temperature.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  78. unsigned char lcdSoftPwm = (LCD_PWM_MAX * 2 + 1); //set default value to maximum
  79. unsigned char lcdBlinkDelay = 0; //lcd blinking delay (0 = no blink)
  80. #endif
  81. unsigned char soft_pwm_bed;
  82. #ifdef BABYSTEPPING
  83. volatile int babystepsTodo[3]={0,0,0};
  84. #endif
  85. #ifdef FILAMENT_SENSOR
  86. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  87. #endif
  88. //===========================================================================
  89. //=============================private variables============================
  90. //===========================================================================
  91. static volatile bool temp_meas_ready = false;
  92. #ifdef PIDTEMP
  93. //static cannot be external:
  94. static float temp_iState[EXTRUDERS] = { 0 };
  95. static float temp_dState[EXTRUDERS] = { 0 };
  96. static float pTerm[EXTRUDERS];
  97. static float iTerm[EXTRUDERS];
  98. static float dTerm[EXTRUDERS];
  99. //int output;
  100. static float pid_error[EXTRUDERS];
  101. static float temp_iState_min[EXTRUDERS];
  102. static float temp_iState_max[EXTRUDERS];
  103. // static float pid_input[EXTRUDERS];
  104. // static float pid_output[EXTRUDERS];
  105. static bool pid_reset[EXTRUDERS];
  106. #endif //PIDTEMP
  107. #ifdef PIDTEMPBED
  108. //static cannot be external:
  109. static float temp_iState_bed = { 0 };
  110. static float temp_dState_bed = { 0 };
  111. static float pTerm_bed;
  112. static float iTerm_bed;
  113. static float dTerm_bed;
  114. //int output;
  115. static float pid_error_bed;
  116. static float temp_iState_min_bed;
  117. static float temp_iState_max_bed;
  118. #else //PIDTEMPBED
  119. static unsigned long previous_millis_bed_heater;
  120. #endif //PIDTEMPBED
  121. static unsigned char soft_pwm[EXTRUDERS];
  122. #ifdef FAN_SOFT_PWM
  123. static unsigned char soft_pwm_fan;
  124. #endif
  125. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  126. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  127. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  128. static unsigned long extruder_autofan_last_check;
  129. #endif
  130. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  131. static unsigned char soft_pwm_lcd = 0;
  132. static unsigned char lcd_blink_delay = 0;
  133. static bool lcd_blink_on = false;
  134. #endif
  135. #if EXTRUDERS > 3
  136. # error Unsupported number of extruders
  137. #elif EXTRUDERS > 2
  138. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  139. #elif EXTRUDERS > 1
  140. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  141. #else
  142. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  143. #endif
  144. // Init min and max temp with extreme values to prevent false errors during startup
  145. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  146. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  147. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  148. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  149. #ifdef BED_MINTEMP
  150. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  151. #endif
  152. #ifdef BED_MAXTEMP
  153. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  154. #endif
  155. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  156. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  157. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  158. #else
  159. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  160. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  161. #endif
  162. static float analog2temp(int raw, uint8_t e);
  163. static float analog2tempBed(int raw);
  164. static float analog2tempAmbient(int raw);
  165. static void updateTemperaturesFromRawValues();
  166. enum TempRunawayStates
  167. {
  168. TempRunaway_INACTIVE = 0,
  169. TempRunaway_PREHEAT = 1,
  170. TempRunaway_ACTIVE = 2,
  171. };
  172. #ifdef WATCH_TEMP_PERIOD
  173. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  174. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  175. #endif //WATCH_TEMP_PERIOD
  176. #ifndef SOFT_PWM_SCALE
  177. #define SOFT_PWM_SCALE 0
  178. #endif
  179. #ifdef FILAMENT_SENSOR
  180. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  181. #endif
  182. //===========================================================================
  183. //============================= functions ============================
  184. //===========================================================================
  185. void PID_autotune(float temp, int extruder, int ncycles)
  186. {
  187. pid_number_of_cycles = ncycles;
  188. pid_tuning_finished = false;
  189. float input = 0.0;
  190. pid_cycle=0;
  191. bool heating = true;
  192. unsigned long temp_millis = millis();
  193. unsigned long t1=temp_millis;
  194. unsigned long t2=temp_millis;
  195. long t_high = 0;
  196. long t_low = 0;
  197. long bias, d;
  198. float Ku, Tu;
  199. float max = 0, min = 10000;
  200. uint8_t safety_check_cycles = 0;
  201. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  202. float temp_ambient;
  203. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  204. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  205. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  206. unsigned long extruder_autofan_last_check = millis();
  207. #endif
  208. if ((extruder >= EXTRUDERS)
  209. #if (TEMP_BED_PIN <= -1)
  210. ||(extruder < 0)
  211. #endif
  212. ){
  213. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  214. pid_tuning_finished = true;
  215. pid_cycle = 0;
  216. return;
  217. }
  218. SERIAL_ECHOLN("PID Autotune start");
  219. disable_heater(); // switch off all heaters.
