Marlin_main.cpp 305 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef PAT9125
  81. #include "pat9125.h"
  82. #include "fsensor.h"
  83. #endif //PAT9125
  84. #ifdef TMC2130
  85. #include "tmc2130.h"
  86. #endif //TMC2130
  87. #ifdef W25X20CL
  88. #include "w25x20cl.h"
  89. #include "optiboot_w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // storing estimated time to end of print counted by slicer
  392. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  393. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. //===========================================================================
  397. //=============================Private Variables=============================
  398. //===========================================================================
  399. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  400. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  401. static float delta[3] = {0.0, 0.0, 0.0};
  402. // For tracing an arc
  403. static float offset[3] = {0.0, 0.0, 0.0};
  404. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  405. // Determines Absolute or Relative Coordinates.
  406. // Also there is bool axis_relative_modes[] per axis flag.
  407. static bool relative_mode = false;
  408. #ifndef _DISABLE_M42_M226
  409. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  410. #endif //_DISABLE_M42_M226
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  418. unsigned long starttime=0;
  419. unsigned long stoptime=0;
  420. unsigned long _usb_timer = 0;
  421. static uint8_t tmp_extruder;
  422. bool extruder_under_pressure = true;
  423. bool Stopped=false;
  424. #if NUM_SERVOS > 0
  425. Servo servos[NUM_SERVOS];
  426. #endif
  427. bool CooldownNoWait = true;
  428. bool target_direction;
  429. //Insert variables if CHDK is defined
  430. #ifdef CHDK
  431. unsigned long chdkHigh = 0;
  432. boolean chdkActive = false;
  433. #endif
  434. // save/restore printing
  435. static uint32_t saved_sdpos = 0;
  436. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  437. static float saved_pos[4] = { 0, 0, 0, 0 };
  438. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  439. static float saved_feedrate2 = 0;
  440. static uint8_t saved_active_extruder = 0;
  441. static bool saved_extruder_under_pressure = false;
  442. static bool saved_extruder_relative_mode = false;
  443. //===========================================================================
  444. //=============================Routines======================================
  445. //===========================================================================
  446. void get_arc_coordinates();
  447. bool setTargetedHotend(int code);
  448. void serial_echopair_P(const char *s_P, float v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, double v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, unsigned long v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. #ifdef SDSUPPORT
  455. #include "SdFatUtil.h"
  456. int freeMemory() { return SdFatUtil::FreeRam(); }
  457. #else
  458. extern "C" {
  459. extern unsigned int __bss_end;
  460. extern unsigned int __heap_start;
  461. extern void *__brkval;
  462. int freeMemory() {
  463. int free_memory;
  464. if ((int)__brkval == 0)
  465. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  466. else
  467. free_memory = ((int)&free_memory) - ((int)__brkval);
  468. return free_memory;
  469. }
  470. }
  471. #endif //!SDSUPPORT
  472. void setup_killpin()
  473. {
  474. #if defined(KILL_PIN) && KILL_PIN > -1
  475. SET_INPUT(KILL_PIN);
  476. WRITE(KILL_PIN,HIGH);
  477. #endif
  478. }
  479. // Set home pin
  480. void setup_homepin(void)
  481. {
  482. #if defined(HOME_PIN) && HOME_PIN > -1
  483. SET_INPUT(HOME_PIN);
  484. WRITE(HOME_PIN,HIGH);
  485. #endif
  486. }
  487. void setup_photpin()
  488. {
  489. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  490. SET_OUTPUT(PHOTOGRAPH_PIN);
  491. WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. SET_OUTPUT(SUICIDE_PIN);
  498. WRITE(SUICIDE_PIN, HIGH);
  499. #endif
  500. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  501. SET_OUTPUT(PS_ON_PIN);
  502. #if defined(PS_DEFAULT_OFF)
  503. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. SET_OUTPUT(SUICIDE_PIN);
  513. WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. }
  534. void stop_and_save_print_to_ram(float z_move, float e_move);
  535. void restore_print_from_ram_and_continue(float e_move);
  536. bool fans_check_enabled = true;
  537. bool filament_autoload_enabled = true;
  538. #ifdef TMC2130
  539. extern int8_t CrashDetectMenu;
  540. void crashdet_enable()
  541. {
  542. tmc2130_sg_stop_on_crash = true;
  543. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  544. CrashDetectMenu = 1;
  545. }
  546. void crashdet_disable()
  547. {
  548. tmc2130_sg_stop_on_crash = false;
  549. tmc2130_sg_crash = 0;
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  551. CrashDetectMenu = 0;
  552. }
  553. void crashdet_stop_and_save_print()
  554. {
  555. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  556. }
  557. void crashdet_restore_print_and_continue()
  558. {
  559. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  560. // babystep_apply();
  561. }
  562. void crashdet_stop_and_save_print2()
  563. {
  564. cli();
  565. planner_abort_hard(); //abort printing
  566. cmdqueue_reset(); //empty cmdqueue
  567. card.sdprinting = false;
  568. card.closefile();
  569. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  570. st_reset_timer();
  571. sei();
  572. }
  573. void crashdet_detected(uint8_t mask)
  574. {
  575. // printf("CRASH_DETECTED");
  576. /* while (!is_buffer_empty())
  577. {
  578. process_commands();
  579. cmdqueue_pop_front();
  580. }*/
  581. st_synchronize();
  582. static uint8_t crashDet_counter = 0;
  583. bool automatic_recovery_after_crash = true;
  584. if (crashDet_counter++ == 0) {
  585. crashDetTimer.start();
  586. }
  587. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  588. crashDetTimer.stop();
  589. crashDet_counter = 0;
  590. }
  591. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  592. automatic_recovery_after_crash = false;
  593. crashDetTimer.stop();
  594. crashDet_counter = 0;
  595. }
  596. else {
  597. crashDetTimer.start();
  598. }
  599. lcd_update_enable(true);
  600. lcd_clear();
  601. lcd_update(2);
  602. if (mask & X_AXIS_MASK)
  603. {
  604. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  605. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  606. }
  607. if (mask & Y_AXIS_MASK)
  608. {
  609. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  610. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  611. }
  612. lcd_update_enable(true);
  613. lcd_update(2);
  614. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  615. gcode_G28(true, true, false); //home X and Y
  616. st_synchronize();
  617. if (automatic_recovery_after_crash) {
  618. enquecommand_P(PSTR("CRASH_RECOVER"));
  619. }else{
  620. HotendTempBckp = degTargetHotend(active_extruder);
  621. setTargetHotend(0, active_extruder);
  622. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  623. lcd_update_enable(true);
  624. if (yesno)
  625. {
  626. char cmd1[10];
  627. strcpy(cmd1, "M109 S");
  628. strcat(cmd1, ftostr3(HotendTempBckp));
  629. enquecommand(cmd1);
  630. enquecommand_P(PSTR("CRASH_RECOVER"));
  631. }
  632. else
  633. {
  634. enquecommand_P(PSTR("CRASH_CANCEL"));
  635. }
  636. }
  637. }
  638. void crashdet_recover()
  639. {
  640. crashdet_restore_print_and_continue();
  641. tmc2130_sg_stop_on_crash = true;
  642. }
  643. void crashdet_cancel()
  644. {
  645. tmc2130_sg_stop_on_crash = true;
  646. if (saved_printing_type == PRINTING_TYPE_SD) {
  647. lcd_print_stop();
  648. }else if(saved_printing_type == PRINTING_TYPE_USB){
  649. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  650. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  651. }
  652. }
  653. #endif //TMC2130
  654. void failstats_reset_print()
  655. {
  656. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  657. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  660. }
  661. #ifdef MESH_BED_LEVELING
  662. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  663. #endif
  664. // Factory reset function
  665. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  666. // Level input parameter sets depth of reset
  667. // Quiet parameter masks all waitings for user interact.
  668. int er_progress = 0;
  669. void factory_reset(char level, bool quiet)
  670. {
  671. lcd_clear();
  672. int cursor_pos = 0;
  673. switch (level) {
  674. // Level 0: Language reset
  675. case 0:
  676. WRITE(BEEPER, HIGH);
  677. _delay_ms(100);
  678. WRITE(BEEPER, LOW);
  679. lang_reset();
  680. break;
  681. //Level 1: Reset statistics
  682. case 1:
  683. WRITE(BEEPER, HIGH);
  684. _delay_ms(100);
  685. WRITE(BEEPER, LOW);
  686. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  687. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  696. lcd_menu_statistics();
  697. break;
  698. // Level 2: Prepare for shipping
  699. case 2:
  700. //lcd_puts_P(PSTR("Factory RESET"));
  701. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  702. // Force language selection at the next boot up.
  703. lang_reset();
  704. // Force the "Follow calibration flow" message at the next boot up.
  705. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  706. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  707. farm_no = 0;
  708. farm_mode = false;
  709. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  710. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  711. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  712. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  713. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  714. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  715. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  717. fsensor_enable();
  718. fautoload_set(true);
  719. WRITE(BEEPER, HIGH);
  720. _delay_ms(100);
  721. WRITE(BEEPER, LOW);
  722. //_delay_ms(2000);
  723. break;
  724. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  725. case 3:
  726. lcd_puts_P(PSTR("Factory RESET"));
  727. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  728. WRITE(BEEPER, HIGH);
  729. _delay_ms(100);
  730. WRITE(BEEPER, LOW);
  731. er_progress = 0;
  732. lcd_puts_at_P(3, 3, PSTR(" "));
  733. lcd_set_cursor(3, 3);
  734. lcd_print(er_progress);
  735. // Erase EEPROM
  736. for (int i = 0; i < 4096; i++) {
  737. eeprom_write_byte((uint8_t*)i, 0xFF);
  738. if (i % 41 == 0) {
  739. er_progress++;
  740. lcd_puts_at_P(3, 3, PSTR(" "));
  741. lcd_set_cursor(3, 3);
  742. lcd_print(er_progress);
  743. lcd_puts_P(PSTR("%"));
  744. }
  745. }
  746. break;
  747. case 4:
  748. bowden_menu();
  749. break;
  750. default:
  751. break;
  752. }
  753. }
  754. FILE _uartout = {0};
  755. int uart_putchar(char c, FILE *stream)
  756. {
  757. MYSERIAL.write(c);
  758. return 0;
  759. }
  760. void lcd_splash()
  761. {
  762. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  763. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  764. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  765. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  766. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  767. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  768. }
  769. void factory_reset()
  770. {
  771. KEEPALIVE_STATE(PAUSED_FOR_USER);
  772. if (!READ(BTN_ENC))
  773. {
  774. _delay_ms(1000);
  775. if (!READ(BTN_ENC))
  776. {
  777. lcd_clear();
  778. lcd_puts_P(PSTR("Factory RESET"));
  779. SET_OUTPUT(BEEPER);
  780. WRITE(BEEPER, HIGH);
  781. while (!READ(BTN_ENC));
  782. WRITE(BEEPER, LOW);
  783. _delay_ms(2000);
  784. char level = reset_menu();
  785. factory_reset(level, false);
  786. switch (level) {
  787. case 0: _delay_ms(0); break;
  788. case 1: _delay_ms(0); break;
  789. case 2: _delay_ms(0); break;
  790. case 3: _delay_ms(0); break;
  791. }
  792. // _delay_ms(100);
  793. /*
  794. #ifdef MESH_BED_LEVELING
  795. _delay_ms(2000);
  796. if (!READ(BTN_ENC))
  797. {
  798. WRITE(BEEPER, HIGH);
  799. _delay_ms(100);
  800. WRITE(BEEPER, LOW);
  801. _delay_ms(200);
  802. WRITE(BEEPER, HIGH);
  803. _delay_ms(100);
  804. WRITE(BEEPER, LOW);
  805. int _z = 0;
  806. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  807. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  809. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  810. }
  811. else
  812. {
  813. WRITE(BEEPER, HIGH);
  814. _delay_ms(100);
  815. WRITE(BEEPER, LOW);
  816. }
  817. #endif // mesh */
  818. }
  819. }
  820. else
  821. {
  822. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  823. }
  824. KEEPALIVE_STATE(IN_HANDLER);
  825. }
  826. void show_fw_version_warnings() {
  827. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  828. switch (FW_DEV_VERSION) {
  829. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  830. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  831. case(FW_VERSION_DEVEL):
  832. case(FW_VERSION_DEBUG):
  833. lcd_update_enable(false);
  834. lcd_clear();
  835. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  836. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  837. #else
  838. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  839. #endif
  840. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  841. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  842. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  843. lcd_wait_for_click();
  844. break;
  845. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  846. }
  847. lcd_update_enable(true);
  848. }
  849. uint8_t check_printer_version()
  850. {
  851. uint8_t version_changed = 0;
  852. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  853. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  854. if (printer_type != PRINTER_TYPE) {
  855. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  856. else version_changed |= 0b10;
  857. }
  858. if (motherboard != MOTHERBOARD) {
  859. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  860. else version_changed |= 0b01;
  861. }
  862. return version_changed;
  863. }
  864. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  865. {
  866. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  867. }
  868. #if (LANG_MODE != 0) //secondary language support
  869. #ifdef W25X20CL
  870. #include "bootapp.h" //bootloader support
  871. // language update from external flash
  872. #define LANGBOOT_BLOCKSIZE 0x1000
  873. #define LANGBOOT_RAMBUFFER 0x0800
  874. void update_sec_lang_from_external_flash()
  875. {
  876. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  877. {
  878. uint8_t lang = boot_reserved >> 4;
  879. uint8_t state = boot_reserved & 0xf;
  880. lang_table_header_t header;
  881. uint32_t src_addr;
  882. if (lang_get_header(lang, &header, &src_addr))
  883. {
  884. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  885. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  886. delay(100);
  887. boot_reserved = (state + 1) | (lang << 4);
  888. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  889. {
  890. cli();
  891. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  892. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  893. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  894. if (state == 0)
  895. {
  896. //TODO - check header integrity
  897. }
  898. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  899. }
  900. else
  901. {
  902. //TODO - check sec lang data integrity
  903. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  904. }
  905. }
  906. }
  907. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  908. }
  909. #ifdef DEBUG_W25X20CL
  910. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  911. {
  912. lang_table_header_t header;
  913. uint8_t count = 0;
  914. uint32_t addr = 0x00000;
  915. while (1)
  916. {
  917. printf_P(_n("LANGTABLE%d:"), count);
  918. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  919. if (header.magic != LANG_MAGIC)
  920. {
  921. printf_P(_n("NG!\n"));
  922. break;
  923. }
  924. printf_P(_n("OK\n"));
  925. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  926. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  927. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  928. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  929. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  930. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  931. addr += header.size;
  932. codes[count] = header.code;
  933. count ++;
  934. }
  935. return count;
  936. }
  937. void list_sec_lang_from_external_flash()
  938. {
  939. uint16_t codes[8];
  940. uint8_t count = lang_xflash_enum_codes(codes);
  941. printf_P(_n("XFlash lang count = %hhd\n"), count);
  942. }
  943. #endif //DEBUG_W25X20CL
  944. #endif //W25X20CL
  945. #endif //(LANG_MODE != 0)
  946. // "Setup" function is called by the Arduino framework on startup.
  947. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  948. // are initialized by the main() routine provided by the Arduino framework.
  949. void setup()
  950. {
  951. ultralcd_init();
  952. spi_init();
  953. lcd_splash();
  954. #ifdef W25X20CL
  955. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  956. // optiboot_w25x20cl_enter();
  957. #endif
  958. #if (LANG_MODE != 0) //secondary language support
  959. #ifdef W25X20CL
  960. if (w25x20cl_init())
  961. update_sec_lang_from_external_flash();
  962. else
  963. kill(_i("External SPI flash W25X20CL not responding."));
  964. #endif //W25X20CL
  965. #endif //(LANG_MODE != 0)
  966. setup_killpin();
  967. setup_powerhold();
  968. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  969. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  970. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  971. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  972. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  973. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  974. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  975. if (farm_mode)
  976. {
  977. no_response = true; //we need confirmation by recieving PRUSA thx
  978. important_status = 8;
  979. prusa_statistics(8);
  980. selectedSerialPort = 1;
  981. #ifdef TMC2130
  982. //increased extruder current (PFW363)
  983. tmc2130_current_h[E_AXIS] = 36;
  984. tmc2130_current_r[E_AXIS] = 36;
  985. #endif //TMC2130
  986. //disabled filament autoload (PFW360)
  987. filament_autoload_enabled = false;
  988. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  989. }
  990. MYSERIAL.begin(BAUDRATE);
  991. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  992. stdout = uartout;
  993. SERIAL_PROTOCOLLNPGM("start");
  994. SERIAL_ECHO_START;
  995. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  996. uart2_init();
  997. #ifdef DEBUG_SEC_LANG
  998. lang_table_header_t header;
  999. uint32_t src_addr = 0x00000;
  1000. if (lang_get_header(1, &header, &src_addr))
  1001. {
  1002. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1003. #define LT_PRINT_TEST 2
  1004. // flash usage
  1005. // total p.test
  1006. //0 252718 t+c text code
  1007. //1 253142 424 170 254
  1008. //2 253040 322 164 158
  1009. //3 253248 530 135 395
  1010. #if (LT_PRINT_TEST==1) //not optimized printf
  1011. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1012. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1013. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1014. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1015. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1016. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1017. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1018. #elif (LT_PRINT_TEST==2) //optimized printf
  1019. printf_P(
  1020. _n(
  1021. " _src_addr = 0x%08lx\n"
  1022. " _lt_magic = 0x%08lx %S\n"
  1023. " _lt_size = 0x%04x (%d)\n"
  1024. " _lt_count = 0x%04x (%d)\n"
  1025. " _lt_chsum = 0x%04x\n"
  1026. " _lt_code = 0x%04x (%c%c)\n"
  1027. " _lt_resv1 = 0x%08lx\n"
  1028. ),
  1029. src_addr,
  1030. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1031. header.size, header.size,
  1032. header.count, header.count,
  1033. header.checksum,
  1034. header.code, header.code >> 8, header.code & 0xff,
  1035. header.signature
  1036. );
  1037. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1038. MYSERIAL.print(" _src_addr = 0x");
  1039. MYSERIAL.println(src_addr, 16);
  1040. MYSERIAL.print(" _lt_magic = 0x");
  1041. MYSERIAL.print(header.magic, 16);
  1042. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1043. MYSERIAL.print(" _lt_size = 0x");
  1044. MYSERIAL.print(header.size, 16);
  1045. MYSERIAL.print(" (");
  1046. MYSERIAL.print(header.size, 10);
  1047. MYSERIAL.println(")");
  1048. MYSERIAL.print(" _lt_count = 0x");
  1049. MYSERIAL.print(header.count, 16);
  1050. MYSERIAL.print(" (");
  1051. MYSERIAL.print(header.count, 10);
  1052. MYSERIAL.println(")");
  1053. MYSERIAL.print(" _lt_chsum = 0x");
  1054. MYSERIAL.println(header.checksum, 16);
  1055. MYSERIAL.print(" _lt_code = 0x");
  1056. MYSERIAL.print(header.code, 16);
  1057. MYSERIAL.print(" (");
  1058. MYSERIAL.print((char)(header.code >> 8), 0);
  1059. MYSERIAL.print((char)(header.code & 0xff), 0);
  1060. MYSERIAL.println(")");
  1061. MYSERIAL.print(" _lt_resv1 = 0x");
  1062. MYSERIAL.println(header.signature, 16);
  1063. #endif //(LT_PRINT_TEST==)
  1064. #undef LT_PRINT_TEST
  1065. #if 0
  1066. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1067. for (uint16_t i = 0; i < 1024; i++)
  1068. {
  1069. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1070. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1071. if ((i % 16) == 15) putchar('\n');
  1072. }
  1073. #endif
  1074. uint16_t sum = 0;
  1075. for (uint16_t i = 0; i < header.size; i++)
  1076. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1077. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1078. sum -= header.checksum; //subtract checksum
  1079. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1080. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1081. if (sum == header.checksum)
  1082. printf_P(_n("Checksum OK\n"), sum);
  1083. else
  1084. printf_P(_n("Checksum NG\n"), sum);
  1085. }
  1086. else
  1087. printf_P(_n("lang_get_header failed!\n"));
  1088. #if 0
  1089. for (uint16_t i = 0; i < 1024*10; i++)
  1090. {
  1091. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1092. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1093. if ((i % 16) == 15) putchar('\n');
  1094. }
  1095. #endif
  1096. #if 0
  1097. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1098. for (int i = 0; i < 4096; ++i) {
  1099. int b = eeprom_read_byte((unsigned char*)i);
  1100. if (b != 255) {
  1101. SERIAL_ECHO(i);
  1102. SERIAL_ECHO(":");
  1103. SERIAL_ECHO(b);
  1104. SERIAL_ECHOLN("");
  1105. }
  1106. }
  1107. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1108. #endif
  1109. #endif //DEBUG_SEC_LANG
  1110. // Check startup - does nothing if bootloader sets MCUSR to 0
  1111. byte mcu = MCUSR;
  1112. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1113. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1114. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1115. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1116. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1117. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1118. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1119. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1120. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1121. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1122. MCUSR = 0;
  1123. //SERIAL_ECHORPGM(MSG_MARLIN);
  1124. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1125. #ifdef STRING_VERSION_CONFIG_H
  1126. #ifdef STRING_CONFIG_H_AUTHOR
  1127. SERIAL_ECHO_START;
  1128. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1129. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1130. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1131. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1132. SERIAL_ECHOPGM("Compiled: ");
  1133. SERIAL_ECHOLNPGM(__DATE__);
  1134. #endif
  1135. #endif
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1138. SERIAL_ECHO(freeMemory());
  1139. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1140. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1141. //lcd_update_enable(false); // why do we need this?? - andre
  1142. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1143. bool previous_settings_retrieved = false;
  1144. uint8_t hw_changed = check_printer_version();
  1145. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1146. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1147. }
  1148. else { //printer version was changed so use default settings
  1149. Config_ResetDefault();
  1150. }
  1151. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1152. tp_init(); // Initialize temperature loop
  1153. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1154. plan_init(); // Initialize planner;
  1155. factory_reset();
  1156. #ifdef TMC2130
  1157. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1158. if (silentMode == 0xff) silentMode = 0;
  1159. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1160. tmc2130_mode = TMC2130_MODE_NORMAL;
  1161. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1162. if (crashdet && !farm_mode)
  1163. {
  1164. crashdet_enable();
  1165. puts_P(_N("CrashDetect ENABLED!"));
  1166. }
  1167. else
  1168. {
  1169. crashdet_disable();
  1170. puts_P(_N("CrashDetect DISABLED"));
  1171. }
  1172. #ifdef TMC2130_LINEARITY_CORRECTION
  1173. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1174. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1175. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1176. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1177. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1178. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1179. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1180. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1181. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1182. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1183. #endif //TMC2130_LINEARITY_CORRECTION
  1184. #ifdef TMC2130_VARIABLE_RESOLUTION
  1185. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1186. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1187. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1188. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1189. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1190. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1191. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1192. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1193. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1194. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1196. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1197. #else //TMC2130_VARIABLE_RESOLUTION
  1198. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1200. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1201. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1202. #endif //TMC2130_VARIABLE_RESOLUTION
  1203. #endif //TMC2130
  1204. st_init(); // Initialize stepper, this enables interrupts!
  1205. #ifdef TMC2130
  1206. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1207. tmc2130_init();
  1208. #endif //TMC2130
  1209. setup_photpin();
  1210. servo_init();
  1211. // Reset the machine correction matrix.
  1212. // It does not make sense to load the correction matrix until the machine is homed.
  1213. world2machine_reset();
  1214. #ifdef PAT9125
  1215. fsensor_init();
  1216. #endif //PAT9125
  1217. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1218. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1219. #endif
  1220. setup_homepin();
  1221. #ifdef TMC2130
  1222. if (1) {
  1223. // try to run to zero phase before powering the Z motor.
  1224. // Move in negative direction
  1225. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1226. // Round the current micro-micro steps to micro steps.
  1227. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1228. // Until the phase counter is reset to zero.
  1229. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1230. delay(2);
  1231. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1232. delay(2);
  1233. }
  1234. }
  1235. #endif //TMC2130
  1236. #if defined(Z_AXIS_ALWAYS_ON)
  1237. enable_z();
  1238. #endif
  1239. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1240. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1241. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1242. if (farm_no == 0xFFFF) farm_no = 0;
  1243. if (farm_mode)
  1244. {
  1245. prusa_statistics(8);
  1246. }
  1247. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1248. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1249. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1250. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1251. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1252. // where all the EEPROM entries are set to 0x0ff.
  1253. // Once a firmware boots up, it forces at least a language selection, which changes
  1254. // EEPROM_LANG to number lower than 0x0ff.
  1255. // 1) Set a high power mode.
  1256. #ifdef TMC2130
  1257. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1258. tmc2130_mode = TMC2130_MODE_NORMAL;
  1259. #endif //TMC2130
  1260. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1261. }
  1262. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1263. // but this times out if a blocking dialog is shown in setup().
  1264. card.initsd();
  1265. #ifdef DEBUG_SD_SPEED_TEST
  1266. if (card.cardOK)
  1267. {
  1268. uint8_t* buff = (uint8_t*)block_buffer;
  1269. uint32_t block = 0;
  1270. uint32_t sumr = 0;
  1271. uint32_t sumw = 0;
  1272. for (int i = 0; i < 1024; i++)
  1273. {
  1274. uint32_t u = micros();
  1275. bool res = card.card.readBlock(i, buff);
  1276. u = micros() - u;
  1277. if (res)
  1278. {
  1279. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1280. sumr += u;
  1281. u = micros();
  1282. res = card.card.writeBlock(i, buff);
  1283. u = micros() - u;
  1284. if (res)
  1285. {
  1286. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1287. sumw += u;
  1288. }
  1289. else
  1290. {
  1291. printf_P(PSTR("writeBlock %4d error\n"), i);
  1292. break;
  1293. }
  1294. }
  1295. else
  1296. {
  1297. printf_P(PSTR("readBlock %4d error\n"), i);
  1298. break;
  1299. }
  1300. }
  1301. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1302. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1303. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1304. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1305. }
  1306. else
  1307. printf_P(PSTR("Card NG!\n"));
  1308. #endif //DEBUG_SD_SPEED_TEST
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1312. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1313. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1314. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1315. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1316. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1317. #ifdef SNMM
  1318. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1319. int _z = BOWDEN_LENGTH;
  1320. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1321. }
  1322. #endif
  1323. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1324. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1325. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1326. #if (LANG_MODE != 0) //secondary language support
  1327. #ifdef DEBUG_W25X20CL
  1328. W25X20CL_SPI_ENTER();
  1329. uint8_t uid[8]; // 64bit unique id
  1330. w25x20cl_rd_uid(uid);
  1331. puts_P(_n("W25X20CL UID="));
  1332. for (uint8_t i = 0; i < 8; i ++)
  1333. printf_P(PSTR("%02hhx"), uid[i]);
  1334. putchar('\n');
  1335. list_sec_lang_from_external_flash();
  1336. #endif //DEBUG_W25X20CL
  1337. // lang_reset();
  1338. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1339. lcd_language();
  1340. #ifdef DEBUG_SEC_LANG
  1341. uint16_t sec_lang_code = lang_get_code(1);
  1342. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1343. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1344. // lang_print_sec_lang(uartout);
  1345. #endif //DEBUG_SEC_LANG
  1346. #endif //(LANG_MODE != 0)
  1347. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1348. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1349. temp_cal_active = false;
  1350. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1351. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1352. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1353. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1354. int16_t z_shift = 0;
  1355. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1356. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1357. temp_cal_active = false;
  1358. }
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1360. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1361. }
  1362. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1363. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1364. }
  1365. check_babystep(); //checking if Z babystep is in allowed range
  1366. #ifdef UVLO_SUPPORT
  1367. setup_uvlo_interrupt();
  1368. #endif //UVLO_SUPPORT
  1369. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1370. setup_fan_interrupt();
  1371. #endif //DEBUG_DISABLE_FANCHECK
  1372. #ifdef PAT9125
  1373. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1374. fsensor_setup_interrupt();
  1375. #endif //DEBUG_DISABLE_FSENSORCHECK
  1376. #endif //PAT9125
  1377. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1378. #ifndef DEBUG_DISABLE_STARTMSGS
  1379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1380. show_fw_version_warnings();
  1381. switch (hw_changed) {
  1382. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1383. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1384. case(0b01):
  1385. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1386. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1387. break;
  1388. case(0b10):
  1389. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1390. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1391. break;
  1392. case(0b11):
  1393. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1394. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1395. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1396. break;
  1397. default: break; //no change, show no message
  1398. }
  1399. if (!previous_settings_retrieved) {
  1400. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1401. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1402. }
  1403. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1404. lcd_wizard(0);
  1405. }
  1406. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1407. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1408. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1409. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1410. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1411. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1412. // Show the message.
