tmc2130.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. //! @file
  2. #include "Marlin.h"
  3. #ifdef TMC2130
  4. #include "tmc2130.h"
  5. #include "ultralcd.h"
  6. #include "language.h"
  7. #include "spi.h"
  8. #include "Timer.h"
  9. #define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle
  10. #define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull])
  11. #define TMC2130_GCONF_SILENT 0x00000004 // stealthChop
  12. //mode
  13. uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
  14. uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
  15. //running currents
  16. uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
  17. //running currents for homing
  18. uint8_t tmc2130_current_r_home[4] = TMC2130_CURRENTS_R_HOME;
  19. //pwm_ampl
  20. uint8_t tmc2130_pwm_ampl[4] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y, TMC2130_PWM_AMPL_Z, TMC2130_PWM_AMPL_E};
  21. //pwm_grad
  22. uint8_t tmc2130_pwm_grad[4] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y, TMC2130_PWM_GRAD_Z, TMC2130_PWM_GRAD_E};
  23. //pwm_auto
  24. uint8_t tmc2130_pwm_auto[4] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y, TMC2130_PWM_AUTO_Z, TMC2130_PWM_AUTO_E};
  25. //pwm_freq
  26. uint8_t tmc2130_pwm_freq[4] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y, TMC2130_PWM_FREQ_Z, TMC2130_PWM_FREQ_E};
  27. uint8_t tmc2130_mres[4] = {0, 0, 0, 0}; //will be filed at begin of init
  28. uint8_t tmc2130_sg_thr[4] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  29. uint8_t tmc2130_sg_thr_home[4] = TMC2130_SG_THRS_HOME;
  30. uint8_t tmc2130_sg_homing_axes_mask = 0x00;
  31. const char eMotorCurrentScalingEnabled[] PROGMEM = "E-motor current scaling enabled";
  32. uint8_t tmc2130_sg_meassure = 0xff;
  33. uint32_t tmc2130_sg_meassure_cnt = 0;
  34. uint32_t tmc2130_sg_meassure_val = 0;
  35. uint8_t tmc2130_home_enabled = 0;
  36. uint8_t tmc2130_home_origin[2] = {0, 0};
  37. uint8_t tmc2130_home_bsteps[2] = {48, 48};
  38. uint8_t tmc2130_home_fsteps[2] = {48, 48};
  39. uint8_t tmc2130_wave_fac[4] = {0, 0, 0, 0};
  40. tmc2130_chopper_config_t tmc2130_chopper_config[4] = {
  41. {TMC2130_TOFF_XYZ, 5, 1, 2, 0},
  42. {TMC2130_TOFF_XYZ, 5, 1, 2, 0},
  43. {TMC2130_TOFF_XYZ, 5, 1, 2, 0},
  44. {TMC2130_TOFF_E, 5, 1, 2, 0}
  45. };
  46. bool tmc2130_sg_stop_on_crash = true;
  47. uint8_t tmc2130_sg_diag_mask = 0x00;
  48. uint8_t tmc2130_sg_crash = 0;
  49. //used for triggering a periodic check (1s) of the overtemperature pre-warning flag at ~120C (+-20C)
  50. ShortTimer tmc2130_overtemp_timer;
  51. #define DBG(args...)
  52. //printf_P(args)
  53. #ifndef _n
  54. #define _n PSTR
  55. #endif //_n
  56. #ifndef _i
  57. #define _i PSTR
  58. #endif //_i
  59. //TMC2130 registers
  60. #define TMC2130_REG_GCONF 0x00 // 17 bits
  61. #define TMC2130_REG_GSTAT 0x01 // 3 bits
  62. #define TMC2130_REG_IOIN 0x04 // 8+8 bits
  63. #define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits
  64. #define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits
  65. #define TMC2130_REG_TSTEP 0x12 // 20 bits
  66. #define TMC2130_REG_TPWMTHRS 0x13 // 20 bits
  67. #define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits
  68. #define TMC2130_REG_THIGH 0x15 // 20 bits
  69. #define TMC2130_REG_XDIRECT 0x2d // 32 bits
  70. #define TMC2130_REG_VDCMIN 0x33 // 23 bits
  71. #define TMC2130_REG_MSLUT0 0x60 // 32 bits
  72. #define TMC2130_REG_MSLUT1 0x61 // 32 bits
  73. #define TMC2130_REG_MSLUT2 0x62 // 32 bits
  74. #define TMC2130_REG_MSLUT3 0x63 // 32 bits
  75. #define TMC2130_REG_MSLUT4 0x64 // 32 bits
  76. #define TMC2130_REG_MSLUT5 0x65 // 32 bits
  77. #define TMC2130_REG_MSLUT6 0x66 // 32 bits
  78. #define TMC2130_REG_MSLUT7 0x67 // 32 bits
  79. #define TMC2130_REG_MSLUTSEL 0x68 // 32 bits
  80. #define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits
  81. #define TMC2130_REG_MSCNT 0x6a // 10 bits
  82. #define TMC2130_REG_MSCURACT 0x6b // 9+9 bits
  83. #define TMC2130_REG_CHOPCONF 0x6c // 32 bits
  84. #define TMC2130_REG_COOLCONF 0x6d // 25 bits
  85. #define TMC2130_REG_DCCTRL 0x6e // 24 bits
  86. #define TMC2130_REG_DRV_STATUS 0x6f // 32 bits
  87. #define TMC2130_REG_PWMCONF 0x70 // 22 bits
  88. #define TMC2130_REG_PWM_SCALE 0x71 // 8 bits
  89. #define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits
  90. #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
  91. uint16_t tmc2130_rd_TSTEP(uint8_t axis);
  92. uint16_t tmc2130_rd_MSCNT(uint8_t axis);
  93. uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
  94. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
  95. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