  220. if (extruder<0)
  221. {
  222. soft_pwm_bed = (MAX_BED_POWER)/2;
  223. bias = d = (MAX_BED_POWER)/2;
  224. }
  225. else
  226. {
  227. soft_pwm[extruder] = (PID_MAX)/2;
  228. bias = d = (PID_MAX)/2;
  229. }
  230. for(;;) {
  231. wdt_reset();
  232. if(temp_meas_ready == true) { // temp sample ready
  233. updateTemperaturesFromRawValues();
  234. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  235. max=max(max,input);
  236. min=min(min,input);
  237. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  239. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  240. if(millis() - extruder_autofan_last_check > 2500) {
  241. checkExtruderAutoFans();
  242. extruder_autofan_last_check = millis();
  243. }
  244. #endif
  245. if(heating == true && input > temp) {
  246. if(millis() - t2 > 5000) {
  247. heating=false;
  248. if (extruder<0)
  249. soft_pwm_bed = (bias - d) >> 1;
  250. else
  251. soft_pwm[extruder] = (bias - d) >> 1;
  252. t1=millis();
  253. t_high=t1 - t2;
  254. max=temp;
  255. }
  256. }
  257. if(heating == false && input < temp) {
  258. if(millis() - t1 > 5000) {
  259. heating=true;
  260. t2=millis();
  261. t_low=t2 - t1;
  262. if(pid_cycle > 0) {
  263. bias += (d*(t_high - t_low))/(t_low + t_high);
  264. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  265. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  266. else d = bias;
  267. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  268. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  269. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  270. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  271. if(pid_cycle > 2) {
  272. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  273. Tu = ((float)(t_low + t_high)/1000.0);
  274. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  275. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  276. _Kp = 0.6*Ku;
  277. _Ki = 2*_Kp/Tu;
  278. _Kd = _Kp*Tu/8;
  279. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  280. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  281. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  282. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  283. /*
  284. _Kp = 0.33*Ku;
  285. _Ki = _Kp/Tu;
  286. _Kd = _Kp*Tu/3;
  287. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  288. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  289. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  290. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  291. _Kp = 0.2*Ku;
  292. _Ki = 2*_Kp/Tu;
  293. _Kd = _Kp*Tu/3;
  294. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  295. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  296. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  297. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  298. */
  299. }
  300. }
  301. if (extruder<0)
  302. soft_pwm_bed = (bias + d) >> 1;
  303. else
  304. soft_pwm[extruder] = (bias + d) >> 1;
  305. pid_cycle++;
  306. min=temp;
  307. }
  308. }
  309. }
  310. if(input > (temp + 20)) {
  311. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  312. pid_tuning_finished = true;
  313. pid_cycle = 0;
  314. return;
  315. }
  316. if(millis() - temp_millis > 2000) {
  317. int p;
  318. if (extruder<0){
  319. p=soft_pwm_bed;
  320. SERIAL_PROTOCOLPGM("ok B:");
  321. }else{
  322. p=soft_pwm[extruder];
  323. SERIAL_PROTOCOLPGM("ok T:");
  324. }
  325. SERIAL_PROTOCOL(input);
  326. SERIAL_PROTOCOLPGM(" @:");
  327. SERIAL_PROTOCOLLN(p);
  328. if (safety_check_cycles == 0) { //save ambient temp
  329. temp_ambient = input;
  330. //SERIAL_ECHOPGM("Ambient T: ");
  331. //MYSERIAL.println(temp_ambient);
  332. safety_check_cycles++;
  333. }
  334. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  335. safety_check_cycles++;
  336. }
  337. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  338. safety_check_cycles++;
  339. //SERIAL_ECHOPGM("Time from beginning: ");
  340. //MYSERIAL.print(safety_check_cycles_count * 2);
  341. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  342. //MYSERIAL.println(input - temp_ambient);
  343. if (abs(input - temp_ambient) < 5.0) {
  344. temp_runaway_stop(false, (extruder<0));
  345. pid_tuning_finished = true;
  346. return;
  347. }
  348. }
  349. temp_millis = millis();
  350. }
  351. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  352. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  353. pid_tuning_finished = true;
  354. pid_cycle = 0;
  355. return;
  356. }
  357. if(pid_cycle > ncycles) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. lcd_update();
  364. }
  365. }
  366. void updatePID()
  367. {
  368. #ifdef PIDTEMP
  369. for(int e = 0; e < EXTRUDERS; e++) {
  370. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  371. }
  372. #endif
  373. #ifdef PIDTEMPBED
  374. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  375. #endif
  376. }
  377. int getHeaterPower(int heater) {
  378. if (heater<0)
  379. return soft_pwm_bed;
  380. return soft_pwm[heater];
  381. }
  382. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  383. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  384. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  385. #if defined(FAN_PIN) && FAN_PIN > -1
  386. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  387. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  388. #endif
  389. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  390. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  391. #endif
  392. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #endif
  396. void setExtruderAutoFanState(int pin, bool state)
  397. {
  398. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  399. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  400. pinMode(pin, OUTPUT);
  401. digitalWrite(pin, newFanSpeed);
  402. analogWrite(pin, newFanSpeed);
  403. }
  404. void countFanSpeed()
  405. {
  406. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  407. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  408. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  409. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  410. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  411. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  412. SERIAL_ECHOLNPGM(" ");*/
  413. fan_edge_counter[0] = 0;
  414. fan_edge_counter[1] = 0;
  415. }
  416. extern bool fans_check_enabled;
  417. void checkFanSpeed()
  418. {
  419. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  420. static unsigned char fan_speed_errors[2] = { 0,0 };
  421. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  422. else fan_speed_errors[0] = 0;
  423. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  424. else fan_speed_errors[1] = 0;
  425. if ((fan_speed_errors[0] > 5) && fans_check_enabled) fanSpeedError(0); //extruder fan
  426. if ((fan_speed_errors[1] > 15) && fans_check_enabled) fanSpeedError(1); //print fan
  427. }
  428. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  429. extern void restore_print_from_ram_and_continue(float e_move);
  430. void fanSpeedError(unsigned char _fan) {
  431. if (get_message_level() != 0 && isPrintPaused) return;
  432. //to ensure that target temp. is not set to zero in case taht we are resuming print
  433. if (card.sdprinting) {
  434. if (heating_status != 0) {
  435. lcd_print_stop();
  436. }
  437. else {
  438. isPrintPaused = true;
  439. lcd_sdcard_pause();
  440. }
  441. }
  442. else {
  443. setTargetHotend0(0);
  444. }
  445. SERIAL_ERROR_START;
  446. switch (_fan) {
  447. case 0:
  448. SERIAL_ERRORLNPGM("ERROR: Extruder fan speed is lower then expected");
  449. if (get_message_level() == 0) {
  450. WRITE(BEEPER, HIGH);
  451. delayMicroseconds(200);
  452. WRITE(BEEPER, LOW);
  453. delayMicroseconds(100);
  454. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  455. }
  456. break;
  457. case 1:
  458. SERIAL_ERRORLNPGM("ERROR: Print fan speed is lower then expected");
  459. if (get_message_level() == 0) {
  460. WRITE(BEEPER, HIGH);
  461. delayMicroseconds(200);
  462. WRITE(BEEPER, LOW);
  463. delayMicroseconds(100);
  464. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  465. }
  466. break;
  467. }
  468. }
  469. void checkExtruderAutoFans()
  470. {
  471. uint8_t fanState = 0;
  472. // which fan pins need to be turned on?
