temperature.cpp 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "menu.h"
  27. #include "conv2str.h"
  28. #include "sound.h"
  29. #include "temperature.h"
  30. #include "cardreader.h"
  31. #include "SdFatUtil.h"
  32. #include <avr/wdt.h>
  33. #include "adc.h"
  34. #include "ConfigurationStore.h"
  35. #include "messages.h"
  36. #include "Timer.h"
  37. #include "Configuration_prusa.h"
  38. #include "config.h"
  39. //===========================================================================
  40. //=============================public variables============================
  41. //===========================================================================
  42. int target_temperature[EXTRUDERS] = { 0 };
  43. int target_temperature_bed = 0;
  44. int current_temperature_raw[EXTRUDERS] = { 0 };
  45. float current_temperature[EXTRUDERS] = { 0.0 };
  46. #ifdef PINDA_THERMISTOR
  47. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  48. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  49. float current_temperature_pinda = 0.0;
  50. #endif //PINDA_THERMISTOR
  51. #ifdef AMBIENT_THERMISTOR
  52. int current_temperature_raw_ambient = 0 ;
  53. float current_temperature_ambient = 0.0;
  54. #endif //AMBIENT_THERMISTOR
  55. #ifdef VOLT_PWR_PIN
  56. int current_voltage_raw_pwr = 0;
  57. #endif
  58. #ifdef VOLT_BED_PIN
  59. int current_voltage_raw_bed = 0;
  60. #endif
  61. #ifdef IR_SENSOR_ANALOG
  62. uint16_t current_voltage_raw_IR = 0;
  63. #endif //IR_SENSOR_ANALOG
  64. int current_temperature_bed_raw = 0;
  65. float current_temperature_bed = 0.0;
  66. #ifdef PIDTEMP
  67. float _Kp, _Ki, _Kd;
  68. int pid_cycle, pid_number_of_cycles;
  69. bool pid_tuning_finished = false;
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. uint8_t fanSpeedBckp = 255;
  119. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. bool fan_measuring = false;
  122. uint8_t fanState = 0;
  123. #ifdef EXTRUDER_ALTFAN_DETECT
  124. struct
  125. {
  126. uint8_t isAltfan : 1;
  127. uint8_t altfanOverride : 1;
  128. } altfanStatus;
  129. #endif //EXTRUDER_ALTFAN_DETECT
  130. #endif
  131. #if EXTRUDERS > 3
  132. # error Unsupported number of extruders
  133. #elif EXTRUDERS > 2
  134. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  135. #elif EXTRUDERS > 1
  136. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  137. #else
  138. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  139. #endif
  140. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  141. // Init min and max temp with extreme values to prevent false errors during startup
  142. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  143. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  144. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  145. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  146. #ifdef BED_MINTEMP
  147. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  148. #endif
  149. #ifdef BED_MAXTEMP
  150. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  151. #endif
  152. #ifdef AMBIENT_MINTEMP
  153. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  154. #endif
  155. #ifdef AMBIENT_MAXTEMP
  156. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  157. #endif
  158. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  159. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  160. static float analog2temp(int raw, uint8_t e);
  161. static float analog2tempBed(int raw);
  162. #ifdef AMBIENT_MAXTEMP
  163. static float analog2tempAmbient(int raw);
  164. #endif
  165. static void updateTemperaturesFromRawValues();
  166. enum TempRunawayStates : uint8_t
  167. {
  168. TempRunaway_INACTIVE = 0,
  169. TempRunaway_PREHEAT = 1,
  170. TempRunaway_ACTIVE = 2,
  171. };
  172. #ifndef SOFT_PWM_SCALE
  173. #define SOFT_PWM_SCALE 0
  174. #endif
  175. //===========================================================================
  176. //============================= functions ============================
  177. //===========================================================================
  178. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  179. static uint8_t temp_runaway_status[1 + EXTRUDERS];
  180. static float temp_runaway_target[1 + EXTRUDERS];
  181. static uint32_t temp_runaway_timer[1 + EXTRUDERS];
  182. static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];
  183. static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  184. static void temp_runaway_stop(bool isPreheat, bool isBed);
  185. #endif
  186. #ifdef EXTRUDER_ALTFAN_DETECT
  187. ISR(INT6_vect) {
  188. fan_edge_counter[0]++;
  189. }
  190. bool extruder_altfan_detect()
  191. {
  192. setExtruderAutoFanState(3);
  193. SET_INPUT(TACH_0);
  194. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  195. if (overrideVal == EEPROM_EMPTY_VALUE)
  196. {
  197. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  198. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  199. }
  200. altfanStatus.altfanOverride = overrideVal;
  201. CRITICAL_SECTION_START;
  202. EICRB &= ~(1 << ISC61);
  203. EICRB |= (1 << ISC60);
  204. EIMSK |= (1 << INT6);
  205. fan_edge_counter[0] = 0;
  206. CRITICAL_SECTION_END;
  207. extruder_autofan_last_check = _millis();
  208. _delay(1000);
  209. EIMSK &= ~(1 << INT6);
  210. countFanSpeed();
  211. altfanStatus.isAltfan = fan_speed[0] > 100;
  212. setExtruderAutoFanState(1);
  213. return altfanStatus.isAltfan;
  214. }
  215. void altfanOverride_toggle()
  216. {
  217. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  218. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  219. }
  220. bool altfanOverride_get()
  221. {
  222. return altfanStatus.altfanOverride;
  223. }
  224. #endif //EXTRUDER_ALTFAN_DETECT
  225. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  226. bool checkAllHotends(void)
  227. {
  228. bool result=false;
  229. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  230. return(result);
  231. }
  232. // WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
  233. // codegen bug causing a stack overwrite issue in process_commands()
  234. void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
  235. {
  236. pid_number_of_cycles = ncycles;
  237. pid_tuning_finished = false;
  238. float input = 0.0;
  239. pid_cycle=0;
  240. bool heating = true;
  241. unsigned long temp_millis = _millis();
  242. unsigned long t1=temp_millis;
  243. unsigned long t2=temp_millis;
  244. long t_high = 0;
  245. long t_low = 0;
  246. long bias, d;
  247. float Ku, Tu;
  248. float max = 0, min = 10000;
  249. uint8_t safety_check_cycles = 0;
  250. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  251. float temp_ambient;
  252. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  253. unsigned long extruder_autofan_last_check = _millis();
  254. #endif
  255. if ((extruder >= EXTRUDERS)
  256. #if (TEMP_BED_PIN <= -1)
  257. ||(extruder < 0)
  258. #endif
  259. ){
  260. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  261. pid_tuning_finished = true;
  262. pid_cycle = 0;
  263. return;
  264. }
  265. SERIAL_ECHOLN("PID Autotune start");
  266. disable_heater(); // switch off all heaters.