  96. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32);
  97. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32);
  98. #define tmc2130_rd(axis, addr, rval) tmc2130_rx(axis, addr, rval)
  99. #define tmc2130_wr(axis, addr, wval) tmc2130_tx(axis, (addr) | 0x80, wval)
  100. static void tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval);
  101. static uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval);
  102. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r);
  103. uint16_t __tcoolthrs(uint8_t axis)
  104. {
  105. switch (axis)
  106. {
  107. case X_AXIS: return TMC2130_TCOOLTHRS_X;
  108. case Y_AXIS: return TMC2130_TCOOLTHRS_Y;
  109. case Z_AXIS: return TMC2130_TCOOLTHRS_Z;
  110. }
  111. return 0;
  112. }
  113. void tmc2130_init(TMCInitParams params)
  114. {
  115. // DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL"));
  116. WRITE(X_TMC2130_CS, HIGH);
  117. WRITE(Y_TMC2130_CS, HIGH);
  118. WRITE(Z_TMC2130_CS, HIGH);
  119. WRITE(E0_TMC2130_CS, HIGH);
  120. SET_OUTPUT(X_TMC2130_CS);
  121. SET_OUTPUT(Y_TMC2130_CS);
  122. SET_OUTPUT(Z_TMC2130_CS);
  123. SET_OUTPUT(E0_TMC2130_CS);
  124. SET_INPUT(X_TMC2130_DIAG);
  125. SET_INPUT(Y_TMC2130_DIAG);
  126. SET_INPUT(Z_TMC2130_DIAG);
  127. SET_INPUT(E0_TMC2130_DIAG);
  128. for (uint_least8_t axis = 0; axis < 2; axis++) // X Y axes
  129. {
  130. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  131. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  132. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  133. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis));
  134. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  135. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  136. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  137. //tmc2130_wr_THIGH(axis, TMC2130_THIGH);
  138. }
  139. for (uint_least8_t axis = 2; axis < 3; axis++) // Z axis
  140. {
  141. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  142. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  143. #ifndef TMC2130_STEALTH_Z
  144. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  145. #else //TMC2130_STEALTH_Z
  146. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  147. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis));
  148. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  149. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  150. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  151. #endif //TMC2130_STEALTH_Z
  152. }
  153. for (uint_least8_t axis = 3; axis < 4; axis++) // E axis
  154. {
  155. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  156. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  157. #ifndef TMC2130_STEALTH_E
  158. if( ! params.enableECool ){
  159. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  160. } else {
  161. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  162. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  163. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
  164. tmc2130_wr_PWMCONF(axis, TMC2130_PWM_AMPL_Ecool, TMC2130_PWM_GRAD_Ecool, tmc2130_pwm_freq[axis], TMC2130_PWM_AUTO_Ecool, 0, 0);
  165. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS_E);
  166. SERIAL_ECHOLNRPGM(eMotorCurrentScalingEnabled);
  167. }
  168. #else //TMC2130_STEALTH_E
  169. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  170. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  171. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
  172. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  173. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  174. #endif //TMC2130_STEALTH_E
  175. }
  176. #ifdef TMC2130_LINEARITY_CORRECTION
  177. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  178. tmc2130_set_wave(X_AXIS, 247, tmc2130_wave_fac[X_AXIS]);
  179. tmc2130_set_wave(Y_AXIS, 247, tmc2130_wave_fac[Y_AXIS]);
  180. tmc2130_set_wave(Z_AXIS, 247, tmc2130_wave_fac[Z_AXIS]);
  181. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  182. tmc2130_set_wave(E_AXIS, 247, tmc2130_wave_fac[E_AXIS]);
  183. #endif //TMC2130_LINEARITY_CORRECTION
  184. #ifdef PSU_Delta
  185. if(!params.bSuppressFlag)
  186. check_force_z();
  187. #endif // PSU_Delta
  188. }
  189. uint8_t tmc2130_sample_diag()
  190. {
  191. uint8_t mask = 0;
  192. if (READ(X_TMC2130_DIAG)) mask |= X_AXIS_MASK;
  193. if (READ(Y_TMC2130_DIAG)) mask |= Y_AXIS_MASK;
  194. // if (READ(Z_TMC2130_DIAG)) mask |= Z_AXIS_MASK;
  195. // if (READ(E0_TMC2130_DIAG)) mask |= E_AXIS_MASK;
  196. return mask;
  197. }
  198. void tmc2130_st_isr()
  199. {
  200. if (tmc2130_mode == TMC2130_MODE_SILENT || tmc2130_sg_stop_on_crash == false || tmc2130_sg_homing_axes_mask != 0)
  201. return;
  202. uint8_t mask = tmc2130_sample_diag();