  473. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  474. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  475. fanState |= 1;
  476. #endif
  477. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  478. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  479. {
  480. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  481. fanState |= 1;
  482. else
  483. fanState |= 2;
  484. }
  485. #endif
  486. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  487. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  488. {
  489. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  490. fanState |= 1;
  491. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  492. fanState |= 2;
  493. else
  494. fanState |= 4;
  495. }
  496. #endif
  497. // update extruder auto fan states
  498. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  499. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  500. #endif
  501. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  502. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  503. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  504. #endif
  505. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  506. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  507. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  508. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  509. #endif
  510. }
  511. #endif // any extruder auto fan pins set
  512. void manage_heater()
  513. {
  514. wdt_reset();
  515. float pid_input;
  516. float pid_output;
  517. if(temp_meas_ready != true) //better readability
  518. return;
  519. updateTemperaturesFromRawValues();
  520. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  521. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  522. #endif
  523. for(int e = 0; e < EXTRUDERS; e++)
  524. {
  525. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  526. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  527. #endif
  528. #ifdef PIDTEMP
  529. pid_input = current_temperature[e];
  530. #ifndef PID_OPENLOOP
  531. pid_error[e] = target_temperature[e] - pid_input;
  532. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  533. pid_output = BANG_MAX;
  534. pid_reset[e] = true;
  535. }
  536. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  537. pid_output = 0;
  538. pid_reset[e] = true;
  539. }
  540. else {
  541. if(pid_reset[e] == true) {
  542. temp_iState[e] = 0.0;
  543. pid_reset[e] = false;
  544. }
  545. pTerm[e] = Kp * pid_error[e];
  546. temp_iState[e] += pid_error[e];
  547. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  548. iTerm[e] = Ki * temp_iState[e];
  549. //K1 defined in Configuration.h in the PID settings
  550. #define K2 (1.0-K1)
  551. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  552. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  553. if (pid_output > PID_MAX) {
  554. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  555. pid_output=PID_MAX;
  556. } else if (pid_output < 0){
  557. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  558. pid_output=0;
  559. }
  560. }
  561. temp_dState[e] = pid_input;
  562. #else
  563. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  564. #endif //PID_OPENLOOP
  565. #ifdef PID_DEBUG
  566. SERIAL_ECHO_START;
  567. SERIAL_ECHO(" PID_DEBUG ");
  568. SERIAL_ECHO(e);
  569. SERIAL_ECHO(": Input ");
  570. SERIAL_ECHO(pid_input);
  571. SERIAL_ECHO(" Output ");
  572. SERIAL_ECHO(pid_output);
  573. SERIAL_ECHO(" pTerm ");
  574. SERIAL_ECHO(pTerm[e]);
  575. SERIAL_ECHO(" iTerm ");
  576. SERIAL_ECHO(iTerm[e]);
  577. SERIAL_ECHO(" dTerm ");
  578. SERIAL_ECHOLN(dTerm[e]);
  579. #endif //PID_DEBUG
  580. #else /* PID off */
  581. pid_output = 0;
  582. if(current_temperature[e] < target_temperature[e]) {
  583. pid_output = PID_MAX;
  584. }
  585. #endif
  586. // Check if temperature is within the correct range
  587. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  588. {
  589. soft_pwm[e] = (int)pid_output >> 1;
  590. }
  591. else {
  592. soft_pwm[e] = 0;
  593. }
  594. #ifdef WATCH_TEMP_PERIOD
  595. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  596. {
  597. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  598. {
  599. setTargetHotend(0, e);
  600. LCD_MESSAGEPGM("Heating failed");
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHOLN("Heating failed");
  603. }else{
  604. watchmillis[e] = 0;
  605. }
  606. }
  607. #endif
  608. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  609. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  610. disable_heater();
  611. if(IsStopped() == false) {
  612. SERIAL_ERROR_START;
  613. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  614. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  615. }
  616. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  617. Stop();
  618. #endif
  619. }
  620. #endif
  621. } // End extruder for loop
  622. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  623. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  624. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  625. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  626. {
  627. countFanSpeed();
  628. checkFanSpeed();
  629. checkExtruderAutoFans();
  630. extruder_autofan_last_check = millis();
  631. }
  632. #endif
  633. #ifndef PIDTEMPBED
  634. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  635. return;
  636. previous_millis_bed_heater = millis();
  637. #endif
  638. #if TEMP_SENSOR_BED != 0
  639. #ifdef PIDTEMPBED
  640. pid_input = current_temperature_bed;
  641. #ifndef PID_OPENLOOP
  642. pid_error_bed = target_temperature_bed - pid_input;
  643. pTerm_bed = bedKp * pid_error_bed;
  644. temp_iState_bed += pid_error_bed;
  645. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  646. iTerm_bed = bedKi * temp_iState_bed;
  647. //K1 defined in Configuration.h in the PID settings
  648. #define K2 (1.0-K1)
  649. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  650. temp_dState_bed = pid_input;
  651. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  652. if (pid_output > MAX_BED_POWER) {
  653. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  654. pid_output=MAX_BED_POWER;
  655. } else if (pid_output < 0){
  656. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  657. pid_output=0;
  658. }
  659. #else
  660. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  661. #endif //PID_OPENLOOP
  662. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  663. {
  664. soft_pwm_bed = (int)pid_output >> 1;
  665. }
  666. else {
  667. soft_pwm_bed = 0;
  668. }
  669. #elif !defined(BED_LIMIT_SWITCHING)
  670. // Check if temperature is within the correct range
  671. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  672. {
  673. if(current_temperature_bed >= target_temperature_bed)
  674. {
  675. soft_pwm_bed = 0;
  676. }
  677. else
  678. {
  679. soft_pwm_bed = MAX_BED_POWER>>1;
  680. }
  681. }
  682. else
  683. {
  684. soft_pwm_bed = 0;
  685. WRITE(HEATER_BED_PIN,LOW);
  686. }
  687. #else //#ifdef BED_LIMIT_SWITCHING
  688. // Check if temperature is within the correct band
  689. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  690. {
  691. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  692. {
  693. soft_pwm_bed = 0;
  694. }
  695. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  696. {
  697. soft_pwm_bed = MAX_BED_POWER>>1;
  698. }
  699. }
  700. else
  701. {
  702. soft_pwm_bed = 0;
  703. WRITE(HEATER_BED_PIN,LOW);
  704. }
  705. #endif
  706. #endif
  707. //code for controlling the extruder rate based on the width sensor
  708. #ifdef FILAMENT_SENSOR
  709. if(filament_sensor)
  710. {
  711. meas_shift_index=delay_index1-meas_delay_cm;
  712. if(meas_shift_index<0)
  713. meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
  714. //get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
  715. //then square it to get an area
  716. if(meas_shift_index<0)
  717. meas_shift_index=0;
  718. else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
  719. meas_shift_index=MAX_MEASUREMENT_DELAY;
  720. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
  721. if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
  722. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
  723. }
  724. #endif
  725. #ifdef HOST_KEEPALIVE_FEATURE
  726. host_keepalive();
  727. #endif
  728. }
  729. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  730. // Derived from RepRap FiveD extruder::getTemperature()
  731. // For hot end temperature measurement.