  267. if (extruder<0)
  268. {
  269. soft_pwm_bed = (MAX_BED_POWER)/2;
  270. timer02_set_pwm0(soft_pwm_bed << 1);
  271. bias = d = (MAX_BED_POWER)/2;
  272. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  273. }
  274. else
  275. {
  276. soft_pwm[extruder] = (PID_MAX)/2;
  277. bias = d = (PID_MAX)/2;
  278. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  279. }
  280. for(;;) {
  281. #ifdef WATCHDOG
  282. wdt_reset();
  283. #endif //WATCHDOG
  284. if(temp_meas_ready == true) { // temp sample ready
  285. updateTemperaturesFromRawValues();
  286. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  287. max=max(max,input);
  288. min=min(min,input);
  289. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  290. if(_millis() - extruder_autofan_last_check > 2500) {
  291. checkExtruderAutoFans();
  292. extruder_autofan_last_check = _millis();
  293. }
  294. #endif
  295. if(heating == true && input > temp) {
  296. if(_millis() - t2 > 5000) {
  297. heating=false;
  298. if (extruder<0)
  299. {
  300. soft_pwm_bed = (bias - d) >> 1;
  301. timer02_set_pwm0(soft_pwm_bed << 1);
  302. }
  303. else
  304. soft_pwm[extruder] = (bias - d) >> 1;
  305. t1=_millis();
  306. t_high=t1 - t2;
  307. max=temp;
  308. }
  309. }
  310. if(heating == false && input < temp) {
  311. if(_millis() - t1 > 5000) {
  312. heating=true;
  313. t2=_millis();
  314. t_low=t2 - t1;
  315. if(pid_cycle > 0) {
  316. bias += (d*(t_high - t_low))/(t_low + t_high);
  317. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  318. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  319. else d = bias;
  320. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  321. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  322. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  323. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  324. if(pid_cycle > 2) {
  325. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  326. Tu = ((float)(t_low + t_high)/1000.0);
  327. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  328. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  329. _Kp = 0.6*Ku;
  330. _Ki = 2*_Kp/Tu;
  331. _Kd = _Kp*Tu/8;
  332. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  333. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  334. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  335. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  336. /*
  337. _Kp = 0.33*Ku;
  338. _Ki = _Kp/Tu;
  339. _Kd = _Kp*Tu/3;
  340. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  341. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  342. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  343. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  344. _Kp = 0.2*Ku;
  345. _Ki = 2*_Kp/Tu;
  346. _Kd = _Kp*Tu/3;
  347. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  348. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  349. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  350. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  351. */
  352. }
  353. }
  354. if (extruder<0)
  355. {
  356. soft_pwm_bed = (bias + d) >> 1;
  357. timer02_set_pwm0(soft_pwm_bed << 1);
  358. }
  359. else
  360. soft_pwm[extruder] = (bias + d) >> 1;
  361. pid_cycle++;
  362. min=temp;
  363. }
  364. }
  365. }
  366. if(input > (temp + 20)) {
  367. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  368. pid_tuning_finished = true;
  369. pid_cycle = 0;
  370. return;
  371. }
  372. if(_millis() - temp_millis > 2000) {
  373. int p;
  374. if (extruder<0){
  375. p=soft_pwm_bed;
  376. SERIAL_PROTOCOLPGM("B:");
  377. }else{
  378. p=soft_pwm[extruder];
  379. SERIAL_PROTOCOLPGM("T:");
  380. }
  381. SERIAL_PROTOCOL(input);
  382. SERIAL_PROTOCOLPGM(" @:");
  383. SERIAL_PROTOCOLLN(p);
  384. if (safety_check_cycles == 0) { //save ambient temp
  385. temp_ambient = input;
  386. //SERIAL_ECHOPGM("Ambient T: ");
  387. //MYSERIAL.println(temp_ambient);
  388. safety_check_cycles++;
  389. }
  390. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  391. safety_check_cycles++;
  392. }
  393. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  394. safety_check_cycles++;
  395. //SERIAL_ECHOPGM("Time from beginning: ");
  396. //MYSERIAL.print(safety_check_cycles_count * 2);
  397. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  398. //MYSERIAL.println(input - temp_ambient);
  399. if (fabs(input - temp_ambient) < 5.0) {
  400. temp_runaway_stop(false, (extruder<0));
  401. pid_tuning_finished = true;
  402. return;
  403. }
  404. }
  405. temp_millis = _millis();
  406. }
  407. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  408. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  409. pid_tuning_finished = true;
  410. pid_cycle = 0;
  411. return;
  412. }
  413. if(pid_cycle > ncycles) {
  414. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  415. pid_tuning_finished = true;
  416. pid_cycle = 0;
  417. return;
  418. }
  419. lcd_update(0);
  420. }
  421. }
  422. void updatePID()
  423. {
  424. #ifdef PIDTEMP
  425. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  426. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  427. }
  428. #endif
  429. #ifdef PIDTEMPBED
  430. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  431. #endif
  432. }
  433. int getHeaterPower(int heater) {
  434. if (heater<0)
  435. return soft_pwm_bed;
  436. return soft_pwm[heater];
  437. }
  438. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  439. #if defined(FAN_PIN) && FAN_PIN > -1
  440. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  441. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  442. #endif
  443. #endif
  444. void setExtruderAutoFanState(uint8_t state)
  445. {
  446. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  447. //the fan to either On or Off during certain tests/errors.
  448. fanState = state;
  449. newFanSpeed = 0;
  450. if (fanState & 0x01)
  451. {
  452. #ifdef EXTRUDER_ALTFAN_DETECT
  453. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  454. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  455. #else //EXTRUDER_ALTFAN_DETECT
  456. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  457. #endif //EXTRUDER_ALTFAN_DETECT
  458. }
  459. timer4_set_fan0(newFanSpeed);
  460. }
  461. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  462. void countFanSpeed()
  463. {
  464. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  465. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  466. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  467. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  468. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  469. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  470. SERIAL_ECHOLNPGM(" ");*/
  471. fan_edge_counter[0] = 0;
  472. fan_edge_counter[1] = 0;
  473. }
  474. void checkFanSpeed()
  475. {
  476. uint8_t max_fan_errors[2];
  477. #ifdef FAN_SOFT_PWM
  478. max_fan_errors[1] = 3; // 15 seconds (Print fan)
  479. max_fan_errors[0] = 2; // 10 seconds (Extruder fan)
  480. #else //FAN_SOFT_PWM
  481. max_fan_errors[1] = 15; // 15 seconds (Print fan)
  482. max_fan_errors[0] = 5; // 5 seconds (Extruder fan)
  483. #endif //FAN_SOFT_PWM
  484. if(fans_check_enabled)
  485. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  486. static uint8_t fan_speed_errors[2] = { 0,0 };
  487. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  488. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  489. else fan_speed_errors[0] = 0;
  490. #endif
  491. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  492. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  493. else fan_speed_errors[1] = 0;
  494. #endif
  495. // drop the fan_check_error flag when both fans are ok
  496. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  497. // we may even send some info to the LCD from here
  498. fan_check_error = EFCE_FIXED;
  499. }
  500. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  501. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  502. lcd_reset_alert_level(); //for another fan speed error
  503. }
  504. if (fans_check_enabled && (fan_check_error == EFCE_OK))
  505. {
  506. for (uint8_t fan = 0; fan < 2; fan++)
  507. {
  508. if (fan_speed_errors[fan] > max_fan_errors[fan])
  509. {
  510. fan_speed_errors[fan] = 0;
  511. fanSpeedError(fan);
  512. }
  513. }
  514. }
  515. }
  516. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  517. //! Extracted from fanSpeedError to save some space.
  518. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  519. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  520. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  521. SERIAL_ECHOLNRPGM(serialMsg);
  522. if (get_message_level() == 0) {
  523. Sound_MakeCustom(200,0,true);
  524. LCD_ALERTMESSAGERPGM(lcdMsg);
  525. }
  526. }
  527. void fanSpeedError(unsigned char _fan) {
  528. if (get_message_level() != 0 && isPrintPaused) return;
  529. //to ensure that target temp. is not set to zero in case that we are resuming print
  530. if (card.sdprinting || usb_timer.running()) {
  531. if (heating_status != HeatingStatus::NO_HEATING) {
  532. lcd_print_stop();
  533. }
  534. else {
  535. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  536. }
  537. }
  538. else {
  539. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? usb_timer.running() would be true in that case, so there is no need for this.
