_value() * 1000; // seconds to wait
  4594. hasS = codenum > 0;
  4595. }
  4596. starpos = strchr(src, '*');
  4597. if (starpos != NULL) *(starpos) = '\0';
  4598. while (*src == ' ') ++src;
  4599. if (!hasP && !hasS && *src != '\0') {
  4600. lcd_setstatus(src);
  4601. } else {
  4602. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4603. }
  4604. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4605. st_synchronize();
  4606. previous_millis_cmd = _millis();
  4607. if (codenum > 0){
  4608. codenum += _millis(); // keep track of when we started waiting
  4609. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4610. while(_millis() < codenum && !lcd_clicked()){
  4611. manage_heater();
  4612. manage_inactivity(true);
  4613. lcd_update(0);
  4614. }
  4615. KEEPALIVE_STATE(IN_HANDLER);
  4616. lcd_ignore_click(false);
  4617. }else{
  4618. marlin_wait_for_click();
  4619. }
  4620. if (IS_SD_PRINTING)
  4621. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4622. else
  4623. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4624. }
  4625. break;
  4626. //! ### M17 - Enable axes <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4627. // ---------------------------------
  4628. case 17:
  4629. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4630. enable_x();
  4631. enable_y();
  4632. enable_z();
  4633. enable_e0();
  4634. enable_e1();
  4635. enable_e2();
  4636. break;
  4637. #ifdef SDSUPPORT
  4638. //! ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4639. // -----------------------------------
  4640. case 20:
  4641. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4642. card.ls();
  4643. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4644. break;
  4645. //! ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4646. // ------------------------------------
  4647. case 21:
  4648. card.initsd();
  4649. break;
  4650. //! ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4651. // -----------------------------------
  4652. case 22:
  4653. card.release();
  4654. break;
  4655. //! ### M23 - Select file <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4656. // -----------------------------------
  4657. case 23:
  4658. starpos = (strchr(strchr_pointer + 4,'*'));
  4659. if(starpos!=NULL)
  4660. *(starpos)='\0';
  4661. card.openFile(strchr_pointer + 4,true);
  4662. break;
  4663. //! ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4664. // ----------------------------------
  4665. case 24:
  4666. if (!card.paused)
  4667. failstats_reset_print();
  4668. card.startFileprint();
  4669. starttime=_millis();
  4670. break;
  4671. //! ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4672. // ----------------------------------
  4673. case 25:
  4674. card.pauseSDPrint();
  4675. break;
  4676. //! ### M26 S\<index\> - Set SD index <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4677. //! Set position in SD card file to index in bytes.
  4678. //! This command is expected to be called after M23 and before M24.
  4679. //! Otherwise effect of this command is undefined.
  4680. // ----------------------------------
  4681. case 26:
  4682. if(card.cardOK && code_seen('S')) {
  4683. long index = code_value_long();
  4684. card.setIndex(index);
  4685. // We don't disable interrupt during update of sdpos_atomic
  4686. // as we expect, that SD card print is not active in this moment
  4687. sdpos_atomic = index;
  4688. }
  4689. break;
  4690. //! ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4691. // ----------------------------------
  4692. case 27:
  4693. card.getStatus();
  4694. break;
  4695. //! ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4696. // ---------------------------------
  4697. case 28:
  4698. starpos = (strchr(strchr_pointer + 4,'*'));
  4699. if(starpos != NULL){
  4700. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4701. strchr_pointer = strchr(npos,' ') + 1;
  4702. *(starpos) = '\0';
  4703. }
  4704. card.openFile(strchr_pointer+4,false);
  4705. break;
  4706. //! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4707. // -------------------------------------
  4708. //! Currently has no effect.
  4709. case 29:
  4710. //processed in write to file routine above
  4711. //card,saving = false;
  4712. break;
  4713. //! ### M30 - Delete file <filename> <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4714. // ----------------------------------
  4715. case 30:
  4716. if (card.cardOK){
  4717. card.closefile();
  4718. starpos = (strchr(strchr_pointer + 4,'*'));
  4719. if(starpos != NULL){
  4720. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4721. strchr_pointer = strchr(npos,' ') + 1;
  4722. *(starpos) = '\0';
  4723. }
  4724. card.removeFile(strchr_pointer + 4);
  4725. }
  4726. break;
  4727. //! ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4728. // ------------------------------------
  4729. case 32:
  4730. {
  4731. if(card.sdprinting) {
  4732. st_synchronize();
  4733. }
  4734. starpos = (strchr(strchr_pointer + 4,'*'));
  4735. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4736. if(namestartpos==NULL)
  4737. {
  4738. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4739. }
  4740. else
  4741. namestartpos++; //to skip the '!'
  4742. if(starpos!=NULL)
  4743. *(starpos)='\0';
  4744. bool call_procedure=(code_seen('P'));
  4745. if(strchr_pointer>namestartpos)
  4746. call_procedure=false; //false alert, 'P' found within filename
  4747. if( card.cardOK )
  4748. {
  4749. card.openFile(namestartpos,true,!call_procedure);
  4750. if(code_seen('S'))
  4751. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4752. card.setIndex(code_value_long());
  4753. card.startFileprint();
  4754. if(!call_procedure)
  4755. starttime=_millis(); //procedure calls count as normal print time.
  4756. }
  4757. } break;
  4758. //! ### M982 - Start SD write <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4759. // ---------------------------------
  4760. case 928:
  4761. starpos = (strchr(strchr_pointer + 5,'*'));
  4762. if(starpos != NULL){
  4763. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4764. strchr_pointer = strchr(npos,' ') + 1;
  4765. *(starpos) = '\0';
  4766. }
  4767. card.openLogFile(strchr_pointer+5);
  4768. break;
  4769. #endif //SDSUPPORT
  4770. //! ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4771. // --------------------------------------------------
  4772. case 31: //M31 take time since the start of the SD print or an M109 command
  4773. {
  4774. stoptime=_millis();
  4775. char time[30];
  4776. unsigned long t=(stoptime-starttime)/1000;
  4777. int sec,min;
  4778. min=t/60;
  4779. sec=t%60;
  4780. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4781. SERIAL_ECHO_START;
  4782. SERIAL_ECHOLN(time);
  4783. lcd_setstatus(time);
  4784. autotempShutdown();
  4785. }
  4786. break;
  4787. //! ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4788. // -----------------------------
  4789. case 42:
  4790. if (code_seen('S'))
  4791. {
  4792. int pin_status = code_value();
  4793. int pin_number = LED_PIN;
  4794. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4795. pin_number = code_value();
  4796. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4797. {
  4798. if (sensitive_pins[i] == pin_number)
  4799. {
  4800. pin_number = -1;
  4801. break;
  4802. }
  4803. }
  4804. #if defined(FAN_PIN) && FAN_PIN > -1
  4805. if (pin_number == FAN_PIN)
  4806. fanSpeed = pin_status;
  4807. #endif
  4808. if (pin_number > -1)
  4809. {
  4810. pinMode(pin_number, OUTPUT);
  4811. digitalWrite(pin_number, pin_status);
  4812. analogWrite(pin_number, pin_status);
  4813. }
  4814. }
  4815. break;
  4816. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific) <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4817. // --------------------------------------------------------------------
  4818. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4819. // Reset the baby step value and the baby step applied flag.
  4820. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4821. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4822. // Reset the skew and offset in both RAM and EEPROM.
  4823. reset_bed_offset_and_skew();
  4824. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4825. // the planner will not perform any adjustments in the XY plane.
  4826. // Wait for the motors to stop and update the current position with the absolute values.
  4827. world2machine_revert_to_uncorrected();
  4828. break;
  4829. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific) <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4830. // ------------------------------------------------------
  4831. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4832. {
  4833. int8_t verbosity_level = 0;
  4834. bool only_Z = code_seen('Z');
  4835. #ifdef SUPPORT_VERBOSITY
  4836. if (code_seen('V'))
  4837. {
  4838. // Just 'V' without a number counts as V1.
  4839. char c = strchr_pointer[1];
  4840. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4841. }
  4842. #endif //SUPPORT_VERBOSITY
  4843. gcode_M45(only_Z, verbosity_level);
  4844. }
  4845. break;
  4846. /*
  4847. case 46:
  4848. {
  4849. // M46: Prusa3D: Show the assigned IP address.
  4850. uint8_t ip[4];
  4851. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4852. if (hasIP) {
  4853. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4854. SERIAL_ECHO(int(ip[0]));
  4855. SERIAL_ECHOPGM(".");
  4856. SERIAL_ECHO(int(ip[1]));
  4857. SERIAL_ECHOPGM(".");
  4858. SERIAL_ECHO(int(ip[2]));
  4859. SERIAL_ECHOPGM(".");
  4860. SERIAL_ECHO(int(ip[3]));
  4861. SERIAL_ECHOLNPGM("");
  4862. } else {
  4863. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4864. }
  4865. break;
  4866. }
  4867. */
  4868. //! ### M47 - Show end stops dialog on the display (Prusa specific) <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4869. // ----------------------------------------------------
  4870. case 47:
  4871. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4872. lcd_diag_show_end_stops();
  4873. KEEPALIVE_STATE(IN_HANDLER);
  4874. break;
  4875. #if 0
  4876. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4877. {
  4878. // Disable the default update procedure of the display. We will do a modal dialog.
  4879. lcd_update_enable(false);
  4880. // Let the planner use the uncorrected coordinates.
  4881. mbl.reset();
  4882. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4883. // the planner will not perform any adjustments in the XY plane.
  4884. // Wait for the motors to stop and update the current position with the absolute values.
  4885. world2machine_revert_to_uncorrected();
  4886. // Move the print head close to the bed.
  4887. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4889. st_synchronize();
  4890. // Home in the XY plane.
  4891. set_destination_to_current();
  4892. int l_feedmultiply = setup_for_endstop_move();
  4893. home_xy();
  4894. int8_t verbosity_level = 0;
  4895. if (code_seen('V')) {
  4896. // Just 'V' without a number counts as V1.
  4897. char c = strchr_pointer[1];
  4898. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4899. }
  4900. bool success = scan_bed_induction_points(verbosity_level);
  4901. clean_up_after_endstop_move(l_feedmultiply);
  4902. // Print head up.
  4903. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4905. st_synchronize();
  4906. lcd_update_enable(true);
  4907. break;
  4908. }
  4909. #endif
  4910. #ifdef ENABLE_AUTO_BED_LEVELING
  4911. #ifdef Z_PROBE_REPEATABILITY_TEST
  4912. //! ### M48 - Z-Probe repeatability measurement function. <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4913. // ------------------------------------------------------
  4914. //!
  4915. //! _Usage:_
  4916. //!
  4917. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4918. //!
  4919. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4920. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4921. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4922. //! regenerated.
  4923. //!
  4924. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4925. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4926. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4927. //!
  4928. case 48: // M48 Z-Probe repeatability
  4929. {
  4930. #if Z_MIN_PIN == -1
  4931. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4932. #endif
  4933. double sum=0.0;
  4934. double mean=0.0;
  4935. double sigma=0.0;
  4936. double sample_set[50];
  4937. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4938. double X_current, Y_current, Z_current;
  4939. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4940. if (code_seen('V') || code_seen('v')) {
  4941. verbose_level = code_value();
  4942. if (verbose_level<0 || verbose_level>4 ) {
  4943. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4944. goto Sigma_Exit;
  4945. }
  4946. }
  4947. if (verbose_level > 0) {
  4948. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4949. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4950. }
  4951. if (code_seen('n')) {
  4952. n_samples = code_value();
  4953. if (n_samples<4 || n_samples>50 ) {
  4954. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4955. goto Sigma_Exit;
  4956. }
  4957. }
  4958. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4959. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4960. Z_current = st_get_position_mm(Z_AXIS);
  4961. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4962. ext_position = st_get_position_mm(E_AXIS);
  4963. if (code_seen('X') || code_seen('x') ) {
  4964. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4965. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4966. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4967. goto Sigma_Exit;
  4968. }
  4969. }
  4970. if (code_seen('Y') || code_seen('y') ) {
  4971. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4972. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4973. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4974. goto Sigma_Exit;
  4975. }
  4976. }
  4977. if (code_seen('L') || code_seen('l') ) {
  4978. n_legs = code_value();
  4979. if ( n_legs==1 )
  4980. n_legs = 2;
  4981. if ( n_legs<0 || n_legs>15 ) {
  4982. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4983. goto Sigma_Exit;
  4984. }
  4985. }
  4986. //
  4987. // Do all the preliminary setup work. First raise the probe.
  4988. //
  4989. st_synchronize();
  4990. plan_bed_level_matrix.set_to_identity();
  4991. plan_buffer_line( X_current, Y_current, Z_start_location,
  4992. ext_position,
  4993. homing_feedrate[Z_AXIS]/60,
  4994. active_extruder);
  4995. st_synchronize();
  4996. //
  4997. // Now get everything to the specified probe point So we can safely do a probe to
  4998. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4999. // use that as a starting point for each probe.
  5000. //
  5001. if (verbose_level > 2)
  5002. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5003. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5004. ext_position,
  5005. homing_feedrate[X_AXIS]/60,
  5006. active_extruder);
  5007. st_synchronize();
  5008. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5009. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5010. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5011. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5012. //
  5013. // OK, do the inital probe to get us close to the bed.
  5014. // Then retrace the right amount and use that in subsequent probes
  5015. //
  5016. int l_feedmultiply = setup_for_endstop_move();
  5017. run_z_probe();
  5018. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5019. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5020. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5021. ext_position,
  5022. homing_feedrate[X_AXIS]/60,
  5023. active_extruder);
  5024. st_synchronize();
  5025. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5026. for( n=0; n<n_samples; n++) {
  5027. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5028. if ( n_legs) {
  5029. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5030. int rotational_direction, l;
  5031. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5032. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5033. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5034. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5035. //SERIAL_ECHOPAIR(" theta: ",theta);
  5036. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5037. //SERIAL_PROTOCOLLNPGM("");
  5038. for( l=0; l<n_legs-1; l++) {
  5039. if (rotational_direction==1)
  5040. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5041. else
  5042. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5043. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5044. if ( radius<0.0 )
  5045. radius = -radius;
  5046. X_current = X_probe_location + cos(theta) * radius;
  5047. Y_current = Y_probe_location + sin(theta) * radius;
  5048. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5049. X_current = X_MIN_POS;
  5050. if ( X_current>X_MAX_POS)
  5051. X_current = X_MAX_POS;
  5052. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5053. Y_current = Y_MIN_POS;
  5054. if ( Y_current>Y_MAX_POS)
  5055. Y_current = Y_MAX_POS;
  5056. if (verbose_level>3 ) {
  5057. SERIAL_ECHOPAIR("x: ", X_current);
  5058. SERIAL_ECHOPAIR("y: ", Y_current);
  5059. SERIAL_PROTOCOLLNPGM("");
  5060. }
  5061. do_blocking_move_to( X_current, Y_current, Z_current );
  5062. }
  5063. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5064. }
  5065. int l_feedmultiply = setup_for_endstop_move();
  5066. run_z_probe();
  5067. sample_set[n] = current_position[Z_AXIS];
  5068. //
  5069. // Get the current mean for the data points we have so far
  5070. //
  5071. sum=0.0;
  5072. for( j=0; j<=n; j++) {
  5073. sum = sum + sample_set[j];
  5074. }
  5075. mean = sum / (double (n+1));
  5076. //
  5077. // Now, use that mean to calculate the standard deviation for the
  5078. // data points we have so far
  5079. //
  5080. sum=0.0;
  5081. for( j=0; j<=n; j++) {
  5082. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5083. }
  5084. sigma = sqrt( sum / (double (n+1)) );
  5085. if (verbose_level > 1) {
  5086. SERIAL_PROTOCOL(n+1);
  5087. SERIAL_PROTOCOL(" of ");
  5088. SERIAL_PROTOCOL(n_samples);
  5089. SERIAL_PROTOCOLPGM(" z: ");
  5090. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5091. }
  5092. if (verbose_level > 2) {
  5093. SERIAL_PROTOCOL(" mean: ");
  5094. SERIAL_PROTOCOL_F(mean,6);
  5095. SERIAL_PROTOCOL(" sigma: ");
  5096. SERIAL_PROTOCOL_F(sigma,6);
  5097. }
  5098. if (verbose_level > 0)
  5099. SERIAL_PROTOCOLPGM("\n");
  5100. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5101. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5102. st_synchronize();
  5103. }
  5104. _delay(1000);
  5105. clean_up_after_endstop_move(l_feedmultiply);
  5106. // enable_endstops(true);
  5107. if (verbose_level > 0) {
  5108. SERIAL_PROTOCOLPGM("Mean: ");
  5109. SERIAL_PROTOCOL_F(mean, 6);
  5110. SERIAL_PROTOCOLPGM("\n");
  5111. }
  5112. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5113. SERIAL_PROTOCOL_F(sigma, 6);
  5114. SERIAL_PROTOCOLPGM("\n\n");
  5115. Sigma_Exit:
  5116. break;
  5117. }
  5118. #endif // Z_PROBE_REPEATABILITY_TEST
  5119. #endif // ENABLE_AUTO_BED_LEVELING
  5120. //! ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5121. // -------------------------------------
  5122. //! _Usage:_
  5123. //!
  5124. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5125. //!