  732. static float analog2temp(int raw, uint8_t e) {
  733. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  734. if(e > EXTRUDERS)
  735. #else
  736. if(e >= EXTRUDERS)
  737. #endif
  738. {
  739. SERIAL_ERROR_START;
  740. SERIAL_ERROR((int)e);
  741. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  742. kill("", 6);
  743. return 0.0;
  744. }
  745. #ifdef HEATER_0_USES_MAX6675
  746. if (e == 0)
  747. {
  748. return 0.25 * raw;
  749. }
  750. #endif
  751. if(heater_ttbl_map[e] != NULL)
  752. {
  753. float celsius = 0;
  754. uint8_t i;
  755. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  756. for (i=1; i<heater_ttbllen_map[e]; i++)
  757. {
  758. if (PGM_RD_W((*tt)[i][0]) > raw)
  759. {
  760. celsius = PGM_RD_W((*tt)[i-1][1]) +
  761. (raw - PGM_RD_W((*tt)[i-1][0])) *
  762. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  763. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  764. break;
  765. }
  766. }
  767. // Overflow: Set to last value in the table
  768. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  769. return celsius;
  770. }
  771. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  772. }
  773. // Derived from RepRap FiveD extruder::getTemperature()
  774. // For bed temperature measurement.
  775. static float analog2tempBed(int raw) {
  776. #ifdef BED_USES_THERMISTOR
  777. float celsius = 0;
  778. byte i;
  779. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  780. {
  781. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  782. {
  783. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  784. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  785. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  786. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  787. break;
  788. }
  789. }
  790. // Overflow: Set to last value in the table
  791. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  792. // temperature offset adjustment
  793. #ifdef BED_OFFSET
  794. float _offset = BED_OFFSET;
  795. float _offset_center = BED_OFFSET_CENTER;
  796. float _offset_start = BED_OFFSET_START;
  797. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  798. float _second_koef = (_offset / 2) / (100 - _offset_center);
  799. if (celsius >= _offset_start && celsius <= _offset_center)
  800. {
  801. celsius = celsius + (_first_koef * (celsius - _offset_start));
  802. }
  803. else if (celsius > _offset_center && celsius <= 100)
  804. {
  805. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  806. }
  807. else if (celsius > 100)
  808. {
  809. celsius = celsius + _offset;
  810. }
  811. #endif
  812. return celsius;
  813. #elif defined BED_USES_AD595
  814. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  815. #else
  816. return 0;
  817. #endif
  818. }
  819. static float analog2tempAmbient(int raw)
  820. {
  821. float celsius = 0;
  822. byte i;
  823. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  824. {
  825. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  826. {
  827. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  828. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  829. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  830. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  831. break;
  832. }
  833. }
  834. // Overflow: Set to last value in the table
  835. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  836. return celsius;
  837. }
  838. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  839. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  840. static void updateTemperaturesFromRawValues()
  841. {
  842. for(uint8_t e=0;e<EXTRUDERS;e++)
  843. {
  844. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  845. }
  846. #ifdef PINDA_THERMISTOR
  847. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  848. #endif
  849. #ifdef AMBIENT_THERMISTOR
  850. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  851. #endif
  852. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  853. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  854. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  855. #endif
  856. #if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
  857. filament_width_meas = analog2widthFil();
  858. #endif
  859. //Reset the watchdog after we know we have a temperature measurement.