  540. setTargetHotend0(0);
  541. heating_status = HeatingStatus::NO_HEATING;
  542. fan_check_error = EFCE_REPORTED;
  543. }
  544. switch (_fan) {
  545. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  546. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  547. break;
  548. case 1:
  549. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  550. break;
  551. }
  552. }
  553. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  554. void checkExtruderAutoFans()
  555. {
  556. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  557. if (!(fanState & 0x02))
  558. {
  559. fanState &= ~1;
  560. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  561. }
  562. setExtruderAutoFanState(fanState);
  563. #endif
  564. }
  565. #endif // any extruder auto fan pins set
  566. // ready for eventually parameters adjusting
  567. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  568. //void resetPID(uint8_t extruder)
  569. {
  570. }
  571. void manage_heater()
  572. {
  573. #ifdef WATCHDOG
  574. wdt_reset();
  575. #endif //WATCHDOG
  576. float pid_input;
  577. float pid_output;
  578. if(temp_meas_ready != true) //better readability
  579. return;
  580. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  581. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  582. updateTemperaturesFromRawValues();
  583. check_max_temp();
  584. check_min_temp();
  585. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  586. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  587. #endif
  588. for(uint8_t e = 0; e < EXTRUDERS; e++)
  589. {
  590. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  591. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  592. #endif
  593. #ifdef PIDTEMP
  594. pid_input = current_temperature[e];
  595. #ifndef PID_OPENLOOP
  596. if(target_temperature[e] == 0) {
  597. pid_output = 0;
  598. pid_reset[e] = true;
  599. } else {
  600. pid_error[e] = target_temperature[e] - pid_input;
  601. if(pid_reset[e]) {
  602. iState_sum[e] = 0.0;
  603. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  604. pid_reset[e] = false;
  605. }
  606. #ifndef PonM
  607. pTerm[e] = cs.Kp * pid_error[e];
  608. iState_sum[e] += pid_error[e];
  609. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  610. iTerm[e] = cs.Ki * iState_sum[e];
  611. // PID_K1 defined in Configuration.h in the PID settings
  612. #define K2 (1.0-PID_K1)
  613. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  614. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  615. if (pid_output > PID_MAX) {
  616. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  617. pid_output=PID_MAX;
  618. } else if (pid_output < 0) {
  619. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  620. pid_output=0;
  621. }
  622. #else // PonM ("Proportional on Measurement" method)
  623. iState_sum[e] += cs.Ki * pid_error[e];
  624. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  625. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  626. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  627. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  628. pid_output = constrain(pid_output, 0, PID_MAX);
  629. #endif // PonM
  630. }
  631. dState_last[e] = pid_input;
  632. #else
  633. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  634. #endif //PID_OPENLOOP
  635. #ifdef PID_DEBUG
  636. SERIAL_ECHO_START;
  637. SERIAL_ECHO(" PID_DEBUG ");
  638. SERIAL_ECHO(e);
  639. SERIAL_ECHO(": Input ");
  640. SERIAL_ECHO(pid_input);
  641. SERIAL_ECHO(" Output ");
  642. SERIAL_ECHO(pid_output);
  643. SERIAL_ECHO(" pTerm ");
  644. SERIAL_ECHO(pTerm[e]);
  645. SERIAL_ECHO(" iTerm ");
  646. SERIAL_ECHO(iTerm[e]);
  647. SERIAL_ECHO(" dTerm ");
  648. SERIAL_ECHOLN(-dTerm[e]);
  649. #endif //PID_DEBUG
  650. #else /* PID off */
  651. pid_output = 0;
  652. if(current_temperature[e] < target_temperature[e]) {
  653. pid_output = PID_MAX;
  654. }
  655. #endif
  656. // Check if temperature is within the correct range
  657. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  658. {
  659. soft_pwm[e] = (int)pid_output >> 1;
  660. }
  661. else
  662. {
  663. soft_pwm[e] = 0;
  664. }
  665. } // End extruder for loop
  666. #define FAN_CHECK_PERIOD 5000 //5s
  667. #define FAN_CHECK_DURATION 100 //100ms
  668. #ifndef DEBUG_DISABLE_FANCHECK
  669. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  670. #ifdef FAN_SOFT_PWM
  671. #ifdef FANCHECK
  672. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  673. extruder_autofan_last_check = _millis();
  674. fanSpeedBckp = fanSpeedSoftPwm;
  675. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  676. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  677. fanSpeedSoftPwm = 255;
  678. }
  679. fan_measuring = true;
  680. }
  681. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  682. countFanSpeed();
  683. checkFanSpeed();
  684. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  685. fanSpeedSoftPwm = fanSpeedBckp;
  686. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  687. extruder_autofan_last_check = _millis();
  688. fan_measuring = false;
  689. }
  690. #endif //FANCHECK
  691. checkExtruderAutoFans();
  692. #else //FAN_SOFT_PWM
  693. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  694. {
  695. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  696. countFanSpeed();
  697. checkFanSpeed();
  698. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  699. checkExtruderAutoFans();
  700. extruder_autofan_last_check = _millis();
  701. }
  702. #endif //FAN_SOFT_PWM
  703. #endif
  704. #endif //DEBUG_DISABLE_FANCHECK
  705. #ifndef PIDTEMPBED
  706. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  707. return;
  708. previous_millis_bed_heater = _millis();
  709. #endif
  710. #if TEMP_SENSOR_BED != 0
  711. #ifdef PIDTEMPBED
  712. pid_input = current_temperature_bed;
  713. #ifndef PID_OPENLOOP
  714. pid_error_bed = target_temperature_bed - pid_input;
  715. pTerm_bed = cs.bedKp * pid_error_bed;
  716. temp_iState_bed += pid_error_bed;
  717. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  718. iTerm_bed = cs.bedKi * temp_iState_bed;
  719. //PID_K1 defined in Configuration.h in the PID settings
  720. #define K2 (1.0-PID_K1)
  721. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  722. temp_dState_bed = pid_input;
  723. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  724. if (pid_output > MAX_BED_POWER) {
  725. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  726. pid_output=MAX_BED_POWER;
  727. } else if (pid_output < 0){
  728. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  729. pid_output=0;
  730. }
  731. #else
  732. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  733. #endif //PID_OPENLOOP
  734. if(current_temperature_bed < BED_MAXTEMP)
  735. {
  736. soft_pwm_bed = (int)pid_output >> 1;
  737. timer02_set_pwm0(soft_pwm_bed << 1);
  738. }
  739. else {
  740. soft_pwm_bed = 0;
  741. timer02_set_pwm0(soft_pwm_bed << 1);
  742. }
  743. #elif !defined(BED_LIMIT_SWITCHING)
  744. // Check if temperature is within the correct range
  745. if(current_temperature_bed < BED_MAXTEMP)
  746. {
  747. if(current_temperature_bed >= target_temperature_bed)
  748. {
  749. soft_pwm_bed = 0;
  750. timer02_set_pwm0(soft_pwm_bed << 1);
  751. }
  752. else
  753. {
  754. soft_pwm_bed = MAX_BED_POWER>>1;
  755. timer02_set_pwm0(soft_pwm_bed << 1);
  756. }
  757. }
  758. else
  759. {
  760. soft_pwm_bed = 0;
  761. timer02_set_pwm0(soft_pwm_bed << 1);
  762. WRITE(HEATER_BED_PIN,LOW);
  763. }
  764. #else //#ifdef BED_LIMIT_SWITCHING
  765. // Check if temperature is within the correct band
  766. if(current_temperature_bed < BED_MAXTEMP)
  767. {
  768. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  769. {
  770. soft_pwm_bed = 0;
  771. timer02_set_pwm0(soft_pwm_bed << 1);
  772. }
  773. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  774. {
  775. soft_pwm_bed = MAX_BED_POWER>>1;
  776. timer02_set_pwm0(soft_pwm_bed << 1);
  777. }
  778. }
  779. else
  780. {
  781. soft_pwm_bed = 0;
  782. timer02_set_pwm0(soft_pwm_bed << 1);
  783. WRITE(HEATER_BED_PIN,LOW);
  784. }
  785. #endif
  786. if(target_temperature_bed==0)
  787. {
  788. soft_pwm_bed = 0;
  789. timer02_set_pwm0(soft_pwm_bed << 1);
  790. }
  791. #endif
  792. }
  793. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  794. // Derived from RepRap FiveD extruder::getTemperature()
  795. // For hot end temperature measurement.
  796. static float analog2temp(int raw, uint8_t e) {
  797. if(e >= EXTRUDERS)
  798. {
  799. SERIAL_ERROR_START;
  800. SERIAL_ERROR((int)e);
  801. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  802. kill(NULL, 6);
  803. return 0.0;
  804. }
  805. #ifdef HEATER_0_USES_MAX6675
  806. if (e == 0)
  807. {
  808. return 0.25 * raw;
  809. }
  810. #endif
  811. if(heater_ttbl_map[e] != NULL)
  812. {
  813. float celsius = 0;
  814. uint8_t i;
  815. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  816. for (i=1; i<heater_ttbllen_map[e]; i++)
  817. {
  818. if (PGM_RD_W((*tt)[i][0]) > raw)
  819. {
  820. celsius = PGM_RD_W((*tt)[i-1][1]) +
  821. (raw - PGM_RD_W((*tt)[i-1][0])) *
  822. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  823. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  824. break;
  825. }
  826. }
  827. // Overflow: Set to last value in the table
  828. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  829. return celsius;
  830. }
  831. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  832. }
  833. // Derived from RepRap FiveD extruder::getTemperature()
  834. // For bed temperature measurement.