  203. if (tmc2130_sg_stop_on_crash && mask) {
  204. tmc2130_sg_crash = mask;
  205. tmc2130_sg_stop_on_crash = false;
  206. crashdet_stop_and_save_print();
  207. }
  208. }
  209. bool tmc2130_update_sg()
  210. {
  211. if (tmc2130_sg_meassure <= E_AXIS)
  212. {
  213. uint32_t val32 = 0;
  214. tmc2130_rd(tmc2130_sg_meassure, TMC2130_REG_DRV_STATUS, &val32);
  215. tmc2130_sg_meassure_val += (val32 & 0x3ff);
  216. tmc2130_sg_meassure_cnt++;
  217. return true;
  218. }
  219. return false;
  220. }
  221. void tmc2130_home_enter(uint8_t axes_mask)
  222. {
  223. printf_P(PSTR("tmc2130_home_enter(axes_mask=0x%02x)\n"), axes_mask);
  224. #ifdef TMC2130_SG_HOMING
  225. if (axes_mask & 0x03) //X or Y
  226. tmc2130_wait_standstill_xy(1000);
  227. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  228. {
  229. uint8_t mask = (X_AXIS_MASK << axis);
  230. if (axes_mask & mask)
  231. {
  232. tmc2130_sg_homing_axes_mask |= mask;
  233. //Configuration to spreadCycle
  234. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  235. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
  236. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis));
  237. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]);
  238. if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  239. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
  240. }
  241. }
  242. #endif //TMC2130_SG_HOMING
  243. }
  244. void tmc2130_home_exit()
  245. {
  246. printf_P(PSTR("tmc2130_home_exit tmc2130_sg_homing_axes_mask=0x%02x\n"), tmc2130_sg_homing_axes_mask);
  247. #ifdef TMC2130_SG_HOMING
  248. if (tmc2130_sg_homing_axes_mask & 0x03) //X or Y
  249. tmc2130_wait_standstill_xy(1000);
  250. if (tmc2130_sg_homing_axes_mask)
  251. {
  252. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  253. {
  254. uint8_t mask = (X_AXIS_MASK << axis);
  255. if (tmc2130_sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  256. {
  257. #ifndef TMC2130_STEALTH_Z
  258. if ((tmc2130_mode == TMC2130_MODE_SILENT) && (axis != Z_AXIS))
  259. #else //TMC2130_STEALTH_Z
  260. if (tmc2130_mode == TMC2130_MODE_SILENT)
  261. #endif //TMC2130_STEALTH_Z
  262. {
  263. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
  264. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  265. // tmc2130_wr_PWMCONF(i, tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
  266. }
  267. else
  268. {
  269. // tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  270. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  271. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  272. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis));
  273. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  274. }
  275. }
  276. }
  277. tmc2130_sg_homing_axes_mask = 0x00;
  278. }
  279. tmc2130_sg_crash = false;
  280. #endif
  281. }
  282. void tmc2130_sg_meassure_start(uint8_t axis)
  283. {
  284. tmc2130_sg_meassure = axis;
  285. tmc2130_sg_meassure_cnt = 0;
  286. tmc2130_sg_meassure_val = 0;
  287. }
  288. uint16_t tmc2130_sg_meassure_stop()
  289. {
  290. tmc2130_sg_meassure = 0xff;
  291. return tmc2130_sg_meassure_val / tmc2130_sg_meassure_cnt;
  292. }
  293. bool tmc2130_wait_standstill_xy(int timeout)
  294. {
  295. // DBG(_n("tmc2130_wait_standstill_xy(timeout=%d)\n"), timeout);
  296. bool standstill = false;
  297. while (!standstill && (timeout > 0))
  298. {
  299. uint32_t drv_status_x = 0;
  300. uint32_t drv_status_y = 0;
  301. tmc2130_rd(X_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_x);
  302. tmc2130_rd(Y_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_y);
  303. // DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y);
  304. standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000);
  305. tmc2130_check_overtemp();
  306. timeout--;
  307. }
  308. return standstill;
  309. }
  310. void tmc2130_check_overtemp()
  311. {
  312. if (tmc2130_overtemp_timer.expired(1000) || !tmc2130_overtemp_timer.running())
  313. {
  314. for (uint_least8_t i = 0; i < 4; i++)
  315. {
  316. uint32_t drv_status = 0;
  317. tmc2130_rd(i, TMC2130_REG_DRV_STATUS, &drv_status);
  318. if (drv_status & ((uint32_t)1 << 26))
  319. { // BIT 26 - over temp prewarning ~120C (+-20C)
  320. SERIAL_ERRORRPGM(MSG_TMC_OVERTEMP);
  321. SERIAL_ECHOLN(i);
  322. for (uint_least8_t j = 0; j < 4; j++)
  323. tmc2130_wr(j, TMC2130_REG_CHOPCONF, 0x00010000);
  324. kill(MSG_TMC_OVERTEMP);
  325. }
  326. }
  327. tmc2130_overtemp_timer.start();
  328. }
  329. }
  330. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
  331. {
  332. uint8_t intpol = (mres != 0); // intpol to 256 only if microsteps aren't 256
  333. #ifdef TMC2130_DEDGE_STEPPING