  860. watchdog_reset();
  861. CRITICAL_SECTION_START;
  862. temp_meas_ready = false;
  863. CRITICAL_SECTION_END;
  864. }
  865. // For converting raw Filament Width to milimeters
  866. #ifdef FILAMENT_SENSOR
  867. float analog2widthFil() {
  868. return current_raw_filwidth/16383.0*5.0;
  869. //return current_raw_filwidth;
  870. }
  871. // For converting raw Filament Width to a ratio
  872. int widthFil_to_size_ratio() {
  873. float temp;
  874. temp=filament_width_meas;
  875. if(filament_width_meas<MEASURED_LOWER_LIMIT)
  876. temp=filament_width_nominal; //assume sensor cut out
  877. else if (filament_width_meas>MEASURED_UPPER_LIMIT)
  878. temp= MEASURED_UPPER_LIMIT;
  879. return(filament_width_nominal/temp*100);
  880. }
  881. #endif
  882. void tp_init()
  883. {
  884. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  885. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  886. MCUCR=(1<<JTD);
  887. MCUCR=(1<<JTD);
  888. #endif
  889. // Finish init of mult extruder arrays
  890. for(int e = 0; e < EXTRUDERS; e++) {
  891. // populate with the first value
  892. maxttemp[e] = maxttemp[0];
  893. #ifdef PIDTEMP
  894. temp_iState_min[e] = 0.0;
  895. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  896. #endif //PIDTEMP
  897. #ifdef PIDTEMPBED
  898. temp_iState_min_bed = 0.0;
  899. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  900. #endif //PIDTEMPBED
  901. }
  902. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  903. SET_OUTPUT(HEATER_0_PIN);
  904. #endif
  905. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  906. SET_OUTPUT(HEATER_1_PIN);
  907. #endif
  908. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  909. SET_OUTPUT(HEATER_2_PIN);
  910. #endif
  911. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  912. SET_OUTPUT(HEATER_BED_PIN);
  913. #endif
  914. #if defined(FAN_PIN) && (FAN_PIN > -1)
  915. SET_OUTPUT(FAN_PIN);
  916. #ifdef FAST_PWM_FAN
  917. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  918. #endif
  919. #ifdef FAN_SOFT_PWM
  920. soft_pwm_fan = fanSpeedSoftPwm / 2;
  921. #endif
  922. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  923. soft_pwm_lcd = lcdSoftPwm / 2;
  924. lcd_blink_delay = lcdBlinkDelay;
  925. lcd_blink_on = true;
  926. #endif
  927. #endif
  928. #ifdef HEATER_0_USES_MAX6675
  929. #ifndef SDSUPPORT
  930. SET_OUTPUT(SCK_PIN);
  931. WRITE(SCK_PIN,0);
  932. SET_OUTPUT(MOSI_PIN);
  933. WRITE(MOSI_PIN,1);
  934. SET_INPUT(MISO_PIN);
  935. WRITE(MISO_PIN,1);
  936. #endif
  937. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  938. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  939. pinMode(SS_PIN, OUTPUT);
  940. digitalWrite(SS_PIN,0);
  941. pinMode(MAX6675_SS, OUTPUT);
  942. digitalWrite(MAX6675_SS,1);
  943. #endif
  944. adc_init();
  945. // Use timer0 for temperature measurement
  946. // Interleave temperature interrupt with millies interrupt
  947. OCR0B = 128;
  948. TIMSK0 |= (1<<OCIE0B);
  949. // Wait for temperature measurement to settle
  950. delay(250);
  951. #ifdef HEATER_0_MINTEMP
  952. minttemp[0] = HEATER_0_MINTEMP;
  953. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  954. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  955. minttemp_raw[0] += OVERSAMPLENR;
  956. #else
  957. minttemp_raw[0] -= OVERSAMPLENR;
  958. #endif
  959. }
  960. #endif //MINTEMP
  961. #ifdef HEATER_0_MAXTEMP
  962. maxttemp[0] = HEATER_0_MAXTEMP;
  963. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  964. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  965. maxttemp_raw[0] -= OVERSAMPLENR;
  966. #else
  967. maxttemp_raw[0] += OVERSAMPLENR;
  968. #endif
  969. }
  970. #endif //MAXTEMP
  971. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  972. minttemp[1] = HEATER_1_MINTEMP;
  973. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  974. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  975. minttemp_raw[1] += OVERSAMPLENR;
  976. #else
  977. minttemp_raw[1] -= OVERSAMPLENR;
  978. #endif
  979. }
  980. #endif // MINTEMP 1
  981. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  982. maxttemp[1] = HEATER_1_MAXTEMP;
  983. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  984. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  985. maxttemp_raw[1] -= OVERSAMPLENR;
  986. #else
  987. maxttemp_raw[1] += OVERSAMPLENR;
  988. #endif
  989. }
  990. #endif //MAXTEMP 1
  991. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  992. minttemp[2] = HEATER_2_MINTEMP;
  993. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  994. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  995. minttemp_raw[2] += OVERSAMPLENR;
  996. #else
  997. minttemp_raw[2] -= OVERSAMPLENR;
  998. #endif
  999. }
  1000. #endif //MINTEMP 2
  1001. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1002. maxttemp[2] = HEATER_2_MAXTEMP;
  1003. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1004. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1005. maxttemp_raw[2] -= OVERSAMPLENR;
  1006. #else
  1007. maxttemp_raw[2] += OVERSAMPLENR;
  1008. #endif
  1009. }
  1010. #endif //MAXTEMP 2
  1011. #ifdef BED_MINTEMP
  1012. /* No bed MINTEMP error implemented?!? */
  1013. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1014. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1015. bed_minttemp_raw += OVERSAMPLENR;
  1016. #else
  1017. bed_minttemp_raw -= OVERSAMPLENR;
  1018. #endif
  1019. }
  1020. #endif //BED_MINTEMP
  1021. #ifdef BED_MAXTEMP
  1022. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1023. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1024. bed_maxttemp_raw -= OVERSAMPLENR;
  1025. #else
  1026. bed_maxttemp_raw += OVERSAMPLENR;
  1027. #endif
  1028. }
  1029. #endif //BED_MAXTEMP
  1030. }
  1031. void setWatch()
  1032. {
  1033. #ifdef WATCH_TEMP_PERIOD
  1034. for (int e = 0; e < EXTRUDERS; e++)
  1035. {
  1036. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1037. {
  1038. watch_start_temp[e] = degHotend(e);
  1039. watchmillis[e] = millis();
  1040. }
  1041. }
  1042. #endif
  1043. }
  1044. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1045. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1046. {
  1047. float __hysteresis = 0;
  1048. int __timeout = 0;
  1049. bool temp_runaway_check_active = false;