  835. static float analog2tempBed(int raw) {
  836. #ifdef BED_USES_THERMISTOR
  837. float celsius = 0;
  838. byte i;
  839. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  840. {
  841. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  842. {
  843. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  844. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  845. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  846. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  847. break;
  848. }
  849. }
  850. // Overflow: Set to last value in the table
  851. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  852. // temperature offset adjustment
  853. #ifdef BED_OFFSET
  854. float _offset = BED_OFFSET;
  855. float _offset_center = BED_OFFSET_CENTER;
  856. float _offset_start = BED_OFFSET_START;
  857. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  858. float _second_koef = (_offset / 2) / (100 - _offset_center);
  859. if (celsius >= _offset_start && celsius <= _offset_center)
  860. {
  861. celsius = celsius + (_first_koef * (celsius - _offset_start));
  862. }
  863. else if (celsius > _offset_center && celsius <= 100)
  864. {
  865. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  866. }
  867. else if (celsius > 100)
  868. {
  869. celsius = celsius + _offset;
  870. }
  871. #endif
  872. return celsius;
  873. #elif defined BED_USES_AD595
  874. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  875. #else
  876. return 0;
  877. #endif
  878. }
  879. #ifdef AMBIENT_THERMISTOR
  880. static float analog2tempAmbient(int raw)
  881. {
  882. float celsius = 0;
  883. byte i;
  884. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  885. {
  886. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  887. {
  888. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  889. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  890. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  891. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  892. break;
  893. }
  894. }
  895. // Overflow: Set to last value in the table
  896. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  897. return celsius;
  898. }
  899. #endif //AMBIENT_THERMISTOR
  900. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  901. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  902. static void updateTemperaturesFromRawValues()
  903. {
  904. for(uint8_t e=0;e<EXTRUDERS;e++)
  905. {
  906. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  907. }
  908. #ifdef PINDA_THERMISTOR
  909. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  910. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  911. #endif
  912. #ifdef AMBIENT_THERMISTOR
  913. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  914. #endif
  915. #ifdef DEBUG_HEATER_BED_SIM
  916. current_temperature_bed = target_temperature_bed;
  917. #else //DEBUG_HEATER_BED_SIM
  918. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  919. #endif //DEBUG_HEATER_BED_SIM
  920. CRITICAL_SECTION_START;
  921. temp_meas_ready = false;
  922. CRITICAL_SECTION_END;
  923. }
  924. void tp_init()
  925. {
  926. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  927. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  928. MCUCR=(1<<JTD);
  929. MCUCR=(1<<JTD);
  930. #endif
  931. // Finish init of mult extruder arrays
  932. for(int e = 0; e < EXTRUDERS; e++) {
  933. // populate with the first value
  934. maxttemp[e] = maxttemp[0];
  935. #ifdef PIDTEMP
  936. iState_sum_min[e] = 0.0;
  937. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  938. #endif //PIDTEMP
  939. #ifdef PIDTEMPBED
  940. temp_iState_min_bed = 0.0;
  941. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  942. #endif //PIDTEMPBED
  943. }
  944. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  945. SET_OUTPUT(HEATER_0_PIN);
  946. #endif
  947. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  948. SET_OUTPUT(HEATER_1_PIN);
  949. #endif
  950. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  951. SET_OUTPUT(HEATER_2_PIN);
  952. #endif
  953. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  954. SET_OUTPUT(HEATER_BED_PIN);
  955. #endif
  956. #if defined(FAN_PIN) && (FAN_PIN > -1)
  957. SET_OUTPUT(FAN_PIN);
  958. #ifdef FAST_PWM_FAN
  959. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  960. #endif
  961. #ifdef FAN_SOFT_PWM
  962. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  963. #endif
  964. #endif
  965. #ifdef HEATER_0_USES_MAX6675
  966. #ifndef SDSUPPORT
  967. SET_OUTPUT(SCK_PIN);
  968. WRITE(SCK_PIN,0);
  969. SET_OUTPUT(MOSI_PIN);
  970. WRITE(MOSI_PIN,1);
  971. SET_INPUT(MISO_PIN);
  972. WRITE(MISO_PIN,1);
  973. #endif
  974. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  975. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  976. pinMode(SS_PIN, OUTPUT);
  977. digitalWrite(SS_PIN,0);
  978. pinMode(MAX6675_SS, OUTPUT);
  979. digitalWrite(MAX6675_SS,1);
  980. #endif
  981. adc_init();
  982. timer0_init(); //enables the heatbed timer.
  983. // timer2 already enabled earlier in the code
  984. // now enable the COMPB temperature interrupt
  985. OCR2B = 128;
  986. TIMSK2 |= (1<<OCIE2B);
  987. timer4_init(); //for tone and Extruder fan PWM
  988. // Wait for temperature measurement to settle
  989. _delay(250);
  990. #ifdef HEATER_0_MINTEMP
  991. minttemp[0] = HEATER_0_MINTEMP;
  992. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  993. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  994. minttemp_raw[0] += OVERSAMPLENR;
  995. #else
  996. minttemp_raw[0] -= OVERSAMPLENR;
  997. #endif
  998. }
  999. #endif //MINTEMP
  1000. #ifdef HEATER_0_MAXTEMP
  1001. maxttemp[0] = HEATER_0_MAXTEMP;
  1002. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1003. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1004. maxttemp_raw[0] -= OVERSAMPLENR;
  1005. #else
  1006. maxttemp_raw[0] += OVERSAMPLENR;
  1007. #endif
  1008. }
  1009. #endif //MAXTEMP
  1010. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1011. minttemp[1] = HEATER_1_MINTEMP;
  1012. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1013. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1014. minttemp_raw[1] += OVERSAMPLENR;
  1015. #else
  1016. minttemp_raw[1] -= OVERSAMPLENR;
  1017. #endif
  1018. }
  1019. #endif // MINTEMP 1
  1020. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1021. maxttemp[1] = HEATER_1_MAXTEMP;
  1022. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1023. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1024. maxttemp_raw[1] -= OVERSAMPLENR;
  1025. #else
  1026. maxttemp_raw[1] += OVERSAMPLENR;
  1027. #endif
  1028. }
  1029. #endif //MAXTEMP 1
  1030. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1031. minttemp[2] = HEATER_2_MINTEMP;
  1032. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1033. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1034. minttemp_raw[2] += OVERSAMPLENR;
  1035. #else
  1036. minttemp_raw[2] -= OVERSAMPLENR;
  1037. #endif
  1038. }
  1039. #endif //MINTEMP 2
  1040. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1041. maxttemp[2] = HEATER_2_MAXTEMP;
  1042. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1043. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1044. maxttemp_raw[2] -= OVERSAMPLENR;
  1045. #else
  1046. maxttemp_raw[2] += OVERSAMPLENR;
  1047. #endif
  1048. }
  1049. #endif //MAXTEMP 2
  1050. #ifdef BED_MINTEMP
  1051. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1052. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1053. bed_minttemp_raw += OVERSAMPLENR;
  1054. #else
  1055. bed_minttemp_raw -= OVERSAMPLENR;
  1056. #endif
  1057. }
  1058. #endif //BED_MINTEMP
  1059. #ifdef BED_MAXTEMP
  1060. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1061. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1062. bed_maxttemp_raw -= OVERSAMPLENR;
  1063. #else
  1064. bed_maxttemp_raw += OVERSAMPLENR;
  1065. #endif
  1066. }
  1067. #endif //BED_MAXTEMP
  1068. #ifdef AMBIENT_MINTEMP
  1069. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1070. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1071. ambient_minttemp_raw += OVERSAMPLENR;
  1072. #else
  1073. ambient_minttemp_raw -= OVERSAMPLENR;
  1074. #endif
  1075. }
  1076. #endif //AMBIENT_MINTEMP
  1077. #ifdef AMBIENT_MAXTEMP
  1078. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1079. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1080. ambient_maxttemp_raw -= OVERSAMPLENR;