  1413. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1414. }
  1415. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1416. // Show the message.
  1417. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1418. lcd_update_enable(true);
  1419. }
  1420. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1421. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1422. lcd_update_enable(true);
  1423. }
  1424. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1425. // Show the message.
  1426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1427. }
  1428. }
  1429. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1430. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1431. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1432. update_current_firmware_version_to_eeprom();
  1433. lcd_selftest();
  1434. }
  1435. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1436. KEEPALIVE_STATE(IN_PROCESS);
  1437. #endif //DEBUG_DISABLE_STARTMSGS
  1438. lcd_update_enable(true);
  1439. lcd_clear();
  1440. lcd_update(2);
  1441. // Store the currently running firmware into an eeprom,
  1442. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1443. update_current_firmware_version_to_eeprom();
  1444. #ifdef TMC2130
  1445. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1446. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1447. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1448. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1449. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1450. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1451. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1452. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1453. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1454. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1455. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1456. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1457. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1458. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1459. #endif //TMC2130
  1460. #ifdef UVLO_SUPPORT
  1461. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1462. /*
  1463. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1464. else {
  1465. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1466. lcd_update_enable(true);
  1467. lcd_update(2);
  1468. lcd_setstatuspgm(_T(WELCOME_MSG));
  1469. }
  1470. */
  1471. manage_heater(); // Update temperatures
  1472. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1473. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1474. #endif
  1475. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1476. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1477. puts_P(_N("Automatic recovery!"));
  1478. #endif
  1479. recover_print(1);
  1480. }
  1481. else{
  1482. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1483. puts_P(_N("Normal recovery!"));
  1484. #endif
  1485. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1486. else {
  1487. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1488. lcd_update_enable(true);
  1489. lcd_update(2);
  1490. lcd_setstatuspgm(_T(WELCOME_MSG));
  1491. }
  1492. }
  1493. }
  1494. #endif //UVLO_SUPPORT
  1495. KEEPALIVE_STATE(NOT_BUSY);
  1496. #ifdef WATCHDOG
  1497. wdt_enable(WDTO_4S);
  1498. #endif //WATCHDOG
  1499. }
  1500. #ifdef PAT9125
  1501. void fsensor_init() {
  1502. int pat9125 = pat9125_init();
  1503. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1504. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1505. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1506. if (!pat9125)
  1507. {
  1508. fsensor = 0; //disable sensor
  1509. fsensor_not_responding = true;
  1510. }
  1511. else {
  1512. fsensor_not_responding = false;
  1513. }
  1514. puts_P(PSTR("FSensor "));
  1515. if (fsensor)
  1516. {
  1517. puts_P(PSTR("ENABLED\n"));
  1518. fsensor_enable();
  1519. }
  1520. else
  1521. {
  1522. puts_P(PSTR("DISABLED\n"));
  1523. fsensor_disable();
  1524. }
  1525. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1526. filament_autoload_enabled = false;
  1527. fsensor_disable();
  1528. #endif //DEBUG_DISABLE_FSENSORCHECK
  1529. }
  1530. #endif //PAT9125
  1531. void trace();
  1532. #define CHUNK_SIZE 64 // bytes
  1533. #define SAFETY_MARGIN 1
  1534. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1535. int chunkHead = 0;
  1536. int serial_read_stream() {
  1537. setTargetHotend(0, 0);
  1538. setTargetBed(0);
  1539. lcd_clear();
  1540. lcd_puts_P(PSTR(" Upload in progress"));
  1541. // first wait for how many bytes we will receive
  1542. uint32_t bytesToReceive;
  1543. // receive the four bytes
  1544. char bytesToReceiveBuffer[4];
  1545. for (int i=0; i<4; i++) {
  1546. int data;
  1547. while ((data = MYSERIAL.read()) == -1) {};
  1548. bytesToReceiveBuffer[i] = data;
  1549. }
  1550. // make it a uint32
  1551. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1552. // we're ready, notify the sender
  1553. MYSERIAL.write('+');
  1554. // lock in the routine
  1555. uint32_t receivedBytes = 0;
  1556. while (prusa_sd_card_upload) {
  1557. int i;
  1558. for (i=0; i<CHUNK_SIZE; i++) {
  1559. int data;
  1560. // check if we're not done
  1561. if (receivedBytes == bytesToReceive) {
  1562. break;
  1563. }
  1564. // read the next byte
  1565. while ((data = MYSERIAL.read()) == -1) {};
  1566. receivedBytes++;
  1567. // save it to the chunk
  1568. chunk[i] = data;
  1569. }
  1570. // write the chunk to SD
  1571. card.write_command_no_newline(&chunk[0]);
  1572. // notify the sender we're ready for more data
  1573. MYSERIAL.write('+');
  1574. // for safety
  1575. manage_heater();
  1576. // check if we're done
  1577. if(receivedBytes == bytesToReceive) {
  1578. trace(); // beep
  1579. card.closefile();
  1580. prusa_sd_card_upload = false;
  1581. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1582. return 0;
  1583. }
  1584. }
  1585. return 0;
  1586. }
  1587. #ifdef HOST_KEEPALIVE_FEATURE
  1588. /**
  1589. * Output a "busy" message at regular intervals
  1590. * while the machine is not accepting commands.
  1591. */
  1592. void host_keepalive() {
  1593. if (farm_mode) return;
  1594. long ms = millis();
  1595. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1596. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1597. switch (busy_state) {
  1598. case IN_HANDLER:
  1599. case IN_PROCESS:
  1600. SERIAL_ECHO_START;
  1601. SERIAL_ECHOLNPGM("busy: processing");
  1602. break;
  1603. case PAUSED_FOR_USER:
  1604. SERIAL_ECHO_START;
  1605. SERIAL_ECHOLNPGM("busy: paused for user");
  1606. break;
  1607. case PAUSED_FOR_INPUT:
  1608. SERIAL_ECHO_START;
  1609. SERIAL_ECHOLNPGM("busy: paused for input");
  1610. break;
  1611. default:
  1612. break;
  1613. }
  1614. }
  1615. prev_busy_signal_ms = ms;
  1616. }
  1617. #endif
  1618. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1619. // Before loop(), the setup() function is called by the main() routine.
  1620. void loop()
  1621. {
  1622. KEEPALIVE_STATE(NOT_BUSY);
  1623. bool stack_integrity = true;
  1624. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1625. {
  1626. is_usb_printing = true;
  1627. usb_printing_counter--;
  1628. _usb_timer = millis();
  1629. }
  1630. if (usb_printing_counter == 0)
  1631. {
  1632. is_usb_printing = false;
  1633. }
  1634. if (prusa_sd_card_upload)
  1635. {
  1636. //we read byte-by byte
  1637. serial_read_stream();
  1638. } else
  1639. {
  1640. get_command();
  1641. #ifdef SDSUPPORT
  1642. card.checkautostart(false);
  1643. #endif
  1644. if(buflen)
  1645. {
  1646. cmdbuffer_front_already_processed = false;
  1647. #ifdef SDSUPPORT
  1648. if(card.saving)
  1649. {
  1650. // Saving a G-code file onto an SD-card is in progress.
  1651. // Saving starts with M28, saving until M29 is seen.
  1652. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1653. card.write_command(CMDBUFFER_CURRENT_STRING);
  1654. if(card.logging)
  1655. process_commands();
  1656. else
  1657. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1658. } else {
  1659. card.closefile();
  1660. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1661. }
  1662. } else {
  1663. process_commands();
  1664. }
  1665. #else
  1666. process_commands();
  1667. #endif //SDSUPPORT
  1668. if (! cmdbuffer_front_already_processed && buflen)
  1669. {
  1670. // ptr points to the start of the block currently being processed.
  1671. // The first character in the block is the block type.
  1672. char *ptr = cmdbuffer + bufindr;
  1673. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1674. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1675. union {
  1676. struct {
  1677. char lo;
  1678. char hi;
  1679. } lohi;
  1680. uint16_t value;
  1681. } sdlen;
  1682. sdlen.value = 0;
  1683. {
  1684. // This block locks the interrupts globally for 3.25 us,
  1685. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1686. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1687. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1688. cli();
  1689. // Reset the command to something, which will be ignored by the power panic routine,
  1690. // so this buffer length will not be counted twice.
  1691. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1692. // Extract the current buffer length.
  1693. sdlen.lohi.lo = *ptr ++;
  1694. sdlen.lohi.hi = *ptr;
  1695. // and pass it to the planner queue.
  1696. planner_add_sd_length(sdlen.value);
  1697. sei();
  1698. }
  1699. }
  1700. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1701. cli();
  1702. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1703. // and one for each command to previous block in the planner queue.
  1704. planner_add_sd_length(1);
  1705. sei();
  1706. }
  1707. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1708. // this block's SD card length will not be counted twice as its command type has been replaced
  1709. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1710. cmdqueue_pop_front();
  1711. }
  1712. host_keepalive();
  1713. }
  1714. }
  1715. //check heater every n milliseconds
  1716. manage_heater();
  1717. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1718. checkHitEndstops();
  1719. lcd_update(0);
  1720. #ifdef PAT9125
  1721. fsensor_update();
  1722. #endif //PAT9125
  1723. #ifdef TMC2130
  1724. tmc2130_check_overtemp();
  1725. if (tmc2130_sg_crash)
  1726. {
  1727. uint8_t crash = tmc2130_sg_crash;
  1728. tmc2130_sg_crash = 0;
  1729. // crashdet_stop_and_save_print();
  1730. switch (crash)
  1731. {
  1732. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1733. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1734. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1735. }
  1736. }
  1737. #endif //TMC2130
  1738. }
  1739. #define DEFINE_PGM_READ_ANY(type, reader) \
  1740. static inline type pgm_read_any(const type *p) \
  1741. { return pgm_read_##reader##_near(p); }
  1742. DEFINE_PGM_READ_ANY(float, float);
  1743. DEFINE_PGM_READ_ANY(signed char, byte);
  1744. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1745. static const PROGMEM type array##_P[3] = \
  1746. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1747. static inline type array(int axis) \
  1748. { return pgm_read_any(&array##_P[axis]); } \
  1749. type array##_ext(int axis) \
  1750. { return pgm_read_any(&array##_P[axis]); }
  1751. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1752. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1753. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1754. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1755. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1756. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1757. static void axis_is_at_home(int axis) {
  1758. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1759. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1760. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1761. }
  1762. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1763. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1764. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1765. saved_feedrate = feedrate;
  1766. saved_feedmultiply = feedmultiply;
  1767. feedmultiply = 100;
  1768. previous_millis_cmd = millis();
  1769. enable_endstops(enable_endstops_now);
  1770. }
  1771. static void clean_up_after_endstop_move() {
  1772. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1773. enable_endstops(false);
  1774. #endif
  1775. feedrate = saved_feedrate;
  1776. feedmultiply = saved_feedmultiply;
  1777. previous_millis_cmd = millis();
  1778. }
  1779. #ifdef ENABLE_AUTO_BED_LEVELING
  1780. #ifdef AUTO_BED_LEVELING_GRID
  1781. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1782. {
  1783. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1784. planeNormal.debug("planeNormal");
  1785. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1786. //bedLevel.debug("bedLevel");
  1787. //plan_bed_level_matrix.debug("bed level before");
  1788. //vector_3 uncorrected_position = plan_get_position_mm();
  1789. //uncorrected_position.debug("position before");
  1790. vector_3 corrected_position = plan_get_position();
  1791. // corrected_position.debug("position after");
  1792. current_position[X_AXIS] = corrected_position.x;
  1793. current_position[Y_AXIS] = corrected_position.y;
  1794. current_position[Z_AXIS] = corrected_position.z;
  1795. // put the bed at 0 so we don't go below it.
  1796. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1798. }
  1799. #else // not AUTO_BED_LEVELING_GRID
  1800. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1801. plan_bed_level_matrix.set_to_identity();
  1802. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1803. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1804. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1805. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1806. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1807. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1808. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1809. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1810. vector_3 corrected_position = plan_get_position();
  1811. current_position[X_AXIS] = corrected_position.x;
  1812. current_position[Y_AXIS] = corrected_position.y;
  1813. current_position[Z_AXIS] = corrected_position.z;
  1814. // put the bed at 0 so we don't go below it.
  1815. current_position[Z_AXIS] = zprobe_zoffset;
  1816. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1817. }
  1818. #endif // AUTO_BED_LEVELING_GRID
  1819. static void run_z_probe() {
  1820. plan_bed_level_matrix.set_to_identity();
  1821. feedrate = homing_feedrate[Z_AXIS];
  1822. // move down until you find the bed
  1823. float zPosition = -10;
  1824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1825. st_synchronize();
  1826. // we have to let the planner know where we are right now as it is not where we said to go.
  1827. zPosition = st_get_position_mm(Z_AXIS);
  1828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1829. // move up the retract distance
  1830. zPosition += home_retract_mm(Z_AXIS);
  1831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1832. st_synchronize();
  1833. // move back down slowly to find bed
  1834. feedrate = homing_feedrate[Z_AXIS]/4;
  1835. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1839. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1840. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1841. }
  1842. static void do_blocking_move_to(float x, float y, float z) {
  1843. float oldFeedRate = feedrate;
  1844. feedrate = homing_feedrate[Z_AXIS];
  1845. current_position[Z_AXIS] = z;
  1846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1847. st_synchronize();
  1848. feedrate = XY_TRAVEL_SPEED;
  1849. current_position[X_AXIS] = x;
  1850. current_position[Y_AXIS] = y;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1852. st_synchronize();
  1853. feedrate = oldFeedRate;
  1854. }
  1855. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1856. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1857. }
  1858. /// Probe bed height at position (x,y), returns the measured z value
  1859. static float probe_pt(float x, float y, float z_before) {
  1860. // move to right place
  1861. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1862. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1863. run_z_probe();
  1864. float measured_z = current_position[Z_AXIS];
  1865. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1866. SERIAL_PROTOCOLPGM(" x: ");
  1867. SERIAL_PROTOCOL(x);
  1868. SERIAL_PROTOCOLPGM(" y: ");
  1869. SERIAL_PROTOCOL(y);
  1870. SERIAL_PROTOCOLPGM(" z: ");
  1871. SERIAL_PROTOCOL(measured_z);
  1872. SERIAL_PROTOCOLPGM("\n");
  1873. return measured_z;
  1874. }
  1875. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1876. #ifdef LIN_ADVANCE
  1877. /**
  1878. * M900: Set and/or Get advance K factor and WH/D ratio
  1879. *
  1880. * K<factor> Set advance K factor
  1881. * R<ratio> Set ratio directly (overrides WH/D)
  1882. * W<width> H<height> D<diam> Set ratio from WH/D
  1883. */
  1884. inline void gcode_M900() {
  1885. st_synchronize();
  1886. const float newK = code_seen('K') ? code_value_float() : -1;
  1887. if (newK >= 0) extruder_advance_k = newK;
  1888. float newR = code_seen('R') ? code_value_float() : -1;
  1889. if (newR < 0) {
  1890. const float newD = code_seen('D') ? code_value_float() : -1,
  1891. newW = code_seen('W') ? code_value_float() : -1,
  1892. newH = code_seen('H') ? code_value_float() : -1;
  1893. if (newD >= 0 && newW >= 0 && newH >= 0)
  1894. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1895. }
  1896. if (newR >= 0) advance_ed_ratio = newR;
  1897. SERIAL_ECHO_START;
  1898. SERIAL_ECHOPGM("Advance K=");
  1899. SERIAL_ECHOLN(extruder_advance_k);
  1900. SERIAL_ECHOPGM(" E/D=");
  1901. const float ratio = advance_ed_ratio;
  1902. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1903. }
  1904. #endif // LIN_ADVANCE
  1905. bool check_commands() {
  1906. bool end_command_found = false;
  1907. while (buflen)
  1908. {
  1909. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1910. if (!cmdbuffer_front_already_processed)
  1911. cmdqueue_pop_front();
  1912. cmdbuffer_front_already_processed = false;
  1913. }
  1914. return end_command_found;
  1915. }
  1916. #ifdef TMC2130
  1917. bool calibrate_z_auto()
  1918. {
  1919. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1920. lcd_clear();
  1921. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1922. bool endstops_enabled = enable_endstops(true);
  1923. int axis_up_dir = -home_dir(Z_AXIS);
  1924. tmc2130_home_enter(Z_AXIS_MASK);
  1925. current_position[Z_AXIS] = 0;
  1926. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1927. set_destination_to_current();
  1928. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1929. feedrate = homing_feedrate[Z_AXIS];
  1930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1931. st_synchronize();
  1932. // current_position[axis] = 0;
  1933. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1934. tmc2130_home_exit();
  1935. enable_endstops(false);
  1936. current_position[Z_AXIS] = 0;
  1937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1938. set_destination_to_current();
  1939. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1940. feedrate = homing_feedrate[Z_AXIS] / 2;
  1941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1942. st_synchronize();
  1943. enable_endstops(endstops_enabled);
  1944. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1946. return true;
  1947. }
  1948. #endif //TMC2130
  1949. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1950. {
  1951. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1952. #define HOMEAXIS_DO(LETTER) \
  1953. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1954. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1955. {
  1956. int axis_home_dir = home_dir(axis);
  1957. feedrate = homing_feedrate[axis];
  1958. #ifdef TMC2130
  1959. tmc2130_home_enter(X_AXIS_MASK << axis);
  1960. #endif //TMC2130
  1961. // Move right a bit, so that the print head does not touch the left end position,
  1962. // and the following left movement has a chance to achieve the required velocity
  1963. // for the stall guard to work.
  1964. current_position[axis] = 0;
  1965. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1966. set_destination_to_current();
  1967. // destination[axis] = 11.f;
  1968. destination[axis] = 3.f;
  1969. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1970. st_synchronize();
  1971. // Move left away from the possible collision with the collision detection disabled.
  1972. endstops_hit_on_purpose();
  1973. enable_endstops(false);
  1974. current_position[axis] = 0;
  1975. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1976. destination[axis] = - 1.;
  1977. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1978. st_synchronize();
  1979. // Now continue to move up to the left end stop with the collision detection enabled.
  1980. enable_endstops(true);
  1981. destination[axis] = - 1.1 * max_length(axis);
  1982. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1983. st_synchronize();
  1984. for (uint8_t i = 0; i < cnt; i++)
  1985. {
  1986. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1987. endstops_hit_on_purpose();
  1988. enable_endstops(false);
  1989. current_position[axis] = 0;
  1990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1991. destination[axis] = 10.f;
  1992. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1993. st_synchronize();
  1994. endstops_hit_on_purpose();
  1995. // Now move left up to the collision, this time with a repeatable velocity.
  1996. enable_endstops(true);
  1997. destination[axis] = - 11.f;
  1998. #ifdef TMC2130
  1999. feedrate = homing_feedrate[axis];
  2000. #else //TMC2130
  2001. feedrate = homing_feedrate[axis] / 2;
  2002. #endif //TMC2130
  2003. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2004. st_synchronize();
  2005. #ifdef TMC2130
  2006. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2007. if (pstep) pstep[i] = mscnt >> 4;
  2008. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2009. #endif //TMC2130
  2010. }
  2011. endstops_hit_on_purpose();
  2012. enable_endstops(false);
  2013. #ifdef TMC2130
  2014. uint8_t orig = tmc2130_home_origin[axis];
  2015. uint8_t back = tmc2130_home_bsteps[axis];
  2016. if (tmc2130_home_enabled && (orig <= 63))
  2017. {
  2018. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2019. if (back > 0)
  2020. tmc2130_do_steps(axis, back, 1, 1000);
  2021. }
  2022. else
  2023. tmc2130_do_steps(axis, 8, 2, 1000);
  2024. tmc2130_home_exit();
  2025. #endif //TMC2130
  2026. axis_is_at_home(axis);
  2027. axis_known_position[axis] = true;
  2028. // Move from minimum
  2029. #ifdef TMC2130
  2030. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2031. #else //TMC2130
  2032. float dist = 0.01f * 64;
  2033. #endif //TMC2130
  2034. current_position[axis] -= dist;
  2035. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2036. current_position[axis] += dist;
  2037. destination[axis] = current_position[axis];
  2038. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2039. st_synchronize();
  2040. feedrate = 0.0;
  2041. }
  2042. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2043. {
  2044. #ifdef TMC2130
  2045. FORCE_HIGH_POWER_START;
  2046. #endif
  2047. int axis_home_dir = home_dir(axis);
  2048. current_position[axis] = 0;
  2049. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2050. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2051. feedrate = homing_feedrate[axis];
  2052. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2053. st_synchronize();
  2054. #ifdef TMC2130
  2055. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2056. FORCE_HIGH_POWER_END;
  2057. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2058. return;
  2059. }
  2060. #endif //TMC2130
  2061. current_position[axis] = 0;
  2062. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2063. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2064. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2065. st_synchronize();
  2066. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2067. feedrate = homing_feedrate[axis]/2 ;
  2068. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2069. st_synchronize();
  2070. #ifdef TMC2130
  2071. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2072. FORCE_HIGH_POWER_END;
  2073. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2074. return;
  2075. }
  2076. #endif //TMC2130
  2077. axis_is_at_home(axis);
  2078. destination[axis] = current_position[axis];
  2079. feedrate = 0.0;
  2080. endstops_hit_on_purpose();
  2081. axis_known_position[axis] = true;
  2082. #ifdef TMC2130
  2083. FORCE_HIGH_POWER_END;
  2084. #endif
  2085. }
  2086. enable_endstops(endstops_enabled);
  2087. }
  2088. /**/
  2089. void home_xy()
  2090. {
  2091. set_destination_to_current();
  2092. homeaxis(X_AXIS);
  2093. homeaxis(Y_AXIS);
  2094. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2095. endstops_hit_on_purpose();
  2096. }
  2097. void refresh_cmd_timeout(void)
  2098. {
  2099. previous_millis_cmd = millis();
  2100. }
  2101. #ifdef FWRETRACT
  2102. void retract(bool retracting, bool swapretract = false) {
  2103. if(retracting && !retracted[active_extruder]) {
  2104. destination[X_AXIS]=current_position[X_AXIS];
  2105. destination[Y_AXIS]=current_position[Y_AXIS];
  2106. destination[Z_AXIS]=current_position[Z_AXIS];
  2107. destination[E_AXIS]=current_position[E_AXIS];
  2108. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2109. plan_set_e_position(current_position[E_AXIS]);
  2110. float oldFeedrate = feedrate;
  2111. feedrate=retract_feedrate*60;
  2112. retracted[active_extruder]=true;
  2113. prepare_move();
  2114. current_position[Z_AXIS]-=retract_zlift;
  2115. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2116. prepare_move();
  2117. feedrate = oldFeedrate;
  2118. } else if(!retracting && retracted[active_extruder]) {
  2119. destination[X_AXIS]=current_position[X_AXIS];
  2120. destination[Y_AXIS]=current_position[Y_AXIS];
  2121. destination[Z_AXIS]=current_position[Z_AXIS];
  2122. destination[E_AXIS]=current_position[E_AXIS];
  2123. current_position[Z_AXIS]+=retract_zlift;
  2124. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2125. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2126. plan_set_e_position(current_position[E_AXIS]);
  2127. float oldFeedrate = feedrate;
  2128. feedrate=retract_recover_feedrate*60;
  2129. retracted[active_extruder]=false;
  2130. prepare_move();
  2131. feedrate = oldFeedrate;
  2132. }
  2133. } //retract
  2134. #endif //FWRETRACT
  2135. void trace() {
  2136. tone(BEEPER, 440);
  2137. delay(25);
  2138. noTone(BEEPER);
  2139. delay(20);
  2140. }
  2141. /*
  2142. void ramming() {
  2143. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2144. if (current_temperature[0] < 230) {
  2145. //PLA
  2146. max_feedrate[E_AXIS] = 50;
  2147. //current_position[E_AXIS] -= 8;
  2148. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2149. //current_position[E_AXIS] += 8;
  2150. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2151. current_position[E_AXIS] += 5.4;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2153. current_position[E_AXIS] += 3.2;
  2154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2155. current_position[E_AXIS] += 3;
  2156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2157. st_synchronize();
  2158. max_feedrate[E_AXIS] = 80;
  2159. current_position[E_AXIS] -= 82;
  2160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2161. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2162. current_position[E_AXIS] -= 20;
  2163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2164. current_position[E_AXIS] += 5;
  2165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2166. current_position[E_AXIS] += 5;
  2167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2168. current_position[E_AXIS] -= 10;
  2169. st_synchronize();
  2170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2171. current_position[E_AXIS] += 10;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2173. current_position[E_AXIS] -= 10;
  2174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2175. current_position[E_AXIS] += 10;
  2176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2177. current_position[E_AXIS] -= 10;
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2179. st_synchronize();
  2180. }
  2181. else {
  2182. //ABS
  2183. max_feedrate[E_AXIS] = 50;
  2184. //current_position[E_AXIS] -= 8;
  2185. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2186. //current_position[E_AXIS] += 8;
  2187. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2188. current_position[E_AXIS] += 3.1;
  2189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2190. current_position[E_AXIS] += 3.1;
  2191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2192. current_position[E_AXIS] += 4;
  2193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2194. st_synchronize();
  2195. //current_position[X_AXIS] += 23; //delay
  2196. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2197. //current_position[X_AXIS] -= 23; //delay
  2198. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2199. delay(4700);
  2200. max_feedrate[E_AXIS] = 80;
  2201. current_position[E_AXIS] -= 92;
  2202. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2203. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2204. current_position[E_AXIS] -= 5;
  2205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2206. current_position[E_AXIS] += 5;
  2207. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2208. current_position[E_AXIS] -= 5;
  2209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2210. st_synchronize();
  2211. current_position[E_AXIS] += 5;
  2212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2213. current_position[E_AXIS] -= 5;
  2214. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2215. current_position[E_AXIS] += 5;
  2216. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2217. current_position[E_AXIS] -= 5;
  2218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2219. st_synchronize();
  2220. }
  2221. }
  2222. */
  2223. #ifdef TMC2130
  2224. void force_high_power_mode(bool start_high_power_section) {
  2225. uint8_t silent;
  2226. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2227. if (silent == 1) {
  2228. //we are in silent mode, set to normal mode to enable crash detection
  2229. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2230. st_synchronize();
  2231. cli();
  2232. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2233. tmc2130_init();
  2234. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2235. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2236. st_reset_timer();
  2237. sei();
  2238. }
  2239. }
  2240. #endif //TMC2130
  2241. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2242. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2243. }
  2244. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2245. st_synchronize();
  2246. #if 0
  2247. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2248. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2249. #endif
  2250. // Flag for the display update routine and to disable the print cancelation during homing.
  2251. homing_flag = true;
  2252. // Which axes should be homed?
  2253. bool home_x = home_x_axis;
  2254. bool home_y = home_y_axis;
  2255. bool home_z = home_z_axis;
  2256. // Either all X,Y,Z codes are present, or none of them.
  2257. bool home_all_axes = home_x == home_y && home_x == home_z;
  2258. if (home_all_axes)
  2259. // No X/Y/Z code provided means to home all axes.
  2260. home_x = home_y = home_z = true;
  2261. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2262. if (home_all_axes) {
  2263. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2264. feedrate = homing_feedrate[Z_AXIS];
  2265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2266. st_synchronize();
  2267. }
  2268. #ifdef ENABLE_AUTO_BED_LEVELING
  2269. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2270. #endif //ENABLE_AUTO_BED_LEVELING
  2271. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2272. // the planner will not perform any adjustments in the XY plane.
  2273. // Wait for the motors to stop and update the current position with the absolute values.
  2274. world2machine_revert_to_uncorrected();
  2275. // For mesh bed leveling deactivate the matrix temporarily.
  2276. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2277. // in a single axis only.
  2278. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2279. #ifdef MESH_BED_LEVELING
  2280. uint8_t mbl_was_active = mbl.active;
  2281. mbl.active = 0;
  2282. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2283. #endif
  2284. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2285. // consumed during the first movements following this statement.