  334. uint8_t dedge = 1;
  335. #else
  336. uint8_t dedge = 0;
  337. #endif
  338. uint8_t toff = tmc2130_chopper_config[axis].toff; // toff = 3 (fchop = 27.778kHz)
  339. uint8_t hstrt = tmc2130_chopper_config[axis].hstr; //initial 4, modified to 5
  340. uint8_t hend = tmc2130_chopper_config[axis].hend; //original value = 1
  341. uint8_t fd3 = 0;
  342. uint8_t rndtf = 0; //random off time
  343. uint8_t chm = 0; //spreadCycle
  344. uint8_t tbl = tmc2130_chopper_config[axis].tbl; //blanking time, original value = 2
  345. if (axis == E_AXIS)
  346. {
  347. #if defined(TMC2130_INTPOL_E) && (TMC2130_INTPOL_E == 0)
  348. intpol = 0;
  349. #endif
  350. #ifdef TMC2130_CNSTOFF_E
  351. // fd = 0 (slow decay only)
  352. hstrt = 0; //fd0..2
  353. fd3 = 0; //fd3
  354. hend = 0; //sine wave offset
  355. chm = 1; // constant off time mod
  356. #endif //TMC2130_CNSTOFF_E
  357. // toff = TMC2130_TOFF_E; // toff = 3-5
  358. // rndtf = 1;
  359. }
  360. #if defined(TMC2130_INTPOL_XY) && (TMC2130_INTPOL_XY == 0)
  361. else if (axis == X_AXIS || axis == Y_AXIS) {
  362. intpol = 0;
  363. }
  364. #endif
  365. #if defined(TMC2130_INTPOL_Z) && (TMC2130_INTPOL_Z == 0)
  366. else if (axis == Z_AXIS) {
  367. intpol = 0;
  368. }
  369. #endif
  370. // DBG(_n("tmc2130_setup_chopper(axis=%d, mres=%d, curh=%d, curr=%d\n"), axis, mres, current_h, current_r);
  371. // DBG(_n(" toff=%d, hstr=%d, hend=%d, tbl=%d\n"), toff, hstrt, hend, tbl);
  372. if (current_r <= 31)
  373. {
  374. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, dedge, 0);
  375. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
  376. }
  377. else
  378. {
  379. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 0, 0, 0, 0, mres, intpol, dedge, 0);
  380. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
  381. }
  382. }
  383. void tmc2130_set_current_h(uint8_t axis, uint8_t current)
  384. {
  385. // DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current);
  386. tmc2130_current_h[axis] = current;
  387. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  388. }
  389. void tmc2130_set_current_r(uint8_t axis, uint8_t current)
  390. {
  391. // DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current);
  392. tmc2130_current_r[axis] = current;
  393. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  394. }
  395. void tmc2130_print_currents()
  396. {
  397. printf_P(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"),
  398. tmc2130_current_h[0], tmc2130_current_r[0],
  399. tmc2130_current_h[1], tmc2130_current_r[1],
  400. tmc2130_current_h[2], tmc2130_current_r[2],
  401. tmc2130_current_h[3], tmc2130_current_r[3]
  402. );
  403. }
  404. void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
  405. {
  406. // DBG(_n("tmc2130_set_pwm_ampl(axis=%d, pwm_ampl=%d\n"), axis, pwm_ampl);
  407. tmc2130_pwm_ampl[axis] = pwm_ampl;
  408. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  409. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  410. }
  411. void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
  412. {
  413. // DBG(_n("tmc2130_set_pwm_grad(axis=%d, pwm_grad=%d\n"), axis, pwm_grad);
  414. tmc2130_pwm_grad[axis] = pwm_grad;
  415. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  416. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  417. }
  418. uint16_t tmc2130_rd_TSTEP(uint8_t axis)
  419. {
  420. uint32_t val32 = 0;
  421. tmc2130_rd(axis, TMC2130_REG_TSTEP, &val32);
  422. if (val32 & 0x000f0000) return 0xffff;
  423. return val32 & 0xffff;
  424. }
  425. uint16_t tmc2130_rd_MSCNT(uint8_t axis)
  426. {
  427. uint32_t val32 = 0;
  428. tmc2130_rd(axis, TMC2130_REG_MSCNT, &val32);
  429. return val32 & 0x3ff;
  430. }
  431. uint32_t tmc2130_rd_MSCURACT(uint8_t axis)
  432. {
  433. uint32_t val32 = 0;
  434. tmc2130_rd(axis, TMC2130_REG_MSCURACT, &val32);
  435. return val32;
  436. }
  437. void tmc2130_wr_MSLUTSTART(uint8_t axis, uint8_t start_sin, uint8_t start_sin90)
  438. {
  439. uint32_t val = 0;
  440. val |= (uint32_t)start_sin;
  441. val |= ((uint32_t)start_sin90) << 16;
  442. tmc2130_wr(axis, TMC2130_REG_MSLUTSTART, val);
  443. //printf_P(PSTR("MSLUTSTART=%08lx (start_sin=%d start_sin90=%d)\n"), val, start_sin, start_sin90);
  444. }
  445. void tmc2130_wr_MSLUTSEL(uint8_t axis, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t w0, uint8_t w1, uint8_t w2, uint8_t w3)
  446. {
  447. uint32_t val = 0;
  448. val |= ((uint32_t)w0);
  449. val |= ((uint32_t)w1) << 2;
  450. val |= ((uint32_t)w2) << 4;
  451. val |= ((uint32_t)w3) << 6;
  452. val |= ((uint32_t)x1) << 8;
  453. val |= ((uint32_t)x2) << 16;
  454. val |= ((uint32_t)x3) << 24;