  5126. case 73: //M73 show percent done and time remaining
  5127. if(code_seen('P')) print_percent_done_normal = code_value();
  5128. if(code_seen('R')) print_time_remaining_normal = code_value();
  5129. if(code_seen('Q')) print_percent_done_silent = code_value();
  5130. if(code_seen('S')) print_time_remaining_silent = code_value();
  5131. {
  5132. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5133. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5134. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5135. }
  5136. break;
  5137. //! ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5138. // -----------------------------------------
  5139. case 104: // M104
  5140. {
  5141. uint8_t extruder;
  5142. if(setTargetedHotend(104,extruder)){
  5143. break;
  5144. }
  5145. if (code_seen('S'))
  5146. {
  5147. setTargetHotendSafe(code_value(), extruder);
  5148. }
  5149. break;
  5150. }
  5151. //! ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5152. // -----------------------------------------
  5153. case 112:
  5154. kill(_n(""), 3);
  5155. break;
  5156. //! ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5157. // -----------------------------------------
  5158. case 140:
  5159. if (code_seen('S')) setTargetBed(code_value());
  5160. break;
  5161. //! ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5162. // -----------------------------------------
  5163. case 105:
  5164. {
  5165. uint8_t extruder;
  5166. if(setTargetedHotend(105, extruder)){
  5167. break;
  5168. }
  5169. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5170. SERIAL_PROTOCOLPGM("ok T:");
  5171. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5172. SERIAL_PROTOCOLPGM(" /");
  5173. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5174. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5175. SERIAL_PROTOCOLPGM(" B:");
  5176. SERIAL_PROTOCOL_F(degBed(),1);
  5177. SERIAL_PROTOCOLPGM(" /");
  5178. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5179. #endif //TEMP_BED_PIN
  5180. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5181. SERIAL_PROTOCOLPGM(" T");
  5182. SERIAL_PROTOCOL(cur_extruder);
  5183. SERIAL_PROTOCOLPGM(":");
  5184. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5185. SERIAL_PROTOCOLPGM(" /");
  5186. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5187. }
  5188. #else
  5189. SERIAL_ERROR_START;
  5190. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5191. #endif
  5192. SERIAL_PROTOCOLPGM(" @:");
  5193. #ifdef EXTRUDER_WATTS
  5194. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5195. SERIAL_PROTOCOLPGM("W");
  5196. #else
  5197. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5198. #endif
  5199. SERIAL_PROTOCOLPGM(" B@:");
  5200. #ifdef BED_WATTS
  5201. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5202. SERIAL_PROTOCOLPGM("W");
  5203. #else
  5204. SERIAL_PROTOCOL(getHeaterPower(-1));
  5205. #endif
  5206. #ifdef PINDA_THERMISTOR
  5207. SERIAL_PROTOCOLPGM(" P:");
  5208. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5209. #endif //PINDA_THERMISTOR
  5210. #ifdef AMBIENT_THERMISTOR
  5211. SERIAL_PROTOCOLPGM(" A:");
  5212. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5213. #endif //AMBIENT_THERMISTOR
  5214. #ifdef SHOW_TEMP_ADC_VALUES
  5215. {float raw = 0.0;
  5216. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5217. SERIAL_PROTOCOLPGM(" ADC B:");
  5218. SERIAL_PROTOCOL_F(degBed(),1);
  5219. SERIAL_PROTOCOLPGM("C->");
  5220. raw = rawBedTemp();
  5221. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5222. SERIAL_PROTOCOLPGM(" Rb->");
  5223. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5224. SERIAL_PROTOCOLPGM(" Rxb->");
  5225. SERIAL_PROTOCOL_F(raw, 5);
  5226. #endif
  5227. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5228. SERIAL_PROTOCOLPGM(" T");
  5229. SERIAL_PROTOCOL(cur_extruder);
  5230. SERIAL_PROTOCOLPGM(":");
  5231. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5232. SERIAL_PROTOCOLPGM("C->");
  5233. raw = rawHotendTemp(cur_extruder);
  5234. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5235. SERIAL_PROTOCOLPGM(" Rt");
  5236. SERIAL_PROTOCOL(cur_extruder);
  5237. SERIAL_PROTOCOLPGM("->");
  5238. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5239. SERIAL_PROTOCOLPGM(" Rx");
  5240. SERIAL_PROTOCOL(cur_extruder);
  5241. SERIAL_PROTOCOLPGM("->");
  5242. SERIAL_PROTOCOL_F(raw, 5);
  5243. }}
  5244. #endif
  5245. SERIAL_PROTOCOLLN("");
  5246. KEEPALIVE_STATE(NOT_BUSY);
  5247. return;
  5248. break;
  5249. }
  5250. //! ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5251. //! Parameters (not mandatory):
  5252. //! * S \<temp\> set extruder temperature
  5253. //! * R \<temp\> set extruder temperature
  5254. //!
  5255. //! Parameters S and R are treated identically.
  5256. //! Command always waits for both cool down and heat up.
  5257. //! If no parameters are supplied waits for previously
  5258. //! set extruder temperature.
  5259. // -------------------------------------------------
  5260. case 109:
  5261. {
  5262. uint8_t extruder;
  5263. if(setTargetedHotend(109, extruder)){
  5264. break;
  5265. }
  5266. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5267. heating_status = 1;
  5268. if (farm_mode) { prusa_statistics(1); };
  5269. #ifdef AUTOTEMP
  5270. autotemp_enabled=false;
  5271. #endif
  5272. if (code_seen('S')) {
  5273. setTargetHotendSafe(code_value(), extruder);
  5274. } else if (code_seen('R')) {
  5275. setTargetHotendSafe(code_value(), extruder);
  5276. }
  5277. #ifdef AUTOTEMP
  5278. if (code_seen('S')) autotemp_min=code_value();
  5279. if (code_seen('B')) autotemp_max=code_value();
  5280. if (code_seen('F'))
  5281. {
  5282. autotemp_factor=code_value();
  5283. autotemp_enabled=true;
  5284. }
  5285. #endif
  5286. codenum = _millis();
  5287. /* See if we are heating up or cooling down */
  5288. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5289. KEEPALIVE_STATE(NOT_BUSY);
  5290. cancel_heatup = false;
  5291. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5292. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5293. KEEPALIVE_STATE(IN_HANDLER);
  5294. heating_status = 2;
  5295. if (farm_mode) { prusa_statistics(2); };
  5296. //starttime=_millis();
  5297. previous_millis_cmd = _millis();
  5298. }
  5299. break;
  5300. //! ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5301. //! Parameters (not mandatory):
  5302. //! * S \<temp\> set extruder temperature and wait for heating
  5303. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5304. //!
  5305. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5306. case 190:
  5307. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5308. {
  5309. bool CooldownNoWait = false;
  5310. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5311. heating_status = 3;
  5312. if (farm_mode) { prusa_statistics(1); };
  5313. if (code_seen('S'))
  5314. {
  5315. setTargetBed(code_value());
  5316. CooldownNoWait = true;
  5317. }
  5318. else if (code_seen('R'))
  5319. {
  5320. setTargetBed(code_value());
  5321. }
  5322. codenum = _millis();
  5323. cancel_heatup = false;
  5324. target_direction = isHeatingBed(); // true if heating, false if cooling
  5325. KEEPALIVE_STATE(NOT_BUSY);
  5326. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5327. {
  5328. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5329. {
  5330. if (!farm_mode) {
  5331. float tt = degHotend(active_extruder);
  5332. SERIAL_PROTOCOLPGM("T:");
  5333. SERIAL_PROTOCOL(tt);
  5334. SERIAL_PROTOCOLPGM(" E:");
  5335. SERIAL_PROTOCOL((int)active_extruder);
  5336. SERIAL_PROTOCOLPGM(" B:");
  5337. SERIAL_PROTOCOL_F(degBed(), 1);
  5338. SERIAL_PROTOCOLLN("");
  5339. }
  5340. codenum = _millis();
  5341. }
  5342. manage_heater();
  5343. manage_inactivity();
  5344. lcd_update(0);
  5345. }
  5346. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5347. KEEPALIVE_STATE(IN_HANDLER);
  5348. heating_status = 4;
  5349. previous_millis_cmd = _millis();
  5350. }
  5351. #endif
  5352. break;
  5353. #if defined(FAN_PIN) && FAN_PIN > -1
  5354. //! ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5355. // -------------------------------------------
  5356. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5357. if (code_seen('S')){
  5358. fanSpeed=constrain(code_value(),0,255);
  5359. }
  5360. else {
  5361. fanSpeed=255;
  5362. }
  5363. break;
  5364. //! ### M107 - Fan off
  5365. // -------------------------------
  5366. case 107:
  5367. fanSpeed = 0;
  5368. break;
  5369. #endif //FAN_PIN
  5370. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5371. //! ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5372. // -------------------------------
  5373. case 80:
  5374. SET_OUTPUT(PS_ON_PIN); //GND
  5375. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5376. // If you have a switch on suicide pin, this is useful
  5377. // if you want to start another print with suicide feature after
  5378. // a print without suicide...
  5379. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5380. SET_OUTPUT(SUICIDE_PIN);
  5381. WRITE(SUICIDE_PIN, HIGH);
  5382. #endif
  5383. powersupply = true;
  5384. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5385. lcd_update(0);
  5386. break;
  5387. #endif
  5388. //! ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5389. // --------------------------------------
  5390. case 81:
  5391. disable_heater();
  5392. st_synchronize();
  5393. disable_e0();
  5394. disable_e1();
  5395. disable_e2();
  5396. finishAndDisableSteppers();
  5397. fanSpeed = 0;
  5398. _delay(1000); // Wait a little before to switch off
  5399. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5400. st_synchronize();
  5401. suicide();
  5402. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5403. SET_OUTPUT(PS_ON_PIN);
  5404. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5405. #endif
  5406. powersupply = false;
  5407. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5408. lcd_update(0);
  5409. break;
  5410. //! ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5411. // ---------------------------------------
  5412. case 82:
  5413. axis_relative_modes[3] = false;
  5414. break;
  5415. //! ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5416. // ---------------------------------------
  5417. case 83:
  5418. axis_relative_modes[3] = true;
  5419. break;
  5420. //! ### M84, M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5421. //---------------------------------------
  5422. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5423. //!
  5424. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5425. //!
  5426. case 18: //compatibility
  5427. case 84: // M84
  5428. if(code_seen('S')){
  5429. stepper_inactive_time = code_value() * 1000;
  5430. }
  5431. else
  5432. {
  5433. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5434. if(all_axis)
  5435. {
  5436. st_synchronize();
  5437. disable_e0();
  5438. disable_e1();
  5439. disable_e2();
  5440. finishAndDisableSteppers();
  5441. }
  5442. else
  5443. {
  5444. st_synchronize();
  5445. if (code_seen('X')) disable_x();
  5446. if (code_seen('Y')) disable_y();
  5447. if (code_seen('Z')) disable_z();
  5448. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5449. if (code_seen('E')) {
  5450. disable_e0();
  5451. disable_e1();
  5452. disable_e2();
  5453. }
  5454. #endif
  5455. }
  5456. }
  5457. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5458. print_time_remaining_init();
  5459. snmm_filaments_used = 0;
  5460. break;
  5461. //! ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5462. // ---------------------------------------
  5463. case 85: // M85
  5464. if(code_seen('S')) {
  5465. max_inactive_time = code_value() * 1000;
  5466. }
  5467. break;
  5468. #ifdef SAFETYTIMER
  5469. //! ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5470. //!
  5471. //! _Usage:_
  5472. //! M86 S<seconds>
  5473. //!
  5474. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5475. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5476. case 86:
  5477. if (code_seen('S')) {
  5478. safetytimer_inactive_time = code_value() * 1000;
  5479. safetyTimer.start();
  5480. }
  5481. break;
  5482. #endif
  5483. //! ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5484. // ---------------------------------------
  5485. //! Same syntax as G92
  5486. case 92:
  5487. for(int8_t i=0; i < NUM_AXIS; i++)
  5488. {
  5489. if(code_seen(axis_codes[i]))
  5490. {
  5491. if(i == 3) { // E
  5492. float value = code_value();
  5493. if(value < 20.0) {
  5494. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5495. cs.max_jerk[E_AXIS] *= factor;
  5496. max_feedrate[i] *= factor;
  5497. axis_steps_per_sqr_second[i] *= factor;
  5498. }
  5499. cs.axis_steps_per_unit[i] = value;
  5500. }
  5501. else {
  5502. cs.axis_steps_per_unit[i] = code_value();
  5503. }
  5504. }
  5505. }
  5506. break;
  5507. //! ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5508. // ---------------------------------------
  5509. case 110:
  5510. if (code_seen('N'))
  5511. gcode_LastN = code_value_long();
  5512. break;
  5513. //! ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5514. // ------------------------------------------
  5515. case 113:
  5516. if (code_seen('S')) {
  5517. host_keepalive_interval = (uint8_t)code_value_short();
  5518. // NOMORE(host_keepalive_interval, 60);
  5519. }
  5520. else {
  5521. SERIAL_ECHO_START;
  5522. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5523. SERIAL_PROTOCOLLN("");
  5524. }
  5525. break;
  5526. //! ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5527. // --------------------------------------
  5528. //! Print the firmware info and capabilities
  5529. //!
  5530. //! M115 [V] [U<version>]
  5531. //!
  5532. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5533. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5534. //! pause the print for 30s and ask the user to upgrade the firmware.
  5535. case 115: // M115
  5536. if (code_seen('V')) {
  5537. // Report the Prusa version number.
  5538. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5539. } else if (code_seen('U')) {
  5540. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5541. // pause the print for 30s and ask the user to upgrade the firmware.
  5542. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5543. } else {
  5544. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5545. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5546. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5547. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5548. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5549. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5550. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5551. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5552. SERIAL_ECHOPGM(" UUID:");
  5553. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5554. }
  5555. break;
  5556. //! ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5557. // -------------------------------------
  5558. case 114:
  5559. gcode_M114();
  5560. break;
  5561. //! ### M117 - Set LCD Message <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5562. // --------------------------------------
  5563. /*
  5564. M117 moved up to get the high priority
  5565. case 117: // M117 display message
  5566. starpos = (strchr(strchr_pointer + 5,'*'));
  5567. if(starpos!=NULL)
  5568. *(starpos)='\0';
  5569. lcd_setstatus(strchr_pointer + 5);
  5570. break;*/
  5571. //! ### M120 - Disable endstops <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5572. // ----------------------------------------
  5573. case 120:
  5574. enable_endstops(false) ;
  5575. break;
  5576. //! ### M121 - Enable endstops <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5577. // ----------------------------------------
  5578. case 121:
  5579. enable_endstops(true) ;
  5580. break;
  5581. //! ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5582. // ----------------------------------------
  5583. case 119:
  5584. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5585. SERIAL_PROTOCOLLN("");
  5586. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5587. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5588. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5589. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5590. }else{
  5591. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5592. }
  5593. SERIAL_PROTOCOLLN("");
  5594. #endif
  5595. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5596. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5597. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5598. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5599. }else{
  5600. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5601. }
  5602. SERIAL_PROTOCOLLN("");
  5603. #endif
  5604. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5605. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5606. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5607. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5608. }else{
  5609. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5610. }
  5611. SERIAL_PROTOCOLLN("");
  5612. #endif
  5613. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5614. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5615. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5616. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5617. }else{
  5618. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5619. }
  5620. SERIAL_PROTOCOLLN("");
  5621. #endif
  5622. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5623. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5624. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5625. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5626. }else{
  5627. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5628. }
  5629. SERIAL_PROTOCOLLN("");
  5630. #endif
  5631. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5632. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5633. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5634. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5635. }else{
  5636. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5637. }
  5638. SERIAL_PROTOCOLLN("");
  5639. #endif
  5640. break;
  5641. //TODO: update for all axis, use for loop
  5642. #ifdef BLINKM
  5643. //! ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5644. // -------------------------------------------
  5645. case 150:
  5646. {
  5647. byte red;
  5648. byte grn;
  5649. byte blu;
  5650. if(code_seen('R')) red = code_value();
  5651. if(code_seen('U')) grn = code_value();
  5652. if(code_seen('B')) blu = code_value();
  5653. SendColors(red,grn,blu);
  5654. }
  5655. break;
  5656. #endif //BLINKM
  5657. //! ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5658. // ----------------------------------------
  5659. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5660. {
  5661. uint8_t extruder = active_extruder;
  5662. if(code_seen('T')) {
  5663. extruder = code_value();
  5664. if(extruder >= EXTRUDERS) {
  5665. SERIAL_ECHO_START;
  5666. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5667. break;
  5668. }
  5669. }
  5670. if(code_seen('D')) {
  5671. float diameter = (float)code_value();
  5672. if (diameter == 0.0) {
  5673. // setting any extruder filament size disables volumetric on the assumption that
  5674. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5675. // for all extruders
  5676. cs.volumetric_enabled = false;
  5677. } else {
  5678. cs.filament_size[extruder] = (float)code_value();
  5679. // make sure all extruders have some sane value for the filament size
  5680. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5681. #if EXTRUDERS > 1
  5682. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5683. #if EXTRUDERS > 2
  5684. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5685. #endif
  5686. #endif
  5687. cs.volumetric_enabled = true;
  5688. }
  5689. } else {
  5690. //reserved for setting filament diameter via UFID or filament measuring device
  5691. break;
  5692. }
  5693. calculate_extruder_multipliers();
  5694. }
  5695. break;
  5696. //! ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5697. // -------------------------------------------
  5698. case 201:
  5699. for (int8_t i = 0; i < NUM_AXIS; i++)
  5700. {
  5701. if (code_seen(axis_codes[i]))
  5702. {
  5703. unsigned long val = code_value();
  5704. #ifdef TMC2130
  5705. unsigned long val_silent = val;
  5706. if ((i == X_AXIS) || (i == Y_AXIS))
  5707. {
  5708. if (val > NORMAL_MAX_ACCEL_XY)
  5709. val = NORMAL_MAX_ACCEL_XY;
  5710. if (val_silent > SILENT_MAX_ACCEL_XY)
  5711. val_silent = SILENT_MAX_ACCEL_XY;
  5712. }
  5713. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5714. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5715. #else //TMC2130
  5716. max_acceleration_units_per_sq_second[i] = val;
  5717. #endif //TMC2130
  5718. }
  5719. }
  5720. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5721. reset_acceleration_rates();
  5722. break;
  5723. #if 0 // Not used for Sprinter/grbl gen6
  5724. case 202: // M202
  5725. for(int8_t i=0; i < NUM_AXIS; i++) {
  5726. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5727. }
  5728. break;
  5729. #endif
  5730. //! ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5731. // ---------------------------------------
  5732. case 203: // M203 max feedrate mm/sec
  5733. for (int8_t i = 0; i < NUM_AXIS; i++)
  5734. {
  5735. if (code_seen(axis_codes[i]))
  5736. {
  5737. float val = code_value();
  5738. #ifdef TMC2130
  5739. float val_silent = val;
  5740. if ((i == X_AXIS) || (i == Y_AXIS))
  5741. {
  5742. if (val > NORMAL_MAX_FEEDRATE_XY)
  5743. val = NORMAL_MAX_FEEDRATE_XY;
  5744. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5745. val_silent = SILENT_MAX_FEEDRATE_XY;
  5746. }
  5747. cs.max_feedrate_normal[i] = val;
  5748. cs.max_feedrate_silent[i] = val_silent;
  5749. #else //TMC2130
  5750. max_feedrate[i] = val;
  5751. #endif //TMC2130
  5752. }
  5753. }
  5754. break;
  5755. //! ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5756. // ------------------------------------------
  5757. //! Supporting old format:
  5758. //!