  1081. #else
  1082. ambient_maxttemp_raw += OVERSAMPLENR;
  1083. #endif
  1084. }
  1085. #endif //AMBIENT_MAXTEMP
  1086. }
  1087. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1088. void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1089. {
  1090. float __delta;
  1091. float __hysteresis = 0;
  1092. uint16_t __timeout = 0;
  1093. bool temp_runaway_check_active = false;
  1094. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1095. static uint8_t __preheat_counter[2] = { 0,0};
  1096. static uint8_t __preheat_errors[2] = { 0,0};
  1097. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1098. {
  1099. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1100. if (_isbed)
  1101. {
  1102. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1103. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1104. }
  1105. #endif
  1106. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1107. if (!_isbed)
  1108. {
  1109. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1110. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1111. }
  1112. #endif
  1113. temp_runaway_timer[_heater_id] = _millis();
  1114. if (_output == 0)
  1115. {
  1116. temp_runaway_check_active = false;
  1117. temp_runaway_error_counter[_heater_id] = 0;
  1118. }
  1119. if (temp_runaway_target[_heater_id] != _target_temperature)
  1120. {
  1121. if (_target_temperature > 0)
  1122. {
  1123. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1124. temp_runaway_target[_heater_id] = _target_temperature;
  1125. __preheat_start[_heater_id] = _current_temperature;
  1126. __preheat_counter[_heater_id] = 0;
  1127. }
  1128. else
  1129. {
  1130. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1131. temp_runaway_target[_heater_id] = _target_temperature;
  1132. }
  1133. }
  1134. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1135. {
  1136. __preheat_counter[_heater_id]++;
  1137. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1138. {
  1139. /*SERIAL_ECHOPGM("Heater:");
  1140. MYSERIAL.print(_heater_id);
  1141. SERIAL_ECHOPGM(" T:");
  1142. MYSERIAL.print(_current_temperature);
  1143. SERIAL_ECHOPGM(" Tstart:");
  1144. MYSERIAL.print(__preheat_start[_heater_id]);
  1145. SERIAL_ECHOPGM(" delta:");
  1146. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1147. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1148. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1149. __delta=2.0;
  1150. if(_isbed)
  1151. {
  1152. __delta=3.0;
  1153. if(_current_temperature>90.0) __delta=2.0;
  1154. if(_current_temperature>105.0) __delta=0.6;
  1155. }
  1156. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1157. __preheat_errors[_heater_id]++;
  1158. /*SERIAL_ECHOPGM(" Preheat errors:");
  1159. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1160. }
  1161. else {
  1162. //SERIAL_ECHOLNPGM("");
  1163. __preheat_errors[_heater_id] = 0;
  1164. }
  1165. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1166. {
  1167. if (farm_mode) { prusa_statistics(0); }
  1168. temp_runaway_stop(true, _isbed);
  1169. if (farm_mode) { prusa_statistics(91); }
  1170. }
  1171. __preheat_start[_heater_id] = _current_temperature;
  1172. __preheat_counter[_heater_id] = 0;
  1173. }
  1174. }
  1175. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1176. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1177. {
  1178. /*SERIAL_ECHOPGM("Heater:");
  1179. MYSERIAL.print(_heater_id);
  1180. MYSERIAL.println(" ->tempRunaway");*/
  1181. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1182. temp_runaway_check_active = false;
  1183. temp_runaway_error_counter[_heater_id] = 0;
  1184. }
  1185. if (_output > 0)
  1186. {
  1187. temp_runaway_check_active = true;
  1188. }
  1189. if (temp_runaway_check_active)
  1190. {
  1191. // we are in range
  1192. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1193. {
  1194. temp_runaway_check_active = false;
  1195. temp_runaway_error_counter[_heater_id] = 0;
  1196. }
  1197. else
  1198. {
  1199. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1200. {
  1201. temp_runaway_error_counter[_heater_id]++;
  1202. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1203. {
  1204. if (farm_mode) { prusa_statistics(0); }
  1205. temp_runaway_stop(false, _isbed);
  1206. if (farm_mode) { prusa_statistics(90); }
  1207. }
  1208. }
  1209. }
  1210. }
  1211. }
  1212. }
  1213. void temp_runaway_stop(bool isPreheat, bool isBed)
  1214. {
  1215. disable_heater();
  1216. Sound_MakeCustom(200,0,true);
  1217. if (isPreheat)
  1218. {
  1219. lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
  1220. SERIAL_ERROR_START;
  1221. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
  1222. #ifdef EXTRUDER_ALTFAN_DETECT
  1223. altfanStatus.altfanOverride = 1; //full speed
  1224. #endif //EXTRUDER_ALTFAN_DETECT
  1225. setExtruderAutoFanState(3);
  1226. SET_OUTPUT(FAN_PIN);
  1227. #ifdef FAN_SOFT_PWM
  1228. fanSpeedSoftPwm = 255;
  1229. #else //FAN_SOFT_PWM
  1230. analogWrite(FAN_PIN, 255);
  1231. #endif //FAN_SOFT_PWM
  1232. fanSpeed = 255;
  1233. }
  1234. else
  1235. {
  1236. lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
  1237. SERIAL_ERROR_START;
  1238. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1239. }
  1240. Stop();
  1241. }
  1242. #endif
  1243. void disable_heater()
  1244. {
  1245. setAllTargetHotends(0);
  1246. setTargetBed(0);
  1247. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1248. target_temperature[0]=0;
  1249. soft_pwm[0]=0;
  1250. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1251. WRITE(HEATER_0_PIN,LOW);
  1252. #endif
  1253. #endif
  1254. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1255. target_temperature[1]=0;
  1256. soft_pwm[1]=0;
  1257. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1258. WRITE(HEATER_1_PIN,LOW);
  1259. #endif
  1260. #endif
  1261. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1262. target_temperature[2]=0;
  1263. soft_pwm[2]=0;
  1264. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1265. WRITE(HEATER_2_PIN,LOW);
  1266. #endif
  1267. #endif
  1268. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1269. target_temperature_bed=0;
  1270. soft_pwm_bed=0;
  1271. timer02_set_pwm0(soft_pwm_bed << 1);
  1272. bedPWMDisabled = 0;
  1273. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1274. //WRITE(HEATER_BED_PIN,LOW);
  1275. #endif
  1276. #endif
  1277. }
  1278. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1279. //! than raw const char * of the messages themselves.
  1280. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1281. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1282. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1283. //! remember the last alert message sent to the LCD
  1284. //! to prevent flicker and improve speed
  1285. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1286. //! update the current temperature error message
  1287. //! @param type short error abbreviation (PROGMEM)
  1288. void temp_update_messagepgm(const char* PROGMEM type)
  1289. {
  1290. char msg[LCD_WIDTH];
  1291. strcpy_P(msg, PSTR("Err: "));
  1292. strcat_P(msg, type);
  1293. lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
  1294. }
  1295. //! signal a temperature error on both the lcd and serial
  1296. //! @param type short error abbreviation (PROGMEM)
  1297. //! @param e optional extruder index for hotend errors
  1298. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1299. {
  1300. temp_update_messagepgm(type);
  1301. SERIAL_ERROR_START;
  1302. if(e != EXTRUDERS) {
  1303. SERIAL_ERROR((int)e);
  1304. SERIAL_ERRORPGM(": ");
  1305. }
  1306. SERIAL_ERRORPGM("Heaters switched off. ");
  1307. SERIAL_ERRORRPGM(type);
  1308. SERIAL_ERRORLNPGM(" triggered!");
  1309. }
  1310. void max_temp_error(uint8_t e) {
  1311. disable_heater();
  1312. if(IsStopped() == false) {
  1313. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1314. }
  1315. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1316. Stop();
  1317. #endif
  1318. SET_OUTPUT(FAN_PIN);
  1319. SET_OUTPUT(BEEPER);
  1320. WRITE(FAN_PIN, 1);
  1321. WRITE(BEEPER, 1);
  1322. #ifdef EXTRUDER_ALTFAN_DETECT
  1323. altfanStatus.altfanOverride = 1; //full speed
  1324. #endif //EXTRUDER_ALTFAN_DETECT
  1325. setExtruderAutoFanState(3);
  1326. // fanSpeed will consumed by the check_axes_activity() routine.