  455. tmc2130_wr(axis, TMC2130_REG_MSLUTSEL, val);
  456. //printf_P(PSTR("MSLUTSEL=%08lx (x1=%d x2=%d x3=%d w0=%d w1=%d w2=%d w3=%d)\n"), val, x1, x2, x3, w0, w1, w2, w3);
  457. }
  458. void tmc2130_wr_MSLUT(uint8_t axis, uint8_t i, uint32_t val)
  459. {
  460. tmc2130_wr(axis, TMC2130_REG_MSLUT0 + (i & 7), val);
  461. //printf_P(PSTR("MSLUT[%d]=%08lx\n"), i, val);
  462. }
  463. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
  464. {
  465. uint32_t val = 0;
  466. val |= (uint32_t)(toff & 15);
  467. val |= (uint32_t)(hstrt & 7) << 4;
  468. val |= (uint32_t)(hend & 15) << 7;
  469. val |= (uint32_t)(fd3 & 1) << 11;
  470. val |= (uint32_t)(disfdcc & 1) << 12;
  471. val |= (uint32_t)(rndtf & 1) << 13;
  472. val |= (uint32_t)(chm & 1) << 14;
  473. val |= (uint32_t)(tbl & 3) << 15;
  474. val |= (uint32_t)(vsense & 1) << 17;
  475. val |= (uint32_t)(vhighfs & 1) << 18;
  476. val |= (uint32_t)(vhighchm & 1) << 19;
  477. val |= (uint32_t)(sync & 15) << 20;
  478. val |= (uint32_t)(mres & 15) << 24;
  479. val |= (uint32_t)(intpol & 1) << 28;
  480. val |= (uint32_t)(dedge & 1) << 29;
  481. val |= (uint32_t)(diss2g & 1) << 30;
  482. tmc2130_wr(axis, TMC2130_REG_CHOPCONF, val);
  483. }
  484. //void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
  485. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
  486. {
  487. uint32_t val = 0;
  488. val |= (uint32_t)(pwm_ampl & 255);
  489. val |= (uint32_t)(pwm_grad & 255) << 8;
  490. val |= (uint32_t)(pwm_freq & 3) << 16;
  491. val |= (uint32_t)(pwm_auto & 1) << 18;
  492. val |= (uint32_t)(pwm_symm & 1) << 19;
  493. val |= (uint32_t)(freewheel & 3) << 20;
  494. tmc2130_wr(axis, TMC2130_REG_PWMCONF, val);
  495. // tmc2130_wr(axis, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
  496. }
  497. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32)
  498. {
  499. tmc2130_wr(axis, TMC2130_REG_TPWMTHRS, val32);
  500. }
  501. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32)
  502. {
  503. tmc2130_wr(axis, TMC2130_REG_THIGH, val32);
  504. }
  505. uint8_t tmc2130_usteps2mres(uint16_t usteps)
  506. {
  507. uint8_t mres = 8; while (usteps >>= 1) mres--;
  508. return mres;
  509. }
  510. inline void tmc2130_cs_low(uint8_t axis)
  511. {
  512. switch (axis)
  513. {
  514. case X_AXIS: WRITE(X_TMC2130_CS, LOW); break;
  515. case Y_AXIS: WRITE(Y_TMC2130_CS, LOW); break;
  516. case Z_AXIS: WRITE(Z_TMC2130_CS, LOW); break;
  517. case E_AXIS: WRITE(E0_TMC2130_CS, LOW); break;
  518. }
  519. }
  520. inline void tmc2130_cs_high(uint8_t axis)
  521. {
  522. switch (axis)
  523. {
  524. case X_AXIS: WRITE(X_TMC2130_CS, HIGH); break;
  525. case Y_AXIS: WRITE(Y_TMC2130_CS, HIGH); break;
  526. case Z_AXIS: WRITE(Z_TMC2130_CS, HIGH); break;
  527. case E_AXIS: WRITE(E0_TMC2130_CS, HIGH); break;
  528. }
  529. }
  530. //spi
  531. #define TMC2130_SPI_ENTER() spi_setup(TMC2130_SPCR, TMC2130_SPSR)
  532. #define TMC2130_SPI_TXRX spi_txrx
  533. #define TMC2130_SPI_LEAVE()
  534. static void tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval)
  535. {
  536. //datagram1 - request
  537. TMC2130_SPI_ENTER();
  538. tmc2130_cs_low(axis);
  539. TMC2130_SPI_TXRX(addr); // address
  540. TMC2130_SPI_TXRX((wval >> 24) & 0xff); // MSB
  541. TMC2130_SPI_TXRX((wval >> 16) & 0xff);
  542. TMC2130_SPI_TXRX((wval >> 8) & 0xff);
  543. TMC2130_SPI_TXRX(wval & 0xff); // LSB
  544. tmc2130_cs_high(axis);
  545. TMC2130_SPI_LEAVE();
  546. }
  547. static uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval)
  548. {
  549. //datagram1 - request
  550. TMC2130_SPI_ENTER();
  551. tmc2130_cs_low(axis);
  552. TMC2130_SPI_TXRX(addr); // address
  553. TMC2130_SPI_TXRX(0); // MSB
  554. TMC2130_SPI_TXRX(0);
  555. TMC2130_SPI_TXRX(0);
  556. TMC2130_SPI_TXRX(0); // LSB
  557. tmc2130_cs_high(axis);
  558. TMC2130_SPI_LEAVE();
  559. //datagram2 - response
  560. TMC2130_SPI_ENTER();
  561. tmc2130_cs_low(axis);
  562. uint8_t stat = TMC2130_SPI_TXRX(0); // status
  563. uint32_t val32 = 0;
  564. val32 = TMC2130_SPI_TXRX(0); // MSB
  565. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0);
  566. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0);
  567. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0); // LSB
  568. tmc2130_cs_high(axis);
  569. TMC2130_SPI_LEAVE();
  570. if (rval != 0) *rval = val32;
  571. return stat;
  572. }
  573. #define _GET_PWR_X (READ(X_ENABLE_PIN) == X_ENABLE_ON)
  574. #define _GET_PWR_Y (READ(Y_ENABLE_PIN) == Y_ENABLE_ON)
  575. #define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON)
  576. #define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON)
  577. #define _SET_PWR_X(ena) WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON)