  2286. if (home_z)
  2287. babystep_undo();
  2288. saved_feedrate = feedrate;
  2289. saved_feedmultiply = feedmultiply;
  2290. feedmultiply = 100;
  2291. previous_millis_cmd = millis();
  2292. enable_endstops(true);
  2293. memcpy(destination, current_position, sizeof(destination));
  2294. feedrate = 0.0;
  2295. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2296. if(home_z)
  2297. homeaxis(Z_AXIS);
  2298. #endif
  2299. #ifdef QUICK_HOME
  2300. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2301. if(home_x && home_y) //first diagonal move
  2302. {
  2303. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2304. int x_axis_home_dir = home_dir(X_AXIS);
  2305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2306. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2307. feedrate = homing_feedrate[X_AXIS];
  2308. if(homing_feedrate[Y_AXIS]<feedrate)
  2309. feedrate = homing_feedrate[Y_AXIS];
  2310. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2311. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2312. } else {
  2313. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2314. }
  2315. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2316. st_synchronize();
  2317. axis_is_at_home(X_AXIS);
  2318. axis_is_at_home(Y_AXIS);
  2319. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2320. destination[X_AXIS] = current_position[X_AXIS];
  2321. destination[Y_AXIS] = current_position[Y_AXIS];
  2322. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2323. feedrate = 0.0;
  2324. st_synchronize();
  2325. endstops_hit_on_purpose();
  2326. current_position[X_AXIS] = destination[X_AXIS];
  2327. current_position[Y_AXIS] = destination[Y_AXIS];
  2328. current_position[Z_AXIS] = destination[Z_AXIS];
  2329. }
  2330. #endif /* QUICK_HOME */
  2331. #ifdef TMC2130
  2332. if(home_x)
  2333. {
  2334. if (!calib)
  2335. homeaxis(X_AXIS);
  2336. else
  2337. tmc2130_home_calibrate(X_AXIS);
  2338. }
  2339. if(home_y)
  2340. {
  2341. if (!calib)
  2342. homeaxis(Y_AXIS);
  2343. else
  2344. tmc2130_home_calibrate(Y_AXIS);
  2345. }
  2346. #endif //TMC2130
  2347. if(home_x_axis && home_x_value != 0)
  2348. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2349. if(home_y_axis && home_y_value != 0)
  2350. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2351. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2352. #ifndef Z_SAFE_HOMING
  2353. if(home_z) {
  2354. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2355. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2356. feedrate = max_feedrate[Z_AXIS];
  2357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2358. st_synchronize();
  2359. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2360. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2361. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2362. {
  2363. homeaxis(X_AXIS);
  2364. homeaxis(Y_AXIS);
  2365. }
  2366. // 1st mesh bed leveling measurement point, corrected.
  2367. world2machine_initialize();
  2368. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2369. world2machine_reset();
  2370. if (destination[Y_AXIS] < Y_MIN_POS)
  2371. destination[Y_AXIS] = Y_MIN_POS;
  2372. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2373. feedrate = homing_feedrate[Z_AXIS]/10;
  2374. current_position[Z_AXIS] = 0;
  2375. enable_endstops(false);
  2376. #ifdef DEBUG_BUILD
  2377. SERIAL_ECHOLNPGM("plan_set_position()");
  2378. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2379. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2380. #endif
  2381. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2382. #ifdef DEBUG_BUILD
  2383. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2384. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2385. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2386. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2387. #endif
  2388. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2389. st_synchronize();
  2390. current_position[X_AXIS] = destination[X_AXIS];
  2391. current_position[Y_AXIS] = destination[Y_AXIS];
  2392. enable_endstops(true);
  2393. endstops_hit_on_purpose();
  2394. homeaxis(Z_AXIS);
  2395. #else // MESH_BED_LEVELING
  2396. homeaxis(Z_AXIS);
  2397. #endif // MESH_BED_LEVELING
  2398. }
  2399. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2400. if(home_all_axes) {
  2401. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2402. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2403. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2404. feedrate = XY_TRAVEL_SPEED/60;
  2405. current_position[Z_AXIS] = 0;
  2406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2407. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2408. st_synchronize();
  2409. current_position[X_AXIS] = destination[X_AXIS];
  2410. current_position[Y_AXIS] = destination[Y_AXIS];
  2411. homeaxis(Z_AXIS);
  2412. }
  2413. // Let's see if X and Y are homed and probe is inside bed area.
  2414. if(home_z) {
  2415. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2416. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2417. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2418. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2419. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2420. current_position[Z_AXIS] = 0;
  2421. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2422. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2423. feedrate = max_feedrate[Z_AXIS];
  2424. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2425. st_synchronize();
  2426. homeaxis(Z_AXIS);
  2427. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2428. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2429. SERIAL_ECHO_START;
  2430. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2431. } else {
  2432. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2433. SERIAL_ECHO_START;
  2434. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2435. }
  2436. }
  2437. #endif // Z_SAFE_HOMING
  2438. #endif // Z_HOME_DIR < 0
  2439. if(home_z_axis && home_z_value != 0)
  2440. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2441. #ifdef ENABLE_AUTO_BED_LEVELING
  2442. if(home_z)
  2443. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2444. #endif
  2445. // Set the planner and stepper routine positions.
  2446. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2447. // contains the machine coordinates.
  2448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2449. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2450. enable_endstops(false);
  2451. #endif
  2452. feedrate = saved_feedrate;
  2453. feedmultiply = saved_feedmultiply;
  2454. previous_millis_cmd = millis();
  2455. endstops_hit_on_purpose();
  2456. #ifndef MESH_BED_LEVELING
  2457. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2458. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2459. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2460. lcd_adjust_z();
  2461. #endif
  2462. // Load the machine correction matrix
  2463. world2machine_initialize();
  2464. // and correct the current_position XY axes to match the transformed coordinate system.
  2465. world2machine_update_current();
  2466. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2467. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2468. {
  2469. if (! home_z && mbl_was_active) {
  2470. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2471. mbl.active = true;
  2472. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2473. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2474. }
  2475. }
  2476. else
  2477. {
  2478. st_synchronize();
  2479. homing_flag = false;
  2480. }
  2481. #endif
  2482. if (farm_mode) { prusa_statistics(20); };
  2483. homing_flag = false;
  2484. #if 0
  2485. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2486. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2487. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2488. #endif
  2489. }
  2490. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2491. {
  2492. bool final_result = false;
  2493. #ifdef TMC2130
  2494. FORCE_HIGH_POWER_START;
  2495. #endif // TMC2130
  2496. // Only Z calibration?
  2497. if (!onlyZ)
  2498. {
  2499. setTargetBed(0);
  2500. setTargetHotend0(0);
  2501. setTargetHotend1(0);
  2502. setTargetHotend2(0);
  2503. adjust_bed_reset(); //reset bed level correction
  2504. }
  2505. // Disable the default update procedure of the display. We will do a modal dialog.
  2506. lcd_update_enable(false);
  2507. // Let the planner use the uncorrected coordinates.
  2508. mbl.reset();
  2509. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2510. // the planner will not perform any adjustments in the XY plane.
  2511. // Wait for the motors to stop and update the current position with the absolute values.
  2512. world2machine_revert_to_uncorrected();
  2513. // Reset the baby step value applied without moving the axes.
  2514. babystep_reset();
  2515. // Mark all axes as in a need for homing.
  2516. memset(axis_known_position, 0, sizeof(axis_known_position));
  2517. // Home in the XY plane.
  2518. //set_destination_to_current();
  2519. setup_for_endstop_move();
  2520. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2521. home_xy();
  2522. enable_endstops(false);
  2523. current_position[X_AXIS] += 5;
  2524. current_position[Y_AXIS] += 5;
  2525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2526. st_synchronize();
  2527. // Let the user move the Z axes up to the end stoppers.
  2528. #ifdef TMC2130
  2529. if (calibrate_z_auto())
  2530. {
  2531. #else //TMC2130
  2532. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2533. {
  2534. #endif //TMC2130
  2535. refresh_cmd_timeout();
  2536. #ifndef STEEL_SHEET
  2537. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2538. {
  2539. lcd_wait_for_cool_down();
  2540. }
  2541. #endif //STEEL_SHEET
  2542. if(!onlyZ)
  2543. {
  2544. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2545. #ifdef STEEL_SHEET
  2546. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2547. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2548. #endif //STEEL_SHEET
  2549. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2550. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2551. KEEPALIVE_STATE(IN_HANDLER);
  2552. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2553. lcd_set_cursor(0, 2);
  2554. lcd_print(1);
  2555. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2556. }
  2557. // Move the print head close to the bed.
  2558. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2559. bool endstops_enabled = enable_endstops(true);
  2560. #ifdef TMC2130
  2561. tmc2130_home_enter(Z_AXIS_MASK);
  2562. #endif //TMC2130
  2563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2564. st_synchronize();
  2565. #ifdef TMC2130
  2566. tmc2130_home_exit();
  2567. #endif //TMC2130
  2568. enable_endstops(endstops_enabled);
  2569. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2570. {
  2571. int8_t verbosity_level = 0;
  2572. if (code_seen('V'))
  2573. {
  2574. // Just 'V' without a number counts as V1.
  2575. char c = strchr_pointer[1];
  2576. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2577. }
  2578. if (onlyZ)
  2579. {
  2580. clean_up_after_endstop_move();
  2581. // Z only calibration.
  2582. // Load the machine correction matrix
  2583. world2machine_initialize();
  2584. // and correct the current_position to match the transformed coordinate system.
  2585. world2machine_update_current();
  2586. //FIXME
  2587. bool result = sample_mesh_and_store_reference();
  2588. if (result)
  2589. {
  2590. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2591. // Shipped, the nozzle height has been set already. The user can start printing now.
  2592. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2593. final_result = true;
  2594. // babystep_apply();
  2595. }
  2596. }
  2597. else
  2598. {
  2599. // Reset the baby step value and the baby step applied flag.
  2600. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2601. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2602. // Complete XYZ calibration.
  2603. uint8_t point_too_far_mask = 0;
  2604. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2605. clean_up_after_endstop_move();
  2606. // Print head up.
  2607. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2609. st_synchronize();
  2610. //#ifndef NEW_XYZCAL
  2611. if (result >= 0)
  2612. {
  2613. #ifdef HEATBED_V2
  2614. sample_z();
  2615. #else //HEATBED_V2
  2616. point_too_far_mask = 0;
  2617. // Second half: The fine adjustment.
  2618. // Let the planner use the uncorrected coordinates.
  2619. mbl.reset();
  2620. world2machine_reset();
  2621. // Home in the XY plane.
  2622. setup_for_endstop_move();
  2623. home_xy();
  2624. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2625. clean_up_after_endstop_move();
  2626. // Print head up.
  2627. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2629. st_synchronize();
  2630. // if (result >= 0) babystep_apply();
  2631. #endif //HEATBED_V2
  2632. }
  2633. //#endif //NEW_XYZCAL
  2634. lcd_update_enable(true);
  2635. lcd_update(2);
  2636. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2637. if (result >= 0)
  2638. {
  2639. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2640. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2641. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2642. final_result = true;
  2643. }
  2644. }
  2645. #ifdef TMC2130
  2646. tmc2130_home_exit();
  2647. #endif
  2648. }
  2649. else
  2650. {
  2651. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2652. final_result = false;
  2653. }
  2654. }
  2655. else
  2656. {
  2657. // Timeouted.
  2658. }
  2659. lcd_update_enable(true);
  2660. #ifdef TMC2130
  2661. FORCE_HIGH_POWER_END;
  2662. #endif // TMC2130
  2663. return final_result;
  2664. }
  2665. void gcode_M114()
  2666. {
  2667. SERIAL_PROTOCOLPGM("X:");
  2668. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2669. SERIAL_PROTOCOLPGM(" Y:");
  2670. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2671. SERIAL_PROTOCOLPGM(" Z:");
  2672. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2673. SERIAL_PROTOCOLPGM(" E:");
  2674. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2675. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2676. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2677. SERIAL_PROTOCOLPGM(" Y:");
  2678. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2679. SERIAL_PROTOCOLPGM(" Z:");
  2680. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2681. SERIAL_PROTOCOLPGM(" E:");
  2682. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2683. SERIAL_PROTOCOLLN("");
  2684. }
  2685. void gcode_M701()
  2686. {
  2687. #ifdef SNMM
  2688. extr_adj(snmm_extruder);//loads current extruder
  2689. #else
  2690. enable_z();
  2691. custom_message = true;
  2692. custom_message_type = 2;
  2693. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2694. current_position[E_AXIS] += 40;
  2695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2696. st_synchronize();
  2697. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2698. current_position[E_AXIS] += 30;
  2699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2700. st_synchronize();
  2701. current_position[E_AXIS] += 25;
  2702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2703. st_synchronize();
  2704. tone(BEEPER, 500);
  2705. delay_keep_alive(50);
  2706. noTone(BEEPER);
  2707. if (!farm_mode && loading_flag) {
  2708. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2709. while (!clean) {
  2710. lcd_update_enable(true);
  2711. lcd_update(2);
  2712. current_position[E_AXIS] += 25;
  2713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2714. st_synchronize();
  2715. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2716. }
  2717. }
  2718. lcd_update_enable(true);
  2719. lcd_update(2);
  2720. lcd_setstatuspgm(_T(WELCOME_MSG));
  2721. disable_z();
  2722. loading_flag = false;
  2723. custom_message = false;
  2724. custom_message_type = 0;
  2725. #endif
  2726. }
  2727. /**
  2728. * @brief Get serial number from 32U2 processor
  2729. *
  2730. * Typical format of S/N is:CZPX0917X003XC13518
  2731. *
  2732. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2733. *
  2734. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2735. * reply is transmitted to serial port 1 character by character.
  2736. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2737. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2738. * in any case.
  2739. */
  2740. static void gcode_PRUSA_SN()
  2741. {
  2742. if (farm_mode) {
  2743. selectedSerialPort = 0;
  2744. putchar(';');
  2745. putchar('S');
  2746. int numbersRead = 0;
  2747. ShortTimer timeout;
  2748. timeout.start();
  2749. while (numbersRead < 19) {
  2750. while (MSerial.available() > 0) {
  2751. uint8_t serial_char = MSerial.read();
  2752. selectedSerialPort = 1;
  2753. putchar(serial_char);
  2754. numbersRead++;
  2755. selectedSerialPort = 0;
  2756. }
  2757. if (timeout.expired(100u)) break;
  2758. }
  2759. selectedSerialPort = 1;
  2760. putchar('\n');
  2761. #if 0
  2762. for (int b = 0; b < 3; b++) {
  2763. tone(BEEPER, 110);
  2764. delay(50);
  2765. noTone(BEEPER);
  2766. delay(50);
  2767. }
  2768. #endif
  2769. } else {
  2770. puts_P(_N("Not in farm mode."));
  2771. }
  2772. }
  2773. #ifdef BACKLASH_X
  2774. extern uint8_t st_backlash_x;
  2775. #endif //BACKLASH_X
  2776. #ifdef BACKLASH_Y
  2777. extern uint8_t st_backlash_y;
  2778. #endif //BACKLASH_Y
  2779. void process_commands()
  2780. {
  2781. if (!buflen) return; //empty command
  2782. #ifdef FILAMENT_RUNOUT_SUPPORT
  2783. SET_INPUT(FR_SENS);
  2784. #endif
  2785. #ifdef CMDBUFFER_DEBUG
  2786. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2787. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2788. SERIAL_ECHOLNPGM("");
  2789. SERIAL_ECHOPGM("In cmdqueue: ");
  2790. SERIAL_ECHO(buflen);
  2791. SERIAL_ECHOLNPGM("");
  2792. #endif /* CMDBUFFER_DEBUG */
  2793. unsigned long codenum; //throw away variable
  2794. char *starpos = NULL;
  2795. #ifdef ENABLE_AUTO_BED_LEVELING
  2796. float x_tmp, y_tmp, z_tmp, real_z;
  2797. #endif
  2798. // PRUSA GCODES
  2799. KEEPALIVE_STATE(IN_HANDLER);
  2800. #ifdef SNMM
  2801. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2802. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2803. int8_t SilentMode;
  2804. #endif
  2805. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2806. starpos = (strchr(strchr_pointer + 5, '*'));
  2807. if (starpos != NULL)
  2808. *(starpos) = '\0';
  2809. lcd_setstatus(strchr_pointer + 5);
  2810. }
  2811. #ifdef TMC2130
  2812. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2813. {
  2814. if(code_seen("CRASH_DETECTED"))
  2815. {
  2816. uint8_t mask = 0;
  2817. if (code_seen("X")) mask |= X_AXIS_MASK;
  2818. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2819. crashdet_detected(mask);
  2820. }
  2821. else if(code_seen("CRASH_RECOVER"))
  2822. crashdet_recover();
  2823. else if(code_seen("CRASH_CANCEL"))
  2824. crashdet_cancel();
  2825. }
  2826. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2827. {
  2828. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2829. {
  2830. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2831. axis = (axis == 'E')?3:(axis - 'X');
  2832. if (axis < 4)
  2833. {
  2834. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2835. tmc2130_set_wave(axis, 247, fac);
  2836. }
  2837. }
  2838. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2839. {
  2840. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2841. axis = (axis == 'E')?3:(axis - 'X');
  2842. if (axis < 4)
  2843. {
  2844. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2845. uint16_t res = tmc2130_get_res(axis);
  2846. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2847. }
  2848. }
  2849. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2850. {
  2851. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2852. axis = (axis == 'E')?3:(axis - 'X');
  2853. if (axis < 4)
  2854. {
  2855. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2856. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2857. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2858. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2859. char* str_end = 0;
  2860. if (CMDBUFFER_CURRENT_STRING[14])
  2861. {
  2862. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2863. if (str_end && *str_end)
  2864. {
  2865. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2866. if (str_end && *str_end)
  2867. {
  2868. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2869. if (str_end && *str_end)
  2870. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2871. }
  2872. }
  2873. }
  2874. tmc2130_chopper_config[axis].toff = chop0;
  2875. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2876. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2877. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2878. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2879. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2880. }
  2881. }
  2882. }
  2883. #ifdef BACKLASH_X
  2884. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2885. {
  2886. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2887. st_backlash_x = bl;
  2888. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2889. }
  2890. #endif //BACKLASH_X
  2891. #ifdef BACKLASH_Y
  2892. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2893. {
  2894. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2895. st_backlash_y = bl;
  2896. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2897. }
  2898. #endif //BACKLASH_Y
  2899. #endif //TMC2130
  2900. else if(code_seen("PRUSA")){
  2901. if (code_seen("Ping")) { //PRUSA Ping
  2902. if (farm_mode) {
  2903. PingTime = millis();
  2904. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2905. }
  2906. }
  2907. else if (code_seen("PRN")) {
  2908. printf_P(_N("%d"), status_number);
  2909. }else if (code_seen("FAN")) {
  2910. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2911. }else if (code_seen("fn")) {
  2912. if (farm_mode) {
  2913. printf_P(_N("%d"), farm_no);
  2914. }
  2915. else {
  2916. puts_P(_N("Not in farm mode."));
  2917. }
  2918. }
  2919. else if (code_seen("thx")) {
  2920. no_response = false;
  2921. } else if (code_seen("RESET")) {
  2922. // careful!
  2923. if (farm_mode) {
  2924. #ifdef WATCHDOG
  2925. boot_app_magic = BOOT_APP_MAGIC;
  2926. boot_app_flags = BOOT_APP_FLG_RUN;
  2927. wdt_enable(WDTO_15MS);
  2928. cli();
  2929. while(1);
  2930. #else //WATCHDOG
  2931. asm volatile("jmp 0x3E000");
  2932. #endif //WATCHDOG
  2933. }
  2934. else {
  2935. MYSERIAL.println("Not in farm mode.");
  2936. }
  2937. }else if (code_seen("fv")) {
  2938. // get file version
  2939. #ifdef SDSUPPORT
  2940. card.openFile(strchr_pointer + 3,true);
  2941. while (true) {
  2942. uint16_t readByte = card.get();
  2943. MYSERIAL.write(readByte);
  2944. if (readByte=='\n') {
  2945. break;
  2946. }
  2947. }
  2948. card.closefile();
  2949. #endif // SDSUPPORT
  2950. } else if (code_seen("M28")) {
  2951. trace();
  2952. prusa_sd_card_upload = true;
  2953. card.openFile(strchr_pointer+4,false);
  2954. } else if (code_seen("SN")) {
  2955. gcode_PRUSA_SN();
  2956. } else if(code_seen("Fir")){
  2957. SERIAL_PROTOCOLLN(FW_VERSION);
  2958. } else if(code_seen("Rev")){
  2959. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2960. } else if(code_seen("Lang")) {
  2961. lang_reset();
  2962. } else if(code_seen("Lz")) {
  2963. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2964. } else if(code_seen("Beat")) {
  2965. // Kick farm link timer
  2966. kicktime = millis();
  2967. } else if(code_seen("FR")) {
  2968. // Factory full reset
  2969. factory_reset(0,true);
  2970. }
  2971. //else if (code_seen('Cal')) {
  2972. // lcd_calibration();
  2973. // }
  2974. }
  2975. else if (code_seen('^')) {
  2976. // nothing, this is a version line
  2977. } else if(code_seen('G'))
  2978. {
  2979. switch((int)code_value())
  2980. {
  2981. case 0: // G0 -> G1
  2982. case 1: // G1
  2983. if(Stopped == false) {
  2984. #ifdef FILAMENT_RUNOUT_SUPPORT
  2985. if(READ(FR_SENS)){
  2986. feedmultiplyBckp=feedmultiply;
  2987. float target[4];
  2988. float lastpos[4];
  2989. target[X_AXIS]=current_position[X_AXIS];
  2990. target[Y_AXIS]=current_position[Y_AXIS];
  2991. target[Z_AXIS]=current_position[Z_AXIS];
  2992. target[E_AXIS]=current_position[E_AXIS];
  2993. lastpos[X_AXIS]=current_position[X_AXIS];
  2994. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2995. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2996. lastpos[E_AXIS]=current_position[E_AXIS];
  2997. //retract by E
  2998. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2999. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3000. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3001. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3002. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3003. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3004. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3005. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3006. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3007. //finish moves
  3008. st_synchronize();
  3009. //disable extruder steppers so filament can be removed
  3010. disable_e0();
  3011. disable_e1();
  3012. disable_e2();
  3013. delay(100);
  3014. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3015. uint8_t cnt=0;
  3016. int counterBeep = 0;
  3017. lcd_wait_interact();
  3018. while(!lcd_clicked()){
  3019. cnt++;
  3020. manage_heater();
  3021. manage_inactivity(true);
  3022. //lcd_update(0);
  3023. if(cnt==0)
  3024. {
  3025. #if BEEPER > 0
  3026. if (counterBeep== 500){
  3027. counterBeep = 0;
  3028. }
  3029. SET_OUTPUT(BEEPER);
  3030. if (counterBeep== 0){
  3031. WRITE(BEEPER,HIGH);
  3032. }
  3033. if (counterBeep== 20){
  3034. WRITE(BEEPER,LOW);
  3035. }
  3036. counterBeep++;
  3037. #else
  3038. #endif
  3039. }
  3040. }
  3041. WRITE(BEEPER,LOW);
  3042. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3043. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3044. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3045. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3046. lcd_change_fil_state = 0;
  3047. lcd_loading_filament();
  3048. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3049. lcd_change_fil_state = 0;
  3050. lcd_alright();
  3051. switch(lcd_change_fil_state){
  3052. case 2:
  3053. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3054. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3055. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3057. lcd_loading_filament();
  3058. break;
  3059. case 3:
  3060. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3062. lcd_loading_color();
  3063. break;
  3064. default:
  3065. lcd_change_success();
  3066. break;
  3067. }
  3068. }
  3069. target[E_AXIS]+= 5;
  3070. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3071. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3072. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3073. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3074. //plan_set_e_position(current_position[E_AXIS]);
  3075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3076. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3077. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3078. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3079. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3080. plan_set_e_position(lastpos[E_AXIS]);
  3081. feedmultiply=feedmultiplyBckp;
  3082. char cmd[9];
  3083. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3084. enquecommand(cmd);
  3085. }
  3086. #endif
  3087. get_coordinates(); // For X Y Z E F
  3088. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3089. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3090. }
  3091. #ifdef FWRETRACT
  3092. if(autoretract_enabled)
  3093. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3094. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3095. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3096. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3097. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3098. retract(!retracted[active_extruder]);
  3099. return;
  3100. }
  3101. }
  3102. #endif //FWRETRACT
  3103. prepare_move();
  3104. //ClearToSend();
  3105. }
  3106. break;
  3107. case 2: // G2 - CW ARC
  3108. if(Stopped == false) {
  3109. get_arc_coordinates();
  3110. prepare_arc_move(true);
  3111. }
  3112. break;
  3113. case 3: // G3 - CCW ARC
  3114. if(Stopped == false) {
  3115. get_arc_coordinates();
  3116. prepare_arc_move(false);
  3117. }
  3118. break;
  3119. case 4: // G4 dwell
  3120. codenum = 0;
  3121. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3122. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3123. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3124. st_synchronize();
  3125. codenum += millis(); // keep track of when we started waiting
  3126. previous_millis_cmd = millis();
  3127. while(millis() < codenum) {
  3128. manage_heater();
  3129. manage_inactivity();
  3130. lcd_update(0);
  3131. }
  3132. break;
  3133. #ifdef FWRETRACT
  3134. case 10: // G10 retract
  3135. #if EXTRUDERS > 1
  3136. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3137. retract(true,retracted_swap[active_extruder]);
  3138. #else
  3139. retract(true);
  3140. #endif
  3141. break;
  3142. case 11: // G11 retract_recover
  3143. #if EXTRUDERS > 1
  3144. retract(false,retracted_swap[active_extruder]);
  3145. #else
  3146. retract(false);
  3147. #endif
  3148. break;
  3149. #endif //FWRETRACT
  3150. case 28: //G28 Home all Axis one at a time
  3151. {
  3152. long home_x_value = 0;
  3153. long home_y_value = 0;
  3154. long home_z_value = 0;
  3155. // Which axes should be homed?
  3156. bool home_x = code_seen(axis_codes[X_AXIS]);
  3157. home_x_value = code_value_long();
  3158. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3159. home_y_value = code_value_long();
  3160. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3161. home_z_value = code_value_long();
  3162. bool without_mbl = code_seen('W');
  3163. // calibrate?
  3164. bool calib = code_seen('C');
  3165. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3166. if ((home_x || home_y || without_mbl || home_z) == false) {
  3167. // Push the commands to the front of the message queue in the reverse order!
  3168. // There shall be always enough space reserved for these commands.
  3169. goto case_G80;
  3170. }
  3171. break;
  3172. }
  3173. #ifdef ENABLE_AUTO_BED_LEVELING
  3174. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3175. {
  3176. #if Z_MIN_PIN == -1
  3177. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3178. #endif
  3179. // Prevent user from running a G29 without first homing in X and Y
  3180. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3181. {
  3182. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3183. SERIAL_ECHO_START;
  3184. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3185. break; // abort G29, since we don't know where we are
  3186. }
  3187. st_synchronize();
  3188. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3189. //vector_3 corrected_position = plan_get_position_mm();
  3190. //corrected_position.debug("position before G29");
  3191. plan_bed_level_matrix.set_to_identity();
  3192. vector_3 uncorrected_position = plan_get_position();
  3193. //uncorrected_position.debug("position durring G29");
  3194. current_position[X_AXIS] = uncorrected_position.x;
  3195. current_position[Y_AXIS] = uncorrected_position.y;
  3196. current_position[Z_AXIS] = uncorrected_position.z;
  3197. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3198. setup_for_endstop_move();
  3199. feedrate = homing_feedrate[Z_AXIS];
  3200. #ifdef AUTO_BED_LEVELING_GRID
  3201. // probe at the points of a lattice grid
  3202. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3203. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3204. // solve the plane equation ax + by + d = z
  3205. // A is the matrix with rows [x y 1] for all the probed points
  3206. // B is the vector of the Z positions
  3207. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3208. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3209. // "A" matrix of the linear system of equations
  3210. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3211. // "B" vector of Z points
  3212. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3213. int probePointCounter = 0;
  3214. bool zig = true;
  3215. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3216. {
  3217. int xProbe, xInc;
  3218. if (zig)
  3219. {
  3220. xProbe = LEFT_PROBE_BED_POSITION;
  3221. //xEnd = RIGHT_PROBE_BED_POSITION;
  3222. xInc = xGridSpacing;
  3223. zig = false;
  3224. } else // zag
  3225. {
  3226. xProbe = RIGHT_PROBE_BED_POSITION;
  3227. //xEnd = LEFT_PROBE_BED_POSITION;
  3228. xInc = -xGridSpacing;
  3229. zig = true;
  3230. }
  3231. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3232. {
  3233. float z_before;
  3234. if (probePointCounter == 0)
  3235. {
  3236. // raise before probing
  3237. z_before = Z_RAISE_BEFORE_PROBING;
  3238. } else
  3239. {
  3240. // raise extruder
  3241. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3242. }
  3243. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3244. eqnBVector[probePointCounter] = measured_z;
  3245. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3246. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3247. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3248. probePointCounter++;
  3249. xProbe += xInc;
  3250. }
  3251. }
  3252. clean_up_after_endstop_move();
  3253. // solve lsq problem
  3254. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3255. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3256. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3257. SERIAL_PROTOCOLPGM(" b: ");
  3258. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3259. SERIAL_PROTOCOLPGM(" d: ");
  3260. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3261. set_bed_level_equation_lsq(plane_equation_coefficients);
  3262. free(plane_equation_coefficients);
  3263. #else // AUTO_BED_LEVELING_GRID not defined
  3264. // Probe at 3 arbitrary points
  3265. // probe 1
  3266. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3267. // probe 2
  3268. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3269. // probe 3
  3270. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3271. clean_up_after_endstop_move();
  3272. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3273. #endif // AUTO_BED_LEVELING_GRID
  3274. st_synchronize();
  3275. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3276. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3277. // When the bed is uneven, this height must be corrected.