  5759. //! M204 S[normal moves] T[filmanent only moves]
  5760. //!
  5761. //! and new format:
  5762. //!
  5763. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5764. case 204:
  5765. {
  5766. if(code_seen('S')) {
  5767. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5768. // and it is also generated by Slic3r to control acceleration per extrusion type
  5769. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5770. cs.acceleration = code_value();
  5771. // Interpret the T value as retract acceleration in the old Marlin format.
  5772. if(code_seen('T'))
  5773. cs.retract_acceleration = code_value();
  5774. } else {
  5775. // New acceleration format, compatible with the upstream Marlin.
  5776. if(code_seen('P'))
  5777. cs.acceleration = code_value();
  5778. if(code_seen('R'))
  5779. cs.retract_acceleration = code_value();
  5780. if(code_seen('T')) {
  5781. // Interpret the T value as the travel acceleration in the new Marlin format.
  5782. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5783. // travel_acceleration = code_value();
  5784. }
  5785. }
  5786. }
  5787. break;
  5788. //! ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5789. // ---------------------------------------------
  5790. //! Set some advanced settings related to movement.
  5791. //!
  5792. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5793. /**
  5794. - `S` - Minimum feedrate for print moves (unit/s)
  5795. - `T` - Minimum feedrate for travel moves (units/s)
  5796. - `B` - Minimum segment time (us)
  5797. - `X` - Maximum X jerk (units/s), similarly for other axes
  5798. */
  5799. case 205:
  5800. {
  5801. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5802. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5803. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5804. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5805. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5806. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5807. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5808. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5809. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5810. }
  5811. break;
  5812. //! ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5813. // ----------------------------------------------
  5814. case 206:
  5815. for(int8_t i=0; i < 3; i++)
  5816. {
  5817. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5818. }
  5819. break;
  5820. #ifdef FWRETRACT
  5821. //! ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5822. // --------------------------------------------------
  5823. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5824. {
  5825. if(code_seen('S'))
  5826. {
  5827. cs.retract_length = code_value() ;
  5828. }
  5829. if(code_seen('F'))
  5830. {
  5831. cs.retract_feedrate = code_value()/60 ;
  5832. }
  5833. if(code_seen('Z'))
  5834. {
  5835. cs.retract_zlift = code_value() ;
  5836. }
  5837. }break;
  5838. //! ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5839. // --------------------------------------------
  5840. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5841. {
  5842. if(code_seen('S'))
  5843. {
  5844. cs.retract_recover_length = code_value() ;
  5845. }
  5846. if(code_seen('F'))
  5847. {
  5848. cs.retract_recover_feedrate = code_value()/60 ;
  5849. }
  5850. }break;
  5851. //! ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5852. // ---------------------------------------------
  5853. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5854. {
  5855. if(code_seen('S'))
  5856. {
  5857. int t= code_value() ;
  5858. switch(t)
  5859. {
  5860. case 0:
  5861. {
  5862. cs.autoretract_enabled=false;
  5863. retracted[0]=false;
  5864. #if EXTRUDERS > 1
  5865. retracted[1]=false;
  5866. #endif
  5867. #if EXTRUDERS > 2
  5868. retracted[2]=false;
  5869. #endif
  5870. }break;
  5871. case 1:
  5872. {
  5873. cs.autoretract_enabled=true;
  5874. retracted[0]=false;
  5875. #if EXTRUDERS > 1
  5876. retracted[1]=false;
  5877. #endif
  5878. #if EXTRUDERS > 2
  5879. retracted[2]=false;
  5880. #endif
  5881. }break;
  5882. default:
  5883. SERIAL_ECHO_START;
  5884. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5885. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5886. SERIAL_ECHOLNPGM("\"(1)");
  5887. }
  5888. }
  5889. }break;
  5890. #endif // FWRETRACT
  5891. #if EXTRUDERS > 1
  5892. // ### M218 - Set hotend offset
  5893. // ----------------------------------------
  5894. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5895. {
  5896. uint8_t extruder;
  5897. if(setTargetedHotend(218, extruder)){
  5898. break;
  5899. }
  5900. if(code_seen('X'))
  5901. {
  5902. extruder_offset[X_AXIS][extruder] = code_value();
  5903. }
  5904. if(code_seen('Y'))
  5905. {
  5906. extruder_offset[Y_AXIS][extruder] = code_value();
  5907. }
  5908. SERIAL_ECHO_START;
  5909. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5910. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5911. {
  5912. SERIAL_ECHO(" ");
  5913. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5914. SERIAL_ECHO(",");
  5915. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5916. }
  5917. SERIAL_ECHOLN("");
  5918. }break;
  5919. #endif
  5920. //! ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5921. // -----------------------------------------------
  5922. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5923. {
  5924. if (code_seen('B')) //backup current speed factor
  5925. {
  5926. saved_feedmultiply_mm = feedmultiply;
  5927. }
  5928. if(code_seen('S'))
  5929. {
  5930. feedmultiply = code_value() ;
  5931. }
  5932. if (code_seen('R')) { //restore previous feedmultiply
  5933. feedmultiply = saved_feedmultiply_mm;
  5934. }
  5935. }
  5936. break;
  5937. //! ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5938. // ----------------------------------------------------
  5939. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5940. {
  5941. if(code_seen('S'))
  5942. {
  5943. int tmp_code = code_value();
  5944. if (code_seen('T'))
  5945. {
  5946. uint8_t extruder;
  5947. if(setTargetedHotend(221, extruder)){
  5948. break;
  5949. }
  5950. extruder_multiply[extruder] = tmp_code;
  5951. }
  5952. else
  5953. {
  5954. extrudemultiply = tmp_code ;
  5955. }
  5956. }
  5957. calculate_extruder_multipliers();
  5958. }
  5959. break;
  5960. //! ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  5961. // ------------------------------------------
  5962. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5963. {
  5964. if(code_seen('P')){
  5965. int pin_number = code_value(); // pin number
  5966. int pin_state = -1; // required pin state - default is inverted
  5967. if(code_seen('S')) pin_state = code_value(); // required pin state
  5968. if(pin_state >= -1 && pin_state <= 1){
  5969. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5970. {
  5971. if (sensitive_pins[i] == pin_number)
  5972. {
  5973. pin_number = -1;
  5974. break;
  5975. }
  5976. }
  5977. if (pin_number > -1)
  5978. {
  5979. int target = LOW;
  5980. st_synchronize();
  5981. pinMode(pin_number, INPUT);
  5982. switch(pin_state){
  5983. case 1:
  5984. target = HIGH;
  5985. break;
  5986. case 0:
  5987. target = LOW;
  5988. break;
  5989. case -1:
  5990. target = !digitalRead(pin_number);
  5991. break;
  5992. }
  5993. while(digitalRead(pin_number) != target){
  5994. manage_heater();
  5995. manage_inactivity();
  5996. lcd_update(0);
  5997. }
  5998. }
  5999. }
  6000. }
  6001. }
  6002. break;
  6003. #if NUM_SERVOS > 0
  6004. //! ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6005. // --------------------------------------------
  6006. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6007. {
  6008. int servo_index = -1;
  6009. int servo_position = 0;
  6010. if (code_seen('P'))
  6011. servo_index = code_value();
  6012. if (code_seen('S')) {
  6013. servo_position = code_value();
  6014. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6015. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6016. servos[servo_index].attach(0);
  6017. #endif
  6018. servos[servo_index].write(servo_position);
  6019. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6020. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6021. servos[servo_index].detach();
  6022. #endif
  6023. }
  6024. else {
  6025. SERIAL_ECHO_START;
  6026. SERIAL_ECHO("Servo ");
  6027. SERIAL_ECHO(servo_index);
  6028. SERIAL_ECHOLN(" out of range");
  6029. }
  6030. }
  6031. else if (servo_index >= 0) {
  6032. SERIAL_PROTOCOL(MSG_OK);
  6033. SERIAL_PROTOCOL(" Servo ");
  6034. SERIAL_PROTOCOL(servo_index);
  6035. SERIAL_PROTOCOL(": ");
  6036. SERIAL_PROTOCOL(servos[servo_index].read());
  6037. SERIAL_PROTOCOLLN("");
  6038. }
  6039. }
  6040. break;
  6041. #endif // NUM_SERVOS > 0
  6042. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6043. //! ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6044. // -----------------------
  6045. case 300: // M300
  6046. {
  6047. int beepS = code_seen('S') ? code_value() : 110;
  6048. int beepP = code_seen('P') ? code_value() : 1000;
  6049. if (beepS > 0)
  6050. {
  6051. #if BEEPER > 0
  6052. Sound_MakeCustom(beepP,beepS,false);
  6053. #endif
  6054. }
  6055. else
  6056. {
  6057. _delay(beepP);
  6058. }
  6059. }
  6060. break;
  6061. #endif // M300
  6062. #ifdef PIDTEMP
  6063. //! ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6064. // ---------------------------------------
  6065. case 301:
  6066. {
  6067. if(code_seen('P')) cs.Kp = code_value();
  6068. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6069. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6070. #ifdef PID_ADD_EXTRUSION_RATE
  6071. if(code_seen('C')) Kc = code_value();
  6072. #endif
  6073. updatePID();
  6074. SERIAL_PROTOCOLRPGM(MSG_OK);
  6075. SERIAL_PROTOCOL(" p:");
  6076. SERIAL_PROTOCOL(cs.Kp);
  6077. SERIAL_PROTOCOL(" i:");
  6078. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6079. SERIAL_PROTOCOL(" d:");
  6080. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6081. #ifdef PID_ADD_EXTRUSION_RATE
  6082. SERIAL_PROTOCOL(" c:");
  6083. //Kc does not have scaling applied above, or in resetting defaults
  6084. SERIAL_PROTOCOL(Kc);
  6085. #endif
  6086. SERIAL_PROTOCOLLN("");
  6087. }
  6088. break;
  6089. #endif //PIDTEMP
  6090. #ifdef PIDTEMPBED
  6091. //! ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6092. // --------------------------------------
  6093. case 304:
  6094. {
  6095. if(code_seen('P')) cs.bedKp = code_value();
  6096. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6097. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6098. updatePID();
  6099. SERIAL_PROTOCOLRPGM(MSG_OK);
  6100. SERIAL_PROTOCOL(" p:");
  6101. SERIAL_PROTOCOL(cs.bedKp);
  6102. SERIAL_PROTOCOL(" i:");
  6103. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6104. SERIAL_PROTOCOL(" d:");
  6105. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6106. SERIAL_PROTOCOLLN("");
  6107. }
  6108. break;
  6109. #endif //PIDTEMP
  6110. //! ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6111. // --------------------------------------------
  6112. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6113. {
  6114. #ifdef CHDK
  6115. SET_OUTPUT(CHDK);
  6116. WRITE(CHDK, HIGH);
  6117. chdkHigh = _millis();
  6118. chdkActive = true;
  6119. #else
  6120. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6121. const uint8_t NUM_PULSES=16;
  6122. const float PULSE_LENGTH=0.01524;
  6123. for(int i=0; i < NUM_PULSES; i++) {
  6124. WRITE(PHOTOGRAPH_PIN, HIGH);
  6125. _delay_ms(PULSE_LENGTH);
  6126. WRITE(PHOTOGRAPH_PIN, LOW);
  6127. _delay_ms(PULSE_LENGTH);
  6128. }
  6129. _delay(7.33);
  6130. for(int i=0; i < NUM_PULSES; i++) {
  6131. WRITE(PHOTOGRAPH_PIN, HIGH);
  6132. _delay_ms(PULSE_LENGTH);
  6133. WRITE(PHOTOGRAPH_PIN, LOW);
  6134. _delay_ms(PULSE_LENGTH);
  6135. }
  6136. #endif
  6137. #endif //chdk end if
  6138. }
  6139. break;
  6140. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6141. //! ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6142. // -------------------------------------------------------------------
  6143. case 302:
  6144. {
  6145. float temp = .0;
  6146. if (code_seen('S')) temp=code_value();
  6147. set_extrude_min_temp(temp);
  6148. }
  6149. break;
  6150. #endif
  6151. //! ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6152. // -------------------------------------
  6153. case 303:
  6154. {
  6155. float temp = 150.0;
  6156. int e=0;
  6157. int c=5;
  6158. if (code_seen('E')) e=code_value();
  6159. if (e<0)
  6160. temp=70;
  6161. if (code_seen('S')) temp=code_value();
  6162. if (code_seen('C')) c=code_value();
  6163. PID_autotune(temp, e, c);
  6164. }
  6165. break;
  6166. //! ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6167. // -----------------------------------------
  6168. case 400:
  6169. {
  6170. st_synchronize();
  6171. }
  6172. break;
  6173. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6174. // ----------------------------------------------
  6175. case 403:
  6176. {
  6177. // currently three different materials are needed (default, flex and PVA)
  6178. // add storing this information for different load/unload profiles etc. in the future
  6179. // firmware does not wait for "ok" from mmu
  6180. if (mmu_enabled)
  6181. {
  6182. uint8_t extruder = 255;
  6183. uint8_t filament = FILAMENT_UNDEFINED;
  6184. if(code_seen('E')) extruder = code_value();
  6185. if(code_seen('F')) filament = code_value();
  6186. mmu_set_filament_type(extruder, filament);
  6187. }
  6188. }
  6189. break;
  6190. //! ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6191. // -----------------------------------------
  6192. case 500:
  6193. {
  6194. Config_StoreSettings();
  6195. }
  6196. break;
  6197. //! ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6198. // ----------------------------------------
  6199. case 501:
  6200. {
  6201. Config_RetrieveSettings();
  6202. }
  6203. break;
  6204. //! ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6205. // -------------------------------------------------
  6206. case 502:
  6207. {
  6208. Config_ResetDefault();
  6209. }
  6210. break;
  6211. //! ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6212. // -------------------------------------------------
  6213. case 503:
  6214. {
  6215. Config_PrintSettings();
  6216. }
  6217. break;
  6218. //! ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6219. // ------------------------------------------------
  6220. case 509:
  6221. {
  6222. lang_reset();
  6223. SERIAL_ECHO_START;
  6224. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6225. }
  6226. break;
  6227. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6228. //! ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6229. // -----------------------------------------------------
  6230. case 540:
  6231. {
  6232. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6233. }
  6234. break;
  6235. #endif
  6236. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6237. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6238. {
  6239. float value;
  6240. if (code_seen('Z'))
  6241. {
  6242. value = code_value();
  6243. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6244. {
  6245. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6246. SERIAL_ECHO_START;
  6247. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6248. SERIAL_PROTOCOLLN("");
  6249. }
  6250. else
  6251. {
  6252. SERIAL_ECHO_START;
  6253. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6254. SERIAL_ECHORPGM(MSG_Z_MIN);
  6255. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6256. SERIAL_ECHORPGM(MSG_Z_MAX);
  6257. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6258. SERIAL_PROTOCOLLN("");
  6259. }
  6260. }
  6261. else
  6262. {
  6263. SERIAL_ECHO_START;
  6264. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6265. SERIAL_ECHO(-cs.zprobe_zoffset);
  6266. SERIAL_PROTOCOLLN("");
  6267. }
  6268. break;
  6269. }
  6270. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6271. #ifdef FILAMENTCHANGEENABLE
  6272. //! ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6273. // --------------------------------------
  6274. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6275. {
  6276. st_synchronize();
  6277. float x_position = current_position[X_AXIS];
  6278. float y_position = current_position[Y_AXIS];
  6279. float z_shift = 0; // is it necessary to be a float?
  6280. float e_shift_init = 0;
  6281. float e_shift_late = 0;
  6282. bool automatic = false;
  6283. //Retract extruder
  6284. if(code_seen('E'))
  6285. {
  6286. e_shift_init = code_value();
  6287. }
  6288. else
  6289. {
  6290. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6291. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6292. #endif
  6293. }
  6294. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6295. if (code_seen('L'))
  6296. {
  6297. e_shift_late = code_value();
  6298. }
  6299. else
  6300. {
  6301. #ifdef FILAMENTCHANGE_FINALRETRACT
  6302. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6303. #endif
  6304. }
  6305. //Lift Z
  6306. if(code_seen('Z'))
  6307. {
  6308. z_shift = code_value();
  6309. }
  6310. else
  6311. {
  6312. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6313. }
  6314. //Move XY to side
  6315. if(code_seen('X'))
  6316. {
  6317. x_position = code_value();
  6318. }
  6319. else
  6320. {
  6321. #ifdef FILAMENTCHANGE_XPOS
  6322. x_position = FILAMENTCHANGE_XPOS;
  6323. #endif
  6324. }
  6325. if(code_seen('Y'))
  6326. {
  6327. y_position = code_value();
  6328. }
  6329. else
  6330. {
  6331. #ifdef FILAMENTCHANGE_YPOS
  6332. y_position = FILAMENTCHANGE_YPOS ;
  6333. #endif
  6334. }
  6335. if (mmu_enabled && code_seen("AUTO"))
  6336. automatic = true;
  6337. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6338. }
  6339. break;
  6340. #endif //FILAMENTCHANGEENABLE
  6341. //! ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6342. // -------------------------------
  6343. case 601:
  6344. {
  6345. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6346. lcd_pause_print();
  6347. }
  6348. break;
  6349. //! ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6350. // -------------------------------
  6351. case 602: {
  6352. lcd_resume_print();
  6353. }
  6354. break;
  6355. //! ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6356. // -------------------------------
  6357. case 603: {
  6358. lcd_print_stop();
  6359. }
  6360. #ifdef PINDA_THERMISTOR
  6361. //! ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6362. // --------------------------------------------------------------
  6363. /*!