  1327. fanSpeed=255;
  1328. if (farm_mode) { prusa_statistics(93); }
  1329. }
  1330. void min_temp_error(uint8_t e) {
  1331. #ifdef DEBUG_DISABLE_MINTEMP
  1332. return;
  1333. #endif
  1334. disable_heater();
  1335. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1336. static const char err[] PROGMEM = "MINTEMP";
  1337. if(IsStopped() == false) {
  1338. temp_error_messagepgm(err, e);
  1339. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1340. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1341. // we are already stopped due to some error, only update the status message without flickering
  1342. temp_update_messagepgm(err);
  1343. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1344. }
  1345. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1346. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1347. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1348. // lcd_print_stop();
  1349. // }
  1350. Stop();
  1351. #endif
  1352. if (farm_mode) { prusa_statistics(92); }
  1353. }
  1354. void bed_max_temp_error(void) {
  1355. disable_heater();
  1356. if(IsStopped() == false) {
  1357. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1358. }
  1359. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1360. Stop();
  1361. #endif
  1362. }
  1363. void bed_min_temp_error(void) {
  1364. #ifdef DEBUG_DISABLE_MINTEMP
  1365. return;
  1366. #endif
  1367. disable_heater();
  1368. static const char err[] PROGMEM = "MINTEMP BED";
  1369. if(IsStopped() == false) {
  1370. temp_error_messagepgm(err);
  1371. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1372. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1373. // we are already stopped due to some error, only update the status message without flickering
  1374. temp_update_messagepgm(err);
  1375. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1376. }
  1377. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1378. Stop();
  1379. #endif
  1380. }
  1381. #ifdef AMBIENT_THERMISTOR
  1382. void ambient_max_temp_error(void) {
  1383. disable_heater();
  1384. if(IsStopped() == false) {
  1385. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1386. }
  1387. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1388. Stop();
  1389. #endif
  1390. }
  1391. void ambient_min_temp_error(void) {
  1392. #ifdef DEBUG_DISABLE_MINTEMP
  1393. return;
  1394. #endif
  1395. disable_heater();
  1396. if(IsStopped() == false) {
  1397. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1398. }
  1399. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1400. Stop();
  1401. #endif
  1402. }
  1403. #endif
  1404. #ifdef HEATER_0_USES_MAX6675
  1405. #define MAX6675_HEAT_INTERVAL 250
  1406. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1407. int max6675_temp = 2000;
  1408. int read_max6675()
  1409. {
  1410. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1411. return max6675_temp;
  1412. max6675_previous_millis = _millis();
  1413. max6675_temp = 0;
  1414. #ifdef PRR
  1415. PRR &= ~(1<<PRSPI);
  1416. #elif defined PRR0
  1417. PRR0 &= ~(1<<PRSPI);
  1418. #endif
  1419. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1420. // enable TT_MAX6675
  1421. WRITE(MAX6675_SS, 0);
  1422. // ensure 100ns delay - a bit extra is fine
  1423. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1424. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1425. // read MSB
  1426. SPDR = 0;
  1427. for (;(SPSR & (1<<SPIF)) == 0;);
  1428. max6675_temp = SPDR;
  1429. max6675_temp <<= 8;
  1430. // read LSB
  1431. SPDR = 0;
  1432. for (;(SPSR & (1<<SPIF)) == 0;);
  1433. max6675_temp |= SPDR;
  1434. // disable TT_MAX6675
  1435. WRITE(MAX6675_SS, 1);
  1436. if (max6675_temp & 4)
  1437. {
  1438. // thermocouple open
  1439. max6675_temp = 2000;
  1440. }
  1441. else
  1442. {
  1443. max6675_temp = max6675_temp >> 3;
  1444. }
  1445. return max6675_temp;
  1446. }
  1447. #endif
  1448. extern "C" {
  1449. void adc_ready(void) //callback from adc when sampling finished
  1450. {
  1451. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1452. #ifdef PINDA_THERMISTOR
  1453. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1454. #endif //PINDA_THERMISTOR
  1455. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1456. #ifdef VOLT_PWR_PIN
  1457. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1458. #endif
  1459. #ifdef AMBIENT_THERMISTOR
  1460. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1461. #endif //AMBIENT_THERMISTOR
  1462. #ifdef VOLT_BED_PIN
  1463. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1464. #endif
  1465. #ifdef IR_SENSOR_ANALOG
  1466. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1467. #endif //IR_SENSOR_ANALOG
  1468. temp_meas_ready = true;
  1469. }
  1470. } // extern "C"
  1471. FORCE_INLINE static void temperature_isr()
  1472. {
  1473. if (!temp_meas_ready) adc_cycle();
  1474. lcd_buttons_update();
  1475. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1476. static uint8_t soft_pwm_0;
  1477. #ifdef SLOW_PWM_HEATERS
  1478. static unsigned char slow_pwm_count = 0;
  1479. static unsigned char state_heater_0 = 0;
  1480. static unsigned char state_timer_heater_0 = 0;
  1481. #endif
  1482. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1483. static unsigned char soft_pwm_1;
  1484. #ifdef SLOW_PWM_HEATERS
  1485. static unsigned char state_heater_1 = 0;
  1486. static unsigned char state_timer_heater_1 = 0;
  1487. #endif
  1488. #endif
  1489. #if EXTRUDERS > 2
  1490. static unsigned char soft_pwm_2;
  1491. #ifdef SLOW_PWM_HEATERS
  1492. static unsigned char state_heater_2 = 0;
  1493. static unsigned char state_timer_heater_2 = 0;
  1494. #endif
  1495. #endif
  1496. #if HEATER_BED_PIN > -1
  1497. // @@DR static unsigned char soft_pwm_b;
  1498. #ifdef SLOW_PWM_HEATERS
  1499. static unsigned char state_heater_b = 0;
  1500. static unsigned char state_timer_heater_b = 0;
  1501. #endif
  1502. #endif
  1503. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1504. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1505. #endif
  1506. #ifndef SLOW_PWM_HEATERS
  1507. /*
  1508. * standard PWM modulation
  1509. */
  1510. if (pwm_count == 0)
  1511. {
  1512. soft_pwm_0 = soft_pwm[0];
  1513. if(soft_pwm_0 > 0)
  1514. {
  1515. WRITE(HEATER_0_PIN,1);
  1516. #ifdef HEATERS_PARALLEL
  1517. WRITE(HEATER_1_PIN,1);
  1518. #endif
  1519. } else WRITE(HEATER_0_PIN,0);
  1520. #if EXTRUDERS > 1
  1521. soft_pwm_1 = soft_pwm[1];
  1522. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1523. #endif
  1524. #if EXTRUDERS > 2
  1525. soft_pwm_2 = soft_pwm[2];
  1526. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1527. #endif
  1528. }
  1529. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1530. #if 0 // @@DR vypnuto pro hw pwm bedu
  1531. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1532. // teoreticky by se tato cast uz vubec nemusela poustet
  1533. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1534. {
  1535. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1536. # ifndef SYSTEM_TIMER_2
  1537. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1538. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1539. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1540. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1541. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1542. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1543. # endif //SYSTEM_TIMER_2
  1544. }
  1545. #endif
  1546. #endif
  1547. #ifdef FAN_SOFT_PWM
  1548. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1549. {
  1550. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1551. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1552. }
  1553. #endif
  1554. if(soft_pwm_0 < pwm_count)
  1555. {
  1556. WRITE(HEATER_0_PIN,0);
  1557. #ifdef HEATERS_PARALLEL
  1558. WRITE(HEATER_1_PIN,0);
  1559. #endif
  1560. }
  1561. #if EXTRUDERS > 1
  1562. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1563. #endif
  1564. #if EXTRUDERS > 2
  1565. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1566. #endif
  1567. #if 0 // @@DR
  1568. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1569. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1570. //WRITE(HEATER_BED_PIN,0);