  3278. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3279. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3280. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3281. z_tmp = current_position[Z_AXIS];
  3282. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3283. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3284. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3285. }
  3286. break;
  3287. #ifndef Z_PROBE_SLED
  3288. case 30: // G30 Single Z Probe
  3289. {
  3290. st_synchronize();
  3291. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3292. setup_for_endstop_move();
  3293. feedrate = homing_feedrate[Z_AXIS];
  3294. run_z_probe();
  3295. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3296. SERIAL_PROTOCOLPGM(" X: ");
  3297. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3298. SERIAL_PROTOCOLPGM(" Y: ");
  3299. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3300. SERIAL_PROTOCOLPGM(" Z: ");
  3301. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3302. SERIAL_PROTOCOLPGM("\n");
  3303. clean_up_after_endstop_move();
  3304. }
  3305. break;
  3306. #else
  3307. case 31: // dock the sled
  3308. dock_sled(true);
  3309. break;
  3310. case 32: // undock the sled
  3311. dock_sled(false);
  3312. break;
  3313. #endif // Z_PROBE_SLED
  3314. #endif // ENABLE_AUTO_BED_LEVELING
  3315. #ifdef MESH_BED_LEVELING
  3316. case 30: // G30 Single Z Probe
  3317. {
  3318. st_synchronize();
  3319. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3320. setup_for_endstop_move();
  3321. feedrate = homing_feedrate[Z_AXIS];
  3322. find_bed_induction_sensor_point_z(-10.f, 3);
  3323. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3324. clean_up_after_endstop_move();
  3325. }
  3326. break;
  3327. case 75:
  3328. {
  3329. for (int i = 40; i <= 110; i++)
  3330. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3331. }
  3332. break;
  3333. case 76: //PINDA probe temperature calibration
  3334. {
  3335. #ifdef PINDA_THERMISTOR
  3336. if (true)
  3337. {
  3338. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3339. //we need to know accurate position of first calibration point
  3340. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3341. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3342. break;
  3343. }
  3344. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3345. {
  3346. // We don't know where we are! HOME!
  3347. // Push the commands to the front of the message queue in the reverse order!
  3348. // There shall be always enough space reserved for these commands.
  3349. repeatcommand_front(); // repeat G76 with all its parameters
  3350. enquecommand_front_P((PSTR("G28 W0")));
  3351. break;
  3352. }
  3353. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3354. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3355. if (result)
  3356. {
  3357. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3359. current_position[Z_AXIS] = 50;
  3360. current_position[Y_AXIS] = 180;
  3361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3362. st_synchronize();
  3363. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3364. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3365. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3367. st_synchronize();
  3368. gcode_G28(false, false, true);
  3369. }
  3370. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3371. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3372. current_position[Z_AXIS] = 100;
  3373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3374. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3375. lcd_temp_cal_show_result(false);
  3376. break;
  3377. }
  3378. }
  3379. lcd_update_enable(true);
  3380. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3381. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3382. float zero_z;
  3383. int z_shift = 0; //unit: steps
  3384. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3385. if (start_temp < 35) start_temp = 35;
  3386. if (start_temp < current_temperature_pinda) start_temp += 5;
  3387. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3388. // setTargetHotend(200, 0);
  3389. setTargetBed(70 + (start_temp - 30));
  3390. custom_message = true;
  3391. custom_message_type = 4;
  3392. custom_message_state = 1;
  3393. custom_message = _T(MSG_TEMP_CALIBRATION);
  3394. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3396. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3397. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3399. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3401. st_synchronize();
  3402. while (current_temperature_pinda < start_temp)
  3403. {
  3404. delay_keep_alive(1000);
  3405. serialecho_temperatures();
  3406. }
  3407. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3408. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3410. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3411. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3413. st_synchronize();
  3414. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3415. if (find_z_result == false) {
  3416. lcd_temp_cal_show_result(find_z_result);
  3417. break;
  3418. }
  3419. zero_z = current_position[Z_AXIS];
  3420. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3421. int i = -1; for (; i < 5; i++)
  3422. {
  3423. float temp = (40 + i * 5);
  3424. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3425. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3426. if (start_temp <= temp) break;
  3427. }
  3428. for (i++; i < 5; i++)
  3429. {
  3430. float temp = (40 + i * 5);
  3431. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3432. custom_message_state = i + 2;
  3433. setTargetBed(50 + 10 * (temp - 30) / 5);
  3434. // setTargetHotend(255, 0);
  3435. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3437. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3438. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3440. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3442. st_synchronize();
  3443. while (current_temperature_pinda < temp)
  3444. {
  3445. delay_keep_alive(1000);
  3446. serialecho_temperatures();
  3447. }
  3448. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3450. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3451. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3453. st_synchronize();
  3454. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3455. if (find_z_result == false) {
  3456. lcd_temp_cal_show_result(find_z_result);
  3457. break;
  3458. }
  3459. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3460. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3461. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3462. }
  3463. lcd_temp_cal_show_result(true);
  3464. break;
  3465. }
  3466. #endif //PINDA_THERMISTOR
  3467. setTargetBed(PINDA_MIN_T);
  3468. float zero_z;
  3469. int z_shift = 0; //unit: steps
  3470. int t_c; // temperature
  3471. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3472. // We don't know where we are! HOME!
  3473. // Push the commands to the front of the message queue in the reverse order!
  3474. // There shall be always enough space reserved for these commands.
  3475. repeatcommand_front(); // repeat G76 with all its parameters
  3476. enquecommand_front_P((PSTR("G28 W0")));
  3477. break;
  3478. }
  3479. puts_P(_N("PINDA probe calibration start"));
  3480. custom_message = true;
  3481. custom_message_type = 4;
  3482. custom_message_state = 1;
  3483. custom_message = _T(MSG_TEMP_CALIBRATION);
  3484. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3485. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3486. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3488. st_synchronize();
  3489. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3490. delay_keep_alive(1000);
  3491. serialecho_temperatures();
  3492. }
  3493. //enquecommand_P(PSTR("M190 S50"));
  3494. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3495. delay_keep_alive(1000);
  3496. serialecho_temperatures();
  3497. }
  3498. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3499. current_position[Z_AXIS] = 5;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3501. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3502. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3504. st_synchronize();
  3505. find_bed_induction_sensor_point_z(-1.f);
  3506. zero_z = current_position[Z_AXIS];
  3507. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3508. for (int i = 0; i<5; i++) {
  3509. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3510. custom_message_state = i + 2;
  3511. t_c = 60 + i * 10;
  3512. setTargetBed(t_c);
  3513. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3514. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3515. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3517. st_synchronize();
  3518. while (degBed() < t_c) {
  3519. delay_keep_alive(1000);
  3520. serialecho_temperatures();
  3521. }
  3522. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3523. delay_keep_alive(1000);
  3524. serialecho_temperatures();
  3525. }
  3526. current_position[Z_AXIS] = 5;
  3527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3528. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3529. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3531. st_synchronize();
  3532. find_bed_induction_sensor_point_z(-1.f);
  3533. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3534. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3535. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3536. }
  3537. custom_message_type = 0;
  3538. custom_message = false;
  3539. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3540. puts_P(_N("Temperature calibration done."));
  3541. disable_x();
  3542. disable_y();
  3543. disable_z();
  3544. disable_e0();
  3545. disable_e1();
  3546. disable_e2();
  3547. setTargetBed(0); //set bed target temperature back to 0
  3548. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3549. temp_cal_active = true;
  3550. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3551. lcd_update_enable(true);
  3552. lcd_update(2);
  3553. }
  3554. break;
  3555. #ifdef DIS
  3556. case 77:
  3557. {
  3558. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3559. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3560. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3561. float dimension_x = 40;
  3562. float dimension_y = 40;
  3563. int points_x = 40;
  3564. int points_y = 40;
  3565. float offset_x = 74;
  3566. float offset_y = 33;
  3567. if (code_seen('X')) dimension_x = code_value();
  3568. if (code_seen('Y')) dimension_y = code_value();
  3569. if (code_seen('XP')) points_x = code_value();
  3570. if (code_seen('YP')) points_y = code_value();
  3571. if (code_seen('XO')) offset_x = code_value();
  3572. if (code_seen('YO')) offset_y = code_value();
  3573. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3574. } break;
  3575. #endif
  3576. case 79: {
  3577. for (int i = 255; i > 0; i = i - 5) {
  3578. fanSpeed = i;
  3579. //delay_keep_alive(2000);
  3580. for (int j = 0; j < 100; j++) {
  3581. delay_keep_alive(100);
  3582. }
  3583. fan_speed[1];
  3584. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3585. }
  3586. }break;
  3587. /**
  3588. * G80: Mesh-based Z probe, probes a grid and produces a
  3589. * mesh to compensate for variable bed height
  3590. *
  3591. * The S0 report the points as below
  3592. *
  3593. * +----> X-axis
  3594. * |
  3595. * |
  3596. * v Y-axis
  3597. *
  3598. */
  3599. case 80:
  3600. #ifdef MK1BP
  3601. break;
  3602. #endif //MK1BP
  3603. case_G80:
  3604. {
  3605. mesh_bed_leveling_flag = true;
  3606. int8_t verbosity_level = 0;
  3607. static bool run = false;
  3608. if (code_seen('V')) {
  3609. // Just 'V' without a number counts as V1.
  3610. char c = strchr_pointer[1];
  3611. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3612. }
  3613. // Firstly check if we know where we are
  3614. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3615. // We don't know where we are! HOME!
  3616. // Push the commands to the front of the message queue in the reverse order!
  3617. // There shall be always enough space reserved for these commands.
  3618. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3619. repeatcommand_front(); // repeat G80 with all its parameters
  3620. enquecommand_front_P((PSTR("G28 W0")));
  3621. }
  3622. else {
  3623. mesh_bed_leveling_flag = false;
  3624. }
  3625. break;
  3626. }
  3627. bool temp_comp_start = true;
  3628. #ifdef PINDA_THERMISTOR
  3629. temp_comp_start = false;
  3630. #endif //PINDA_THERMISTOR
  3631. if (temp_comp_start)
  3632. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3633. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3634. temp_compensation_start();
  3635. run = true;
  3636. repeatcommand_front(); // repeat G80 with all its parameters
  3637. enquecommand_front_P((PSTR("G28 W0")));
  3638. }
  3639. else {
  3640. mesh_bed_leveling_flag = false;
  3641. }
  3642. break;
  3643. }
  3644. run = false;
  3645. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3646. mesh_bed_leveling_flag = false;
  3647. break;
  3648. }
  3649. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3650. bool custom_message_old = custom_message;
  3651. unsigned int custom_message_type_old = custom_message_type;
  3652. unsigned int custom_message_state_old = custom_message_state;
  3653. custom_message = true;
  3654. custom_message_type = 1;
  3655. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3656. lcd_update(1);
  3657. mbl.reset(); //reset mesh bed leveling
  3658. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3659. // consumed during the first movements following this statement.
  3660. babystep_undo();
  3661. // Cycle through all points and probe them
  3662. // First move up. During this first movement, the babystepping will be reverted.
  3663. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3665. // The move to the first calibration point.
  3666. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3667. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3668. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3669. #ifdef SUPPORT_VERBOSITY
  3670. if (verbosity_level >= 1) {
  3671. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3672. }
  3673. #endif //SUPPORT_VERBOSITY
  3674. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3676. // Wait until the move is finished.
  3677. st_synchronize();
  3678. int mesh_point = 0; //index number of calibration point
  3679. int ix = 0;
  3680. int iy = 0;
  3681. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3682. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3683. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3684. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3685. #ifdef SUPPORT_VERBOSITY
  3686. if (verbosity_level >= 1) {
  3687. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3688. }
  3689. #endif // SUPPORT_VERBOSITY
  3690. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3691. const char *kill_message = NULL;
  3692. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3693. // Get coords of a measuring point.
  3694. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3695. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3696. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3697. float z0 = 0.f;
  3698. if (has_z && mesh_point > 0) {
  3699. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3700. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3701. //#if 0
  3702. #ifdef SUPPORT_VERBOSITY
  3703. if (verbosity_level >= 1) {
  3704. SERIAL_ECHOLNPGM("");
  3705. SERIAL_ECHOPGM("Bed leveling, point: ");
  3706. MYSERIAL.print(mesh_point);
  3707. SERIAL_ECHOPGM(", calibration z: ");
  3708. MYSERIAL.print(z0, 5);
  3709. SERIAL_ECHOLNPGM("");
  3710. }
  3711. #endif // SUPPORT_VERBOSITY
  3712. //#endif
  3713. }
  3714. // Move Z up to MESH_HOME_Z_SEARCH.
  3715. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3717. st_synchronize();
  3718. // Move to XY position of the sensor point.
  3719. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3720. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3721. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3722. #ifdef SUPPORT_VERBOSITY
  3723. if (verbosity_level >= 1) {
  3724. SERIAL_PROTOCOL(mesh_point);
  3725. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3726. }
  3727. #endif // SUPPORT_VERBOSITY
  3728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3729. st_synchronize();
  3730. // Go down until endstop is hit
  3731. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3732. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3733. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3734. break;
  3735. }
  3736. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3737. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3738. break;
  3739. }
  3740. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3741. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3742. break;
  3743. }
  3744. #ifdef SUPPORT_VERBOSITY
  3745. if (verbosity_level >= 10) {
  3746. SERIAL_ECHOPGM("X: ");
  3747. MYSERIAL.print(current_position[X_AXIS], 5);
  3748. SERIAL_ECHOLNPGM("");
  3749. SERIAL_ECHOPGM("Y: ");
  3750. MYSERIAL.print(current_position[Y_AXIS], 5);
  3751. SERIAL_PROTOCOLPGM("\n");
  3752. }
  3753. #endif // SUPPORT_VERBOSITY
  3754. float offset_z = 0;
  3755. #ifdef PINDA_THERMISTOR
  3756. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3757. #endif //PINDA_THERMISTOR
  3758. // #ifdef SUPPORT_VERBOSITY
  3759. /* if (verbosity_level >= 1)
  3760. {
  3761. SERIAL_ECHOPGM("mesh bed leveling: ");
  3762. MYSERIAL.print(current_position[Z_AXIS], 5);
  3763. SERIAL_ECHOPGM(" offset: ");
  3764. MYSERIAL.print(offset_z, 5);
  3765. SERIAL_ECHOLNPGM("");
  3766. }*/
  3767. // #endif // SUPPORT_VERBOSITY
  3768. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3769. custom_message_state--;
  3770. mesh_point++;
  3771. lcd_update(1);
  3772. }
  3773. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3774. #ifdef SUPPORT_VERBOSITY
  3775. if (verbosity_level >= 20) {
  3776. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3777. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3778. MYSERIAL.print(current_position[Z_AXIS], 5);
  3779. }
  3780. #endif // SUPPORT_VERBOSITY
  3781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3782. st_synchronize();
  3783. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3784. kill(kill_message);
  3785. SERIAL_ECHOLNPGM("killed");
  3786. }
  3787. clean_up_after_endstop_move();
  3788. // SERIAL_ECHOLNPGM("clean up finished ");
  3789. bool apply_temp_comp = true;
  3790. #ifdef PINDA_THERMISTOR
  3791. apply_temp_comp = false;
  3792. #endif
  3793. if (apply_temp_comp)
  3794. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3795. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3796. // SERIAL_ECHOLNPGM("babystep applied");
  3797. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3798. #ifdef SUPPORT_VERBOSITY
  3799. if (verbosity_level >= 1) {
  3800. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3801. }
  3802. #endif // SUPPORT_VERBOSITY
  3803. for (uint8_t i = 0; i < 4; ++i) {
  3804. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3805. long correction = 0;
  3806. if (code_seen(codes[i]))
  3807. correction = code_value_long();
  3808. else if (eeprom_bed_correction_valid) {
  3809. unsigned char *addr = (i < 2) ?
  3810. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3811. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3812. correction = eeprom_read_int8(addr);
  3813. }
  3814. if (correction == 0)
  3815. continue;
  3816. float offset = float(correction) * 0.001f;
  3817. if (fabs(offset) > 0.101f) {
  3818. SERIAL_ERROR_START;
  3819. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3820. SERIAL_ECHO(offset);
  3821. SERIAL_ECHOLNPGM(" microns");
  3822. }
  3823. else {
  3824. switch (i) {
  3825. case 0:
  3826. for (uint8_t row = 0; row < 3; ++row) {
  3827. mbl.z_values[row][1] += 0.5f * offset;
  3828. mbl.z_values[row][0] += offset;
  3829. }
  3830. break;
  3831. case 1:
  3832. for (uint8_t row = 0; row < 3; ++row) {
  3833. mbl.z_values[row][1] += 0.5f * offset;
  3834. mbl.z_values[row][2] += offset;
  3835. }
  3836. break;
  3837. case 2:
  3838. for (uint8_t col = 0; col < 3; ++col) {
  3839. mbl.z_values[1][col] += 0.5f * offset;
  3840. mbl.z_values[0][col] += offset;
  3841. }
  3842. break;
  3843. case 3:
  3844. for (uint8_t col = 0; col < 3; ++col) {
  3845. mbl.z_values[1][col] += 0.5f * offset;
  3846. mbl.z_values[2][col] += offset;
  3847. }
  3848. break;
  3849. }
  3850. }
  3851. }
  3852. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3853. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3854. // SERIAL_ECHOLNPGM("Upsample finished");
  3855. mbl.active = 1; //activate mesh bed leveling
  3856. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3857. go_home_with_z_lift();
  3858. // SERIAL_ECHOLNPGM("Go home finished");
  3859. //unretract (after PINDA preheat retraction)
  3860. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3861. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3863. }
  3864. KEEPALIVE_STATE(NOT_BUSY);
  3865. // Restore custom message state
  3866. lcd_setstatuspgm(_T(WELCOME_MSG));
  3867. custom_message = custom_message_old;
  3868. custom_message_type = custom_message_type_old;
  3869. custom_message_state = custom_message_state_old;
  3870. mesh_bed_leveling_flag = false;
  3871. mesh_bed_run_from_menu = false;
  3872. lcd_update(2);
  3873. }
  3874. break;
  3875. /**
  3876. * G81: Print mesh bed leveling status and bed profile if activated
  3877. */
  3878. case 81:
  3879. if (mbl.active) {
  3880. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3881. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3882. SERIAL_PROTOCOLPGM(",");
  3883. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3884. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3885. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3886. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3887. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3888. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3889. SERIAL_PROTOCOLPGM(" ");
  3890. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3891. }
  3892. SERIAL_PROTOCOLPGM("\n");
  3893. }
  3894. }
  3895. else
  3896. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3897. break;
  3898. #if 0
  3899. /**
  3900. * G82: Single Z probe at current location
  3901. *
  3902. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3903. *
  3904. */
  3905. case 82:
  3906. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3907. setup_for_endstop_move();
  3908. find_bed_induction_sensor_point_z();
  3909. clean_up_after_endstop_move();
  3910. SERIAL_PROTOCOLPGM("Bed found at: ");
  3911. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3912. SERIAL_PROTOCOLPGM("\n");
  3913. break;
  3914. /**
  3915. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3916. */
  3917. case 83:
  3918. {
  3919. int babystepz = code_seen('S') ? code_value() : 0;
  3920. int BabyPosition = code_seen('P') ? code_value() : 0;
  3921. if (babystepz != 0) {
  3922. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3923. // Is the axis indexed starting with zero or one?
  3924. if (BabyPosition > 4) {
  3925. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3926. }else{
  3927. // Save it to the eeprom
  3928. babystepLoadZ = babystepz;
  3929. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3930. // adjust the Z
  3931. babystepsTodoZadd(babystepLoadZ);
  3932. }
  3933. }
  3934. }
  3935. break;
  3936. /**
  3937. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3938. */
  3939. case 84:
  3940. babystepsTodoZsubtract(babystepLoadZ);
  3941. // babystepLoadZ = 0;
  3942. break;
  3943. /**
  3944. * G85: Prusa3D specific: Pick best babystep
  3945. */
  3946. case 85:
  3947. lcd_pick_babystep();
  3948. break;
  3949. #endif
  3950. /**
  3951. * G86: Prusa3D specific: Disable babystep correction after home.
  3952. * This G-code will be performed at the start of a calibration script.
  3953. */
  3954. case 86:
  3955. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3956. break;
  3957. /**
  3958. * G87: Prusa3D specific: Enable babystep correction after home
  3959. * This G-code will be performed at the end of a calibration script.
  3960. */
  3961. case 87:
  3962. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3963. break;
  3964. /**
  3965. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3966. */
  3967. case 88:
  3968. break;
  3969. #endif // ENABLE_MESH_BED_LEVELING
  3970. case 90: // G90
  3971. relative_mode = false;
  3972. break;
  3973. case 91: // G91
  3974. relative_mode = true;
  3975. break;
  3976. case 92: // G92
  3977. if(!code_seen(axis_codes[E_AXIS]))
  3978. st_synchronize();
  3979. for(int8_t i=0; i < NUM_AXIS; i++) {
  3980. if(code_seen(axis_codes[i])) {
  3981. if(i == E_AXIS) {
  3982. current_position[i] = code_value();
  3983. plan_set_e_position(current_position[E_AXIS]);
  3984. }
  3985. else {
  3986. current_position[i] = code_value()+add_homing[i];
  3987. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3988. }
  3989. }
  3990. }
  3991. break;
  3992. case 98: // G98 (activate farm mode)
  3993. farm_mode = 1;
  3994. PingTime = millis();
  3995. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3996. SilentModeMenu = SILENT_MODE_OFF;
  3997. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3998. break;
  3999. case 99: // G99 (deactivate farm mode)
  4000. farm_mode = 0;
  4001. lcd_printer_connected();
  4002. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4003. lcd_update(2);
  4004. break;
  4005. default:
  4006. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4007. }
  4008. } // end if(code_seen('G'))
  4009. else if(code_seen('M'))
  4010. {
  4011. int index;
  4012. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4013. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4014. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4015. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4016. } else
  4017. switch((int)code_value())
  4018. {
  4019. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4020. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4021. {
  4022. char *src = strchr_pointer + 2;
  4023. codenum = 0;
  4024. bool hasP = false, hasS = false;
  4025. if (code_seen('P')) {
  4026. codenum = code_value(); // milliseconds to wait
  4027. hasP = codenum > 0;
  4028. }
  4029. if (code_seen('S')) {
  4030. codenum = code_value() * 1000; // seconds to wait
  4031. hasS = codenum > 0;
  4032. }
  4033. starpos = strchr(src, '*');
  4034. if (starpos != NULL) *(starpos) = '\0';
  4035. while (*src == ' ') ++src;
  4036. if (!hasP && !hasS && *src != '\0') {
  4037. lcd_setstatus(src);
  4038. } else {
  4039. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4040. }
  4041. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4042. st_synchronize();
  4043. previous_millis_cmd = millis();
  4044. if (codenum > 0){
  4045. codenum += millis(); // keep track of when we started waiting
  4046. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4047. while(millis() < codenum && !lcd_clicked()){
  4048. manage_heater();
  4049. manage_inactivity(true);
  4050. lcd_update(0);
  4051. }
  4052. KEEPALIVE_STATE(IN_HANDLER);
  4053. lcd_ignore_click(false);
  4054. }else{
  4055. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4056. while(!lcd_clicked()){
  4057. manage_heater();
  4058. manage_inactivity(true);
  4059. lcd_update(0);
  4060. }
  4061. KEEPALIVE_STATE(IN_HANDLER);
  4062. }
  4063. if (IS_SD_PRINTING)
  4064. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4065. else
  4066. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4067. }
  4068. break;
  4069. case 17:
  4070. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4071. enable_x();
  4072. enable_y();
  4073. enable_z();
  4074. enable_e0();
  4075. enable_e1();
  4076. enable_e2();
  4077. break;
  4078. #ifdef SDSUPPORT
  4079. case 20: // M20 - list SD card
  4080. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4081. card.ls();
  4082. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4083. break;
  4084. case 21: // M21 - init SD card
  4085. card.initsd();
  4086. break;
  4087. case 22: //M22 - release SD card
  4088. card.release();
  4089. break;
  4090. case 23: //M23 - Select file
  4091. starpos = (strchr(strchr_pointer + 4,'*'));
  4092. if(starpos!=NULL)
  4093. *(starpos)='\0';
  4094. card.openFile(strchr_pointer + 4,true);
  4095. break;
  4096. case 24: //M24 - Start SD print
  4097. if (!card.paused)
  4098. failstats_reset_print();
  4099. card.startFileprint();
  4100. starttime=millis();
  4101. break;
  4102. case 25: //M25 - Pause SD print
  4103. card.pauseSDPrint();
  4104. break;
  4105. case 26: //M26 - Set SD index
  4106. if(card.cardOK && code_seen('S')) {
  4107. card.setIndex(code_value_long());
  4108. }
  4109. break;
  4110. case 27: //M27 - Get SD status
  4111. card.getStatus();
  4112. break;
  4113. case 28: //M28 - Start SD write
  4114. starpos = (strchr(strchr_pointer + 4,'*'));
  4115. if(starpos != NULL){
  4116. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4117. strchr_pointer = strchr(npos,' ') + 1;
  4118. *(starpos) = '\0';
  4119. }
  4120. card.openFile(strchr_pointer+4,false);
  4121. break;
  4122. case 29: //M29 - Stop SD write
  4123. //processed in write to file routine above
  4124. //card,saving = false;
  4125. break;
  4126. case 30: //M30 <filename> Delete File
  4127. if (card.cardOK){
  4128. card.closefile();
  4129. starpos = (strchr(strchr_pointer + 4,'*'));
  4130. if(starpos != NULL){
  4131. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4132. strchr_pointer = strchr(npos,' ') + 1;
  4133. *(starpos) = '\0';
  4134. }
  4135. card.removeFile(strchr_pointer + 4);
  4136. }
  4137. break;
  4138. case 32: //M32 - Select file and start SD print
  4139. {
  4140. if(card.sdprinting) {
  4141. st_synchronize();
  4142. }
  4143. starpos = (strchr(strchr_pointer + 4,'*'));
  4144. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4145. if(namestartpos==NULL)
  4146. {
  4147. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4148. }
  4149. else
  4150. namestartpos++; //to skip the '!'
  4151. if(starpos!=NULL)
  4152. *(starpos)='\0';
  4153. bool call_procedure=(code_seen('P'));
  4154. if(strchr_pointer>namestartpos)
  4155. call_procedure=false; //false alert, 'P' found within filename
  4156. if( card.cardOK )
  4157. {
  4158. card.openFile(namestartpos,true,!call_procedure);
  4159. if(code_seen('S'))
  4160. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4161. card.setIndex(code_value_long());
  4162. card.startFileprint();
  4163. if(!call_procedure)
  4164. starttime=millis(); //procedure calls count as normal print time.
  4165. }
  4166. } break;
  4167. case 928: //M928 - Start SD write
  4168. starpos = (strchr(strchr_pointer + 5,'*'));
  4169. if(starpos != NULL){
  4170. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4171. strchr_pointer = strchr(npos,' ') + 1;
  4172. *(starpos) = '\0';
  4173. }
  4174. card.openLogFile(strchr_pointer+5);
  4175. break;
  4176. #endif //SDSUPPORT
  4177. case 31: //M31 take time since the start of the SD print or an M109 command
  4178. {
  4179. stoptime=millis();
  4180. char time[30];
  4181. unsigned long t=(stoptime-starttime)/1000;
  4182. int sec,min;
  4183. min=t/60;
  4184. sec=t%60;
  4185. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4186. SERIAL_ECHO_START;
  4187. SERIAL_ECHOLN(time);
  4188. lcd_setstatus(time);
  4189. autotempShutdown();
  4190. }
  4191. break;
  4192. #ifndef _DISABLE_M42_M226
  4193. case 42: //M42 -Change pin status via gcode
  4194. if (code_seen('S'))
  4195. {
  4196. int pin_status = code_value();
  4197. int pin_number = LED_PIN;
  4198. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4199. pin_number = code_value();
  4200. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4201. {
  4202. if (sensitive_pins[i] == pin_number)
  4203. {
  4204. pin_number = -1;
  4205. break;
  4206. }
  4207. }
  4208. #if defined(FAN_PIN) && FAN_PIN > -1
  4209. if (pin_number == FAN_PIN)
  4210. fanSpeed = pin_status;
  4211. #endif
  4212. if (pin_number > -1)
  4213. {
  4214. pinMode(pin_number, OUTPUT);
  4215. digitalWrite(pin_number, pin_status);
  4216. analogWrite(pin_number, pin_status);
  4217. }
  4218. }
  4219. break;
  4220. #endif //_DISABLE_M42_M226
  4221. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4222. // Reset the baby step value and the baby step applied flag.