  1050. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1051. static int __preheat_counter[2] = { 0,0};
  1052. static int __preheat_errors[2] = { 0,0};
  1053. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1054. if (_isbed)
  1055. {
  1056. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1057. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1058. }
  1059. #endif
  1060. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1061. if (!_isbed)
  1062. {
  1063. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1064. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1065. }
  1066. #endif
  1067. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1068. {
  1069. temp_runaway_timer[_heater_id] = millis();
  1070. if (_output == 0)
  1071. {
  1072. temp_runaway_check_active = false;
  1073. temp_runaway_error_counter[_heater_id] = 0;
  1074. }
  1075. if (temp_runaway_target[_heater_id] != _target_temperature)
  1076. {
  1077. if (_target_temperature > 0)
  1078. {
  1079. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1080. temp_runaway_target[_heater_id] = _target_temperature;
  1081. __preheat_start[_heater_id] = _current_temperature;
  1082. __preheat_counter[_heater_id] = 0;
  1083. }
  1084. else
  1085. {
  1086. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1087. temp_runaway_target[_heater_id] = _target_temperature;
  1088. }
  1089. }
  1090. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1091. {
  1092. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1093. {
  1094. __preheat_counter[_heater_id]++;
  1095. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1096. {
  1097. /*SERIAL_ECHOPGM("Heater:");
  1098. MYSERIAL.print(_heater_id);
  1099. SERIAL_ECHOPGM(" T:");
  1100. MYSERIAL.print(_current_temperature);
  1101. SERIAL_ECHOPGM(" Tstart:");
  1102. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1103. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1104. __preheat_errors[_heater_id]++;
  1105. /*SERIAL_ECHOPGM(" Preheat errors:");
  1106. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1107. }
  1108. else {
  1109. //SERIAL_ECHOLNPGM("");
  1110. __preheat_errors[_heater_id] = 0;
  1111. }
  1112. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1113. {
  1114. if (farm_mode) { prusa_statistics(0); }
  1115. temp_runaway_stop(true, _isbed);
  1116. if (farm_mode) { prusa_statistics(91); }
  1117. }
  1118. __preheat_start[_heater_id] = _current_temperature;
  1119. __preheat_counter[_heater_id] = 0;
  1120. }
  1121. }
  1122. }
  1123. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1124. {
  1125. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1126. temp_runaway_check_active = false;
  1127. }
  1128. if (!temp_runaway_check_active && _output > 0)
  1129. {
  1130. temp_runaway_check_active = true;
  1131. }
  1132. if (temp_runaway_check_active)
  1133. {
  1134. // we are in range
  1135. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1136. {
  1137. temp_runaway_check_active = false;
  1138. temp_runaway_error_counter[_heater_id] = 0;
  1139. }
  1140. else
  1141. {
  1142. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1143. {
  1144. temp_runaway_error_counter[_heater_id]++;
  1145. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1146. {
  1147. if (farm_mode) { prusa_statistics(0); }
  1148. temp_runaway_stop(false, _isbed);
  1149. if (farm_mode) { prusa_statistics(90); }
  1150. }
  1151. }
  1152. }
  1153. }
  1154. }
  1155. }
  1156. void temp_runaway_stop(bool isPreheat, bool isBed)
  1157. {
  1158. cancel_heatup = true;
  1159. quickStop();
  1160. if (card.sdprinting)
  1161. {
  1162. card.sdprinting = false;
  1163. card.closefile();
  1164. }
  1165. disable_heater();
  1166. disable_x();
  1167. disable_y();
  1168. disable_e0();
  1169. disable_e1();
  1170. disable_e2();
  1171. manage_heater();
  1172. lcd_update();
  1173. WRITE(BEEPER, HIGH);
  1174. delayMicroseconds(500);
  1175. WRITE(BEEPER, LOW);
  1176. delayMicroseconds(100);
  1177. if (isPreheat)
  1178. {
  1179. Stop();
  1180. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1181. SERIAL_ERROR_START;
  1182. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1183. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1184. SET_OUTPUT(FAN_PIN);
  1185. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1186. analogWrite(FAN_PIN, 255);
  1187. fanSpeed = 255;
  1188. delayMicroseconds(2000);
  1189. }
  1190. else
  1191. {
  1192. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1193. SERIAL_ERROR_START;
  1194. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1195. }
  1196. }
  1197. #endif
  1198. void disable_heater()
  1199. {
  1200. for(int i=0;i<EXTRUDERS;i++)
  1201. setTargetHotend(0,i);
  1202. setTargetBed(0);
  1203. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1204. target_temperature[0]=0;
  1205. soft_pwm[0]=0;
  1206. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1207. WRITE(HEATER_0_PIN,LOW);
  1208. #endif
  1209. #endif
  1210. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1211. target_temperature[1]=0;
  1212. soft_pwm[1]=0;
  1213. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1214. WRITE(HEATER_1_PIN,LOW);
  1215. #endif
  1216. #endif
  1217. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1218. target_temperature[2]=0;
  1219. soft_pwm[2]=0;
  1220. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1221. WRITE(HEATER_2_PIN,LOW);
  1222. #endif
  1223. #endif
  1224. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1225. target_temperature_bed=0;
  1226. soft_pwm_bed=0;
  1227. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1228. WRITE(HEATER_BED_PIN,LOW);
  1229. #endif
  1230. #endif
  1231. }
  1232. void max_temp_error(uint8_t e) {
  1233. disable_heater();
  1234. if(IsStopped() == false) {
  1235. SERIAL_ERROR_START;
  1236. SERIAL_ERRORLN((int)e);
  1237. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1238. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1239. }
  1240. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1241. Stop();
  1242. #endif
  1243. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1244. SET_OUTPUT(FAN_PIN);
  1245. SET_OUTPUT(BEEPER);
  1246. WRITE(FAN_PIN, 1);
  1247. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1248. WRITE(BEEPER, 1);
  1249. // fanSpeed will consumed by the check_axes_activity() routine.