  1571. }
  1572. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1573. #endif
  1574. #endif
  1575. #ifdef FAN_SOFT_PWM
  1576. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1577. #endif
  1578. pwm_count += (1 << SOFT_PWM_SCALE);
  1579. pwm_count &= 0x7f;
  1580. #else //ifndef SLOW_PWM_HEATERS
  1581. /*
  1582. * SLOW PWM HEATERS
  1583. *
  1584. * for heaters drived by relay
  1585. */
  1586. #ifndef MIN_STATE_TIME
  1587. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1588. #endif
  1589. if (slow_pwm_count == 0) {
  1590. // EXTRUDER 0
  1591. soft_pwm_0 = soft_pwm[0];
  1592. if (soft_pwm_0 > 0) {
  1593. // turn ON heather only if the minimum time is up
  1594. if (state_timer_heater_0 == 0) {
  1595. // if change state set timer
  1596. if (state_heater_0 == 0) {
  1597. state_timer_heater_0 = MIN_STATE_TIME;
  1598. }
  1599. state_heater_0 = 1;
  1600. WRITE(HEATER_0_PIN, 1);
  1601. #ifdef HEATERS_PARALLEL
  1602. WRITE(HEATER_1_PIN, 1);
  1603. #endif
  1604. }
  1605. } else {
  1606. // turn OFF heather only if the minimum time is up
  1607. if (state_timer_heater_0 == 0) {
  1608. // if change state set timer
  1609. if (state_heater_0 == 1) {
  1610. state_timer_heater_0 = MIN_STATE_TIME;
  1611. }
  1612. state_heater_0 = 0;
  1613. WRITE(HEATER_0_PIN, 0);
  1614. #ifdef HEATERS_PARALLEL
  1615. WRITE(HEATER_1_PIN, 0);
  1616. #endif
  1617. }
  1618. }
  1619. #if EXTRUDERS > 1
  1620. // EXTRUDER 1
  1621. soft_pwm_1 = soft_pwm[1];
  1622. if (soft_pwm_1 > 0) {
  1623. // turn ON heather only if the minimum time is up
  1624. if (state_timer_heater_1 == 0) {
  1625. // if change state set timer
  1626. if (state_heater_1 == 0) {
  1627. state_timer_heater_1 = MIN_STATE_TIME;
  1628. }
  1629. state_heater_1 = 1;
  1630. WRITE(HEATER_1_PIN, 1);
  1631. }
  1632. } else {
  1633. // turn OFF heather only if the minimum time is up
  1634. if (state_timer_heater_1 == 0) {
  1635. // if change state set timer
  1636. if (state_heater_1 == 1) {
  1637. state_timer_heater_1 = MIN_STATE_TIME;
  1638. }
  1639. state_heater_1 = 0;
  1640. WRITE(HEATER_1_PIN, 0);
  1641. }
  1642. }
  1643. #endif
  1644. #if EXTRUDERS > 2
  1645. // EXTRUDER 2
  1646. soft_pwm_2 = soft_pwm[2];
  1647. if (soft_pwm_2 > 0) {
  1648. // turn ON heather only if the minimum time is up
  1649. if (state_timer_heater_2 == 0) {
  1650. // if change state set timer
  1651. if (state_heater_2 == 0) {
  1652. state_timer_heater_2 = MIN_STATE_TIME;
  1653. }
  1654. state_heater_2 = 1;
  1655. WRITE(HEATER_2_PIN, 1);
  1656. }
  1657. } else {
  1658. // turn OFF heather only if the minimum time is up
  1659. if (state_timer_heater_2 == 0) {
  1660. // if change state set timer
  1661. if (state_heater_2 == 1) {
  1662. state_timer_heater_2 = MIN_STATE_TIME;
  1663. }
  1664. state_heater_2 = 0;
  1665. WRITE(HEATER_2_PIN, 0);
  1666. }
  1667. }
  1668. #endif
  1669. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1670. // BED
  1671. soft_pwm_b = soft_pwm_bed;
  1672. if (soft_pwm_b > 0) {
  1673. // turn ON heather only if the minimum time is up
  1674. if (state_timer_heater_b == 0) {
  1675. // if change state set timer
  1676. if (state_heater_b == 0) {
  1677. state_timer_heater_b = MIN_STATE_TIME;
  1678. }
  1679. state_heater_b = 1;
  1680. //WRITE(HEATER_BED_PIN, 1);
  1681. }
  1682. } else {
  1683. // turn OFF heather only if the minimum time is up
  1684. if (state_timer_heater_b == 0) {
  1685. // if change state set timer
  1686. if (state_heater_b == 1) {
  1687. state_timer_heater_b = MIN_STATE_TIME;
  1688. }
  1689. state_heater_b = 0;
  1690. WRITE(HEATER_BED_PIN, 0);
  1691. }
  1692. }
  1693. #endif
  1694. } // if (slow_pwm_count == 0)
  1695. // EXTRUDER 0
  1696. if (soft_pwm_0 < slow_pwm_count) {
  1697. // turn OFF heather only if the minimum time is up
  1698. if (state_timer_heater_0 == 0) {
  1699. // if change state set timer
  1700. if (state_heater_0 == 1) {
  1701. state_timer_heater_0 = MIN_STATE_TIME;
  1702. }
  1703. state_heater_0 = 0;
  1704. WRITE(HEATER_0_PIN, 0);
  1705. #ifdef HEATERS_PARALLEL
  1706. WRITE(HEATER_1_PIN, 0);
  1707. #endif
  1708. }
  1709. }
  1710. #if EXTRUDERS > 1
  1711. // EXTRUDER 1
  1712. if (soft_pwm_1 < slow_pwm_count) {
  1713. // turn OFF heather only if the minimum time is up
  1714. if (state_timer_heater_1 == 0) {
  1715. // if change state set timer
  1716. if (state_heater_1 == 1) {
  1717. state_timer_heater_1 = MIN_STATE_TIME;
  1718. }
  1719. state_heater_1 = 0;
  1720. WRITE(HEATER_1_PIN, 0);
  1721. }
  1722. }
  1723. #endif
  1724. #if EXTRUDERS > 2
  1725. // EXTRUDER 2
  1726. if (soft_pwm_2 < slow_pwm_count) {
  1727. // turn OFF heather only if the minimum time is up
  1728. if (state_timer_heater_2 == 0) {
  1729. // if change state set timer
  1730. if (state_heater_2 == 1) {
  1731. state_timer_heater_2 = MIN_STATE_TIME;
  1732. }
  1733. state_heater_2 = 0;
  1734. WRITE(HEATER_2_PIN, 0);
  1735. }
  1736. }
  1737. #endif
  1738. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1739. // BED
  1740. if (soft_pwm_b < slow_pwm_count) {
  1741. // turn OFF heather only if the minimum time is up
  1742. if (state_timer_heater_b == 0) {
  1743. // if change state set timer
  1744. if (state_heater_b == 1) {
  1745. state_timer_heater_b = MIN_STATE_TIME;
  1746. }
  1747. state_heater_b = 0;
  1748. WRITE(HEATER_BED_PIN, 0);
  1749. }
  1750. }
  1751. #endif
  1752. #ifdef FAN_SOFT_PWM
  1753. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1754. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1755. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1756. }
  1757. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1758. #endif
  1759. pwm_count += (1 << SOFT_PWM_SCALE);
  1760. pwm_count &= 0x7f;
  1761. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1762. if ((pwm_count % 64) == 0) {
  1763. slow_pwm_count++;
  1764. slow_pwm_count &= 0x7f;
  1765. // Extruder 0
  1766. if (state_timer_heater_0 > 0) {
  1767. state_timer_heater_0--;
  1768. }
  1769. #if EXTRUDERS > 1
  1770. // Extruder 1
  1771. if (state_timer_heater_1 > 0)
  1772. state_timer_heater_1--;
  1773. #endif
  1774. #if EXTRUDERS > 2
  1775. // Extruder 2
  1776. if (state_timer_heater_2 > 0)
  1777. state_timer_heater_2--;
  1778. #endif
  1779. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1780. // Bed
  1781. if (state_timer_heater_b > 0)
  1782. state_timer_heater_b--;
  1783. #endif
  1784. } //if ((pwm_count % 64) == 0) {
  1785. #endif //ifndef SLOW_PWM_HEATERS
  1786. #ifdef BABYSTEPPING
  1787. for(uint8_t axis=0;axis<3;axis++)
  1788. {
  1789. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1790. if(curTodo>0)
  1791. {
  1792. CRITICAL_SECTION_START;
  1793. babystep(axis,/*fwd*/true);
  1794. babystepsTodo[axis]--; //less to do next time
  1795. CRITICAL_SECTION_END;
  1796. }
  1797. else
  1798. if(curTodo<0)
  1799. {
  1800. CRITICAL_SECTION_START;
  1801. babystep(axis,/*fwd*/false);
  1802. babystepsTodo[axis]++; //less to do next time
  1803. CRITICAL_SECTION_END;
  1804. }
  1805. }
  1806. #endif //BABYSTEPPING
  1807. // Check if a stack overflow happened
  1808. if (!SdFatUtil::test_stack_integrity()) stack_error();
  1809. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1810. check_fans();
  1811. #endif //(defined(TACH_0))
  1812. }
  1813. // Timer2 (originaly timer0) is shared with millies
  1814. #ifdef SYSTEM_TIMER_2
  1815. ISR(TIMER2_COMPB_vect)
  1816. #else //SYSTEM_TIMER_2
  1817. ISR(TIMER0_COMPB_vect)
  1818. #endif //SYSTEM_TIMER_2
  1819. {
  1820. static bool _lock = false;
  1821. if (!_lock)
  1822. {
  1823. _lock = true;
  1824. sei();
  1825. temperature_isr();
  1826. cli();
  1827. _lock = false;
  1828. }
  1829. }
  1830. void check_max_temp()
  1831. {
  1832. //heater
  1833. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1834. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1835. #else
  1836. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1837. #endif
  1838. max_temp_error(0);
  1839. }
  1840. //bed
  1841. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1842. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1843. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1844. #else