  6364. Wait for PINDA thermistor to reach target temperature
  6365. M860 [S<target_temperature>]
  6366. */
  6367. case 860:
  6368. {
  6369. int set_target_pinda = 0;
  6370. if (code_seen('S')) {
  6371. set_target_pinda = code_value();
  6372. }
  6373. else {
  6374. break;
  6375. }
  6376. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6377. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6378. SERIAL_PROTOCOL(set_target_pinda);
  6379. SERIAL_PROTOCOLLN("");
  6380. codenum = _millis();
  6381. cancel_heatup = false;
  6382. bool is_pinda_cooling = false;
  6383. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6384. is_pinda_cooling = true;
  6385. }
  6386. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6387. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6388. {
  6389. SERIAL_PROTOCOLPGM("P:");
  6390. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6391. SERIAL_PROTOCOLPGM("/");
  6392. SERIAL_PROTOCOL(set_target_pinda);
  6393. SERIAL_PROTOCOLLN("");
  6394. codenum = _millis();
  6395. }
  6396. manage_heater();
  6397. manage_inactivity();
  6398. lcd_update(0);
  6399. }
  6400. LCD_MESSAGERPGM(MSG_OK);
  6401. break;
  6402. }
  6403. //! ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6404. // -----------------------------------------------------------
  6405. /*!
  6406. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6407. - `?` - Print current EEPROM offset values
  6408. - `!` - Set factory default values
  6409. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6410. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6411. */
  6412. case 861:
  6413. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6414. uint8_t cal_status = calibration_status_pinda();
  6415. int16_t usteps = 0;
  6416. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6417. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6418. for (uint8_t i = 0; i < 6; i++)
  6419. {
  6420. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6421. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6422. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6423. SERIAL_PROTOCOLPGM(", ");
  6424. SERIAL_PROTOCOL(35 + (i * 5));
  6425. SERIAL_PROTOCOLPGM(", ");
  6426. SERIAL_PROTOCOL(usteps);
  6427. SERIAL_PROTOCOLPGM(", ");
  6428. SERIAL_PROTOCOL(mm * 1000);
  6429. SERIAL_PROTOCOLLN("");
  6430. }
  6431. }
  6432. else if (code_seen('!')) { // ! - Set factory default values
  6433. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6434. int16_t z_shift = 8; //40C - 20um - 8usteps
  6435. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6436. z_shift = 24; //45C - 60um - 24usteps
  6437. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6438. z_shift = 48; //50C - 120um - 48usteps
  6439. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6440. z_shift = 80; //55C - 200um - 80usteps
  6441. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6442. z_shift = 120; //60C - 300um - 120usteps
  6443. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6444. SERIAL_PROTOCOLLN("factory restored");
  6445. }
  6446. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6447. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6448. int16_t z_shift = 0;
  6449. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6450. SERIAL_PROTOCOLLN("zerorized");
  6451. }
  6452. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6453. int16_t usteps = code_value();
  6454. if (code_seen('I')) {
  6455. uint8_t index = code_value();
  6456. if (index < 5) {
  6457. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6458. SERIAL_PROTOCOLLN("OK");
  6459. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6460. for (uint8_t i = 0; i < 6; i++)
  6461. {
  6462. usteps = 0;
  6463. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6464. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6465. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6466. SERIAL_PROTOCOLPGM(", ");
  6467. SERIAL_PROTOCOL(35 + (i * 5));
  6468. SERIAL_PROTOCOLPGM(", ");
  6469. SERIAL_PROTOCOL(usteps);
  6470. SERIAL_PROTOCOLPGM(", ");
  6471. SERIAL_PROTOCOL(mm * 1000);
  6472. SERIAL_PROTOCOLLN("");
  6473. }
  6474. }
  6475. }
  6476. }
  6477. else {
  6478. SERIAL_PROTOCOLPGM("no valid command");
  6479. }
  6480. break;
  6481. #endif //PINDA_THERMISTOR
  6482. //! ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6483. // ----------------------------------------------
  6484. /*!
  6485. Checks the parameters of the printer and gcode and performs compatibility check
  6486. - M862.1 { P<nozzle_diameter> | Q }
  6487. - M862.2 { P<model_code> | Q }
  6488. - M862.3 { P"<model_name>" | Q }
  6489. - M862.4 { P<fw_version> | Q }
  6490. - M862.5 { P<gcode_level> | Q }
  6491. When run with P<> argument, the check is performed against the input value.
  6492. When run with Q argument, the current value is shown.
  6493. M862.3 accepts text identifiers of printer types too.
  6494. The syntax of M862.3 is (note the quotes around the type):
  6495. M862.3 P "MK3S"
  6496. Accepted printer type identifiers and their numeric counterparts:
  6497. - MK1 (100)
  6498. - MK2 (200)
  6499. - MK2MM (201)
  6500. - MK2S (202)
  6501. - MK2SMM (203)
  6502. - MK2.5 (250)
  6503. - MK2.5MMU2 (20250)
  6504. - MK2.5S (252)
  6505. - MK2.5SMMU2S (20252)
  6506. - MK3 (300)
  6507. - MK3MMU2 (20300)
  6508. - MK3S (302)
  6509. - MK3SMMU2S (20302)
  6510. */
  6511. case 862: // M862: print checking
  6512. float nDummy;
  6513. uint8_t nCommand;
  6514. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6515. switch((ClPrintChecking)nCommand)
  6516. {
  6517. case ClPrintChecking::_Nozzle: // ~ .1
  6518. uint16_t nDiameter;
  6519. if(code_seen('P'))
  6520. {
  6521. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6522. nozzle_diameter_check(nDiameter);
  6523. }
  6524. /*
  6525. else if(code_seen('S')&&farm_mode)
  6526. {
  6527. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6528. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6529. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6530. }
  6531. */
  6532. else if(code_seen('Q'))
  6533. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6534. break;
  6535. case ClPrintChecking::_Model: // ~ .2
  6536. if(code_seen('P'))
  6537. {
  6538. uint16_t nPrinterModel;
  6539. nPrinterModel=(uint16_t)code_value_long();
  6540. printer_model_check(nPrinterModel);
  6541. }
  6542. else if(code_seen('Q'))
  6543. SERIAL_PROTOCOLLN(nPrinterType);
  6544. break;
  6545. case ClPrintChecking::_Smodel: // ~ .3
  6546. if(code_seen('P'))
  6547. printer_smodel_check(strchr_pointer);
  6548. else if(code_seen('Q'))
  6549. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6550. break;
  6551. case ClPrintChecking::_Version: // ~ .4
  6552. if(code_seen('P'))
  6553. fw_version_check(++strchr_pointer);
  6554. else if(code_seen('Q'))
  6555. SERIAL_PROTOCOLLN(FW_VERSION);
  6556. break;
  6557. case ClPrintChecking::_Gcode: // ~ .5
  6558. if(code_seen('P'))
  6559. {
  6560. uint16_t nGcodeLevel;
  6561. nGcodeLevel=(uint16_t)code_value_long();
  6562. gcode_level_check(nGcodeLevel);
  6563. }
  6564. else if(code_seen('Q'))
  6565. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6566. break;
  6567. }
  6568. break;
  6569. #ifdef LIN_ADVANCE
  6570. //! ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6571. // ----------------------------------------------
  6572. case 900:
  6573. gcode_M900();
  6574. break;
  6575. #endif
  6576. //! ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6577. // ---------------------------------------------------------------
  6578. case 907:
  6579. {
  6580. #ifdef TMC2130
  6581. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6582. for (int i = 0; i < NUM_AXIS; i++)
  6583. if(code_seen(axis_codes[i]))
  6584. {
  6585. long cur_mA = code_value_long();
  6586. uint8_t val = tmc2130_cur2val(cur_mA);
  6587. tmc2130_set_current_h(i, val);
  6588. tmc2130_set_current_r(i, val);
  6589. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6590. }
  6591. #else //TMC2130
  6592. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6593. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6594. if(code_seen('B')) st_current_set(4,code_value());
  6595. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6596. #endif
  6597. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6598. if(code_seen('X')) st_current_set(0, code_value());
  6599. #endif
  6600. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6601. if(code_seen('Z')) st_current_set(1, code_value());
  6602. #endif
  6603. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6604. if(code_seen('E')) st_current_set(2, code_value());
  6605. #endif
  6606. #endif //TMC2130
  6607. }
  6608. break;
  6609. //! ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6610. // ---------------------------------------------------------
  6611. case 908:
  6612. {
  6613. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6614. uint8_t channel,current;
  6615. if(code_seen('P')) channel=code_value();
  6616. if(code_seen('S')) current=code_value();
  6617. digitalPotWrite(channel, current);
  6618. #endif
  6619. }
  6620. break;
  6621. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6622. //! ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6623. // -----------------------------------------------
  6624. case 910:
  6625. {
  6626. tmc2130_init();
  6627. }
  6628. break;
  6629. //! ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6630. // -------------------------------------------------
  6631. case 911:
  6632. {
  6633. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6634. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6635. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6636. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6637. }
  6638. break;
  6639. //! ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6640. // -----------------------------------------------
  6641. case 912:
  6642. {
  6643. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6644. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6645. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6646. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6647. }
  6648. break;
  6649. //! ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6650. // -----------------------------
  6651. case 913:
  6652. {
  6653. tmc2130_print_currents();
  6654. }
  6655. break;
  6656. //! ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6657. // ------------------------------
  6658. case 914:
  6659. {
  6660. tmc2130_mode = TMC2130_MODE_NORMAL;
  6661. update_mode_profile();
  6662. tmc2130_init();
  6663. }
  6664. break;
  6665. //! ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6666. // ------------------------------
  6667. case 915:
  6668. {
  6669. tmc2130_mode = TMC2130_MODE_SILENT;
  6670. update_mode_profile();
  6671. tmc2130_init();
  6672. }
  6673. break;
  6674. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6675. // -------------------------------------------------------
  6676. case 916:
  6677. {
  6678. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6679. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6680. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6681. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6682. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6683. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6684. }
  6685. break;
  6686. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6687. // --------------------------------------------------------------
  6688. case 917:
  6689. {
  6690. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6691. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6692. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6693. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6694. }
  6695. break;
  6696. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6697. // -------------------------------------------------------------
  6698. case 918:
  6699. {
  6700. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6701. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6702. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6703. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6704. }
  6705. break;
  6706. #endif //TMC2130_SERVICE_CODES_M910_M918
  6707. //! ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6708. // ---------------------------------------------------
  6709. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6710. case 350:
  6711. {
  6712. #ifdef TMC2130
  6713. if(code_seen('E'))
  6714. {
  6715. uint16_t res_new = code_value();
  6716. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6717. {
  6718. st_synchronize();
  6719. uint8_t axis = E_AXIS;
  6720. uint16_t res = tmc2130_get_res(axis);
  6721. tmc2130_set_res(axis, res_new);
  6722. cs.axis_ustep_resolution[axis] = res_new;
  6723. if (res_new > res)
  6724. {
  6725. uint16_t fac = (res_new / res);
  6726. cs.axis_steps_per_unit[axis] *= fac;
  6727. position[E_AXIS] *= fac;
  6728. }
  6729. else
  6730. {
  6731. uint16_t fac = (res / res_new);
  6732. cs.axis_steps_per_unit[axis] /= fac;
  6733. position[E_AXIS] /= fac;
  6734. }
  6735. }
  6736. }
  6737. #else //TMC2130
  6738. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6739. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6740. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6741. if(code_seen('B')) microstep_mode(4,code_value());
  6742. microstep_readings();
  6743. #endif
  6744. #endif //TMC2130
  6745. }
  6746. break;
  6747. //! ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6748. // -----------------------------------
  6749. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6750. //!
  6751. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6752. case 351:
  6753. {
  6754. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6755. if(code_seen('S')) switch((int)code_value())
  6756. {
  6757. case 1:
  6758. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6759. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6760. break;
  6761. case 2:
  6762. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6763. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6764. break;
  6765. }
  6766. microstep_readings();
  6767. #endif
  6768. }
  6769. break;
  6770. //! ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6771. // -------------------------
  6772. case 701:
  6773. {
  6774. if (mmu_enabled && code_seen('E'))
  6775. tmp_extruder = code_value();
  6776. gcode_M701();
  6777. }
  6778. break;
  6779. //! ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6780. // ------------------------
  6781. /*!
  6782. M702 [U C]
  6783. - `U` Unload all filaments used in current print
  6784. - `C` Unload just current filament
  6785. - without any parameters unload all filaments
  6786. */
  6787. case 702:
  6788. {
  6789. #ifdef SNMM
  6790. if (code_seen('U'))
  6791. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6792. else if (code_seen('C'))
  6793. extr_unload(); //! if "C" unload just current filament
  6794. else
  6795. extr_unload_all(); //! otherwise unload all filaments
  6796. #else
  6797. if (code_seen('C')) {
  6798. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6799. }
  6800. else {
  6801. if(mmu_enabled) extr_unload(); //! unload current filament
  6802. else unload_filament();
  6803. }
  6804. #endif //SNMM
  6805. }
  6806. break;
  6807. //! ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  6808. // ------------------------------------
  6809. case 999:
  6810. Stopped = false;
  6811. lcd_reset_alert_level();
  6812. gcode_LastN = Stopped_gcode_LastN;
  6813. FlushSerialRequestResend();
  6814. break;
  6815. default:
  6816. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6817. }
  6818. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6819. mcode_in_progress = 0;
  6820. }
  6821. }
  6822. // end if(code_seen('M')) (end of M codes)
  6823. //! -----------------------------------------------------------------------------------------
  6824. //! T Codes
  6825. //!
  6826. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6827. //! select filament in case of MMU_V2
  6828. //! if extruder is "?", open menu to let the user select extruder/filament
  6829. //!
  6830. //! For MMU_V2:
  6831. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6832. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6833. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6834. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6835. else if(code_seen('T'))
  6836. {
  6837. int index;
  6838. bool load_to_nozzle = false;
  6839. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6840. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6841. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6842. SERIAL_ECHOLNPGM("Invalid T code.");
  6843. }
  6844. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6845. if (mmu_enabled)
  6846. {
  6847. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6848. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6849. {
  6850. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6851. }
  6852. else
  6853. {
  6854. st_synchronize();
  6855. mmu_command(MmuCmd::T0 + tmp_extruder);
  6856. manage_response(true, true, MMU_TCODE_MOVE);
  6857. }
  6858. }
  6859. }
  6860. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6861. if (mmu_enabled)
  6862. {
  6863. st_synchronize();
  6864. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6865. mmu_extruder = tmp_extruder; //filament change is finished
  6866. mmu_load_to_nozzle();
  6867. }
  6868. }
  6869. else {
  6870. if (*(strchr_pointer + index) == '?')
  6871. {
  6872. if(mmu_enabled)
  6873. {
  6874. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6875. load_to_nozzle = true;
  6876. } else
  6877. {
  6878. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6879. }
  6880. }
  6881. else {
  6882. tmp_extruder = code_value();
  6883. if (mmu_enabled && lcd_autoDepleteEnabled())
  6884. {
  6885. tmp_extruder = ad_getAlternative(tmp_extruder);
  6886. }
  6887. }
  6888. st_synchronize();
  6889. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6890. if (mmu_enabled)
  6891. {
  6892. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6893. {
  6894. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6895. }
  6896. else
  6897. {
  6898. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6899. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6900. {
  6901. mmu_command(MmuCmd::K0 + tmp_extruder);
  6902. manage_response(true, true, MMU_UNLOAD_MOVE);
  6903. }
  6904. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6905. mmu_command(MmuCmd::T0 + tmp_extruder);
  6906. manage_response(true, true, MMU_TCODE_MOVE);
  6907. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6908. mmu_extruder = tmp_extruder; //filament change is finished
  6909. if (load_to_nozzle)// for single material usage with mmu
  6910. {
  6911. mmu_load_to_nozzle();
  6912. }
  6913. }
  6914. }
  6915. else
  6916. {
  6917. #ifdef SNMM
  6918. #ifdef LIN_ADVANCE
  6919. if (mmu_extruder != tmp_extruder)
  6920. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6921. #endif
  6922. mmu_extruder = tmp_extruder;
  6923. _delay(100);
  6924. disable_e0();
  6925. disable_e1();
  6926. disable_e2();
  6927. pinMode(E_MUX0_PIN, OUTPUT);
  6928. pinMode(E_MUX1_PIN, OUTPUT);
  6929. _delay(100);
  6930. SERIAL_ECHO_START;
  6931. SERIAL_ECHO("T:");
  6932. SERIAL_ECHOLN((int)tmp_extruder);
  6933. switch (tmp_extruder) {
  6934. case 1:
  6935. WRITE(E_MUX0_PIN, HIGH);
  6936. WRITE(E_MUX1_PIN, LOW);
  6937. break;
  6938. case 2:
  6939. WRITE(E_MUX0_PIN, LOW);
  6940. WRITE(E_MUX1_PIN, HIGH);
  6941. break;
  6942. case 3:
  6943. WRITE(E_MUX0_PIN, HIGH);
  6944. WRITE(E_MUX1_PIN, HIGH);
  6945. break;
  6946. default:
  6947. WRITE(E_MUX0_PIN, LOW);
  6948. WRITE(E_MUX1_PIN, LOW);
  6949. break;
  6950. }
  6951. _delay(100);
  6952. #else //SNMM
  6953. if (tmp_extruder >= EXTRUDERS) {
  6954. SERIAL_ECHO_START;
  6955. SERIAL_ECHOPGM("T");
  6956. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6957. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6958. }
  6959. else {
  6960. #if EXTRUDERS > 1
  6961. boolean make_move = false;
  6962. #endif
  6963. if (code_seen('F')) {
  6964. #if EXTRUDERS > 1
  6965. make_move = true;
  6966. #endif
  6967. next_feedrate = code_value();
  6968. if (next_feedrate > 0.0) {
  6969. feedrate = next_feedrate;
  6970. }
  6971. }
  6972. #if EXTRUDERS > 1
  6973. if (tmp_extruder != active_extruder) {
  6974. // Save current position to return to after applying extruder offset
  6975. memcpy(destination, current_position, sizeof(destination));
  6976. // Offset extruder (only by XY)
  6977. int i;
  6978. for (i = 0; i < 2; i++) {
  6979. current_position[i] = current_position[i] -
  6980. extruder_offset[i][active_extruder] +
  6981. extruder_offset[i][tmp_extruder];
  6982. }
  6983. // Set the new active extruder and position
  6984. active_extruder = tmp_extruder;
  6985. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6986. // Move to the old position if 'F' was in the parameters
  6987. if (make_move && Stopped == false) {
  6988. prepare_move();
  6989. }
  6990. }
  6991. #endif
  6992. SERIAL_ECHO_START;
  6993. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6994. SERIAL_PROTOCOLLN((int)active_extruder);
  6995. }
  6996. #endif //SNMM
  6997. }
  6998. }
  6999. } // end if(code_seen('T')) (end of T codes)
  7000. /**
  7001. *---------------------------------------------------------------------------------
  7002. *# D codes
  7003. */
  7004. else if (code_seen('D')) // D codes (debug)
  7005. {
  7006. switch((int)code_value())
  7007. {
  7008. //! ### D-1 - Endless loop
  7009. // -------------------
  7010. case -1:
  7011. dcode__1(); break;
  7012. #ifdef DEBUG_DCODES
  7013. //! ### D0 - Reset
  7014. // --------------
  7015. case 0:
  7016. dcode_0(); break;
  7017. //! ### D1 - Clear EEPROM
  7018. // ------------------
  7019. case 1:
  7020. dcode_1(); break;
  7021. //! ### D2 - Read/Write RAM
  7022. // --------------------
  7023. case 2:
  7024. dcode_2(); break;
  7025. #endif //DEBUG_DCODES
  7026. #ifdef DEBUG_DCODE3
  7027. //! ### D3 - Read/Write EEPROM
  7028. // -----------------------
  7029. case 3:
  7030. dcode_3(); break;
  7031. #endif //DEBUG_DCODE3
  7032. #ifdef DEBUG_DCODES
  7033. //! ### D4 - Read/Write PIN
  7034. // ---------------------
  7035. case 4:
  7036. dcode_4(); break;
  7037. #endif //DEBUG_DCODES
  7038. #ifdef DEBUG_DCODE5
  7039. //! ### D5 - Read/Write FLASH
  7040. // ------------------------
  7041. case 5:
  7042. dcode_5(); break;
  7043. break;
  7044. #endif //DEBUG_DCODE5
  7045. #ifdef DEBUG_DCODES
  7046. //! ### D6 - Read/Write external FLASH
  7047. // ---------------------------------------
  7048. case 6:
  7049. dcode_6(); break;
  7050. //! ### D7 - Read/Write Bootloader
  7051. // -------------------------------
  7052. case 7:
  7053. dcode_7(); break;
  7054. //! ### D8 - Read/Write PINDA
  7055. // ---------------------------
  7056. case 8:
  7057. dcode_8(); break;
  7058. // ### D9 - Read/Write ADC
  7059. // ------------------------
  7060. case 9:
  7061. dcode_9(); break;
  7062. //! ### D10 - XYZ calibration = OK
  7063. // ------------------------------
  7064. case 10:
  7065. dcode_10(); break;
  7066. #endif //DEBUG_DCODES
  7067. #ifdef HEATBED_ANALYSIS
  7068. //! ### D80 - Bed check
  7069. // ---------------------
  7070. /*!