  4223. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4224. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4225. // Reset the skew and offset in both RAM and EEPROM.
  4226. reset_bed_offset_and_skew();
  4227. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4228. // the planner will not perform any adjustments in the XY plane.
  4229. // Wait for the motors to stop and update the current position with the absolute values.
  4230. world2machine_revert_to_uncorrected();
  4231. break;
  4232. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4233. {
  4234. int8_t verbosity_level = 0;
  4235. bool only_Z = code_seen('Z');
  4236. #ifdef SUPPORT_VERBOSITY
  4237. if (code_seen('V'))
  4238. {
  4239. // Just 'V' without a number counts as V1.
  4240. char c = strchr_pointer[1];
  4241. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4242. }
  4243. #endif //SUPPORT_VERBOSITY
  4244. gcode_M45(only_Z, verbosity_level);
  4245. }
  4246. break;
  4247. /*
  4248. case 46:
  4249. {
  4250. // M46: Prusa3D: Show the assigned IP address.
  4251. uint8_t ip[4];
  4252. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4253. if (hasIP) {
  4254. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4255. SERIAL_ECHO(int(ip[0]));
  4256. SERIAL_ECHOPGM(".");
  4257. SERIAL_ECHO(int(ip[1]));
  4258. SERIAL_ECHOPGM(".");
  4259. SERIAL_ECHO(int(ip[2]));
  4260. SERIAL_ECHOPGM(".");
  4261. SERIAL_ECHO(int(ip[3]));
  4262. SERIAL_ECHOLNPGM("");
  4263. } else {
  4264. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4265. }
  4266. break;
  4267. }
  4268. */
  4269. case 47:
  4270. // M47: Prusa3D: Show end stops dialog on the display.
  4271. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4272. lcd_diag_show_end_stops();
  4273. KEEPALIVE_STATE(IN_HANDLER);
  4274. break;
  4275. #if 0
  4276. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4277. {
  4278. // Disable the default update procedure of the display. We will do a modal dialog.
  4279. lcd_update_enable(false);
  4280. // Let the planner use the uncorrected coordinates.
  4281. mbl.reset();
  4282. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4283. // the planner will not perform any adjustments in the XY plane.
  4284. // Wait for the motors to stop and update the current position with the absolute values.
  4285. world2machine_revert_to_uncorrected();
  4286. // Move the print head close to the bed.
  4287. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4289. st_synchronize();
  4290. // Home in the XY plane.
  4291. set_destination_to_current();
  4292. setup_for_endstop_move();
  4293. home_xy();
  4294. int8_t verbosity_level = 0;
  4295. if (code_seen('V')) {
  4296. // Just 'V' without a number counts as V1.
  4297. char c = strchr_pointer[1];
  4298. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4299. }
  4300. bool success = scan_bed_induction_points(verbosity_level);
  4301. clean_up_after_endstop_move();
  4302. // Print head up.
  4303. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4304. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4305. st_synchronize();
  4306. lcd_update_enable(true);
  4307. break;
  4308. }
  4309. #endif
  4310. // M48 Z-Probe repeatability measurement function.
  4311. //
  4312. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4313. //
  4314. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4315. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4316. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4317. // regenerated.
  4318. //
  4319. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4320. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4321. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4322. //
  4323. #ifdef ENABLE_AUTO_BED_LEVELING
  4324. #ifdef Z_PROBE_REPEATABILITY_TEST
  4325. case 48: // M48 Z-Probe repeatability
  4326. {
  4327. #if Z_MIN_PIN == -1
  4328. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4329. #endif
  4330. double sum=0.0;
  4331. double mean=0.0;
  4332. double sigma=0.0;
  4333. double sample_set[50];
  4334. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4335. double X_current, Y_current, Z_current;
  4336. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4337. if (code_seen('V') || code_seen('v')) {
  4338. verbose_level = code_value();
  4339. if (verbose_level<0 || verbose_level>4 ) {
  4340. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4341. goto Sigma_Exit;
  4342. }
  4343. }
  4344. if (verbose_level > 0) {
  4345. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4346. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4347. }
  4348. if (code_seen('n')) {
  4349. n_samples = code_value();
  4350. if (n_samples<4 || n_samples>50 ) {
  4351. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4352. goto Sigma_Exit;
  4353. }
  4354. }
  4355. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4356. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4357. Z_current = st_get_position_mm(Z_AXIS);
  4358. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4359. ext_position = st_get_position_mm(E_AXIS);
  4360. if (code_seen('X') || code_seen('x') ) {
  4361. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4362. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4363. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4364. goto Sigma_Exit;
  4365. }
  4366. }
  4367. if (code_seen('Y') || code_seen('y') ) {
  4368. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4369. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4370. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4371. goto Sigma_Exit;
  4372. }
  4373. }
  4374. if (code_seen('L') || code_seen('l') ) {
  4375. n_legs = code_value();
  4376. if ( n_legs==1 )
  4377. n_legs = 2;
  4378. if ( n_legs<0 || n_legs>15 ) {
  4379. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4380. goto Sigma_Exit;
  4381. }
  4382. }
  4383. //
  4384. // Do all the preliminary setup work. First raise the probe.
  4385. //
  4386. st_synchronize();
  4387. plan_bed_level_matrix.set_to_identity();
  4388. plan_buffer_line( X_current, Y_current, Z_start_location,
  4389. ext_position,
  4390. homing_feedrate[Z_AXIS]/60,
  4391. active_extruder);
  4392. st_synchronize();
  4393. //
  4394. // Now get everything to the specified probe point So we can safely do a probe to
  4395. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4396. // use that as a starting point for each probe.
  4397. //
  4398. if (verbose_level > 2)
  4399. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4400. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4401. ext_position,
  4402. homing_feedrate[X_AXIS]/60,
  4403. active_extruder);
  4404. st_synchronize();
  4405. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4406. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4407. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4408. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4409. //
  4410. // OK, do the inital probe to get us close to the bed.
  4411. // Then retrace the right amount and use that in subsequent probes
  4412. //
  4413. setup_for_endstop_move();
  4414. run_z_probe();
  4415. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4416. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4417. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4418. ext_position,
  4419. homing_feedrate[X_AXIS]/60,
  4420. active_extruder);
  4421. st_synchronize();
  4422. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4423. for( n=0; n<n_samples; n++) {
  4424. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4425. if ( n_legs) {
  4426. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4427. int rotational_direction, l;
  4428. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4429. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4430. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4431. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4432. //SERIAL_ECHOPAIR(" theta: ",theta);
  4433. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4434. //SERIAL_PROTOCOLLNPGM("");
  4435. for( l=0; l<n_legs-1; l++) {
  4436. if (rotational_direction==1)
  4437. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4438. else
  4439. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4440. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4441. if ( radius<0.0 )
  4442. radius = -radius;
  4443. X_current = X_probe_location + cos(theta) * radius;
  4444. Y_current = Y_probe_location + sin(theta) * radius;
  4445. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4446. X_current = X_MIN_POS;
  4447. if ( X_current>X_MAX_POS)
  4448. X_current = X_MAX_POS;
  4449. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4450. Y_current = Y_MIN_POS;
  4451. if ( Y_current>Y_MAX_POS)
  4452. Y_current = Y_MAX_POS;
  4453. if (verbose_level>3 ) {
  4454. SERIAL_ECHOPAIR("x: ", X_current);
  4455. SERIAL_ECHOPAIR("y: ", Y_current);
  4456. SERIAL_PROTOCOLLNPGM("");
  4457. }
  4458. do_blocking_move_to( X_current, Y_current, Z_current );
  4459. }
  4460. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4461. }
  4462. setup_for_endstop_move();
  4463. run_z_probe();
  4464. sample_set[n] = current_position[Z_AXIS];
  4465. //
  4466. // Get the current mean for the data points we have so far
  4467. //
  4468. sum=0.0;
  4469. for( j=0; j<=n; j++) {
  4470. sum = sum + sample_set[j];
  4471. }
  4472. mean = sum / (double (n+1));
  4473. //
  4474. // Now, use that mean to calculate the standard deviation for the
  4475. // data points we have so far
  4476. //
  4477. sum=0.0;
  4478. for( j=0; j<=n; j++) {
  4479. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4480. }
  4481. sigma = sqrt( sum / (double (n+1)) );
  4482. if (verbose_level > 1) {
  4483. SERIAL_PROTOCOL(n+1);
  4484. SERIAL_PROTOCOL(" of ");
  4485. SERIAL_PROTOCOL(n_samples);
  4486. SERIAL_PROTOCOLPGM(" z: ");
  4487. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4488. }
  4489. if (verbose_level > 2) {
  4490. SERIAL_PROTOCOL(" mean: ");
  4491. SERIAL_PROTOCOL_F(mean,6);
  4492. SERIAL_PROTOCOL(" sigma: ");
  4493. SERIAL_PROTOCOL_F(sigma,6);
  4494. }
  4495. if (verbose_level > 0)
  4496. SERIAL_PROTOCOLPGM("\n");
  4497. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4498. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4499. st_synchronize();
  4500. }
  4501. delay(1000);
  4502. clean_up_after_endstop_move();
  4503. // enable_endstops(true);
  4504. if (verbose_level > 0) {
  4505. SERIAL_PROTOCOLPGM("Mean: ");
  4506. SERIAL_PROTOCOL_F(mean, 6);
  4507. SERIAL_PROTOCOLPGM("\n");
  4508. }
  4509. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4510. SERIAL_PROTOCOL_F(sigma, 6);
  4511. SERIAL_PROTOCOLPGM("\n\n");
  4512. Sigma_Exit:
  4513. break;
  4514. }
  4515. #endif // Z_PROBE_REPEATABILITY_TEST
  4516. #endif // ENABLE_AUTO_BED_LEVELING
  4517. case 73: //M73 show percent done and time remaining
  4518. if(code_seen('P')) print_percent_done_normal = code_value();
  4519. if(code_seen('R')) print_time_remaining_normal = code_value();
  4520. if(code_seen('Q')) print_percent_done_silent = code_value();
  4521. if(code_seen('S')) print_time_remaining_silent = code_value();
  4522. {
  4523. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4524. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4525. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4526. }
  4527. break;
  4528. case 104: // M104
  4529. if(setTargetedHotend(104)){
  4530. break;
  4531. }
  4532. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4533. setWatch();
  4534. break;
  4535. case 112: // M112 -Emergency Stop
  4536. kill(_n(""), 3);
  4537. break;
  4538. case 140: // M140 set bed temp
  4539. if (code_seen('S')) setTargetBed(code_value());
  4540. break;
  4541. case 105 : // M105
  4542. if(setTargetedHotend(105)){
  4543. break;
  4544. }
  4545. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4546. SERIAL_PROTOCOLPGM("ok T:");
  4547. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4548. SERIAL_PROTOCOLPGM(" /");
  4549. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4550. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4551. SERIAL_PROTOCOLPGM(" B:");
  4552. SERIAL_PROTOCOL_F(degBed(),1);
  4553. SERIAL_PROTOCOLPGM(" /");
  4554. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4555. #endif //TEMP_BED_PIN
  4556. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4557. SERIAL_PROTOCOLPGM(" T");
  4558. SERIAL_PROTOCOL(cur_extruder);
  4559. SERIAL_PROTOCOLPGM(":");
  4560. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4561. SERIAL_PROTOCOLPGM(" /");
  4562. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4563. }
  4564. #else
  4565. SERIAL_ERROR_START;
  4566. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4567. #endif
  4568. SERIAL_PROTOCOLPGM(" @:");
  4569. #ifdef EXTRUDER_WATTS
  4570. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4571. SERIAL_PROTOCOLPGM("W");
  4572. #else
  4573. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4574. #endif
  4575. SERIAL_PROTOCOLPGM(" B@:");
  4576. #ifdef BED_WATTS
  4577. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4578. SERIAL_PROTOCOLPGM("W");
  4579. #else
  4580. SERIAL_PROTOCOL(getHeaterPower(-1));
  4581. #endif
  4582. #ifdef PINDA_THERMISTOR
  4583. SERIAL_PROTOCOLPGM(" P:");
  4584. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4585. #endif //PINDA_THERMISTOR
  4586. #ifdef AMBIENT_THERMISTOR
  4587. SERIAL_PROTOCOLPGM(" A:");
  4588. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4589. #endif //AMBIENT_THERMISTOR
  4590. #ifdef SHOW_TEMP_ADC_VALUES
  4591. {float raw = 0.0;
  4592. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4593. SERIAL_PROTOCOLPGM(" ADC B:");
  4594. SERIAL_PROTOCOL_F(degBed(),1);
  4595. SERIAL_PROTOCOLPGM("C->");
  4596. raw = rawBedTemp();
  4597. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4598. SERIAL_PROTOCOLPGM(" Rb->");
  4599. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4600. SERIAL_PROTOCOLPGM(" Rxb->");
  4601. SERIAL_PROTOCOL_F(raw, 5);
  4602. #endif
  4603. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4604. SERIAL_PROTOCOLPGM(" T");
  4605. SERIAL_PROTOCOL(cur_extruder);
  4606. SERIAL_PROTOCOLPGM(":");
  4607. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4608. SERIAL_PROTOCOLPGM("C->");
  4609. raw = rawHotendTemp(cur_extruder);
  4610. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4611. SERIAL_PROTOCOLPGM(" Rt");
  4612. SERIAL_PROTOCOL(cur_extruder);
  4613. SERIAL_PROTOCOLPGM("->");
  4614. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4615. SERIAL_PROTOCOLPGM(" Rx");
  4616. SERIAL_PROTOCOL(cur_extruder);
  4617. SERIAL_PROTOCOLPGM("->");
  4618. SERIAL_PROTOCOL_F(raw, 5);
  4619. }}
  4620. #endif
  4621. SERIAL_PROTOCOLLN("");
  4622. KEEPALIVE_STATE(NOT_BUSY);
  4623. return;
  4624. break;
  4625. case 109:
  4626. {// M109 - Wait for extruder heater to reach target.
  4627. if(setTargetedHotend(109)){
  4628. break;
  4629. }
  4630. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4631. heating_status = 1;
  4632. if (farm_mode) { prusa_statistics(1); };
  4633. #ifdef AUTOTEMP
  4634. autotemp_enabled=false;
  4635. #endif
  4636. if (code_seen('S')) {
  4637. setTargetHotend(code_value(), tmp_extruder);
  4638. CooldownNoWait = true;
  4639. } else if (code_seen('R')) {
  4640. setTargetHotend(code_value(), tmp_extruder);
  4641. CooldownNoWait = false;
  4642. }
  4643. #ifdef AUTOTEMP
  4644. if (code_seen('S')) autotemp_min=code_value();
  4645. if (code_seen('B')) autotemp_max=code_value();
  4646. if (code_seen('F'))
  4647. {
  4648. autotemp_factor=code_value();
  4649. autotemp_enabled=true;
  4650. }
  4651. #endif
  4652. setWatch();
  4653. codenum = millis();
  4654. /* See if we are heating up or cooling down */
  4655. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4656. KEEPALIVE_STATE(NOT_BUSY);
  4657. cancel_heatup = false;
  4658. wait_for_heater(codenum); //loops until target temperature is reached
  4659. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4660. KEEPALIVE_STATE(IN_HANDLER);
  4661. heating_status = 2;
  4662. if (farm_mode) { prusa_statistics(2); };
  4663. //starttime=millis();
  4664. previous_millis_cmd = millis();
  4665. }
  4666. break;
  4667. case 190: // M190 - Wait for bed heater to reach target.
  4668. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4669. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4670. heating_status = 3;
  4671. if (farm_mode) { prusa_statistics(1); };
  4672. if (code_seen('S'))
  4673. {
  4674. setTargetBed(code_value());
  4675. CooldownNoWait = true;
  4676. }
  4677. else if (code_seen('R'))
  4678. {
  4679. setTargetBed(code_value());
  4680. CooldownNoWait = false;
  4681. }
  4682. codenum = millis();
  4683. cancel_heatup = false;
  4684. target_direction = isHeatingBed(); // true if heating, false if cooling
  4685. KEEPALIVE_STATE(NOT_BUSY);
  4686. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4687. {
  4688. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4689. {
  4690. if (!farm_mode) {
  4691. float tt = degHotend(active_extruder);
  4692. SERIAL_PROTOCOLPGM("T:");
  4693. SERIAL_PROTOCOL(tt);
  4694. SERIAL_PROTOCOLPGM(" E:");
  4695. SERIAL_PROTOCOL((int)active_extruder);
  4696. SERIAL_PROTOCOLPGM(" B:");
  4697. SERIAL_PROTOCOL_F(degBed(), 1);
  4698. SERIAL_PROTOCOLLN("");
  4699. }
  4700. codenum = millis();
  4701. }
  4702. manage_heater();
  4703. manage_inactivity();
  4704. lcd_update(0);
  4705. }
  4706. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4707. KEEPALIVE_STATE(IN_HANDLER);
  4708. heating_status = 4;
  4709. previous_millis_cmd = millis();
  4710. #endif
  4711. break;
  4712. #if defined(FAN_PIN) && FAN_PIN > -1
  4713. case 106: //M106 Fan On
  4714. if (code_seen('S')){
  4715. fanSpeed=constrain(code_value(),0,255);
  4716. }
  4717. else {
  4718. fanSpeed=255;
  4719. }
  4720. break;
  4721. case 107: //M107 Fan Off
  4722. fanSpeed = 0;
  4723. break;
  4724. #endif //FAN_PIN
  4725. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4726. case 80: // M80 - Turn on Power Supply
  4727. SET_OUTPUT(PS_ON_PIN); //GND
  4728. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4729. // If you have a switch on suicide pin, this is useful
  4730. // if you want to start another print with suicide feature after
  4731. // a print without suicide...
  4732. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4733. SET_OUTPUT(SUICIDE_PIN);
  4734. WRITE(SUICIDE_PIN, HIGH);
  4735. #endif
  4736. powersupply = true;
  4737. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4738. lcd_update(0);
  4739. break;
  4740. #endif
  4741. case 81: // M81 - Turn off Power Supply
  4742. disable_heater();
  4743. st_synchronize();
  4744. disable_e0();
  4745. disable_e1();
  4746. disable_e2();
  4747. finishAndDisableSteppers();
  4748. fanSpeed = 0;
  4749. delay(1000); // Wait a little before to switch off
  4750. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4751. st_synchronize();
  4752. suicide();
  4753. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4754. SET_OUTPUT(PS_ON_PIN);
  4755. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4756. #endif
  4757. powersupply = false;
  4758. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4759. lcd_update(0);
  4760. break;
  4761. case 82:
  4762. axis_relative_modes[3] = false;
  4763. break;
  4764. case 83:
  4765. axis_relative_modes[3] = true;
  4766. break;
  4767. case 18: //compatibility
  4768. case 84: // M84
  4769. if(code_seen('S')){
  4770. stepper_inactive_time = code_value() * 1000;
  4771. }
  4772. else
  4773. {
  4774. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4775. if(all_axis)
  4776. {
  4777. st_synchronize();
  4778. disable_e0();
  4779. disable_e1();
  4780. disable_e2();
  4781. finishAndDisableSteppers();
  4782. }
  4783. else
  4784. {
  4785. st_synchronize();
  4786. if (code_seen('X')) disable_x();
  4787. if (code_seen('Y')) disable_y();
  4788. if (code_seen('Z')) disable_z();
  4789. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4790. if (code_seen('E')) {
  4791. disable_e0();
  4792. disable_e1();
  4793. disable_e2();
  4794. }
  4795. #endif
  4796. }
  4797. }
  4798. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4799. print_time_remaining_init();
  4800. snmm_filaments_used = 0;
  4801. break;
  4802. case 85: // M85
  4803. if(code_seen('S')) {
  4804. max_inactive_time = code_value() * 1000;
  4805. }
  4806. break;
  4807. #ifdef SAFETYTIMER
  4808. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4809. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4810. if (code_seen('S')) {
  4811. safetytimer_inactive_time = code_value() * 1000;
  4812. safetyTimer.start();
  4813. }
  4814. break;
  4815. #endif
  4816. case 92: // M92
  4817. for(int8_t i=0; i < NUM_AXIS; i++)
  4818. {
  4819. if(code_seen(axis_codes[i]))
  4820. {
  4821. if(i == 3) { // E
  4822. float value = code_value();
  4823. if(value < 20.0) {
  4824. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4825. max_jerk[E_AXIS] *= factor;
  4826. max_feedrate[i] *= factor;
  4827. axis_steps_per_sqr_second[i] *= factor;
  4828. }
  4829. axis_steps_per_unit[i] = value;
  4830. }
  4831. else {
  4832. axis_steps_per_unit[i] = code_value();
  4833. }
  4834. }
  4835. }
  4836. break;
  4837. case 110: // M110 - reset line pos
  4838. if (code_seen('N'))
  4839. gcode_LastN = code_value_long();
  4840. break;
  4841. #ifdef HOST_KEEPALIVE_FEATURE
  4842. case 113: // M113 - Get or set Host Keepalive interval
  4843. if (code_seen('S')) {
  4844. host_keepalive_interval = (uint8_t)code_value_short();
  4845. // NOMORE(host_keepalive_interval, 60);
  4846. }
  4847. else {
  4848. SERIAL_ECHO_START;
  4849. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4850. SERIAL_PROTOCOLLN("");
  4851. }
  4852. break;
  4853. #endif
  4854. case 115: // M115
  4855. if (code_seen('V')) {
  4856. // Report the Prusa version number.
  4857. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4858. } else if (code_seen('U')) {
  4859. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4860. // pause the print and ask the user to upgrade the firmware.