  578. #define _SET_PWR_Y(ena) WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON)
  579. #define _SET_PWR_Z(ena) WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON)
  580. #define _SET_PWR_E(ena) WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON)
  581. #define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR)
  582. #define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR)
  583. #define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR)
  584. #define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR)
  585. #define _SET_DIR_X(dir) WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR)
  586. #define _SET_DIR_Y(dir) WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR)
  587. #define _SET_DIR_Z(dir) WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR)
  588. #define _SET_DIR_E(dir) WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR)
  589. #ifdef TMC2130_DEDGE_STEPPING
  590. #define _DO_STEP_X TOGGLE(X_STEP_PIN)
  591. #define _DO_STEP_Y TOGGLE(Y_STEP_PIN)
  592. #define _DO_STEP_Z TOGGLE(Z_STEP_PIN)
  593. #define _DO_STEP_E TOGGLE(E0_STEP_PIN)
  594. #else
  595. #define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); }
  596. #define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); }
  597. #define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); }
  598. #define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); TMC2130_MINIMUM_DELAY; WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); }
  599. #endif
  600. uint16_t tmc2130_get_res(uint8_t axis)
  601. {
  602. return tmc2130_mres2usteps(tmc2130_mres[axis]);
  603. }
  604. void tmc2130_set_res(uint8_t axis, uint16_t res)
  605. {
  606. tmc2130_mres[axis] = tmc2130_usteps2mres(res);
  607. // uint32_t u = _micros();
  608. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  609. // u = _micros() - u;
  610. // printf_P(PSTR("tmc2130_setup_chopper %c %lu us"), "XYZE"[axis], u);
  611. }
  612. uint8_t tmc2130_get_pwr(uint8_t axis)
  613. {
  614. switch (axis)
  615. {
  616. case X_AXIS: return _GET_PWR_X;
  617. case Y_AXIS: return _GET_PWR_Y;
  618. case Z_AXIS: return _GET_PWR_Z;
  619. case E_AXIS: return _GET_PWR_E;
  620. }
  621. return 0;
  622. }
  623. //! @par pwr motor power
  624. //! * 0 disabled
  625. //! * non-zero enabled
  626. void tmc2130_set_pwr(uint8_t axis, uint8_t pwr)
  627. {
  628. switch (axis)
  629. {
  630. case X_AXIS: _SET_PWR_X(pwr); break;
  631. case Y_AXIS: _SET_PWR_Y(pwr); break;
  632. case Z_AXIS: _SET_PWR_Z(pwr); break;
  633. case E_AXIS: _SET_PWR_E(pwr); break;
  634. }
  635. delayMicroseconds(TMC2130_SET_PWR_DELAY);
  636. }
  637. uint8_t tmc2130_get_inv(uint8_t axis)
  638. {
  639. switch (axis)
  640. {
  641. case X_AXIS: return INVERT_X_DIR;
  642. case Y_AXIS: return INVERT_Y_DIR;
  643. case Z_AXIS: return INVERT_Z_DIR;
  644. case E_AXIS: return INVERT_E0_DIR;
  645. }
  646. return 0;
  647. }
  648. uint8_t tmc2130_get_dir(uint8_t axis)
  649. {
  650. switch (axis)
  651. {
  652. case X_AXIS: return _GET_DIR_X;
  653. case Y_AXIS: return _GET_DIR_Y;
  654. case Z_AXIS: return _GET_DIR_Z;
  655. case E_AXIS: return _GET_DIR_E;
  656. }
  657. return 0;
  658. }
  659. void tmc2130_set_dir(uint8_t axis, uint8_t dir)
  660. {
  661. switch (axis)
  662. {
  663. case X_AXIS: _SET_DIR_X(dir); break;
  664. case Y_AXIS: _SET_DIR_Y(dir); break;
  665. case Z_AXIS: _SET_DIR_Z(dir); break;
  666. case E_AXIS: _SET_DIR_E(dir); break;
  667. }
  668. delayMicroseconds(TMC2130_SET_DIR_DELAY);
  669. }
  670. void tmc2130_do_step(uint8_t axis)
  671. {
  672. switch (axis)
  673. {
  674. case X_AXIS: _DO_STEP_X; break;
  675. case Y_AXIS: _DO_STEP_Y; break;
  676. case Z_AXIS: _DO_STEP_Z; break;
  677. case E_AXIS: _DO_STEP_E; break;
  678. }
  679. }
  680. void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us)
  681. {
  682. if (tmc2130_get_dir(axis) != dir)
  683. tmc2130_set_dir(axis, dir);
  684. while (steps--)
  685. {
  686. tmc2130_do_step(axis);
  687. delayMicroseconds(delay_us);
  688. }
  689. }
  690. void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution)
  691. {
  692. printf_P(PSTR("tmc2130_goto_step %d %d %d %d \n"), axis, step, dir, delay_us, microstep_resolution);
  693. uint8_t shift; for (shift = 0; shift < 8; shift++) if (microstep_resolution == (256u >> shift)) break;
  694. uint16_t cnt = 4 * (1 << (8 - shift));
  695. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  696. if (dir == 2)
  697. {
  698. dir = tmc2130_get_inv(axis)?0:1;
  699. int steps = (int)step - (int)(mscnt >> shift);
  700. if (steps > static_cast<int>(cnt / 2))
  701. {
  702. dir ^= 1;