  7071. - `E` - dimension x
  7072. - `F` - dimention y
  7073. - `G` - points_x
  7074. - `H` - points_y
  7075. - `I` - offset_x
  7076. - `J` - offset_y
  7077. */
  7078. case 80:
  7079. {
  7080. float dimension_x = 40;
  7081. float dimension_y = 40;
  7082. int points_x = 40;
  7083. int points_y = 40;
  7084. float offset_x = 74;
  7085. float offset_y = 33;
  7086. if (code_seen('E')) dimension_x = code_value();
  7087. if (code_seen('F')) dimension_y = code_value();
  7088. if (code_seen('G')) {points_x = code_value(); }
  7089. if (code_seen('H')) {points_y = code_value(); }
  7090. if (code_seen('I')) {offset_x = code_value(); }
  7091. if (code_seen('J')) {offset_y = code_value(); }
  7092. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7093. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7094. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7095. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7096. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7097. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7098. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7099. }break;
  7100. //! ### D81 - Bed analysis
  7101. // -----------------------------
  7102. /*!
  7103. - `E` - dimension x
  7104. - `F` - dimention y
  7105. - `G` - points_x
  7106. - `H` - points_y
  7107. - `I` - offset_x
  7108. - `J` - offset_y
  7109. */
  7110. case 81:
  7111. {
  7112. float dimension_x = 40;
  7113. float dimension_y = 40;
  7114. int points_x = 40;
  7115. int points_y = 40;
  7116. float offset_x = 74;
  7117. float offset_y = 33;
  7118. if (code_seen('E')) dimension_x = code_value();
  7119. if (code_seen('F')) dimension_y = code_value();
  7120. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7121. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7122. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7123. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7124. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7125. } break;
  7126. #endif //HEATBED_ANALYSIS
  7127. #ifdef DEBUG_DCODES
  7128. //! ### D106 print measured fan speed for different pwm values
  7129. // --------------------------------------------------------------
  7130. case 106:
  7131. {
  7132. for (int i = 255; i > 0; i = i - 5) {
  7133. fanSpeed = i;
  7134. //delay_keep_alive(2000);
  7135. for (int j = 0; j < 100; j++) {
  7136. delay_keep_alive(100);
  7137. }
  7138. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7139. }
  7140. }break;
  7141. #ifdef TMC2130
  7142. //! ### D2130 - TMC2130 Trinamic stepper controller
  7143. // ---------------------------
  7144. /*!
  7145. D2130<axis><command>[subcommand][value]
  7146. - <command>:
  7147. - '0' current off
  7148. - '1' current on
  7149. - '+' single step
  7150. - * value sereval steps
  7151. - '-' dtto oposite direction
  7152. - '?' read register
  7153. - * "mres"
  7154. - * "step"
  7155. - * "mscnt"
  7156. - * "mscuract"
  7157. - * "wave"
  7158. - '!' set register
  7159. - * "mres"
  7160. - * "step"
  7161. - * "wave"
  7162. - '@' home calibrate axis
  7163. Example:
  7164. D2130E?wave ... print extruder microstep linearity compensation curve
  7165. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7166. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7167. */
  7168. case 2130:
  7169. dcode_2130(); break;
  7170. #endif //TMC2130
  7171. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7172. //! ### D9125 - FILAMENT_SENSOR
  7173. // ---------------------------------
  7174. case 9125:
  7175. dcode_9125(); break;
  7176. #endif //FILAMENT_SENSOR
  7177. #endif //DEBUG_DCODES
  7178. }
  7179. }
  7180. else
  7181. {
  7182. SERIAL_ECHO_START;
  7183. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7184. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7185. SERIAL_ECHOLNPGM("\"(2)");
  7186. }
  7187. KEEPALIVE_STATE(NOT_BUSY);
  7188. ClearToSend();
  7189. }
  7190. /** @defgroup GCodes G-Code List
  7191. */
  7192. // ---------------------------------------------------
  7193. void FlushSerialRequestResend()
  7194. {
  7195. //char cmdbuffer[bufindr][100]="Resend:";
  7196. MYSERIAL.flush();
  7197. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7198. }
  7199. // Confirm the execution of a command, if sent from a serial line.
  7200. // Execution of a command from a SD card will not be confirmed.
  7201. void ClearToSend()
  7202. {
  7203. previous_millis_cmd = _millis();
  7204. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7205. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7206. }
  7207. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7208. void update_currents() {
  7209. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7210. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7211. float tmp_motor[3];
  7212. //SERIAL_ECHOLNPGM("Currents updated: ");
  7213. if (destination[Z_AXIS] < Z_SILENT) {
  7214. //SERIAL_ECHOLNPGM("LOW");
  7215. for (uint8_t i = 0; i < 3; i++) {
  7216. st_current_set(i, current_low[i]);
  7217. /*MYSERIAL.print(int(i));
  7218. SERIAL_ECHOPGM(": ");
  7219. MYSERIAL.println(current_low[i]);*/
  7220. }
  7221. }
  7222. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7223. //SERIAL_ECHOLNPGM("HIGH");
  7224. for (uint8_t i = 0; i < 3; i++) {
  7225. st_current_set(i, current_high[i]);
  7226. /*MYSERIAL.print(int(i));
  7227. SERIAL_ECHOPGM(": ");
  7228. MYSERIAL.println(current_high[i]);*/
  7229. }
  7230. }
  7231. else {
  7232. for (uint8_t i = 0; i < 3; i++) {
  7233. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7234. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7235. st_current_set(i, tmp_motor[i]);
  7236. /*MYSERIAL.print(int(i));
  7237. SERIAL_ECHOPGM(": ");
  7238. MYSERIAL.println(tmp_motor[i]);*/
  7239. }
  7240. }
  7241. }
  7242. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7243. void get_coordinates()
  7244. {
  7245. bool seen[4]={false,false,false,false};
  7246. for(int8_t i=0; i < NUM_AXIS; i++) {
  7247. if(code_seen(axis_codes[i]))
  7248. {
  7249. bool relative = axis_relative_modes[i] || relative_mode;
  7250. destination[i] = (float)code_value();
  7251. if (i == E_AXIS) {
  7252. float emult = extruder_multiplier[active_extruder];
  7253. if (emult != 1.) {
  7254. if (! relative) {
  7255. destination[i] -= current_position[i];
  7256. relative = true;
  7257. }
  7258. destination[i] *= emult;
  7259. }
  7260. }
  7261. if (relative)
  7262. destination[i] += current_position[i];
  7263. seen[i]=true;
  7264. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7265. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7266. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7267. }
  7268. else destination[i] = current_position[i]; //Are these else lines really needed?
  7269. }
  7270. if(code_seen('F')) {
  7271. next_feedrate = code_value();
  7272. #ifdef MAX_SILENT_FEEDRATE
  7273. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7274. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7275. #endif //MAX_SILENT_FEEDRATE
  7276. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7277. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7278. {
  7279. // float e_max_speed =
  7280. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7281. }
  7282. }
  7283. }
  7284. void get_arc_coordinates()
  7285. {
  7286. #ifdef SF_ARC_FIX
  7287. bool relative_mode_backup = relative_mode;
  7288. relative_mode = true;
  7289. #endif
  7290. get_coordinates();
  7291. #ifdef SF_ARC_FIX
  7292. relative_mode=relative_mode_backup;
  7293. #endif
  7294. if(code_seen('I')) {
  7295. offset[0] = code_value();
  7296. }
  7297. else {
  7298. offset[0] = 0.0;
  7299. }
  7300. if(code_seen('J')) {
  7301. offset[1] = code_value();
  7302. }
  7303. else {
  7304. offset[1] = 0.0;
  7305. }
  7306. }
  7307. void clamp_to_software_endstops(float target[3])
  7308. {
  7309. #ifdef DEBUG_DISABLE_SWLIMITS
  7310. return;
  7311. #endif //DEBUG_DISABLE_SWLIMITS
  7312. world2machine_clamp(target[0], target[1]);
  7313. // Clamp the Z coordinate.
  7314. if (min_software_endstops) {
  7315. float negative_z_offset = 0;
  7316. #ifdef ENABLE_AUTO_BED_LEVELING
  7317. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7318. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7319. #endif
  7320. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7321. }
  7322. if (max_software_endstops) {
  7323. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7324. }
  7325. }
  7326. #ifdef MESH_BED_LEVELING
  7327. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7328. float dx = x - current_position[X_AXIS];
  7329. float dy = y - current_position[Y_AXIS];
  7330. float dz = z - current_position[Z_AXIS];
  7331. int n_segments = 0;
  7332. if (mbl.active) {
  7333. float len = abs(dx) + abs(dy);
  7334. if (len > 0)
  7335. // Split to 3cm segments or shorter.
  7336. n_segments = int(ceil(len / 30.f));
  7337. }
  7338. if (n_segments > 1) {
  7339. float de = e - current_position[E_AXIS];
  7340. for (int i = 1; i < n_segments; ++ i) {
  7341. float t = float(i) / float(n_segments);
  7342. if (saved_printing || (mbl.active == false)) return;
  7343. plan_buffer_line(
  7344. current_position[X_AXIS] + t * dx,
  7345. current_position[Y_AXIS] + t * dy,
  7346. current_position[Z_AXIS] + t * dz,
  7347. current_position[E_AXIS] + t * de,
  7348. feed_rate, extruder);
  7349. }
  7350. }
  7351. // The rest of the path.
  7352. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7353. current_position[X_AXIS] = x;
  7354. current_position[Y_AXIS] = y;
  7355. current_position[Z_AXIS] = z;
  7356. current_position[E_AXIS] = e;
  7357. }
  7358. #endif // MESH_BED_LEVELING
  7359. void prepare_move()
  7360. {
  7361. clamp_to_software_endstops(destination);
  7362. previous_millis_cmd = _millis();
  7363. // Do not use feedmultiply for E or Z only moves
  7364. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7365. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7366. }
  7367. else {
  7368. #ifdef MESH_BED_LEVELING
  7369. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7370. #else
  7371. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7372. #endif
  7373. }
  7374. for(int8_t i=0; i < NUM_AXIS; i++) {
  7375. current_position[i] = destination[i];
  7376. }
  7377. }
  7378. void prepare_arc_move(char isclockwise) {
  7379. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7380. // Trace the arc
  7381. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7382. // As far as the parser is concerned, the position is now == target. In reality the
  7383. // motion control system might still be processing the action and the real tool position
  7384. // in any intermediate location.
  7385. for(int8_t i=0; i < NUM_AXIS; i++) {
  7386. current_position[i] = destination[i];
  7387. }
  7388. previous_millis_cmd = _millis();
  7389. }
  7390. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7391. #if defined(FAN_PIN)
  7392. #if CONTROLLERFAN_PIN == FAN_PIN
  7393. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7394. #endif
  7395. #endif
  7396. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7397. unsigned long lastMotorCheck = 0;
  7398. void controllerFan()
  7399. {
  7400. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7401. {
  7402. lastMotorCheck = _millis();
  7403. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7404. #if EXTRUDERS > 2
  7405. || !READ(E2_ENABLE_PIN)
  7406. #endif
  7407. #if EXTRUDER > 1
  7408. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7409. || !READ(X2_ENABLE_PIN)
  7410. #endif
  7411. || !READ(E1_ENABLE_PIN)
  7412. #endif
  7413. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7414. {
  7415. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7416. }
  7417. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7418. {
  7419. digitalWrite(CONTROLLERFAN_PIN, 0);
  7420. analogWrite(CONTROLLERFAN_PIN, 0);
  7421. }
  7422. else
  7423. {
  7424. // allows digital or PWM fan output to be used (see M42 handling)
  7425. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7426. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7427. }
  7428. }
  7429. }
  7430. #endif
  7431. #ifdef TEMP_STAT_LEDS
  7432. static bool blue_led = false;
  7433. static bool red_led = false;
  7434. static uint32_t stat_update = 0;
  7435. void handle_status_leds(void) {
  7436. float max_temp = 0.0;
  7437. if(_millis() > stat_update) {
  7438. stat_update += 500; // Update every 0.5s
  7439. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7440. max_temp = max(max_temp, degHotend(cur_extruder));
  7441. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7442. }
  7443. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7444. max_temp = max(max_temp, degTargetBed());
  7445. max_temp = max(max_temp, degBed());
  7446. #endif
  7447. if((max_temp > 55.0) && (red_led == false)) {
  7448. digitalWrite(STAT_LED_RED, 1);
  7449. digitalWrite(STAT_LED_BLUE, 0);
  7450. red_led = true;
  7451. blue_led = false;
  7452. }
  7453. if((max_temp < 54.0) && (blue_led == false)) {
  7454. digitalWrite(STAT_LED_RED, 0);
  7455. digitalWrite(STAT_LED_BLUE, 1);
  7456. red_led = false;
  7457. blue_led = true;
  7458. }
  7459. }
  7460. }
  7461. #endif
  7462. #ifdef SAFETYTIMER
  7463. /**
  7464. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7465. *
  7466. * Full screen blocking notification message is shown after heater turning off.
  7467. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7468. * damage print.
  7469. *
  7470. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7471. */
  7472. static void handleSafetyTimer()
  7473. {
  7474. #if (EXTRUDERS > 1)
  7475. #error Implemented only for one extruder.