  1250. fanSpeed=255;
  1251. if (farm_mode) { prusa_statistics(93); }
  1252. }
  1253. void min_temp_error(uint8_t e) {
  1254. #ifdef DEBUG_DISABLE_MINTEMP
  1255. return;
  1256. #endif
  1257. if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1258. disable_heater();
  1259. if(IsStopped() == false) {
  1260. SERIAL_ERROR_START;
  1261. SERIAL_ERRORLN((int)e);
  1262. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1263. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1264. }
  1265. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1266. Stop();
  1267. #endif
  1268. if (farm_mode) { prusa_statistics(92); }
  1269. }
  1270. void bed_max_temp_error(void) {
  1271. #if HEATER_BED_PIN > -1
  1272. WRITE(HEATER_BED_PIN, 0);
  1273. #endif
  1274. if(IsStopped() == false) {
  1275. SERIAL_ERROR_START;
  1276. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1277. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1278. }
  1279. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1280. Stop();
  1281. #endif
  1282. }
  1283. void bed_min_temp_error(void) {
  1284. #ifdef DEBUG_DISABLE_MINTEMP
  1285. return;
  1286. #endif
  1287. if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1288. #if HEATER_BED_PIN > -1
  1289. WRITE(HEATER_BED_PIN, 0);
  1290. #endif
  1291. if(IsStopped() == false) {
  1292. SERIAL_ERROR_START;
  1293. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1294. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1295. }
  1296. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1297. Stop();
  1298. #endif*/
  1299. }
  1300. #ifdef HEATER_0_USES_MAX6675
  1301. #define MAX6675_HEAT_INTERVAL 250
  1302. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1303. int max6675_temp = 2000;
  1304. int read_max6675()
  1305. {
  1306. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1307. return max6675_temp;
  1308. max6675_previous_millis = millis();
  1309. max6675_temp = 0;
  1310. #ifdef PRR
  1311. PRR &= ~(1<<PRSPI);
  1312. #elif defined PRR0
  1313. PRR0 &= ~(1<<PRSPI);
  1314. #endif
  1315. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1316. // enable TT_MAX6675
  1317. WRITE(MAX6675_SS, 0);
  1318. // ensure 100ns delay - a bit extra is fine
  1319. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1320. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1321. // read MSB
  1322. SPDR = 0;
  1323. for (;(SPSR & (1<<SPIF)) == 0;);
  1324. max6675_temp = SPDR;
  1325. max6675_temp <<= 8;
  1326. // read LSB
  1327. SPDR = 0;
  1328. for (;(SPSR & (1<<SPIF)) == 0;);
  1329. max6675_temp |= SPDR;
  1330. // disable TT_MAX6675
  1331. WRITE(MAX6675_SS, 1);
  1332. if (max6675_temp & 4)
  1333. {
  1334. // thermocouple open
  1335. max6675_temp = 2000;
  1336. }
  1337. else
  1338. {
  1339. max6675_temp = max6675_temp >> 3;
  1340. }
  1341. return max6675_temp;
  1342. }
  1343. #endif
  1344. extern "C" {
  1345. void adc_ready(void) //callback from adc when sampling finished
  1346. {
  1347. current_temperature_raw[0] = adc_values[0];
  1348. current_temperature_bed_raw = adc_values[2];
  1349. current_temperature_raw_pinda = adc_values[3];
  1350. current_voltage_raw_pwr = adc_values[4];
  1351. current_temperature_raw_ambient = adc_values[5];
  1352. current_voltage_raw_bed = adc_values[6];
  1353. temp_meas_ready = true;
  1354. }
  1355. } // extern "C"
  1356. // Timer 0 is shared with millies
  1357. ISR(TIMER0_COMPB_vect)
  1358. {
  1359. if (!temp_meas_ready) adc_cycle();
  1360. lcd_buttons_update();
  1361. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1362. static unsigned char soft_pwm_0;
  1363. #ifdef SLOW_PWM_HEATERS
  1364. static unsigned char slow_pwm_count = 0;
  1365. static unsigned char state_heater_0 = 0;
  1366. static unsigned char state_timer_heater_0 = 0;
  1367. #endif
  1368. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1369. static unsigned char soft_pwm_1;
  1370. #ifdef SLOW_PWM_HEATERS
  1371. static unsigned char state_heater_1 = 0;
  1372. static unsigned char state_timer_heater_1 = 0;
  1373. #endif
  1374. #endif
  1375. #if EXTRUDERS > 2
  1376. static unsigned char soft_pwm_2;
  1377. #ifdef SLOW_PWM_HEATERS
  1378. static unsigned char state_heater_2 = 0;
  1379. static unsigned char state_timer_heater_2 = 0;
  1380. #endif
  1381. #endif
  1382. #if HEATER_BED_PIN > -1
  1383. static unsigned char soft_pwm_b;
  1384. #ifdef SLOW_PWM_HEATERS
  1385. static unsigned char state_heater_b = 0;
  1386. static unsigned char state_timer_heater_b = 0;
  1387. #endif
  1388. #endif
  1389. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1390. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1391. #endif
  1392. #ifndef SLOW_PWM_HEATERS
  1393. /*
  1394. * standard PWM modulation
  1395. */
  1396. if (pwm_count == 0)
  1397. {
  1398. soft_pwm_0 = soft_pwm[0];
  1399. if(soft_pwm_0 > 0)
  1400. {
  1401. WRITE(HEATER_0_PIN,1);
  1402. #ifdef HEATERS_PARALLEL
  1403. WRITE(HEATER_1_PIN,1);
  1404. #endif
  1405. } else WRITE(HEATER_0_PIN,0);
  1406. #if EXTRUDERS > 1
  1407. soft_pwm_1 = soft_pwm[1];
  1408. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1409. #endif
  1410. #if EXTRUDERS > 2
  1411. soft_pwm_2 = soft_pwm[2];