  1845. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1846. #endif
  1847. bed_max_temp_error();
  1848. }
  1849. #endif
  1850. //ambient
  1851. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1852. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1853. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1854. #else
  1855. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1856. #endif
  1857. ambient_max_temp_error();
  1858. }
  1859. #endif
  1860. }
  1861. //! number of repeating the same state with consecutive step() calls
  1862. //! used to slow down text switching
  1863. struct alert_automaton_mintemp {
  1864. const char *m2;
  1865. alert_automaton_mintemp(const char *m2):m2(m2){}
  1866. private:
  1867. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1868. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1869. States state = States::Init;
  1870. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1871. void substep(States next_state){
  1872. if( repeat == 0 ){
  1873. state = next_state; // advance to the next state
  1874. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1875. } else {
  1876. --repeat;
  1877. }
  1878. }
  1879. public:
  1880. //! brief state automaton step routine
  1881. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1882. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1883. void step(float current_temp, float mintemp){
  1884. static const char m1[] PROGMEM = "Please restart";
  1885. switch(state){
  1886. case States::Init: // initial state - check hysteresis
  1887. if( current_temp > mintemp ){
  1888. state = States::TempAboveMintemp;
  1889. }
  1890. // otherwise keep the Err MINTEMP alert message on the display,
  1891. // i.e. do not transfer to state 1
  1892. break;
  1893. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1894. lcd_setalertstatuspgm(m2);
  1895. substep(States::ShowMintemp);
  1896. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1897. break;
  1898. case States::ShowPleaseRestart: // displaying "Please restart"
  1899. lcd_updatestatuspgm(m1);
  1900. substep(States::ShowMintemp);
  1901. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1902. break;
  1903. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1904. lcd_updatestatuspgm(m2);
  1905. substep(States::ShowPleaseRestart);
  1906. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1907. break;
  1908. }
  1909. }
  1910. };
  1911. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1912. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1913. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1914. void check_min_temp_heater0()
  1915. {
  1916. //heater
  1917. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1918. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1919. #else
  1920. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1921. #endif
  1922. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1923. min_temp_error(0);
  1924. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1925. // no recovery, just force the user to restart the printer
  1926. // which is a safer variant than just continuing printing
  1927. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1928. // we shall signalize, that MINTEMP has been fixed
  1929. // Code notice: normally the alert_automaton instance would have been placed here
  1930. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1931. // due to stupid compiler that takes 16 more bytes.
  1932. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1933. }
  1934. }
  1935. void check_min_temp_bed()
  1936. {
  1937. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1938. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1939. #else
  1940. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1941. #endif
  1942. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1943. bed_min_temp_error();
  1944. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1945. // no recovery, just force the user to restart the printer
  1946. // which is a safer variant than just continuing printing
  1947. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1948. }
  1949. }
  1950. #ifdef AMBIENT_MINTEMP
  1951. void check_min_temp_ambient()
  1952. {
  1953. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1954. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1955. #else
  1956. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1957. #endif
  1958. ambient_min_temp_error();
  1959. }
  1960. }
  1961. #endif
  1962. void check_min_temp()
  1963. {
  1964. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1965. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1966. #ifdef AMBIENT_THERMISTOR
  1967. #ifdef AMBIENT_MINTEMP
  1968. check_min_temp_ambient();
  1969. #endif
  1970. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1971. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1972. #else
  1973. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1974. #endif
  1975. { // ambient temperature is low
  1976. #endif //AMBIENT_THERMISTOR
  1977. // *** 'common' part of code for MK2.5 & MK3
  1978. // * nozzle checking
  1979. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1980. { // ~ nozzle heating is on
  1981. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1982. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1983. {
  1984. bCheckingOnHeater=true; // not necessary
  1985. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1986. }
  1987. }
  1988. else { // ~ nozzle heating is off
  1989. oTimer4minTempHeater.start();
  1990. bCheckingOnHeater=false;
  1991. }
  1992. // * bed checking
  1993. if(target_temperature_bed>BED_MINTEMP)
  1994. { // ~ bed heating is on
  1995. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1996. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1997. {
  1998. bCheckingOnBed=true; // not necessary
  1999. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2000. }
  2001. }
  2002. else { // ~ bed heating is off
  2003. oTimer4minTempBed.start();
  2004. bCheckingOnBed=false;
  2005. }
  2006. // *** end of 'common' part
  2007. #ifdef AMBIENT_THERMISTOR
  2008. }
  2009. else { // ambient temperature is standard
  2010. check_min_temp_heater0();
  2011. check_min_temp_bed();
  2012. }
  2013. #endif //AMBIENT_THERMISTOR
  2014. }
  2015. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  2016. void check_fans() {
  2017. #ifdef FAN_SOFT_PWM
  2018. if (READ(TACH_0) != fan_state[0]) {
  2019. if(fan_measuring) fan_edge_counter[0] ++;
  2020. fan_state[0] = !fan_state[0];
  2021. }
  2022. #else //FAN_SOFT_PWM
  2023. if (READ(TACH_0) != fan_state[0]) {
  2024. fan_edge_counter[0] ++;
  2025. fan_state[0] = !fan_state[0];
  2026. }
  2027. #endif
  2028. //if (READ(TACH_1) != fan_state[1]) {
  2029. // fan_edge_counter[1] ++;
  2030. // fan_state[1] = !fan_state[1];
  2031. //}
  2032. }
  2033. #endif //TACH_0
  2034. #ifdef PIDTEMP
  2035. // Apply the scale factors to the PID values
  2036. float scalePID_i(float i)
  2037. {
  2038. return i*PID_dT;
  2039. }
  2040. float unscalePID_i(float i)
  2041. {
  2042. return i/PID_dT;
  2043. }
  2044. float scalePID_d(float d)
  2045. {
  2046. return d/PID_dT;
  2047. }
  2048. float unscalePID_d(float d)
  2049. {
  2050. return d*PID_dT;
  2051. }
  2052. #endif //PIDTEMP
  2053. #ifdef PINDA_THERMISTOR
  2054. //! @brief PINDA thermistor detected
  2055. //!
  2056. //! @retval true firmware should do temperature compensation and allow calibration
  2057. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2058. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2059. //!
  2060. bool has_temperature_compensation()
  2061. {
  2062. #ifdef SUPERPINDA_SUPPORT
  2063. #ifdef PINDA_TEMP_COMP
  2064. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2065. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2066. {
  2067. #endif //PINDA_TEMP_COMP
  2068. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2069. #ifdef PINDA_TEMP_COMP
  2070. }
  2071. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2072. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2073. #endif //PINDA_TEMP_COMP
  2074. #else
  2075. return true;
  2076. #endif
  2077. }
  2078. #endif //PINDA_THERMISTOR