  7476. #endif //(EXTRUDERS > 1)
  7477. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7478. {
  7479. safetyTimer.stop();
  7480. }
  7481. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7482. {
  7483. safetyTimer.start();
  7484. }
  7485. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7486. {
  7487. setTargetBed(0);
  7488. setAllTargetHotends(0);
  7489. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7490. }
  7491. }
  7492. #endif //SAFETYTIMER
  7493. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7494. {
  7495. bool bInhibitFlag;
  7496. #ifdef FILAMENT_SENSOR
  7497. if (mmu_enabled == false)
  7498. {
  7499. //-// if (mcode_in_progress != 600) //M600 not in progress
  7500. #ifdef PAT9125
  7501. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7502. #endif // PAT9125
  7503. #ifdef IR_SENSOR
  7504. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7505. #endif // IR_SENSOR
  7506. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7507. {
  7508. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7509. {
  7510. if (fsensor_check_autoload())
  7511. {
  7512. #ifdef PAT9125
  7513. fsensor_autoload_check_stop();
  7514. #endif //PAT9125
  7515. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7516. if(0)
  7517. {
  7518. Sound_MakeCustom(50,1000,false);
  7519. loading_flag = true;
  7520. enquecommand_front_P((PSTR("M701")));
  7521. }
  7522. else
  7523. {
  7524. /*
  7525. lcd_update_enable(false);
  7526. show_preheat_nozzle_warning();
  7527. lcd_update_enable(true);
  7528. */
  7529. eFilamentAction=FilamentAction::AutoLoad;
  7530. bFilamentFirstRun=false;
  7531. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7532. {
  7533. bFilamentPreheatState=true;
  7534. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7535. menu_submenu(mFilamentItemForce);
  7536. }
  7537. else
  7538. {
  7539. menu_submenu(lcd_generic_preheat_menu);
  7540. lcd_timeoutToStatus.start();
  7541. }
  7542. }
  7543. }
  7544. }
  7545. else
  7546. {
  7547. #ifdef PAT9125
  7548. fsensor_autoload_check_stop();
  7549. #endif //PAT9125
  7550. fsensor_update();
  7551. }
  7552. }
  7553. }
  7554. #endif //FILAMENT_SENSOR
  7555. #ifdef SAFETYTIMER
  7556. handleSafetyTimer();
  7557. #endif //SAFETYTIMER
  7558. #if defined(KILL_PIN) && KILL_PIN > -1
  7559. static int killCount = 0; // make the inactivity button a bit less responsive
  7560. const int KILL_DELAY = 10000;
  7561. #endif
  7562. if(buflen < (BUFSIZE-1)){
  7563. get_command();
  7564. }
  7565. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7566. if(max_inactive_time)
  7567. kill(_n(""), 4);
  7568. if(stepper_inactive_time) {
  7569. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7570. {
  7571. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7572. disable_x();
  7573. disable_y();
  7574. disable_z();
  7575. disable_e0();
  7576. disable_e1();
  7577. disable_e2();
  7578. }
  7579. }
  7580. }
  7581. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7582. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7583. {
  7584. chdkActive = false;
  7585. WRITE(CHDK, LOW);
  7586. }
  7587. #endif
  7588. #if defined(KILL_PIN) && KILL_PIN > -1
  7589. // Check if the kill button was pressed and wait just in case it was an accidental
  7590. // key kill key press
  7591. // -------------------------------------------------------------------------------
  7592. if( 0 == READ(KILL_PIN) )
  7593. {
  7594. killCount++;
  7595. }
  7596. else if (killCount > 0)
  7597. {
  7598. killCount--;
  7599. }
  7600. // Exceeded threshold and we can confirm that it was not accidental
  7601. // KILL the machine
  7602. // ----------------------------------------------------------------
  7603. if ( killCount >= KILL_DELAY)
  7604. {
  7605. kill("", 5);
  7606. }
  7607. #endif
  7608. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7609. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7610. #endif
  7611. #ifdef EXTRUDER_RUNOUT_PREVENT
  7612. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7613. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7614. {
  7615. bool oldstatus=READ(E0_ENABLE_PIN);
  7616. enable_e0();
  7617. float oldepos=current_position[E_AXIS];
  7618. float oldedes=destination[E_AXIS];
  7619. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7620. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7621. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7622. current_position[E_AXIS]=oldepos;
  7623. destination[E_AXIS]=oldedes;
  7624. plan_set_e_position(oldepos);
  7625. previous_millis_cmd=_millis();
  7626. st_synchronize();
  7627. WRITE(E0_ENABLE_PIN,oldstatus);
  7628. }
  7629. #endif
  7630. #ifdef TEMP_STAT_LEDS
  7631. handle_status_leds();
  7632. #endif
  7633. check_axes_activity();
  7634. mmu_loop();
  7635. }
  7636. void kill(const char *full_screen_message, unsigned char id)
  7637. {
  7638. printf_P(_N("KILL: %d\n"), id);
  7639. //return;
  7640. cli(); // Stop interrupts
  7641. disable_heater();
  7642. disable_x();
  7643. // SERIAL_ECHOLNPGM("kill - disable Y");
  7644. disable_y();
  7645. disable_z();
  7646. disable_e0();
  7647. disable_e1();
  7648. disable_e2();
  7649. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7650. pinMode(PS_ON_PIN,INPUT);
  7651. #endif
  7652. SERIAL_ERROR_START;
  7653. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7654. if (full_screen_message != NULL) {
  7655. SERIAL_ERRORLNRPGM(full_screen_message);
  7656. lcd_display_message_fullscreen_P(full_screen_message);
  7657. } else {
  7658. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7659. }
  7660. // FMC small patch to update the LCD before ending
  7661. sei(); // enable interrupts
  7662. for ( int i=5; i--; lcd_update(0))
  7663. {
  7664. _delay(200);
  7665. }
  7666. cli(); // disable interrupts
  7667. suicide();
  7668. while(1)
  7669. {
  7670. #ifdef WATCHDOG
  7671. wdt_reset();
  7672. #endif //WATCHDOG
  7673. /* Intentionally left empty */
  7674. } // Wait for reset
  7675. }
  7676. void Stop()
  7677. {
  7678. disable_heater();
  7679. if(Stopped == false) {
  7680. Stopped = true;
  7681. lcd_print_stop();
  7682. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7683. SERIAL_ERROR_START;
  7684. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7685. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7686. }
  7687. }
  7688. bool IsStopped() { return Stopped; };
  7689. #ifdef FAST_PWM_FAN
  7690. void setPwmFrequency(uint8_t pin, int val)
  7691. {
  7692. val &= 0x07;
  7693. switch(digitalPinToTimer(pin))
  7694. {
  7695. #if defined(TCCR0A)
  7696. case TIMER0A:
  7697. case TIMER0B:
  7698. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7699. // TCCR0B |= val;
  7700. break;
  7701. #endif
  7702. #if defined(TCCR1A)
  7703. case TIMER1A:
  7704. case TIMER1B:
  7705. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7706. // TCCR1B |= val;
  7707. break;
  7708. #endif
  7709. #if defined(TCCR2)
  7710. case TIMER2:
  7711. case TIMER2:
  7712. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7713. TCCR2 |= val;
  7714. break;
  7715. #endif
  7716. #if defined(TCCR2A)
  7717. case TIMER2A:
  7718. case TIMER2B:
  7719. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7720. TCCR2B |= val;
  7721. break;
  7722. #endif
  7723. #if defined(TCCR3A)
  7724. case TIMER3A:
  7725. case TIMER3B:
  7726. case TIMER3C:
  7727. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7728. TCCR3B |= val;
  7729. break;
  7730. #endif
  7731. #if defined(TCCR4A)
  7732. case TIMER4A:
  7733. case TIMER4B:
  7734. case TIMER4C:
  7735. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7736. TCCR4B |= val;
  7737. break;
  7738. #endif
  7739. #if defined(TCCR5A)
  7740. case TIMER5A:
  7741. case TIMER5B:
  7742. case TIMER5C:
  7743. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7744. TCCR5B |= val;
  7745. break;
  7746. #endif
  7747. }
  7748. }
  7749. #endif //FAST_PWM_FAN
  7750. //! @brief Get and validate extruder number
  7751. //!
  7752. //! If it is not specified, active_extruder is returned in parameter extruder.
  7753. //! @param [in] code M code number
  7754. //! @param [out] extruder
  7755. //! @return error
  7756. //! @retval true Invalid extruder specified in T code
  7757. //! @retval false Valid extruder specified in T code, or not specifiead
  7758. bool setTargetedHotend(int code, uint8_t &extruder)
  7759. {
  7760. extruder = active_extruder;
  7761. if(code_seen('T')) {
  7762. extruder = code_value();
  7763. if(extruder >= EXTRUDERS) {
  7764. SERIAL_ECHO_START;
  7765. switch(code){
  7766. case 104:
  7767. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7768. break;
  7769. case 105:
  7770. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7771. break;
  7772. case 109:
  7773. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7774. break;
  7775. case 218:
  7776. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7777. break;
  7778. case 221:
  7779. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7780. break;
  7781. }
  7782. SERIAL_PROTOCOLLN((int)extruder);
  7783. return true;
  7784. }
  7785. }
  7786. return false;
  7787. }
  7788. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7789. {
  7790. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7791. {
  7792. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7793. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7794. }
  7795. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7796. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7797. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7798. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7799. total_filament_used = 0;
  7800. }
  7801. float calculate_extruder_multiplier(float diameter) {
  7802. float out = 1.f;
  7803. if (cs.volumetric_enabled && diameter > 0.f) {
  7804. float area = M_PI * diameter * diameter * 0.25;
  7805. out = 1.f / area;
  7806. }
  7807. if (extrudemultiply != 100)
  7808. out *= float(extrudemultiply) * 0.01f;
  7809. return out;
  7810. }
  7811. void calculate_extruder_multipliers() {
  7812. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7813. #if EXTRUDERS > 1
  7814. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7815. #if EXTRUDERS > 2
  7816. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7817. #endif
  7818. #endif
  7819. }
  7820. void delay_keep_alive(unsigned int ms)
  7821. {
  7822. for (;;) {
  7823. manage_heater();
  7824. // Manage inactivity, but don't disable steppers on timeout.
  7825. manage_inactivity(true);
  7826. lcd_update(0);
  7827. if (ms == 0)
  7828. break;
  7829. else if (ms >= 50) {
  7830. _delay(50);
  7831. ms -= 50;
  7832. } else {
  7833. _delay(ms);
  7834. ms = 0;
  7835. }
  7836. }
  7837. }
  7838. static void wait_for_heater(long codenum, uint8_t extruder) {
  7839. #ifdef TEMP_RESIDENCY_TIME
  7840. long residencyStart;
  7841. residencyStart = -1;
  7842. /* continue to loop until we have reached the target temp
  7843. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7844. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7845. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7846. #else
  7847. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7848. #endif //TEMP_RESIDENCY_TIME
  7849. if ((_millis() - codenum) > 1000UL)
  7850. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7851. if (!farm_mode) {
  7852. SERIAL_PROTOCOLPGM("T:");
  7853. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7854. SERIAL_PROTOCOLPGM(" E:");
  7855. SERIAL_PROTOCOL((int)extruder);
  7856. #ifdef TEMP_RESIDENCY_TIME
  7857. SERIAL_PROTOCOLPGM(" W:");
  7858. if (residencyStart > -1)
  7859. {
  7860. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7861. SERIAL_PROTOCOLLN(codenum);
  7862. }
  7863. else
  7864. {
  7865. SERIAL_PROTOCOLLN("?");
  7866. }
  7867. }
  7868. #else
  7869. SERIAL_PROTOCOLLN("");
  7870. #endif
  7871. codenum = _millis();
  7872. }
  7873. manage_heater();
  7874. manage_inactivity(true); //do not disable steppers
  7875. lcd_update(0);
  7876. #ifdef TEMP_RESIDENCY_TIME
  7877. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7878. or when current temp falls outside the hysteresis after target temp was reached */
  7879. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7880. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7881. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7882. {
  7883. residencyStart = _millis();
  7884. }
  7885. #endif //TEMP_RESIDENCY_TIME
  7886. }
  7887. }
  7888. void check_babystep()
  7889. {
  7890. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7891. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7892. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7893. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7894. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7895. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7896. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7897. babystep_z);
  7898. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7899. lcd_update_enable(true);
  7900. }
  7901. }
  7902. #ifdef HEATBED_ANALYSIS
  7903. void d_setup()
  7904. {
  7905. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7906. pinMode(D_DATA, INPUT_PULLUP);
  7907. pinMode(D_REQUIRE, OUTPUT);
  7908. digitalWrite(D_REQUIRE, HIGH);
  7909. }
  7910. float d_ReadData()
  7911. {
  7912. int digit[13];
  7913. String mergeOutput;
  7914. float output;
  7915. digitalWrite(D_REQUIRE, HIGH);
  7916. for (int i = 0; i<13; i++)
  7917. {
  7918. for (int j = 0; j < 4; j++)
  7919. {
  7920. while (digitalRead(D_DATACLOCK) == LOW) {}
  7921. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7922. bitWrite(digit[i], j, digitalRead(D_DATA));
  7923. }
  7924. }
  7925. digitalWrite(D_REQUIRE, LOW);
  7926. mergeOutput = "";
  7927. output = 0;
  7928. for (int r = 5; r <= 10; r++) //Merge digits
  7929. {
  7930. mergeOutput += digit[r];
  7931. }
  7932. output = mergeOutput.toFloat();
  7933. if (digit[4] == 8) //Handle sign
  7934. {
  7935. output *= -1;
  7936. }
  7937. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7938. {
  7939. output /= 10;
  7940. }
  7941. return output;
  7942. }
  7943. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7944. int t1 = 0;
  7945. int t_delay = 0;
  7946. int digit[13];
  7947. int m;
  7948. char str[3];
  7949. //String mergeOutput;
  7950. char mergeOutput[15];
  7951. float output;
  7952. int mesh_point = 0; //index number of calibration point
  7953. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7954. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7955. float mesh_home_z_search = 4;
  7956. float measure_z_height = 0.2f;
  7957. float row[x_points_num];
  7958. int ix = 0;
  7959. int iy = 0;
  7960. const char* filename_wldsd = "mesh.txt";
  7961. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7962. char numb_wldsd[8]; // (" -A.BCD" + null)
  7963. #ifdef MICROMETER_LOGGING
  7964. d_setup();
  7965. #endif //MICROMETER_LOGGING
  7966. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7967. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7968. unsigned int custom_message_type_old = custom_message_type;
  7969. unsigned int custom_message_state_old = custom_message_state;
  7970. custom_message_type = CustomMsg::MeshBedLeveling;
  7971. custom_message_state = (x_points_num * y_points_num) + 10;
  7972. lcd_update(1);
  7973. //mbl.reset();
  7974. babystep_undo();
  7975. card.openFile(filename_wldsd, false);
  7976. /*destination[Z_AXIS] = mesh_home_z_search;
  7977. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7978. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7979. for(int8_t i=0; i < NUM_AXIS; i++) {
  7980. current_position[i] = destination[i];
  7981. }
  7982. st_synchronize();
  7983. */
  7984. destination[Z_AXIS] = measure_z_height;
  7985. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7986. for(int8_t i=0; i < NUM_AXIS; i++) {
  7987. current_position[i] = destination[i];
  7988. }
  7989. st_synchronize();
  7990. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7991. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7992. SERIAL_PROTOCOL(x_points_num);
  7993. SERIAL_PROTOCOLPGM(",");
  7994. SERIAL_PROTOCOL(y_points_num);
  7995. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7996. SERIAL_PROTOCOL(mesh_home_z_search);
  7997. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7998. SERIAL_PROTOCOL(x_dimension);
  7999. SERIAL_PROTOCOLPGM(",");
  8000. SERIAL_PROTOCOL(y_dimension);
  8001. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8002. while (mesh_point != x_points_num * y_points_num) {
  8003. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8004. iy = mesh_point / x_points_num;
  8005. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8006. float z0 = 0.f;
  8007. /*destination[Z_AXIS] = mesh_home_z_search;
  8008. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8009. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8010. for(int8_t i=0; i < NUM_AXIS; i++) {
  8011. current_position[i] = destination[i];
  8012. }
  8013. st_synchronize();*/
  8014. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8015. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8016. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8017. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8018. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  8019. for(int8_t i=0; i < NUM_AXIS; i++) {
  8020. current_position[i] = destination[i];
  8021. }
  8022. st_synchronize();
  8023. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8024. delay_keep_alive(1000);
  8025. #ifdef MICROMETER_LOGGING
  8026. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8027. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8028. //strcat(data_wldsd, numb_wldsd);
  8029. //MYSERIAL.println(data_wldsd);
  8030. //delay(1000);
  8031. //delay(3000);
  8032. //t1 = millis();
  8033. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8034. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8035. memset(digit, 0, sizeof(digit));
  8036. //cli();
  8037. digitalWrite(D_REQUIRE, LOW);
  8038. for (int i = 0; i<13; i++)
  8039. {
  8040. //t1 = millis();
  8041. for (int j = 0; j < 4; j++)
  8042. {
  8043. while (digitalRead(D_DATACLOCK) == LOW) {}
  8044. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8045. //printf_P(PSTR("Done %d\n"), j);
  8046. bitWrite(digit[i], j, digitalRead(D_DATA));
  8047. }
  8048. //t_delay = (millis() - t1);
  8049. //SERIAL_PROTOCOLPGM(" ");
  8050. //SERIAL_PROTOCOL_F(t_delay, 5);
  8051. //SERIAL_PROTOCOLPGM(" ");
  8052. }
  8053. //sei();
  8054. digitalWrite(D_REQUIRE, HIGH);
  8055. mergeOutput[0] = '\0';
  8056. output = 0;
  8057. for (int r = 5; r <= 10; r++) //Merge digits
  8058. {
  8059. sprintf(str, "%d", digit[r]);
  8060. strcat(mergeOutput, str);
  8061. }
  8062. output = atof(mergeOutput);
  8063. if (digit[4] == 8) //Handle sign
  8064. {
  8065. output *= -1;
  8066. }
  8067. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8068. {
  8069. output *= 0.1;
  8070. }
  8071. //output = d_ReadData();
  8072. //row[ix] = current_position[Z_AXIS];
  8073. //row[ix] = d_ReadData();
  8074. row[ix] = output;
  8075. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8076. memset(data_wldsd, 0, sizeof(data_wldsd));
  8077. for (int i = 0; i < x_points_num; i++) {
  8078. SERIAL_PROTOCOLPGM(" ");
  8079. SERIAL_PROTOCOL_F(row[i], 5);
  8080. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8081. dtostrf(row[i], 7, 3, numb_wldsd);
  8082. strcat(data_wldsd, numb_wldsd);
  8083. }
  8084. card.write_command(data_wldsd);
  8085. SERIAL_PROTOCOLPGM("\n");
  8086. }
  8087. custom_message_state--;
  8088. mesh_point++;
  8089. lcd_update(1);
  8090. }
  8091. #endif //MICROMETER_LOGGING
  8092. card.closefile();
  8093. //clean_up_after_endstop_move(l_feedmultiply);
  8094. }
  8095. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8096. int t1 = 0;
  8097. int t_delay = 0;
  8098. int digit[13];
  8099. int m;
  8100. char str[3];
  8101. //String mergeOutput;
  8102. char mergeOutput[15];
  8103. float output;
  8104. int mesh_point = 0; //index number of calibration point
  8105. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8106. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8107. float mesh_home_z_search = 4;
  8108. float row[x_points_num];
  8109. int ix = 0;
  8110. int iy = 0;
  8111. const char* filename_wldsd = "wldsd.txt";
  8112. char data_wldsd[70];
  8113. char numb_wldsd[10];
  8114. d_setup();
  8115. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8116. // We don't know where we are! HOME!
  8117. // Push the commands to the front of the message queue in the reverse order!
  8118. // There shall be always enough space reserved for these commands.