  4861. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4862. } else {
  4863. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4864. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4865. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4866. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4867. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4868. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4869. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4870. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4871. SERIAL_ECHOPGM(" UUID:");
  4872. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4873. }
  4874. break;
  4875. /* case 117: // M117 display message
  4876. starpos = (strchr(strchr_pointer + 5,'*'));
  4877. if(starpos!=NULL)
  4878. *(starpos)='\0';
  4879. lcd_setstatus(strchr_pointer + 5);
  4880. break;*/
  4881. case 114: // M114
  4882. gcode_M114();
  4883. break;
  4884. case 120: // M120
  4885. enable_endstops(false) ;
  4886. break;
  4887. case 121: // M121
  4888. enable_endstops(true) ;
  4889. break;
  4890. case 119: // M119
  4891. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4892. SERIAL_PROTOCOLLN("");
  4893. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4894. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4895. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4896. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4897. }else{
  4898. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4899. }
  4900. SERIAL_PROTOCOLLN("");
  4901. #endif
  4902. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4903. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4904. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4905. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4906. }else{
  4907. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4908. }
  4909. SERIAL_PROTOCOLLN("");
  4910. #endif
  4911. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4912. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4913. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4914. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4915. }else{
  4916. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4917. }
  4918. SERIAL_PROTOCOLLN("");
  4919. #endif
  4920. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4921. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4922. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4923. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4924. }else{
  4925. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4926. }
  4927. SERIAL_PROTOCOLLN("");
  4928. #endif
  4929. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4930. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4931. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4932. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4933. }else{
  4934. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4935. }
  4936. SERIAL_PROTOCOLLN("");
  4937. #endif
  4938. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4939. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4940. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4941. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4942. }else{
  4943. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4944. }
  4945. SERIAL_PROTOCOLLN("");
  4946. #endif
  4947. break;
  4948. //TODO: update for all axis, use for loop
  4949. #ifdef BLINKM
  4950. case 150: // M150
  4951. {
  4952. byte red;
  4953. byte grn;
  4954. byte blu;
  4955. if(code_seen('R')) red = code_value();
  4956. if(code_seen('U')) grn = code_value();
  4957. if(code_seen('B')) blu = code_value();
  4958. SendColors(red,grn,blu);
  4959. }
  4960. break;
  4961. #endif //BLINKM
  4962. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4963. {
  4964. tmp_extruder = active_extruder;
  4965. if(code_seen('T')) {
  4966. tmp_extruder = code_value();
  4967. if(tmp_extruder >= EXTRUDERS) {
  4968. SERIAL_ECHO_START;
  4969. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4970. break;
  4971. }
  4972. }
  4973. float area = .0;
  4974. if(code_seen('D')) {
  4975. float diameter = (float)code_value();
  4976. if (diameter == 0.0) {
  4977. // setting any extruder filament size disables volumetric on the assumption that
  4978. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4979. // for all extruders
  4980. volumetric_enabled = false;
  4981. } else {
  4982. filament_size[tmp_extruder] = (float)code_value();
  4983. // make sure all extruders have some sane value for the filament size
  4984. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4985. #if EXTRUDERS > 1
  4986. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4987. #if EXTRUDERS > 2
  4988. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4989. #endif
  4990. #endif
  4991. volumetric_enabled = true;
  4992. }
  4993. } else {
  4994. //reserved for setting filament diameter via UFID or filament measuring device
  4995. break;
  4996. }
  4997. calculate_extruder_multipliers();
  4998. }
  4999. break;
  5000. case 201: // M201
  5001. for(int8_t i=0; i < NUM_AXIS; i++)
  5002. {
  5003. if(code_seen(axis_codes[i]))
  5004. {
  5005. max_acceleration_units_per_sq_second[i] = code_value();
  5006. }
  5007. }
  5008. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5009. reset_acceleration_rates();
  5010. break;
  5011. #if 0 // Not used for Sprinter/grbl gen6
  5012. case 202: // M202
  5013. for(int8_t i=0; i < NUM_AXIS; i++) {
  5014. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5015. }
  5016. break;
  5017. #endif
  5018. case 203: // M203 max feedrate mm/sec
  5019. for(int8_t i=0; i < NUM_AXIS; i++) {
  5020. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  5021. }
  5022. break;
  5023. case 204: // M204 acclereration S normal moves T filmanent only moves
  5024. {
  5025. if(code_seen('S')) acceleration = code_value() ;
  5026. if(code_seen('T')) retract_acceleration = code_value() ;
  5027. }
  5028. break;
  5029. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5030. {
  5031. if(code_seen('S')) minimumfeedrate = code_value();
  5032. if(code_seen('T')) mintravelfeedrate = code_value();
  5033. if(code_seen('B')) minsegmenttime = code_value() ;
  5034. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5035. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5036. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5037. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5038. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5039. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5040. }
  5041. break;
  5042. case 206: // M206 additional homing offset
  5043. for(int8_t i=0; i < 3; i++)
  5044. {
  5045. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5046. }
  5047. break;
  5048. #ifdef FWRETRACT
  5049. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5050. {
  5051. if(code_seen('S'))
  5052. {
  5053. retract_length = code_value() ;
  5054. }
  5055. if(code_seen('F'))
  5056. {
  5057. retract_feedrate = code_value()/60 ;
  5058. }
  5059. if(code_seen('Z'))
  5060. {
  5061. retract_zlift = code_value() ;
  5062. }
  5063. }break;
  5064. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5065. {
  5066. if(code_seen('S'))
  5067. {
  5068. retract_recover_length = code_value() ;
  5069. }
  5070. if(code_seen('F'))
  5071. {
  5072. retract_recover_feedrate = code_value()/60 ;
  5073. }
  5074. }break;
  5075. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5076. {
  5077. if(code_seen('S'))
  5078. {
  5079. int t= code_value() ;
  5080. switch(t)
  5081. {
  5082. case 0:
  5083. {
  5084. autoretract_enabled=false;
  5085. retracted[0]=false;
  5086. #if EXTRUDERS > 1
  5087. retracted[1]=false;
  5088. #endif
  5089. #if EXTRUDERS > 2
  5090. retracted[2]=false;
  5091. #endif
  5092. }break;
  5093. case 1:
  5094. {
  5095. autoretract_enabled=true;
  5096. retracted[0]=false;
  5097. #if EXTRUDERS > 1
  5098. retracted[1]=false;
  5099. #endif
  5100. #if EXTRUDERS > 2
  5101. retracted[2]=false;
  5102. #endif
  5103. }break;
  5104. default:
  5105. SERIAL_ECHO_START;
  5106. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5107. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5108. SERIAL_ECHOLNPGM("\"(1)");
  5109. }
  5110. }
  5111. }break;
  5112. #endif // FWRETRACT
  5113. #if EXTRUDERS > 1
  5114. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5115. {
  5116. if(setTargetedHotend(218)){
  5117. break;
  5118. }
  5119. if(code_seen('X'))
  5120. {
  5121. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5122. }
  5123. if(code_seen('Y'))
  5124. {
  5125. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5126. }
  5127. SERIAL_ECHO_START;
  5128. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5129. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5130. {
  5131. SERIAL_ECHO(" ");
  5132. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5133. SERIAL_ECHO(",");
  5134. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5135. }
  5136. SERIAL_ECHOLN("");
  5137. }break;
  5138. #endif
  5139. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5140. {
  5141. if(code_seen('S'))
  5142. {
  5143. feedmultiply = code_value() ;
  5144. }
  5145. }
  5146. break;
  5147. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5148. {
  5149. if(code_seen('S'))
  5150. {
  5151. int tmp_code = code_value();
  5152. if (code_seen('T'))
  5153. {
  5154. if(setTargetedHotend(221)){
  5155. break;
  5156. }
  5157. extruder_multiply[tmp_extruder] = tmp_code;
  5158. }
  5159. else
  5160. {
  5161. extrudemultiply = tmp_code ;
  5162. }
  5163. }
  5164. calculate_extruder_multipliers();
  5165. }
  5166. break;
  5167. #ifndef _DISABLE_M42_M226
  5168. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5169. {
  5170. if(code_seen('P')){
  5171. int pin_number = code_value(); // pin number
  5172. int pin_state = -1; // required pin state - default is inverted
  5173. if(code_seen('S')) pin_state = code_value(); // required pin state
  5174. if(pin_state >= -1 && pin_state <= 1){
  5175. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5176. {
  5177. if (sensitive_pins[i] == pin_number)
  5178. {
  5179. pin_number = -1;
  5180. break;
  5181. }
  5182. }
  5183. if (pin_number > -1)
  5184. {
  5185. int target = LOW;
  5186. st_synchronize();
  5187. pinMode(pin_number, INPUT);
  5188. switch(pin_state){
  5189. case 1:
  5190. target = HIGH;
  5191. break;
  5192. case 0:
  5193. target = LOW;
  5194. break;
  5195. case -1:
  5196. target = !digitalRead(pin_number);
  5197. break;
  5198. }
  5199. while(digitalRead(pin_number) != target){
  5200. manage_heater();
  5201. manage_inactivity();
  5202. lcd_update(0);
  5203. }
  5204. }
  5205. }
  5206. }
  5207. }
  5208. break;
  5209. #endif //_DISABLE_M42_M226
  5210. #if NUM_SERVOS > 0
  5211. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5212. {
  5213. int servo_index = -1;
  5214. int servo_position = 0;
  5215. if (code_seen('P'))
  5216. servo_index = code_value();
  5217. if (code_seen('S')) {
  5218. servo_position = code_value();
  5219. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5220. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5221. servos[servo_index].attach(0);
  5222. #endif
  5223. servos[servo_index].write(servo_position);
  5224. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5225. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5226. servos[servo_index].detach();
  5227. #endif
  5228. }
  5229. else {
  5230. SERIAL_ECHO_START;
  5231. SERIAL_ECHO("Servo ");
  5232. SERIAL_ECHO(servo_index);
  5233. SERIAL_ECHOLN(" out of range");
  5234. }
  5235. }
  5236. else if (servo_index >= 0) {
  5237. SERIAL_PROTOCOL(_T(MSG_OK));
  5238. SERIAL_PROTOCOL(" Servo ");
  5239. SERIAL_PROTOCOL(servo_index);
  5240. SERIAL_PROTOCOL(": ");
  5241. SERIAL_PROTOCOL(servos[servo_index].read());
  5242. SERIAL_PROTOCOLLN("");
  5243. }
  5244. }
  5245. break;
  5246. #endif // NUM_SERVOS > 0
  5247. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5248. case 300: // M300
  5249. {
  5250. int beepS = code_seen('S') ? code_value() : 110;
  5251. int beepP = code_seen('P') ? code_value() : 1000;
  5252. if (beepS > 0)
  5253. {
  5254. #if BEEPER > 0
  5255. tone(BEEPER, beepS);
  5256. delay(beepP);
  5257. noTone(BEEPER);
  5258. #endif
  5259. }
  5260. else
  5261. {
  5262. delay(beepP);
  5263. }
  5264. }
  5265. break;
  5266. #endif // M300
  5267. #ifdef PIDTEMP
  5268. case 301: // M301
  5269. {
  5270. if(code_seen('P')) Kp = code_value();
  5271. if(code_seen('I')) Ki = scalePID_i(code_value());
  5272. if(code_seen('D')) Kd = scalePID_d(code_value());
  5273. #ifdef PID_ADD_EXTRUSION_RATE
  5274. if(code_seen('C')) Kc = code_value();
  5275. #endif
  5276. updatePID();
  5277. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5278. SERIAL_PROTOCOL(" p:");
  5279. SERIAL_PROTOCOL(Kp);
  5280. SERIAL_PROTOCOL(" i:");
  5281. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5282. SERIAL_PROTOCOL(" d:");
  5283. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5284. #ifdef PID_ADD_EXTRUSION_RATE
  5285. SERIAL_PROTOCOL(" c:");
  5286. //Kc does not have scaling applied above, or in resetting defaults
  5287. SERIAL_PROTOCOL(Kc);
  5288. #endif
  5289. SERIAL_PROTOCOLLN("");
  5290. }
  5291. break;
  5292. #endif //PIDTEMP
  5293. #ifdef PIDTEMPBED
  5294. case 304: // M304
  5295. {
  5296. if(code_seen('P')) bedKp = code_value();
  5297. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5298. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5299. updatePID();
  5300. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5301. SERIAL_PROTOCOL(" p:");
  5302. SERIAL_PROTOCOL(bedKp);
  5303. SERIAL_PROTOCOL(" i:");
  5304. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5305. SERIAL_PROTOCOL(" d:");
  5306. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5307. SERIAL_PROTOCOLLN("");
  5308. }
  5309. break;
  5310. #endif //PIDTEMP
  5311. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5312. {
  5313. #ifdef CHDK
  5314. SET_OUTPUT(CHDK);
  5315. WRITE(CHDK, HIGH);
  5316. chdkHigh = millis();
  5317. chdkActive = true;
  5318. #else
  5319. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5320. const uint8_t NUM_PULSES=16;
  5321. const float PULSE_LENGTH=0.01524;
  5322. for(int i=0; i < NUM_PULSES; i++) {
  5323. WRITE(PHOTOGRAPH_PIN, HIGH);
  5324. _delay_ms(PULSE_LENGTH);
  5325. WRITE(PHOTOGRAPH_PIN, LOW);
  5326. _delay_ms(PULSE_LENGTH);
  5327. }
  5328. delay(7.33);
  5329. for(int i=0; i < NUM_PULSES; i++) {
  5330. WRITE(PHOTOGRAPH_PIN, HIGH);
  5331. _delay_ms(PULSE_LENGTH);
  5332. WRITE(PHOTOGRAPH_PIN, LOW);
  5333. _delay_ms(PULSE_LENGTH);
  5334. }
  5335. #endif
  5336. #endif //chdk end if
  5337. }
  5338. break;
  5339. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5340. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5341. {
  5342. float temp = .0;
  5343. if (code_seen('S')) temp=code_value();
  5344. set_extrude_min_temp(temp);
  5345. }
  5346. break;
  5347. #endif
  5348. case 303: // M303 PID autotune
  5349. {
  5350. float temp = 150.0;
  5351. int e=0;
  5352. int c=5;
  5353. if (code_seen('E')) e=code_value();
  5354. if (e<0)
  5355. temp=70;
  5356. if (code_seen('S')) temp=code_value();
  5357. if (code_seen('C')) c=code_value();
  5358. PID_autotune(temp, e, c);
  5359. }
  5360. break;
  5361. case 400: // M400 finish all moves
  5362. {
  5363. st_synchronize();
  5364. }
  5365. break;
  5366. case 500: // M500 Store settings in EEPROM
  5367. {
  5368. Config_StoreSettings(EEPROM_OFFSET);
  5369. }
  5370. break;
  5371. case 501: // M501 Read settings from EEPROM
  5372. {
  5373. Config_RetrieveSettings(EEPROM_OFFSET);
  5374. }
  5375. break;
  5376. case 502: // M502 Revert to default settings
  5377. {
  5378. Config_ResetDefault();
  5379. }
  5380. break;
  5381. case 503: // M503 print settings currently in memory
  5382. {
  5383. Config_PrintSettings();
  5384. }
  5385. break;
  5386. case 509: //M509 Force language selection
  5387. {
  5388. lang_reset();
  5389. SERIAL_ECHO_START;
  5390. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5391. }
  5392. break;
  5393. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5394. case 540:
  5395. {
  5396. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5397. }
  5398. break;
  5399. #endif
  5400. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5401. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5402. {
  5403. float value;
  5404. if (code_seen('Z'))
  5405. {
  5406. value = code_value();
  5407. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5408. {
  5409. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5410. SERIAL_ECHO_START;
  5411. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5412. SERIAL_PROTOCOLLN("");
  5413. }
  5414. else
  5415. {
  5416. SERIAL_ECHO_START;
  5417. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5418. SERIAL_ECHORPGM(MSG_Z_MIN);
  5419. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5420. SERIAL_ECHORPGM(MSG_Z_MAX);
  5421. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5422. SERIAL_PROTOCOLLN("");
  5423. }
  5424. }
  5425. else
  5426. {
  5427. SERIAL_ECHO_START;
  5428. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5429. SERIAL_ECHO(-zprobe_zoffset);
  5430. SERIAL_PROTOCOLLN("");
  5431. }
  5432. break;
  5433. }
  5434. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5435. #ifdef FILAMENTCHANGEENABLE
  5436. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5437. {
  5438. #ifdef PAT9125
  5439. bool old_fsensor_enabled = fsensor_enabled;
  5440. fsensor_enabled = false; //temporary solution for unexpected restarting
  5441. #endif //PAT9125
  5442. st_synchronize();
  5443. float target[4];
  5444. float lastpos[4];
  5445. if (farm_mode)
  5446. {
  5447. prusa_statistics(22);
  5448. }
  5449. feedmultiplyBckp=feedmultiply;
  5450. int8_t TooLowZ = 0;
  5451. float HotendTempBckp = degTargetHotend(active_extruder);
  5452. int fanSpeedBckp = fanSpeed;
  5453. target[X_AXIS]=current_position[X_AXIS];
  5454. target[Y_AXIS]=current_position[Y_AXIS];
  5455. target[Z_AXIS]=current_position[Z_AXIS];
  5456. target[E_AXIS]=current_position[E_AXIS];
  5457. lastpos[X_AXIS]=current_position[X_AXIS];
  5458. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5459. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5460. lastpos[E_AXIS]=current_position[E_AXIS];
  5461. //Restract extruder
  5462. if(code_seen('E'))
  5463. {
  5464. target[E_AXIS]+= code_value();
  5465. }
  5466. else
  5467. {
  5468. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5469. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5470. #endif
  5471. }
  5472. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5473. //Lift Z
  5474. if(code_seen('Z'))
  5475. {
  5476. target[Z_AXIS]+= code_value();
  5477. }
  5478. else
  5479. {
  5480. #ifdef FILAMENTCHANGE_ZADD
  5481. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5482. if(target[Z_AXIS] < 10){
  5483. target[Z_AXIS]+= 10 ;
  5484. TooLowZ = 1;
  5485. }else{
  5486. TooLowZ = 0;
  5487. }
  5488. #endif
  5489. }
  5490. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5491. //Move XY to side
  5492. if(code_seen('X'))
  5493. {
  5494. target[X_AXIS]+= code_value();
  5495. }
  5496. else
  5497. {
  5498. #ifdef FILAMENTCHANGE_XPOS
  5499. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5500. #endif
  5501. }
  5502. if(code_seen('Y'))
  5503. {
  5504. target[Y_AXIS]= code_value();
  5505. }
  5506. else
  5507. {
  5508. #ifdef FILAMENTCHANGE_YPOS
  5509. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5510. #endif
  5511. }
  5512. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5513. st_synchronize();
  5514. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5515. uint8_t cnt = 0;
  5516. int counterBeep = 0;
  5517. fanSpeed = 0;
  5518. unsigned long waiting_start_time = millis();
  5519. uint8_t wait_for_user_state = 0;
  5520. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5521. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5522. //cnt++;
  5523. manage_heater();
  5524. manage_inactivity(true);
  5525. /*#ifdef SNMM
  5526. target[E_AXIS] += 0.002;
  5527. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5528. #endif // SNMM*/
  5529. //if (cnt == 0)
  5530. {
  5531. #if BEEPER > 0
  5532. if (counterBeep == 500) {
  5533. counterBeep = 0;
  5534. }
  5535. SET_OUTPUT(BEEPER);
  5536. if (counterBeep == 0) {
  5537. WRITE(BEEPER, HIGH);
  5538. }
  5539. if (counterBeep == 20) {
  5540. WRITE(BEEPER, LOW);
  5541. }
  5542. counterBeep++;
  5543. #else
  5544. #endif
  5545. }
  5546. switch (wait_for_user_state) {
  5547. case 0:
  5548. delay_keep_alive(4);
  5549. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5550. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5551. wait_for_user_state = 1;
  5552. setTargetHotend0(0);
  5553. setTargetHotend1(0);
  5554. setTargetHotend2(0);
  5555. st_synchronize();
  5556. disable_e0();
  5557. disable_e1();
  5558. disable_e2();
  5559. }
  5560. break;
  5561. case 1:
  5562. delay_keep_alive(4);
  5563. if (lcd_clicked()) {
  5564. setTargetHotend(HotendTempBckp, active_extruder);
  5565. lcd_wait_for_heater();
  5566. wait_for_user_state = 2;
  5567. }
  5568. break;
  5569. case 2:
  5570. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5571. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5572. waiting_start_time = millis();
  5573. wait_for_user_state = 0;
  5574. }
  5575. else {
  5576. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5577. lcd_set_cursor(1, 4);
  5578. lcd_print(ftostr3(degHotend(active_extruder)));
  5579. }
  5580. break;
  5581. }
  5582. }
  5583. WRITE(BEEPER, LOW);
  5584. lcd_change_fil_state = 0;
  5585. // Unload filament
  5586. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5587. KEEPALIVE_STATE(IN_HANDLER);
  5588. custom_message = true;
  5589. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5590. if (code_seen('L'))
  5591. {
  5592. target[E_AXIS] += code_value();
  5593. }
  5594. else
  5595. {
  5596. #ifdef SNMM
  5597. #else
  5598. #ifdef FILAMENTCHANGE_FINALRETRACT
  5599. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5600. #endif
  5601. #endif // SNMM
  5602. }
  5603. #ifdef SNMM
  5604. target[E_AXIS] += 12;
  5605. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5606. target[E_AXIS] += 6;
  5607. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5608. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5609. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5610. st_synchronize();
  5611. target[E_AXIS] += (FIL_COOLING);
  5612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5613. target[E_AXIS] += (FIL_COOLING*-1);
  5614. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5615. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5616. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5617. st_synchronize();
  5618. #else
  5619. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5620. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5621. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5622. st_synchronize();
  5623. #ifdef TMC2130
  5624. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5625. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5626. #else
  5627. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5628. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5629. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5630. #endif //TMC2130
  5631. target[E_AXIS] -= 45;
  5632. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5633. st_synchronize();
  5634. target[E_AXIS] -= 15;
  5635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5636. st_synchronize();
  5637. target[E_AXIS] -= 20;
  5638. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5639. st_synchronize();
  5640. #ifdef TMC2130
  5641. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5642. #else
  5643. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5644. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5645. else st_current_set(2, tmp_motor_loud[2]);
  5646. #endif //TMC2130
  5647. #endif // SNMM
  5648. //finish moves
  5649. st_synchronize();
  5650. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5651. //disable extruder steppers so filament can be removed
  5652. disable_e0();
  5653. disable_e1();
  5654. disable_e2();
  5655. delay(100);
  5656. WRITE(BEEPER, HIGH);
  5657. counterBeep = 0;
  5658. while(!lcd_clicked() && (counterBeep < 50)) {
  5659. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5660. delay_keep_alive(100);
  5661. counterBeep++;
  5662. }
  5663. WRITE(BEEPER, LOW);
  5664. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5665. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5666. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5667. //lcd_return_to_status();
  5668. lcd_update_enable(true);
  5669. //Wait for user to insert filament
  5670. lcd_wait_interact();
  5671. //load_filament_time = millis();
  5672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5673. #ifdef PAT9125
  5674. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5675. #endif //PAT9125
  5676. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5677. while(!lcd_clicked())
  5678. {
  5679. manage_heater();
  5680. manage_inactivity(true);
  5681. #ifdef PAT9125
  5682. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5683. {
  5684. tone(BEEPER, 1000);
  5685. delay_keep_alive(50);
  5686. noTone(BEEPER);
  5687. break;
  5688. }
  5689. #endif //PAT9125
  5690. /*#ifdef SNMM
  5691. target[E_AXIS] += 0.002;
  5692. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5693. #endif // SNMM*/
  5694. }
  5695. #ifdef PAT9125
  5696. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5697. #endif //PAT9125
  5698. //WRITE(BEEPER, LOW);
  5699. KEEPALIVE_STATE(IN_HANDLER);
  5700. #ifdef SNMM
  5701. display_loading();
  5702. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5703. do {
  5704. target[E_AXIS] += 0.002;
  5705. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5706. delay_keep_alive(2);
  5707. } while (!lcd_clicked());
  5708. KEEPALIVE_STATE(IN_HANDLER);
  5709. /*if (millis() - load_filament_time > 2) {
  5710. load_filament_time = millis();
  5711. target[E_AXIS] += 0.001;
  5712. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5713. }*/
  5714. //Filament inserted
  5715. //Feed the filament to the end of nozzle quickly
  5716. st_synchronize();
  5717. target[E_AXIS] += bowden_length[snmm_extruder];
  5718. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5719. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5720. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5721. target[E_AXIS] += 40;
  5722. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5723. target[E_AXIS] += 10;
  5724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5725. #else
  5726. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5727. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5728. #endif // SNMM
  5729. //Extrude some filament
  5730. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5731. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5732. //Wait for user to check the state
  5733. lcd_change_fil_state = 0;
  5734. lcd_loading_filament();
  5735. tone(BEEPER, 500);
  5736. delay_keep_alive(50);
  5737. noTone(BEEPER);
  5738. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5739. lcd_change_fil_state = 0;
  5740. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5741. lcd_alright();
  5742. KEEPALIVE_STATE(IN_HANDLER);
  5743. switch(lcd_change_fil_state){
  5744. // Filament failed to load so load it again
  5745. case 2:
  5746. #ifdef SNMM
  5747. display_loading();
  5748. do {
  5749. target[E_AXIS] += 0.002;
  5750. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5751. delay_keep_alive(2);
  5752. } while (!lcd_clicked());
  5753. st_synchronize();
  5754. target[E_AXIS] += bowden_length[snmm_extruder];
  5755. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5756. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5758. target[E_AXIS] += 40;
  5759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5760. target[E_AXIS] += 10;
  5761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5762. #else
  5763. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5764. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5765. #endif
  5766. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5767. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5768. lcd_loading_filament();
  5769. break;
  5770. // Filament loaded properly but color is not clear
  5771. case 3:
  5772. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5773. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5774. lcd_loading_color();
  5775. break;
  5776. // Everything good
  5777. default:
  5778. lcd_change_success();
  5779. lcd_update_enable(true);
  5780. break;
  5781. }
  5782. }
  5783. //Not let's go back to print
  5784. fanSpeed = fanSpeedBckp;
  5785. //Feed a little of filament to stabilize pressure
  5786. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5787. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5788. //Retract
  5789. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5790. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5791. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5792. //Move XY back
  5793. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5794. //Move Z back
  5795. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5796. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5797. //Unretract
  5798. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5799. //Set E position to original
  5800. plan_set_e_position(lastpos[E_AXIS]);
  5801. //Recover feed rate
  5802. feedmultiply=feedmultiplyBckp;
  5803. char cmd[9];
  5804. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5805. enquecommand(cmd);
  5806. lcd_setstatuspgm(_T(WELCOME_MSG));
  5807. custom_message = false;
  5808. custom_message_type = 0;
  5809. #ifdef PAT9125
  5810. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5811. if (fsensor_M600)
  5812. {
  5813. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5814. st_synchronize();
  5815. while (!is_buffer_empty())
  5816. {
  5817. process_commands();
  5818. cmdqueue_pop_front();
  5819. }
  5820. KEEPALIVE_STATE(IN_HANDLER);
  5821. fsensor_enable();
  5822. fsensor_restore_print_and_continue();
  5823. }
  5824. #endif //PAT9125
  5825. }
  5826. break;
  5827. #endif //FILAMENTCHANGEENABLE
  5828. case 601: {
  5829. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5830. }
  5831. break;
  5832. case 602: {
  5833. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5834. }
  5835. break;
  5836. #ifdef PINDA_THERMISTOR
  5837. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5838. {
  5839. int set_target_pinda = 0;
  5840. if (code_seen('S')) {
  5841. set_target_pinda = code_value();
  5842. }
  5843. else {
  5844. break;
  5845. }
  5846. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5847. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5848. SERIAL_PROTOCOL(set_target_pinda);
  5849. SERIAL_PROTOCOLLN("");
  5850. codenum = millis();
  5851. cancel_heatup = false;
  5852. bool is_pinda_cooling = false;
  5853. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5854. is_pinda_cooling = true;
  5855. }
  5856. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5857. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5858. {
  5859. SERIAL_PROTOCOLPGM("P:");
  5860. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5861. SERIAL_PROTOCOLPGM("/");
  5862. SERIAL_PROTOCOL(set_target_pinda);
  5863. SERIAL_PROTOCOLLN("");
  5864. codenum = millis();
  5865. }
  5866. manage_heater();
  5867. manage_inactivity();
  5868. lcd_update(0);
  5869. }
  5870. LCD_MESSAGERPGM(_T(MSG_OK));
  5871. break;
  5872. }
  5873. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5874. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5875. uint8_t cal_status = calibration_status_pinda();
  5876. int16_t usteps = 0;
  5877. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5878. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5879. for (uint8_t i = 0; i < 6; i++)
  5880. {
  5881. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5882. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5883. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5884. SERIAL_PROTOCOLPGM(", ");
  5885. SERIAL_PROTOCOL(35 + (i * 5));
  5886. SERIAL_PROTOCOLPGM(", ");
  5887. SERIAL_PROTOCOL(usteps);
  5888. SERIAL_PROTOCOLPGM(", ");
  5889. SERIAL_PROTOCOL(mm * 1000);
  5890. SERIAL_PROTOCOLLN("");
  5891. }
  5892. }
  5893. else if (code_seen('!')) { // ! - Set factory default values
  5894. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5895. int16_t z_shift = 8; //40C - 20um - 8usteps
  5896. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5897. z_shift = 24; //45C - 60um - 24usteps
  5898. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5899. z_shift = 48; //50C - 120um - 48usteps
  5900. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5901. z_shift = 80; //55C - 200um - 80usteps
  5902. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5903. z_shift = 120; //60C - 300um - 120usteps
  5904. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5905. SERIAL_PROTOCOLLN("factory restored");
  5906. }
  5907. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5908. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5909. int16_t z_shift = 0;
  5910. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5911. SERIAL_PROTOCOLLN("zerorized");
  5912. }
  5913. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5914. int16_t usteps = code_value();
  5915. if (code_seen('I')) {
  5916. byte index = code_value();
  5917. if ((index >= 0) && (index < 5)) {
  5918. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5919. SERIAL_PROTOCOLLN("OK");
  5920. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5921. for (uint8_t i = 0; i < 6; i++)
  5922. {
  5923. usteps = 0;
  5924. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5925. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5926. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5927. SERIAL_PROTOCOLPGM(", ");
  5928. SERIAL_PROTOCOL(35 + (i * 5));
  5929. SERIAL_PROTOCOLPGM(", ");
  5930. SERIAL_PROTOCOL(usteps);
  5931. SERIAL_PROTOCOLPGM(", ");
  5932. SERIAL_PROTOCOL(mm * 1000);
  5933. SERIAL_PROTOCOLLN("");
  5934. }
  5935. }
  5936. }
  5937. }
  5938. else {
  5939. SERIAL_PROTOCOLPGM("no valid command");
  5940. }
  5941. break;
  5942. #endif //PINDA_THERMISTOR
  5943. #ifdef LIN_ADVANCE
  5944. case 900: // M900: Set LIN_ADVANCE options.
  5945. gcode_M900();
  5946. break;
  5947. #endif
  5948. case 907: // M907 Set digital trimpot motor current using axis codes.
  5949. {
  5950. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5951. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5952. if(code_seen('B')) st_current_set(4,code_value());
  5953. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5954. #endif
  5955. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5956. if(code_seen('X')) st_current_set(0, code_value());
  5957. #endif
  5958. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5959. if(code_seen('Z')) st_current_set(1, code_value());
  5960. #endif
  5961. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5962. if(code_seen('E')) st_current_set(2, code_value());
  5963. #endif
  5964. }
  5965. break;
  5966. case 908: // M908 Control digital trimpot directly.