  703. steps = cnt - steps; // This can create a negative step value
  704. }
  705. if (steps < 0)
  706. {
  707. dir ^= 1;
  708. steps = -steps;
  709. }
  710. cnt = steps;
  711. }
  712. tmc2130_set_dir(axis, dir);
  713. mscnt = tmc2130_rd_MSCNT(axis);
  714. while ((cnt--) && ((mscnt >> shift) != step))
  715. {
  716. tmc2130_do_step(axis);
  717. delayMicroseconds(delay_us);
  718. mscnt = tmc2130_rd_MSCNT(axis);
  719. }
  720. }
  721. void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream)
  722. {
  723. uint8_t pwr = tmc2130_get_pwr(axis);
  724. tmc2130_set_pwr(axis, 0);
  725. tmc2130_setup_chopper(axis, tmc2130_usteps2mres(256), tmc2130_current_h[axis], tmc2130_current_r[axis]);
  726. tmc2130_goto_step(axis, 0, 2, 100, 256);
  727. tmc2130_set_dir(axis, tmc2130_get_inv(axis)?0:1);
  728. for (unsigned int i = 0; i <= 255; i++)
  729. {
  730. uint32_t val = tmc2130_rd_MSCURACT(axis);
  731. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  732. int curA = (val & 0xff) | ((val << 7) & 0x8000);
  733. if (stream)
  734. {
  735. if (mscnt == i)
  736. fprintf_P(stream, PSTR("%d\t%d\n"), i, curA);
  737. else //TODO - remove this check
  738. fprintf_P(stream, PSTR("!! (i=%d MSCNT=%d)\n"), i, mscnt);
  739. }
  740. if (data) *(data++) = curA;
  741. tmc2130_do_step(axis);
  742. delayMicroseconds(100);
  743. }
  744. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  745. tmc2130_set_pwr(axis, pwr);
  746. }
  747. void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac1000)
  748. {
  749. // TMC2130 wave compression algorithm
  750. // optimized for minimal memory requirements
  751. // printf_P(PSTR("tmc2130_set_wave %d %d\n"), axis, fac1000);
  752. if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
  753. if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
  754. float fac = 0;
  755. if (fac1000) fac = ((float)((uint16_t)fac1000 + 1000) / 1000); //correction factor
  756. // printf_P(PSTR(" factor: %s\n"), ftostr43(fac));
  757. uint8_t vA = 0; //value of currentA
  758. uint8_t va = 0; //previous vA
  759. int8_t d0 = 0; //delta0
  760. int8_t d1 = 1; //delta1
  761. uint8_t w[4] = {1,1,1,1}; //W bits (MSLUTSEL)
  762. uint8_t x[3] = {255,255,255}; //X segment bounds (MSLUTSEL)
  763. uint8_t s = 0; //current segment
  764. int8_t b; //encoded bit value
  765. int8_t dA; //delta value
  766. uint8_t i = 0; //microstep index
  767. uint32_t reg = 0; //tmc2130 register
  768. tmc2130_wr_MSLUTSTART(axis, 0, amp);
  769. do
  770. {
  771. if ((i & 0x1f) == 0)
  772. reg = 0;
  773. // calculate value
  774. if (fac == 0) // default TMC wave
  775. vA = (uint8_t)((amp+1) * sin((2*PI*i + PI)/1024) + 0.5) - 1;
  776. else // corrected wave
  777. vA = (uint8_t)(amp * pow(sin(2*PI*i/1024), fac) + 0.5);
  778. dA = vA - va; // calculate delta
  779. va = vA;
  780. b = -1;
  781. if (dA == d0) b = 0; //delta == delta0 => bit=0
  782. else if (dA == d1) b = 1; //delta == delta1 => bit=1
  783. else
  784. {
  785. if (dA < d0) // delta < delta0 => switch wbit down
  786. {
  787. //printf("dn\n");
  788. b = 0;
  789. switch (dA)
  790. {
  791. case -1: d0 = -1; d1 = 0; w[s+1] = 0; break;
  792. case 0: d0 = 0; d1 = 1; w[s+1] = 1; break;
  793. case 1: d0 = 1; d1 = 2; w[s+1] = 2; break;
  794. default: b = -1; break;
  795. }
  796. if (b >= 0) { x[s] = i; s++; }
  797. }
  798. else if (dA > d1) // delta > delta0 => switch wbit up
  799. {
  800. //printf("up\n");
  801. b = 1;
  802. switch (dA)
  803. {
  804. case 1: d0 = 0; d1 = 1; w[s+1] = 1; break;
  805. case 2: d0 = 1; d1 = 2; w[s+1] = 2; break;
  806. case 3: d0 = 2; d1 = 3; w[s+1] = 3; break;
  807. default: b = -1; break;
  808. }
  809. if (b >= 0) { x[s] = i; s++; }
  810. }
  811. }
  812. if (b < 0) break; // delta out of range (<-1 or >3)
  813. if (s > 3) break; // segment out of range (> 3)
  814. //printf("%d\n", vA);
  815. if (b == 1) reg |= 0x80000000;
  816. if ((i & 31) == 31)
  817. tmc2130_wr_MSLUT(axis, (uint8_t)(i >> 5), reg);
  818. else
  819. reg >>= 1;
  820. // printf("%3d\t%3d\t%2d\t%2d\t%2d\t%2d %08x\n", i, vA, dA, b, w[s], s, reg);
  821. } while (i++ != 255);
  822. tmc2130_wr_MSLUTSEL(axis, x[0], x[1], x[2], w[0], w[1], w[2], w[3]);
  823. }
  824. void bubblesort_uint8(uint8_t* data, uint8_t size, uint8_t* data2)
  825. {
  826. uint8_t changed = 1;
  827. while (changed)
  828. {
  829. changed = 0;
  830. for (uint8_t i = 0; i < (size - 1); i++)
  831. if (data[i] > data[i+1])
  832. {
  833. uint8_t d = data[i];
  834. data[i] = data[i+1];
  835. data[i+1] = d;
  836. if (data2)
  837. {
  838. d = data2[i];
  839. data2[i] = data2[i+1];
  840. data2[i+1] = d;
  841. }
  842. changed = 1;
  843. }
  844. }