  8119. repeatcommand_front(); // repeat G80 with all its parameters
  8120. enquecommand_front_P((PSTR("G28 W0")));
  8121. enquecommand_front_P((PSTR("G1 Z5")));
  8122. return;
  8123. }
  8124. unsigned int custom_message_type_old = custom_message_type;
  8125. unsigned int custom_message_state_old = custom_message_state;
  8126. custom_message_type = CustomMsg::MeshBedLeveling;
  8127. custom_message_state = (x_points_num * y_points_num) + 10;
  8128. lcd_update(1);
  8129. mbl.reset();
  8130. babystep_undo();
  8131. card.openFile(filename_wldsd, false);
  8132. current_position[Z_AXIS] = mesh_home_z_search;
  8133. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8134. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8135. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8136. int l_feedmultiply = setup_for_endstop_move(false);
  8137. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8138. SERIAL_PROTOCOL(x_points_num);
  8139. SERIAL_PROTOCOLPGM(",");
  8140. SERIAL_PROTOCOL(y_points_num);
  8141. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8142. SERIAL_PROTOCOL(mesh_home_z_search);
  8143. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8144. SERIAL_PROTOCOL(x_dimension);
  8145. SERIAL_PROTOCOLPGM(",");
  8146. SERIAL_PROTOCOL(y_dimension);
  8147. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8148. while (mesh_point != x_points_num * y_points_num) {
  8149. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8150. iy = mesh_point / x_points_num;
  8151. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8152. float z0 = 0.f;
  8153. current_position[Z_AXIS] = mesh_home_z_search;
  8154. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8155. st_synchronize();
  8156. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8157. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8158. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8159. st_synchronize();
  8160. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8161. break;
  8162. card.closefile();
  8163. }
  8164. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8165. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8166. //strcat(data_wldsd, numb_wldsd);
  8167. //MYSERIAL.println(data_wldsd);
  8168. //_delay(1000);
  8169. //_delay(3000);
  8170. //t1 = _millis();
  8171. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8172. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8173. memset(digit, 0, sizeof(digit));
  8174. //cli();
  8175. digitalWrite(D_REQUIRE, LOW);
  8176. for (int i = 0; i<13; i++)
  8177. {
  8178. //t1 = _millis();
  8179. for (int j = 0; j < 4; j++)
  8180. {
  8181. while (digitalRead(D_DATACLOCK) == LOW) {}
  8182. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8183. bitWrite(digit[i], j, digitalRead(D_DATA));
  8184. }
  8185. //t_delay = (_millis() - t1);
  8186. //SERIAL_PROTOCOLPGM(" ");
  8187. //SERIAL_PROTOCOL_F(t_delay, 5);
  8188. //SERIAL_PROTOCOLPGM(" ");
  8189. }
  8190. //sei();
  8191. digitalWrite(D_REQUIRE, HIGH);
  8192. mergeOutput[0] = '\0';
  8193. output = 0;
  8194. for (int r = 5; r <= 10; r++) //Merge digits
  8195. {
  8196. sprintf(str, "%d", digit[r]);
  8197. strcat(mergeOutput, str);
  8198. }
  8199. output = atof(mergeOutput);
  8200. if (digit[4] == 8) //Handle sign
  8201. {
  8202. output *= -1;
  8203. }
  8204. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8205. {
  8206. output *= 0.1;
  8207. }
  8208. //output = d_ReadData();
  8209. //row[ix] = current_position[Z_AXIS];
  8210. memset(data_wldsd, 0, sizeof(data_wldsd));
  8211. for (int i = 0; i <3; i++) {
  8212. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8213. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8214. strcat(data_wldsd, numb_wldsd);
  8215. strcat(data_wldsd, ";");
  8216. }
  8217. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8218. dtostrf(output, 8, 5, numb_wldsd);
  8219. strcat(data_wldsd, numb_wldsd);
  8220. //strcat(data_wldsd, ";");
  8221. card.write_command(data_wldsd);
  8222. //row[ix] = d_ReadData();
  8223. row[ix] = output; // current_position[Z_AXIS];
  8224. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8225. for (int i = 0; i < x_points_num; i++) {
  8226. SERIAL_PROTOCOLPGM(" ");
  8227. SERIAL_PROTOCOL_F(row[i], 5);
  8228. }
  8229. SERIAL_PROTOCOLPGM("\n");
  8230. }
  8231. custom_message_state--;
  8232. mesh_point++;
  8233. lcd_update(1);
  8234. }
  8235. card.closefile();
  8236. clean_up_after_endstop_move(l_feedmultiply);
  8237. }
  8238. #endif //HEATBED_ANALYSIS
  8239. #ifndef PINDA_THERMISTOR
  8240. static void temp_compensation_start() {
  8241. custom_message_type = CustomMsg::TempCompPreheat;
  8242. custom_message_state = PINDA_HEAT_T + 1;
  8243. lcd_update(2);
  8244. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8245. current_position[E_AXIS] -= default_retraction;
  8246. }
  8247. plan_buffer_line_curposXYZE(400, active_extruder);
  8248. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8249. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8250. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8251. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8252. st_synchronize();
  8253. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8254. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8255. delay_keep_alive(1000);
  8256. custom_message_state = PINDA_HEAT_T - i;
  8257. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8258. else lcd_update(1);
  8259. }
  8260. custom_message_type = CustomMsg::Status;
  8261. custom_message_state = 0;
  8262. }
  8263. static void temp_compensation_apply() {
  8264. int i_add;
  8265. int z_shift = 0;
  8266. float z_shift_mm;
  8267. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8268. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8269. i_add = (target_temperature_bed - 60) / 10;
  8270. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8271. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8272. }else {
  8273. //interpolation
  8274. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8275. }
  8276. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8278. st_synchronize();
  8279. plan_set_z_position(current_position[Z_AXIS]);
  8280. }
  8281. else {
  8282. //we have no temp compensation data
  8283. }
  8284. }
  8285. #endif //ndef PINDA_THERMISTOR
  8286. float temp_comp_interpolation(float inp_temperature) {
  8287. //cubic spline interpolation
  8288. int n, i, j;
  8289. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8290. int shift[10];
  8291. int temp_C[10];
  8292. n = 6; //number of measured points
  8293. shift[0] = 0;
  8294. for (i = 0; i < n; i++) {
  8295. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8296. temp_C[i] = 50 + i * 10; //temperature in C
  8297. #ifdef PINDA_THERMISTOR
  8298. temp_C[i] = 35 + i * 5; //temperature in C
  8299. #else
  8300. temp_C[i] = 50 + i * 10; //temperature in C
  8301. #endif
  8302. x[i] = (float)temp_C[i];
  8303. f[i] = (float)shift[i];
  8304. }
  8305. if (inp_temperature < x[0]) return 0;
  8306. for (i = n - 1; i>0; i--) {
  8307. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8308. h[i - 1] = x[i] - x[i - 1];
  8309. }
  8310. //*********** formation of h, s , f matrix **************
  8311. for (i = 1; i<n - 1; i++) {
  8312. m[i][i] = 2 * (h[i - 1] + h[i]);
  8313. if (i != 1) {
  8314. m[i][i - 1] = h[i - 1];
  8315. m[i - 1][i] = h[i - 1];
  8316. }
  8317. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8318. }
  8319. //*********** forward elimination **************
  8320. for (i = 1; i<n - 2; i++) {
  8321. temp = (m[i + 1][i] / m[i][i]);
  8322. for (j = 1; j <= n - 1; j++)
  8323. m[i + 1][j] -= temp*m[i][j];
  8324. }
  8325. //*********** backward substitution *********
  8326. for (i = n - 2; i>0; i--) {
  8327. sum = 0;
  8328. for (j = i; j <= n - 2; j++)
  8329. sum += m[i][j] * s[j];
  8330. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8331. }
  8332. for (i = 0; i<n - 1; i++)
  8333. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8334. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8335. b = s[i] / 2;
  8336. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8337. d = f[i];
  8338. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8339. }
  8340. return sum;
  8341. }
  8342. #ifdef PINDA_THERMISTOR
  8343. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8344. {
  8345. if (!temp_cal_active) return 0;
  8346. if (!calibration_status_pinda()) return 0;
  8347. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8348. }
  8349. #endif //PINDA_THERMISTOR
  8350. void long_pause() //long pause print
  8351. {
  8352. st_synchronize();
  8353. start_pause_print = _millis();
  8354. //retract
  8355. current_position[E_AXIS] -= default_retraction;
  8356. plan_buffer_line_curposXYZE(400, active_extruder);
  8357. //lift z
  8358. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8359. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8360. plan_buffer_line_curposXYZE(15, active_extruder);
  8361. //Move XY to side
  8362. current_position[X_AXIS] = X_PAUSE_POS;
  8363. current_position[Y_AXIS] = Y_PAUSE_POS;
  8364. plan_buffer_line_curposXYZE(50, active_extruder);
  8365. // Turn off the print fan
  8366. fanSpeed = 0;
  8367. st_synchronize();
  8368. }
  8369. void serialecho_temperatures() {
  8370. float tt = degHotend(active_extruder);
  8371. SERIAL_PROTOCOLPGM("T:");
  8372. SERIAL_PROTOCOL(tt);
  8373. SERIAL_PROTOCOLPGM(" E:");
  8374. SERIAL_PROTOCOL((int)active_extruder);
  8375. SERIAL_PROTOCOLPGM(" B:");
  8376. SERIAL_PROTOCOL_F(degBed(), 1);
  8377. SERIAL_PROTOCOLLN("");
  8378. }
  8379. #ifdef UVLO_SUPPORT
  8380. void uvlo_()
  8381. {
  8382. unsigned long time_start = _millis();
  8383. bool sd_print = card.sdprinting;
  8384. // Conserve power as soon as possible.
  8385. disable_x();
  8386. disable_y();
  8387. #ifdef TMC2130
  8388. tmc2130_set_current_h(Z_AXIS, 20);
  8389. tmc2130_set_current_r(Z_AXIS, 20);
  8390. tmc2130_set_current_h(E_AXIS, 20);
  8391. tmc2130_set_current_r(E_AXIS, 20);
  8392. #endif //TMC2130
  8393. // Indicate that the interrupt has been triggered.
  8394. // SERIAL_ECHOLNPGM("UVLO");
  8395. // Read out the current Z motor microstep counter. This will be later used
  8396. // for reaching the zero full step before powering off.
  8397. uint16_t z_microsteps = 0;
  8398. #ifdef TMC2130
  8399. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8400. #endif //TMC2130
  8401. // Calculate the file position, from which to resume this print.
  8402. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8403. {
  8404. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8405. sd_position -= sdlen_planner;
  8406. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8407. sd_position -= sdlen_cmdqueue;
  8408. if (sd_position < 0) sd_position = 0;
  8409. }
  8410. // Backup the feedrate in mm/min.
  8411. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8412. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8413. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8414. // are in action.
  8415. planner_abort_hard();
  8416. // Store the current extruder position.
  8417. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8418. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8419. // Clean the input command queue.
  8420. cmdqueue_reset();
  8421. card.sdprinting = false;
  8422. // card.closefile();
  8423. // Enable stepper driver interrupt to move Z axis.
  8424. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8425. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8426. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8427. sei();
  8428. plan_buffer_line(
  8429. current_position[X_AXIS],
  8430. current_position[Y_AXIS],
  8431. current_position[Z_AXIS],
  8432. current_position[E_AXIS] - default_retraction,
  8433. 95, active_extruder);
  8434. st_synchronize();
  8435. disable_e0();
  8436. plan_buffer_line(
  8437. current_position[X_AXIS],
  8438. current_position[Y_AXIS],
  8439. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8440. current_position[E_AXIS] - default_retraction,
  8441. 40, active_extruder);
  8442. st_synchronize();
  8443. disable_e0();
  8444. plan_buffer_line(
  8445. current_position[X_AXIS],
  8446. current_position[Y_AXIS],
  8447. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8448. current_position[E_AXIS] - default_retraction,
  8449. 40, active_extruder);
  8450. st_synchronize();
  8451. disable_e0();
  8452. // Move Z up to the next 0th full step.
  8453. // Write the file position.
  8454. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8455. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8456. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8457. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8458. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8459. // Scale the z value to 1u resolution.
  8460. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8461. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8462. }
  8463. // Read out the current Z motor microstep counter. This will be later used
  8464. // for reaching the zero full step before powering off.
  8465. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8466. // Store the current position.
  8467. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8468. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8469. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8470. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8471. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8472. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8473. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8474. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8475. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8476. #if EXTRUDERS > 1
  8477. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8478. #if EXTRUDERS > 2
  8479. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8480. #endif
  8481. #endif
  8482. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8483. // Finaly store the "power outage" flag.
  8484. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8485. st_synchronize();
  8486. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8487. // Increment power failure counter
  8488. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8489. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8490. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8491. #if 0
  8492. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8493. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8494. plan_buffer_line_curposXYZE(500, active_extruder);
  8495. st_synchronize();
  8496. #endif
  8497. wdt_enable(WDTO_500MS);
  8498. WRITE(BEEPER,HIGH);
  8499. while(1)
  8500. ;
  8501. }
  8502. void uvlo_tiny()
  8503. {
  8504. uint16_t z_microsteps=0;
  8505. // Conserve power as soon as possible.
  8506. disable_x();
  8507. disable_y();
  8508. disable_e0();
  8509. #ifdef TMC2130
  8510. tmc2130_set_current_h(Z_AXIS, 20);
  8511. tmc2130_set_current_r(Z_AXIS, 20);
  8512. #endif //TMC2130
  8513. // Read out the current Z motor microstep counter
  8514. #ifdef TMC2130
  8515. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8516. #endif //TMC2130
  8517. planner_abort_hard();
  8518. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8519. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8520. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8521. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8522. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8523. }
  8524. //after multiple power panics current Z axis is unknow
  8525. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8526. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8527. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8528. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8529. }
  8530. // Finaly store the "power outage" flag.
  8531. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8532. // Increment power failure counter
  8533. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8534. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8535. wdt_enable(WDTO_500MS);
  8536. WRITE(BEEPER,HIGH);
  8537. while(1)
  8538. ;
  8539. }
  8540. #endif //UVLO_SUPPORT
  8541. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8542. void setup_fan_interrupt() {
  8543. //INT7
  8544. DDRE &= ~(1 << 7); //input pin
  8545. PORTE &= ~(1 << 7); //no internal pull-up
  8546. //start with sensing rising edge
  8547. EICRB &= ~(1 << 6);
  8548. EICRB |= (1 << 7);
  8549. //enable INT7 interrupt
  8550. EIMSK |= (1 << 7);
  8551. }
  8552. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8553. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8554. ISR(INT7_vect) {
  8555. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8556. #ifdef FAN_SOFT_PWM
  8557. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8558. #else //FAN_SOFT_PWM
  8559. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8560. #endif //FAN_SOFT_PWM
  8561. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8562. t_fan_rising_edge = millis_nc();
  8563. }
  8564. else { //interrupt was triggered by falling edge
  8565. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8566. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8567. }
  8568. }
  8569. EICRB ^= (1 << 6); //change edge
  8570. }
  8571. #endif
  8572. #ifdef UVLO_SUPPORT
  8573. void setup_uvlo_interrupt() {
  8574. DDRE &= ~(1 << 4); //input pin
  8575. PORTE &= ~(1 << 4); //no internal pull-up
  8576. //sensing falling edge
  8577. EICRB |= (1 << 0);
  8578. EICRB &= ~(1 << 1);
  8579. //enable INT4 interrupt
  8580. EIMSK |= (1 << 4);
  8581. }
  8582. ISR(INT4_vect) {
  8583. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8584. SERIAL_ECHOLNPGM("INT4");
  8585. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8586. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8587. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8588. }
  8589. void recover_print(uint8_t automatic) {
  8590. char cmd[30];
  8591. lcd_update_enable(true);
  8592. lcd_update(2);
  8593. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8594. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8595. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8596. // Lift the print head, so one may remove the excess priming material.
  8597. if(!bTiny&&(current_position[Z_AXIS]<25))
  8598. enquecommand_P(PSTR("G1 Z25 F800"));
  8599. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8600. enquecommand_P(PSTR("G28 X Y"));
  8601. // Set the target bed and nozzle temperatures and wait.
  8602. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8603. enquecommand(cmd);
  8604. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8605. enquecommand(cmd);
  8606. enquecommand_P(PSTR("M83")); //E axis relative mode
  8607. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8608. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8609. if(automatic == 0){
  8610. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8611. }
  8612. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8613. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8614. // Restart the print.
  8615. restore_print_from_eeprom();
  8616. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8617. }
  8618. void recover_machine_state_after_power_panic(bool bTiny)
  8619. {
  8620. char cmd[30];
  8621. // 1) Recover the logical cordinates at the time of the power panic.
  8622. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8623. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8624. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8625. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8626. mbl.active = false;
  8627. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8628. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8629. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8630. // Scale the z value to 10u resolution.
  8631. int16_t v;
  8632. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8633. if (v != 0)
  8634. mbl.active = true;
  8635. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8636. }
  8637. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8638. // The current position after power panic is moved to the next closest 0th full step.
  8639. if(bTiny){
  8640. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8641. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8642. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8643. //after multiple power panics the print is slightly in the air so get it little bit down.
  8644. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8645. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8646. }
  8647. else{
  8648. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8649. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8650. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8651. }
  8652. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8653. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8654. sprintf_P(cmd, PSTR("G92 E"));
  8655. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8656. enquecommand(cmd);
  8657. }
  8658. memcpy(destination, current_position, sizeof(destination));
  8659. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8660. print_world_coordinates();
  8661. // 3) Initialize the logical to physical coordinate system transformation.
  8662. world2machine_initialize();
  8663. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8664. // print_mesh_bed_leveling_table();
  8665. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8666. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8667. babystep_load();
  8668. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8669. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8670. // 6) Power up the motors, mark their positions as known.
  8671. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8672. axis_known_position[X_AXIS] = true; enable_x();
  8673. axis_known_position[Y_AXIS] = true; enable_y();
  8674. axis_known_position[Z_AXIS] = true; enable_z();
  8675. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8676. print_physical_coordinates();
  8677. // 7) Recover the target temperatures.
  8678. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8679. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8680. // 8) Recover extruder multipilers
  8681. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8682. #if EXTRUDERS > 1
  8683. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8684. #if EXTRUDERS > 2
  8685. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8686. #endif
  8687. #endif
  8688. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8689. }
  8690. void restore_print_from_eeprom() {
  8691. int feedrate_rec;
  8692. uint8_t fan_speed_rec;
  8693. char cmd[30];
  8694. char filename[13];
  8695. uint8_t depth = 0;
  8696. char dir_name[9];
  8697. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8698. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8699. SERIAL_ECHOPGM("Feedrate:");
  8700. MYSERIAL.println(feedrate_rec);
  8701. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8702. MYSERIAL.println(int(depth));
  8703. for (int i = 0; i < depth; i++) {
  8704. for (int j = 0; j < 8; j++) {
  8705. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8706. }
  8707. dir_name[8] = '\0';
  8708. MYSERIAL.println(dir_name);
  8709. strcpy(dir_names[i], dir_name);
  8710. card.chdir(dir_name);
  8711. }
  8712. for (int i = 0; i < 8; i++) {
  8713. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8714. }
  8715. filename[8] = '\0';
  8716. MYSERIAL.print(filename);
  8717. strcat_P(filename, PSTR(".gco"));
  8718. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8719. enquecommand(cmd);
  8720. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8721. SERIAL_ECHOPGM("Position read from eeprom:");
  8722. MYSERIAL.println(position);
  8723. // E axis relative mode.