  5967. {
  5968. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5969. uint8_t channel,current;
  5970. if(code_seen('P')) channel=code_value();
  5971. if(code_seen('S')) current=code_value();
  5972. digitalPotWrite(channel, current);
  5973. #endif
  5974. }
  5975. break;
  5976. #ifdef TMC2130
  5977. case 910: // M910 TMC2130 init
  5978. {
  5979. tmc2130_init();
  5980. }
  5981. break;
  5982. case 911: // M911 Set TMC2130 holding currents
  5983. {
  5984. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5985. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5986. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5987. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5988. }
  5989. break;
  5990. case 912: // M912 Set TMC2130 running currents
  5991. {
  5992. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5993. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5994. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5995. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5996. }
  5997. break;
  5998. case 913: // M913 Print TMC2130 currents
  5999. {
  6000. tmc2130_print_currents();
  6001. }
  6002. break;
  6003. case 914: // M914 Set normal mode
  6004. {
  6005. tmc2130_mode = TMC2130_MODE_NORMAL;
  6006. tmc2130_init();
  6007. }
  6008. break;
  6009. case 915: // M915 Set silent mode
  6010. {
  6011. tmc2130_mode = TMC2130_MODE_SILENT;
  6012. tmc2130_init();
  6013. }
  6014. break;
  6015. case 916: // M916 Set sg_thrs
  6016. {
  6017. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6018. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6019. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6020. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6021. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6022. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6023. }
  6024. break;
  6025. case 917: // M917 Set TMC2130 pwm_ampl
  6026. {
  6027. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6028. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6029. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6030. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6031. }
  6032. break;
  6033. case 918: // M918 Set TMC2130 pwm_grad
  6034. {
  6035. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6036. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6037. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6038. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6039. }
  6040. break;
  6041. #endif //TMC2130
  6042. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6043. {
  6044. #ifdef TMC2130
  6045. if(code_seen('E'))
  6046. {
  6047. uint16_t res_new = code_value();
  6048. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6049. {
  6050. st_synchronize();
  6051. uint8_t axis = E_AXIS;
  6052. uint16_t res = tmc2130_get_res(axis);
  6053. tmc2130_set_res(axis, res_new);
  6054. if (res_new > res)
  6055. {
  6056. uint16_t fac = (res_new / res);
  6057. axis_steps_per_unit[axis] *= fac;
  6058. position[E_AXIS] *= fac;
  6059. }
  6060. else
  6061. {
  6062. uint16_t fac = (res / res_new);
  6063. axis_steps_per_unit[axis] /= fac;
  6064. position[E_AXIS] /= fac;
  6065. }
  6066. }
  6067. }
  6068. #else //TMC2130
  6069. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6070. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6071. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6072. if(code_seen('B')) microstep_mode(4,code_value());
  6073. microstep_readings();
  6074. #endif
  6075. #endif //TMC2130
  6076. }
  6077. break;
  6078. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6079. {
  6080. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6081. if(code_seen('S')) switch((int)code_value())
  6082. {
  6083. case 1:
  6084. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6085. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6086. break;
  6087. case 2:
  6088. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6089. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6090. break;
  6091. }
  6092. microstep_readings();
  6093. #endif
  6094. }
  6095. break;
  6096. case 701: //M701: load filament
  6097. {
  6098. gcode_M701();
  6099. }
  6100. break;
  6101. case 702:
  6102. {
  6103. #ifdef SNMM
  6104. if (code_seen('U')) {
  6105. extr_unload_used(); //unload all filaments which were used in current print
  6106. }
  6107. else if (code_seen('C')) {
  6108. extr_unload(); //unload just current filament
  6109. }
  6110. else {
  6111. extr_unload_all(); //unload all filaments
  6112. }
  6113. #else
  6114. #ifdef PAT9125
  6115. bool old_fsensor_enabled = fsensor_enabled;
  6116. fsensor_enabled = false;
  6117. #endif //PAT9125
  6118. custom_message = true;
  6119. custom_message_type = 2;
  6120. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6121. // extr_unload2();
  6122. current_position[E_AXIS] -= 45;
  6123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6124. st_synchronize();
  6125. current_position[E_AXIS] -= 15;
  6126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6127. st_synchronize();
  6128. current_position[E_AXIS] -= 20;
  6129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6130. st_synchronize();
  6131. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6132. //disable extruder steppers so filament can be removed
  6133. disable_e0();
  6134. disable_e1();
  6135. disable_e2();
  6136. delay(100);
  6137. WRITE(BEEPER, HIGH);
  6138. uint8_t counterBeep = 0;
  6139. while (!lcd_clicked() && (counterBeep < 50)) {
  6140. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6141. delay_keep_alive(100);
  6142. counterBeep++;
  6143. }
  6144. WRITE(BEEPER, LOW);
  6145. st_synchronize();
  6146. while (lcd_clicked()) delay_keep_alive(100);
  6147. lcd_update_enable(true);
  6148. lcd_setstatuspgm(_T(WELCOME_MSG));
  6149. custom_message = false;
  6150. custom_message_type = 0;
  6151. #ifdef PAT9125
  6152. fsensor_enabled = old_fsensor_enabled;
  6153. #endif //PAT9125
  6154. #endif
  6155. }
  6156. break;
  6157. case 999: // M999: Restart after being stopped
  6158. Stopped = false;
  6159. lcd_reset_alert_level();
  6160. gcode_LastN = Stopped_gcode_LastN;
  6161. FlushSerialRequestResend();
  6162. break;
  6163. default:
  6164. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6165. }
  6166. } // end if(code_seen('M')) (end of M codes)
  6167. else if(code_seen('T'))
  6168. {
  6169. int index;
  6170. st_synchronize();
  6171. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6172. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6173. SERIAL_ECHOLNPGM("Invalid T code.");
  6174. }
  6175. else {
  6176. if (*(strchr_pointer + index) == '?') {
  6177. tmp_extruder = choose_extruder_menu();
  6178. }
  6179. else {
  6180. tmp_extruder = code_value();
  6181. }
  6182. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6183. #ifdef SNMM_V2
  6184. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6185. switch (tmp_extruder)
  6186. {
  6187. case 1:
  6188. fprintf_P(uart2io, PSTR("T1\n"));
  6189. break;
  6190. case 2:
  6191. fprintf_P(uart2io, PSTR("T2\n"));
  6192. break;
  6193. case 3:
  6194. fprintf_P(uart2io, PSTR("T3\n"));
  6195. break;
  6196. case 4:
  6197. fprintf_P(uart2io, PSTR("T4\n"));
  6198. break;
  6199. default:
  6200. fprintf_P(uart2io, PSTR("T0\n"));
  6201. break;
  6202. }
  6203. // get response
  6204. uart2_rx_clr();
  6205. while (!uart2_rx_ok())
  6206. {
  6207. //printf_P(PSTR("waiting..\n"));
  6208. delay_keep_alive(100);
  6209. }
  6210. #endif
  6211. #ifdef SNMM
  6212. #ifdef LIN_ADVANCE
  6213. if (snmm_extruder != tmp_extruder)
  6214. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6215. #endif
  6216. snmm_extruder = tmp_extruder;
  6217. delay(100);
  6218. disable_e0();
  6219. disable_e1();
  6220. disable_e2();
  6221. pinMode(E_MUX0_PIN, OUTPUT);
  6222. pinMode(E_MUX1_PIN, OUTPUT);
  6223. delay(100);
  6224. SERIAL_ECHO_START;
  6225. SERIAL_ECHO("T:");
  6226. SERIAL_ECHOLN((int)tmp_extruder);
  6227. switch (tmp_extruder) {
  6228. case 1:
  6229. WRITE(E_MUX0_PIN, HIGH);
  6230. WRITE(E_MUX1_PIN, LOW);
  6231. break;
  6232. case 2:
  6233. WRITE(E_MUX0_PIN, LOW);
  6234. WRITE(E_MUX1_PIN, HIGH);
  6235. break;
  6236. case 3:
  6237. WRITE(E_MUX0_PIN, HIGH);
  6238. WRITE(E_MUX1_PIN, HIGH);
  6239. break;
  6240. default:
  6241. WRITE(E_MUX0_PIN, LOW);
  6242. WRITE(E_MUX1_PIN, LOW);
  6243. break;
  6244. }
  6245. delay(100);
  6246. #else
  6247. if (tmp_extruder >= EXTRUDERS) {
  6248. SERIAL_ECHO_START;
  6249. SERIAL_ECHOPGM("T");
  6250. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6251. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6252. }
  6253. else {
  6254. boolean make_move = false;
  6255. if (code_seen('F')) {
  6256. make_move = true;
  6257. next_feedrate = code_value();
  6258. if (next_feedrate > 0.0) {
  6259. feedrate = next_feedrate;
  6260. }
  6261. }
  6262. #if EXTRUDERS > 1
  6263. if (tmp_extruder != active_extruder) {
  6264. // Save current position to return to after applying extruder offset
  6265. memcpy(destination, current_position, sizeof(destination));
  6266. // Offset extruder (only by XY)
  6267. int i;
  6268. for (i = 0; i < 2; i++) {
  6269. current_position[i] = current_position[i] -
  6270. extruder_offset[i][active_extruder] +
  6271. extruder_offset[i][tmp_extruder];
  6272. }
  6273. // Set the new active extruder and position
  6274. active_extruder = tmp_extruder;
  6275. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6276. // Move to the old position if 'F' was in the parameters
  6277. if (make_move && Stopped == false) {
  6278. prepare_move();
  6279. }
  6280. }
  6281. #endif
  6282. SERIAL_ECHO_START;
  6283. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6284. SERIAL_PROTOCOLLN((int)active_extruder);
  6285. }
  6286. #endif
  6287. }
  6288. } // end if(code_seen('T')) (end of T codes)
  6289. #ifdef DEBUG_DCODES
  6290. else if (code_seen('D')) // D codes (debug)
  6291. {
  6292. switch((int)code_value())
  6293. {
  6294. case -1: // D-1 - Endless loop
  6295. dcode__1(); break;
  6296. case 0: // D0 - Reset
  6297. dcode_0(); break;
  6298. case 1: // D1 - Clear EEPROM
  6299. dcode_1(); break;
  6300. case 2: // D2 - Read/Write RAM
  6301. dcode_2(); break;
  6302. case 3: // D3 - Read/Write EEPROM
  6303. dcode_3(); break;
  6304. case 4: // D4 - Read/Write PIN
  6305. dcode_4(); break;
  6306. case 5: // D5 - Read/Write FLASH
  6307. // dcode_5(); break;
  6308. break;
  6309. case 6: // D6 - Read/Write external FLASH
  6310. dcode_6(); break;
  6311. case 7: // D7 - Read/Write Bootloader
  6312. dcode_7(); break;
  6313. case 8: // D8 - Read/Write PINDA
  6314. dcode_8(); break;
  6315. case 9: // D9 - Read/Write ADC
  6316. dcode_9(); break;
  6317. case 10: // D10 - XYZ calibration = OK
  6318. dcode_10(); break;
  6319. #ifdef TMC2130
  6320. case 2130: // D9125 - TMC2130
  6321. dcode_2130(); break;
  6322. #endif //TMC2130
  6323. #ifdef PAT9125
  6324. case 9125: // D9125 - PAT9125
  6325. dcode_9125(); break;
  6326. #endif //PAT9125
  6327. }
  6328. }
  6329. #endif //DEBUG_DCODES
  6330. else
  6331. {
  6332. SERIAL_ECHO_START;
  6333. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6334. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6335. SERIAL_ECHOLNPGM("\"(2)");
  6336. }
  6337. KEEPALIVE_STATE(NOT_BUSY);
  6338. ClearToSend();
  6339. }
  6340. void FlushSerialRequestResend()
  6341. {
  6342. //char cmdbuffer[bufindr][100]="Resend:";
  6343. MYSERIAL.flush();
  6344. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6345. }
  6346. // Confirm the execution of a command, if sent from a serial line.
  6347. // Execution of a command from a SD card will not be confirmed.
  6348. void ClearToSend()
  6349. {
  6350. previous_millis_cmd = millis();
  6351. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6352. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6353. }
  6354. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6355. void update_currents() {
  6356. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6357. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6358. float tmp_motor[3];
  6359. //SERIAL_ECHOLNPGM("Currents updated: ");
  6360. if (destination[Z_AXIS] < Z_SILENT) {
  6361. //SERIAL_ECHOLNPGM("LOW");
  6362. for (uint8_t i = 0; i < 3; i++) {
  6363. st_current_set(i, current_low[i]);
  6364. /*MYSERIAL.print(int(i));
  6365. SERIAL_ECHOPGM(": ");
  6366. MYSERIAL.println(current_low[i]);*/
  6367. }
  6368. }
  6369. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6370. //SERIAL_ECHOLNPGM("HIGH");
  6371. for (uint8_t i = 0; i < 3; i++) {
  6372. st_current_set(i, current_high[i]);
  6373. /*MYSERIAL.print(int(i));
  6374. SERIAL_ECHOPGM(": ");
  6375. MYSERIAL.println(current_high[i]);*/
  6376. }
  6377. }
  6378. else {
  6379. for (uint8_t i = 0; i < 3; i++) {
  6380. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6381. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6382. st_current_set(i, tmp_motor[i]);
  6383. /*MYSERIAL.print(int(i));
  6384. SERIAL_ECHOPGM(": ");
  6385. MYSERIAL.println(tmp_motor[i]);*/
  6386. }
  6387. }
  6388. }
  6389. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6390. void get_coordinates()
  6391. {
  6392. bool seen[4]={false,false,false,false};
  6393. for(int8_t i=0; i < NUM_AXIS; i++) {
  6394. if(code_seen(axis_codes[i]))
  6395. {
  6396. bool relative = axis_relative_modes[i] || relative_mode;
  6397. destination[i] = (float)code_value();
  6398. if (i == E_AXIS) {
  6399. float emult = extruder_multiplier[active_extruder];
  6400. if (emult != 1.) {
  6401. if (! relative) {
  6402. destination[i] -= current_position[i];
  6403. relative = true;
  6404. }
  6405. destination[i] *= emult;
  6406. }
  6407. }
  6408. if (relative)
  6409. destination[i] += current_position[i];
  6410. seen[i]=true;
  6411. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6412. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6413. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6414. }
  6415. else destination[i] = current_position[i]; //Are these else lines really needed?
  6416. }
  6417. if(code_seen('F')) {
  6418. next_feedrate = code_value();
  6419. #ifdef MAX_SILENT_FEEDRATE
  6420. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6421. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6422. #endif //MAX_SILENT_FEEDRATE
  6423. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6424. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6425. {
  6426. // float e_max_speed =
  6427. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6428. }
  6429. }
  6430. }
  6431. void get_arc_coordinates()
  6432. {
  6433. #ifdef SF_ARC_FIX
  6434. bool relative_mode_backup = relative_mode;
  6435. relative_mode = true;
  6436. #endif
  6437. get_coordinates();
  6438. #ifdef SF_ARC_FIX
  6439. relative_mode=relative_mode_backup;
  6440. #endif
  6441. if(code_seen('I')) {
  6442. offset[0] = code_value();
  6443. }
  6444. else {
  6445. offset[0] = 0.0;
  6446. }
  6447. if(code_seen('J')) {
  6448. offset[1] = code_value();
  6449. }
  6450. else {
  6451. offset[1] = 0.0;
  6452. }
  6453. }
  6454. void clamp_to_software_endstops(float target[3])
  6455. {
  6456. #ifdef DEBUG_DISABLE_SWLIMITS
  6457. return;
  6458. #endif //DEBUG_DISABLE_SWLIMITS
  6459. world2machine_clamp(target[0], target[1]);
  6460. // Clamp the Z coordinate.
  6461. if (min_software_endstops) {
  6462. float negative_z_offset = 0;
  6463. #ifdef ENABLE_AUTO_BED_LEVELING
  6464. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6465. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6466. #endif
  6467. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6468. }
  6469. if (max_software_endstops) {
  6470. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6471. }
  6472. }
  6473. #ifdef MESH_BED_LEVELING
  6474. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6475. float dx = x - current_position[X_AXIS];
  6476. float dy = y - current_position[Y_AXIS];
  6477. float dz = z - current_position[Z_AXIS];
  6478. int n_segments = 0;
  6479. if (mbl.active) {
  6480. float len = abs(dx) + abs(dy);
  6481. if (len > 0)
  6482. // Split to 3cm segments or shorter.
  6483. n_segments = int(ceil(len / 30.f));
  6484. }
  6485. if (n_segments > 1) {
  6486. float de = e - current_position[E_AXIS];
  6487. for (int i = 1; i < n_segments; ++ i) {
  6488. float t = float(i) / float(n_segments);
  6489. if (saved_printing || (mbl.active == false)) return;
  6490. plan_buffer_line(
  6491. current_position[X_AXIS] + t * dx,
  6492. current_position[Y_AXIS] + t * dy,
  6493. current_position[Z_AXIS] + t * dz,
  6494. current_position[E_AXIS] + t * de,
  6495. feed_rate, extruder);
  6496. }
  6497. }
  6498. // The rest of the path.
  6499. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6500. current_position[X_AXIS] = x;
  6501. current_position[Y_AXIS] = y;
  6502. current_position[Z_AXIS] = z;
  6503. current_position[E_AXIS] = e;
  6504. }
  6505. #endif // MESH_BED_LEVELING
  6506. void prepare_move()
  6507. {
  6508. clamp_to_software_endstops(destination);
  6509. previous_millis_cmd = millis();
  6510. // Do not use feedmultiply for E or Z only moves
  6511. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6512. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6513. }
  6514. else {
  6515. #ifdef MESH_BED_LEVELING
  6516. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6517. #else
  6518. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6519. #endif
  6520. }
  6521. for(int8_t i=0; i < NUM_AXIS; i++) {
  6522. current_position[i] = destination[i];
  6523. }
  6524. }
  6525. void prepare_arc_move(char isclockwise) {
  6526. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6527. // Trace the arc
  6528. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6529. // As far as the parser is concerned, the position is now == target. In reality the
  6530. // motion control system might still be processing the action and the real tool position
  6531. // in any intermediate location.
  6532. for(int8_t i=0; i < NUM_AXIS; i++) {
  6533. current_position[i] = destination[i];
  6534. }
  6535. previous_millis_cmd = millis();
  6536. }
  6537. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6538. #if defined(FAN_PIN)
  6539. #if CONTROLLERFAN_PIN == FAN_PIN
  6540. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6541. #endif
  6542. #endif
  6543. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6544. unsigned long lastMotorCheck = 0;
  6545. void controllerFan()
  6546. {
  6547. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6548. {
  6549. lastMotorCheck = millis();
  6550. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6551. #if EXTRUDERS > 2
  6552. || !READ(E2_ENABLE_PIN)
  6553. #endif
  6554. #if EXTRUDER > 1
  6555. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6556. || !READ(X2_ENABLE_PIN)
  6557. #endif
  6558. || !READ(E1_ENABLE_PIN)
  6559. #endif
  6560. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6561. {
  6562. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6563. }
  6564. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6565. {
  6566. digitalWrite(CONTROLLERFAN_PIN, 0);
  6567. analogWrite(CONTROLLERFAN_PIN, 0);
  6568. }
  6569. else
  6570. {
  6571. // allows digital or PWM fan output to be used (see M42 handling)
  6572. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6573. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6574. }
  6575. }
  6576. }
  6577. #endif
  6578. #ifdef TEMP_STAT_LEDS
  6579. static bool blue_led = false;
  6580. static bool red_led = false;
  6581. static uint32_t stat_update = 0;
  6582. void handle_status_leds(void) {
  6583. float max_temp = 0.0;
  6584. if(millis() > stat_update) {
  6585. stat_update += 500; // Update every 0.5s
  6586. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6587. max_temp = max(max_temp, degHotend(cur_extruder));
  6588. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6589. }
  6590. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6591. max_temp = max(max_temp, degTargetBed());
  6592. max_temp = max(max_temp, degBed());
  6593. #endif
  6594. if((max_temp > 55.0) && (red_led == false)) {
  6595. digitalWrite(STAT_LED_RED, 1);
  6596. digitalWrite(STAT_LED_BLUE, 0);
  6597. red_led = true;
  6598. blue_led = false;
  6599. }
  6600. if((max_temp < 54.0) && (blue_led == false)) {
  6601. digitalWrite(STAT_LED_RED, 0);
  6602. digitalWrite(STAT_LED_BLUE, 1);
  6603. red_led = false;
  6604. blue_led = true;
  6605. }
  6606. }
  6607. }
  6608. #endif
  6609. #ifdef SAFETYTIMER
  6610. /**
  6611. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6612. *
  6613. * Full screen blocking notification message is shown after heater turning off.
  6614. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6615. * damage print.
  6616. *
  6617. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6618. */
  6619. static void handleSafetyTimer()
  6620. {
  6621. #if (EXTRUDERS > 1)
  6622. #error Implemented only for one extruder.
  6623. #endif //(EXTRUDERS > 1)
  6624. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6625. {
  6626. safetyTimer.stop();
  6627. }
  6628. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6629. {
  6630. safetyTimer.start();
  6631. }
  6632. else if (safetyTimer.expired(safetytimer_inactive_time))
  6633. {
  6634. setTargetBed(0);
  6635. setTargetHotend(0, 0);
  6636. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6637. }
  6638. }
  6639. #endif //SAFETYTIMER
  6640. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6641. {
  6642. #ifdef PAT9125
  6643. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6644. {
  6645. if (fsensor_autoload_enabled)
  6646. {
  6647. if (fsensor_check_autoload())
  6648. {
  6649. if (degHotend0() > EXTRUDE_MINTEMP)
  6650. {
  6651. fsensor_autoload_check_stop();
  6652. tone(BEEPER, 1000);
  6653. delay_keep_alive(50);
  6654. noTone(BEEPER);
  6655. loading_flag = true;
  6656. enquecommand_front_P((PSTR("M701")));
  6657. }
  6658. else
  6659. {
  6660. lcd_update_enable(false);
  6661. lcd_clear();
  6662. lcd_set_cursor(0, 0);
  6663. lcd_puts_P(_T(MSG_ERROR));
  6664. lcd_set_cursor(0, 2);
  6665. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6666. delay(2000);
  6667. lcd_clear();
  6668. lcd_update_enable(true);
  6669. }
  6670. }
  6671. }
  6672. else
  6673. fsensor_autoload_check_start();
  6674. }
  6675. else
  6676. if (fsensor_autoload_enabled)
  6677. fsensor_autoload_check_stop();
  6678. #endif //PAT9125
  6679. #ifdef SAFETYTIMER
  6680. handleSafetyTimer();
  6681. #endif //SAFETYTIMER
  6682. #if defined(KILL_PIN) && KILL_PIN > -1
  6683. static int killCount = 0; // make the inactivity button a bit less responsive
  6684. const int KILL_DELAY = 10000;
  6685. #endif
  6686. if(buflen < (BUFSIZE-1)){
  6687. get_command();
  6688. }
  6689. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6690. if(max_inactive_time)
  6691. kill(_n(""), 4);
  6692. if(stepper_inactive_time) {
  6693. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6694. {
  6695. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6696. disable_x();
  6697. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6698. disable_y();
  6699. disable_z();
  6700. disable_e0();
  6701. disable_e1();
  6702. disable_e2();
  6703. }
  6704. }
  6705. }
  6706. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6707. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6708. {
  6709. chdkActive = false;
  6710. WRITE(CHDK, LOW);
  6711. }
  6712. #endif
  6713. #if defined(KILL_PIN) && KILL_PIN > -1
  6714. // Check if the kill button was pressed and wait just in case it was an accidental
  6715. // key kill key press
  6716. // -------------------------------------------------------------------------------
  6717. if( 0 == READ(KILL_PIN) )
  6718. {
  6719. killCount++;
  6720. }
  6721. else if (killCount > 0)
  6722. {
  6723. killCount--;
  6724. }
  6725. // Exceeded threshold and we can confirm that it was not accidental
  6726. // KILL the machine
  6727. // ----------------------------------------------------------------
  6728. if ( killCount >= KILL_DELAY)
  6729. {
  6730. kill("", 5);
  6731. }
  6732. #endif
  6733. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6734. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6735. #endif
  6736. #ifdef EXTRUDER_RUNOUT_PREVENT
  6737. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6738. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6739. {
  6740. bool oldstatus=READ(E0_ENABLE_PIN);
  6741. enable_e0();
  6742. float oldepos=current_position[E_AXIS];
  6743. float oldedes=destination[E_AXIS];
  6744. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6745. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6746. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6747. current_position[E_AXIS]=oldepos;
  6748. destination[E_AXIS]=oldedes;
  6749. plan_set_e_position(oldepos);
  6750. previous_millis_cmd=millis();
  6751. st_synchronize();
  6752. WRITE(E0_ENABLE_PIN,oldstatus);
  6753. }
  6754. #endif
  6755. #ifdef TEMP_STAT_LEDS
  6756. handle_status_leds();
  6757. #endif
  6758. check_axes_activity();
  6759. }
  6760. void kill(const char *full_screen_message, unsigned char id)
  6761. {
  6762. printf_P(_N("KILL: %d\n"), id);
  6763. //return;
  6764. cli(); // Stop interrupts
  6765. disable_heater();
  6766. disable_x();
  6767. // SERIAL_ECHOLNPGM("kill - disable Y");
  6768. disable_y();
  6769. disable_z();
  6770. disable_e0();
  6771. disable_e1();
  6772. disable_e2();
  6773. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6774. pinMode(PS_ON_PIN,INPUT);
  6775. #endif
  6776. SERIAL_ERROR_START;
  6777. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6778. if (full_screen_message != NULL) {
  6779. SERIAL_ERRORLNRPGM(full_screen_message);
  6780. lcd_display_message_fullscreen_P(full_screen_message);
  6781. } else {
  6782. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6783. }
  6784. // FMC small patch to update the LCD before ending
  6785. sei(); // enable interrupts
  6786. for ( int i=5; i--; lcd_update(0))
  6787. {
  6788. delay(200);
  6789. }
  6790. cli(); // disable interrupts
  6791. suicide();
  6792. while(1)
  6793. {
  6794. #ifdef WATCHDOG
  6795. wdt_reset();
  6796. #endif //WATCHDOG
  6797. /* Intentionally left empty */
  6798. } // Wait for reset
  6799. }
  6800. void Stop()
  6801. {
  6802. disable_heater();
  6803. if(Stopped == false) {
  6804. Stopped = true;
  6805. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6806. SERIAL_ERROR_START;
  6807. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6808. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6809. }
  6810. }
  6811. bool IsStopped() { return Stopped; };
  6812. #ifdef FAST_PWM_FAN
  6813. void setPwmFrequency(uint8_t pin, int val)
  6814. {
  6815. val &= 0x07;
  6816. switch(digitalPinToTimer(pin))
  6817. {
  6818. #if defined(TCCR0A)
  6819. case TIMER0A:
  6820. case TIMER0B:
  6821. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6822. // TCCR0B |= val;
  6823. break;
  6824. #endif
  6825. #if defined(TCCR1A)
  6826. case TIMER1A:
  6827. case TIMER1B:
  6828. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6829. // TCCR1B |= val;
  6830. break;
  6831. #endif
  6832. #if defined(TCCR2)
  6833. case TIMER2:
  6834. case TIMER2:
  6835. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6836. TCCR2 |= val;
  6837. break;
  6838. #endif
  6839. #if defined(TCCR2A)
  6840. case TIMER2A:
  6841. case TIMER2B:
  6842. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6843. TCCR2B |= val;
  6844. break;
  6845. #endif
  6846. #if defined(TCCR3A)
  6847. case TIMER3A:
  6848. case TIMER3B:
  6849. case TIMER3C:
  6850. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6851. TCCR3B |= val;
  6852. break;
  6853. #endif
  6854. #if defined(TCCR4A)
  6855. case TIMER4A:
  6856. case TIMER4B:
  6857. case TIMER4C:
  6858. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6859. TCCR4B |= val;
  6860. break;
  6861. #endif
  6862. #if defined(TCCR5A)
  6863. case TIMER5A:
  6864. case TIMER5B:
  6865. case TIMER5C:
  6866. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6867. TCCR5B |= val;
  6868. break;
  6869. #endif
  6870. }
  6871. }
  6872. #endif //FAST_PWM_FAN
  6873. bool setTargetedHotend(int code){
  6874. tmp_extruder = active_extruder;
  6875. if(code_seen('T')) {
  6876. tmp_extruder = code_value();
  6877. if(tmp_extruder >= EXTRUDERS) {
  6878. SERIAL_ECHO_START;
  6879. switch(code){
  6880. case 104:
  6881. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6882. break;
  6883. case 105:
  6884. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6885. break;
  6886. case 109:
  6887. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6888. break;
  6889. case 218:
  6890. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6891. break;
  6892. case 221:
  6893. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6894. break;
  6895. }
  6896. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6897. return true;
  6898. }
  6899. }
  6900. return false;
  6901. }
  6902. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6903. {
  6904. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6905. {
  6906. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6907. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6908. }
  6909. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6910. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6911. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6912. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6913. total_filament_used = 0;
  6914. }
  6915. float calculate_extruder_multiplier(float diameter) {
  6916. float out = 1.f;
  6917. if (volumetric_enabled && diameter > 0.f) {
  6918. float area = M_PI * diameter * diameter * 0.25;
  6919. out = 1.f / area;
  6920. }
  6921. if (extrudemultiply != 100)
  6922. out *= float(extrudemultiply) * 0.01f;
  6923. return out;
  6924. }
  6925. void calculate_extruder_multipliers() {
  6926. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6927. #if EXTRUDERS > 1
  6928. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6929. #if EXTRUDERS > 2
  6930. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6931. #endif
  6932. #endif
  6933. }
  6934. void delay_keep_alive(unsigned int ms)
  6935. {
  6936. for (;;) {
  6937. manage_heater();
  6938. // Manage inactivity, but don't disable steppers on timeout.
  6939. manage_inactivity(true);
  6940. lcd_update(0);
  6941. if (ms == 0)
  6942. break;
  6943. else if (ms >= 50) {
  6944. delay(50);
  6945. ms -= 50;
  6946. } else {
  6947. delay(ms);
  6948. ms = 0;
  6949. }
  6950. }
  6951. }
  6952. void wait_for_heater(long codenum) {
  6953. #ifdef TEMP_RESIDENCY_TIME
  6954. long residencyStart;
  6955. residencyStart = -1;
  6956. /* continue to loop until we have reached the target temp
  6957. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6958. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6959. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6960. #else
  6961. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6962. #endif //TEMP_RESIDENCY_TIME
  6963. if ((millis() - codenum) > 1000UL)
  6964. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6965. if (!farm_mode) {
  6966. SERIAL_PROTOCOLPGM("T:");
  6967. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6968. SERIAL_PROTOCOLPGM(" E:");
  6969. SERIAL_PROTOCOL((int)tmp_extruder);
  6970. #ifdef TEMP_RESIDENCY_TIME
  6971. SERIAL_PROTOCOLPGM(" W:");
  6972. if (residencyStart > -1)
  6973. {
  6974. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6975. SERIAL_PROTOCOLLN(codenum);
  6976. }
  6977. else
  6978. {
  6979. SERIAL_PROTOCOLLN("?");
  6980. }
  6981. }
  6982. #else
  6983. SERIAL_PROTOCOLLN("");
  6984. #endif
  6985. codenum = millis();
  6986. }
  6987. manage_heater();
  6988. manage_inactivity();
  6989. lcd_update(0);
  6990. #ifdef TEMP_RESIDENCY_TIME
  6991. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6992. or when current temp falls outside the hysteresis after target temp was reached */
  6993. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6994. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6995. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6996. {
  6997. residencyStart = millis();
  6998. }
  6999. #endif //TEMP_RESIDENCY_TIME
  7000. }
  7001. }
  7002. void check_babystep() {
  7003. int babystep_z;
  7004. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7005. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7006. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7007. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7008. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7009. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7010. lcd_update_enable(true);
  7011. }
  7012. }
  7013. #ifdef DIS
  7014. void d_setup()
  7015. {
  7016. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7017. pinMode(D_DATA, INPUT_PULLUP);
  7018. pinMode(D_REQUIRE, OUTPUT);
  7019. digitalWrite(D_REQUIRE, HIGH);
  7020. }
  7021. float d_ReadData()
  7022. {
  7023. int digit[13];
  7024. String mergeOutput;
  7025. float output;
  7026. digitalWrite(D_REQUIRE, HIGH);
  7027. for (int i = 0; i<13; i++)
  7028. {
  7029. for (int j = 0; j < 4; j++)
  7030. {
  7031. while (digitalRead(D_DATACLOCK) == LOW) {}
  7032. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7033. bitWrite(digit[i], j, digitalRead(D_DATA));
  7034. }
  7035. }
  7036. digitalWrite(D_REQUIRE, LOW);
  7037. mergeOutput = "";
  7038. output = 0;
  7039. for (int r = 5; r <= 10; r++) //Merge digits
  7040. {
  7041. mergeOutput += digit[r];
  7042. }
  7043. output = mergeOutput.toFloat();
  7044. if (digit[4] == 8) //Handle sign
  7045. {
  7046. output *= -1;
  7047. }
  7048. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7049. {
  7050. output /= 10;
  7051. }
  7052. return output;
  7053. }
  7054. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7055. int t1 = 0;
  7056. int t_delay = 0;
  7057. int digit[13];
  7058. int m;
  7059. char str[3];
  7060. //String mergeOutput;
  7061. char mergeOutput[15];
  7062. float output;
  7063. int mesh_point = 0; //index number of calibration point
  7064. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7065. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7066. float mesh_home_z_search = 4;
  7067. float row[x_points_num];
  7068. int ix = 0;
  7069. int iy = 0;
  7070. const char* filename_wldsd = "wldsd.txt";
  7071. char data_wldsd[70];
  7072. char numb_wldsd[10];
  7073. d_setup();
  7074. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7075. // We don't know where we are! HOME!