  845. }
  846. uint8_t clusterize_uint8(uint8_t* data, uint8_t size, uint8_t* ccnt, uint8_t* cval, uint8_t tol)
  847. {
  848. uint8_t cnt = 1;
  849. uint16_t sum = data[0];
  850. uint8_t cl = 0;
  851. for (uint8_t i = 1; i < size; i++)
  852. {
  853. uint8_t d = data[i];
  854. uint8_t val = sum / cnt;
  855. uint8_t dif = 0;
  856. if (val > d) dif = val - d;
  857. else dif = d - val;
  858. if (dif <= tol)
  859. {
  860. cnt += 1;
  861. sum += d;
  862. }
  863. else
  864. {
  865. if (ccnt) ccnt[cl] = cnt;
  866. if (cval) cval[cl] = val;
  867. cnt = 1;
  868. sum = d;
  869. cl += 1;
  870. }
  871. }
  872. if (ccnt) ccnt[cl] = cnt;
  873. if (cval) cval[cl] = sum / cnt;
  874. return ++cl;
  875. }
  876. bool tmc2130_home_calibrate(uint8_t axis)
  877. {
  878. uint8_t step[16];
  879. uint8_t cnt[16];
  880. uint8_t val[16];
  881. homeaxis(axis, 16, step);
  882. bubblesort_uint8(step, 16, 0);
  883. puts_P(PSTR("sorted samples:"));
  884. for (uint8_t i = 0; i < 16; i++)
  885. printf_P(PSTR(" i=%2d step=%2d\n"), i, step[i]);
  886. uint8_t cl = clusterize_uint8(step, 16, cnt, val, 1);
  887. puts_P(PSTR("clusters:"));
  888. for (uint8_t i = 0; i < cl; i++)
  889. printf_P(PSTR(" i=%2d cnt=%2d val=%2d\n"), i, cnt[i], val[i]);
  890. bubblesort_uint8(cnt, cl, val);
  891. tmc2130_home_origin[axis] = val[cl-1];
  892. printf_P(PSTR("result value: %d\n"), tmc2130_home_origin[axis]);
  893. if (axis == X_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
  894. else if (axis == Y_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
  895. return true;
  896. }
  897. //! @brief Translate current to tmc2130 vsense and IHOLD or IRUN
  898. //! @param cur current in mA
  899. //! @return 0 .. 63
  900. //! @n most significant bit is CHOPCONF vsense bit (sense resistor voltage based current scaling)
  901. //! @n rest is to be used in IRUN or IHOLD register
  902. //!
  903. //! | mA | trinamic register | note |
  904. //! | --- | --- | --- |
  905. //! | 0 | 0 | doesn't mean current off, lowest current is 1/32 current with vsense low range |
  906. //! | 30 | 1 | |
  907. //! | 40 | 2 | |
  908. //! | 60 | 3 | |
  909. //! | 90 | 4 | |
  910. //! | 100 | 5 | |
  911. //! | 120 | 6 | |
  912. //! | 130 | 7 | |
  913. //! | 150 | 8 | |
  914. //! | 180 | 9 | |
  915. //! | 190 | 10 | |
  916. //! | 210 | 11 | |
  917. //! | 230 | 12 | |
  918. //! | 240 | 13 | |
  919. //! | 250 | 13 | |
  920. //! | 260 | 14 | |
  921. //! | 280 | 15 | |
  922. //! | 300 | 16 | |
  923. //! | 320 | 17 | |
  924. //! | 340 | 18 | |
  925. //! | 350 | 19 | |
  926. //! | 370 | 20 | |
  927. //! | 390 | 21 | |
  928. //! | 410 | 22 | |
  929. //! | 430 | 23 | |
  930. //! | 450 | 24 | |
  931. //! | 460 | 25 | |
  932. //! | 480 | 26 | |
  933. //! | 500 | 27 | |
  934. //! | 520 | 28 | |
  935. //! | 535 | 29 | |
  936. //! | N/D | 30 | extruder default |
  937. //! | 540 | 33 | |
  938. //! | 560 | 34 | |
  939. //! | 580 | 35 | |
  940. //! | 590 | 36 | farm mode extruder default |
  941. //! | 610 | 37 | |
  942. //! | 630 | 38 | |
  943. //! | 640 | 39 | |
  944. //! | 660 | 40 | |
  945. //! | 670 | 41 | |
  946. //! | 690 | 42 | |
  947. //! | 710 | 43 | |
  948. //! | 720 | 44 | |
  949. //! | 730 | 45 | |
  950. //! | 760 | 46 | |
  951. //! | 770 | 47 | |
  952. //! | 790 | 48 | |
  953. //! | 810 | 49 | |
  954. //! | 820 | 50 | |
  955. //! | 840 | 51 | |
  956. //! | 850 | 52 | |
  957. //! | 870 | 53 | |
  958. //! | 890 | 54 | |
  959. //! | 900 | 55 | |
  960. //! | 920 | 56 | |
  961. //! | 940 | 57 | |
  962. //! | 950 | 58 | |
  963. //! | 970 | 59 | |
  964. //! | 980 | 60 | |
  965. //! | 1000 | 61 | |
  966. //! | 1020 | 62 | |
  967. //! | 1029 | 63 | |
  968. uint8_t tmc2130_cur2val(float cur)
  969. {
  970. if (cur < 0) cur = 0; //limit min
  971. if (cur > 1029) cur = 1029; //limit max
  972. //540mA is threshold for switch from high sense to low sense
  973. //for higher currents is maximum current 1029mA
  974. if (cur >= 540) return 63 * (float)cur / 1029;
  975. //for lower currents must be the value divided by 1.125 (= 0.18*2/0.32)
  976. return 63 * (float)cur / (1029 * 1.125);
  977. }
  978. float tmc2130_val2cur(uint8_t val)
  979. {
  980. float rsense = 0.2; //0.2 ohm sense resistors
  981. uint8_t vsense = (val & 0x20)?0:1; //vsense bit = val>31
  982. float vfs = vsense?0.18:0.32; //vfs depends on vsense bit
  983. uint8_t val2 = vsense?val:(val >> 1); //vals 32..63 shifted right (16..31)
  984. // equation from datasheet (0.7071 ~= 1/sqrt(2))
  985. float cur = ((float)(val2 + 1)/32) * (vfs/(rsense + 0.02)) * 0.7071;
  986. return cur * 1000; //return current in mA
  987. }
  988. #endif //TMC2130