  8724. enquecommand_P(PSTR("M83"));
  8725. // Move to the XY print position in logical coordinates, where the print has been killed.
  8726. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8727. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8728. strcat_P(cmd, PSTR(" F2000"));
  8729. enquecommand(cmd);
  8730. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8731. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8732. // Move the Z axis down to the print, in logical coordinates.
  8733. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8734. enquecommand(cmd);
  8735. // Unretract.
  8736. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8737. // Set the feedrate saved at the power panic.
  8738. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8739. enquecommand(cmd);
  8740. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8741. {
  8742. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8743. }
  8744. // Set the fan speed saved at the power panic.
  8745. strcpy_P(cmd, PSTR("M106 S"));
  8746. strcat(cmd, itostr3(int(fan_speed_rec)));
  8747. enquecommand(cmd);
  8748. // Set a position in the file.
  8749. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8750. enquecommand(cmd);
  8751. enquecommand_P(PSTR("G4 S0"));
  8752. enquecommand_P(PSTR("PRUSA uvlo"));
  8753. }
  8754. #endif //UVLO_SUPPORT
  8755. //! @brief Immediately stop print moves
  8756. //!
  8757. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8758. //! If printing from sd card, position in file is saved.
  8759. //! If printing from USB, line number is saved.
  8760. //!
  8761. //! @param z_move
  8762. //! @param e_move
  8763. void stop_and_save_print_to_ram(float z_move, float e_move)
  8764. {
  8765. if (saved_printing) return;
  8766. #if 0
  8767. unsigned char nplanner_blocks;
  8768. #endif
  8769. unsigned char nlines;
  8770. uint16_t sdlen_planner;
  8771. uint16_t sdlen_cmdqueue;
  8772. cli();
  8773. if (card.sdprinting) {
  8774. #if 0
  8775. nplanner_blocks = number_of_blocks();
  8776. #endif
  8777. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8778. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8779. saved_sdpos -= sdlen_planner;
  8780. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8781. saved_sdpos -= sdlen_cmdqueue;
  8782. saved_printing_type = PRINTING_TYPE_SD;
  8783. }
  8784. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8785. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8786. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8787. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8788. saved_sdpos -= nlines;
  8789. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8790. saved_printing_type = PRINTING_TYPE_USB;
  8791. }
  8792. else {
  8793. saved_printing_type = PRINTING_TYPE_NONE;
  8794. //not sd printing nor usb printing
  8795. }
  8796. #if 0
  8797. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8798. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8799. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8800. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8801. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8802. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8803. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8804. {
  8805. card.setIndex(saved_sdpos);
  8806. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8807. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8808. MYSERIAL.print(char(card.get()));
  8809. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8810. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8811. MYSERIAL.print(char(card.get()));
  8812. SERIAL_ECHOLNPGM("End of command buffer");
  8813. }
  8814. {
  8815. // Print the content of the planner buffer, line by line:
  8816. card.setIndex(saved_sdpos);
  8817. int8_t iline = 0;
  8818. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8819. SERIAL_ECHOPGM("Planner line (from file): ");
  8820. MYSERIAL.print(int(iline), DEC);
  8821. SERIAL_ECHOPGM(", length: ");
  8822. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8823. SERIAL_ECHOPGM(", steps: (");
  8824. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8825. SERIAL_ECHOPGM(",");
  8826. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8827. SERIAL_ECHOPGM(",");
  8828. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8829. SERIAL_ECHOPGM(",");
  8830. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8831. SERIAL_ECHOPGM("), events: ");
  8832. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8833. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8834. MYSERIAL.print(char(card.get()));
  8835. }
  8836. }
  8837. {
  8838. // Print the content of the command buffer, line by line:
  8839. int8_t iline = 0;
  8840. union {
  8841. struct {
  8842. char lo;
  8843. char hi;
  8844. } lohi;
  8845. uint16_t value;
  8846. } sdlen_single;
  8847. int _bufindr = bufindr;
  8848. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8849. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8850. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8851. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8852. }
  8853. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8854. MYSERIAL.print(int(iline), DEC);
  8855. SERIAL_ECHOPGM(", type: ");
  8856. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8857. SERIAL_ECHOPGM(", len: ");
  8858. MYSERIAL.println(sdlen_single.value, DEC);
  8859. // Print the content of the buffer line.
  8860. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8861. SERIAL_ECHOPGM("Buffer line (from file): ");
  8862. MYSERIAL.println(int(iline), DEC);
  8863. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8864. MYSERIAL.print(char(card.get()));
  8865. if (-- _buflen == 0)
  8866. break;
  8867. // First skip the current command ID and iterate up to the end of the string.
  8868. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8869. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8870. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8871. // If the end of the buffer was empty,
  8872. if (_bufindr == sizeof(cmdbuffer)) {
  8873. // skip to the start and find the nonzero command.
  8874. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8875. }
  8876. }
  8877. }
  8878. #endif
  8879. #if 0
  8880. saved_feedrate2 = feedrate; //save feedrate
  8881. #else
  8882. // Try to deduce the feedrate from the first block of the planner.
  8883. // Speed is in mm/min.
  8884. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8885. #endif
  8886. planner_abort_hard(); //abort printing
  8887. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8888. saved_active_extruder = active_extruder; //save active_extruder
  8889. saved_extruder_temperature = degTargetHotend(active_extruder);
  8890. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8891. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8892. saved_fanSpeed = fanSpeed;
  8893. cmdqueue_reset(); //empty cmdqueue
  8894. card.sdprinting = false;
  8895. // card.closefile();
  8896. saved_printing = true;
  8897. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8898. st_reset_timer();
  8899. sei();
  8900. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8901. #if 1
  8902. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8903. char buf[48];
  8904. // First unretract (relative extrusion)
  8905. if(!saved_extruder_relative_mode){
  8906. enquecommand(PSTR("M83"), true);
  8907. }
  8908. //retract 45mm/s
  8909. // A single sprintf may not be faster, but is definitely 20B shorter
  8910. // than a sequence of commands building the string piece by piece
  8911. // A snprintf would have been a safer call, but since it is not used
  8912. // in the whole program, its implementation would bring more bytes to the total size
  8913. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8914. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8915. enquecommand(buf, false);
  8916. // Then lift Z axis
  8917. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8918. // At this point the command queue is empty.
  8919. enquecommand(buf, false);
  8920. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8921. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8922. repeatcommand_front();
  8923. #else
  8924. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8925. st_synchronize(); //wait moving
  8926. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8927. memcpy(destination, current_position, sizeof(destination));
  8928. #endif
  8929. }
  8930. }
  8931. //! @brief Restore print from ram
  8932. //!
  8933. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8934. //! print fan speed, waits for extruder temperature restore, then restores
  8935. //! position and continues print moves.
  8936. //!
  8937. //! Internally lcd_update() is called by wait_for_heater().
  8938. //!
  8939. //! @param e_move
  8940. void restore_print_from_ram_and_continue(float e_move)
  8941. {
  8942. if (!saved_printing) return;
  8943. #ifdef FANCHECK
  8944. // Do not allow resume printing if fans are still not ok
  8945. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8946. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8947. #endif
  8948. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8949. // current_position[axis] = st_get_position_mm(axis);
  8950. active_extruder = saved_active_extruder; //restore active_extruder
  8951. fanSpeed = saved_fanSpeed;
  8952. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8953. {
  8954. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8955. heating_status = 1;
  8956. wait_for_heater(_millis(), saved_active_extruder);
  8957. heating_status = 2;
  8958. }
  8959. feedrate = saved_feedrate2; //restore feedrate
  8960. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8961. float e = saved_pos[E_AXIS] - e_move;
  8962. plan_set_e_position(e);
  8963. #ifdef FANCHECK
  8964. fans_check_enabled = false;
  8965. #endif
  8966. //first move print head in XY to the saved position:
  8967. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8968. st_synchronize();
  8969. //then move Z
  8970. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8971. st_synchronize();
  8972. //and finaly unretract (35mm/s)
  8973. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8974. st_synchronize();
  8975. #ifdef FANCHECK
  8976. fans_check_enabled = true;
  8977. #endif
  8978. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8979. memcpy(destination, current_position, sizeof(destination));
  8980. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8981. card.setIndex(saved_sdpos);
  8982. sdpos_atomic = saved_sdpos;
  8983. card.sdprinting = true;
  8984. }
  8985. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8986. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8987. serial_count = 0;
  8988. FlushSerialRequestResend();
  8989. }
  8990. else {
  8991. //not sd printing nor usb printing
  8992. }
  8993. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  8994. lcd_setstatuspgm(_T(WELCOME_MSG));
  8995. saved_printing_type = PRINTING_TYPE_NONE;
  8996. saved_printing = false;
  8997. }
  8998. void print_world_coordinates()
  8999. {
  9000. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9001. }
  9002. void print_physical_coordinates()
  9003. {
  9004. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9005. }
  9006. void print_mesh_bed_leveling_table()
  9007. {
  9008. SERIAL_ECHOPGM("mesh bed leveling: ");
  9009. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9010. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9011. MYSERIAL.print(mbl.z_values[y][x], 3);
  9012. SERIAL_ECHOPGM(" ");
  9013. }
  9014. SERIAL_ECHOLNPGM("");
  9015. }
  9016. uint16_t print_time_remaining() {
  9017. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9018. #ifdef TMC2130
  9019. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9020. else print_t = print_time_remaining_silent;
  9021. #else
  9022. print_t = print_time_remaining_normal;
  9023. #endif //TMC2130
  9024. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9025. return print_t;
  9026. }
  9027. uint8_t calc_percent_done()
  9028. {
  9029. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9030. uint8_t percent_done = 0;
  9031. #ifdef TMC2130
  9032. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9033. percent_done = print_percent_done_normal;
  9034. }
  9035. else if (print_percent_done_silent <= 100) {
  9036. percent_done = print_percent_done_silent;
  9037. }
  9038. #else
  9039. if (print_percent_done_normal <= 100) {
  9040. percent_done = print_percent_done_normal;
  9041. }
  9042. #endif //TMC2130
  9043. else {
  9044. percent_done = card.percentDone();
  9045. }
  9046. return percent_done;
  9047. }
  9048. static void print_time_remaining_init()
  9049. {
  9050. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9051. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9052. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9053. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9054. }
  9055. void load_filament_final_feed()
  9056. {
  9057. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9058. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9059. }
  9060. //! @brief Wait for user to check the state
  9061. //! @par nozzle_temp nozzle temperature to load filament
  9062. void M600_check_state(float nozzle_temp)
  9063. {
  9064. lcd_change_fil_state = 0;
  9065. while (lcd_change_fil_state != 1)
  9066. {
  9067. lcd_change_fil_state = 0;
  9068. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9069. lcd_alright();
  9070. KEEPALIVE_STATE(IN_HANDLER);
  9071. switch(lcd_change_fil_state)
  9072. {
  9073. // Filament failed to load so load it again
  9074. case 2:
  9075. if (mmu_enabled)
  9076. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9077. else
  9078. M600_load_filament_movements();
  9079. break;
  9080. // Filament loaded properly but color is not clear
  9081. case 3:
  9082. st_synchronize();
  9083. load_filament_final_feed();
  9084. lcd_loading_color();
  9085. st_synchronize();
  9086. break;
  9087. // Everything good
  9088. default:
  9089. lcd_change_success();
  9090. break;
  9091. }
  9092. }
  9093. }
  9094. //! @brief Wait for user action
  9095. //!
  9096. //! Beep, manage nozzle heater and wait for user to start unload filament
  9097. //! If times out, active extruder temperature is set to 0.
  9098. //!
  9099. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9100. void M600_wait_for_user(float HotendTempBckp) {
  9101. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9102. int counterBeep = 0;
  9103. unsigned long waiting_start_time = _millis();
  9104. uint8_t wait_for_user_state = 0;
  9105. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9106. bool bFirst=true;
  9107. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9108. manage_heater();
  9109. manage_inactivity(true);
  9110. #if BEEPER > 0
  9111. if (counterBeep == 500) {
  9112. counterBeep = 0;
  9113. }
  9114. SET_OUTPUT(BEEPER);
  9115. if (counterBeep == 0) {
  9116. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9117. {
  9118. bFirst=false;
  9119. WRITE(BEEPER, HIGH);
  9120. }
  9121. }
  9122. if (counterBeep == 20) {
  9123. WRITE(BEEPER, LOW);
  9124. }
  9125. counterBeep++;
  9126. #endif //BEEPER > 0
  9127. switch (wait_for_user_state) {
  9128. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9129. delay_keep_alive(4);
  9130. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9131. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9132. wait_for_user_state = 1;
  9133. setAllTargetHotends(0);
  9134. st_synchronize();
  9135. disable_e0();
  9136. disable_e1();
  9137. disable_e2();
  9138. }
  9139. break;
  9140. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9141. delay_keep_alive(4);
  9142. if (lcd_clicked()) {
  9143. setTargetHotend(HotendTempBckp, active_extruder);
  9144. lcd_wait_for_heater();
  9145. wait_for_user_state = 2;
  9146. }
  9147. break;
  9148. case 2: //waiting for nozzle to reach target temperature
  9149. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9150. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9151. waiting_start_time = _millis();
  9152. wait_for_user_state = 0;
  9153. }
  9154. else {
  9155. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9156. lcd_set_cursor(1, 4);
  9157. lcd_print(ftostr3(degHotend(active_extruder)));
  9158. }
  9159. break;
  9160. }
  9161. }
  9162. WRITE(BEEPER, LOW);
  9163. }
  9164. void M600_load_filament_movements()
  9165. {
  9166. #ifdef SNMM
  9167. display_loading();
  9168. do
  9169. {
  9170. current_position[E_AXIS] += 0.002;
  9171. plan_buffer_line_curposXYZE(500, active_extruder);
  9172. delay_keep_alive(2);
  9173. }
  9174. while (!lcd_clicked());
  9175. st_synchronize();
  9176. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9177. plan_buffer_line_curposXYZE(3000, active_extruder);
  9178. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9179. plan_buffer_line_curposXYZE(1400, active_extruder);
  9180. current_position[E_AXIS] += 40;
  9181. plan_buffer_line_curposXYZE(400, active_extruder);
  9182. current_position[E_AXIS] += 10;
  9183. plan_buffer_line_curposXYZE(50, active_extruder);
  9184. #else
  9185. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9186. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9187. #endif
  9188. load_filament_final_feed();
  9189. lcd_loading_filament();
  9190. st_synchronize();
  9191. }
  9192. void M600_load_filament() {
  9193. //load filament for single material and SNMM
  9194. lcd_wait_interact();
  9195. //load_filament_time = _millis();
  9196. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9197. #ifdef PAT9125
  9198. fsensor_autoload_check_start();
  9199. #endif //PAT9125
  9200. while(!lcd_clicked())
  9201. {
  9202. manage_heater();
  9203. manage_inactivity(true);
  9204. #ifdef FILAMENT_SENSOR
  9205. if (fsensor_check_autoload())
  9206. {
  9207. Sound_MakeCustom(50,1000,false);
  9208. break;
  9209. }
  9210. #endif //FILAMENT_SENSOR
  9211. }
  9212. #ifdef PAT9125
  9213. fsensor_autoload_check_stop();
  9214. #endif //PAT9125
  9215. KEEPALIVE_STATE(IN_HANDLER);
  9216. #ifdef FSENSOR_QUALITY
  9217. fsensor_oq_meassure_start(70);
  9218. #endif //FSENSOR_QUALITY
  9219. M600_load_filament_movements();
  9220. Sound_MakeCustom(50,1000,false);
  9221. #ifdef FSENSOR_QUALITY
  9222. fsensor_oq_meassure_stop();
  9223. if (!fsensor_oq_result())
  9224. {
  9225. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9226. lcd_update_enable(true);
  9227. lcd_update(2);
  9228. if (disable)
  9229. fsensor_disable();
  9230. }
  9231. #endif //FSENSOR_QUALITY
  9232. lcd_update_enable(false);
  9233. }
  9234. //! @brief Wait for click
  9235. //!
  9236. //! Set
  9237. void marlin_wait_for_click()
  9238. {
  9239. int8_t busy_state_backup = busy_state;
  9240. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9241. lcd_consume_click();
  9242. while(!lcd_clicked())
  9243. {
  9244. manage_heater();
  9245. manage_inactivity(true);
  9246. lcd_update(0);
  9247. }
  9248. KEEPALIVE_STATE(busy_state_backup);
  9249. }
  9250. #define FIL_LOAD_LENGTH 60
  9251. #ifdef PSU_Delta
  9252. bool bEnableForce_z;
  9253. void init_force_z()
  9254. {
  9255. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9256. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9257. disable_force_z();
  9258. }
  9259. void check_force_z()
  9260. {
  9261. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9262. init_force_z(); // causes enforced switching into disable-state
  9263. }
  9264. void disable_force_z()
  9265. {
  9266. uint16_t z_microsteps=0;
  9267. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9268. bEnableForce_z=false;
  9269. // switching to silent mode
  9270. #ifdef TMC2130
  9271. tmc2130_mode=TMC2130_MODE_SILENT;
  9272. update_mode_profile();
  9273. tmc2130_init(true);
  9274. #endif // TMC2130
  9275. axis_known_position[Z_AXIS]=false;
  9276. }
  9277. void enable_force_z()
  9278. {
  9279. if(bEnableForce_z)
  9280. return; // motor already enabled (may be ;-p )
  9281. bEnableForce_z=true;
  9282. // mode recovering
  9283. #ifdef TMC2130
  9284. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9285. update_mode_profile();
  9286. tmc2130_init(true);
  9287. #endif // TMC2130
  9288. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9289. }
  9290. #endif // PSU_Delta