  7076. // Push the commands to the front of the message queue in the reverse order!
  7077. // There shall be always enough space reserved for these commands.
  7078. repeatcommand_front(); // repeat G80 with all its parameters
  7079. enquecommand_front_P((PSTR("G28 W0")));
  7080. enquecommand_front_P((PSTR("G1 Z5")));
  7081. return;
  7082. }
  7083. bool custom_message_old = custom_message;
  7084. unsigned int custom_message_type_old = custom_message_type;
  7085. unsigned int custom_message_state_old = custom_message_state;
  7086. custom_message = true;
  7087. custom_message_type = 1;
  7088. custom_message_state = (x_points_num * y_points_num) + 10;
  7089. lcd_update(1);
  7090. mbl.reset();
  7091. babystep_undo();
  7092. card.openFile(filename_wldsd, false);
  7093. current_position[Z_AXIS] = mesh_home_z_search;
  7094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7095. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7096. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7097. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7098. setup_for_endstop_move(false);
  7099. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7100. SERIAL_PROTOCOL(x_points_num);
  7101. SERIAL_PROTOCOLPGM(",");
  7102. SERIAL_PROTOCOL(y_points_num);
  7103. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7104. SERIAL_PROTOCOL(mesh_home_z_search);
  7105. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7106. SERIAL_PROTOCOL(x_dimension);
  7107. SERIAL_PROTOCOLPGM(",");
  7108. SERIAL_PROTOCOL(y_dimension);
  7109. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7110. while (mesh_point != x_points_num * y_points_num) {
  7111. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7112. iy = mesh_point / x_points_num;
  7113. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7114. float z0 = 0.f;
  7115. current_position[Z_AXIS] = mesh_home_z_search;
  7116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7117. st_synchronize();
  7118. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7119. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7121. st_synchronize();
  7122. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7123. break;
  7124. card.closefile();
  7125. }
  7126. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7127. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7128. //strcat(data_wldsd, numb_wldsd);
  7129. //MYSERIAL.println(data_wldsd);
  7130. //delay(1000);
  7131. //delay(3000);
  7132. //t1 = millis();
  7133. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7134. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7135. memset(digit, 0, sizeof(digit));
  7136. //cli();
  7137. digitalWrite(D_REQUIRE, LOW);
  7138. for (int i = 0; i<13; i++)
  7139. {
  7140. //t1 = millis();
  7141. for (int j = 0; j < 4; j++)
  7142. {
  7143. while (digitalRead(D_DATACLOCK) == LOW) {}
  7144. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7145. bitWrite(digit[i], j, digitalRead(D_DATA));
  7146. }
  7147. //t_delay = (millis() - t1);
  7148. //SERIAL_PROTOCOLPGM(" ");
  7149. //SERIAL_PROTOCOL_F(t_delay, 5);
  7150. //SERIAL_PROTOCOLPGM(" ");
  7151. }
  7152. //sei();
  7153. digitalWrite(D_REQUIRE, HIGH);
  7154. mergeOutput[0] = '\0';
  7155. output = 0;
  7156. for (int r = 5; r <= 10; r++) //Merge digits
  7157. {
  7158. sprintf(str, "%d", digit[r]);
  7159. strcat(mergeOutput, str);
  7160. }
  7161. output = atof(mergeOutput);
  7162. if (digit[4] == 8) //Handle sign
  7163. {
  7164. output *= -1;
  7165. }
  7166. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7167. {
  7168. output *= 0.1;
  7169. }
  7170. //output = d_ReadData();
  7171. //row[ix] = current_position[Z_AXIS];
  7172. memset(data_wldsd, 0, sizeof(data_wldsd));
  7173. for (int i = 0; i <3; i++) {
  7174. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7175. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7176. strcat(data_wldsd, numb_wldsd);
  7177. strcat(data_wldsd, ";");
  7178. }
  7179. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7180. dtostrf(output, 8, 5, numb_wldsd);
  7181. strcat(data_wldsd, numb_wldsd);
  7182. //strcat(data_wldsd, ";");
  7183. card.write_command(data_wldsd);
  7184. //row[ix] = d_ReadData();
  7185. row[ix] = output; // current_position[Z_AXIS];
  7186. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7187. for (int i = 0; i < x_points_num; i++) {
  7188. SERIAL_PROTOCOLPGM(" ");
  7189. SERIAL_PROTOCOL_F(row[i], 5);
  7190. }
  7191. SERIAL_PROTOCOLPGM("\n");
  7192. }
  7193. custom_message_state--;
  7194. mesh_point++;
  7195. lcd_update(1);
  7196. }
  7197. card.closefile();
  7198. }
  7199. #endif
  7200. void temp_compensation_start() {
  7201. custom_message = true;
  7202. custom_message_type = 5;
  7203. custom_message_state = PINDA_HEAT_T + 1;
  7204. lcd_update(2);
  7205. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7206. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7207. }
  7208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7209. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7210. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7211. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7213. st_synchronize();
  7214. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7215. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7216. delay_keep_alive(1000);
  7217. custom_message_state = PINDA_HEAT_T - i;
  7218. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7219. else lcd_update(1);
  7220. }
  7221. custom_message_type = 0;
  7222. custom_message_state = 0;
  7223. custom_message = false;
  7224. }
  7225. void temp_compensation_apply() {
  7226. int i_add;
  7227. int compensation_value;
  7228. int z_shift = 0;
  7229. float z_shift_mm;
  7230. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7231. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7232. i_add = (target_temperature_bed - 60) / 10;
  7233. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7234. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7235. }else {
  7236. //interpolation
  7237. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7238. }
  7239. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7240. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7241. st_synchronize();
  7242. plan_set_z_position(current_position[Z_AXIS]);
  7243. }
  7244. else {
  7245. //we have no temp compensation data
  7246. }
  7247. }
  7248. float temp_comp_interpolation(float inp_temperature) {
  7249. //cubic spline interpolation
  7250. int n, i, j, k;
  7251. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7252. int shift[10];
  7253. int temp_C[10];
  7254. n = 6; //number of measured points
  7255. shift[0] = 0;
  7256. for (i = 0; i < n; i++) {
  7257. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7258. temp_C[i] = 50 + i * 10; //temperature in C
  7259. #ifdef PINDA_THERMISTOR
  7260. temp_C[i] = 35 + i * 5; //temperature in C
  7261. #else
  7262. temp_C[i] = 50 + i * 10; //temperature in C
  7263. #endif
  7264. x[i] = (float)temp_C[i];
  7265. f[i] = (float)shift[i];
  7266. }
  7267. if (inp_temperature < x[0]) return 0;
  7268. for (i = n - 1; i>0; i--) {
  7269. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7270. h[i - 1] = x[i] - x[i - 1];
  7271. }
  7272. //*********** formation of h, s , f matrix **************
  7273. for (i = 1; i<n - 1; i++) {
  7274. m[i][i] = 2 * (h[i - 1] + h[i]);
  7275. if (i != 1) {
  7276. m[i][i - 1] = h[i - 1];
  7277. m[i - 1][i] = h[i - 1];
  7278. }
  7279. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7280. }
  7281. //*********** forward elimination **************
  7282. for (i = 1; i<n - 2; i++) {
  7283. temp = (m[i + 1][i] / m[i][i]);
  7284. for (j = 1; j <= n - 1; j++)
  7285. m[i + 1][j] -= temp*m[i][j];
  7286. }
  7287. //*********** backward substitution *********
  7288. for (i = n - 2; i>0; i--) {
  7289. sum = 0;
  7290. for (j = i; j <= n - 2; j++)
  7291. sum += m[i][j] * s[j];
  7292. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7293. }
  7294. for (i = 0; i<n - 1; i++)
  7295. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7296. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7297. b = s[i] / 2;
  7298. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7299. d = f[i];
  7300. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7301. }
  7302. return sum;
  7303. }
  7304. #ifdef PINDA_THERMISTOR
  7305. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7306. {
  7307. if (!temp_cal_active) return 0;
  7308. if (!calibration_status_pinda()) return 0;
  7309. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7310. }
  7311. #endif //PINDA_THERMISTOR
  7312. void long_pause() //long pause print
  7313. {
  7314. st_synchronize();
  7315. //save currently set parameters to global variables
  7316. saved_feedmultiply = feedmultiply;
  7317. HotendTempBckp = degTargetHotend(active_extruder);
  7318. fanSpeedBckp = fanSpeed;
  7319. start_pause_print = millis();
  7320. //save position
  7321. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7322. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7323. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7324. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7325. //retract
  7326. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7327. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7328. //lift z
  7329. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7330. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7332. //set nozzle target temperature to 0
  7333. setTargetHotend0(0);
  7334. setTargetHotend1(0);
  7335. setTargetHotend2(0);
  7336. //Move XY to side
  7337. current_position[X_AXIS] = X_PAUSE_POS;
  7338. current_position[Y_AXIS] = Y_PAUSE_POS;
  7339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7340. // Turn off the print fan
  7341. fanSpeed = 0;
  7342. st_synchronize();
  7343. }
  7344. void serialecho_temperatures() {
  7345. float tt = degHotend(active_extruder);
  7346. SERIAL_PROTOCOLPGM("T:");
  7347. SERIAL_PROTOCOL(tt);
  7348. SERIAL_PROTOCOLPGM(" E:");
  7349. SERIAL_PROTOCOL((int)active_extruder);
  7350. SERIAL_PROTOCOLPGM(" B:");
  7351. SERIAL_PROTOCOL_F(degBed(), 1);
  7352. SERIAL_PROTOCOLLN("");
  7353. }
  7354. extern uint32_t sdpos_atomic;
  7355. #ifdef UVLO_SUPPORT
  7356. void uvlo_()
  7357. {
  7358. unsigned long time_start = millis();
  7359. bool sd_print = card.sdprinting;
  7360. // Conserve power as soon as possible.
  7361. disable_x();
  7362. disable_y();
  7363. #ifdef TMC2130
  7364. tmc2130_set_current_h(Z_AXIS, 20);
  7365. tmc2130_set_current_r(Z_AXIS, 20);
  7366. tmc2130_set_current_h(E_AXIS, 20);
  7367. tmc2130_set_current_r(E_AXIS, 20);
  7368. #endif //TMC2130
  7369. // Indicate that the interrupt has been triggered.
  7370. // SERIAL_ECHOLNPGM("UVLO");
  7371. // Read out the current Z motor microstep counter. This will be later used
  7372. // for reaching the zero full step before powering off.
  7373. uint16_t z_microsteps = 0;
  7374. #ifdef TMC2130
  7375. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7376. #endif //TMC2130
  7377. // Calculate the file position, from which to resume this print.
  7378. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7379. {
  7380. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7381. sd_position -= sdlen_planner;
  7382. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7383. sd_position -= sdlen_cmdqueue;
  7384. if (sd_position < 0) sd_position = 0;
  7385. }
  7386. // Backup the feedrate in mm/min.
  7387. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7388. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7389. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7390. // are in action.
  7391. planner_abort_hard();
  7392. // Store the current extruder position.
  7393. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7394. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7395. // Clean the input command queue.
  7396. cmdqueue_reset();
  7397. card.sdprinting = false;
  7398. // card.closefile();
  7399. // Enable stepper driver interrupt to move Z axis.
  7400. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7401. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7402. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7403. sei();
  7404. plan_buffer_line(
  7405. current_position[X_AXIS],
  7406. current_position[Y_AXIS],
  7407. current_position[Z_AXIS],
  7408. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7409. 95, active_extruder);
  7410. st_synchronize();
  7411. disable_e0();
  7412. plan_buffer_line(
  7413. current_position[X_AXIS],
  7414. current_position[Y_AXIS],
  7415. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7416. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7417. 40, active_extruder);
  7418. st_synchronize();
  7419. disable_e0();
  7420. plan_buffer_line(
  7421. current_position[X_AXIS],
  7422. current_position[Y_AXIS],
  7423. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7424. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7425. 40, active_extruder);
  7426. st_synchronize();
  7427. disable_e0();
  7428. disable_z();
  7429. // Move Z up to the next 0th full step.
  7430. // Write the file position.
  7431. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7432. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7433. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7434. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7435. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7436. // Scale the z value to 1u resolution.
  7437. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7438. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7439. }
  7440. // Read out the current Z motor microstep counter. This will be later used
  7441. // for reaching the zero full step before powering off.
  7442. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7443. // Store the current position.
  7444. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7445. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7446. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7447. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7448. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7449. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7450. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7451. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7452. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7453. #if EXTRUDERS > 1
  7454. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7455. #if EXTRUDERS > 2
  7456. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7457. #endif
  7458. #endif
  7459. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7460. // Finaly store the "power outage" flag.
  7461. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7462. st_synchronize();
  7463. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7464. disable_z();
  7465. // Increment power failure counter
  7466. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7467. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7468. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7469. #if 0
  7470. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7471. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7473. st_synchronize();
  7474. #endif
  7475. cli();
  7476. volatile unsigned int ppcount = 0;
  7477. SET_OUTPUT(BEEPER);
  7478. WRITE(BEEPER, HIGH);
  7479. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7480. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7481. }
  7482. WRITE(BEEPER, LOW);
  7483. while(1){
  7484. #if 1
  7485. WRITE(BEEPER, LOW);
  7486. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7487. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7488. }
  7489. #endif
  7490. };
  7491. }
  7492. #endif //UVLO_SUPPORT
  7493. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7494. void setup_fan_interrupt() {
  7495. //INT7
  7496. DDRE &= ~(1 << 7); //input pin
  7497. PORTE &= ~(1 << 7); //no internal pull-up
  7498. //start with sensing rising edge
  7499. EICRB &= ~(1 << 6);
  7500. EICRB |= (1 << 7);
  7501. //enable INT7 interrupt
  7502. EIMSK |= (1 << 7);
  7503. }
  7504. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7505. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7506. ISR(INT7_vect) {
  7507. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7508. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7509. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7510. t_fan_rising_edge = millis_nc();
  7511. }
  7512. else { //interrupt was triggered by falling edge
  7513. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7514. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7515. }
  7516. }
  7517. EICRB ^= (1 << 6); //change edge
  7518. }
  7519. #endif
  7520. #ifdef UVLO_SUPPORT
  7521. void setup_uvlo_interrupt() {
  7522. DDRE &= ~(1 << 4); //input pin
  7523. PORTE &= ~(1 << 4); //no internal pull-up
  7524. //sensing falling edge
  7525. EICRB |= (1 << 0);
  7526. EICRB &= ~(1 << 1);
  7527. //enable INT4 interrupt
  7528. EIMSK |= (1 << 4);
  7529. }
  7530. ISR(INT4_vect) {
  7531. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7532. SERIAL_ECHOLNPGM("INT4");
  7533. if (IS_SD_PRINTING) uvlo_();
  7534. }
  7535. void recover_print(uint8_t automatic) {
  7536. char cmd[30];
  7537. lcd_update_enable(true);
  7538. lcd_update(2);
  7539. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7540. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7541. // Lift the print head, so one may remove the excess priming material.
  7542. if (current_position[Z_AXIS] < 25)
  7543. enquecommand_P(PSTR("G1 Z25 F800"));
  7544. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7545. enquecommand_P(PSTR("G28 X Y"));
  7546. // Set the target bed and nozzle temperatures and wait.
  7547. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7548. enquecommand(cmd);
  7549. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7550. enquecommand(cmd);
  7551. enquecommand_P(PSTR("M83")); //E axis relative mode
  7552. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7553. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7554. if(automatic == 0){
  7555. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7556. }
  7557. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7558. // Mark the power panic status as inactive.
  7559. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7560. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7561. delay_keep_alive(1000);
  7562. }*/
  7563. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7564. // Restart the print.
  7565. restore_print_from_eeprom();
  7566. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7567. }
  7568. void recover_machine_state_after_power_panic()
  7569. {
  7570. char cmd[30];
  7571. // 1) Recover the logical cordinates at the time of the power panic.
  7572. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7573. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7574. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7575. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7576. // The current position after power panic is moved to the next closest 0th full step.
  7577. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7578. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7579. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7580. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7581. sprintf_P(cmd, PSTR("G92 E"));
  7582. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7583. enquecommand(cmd);
  7584. }
  7585. memcpy(destination, current_position, sizeof(destination));
  7586. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7587. print_world_coordinates();
  7588. // 2) Initialize the logical to physical coordinate system transformation.
  7589. world2machine_initialize();
  7590. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7591. mbl.active = false;
  7592. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7593. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7594. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7595. // Scale the z value to 10u resolution.
  7596. int16_t v;
  7597. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7598. if (v != 0)
  7599. mbl.active = true;
  7600. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7601. }
  7602. if (mbl.active)
  7603. mbl.upsample_3x3();
  7604. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7605. // print_mesh_bed_leveling_table();
  7606. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7607. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7608. babystep_load();
  7609. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7610. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7611. // 6) Power up the motors, mark their positions as known.
  7612. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7613. axis_known_position[X_AXIS] = true; enable_x();
  7614. axis_known_position[Y_AXIS] = true; enable_y();
  7615. axis_known_position[Z_AXIS] = true; enable_z();
  7616. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7617. print_physical_coordinates();
  7618. // 7) Recover the target temperatures.
  7619. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7620. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7621. // 8) Recover extruder multipilers
  7622. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7623. #if EXTRUDERS > 1
  7624. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7625. #if EXTRUDERS > 2
  7626. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7627. #endif
  7628. #endif
  7629. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7630. }
  7631. void restore_print_from_eeprom() {
  7632. float x_rec, y_rec, z_pos;
  7633. int feedrate_rec;
  7634. uint8_t fan_speed_rec;
  7635. char cmd[30];
  7636. char* c;
  7637. char filename[13];
  7638. uint8_t depth = 0;
  7639. char dir_name[9];
  7640. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7641. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7642. SERIAL_ECHOPGM("Feedrate:");
  7643. MYSERIAL.println(feedrate_rec);
  7644. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7645. MYSERIAL.println(int(depth));
  7646. for (int i = 0; i < depth; i++) {
  7647. for (int j = 0; j < 8; j++) {
  7648. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7649. }
  7650. dir_name[8] = '\0';
  7651. MYSERIAL.println(dir_name);
  7652. strcpy(dir_names[i], dir_name);
  7653. card.chdir(dir_name);
  7654. }
  7655. for (int i = 0; i < 8; i++) {
  7656. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7657. }
  7658. filename[8] = '\0';
  7659. MYSERIAL.print(filename);
  7660. strcat_P(filename, PSTR(".gco"));
  7661. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7662. enquecommand(cmd);
  7663. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7664. SERIAL_ECHOPGM("Position read from eeprom:");
  7665. MYSERIAL.println(position);
  7666. // E axis relative mode.
  7667. enquecommand_P(PSTR("M83"));
  7668. // Move to the XY print position in logical coordinates, where the print has been killed.
  7669. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7670. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7671. strcat_P(cmd, PSTR(" F2000"));
  7672. enquecommand(cmd);
  7673. // Move the Z axis down to the print, in logical coordinates.
  7674. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7675. enquecommand(cmd);
  7676. // Unretract.
  7677. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7678. // Set the feedrate saved at the power panic.
  7679. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7680. enquecommand(cmd);
  7681. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7682. {
  7683. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7684. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7685. }
  7686. // Set the fan speed saved at the power panic.
  7687. strcpy_P(cmd, PSTR("M106 S"));
  7688. strcat(cmd, itostr3(int(fan_speed_rec)));
  7689. enquecommand(cmd);
  7690. // Set a position in the file.
  7691. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7692. enquecommand(cmd);
  7693. // Start SD print.
  7694. enquecommand_P(PSTR("M24"));
  7695. }
  7696. #endif //UVLO_SUPPORT
  7697. ////////////////////////////////////////////////////////////////////////////////
  7698. // save/restore printing
  7699. void stop_and_save_print_to_ram(float z_move, float e_move)
  7700. {
  7701. if (saved_printing) return;
  7702. unsigned char nplanner_blocks;
  7703. unsigned char nlines;
  7704. uint16_t sdlen_planner;
  7705. uint16_t sdlen_cmdqueue;
  7706. cli();
  7707. if (card.sdprinting) {
  7708. nplanner_blocks = number_of_blocks();
  7709. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7710. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7711. saved_sdpos -= sdlen_planner;
  7712. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7713. saved_sdpos -= sdlen_cmdqueue;
  7714. saved_printing_type = PRINTING_TYPE_SD;
  7715. }
  7716. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7717. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7718. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7719. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7720. saved_sdpos -= nlines;
  7721. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7722. saved_printing_type = PRINTING_TYPE_USB;
  7723. }
  7724. else {
  7725. //not sd printing nor usb printing
  7726. }
  7727. #if 0
  7728. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7729. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7730. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7731. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7732. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7733. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7734. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7735. {
  7736. card.setIndex(saved_sdpos);
  7737. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7738. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7739. MYSERIAL.print(char(card.get()));
  7740. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7741. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7742. MYSERIAL.print(char(card.get()));
  7743. SERIAL_ECHOLNPGM("End of command buffer");
  7744. }
  7745. {
  7746. // Print the content of the planner buffer, line by line:
  7747. card.setIndex(saved_sdpos);
  7748. int8_t iline = 0;
  7749. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7750. SERIAL_ECHOPGM("Planner line (from file): ");
  7751. MYSERIAL.print(int(iline), DEC);
  7752. SERIAL_ECHOPGM(", length: ");
  7753. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7754. SERIAL_ECHOPGM(", steps: (");
  7755. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7756. SERIAL_ECHOPGM(",");
  7757. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7758. SERIAL_ECHOPGM(",");
  7759. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7760. SERIAL_ECHOPGM(",");
  7761. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7762. SERIAL_ECHOPGM("), events: ");
  7763. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7764. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7765. MYSERIAL.print(char(card.get()));
  7766. }
  7767. }
  7768. {
  7769. // Print the content of the command buffer, line by line:
  7770. int8_t iline = 0;
  7771. union {
  7772. struct {
  7773. char lo;
  7774. char hi;
  7775. } lohi;
  7776. uint16_t value;
  7777. } sdlen_single;
  7778. int _bufindr = bufindr;
  7779. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7780. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7781. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7782. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7783. }
  7784. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7785. MYSERIAL.print(int(iline), DEC);
  7786. SERIAL_ECHOPGM(", type: ");
  7787. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7788. SERIAL_ECHOPGM(", len: ");
  7789. MYSERIAL.println(sdlen_single.value, DEC);
  7790. // Print the content of the buffer line.
  7791. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7792. SERIAL_ECHOPGM("Buffer line (from file): ");
  7793. MYSERIAL.println(int(iline), DEC);
  7794. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7795. MYSERIAL.print(char(card.get()));
  7796. if (-- _buflen == 0)
  7797. break;
  7798. // First skip the current command ID and iterate up to the end of the string.
  7799. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7800. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7801. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7802. // If the end of the buffer was empty,
  7803. if (_bufindr == sizeof(cmdbuffer)) {
  7804. // skip to the start and find the nonzero command.
  7805. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7806. }
  7807. }
  7808. }
  7809. #endif
  7810. #if 0
  7811. saved_feedrate2 = feedrate; //save feedrate
  7812. #else
  7813. // Try to deduce the feedrate from the first block of the planner.
  7814. // Speed is in mm/min.
  7815. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7816. #endif
  7817. planner_abort_hard(); //abort printing
  7818. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7819. saved_active_extruder = active_extruder; //save active_extruder
  7820. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7821. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7822. cmdqueue_reset(); //empty cmdqueue
  7823. card.sdprinting = false;
  7824. // card.closefile();
  7825. saved_printing = true;
  7826. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7827. st_reset_timer();
  7828. sei();
  7829. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7830. #if 1
  7831. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7832. char buf[48];
  7833. // First unretract (relative extrusion)
  7834. if(!saved_extruder_relative_mode){
  7835. strcpy_P(buf, PSTR("M83"));
  7836. enquecommand(buf, false);
  7837. }
  7838. //retract 45mm/s
  7839. strcpy_P(buf, PSTR("G1 E"));
  7840. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7841. strcat_P(buf, PSTR(" F"));
  7842. dtostrf(2700, 8, 3, buf + strlen(buf));
  7843. enquecommand(buf, false);
  7844. // Then lift Z axis
  7845. strcpy_P(buf, PSTR("G1 Z"));
  7846. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7847. strcat_P(buf, PSTR(" F"));
  7848. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7849. // At this point the command queue is empty.
  7850. enquecommand(buf, false);
  7851. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7852. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7853. repeatcommand_front();
  7854. #else
  7855. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7856. st_synchronize(); //wait moving
  7857. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7858. memcpy(destination, current_position, sizeof(destination));
  7859. #endif
  7860. }
  7861. }
  7862. void restore_print_from_ram_and_continue(float e_move)
  7863. {
  7864. if (!saved_printing) return;
  7865. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7866. // current_position[axis] = st_get_position_mm(axis);
  7867. active_extruder = saved_active_extruder; //restore active_extruder
  7868. feedrate = saved_feedrate2; //restore feedrate
  7869. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7870. float e = saved_pos[E_AXIS] - e_move;
  7871. plan_set_e_position(e);
  7872. //first move print head in XY to the saved position:
  7873. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7874. st_synchronize();
  7875. //then move Z
  7876. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7877. st_synchronize();
  7878. //and finaly unretract (35mm/s)
  7879. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7880. st_synchronize();
  7881. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7882. memcpy(destination, current_position, sizeof(destination));
  7883. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7884. card.setIndex(saved_sdpos);
  7885. sdpos_atomic = saved_sdpos;
  7886. card.sdprinting = true;
  7887. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7888. }
  7889. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7890. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7891. serial_count = 0;
  7892. FlushSerialRequestResend();
  7893. }
  7894. else {
  7895. //not sd printing nor usb printing
  7896. }
  7897. lcd_setstatuspgm(_T(WELCOME_MSG));
  7898. saved_printing = false;
  7899. }
  7900. void print_world_coordinates()
  7901. {
  7902. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7903. }
  7904. void print_physical_coordinates()
  7905. {
  7906. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7907. }
  7908. void print_mesh_bed_leveling_table()
  7909. {
  7910. SERIAL_ECHOPGM("mesh bed leveling: ");
  7911. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7912. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7913. MYSERIAL.print(mbl.z_values[y][x], 3);
  7914. SERIAL_ECHOPGM(" ");
  7915. }
  7916. SERIAL_ECHOLNPGM("");
  7917. }
  7918. uint16_t print_time_remaining() {
  7919. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7920. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7921. else print_t = print_time_remaining_silent;
  7922. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7923. return print_t;
  7924. }
  7925. uint8_t print_percent_done() {
  7926. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7927. uint8_t percent_done = 0;
  7928. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7929. percent_done = print_percent_done_normal;
  7930. }
  7931. else if (print_percent_done_silent <= 100) {
  7932. percent_done = print_percent_done_silent;
  7933. }
  7934. else {
  7935. percent_done = card.percentDone();
  7936. }
  7937. return percent_done;
  7938. }
  7939. static void print_time_remaining_init() {
  7940. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7941. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7942. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7943. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7944. }
  7945. #define FIL_LOAD_LENGTH 60