  1412. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1413. #endif
  1414. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1415. soft_pwm_b = soft_pwm_bed;
  1416. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1417. #endif
  1418. #ifdef FAN_SOFT_PWM
  1419. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1420. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1421. #endif
  1422. }
  1423. if(soft_pwm_0 < pwm_count)
  1424. {
  1425. WRITE(HEATER_0_PIN,0);
  1426. #ifdef HEATERS_PARALLEL
  1427. WRITE(HEATER_1_PIN,0);
  1428. #endif
  1429. }
  1430. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  1431. if ((pwm_count & LCD_PWM_MAX) == 0)
  1432. {
  1433. if (lcd_blink_delay)
  1434. {
  1435. lcd_blink_delay--;
  1436. if (lcd_blink_delay == 0)
  1437. {
  1438. lcd_blink_delay = lcdBlinkDelay;
  1439. lcd_blink_on = !lcd_blink_on;
  1440. }
  1441. }
  1442. else
  1443. {
  1444. lcd_blink_delay = lcdBlinkDelay;
  1445. lcd_blink_on = true;
  1446. }
  1447. soft_pwm_lcd = (lcd_blink_on) ? (lcdSoftPwm / 2) : 0;
  1448. if (soft_pwm_lcd > 0) WRITE(LCD_PWM_PIN,1); else WRITE(LCD_PWM_PIN,0);
  1449. }
  1450. #endif
  1451. #if EXTRUDERS > 1
  1452. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1453. #endif
  1454. #if EXTRUDERS > 2
  1455. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1456. #endif
  1457. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1458. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1459. #endif
  1460. #ifdef FAN_SOFT_PWM
  1461. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1462. #endif
  1463. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  1464. if (soft_pwm_lcd < (pwm_count & LCD_PWM_MAX)) WRITE(LCD_PWM_PIN,0);
  1465. #endif
  1466. pwm_count += (1 << SOFT_PWM_SCALE);
  1467. pwm_count &= 0x7f;
  1468. #else //ifndef SLOW_PWM_HEATERS
  1469. /*
  1470. * SLOW PWM HEATERS
  1471. *
  1472. * for heaters drived by relay
  1473. */
  1474. #ifndef MIN_STATE_TIME
  1475. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1476. #endif
  1477. if (slow_pwm_count == 0) {
  1478. // EXTRUDER 0
  1479. soft_pwm_0 = soft_pwm[0];
  1480. if (soft_pwm_0 > 0) {
  1481. // turn ON heather only if the minimum time is up
  1482. if (state_timer_heater_0 == 0) {
  1483. // if change state set timer
  1484. if (state_heater_0 == 0) {
  1485. state_timer_heater_0 = MIN_STATE_TIME;
  1486. }
  1487. state_heater_0 = 1;
  1488. WRITE(HEATER_0_PIN, 1);
  1489. #ifdef HEATERS_PARALLEL
  1490. WRITE(HEATER_1_PIN, 1);
  1491. #endif
  1492. }
  1493. } else {
  1494. // turn OFF heather only if the minimum time is up
  1495. if (state_timer_heater_0 == 0) {
  1496. // if change state set timer
  1497. if (state_heater_0 == 1) {
  1498. state_timer_heater_0 = MIN_STATE_TIME;
  1499. }
  1500. state_heater_0 = 0;
  1501. WRITE(HEATER_0_PIN, 0);
  1502. #ifdef HEATERS_PARALLEL
  1503. WRITE(HEATER_1_PIN, 0);
  1504. #endif
  1505. }
  1506. }
  1507. #if EXTRUDERS > 1
  1508. // EXTRUDER 1
  1509. soft_pwm_1 = soft_pwm[1];
  1510. if (soft_pwm_1 > 0) {
  1511. // turn ON heather only if the minimum time is up
  1512. if (state_timer_heater_1 == 0) {
  1513. // if change state set timer
  1514. if (state_heater_1 == 0) {
  1515. state_timer_heater_1 = MIN_STATE_TIME;
  1516. }
  1517. state_heater_1 = 1;
  1518. WRITE(HEATER_1_PIN, 1);
  1519. }
  1520. } else {
  1521. // turn OFF heather only if the minimum time is up
  1522. if (state_timer_heater_1 == 0) {
  1523. // if change state set timer
  1524. if (state_heater_1 == 1) {
  1525. state_timer_heater_1 = MIN_STATE_TIME;
  1526. }
  1527. state_heater_1 = 0;
  1528. WRITE(HEATER_1_PIN, 0);
  1529. }
  1530. }
  1531. #endif
  1532. #if EXTRUDERS > 2
  1533. // EXTRUDER 2
  1534. soft_pwm_2 = soft_pwm[2];
  1535. if (soft_pwm_2 > 0) {
  1536. // turn ON heather only if the minimum time is up
  1537. if (state_timer_heater_2 == 0) {
  1538. // if change state set timer
  1539. if (state_heater_2 == 0) {
  1540. state_timer_heater_2 = MIN_STATE_TIME;
  1541. }
  1542. state_heater_2 = 1;
  1543. WRITE(HEATER_2_PIN, 1);
  1544. }
  1545. } else {
  1546. // turn OFF heather only if the minimum time is up
  1547. if (state_timer_heater_2 == 0) {
  1548. // if change state set timer
  1549. if (state_heater_2 == 1) {
  1550. state_timer_heater_2 = MIN_STATE_TIME;
  1551. }
  1552. state_heater_2 = 0;
  1553. WRITE(HEATER_2_PIN, 0);
  1554. }
  1555. }
  1556. #endif
  1557. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1558. // BED
  1559. soft_pwm_b = soft_pwm_bed;
  1560. if (soft_pwm_b > 0) {
  1561. // turn ON heather only if the minimum time is up
  1562. if (state_timer_heater_b == 0) {
  1563. // if change state set timer
  1564. if (state_heater_b == 0) {
  1565. state_timer_heater_b = MIN_STATE_TIME;
  1566. }
  1567. state_heater_b = 1;
  1568. WRITE(HEATER_BED_PIN, 1);
  1569. }
  1570. } else {
  1571. // turn OFF heather only if the minimum time is up
  1572. if (state_timer_heater_b == 0) {
  1573. // if change state set timer
  1574. if (state_heater_b == 1) {
  1575. state_timer_heater_b = MIN_STATE_TIME;
  1576. }
  1577. state_heater_b = 0;
  1578. WRITE(HEATER_BED_PIN, 0);
  1579. }
  1580. }
  1581. #endif
  1582. } // if (slow_pwm_count == 0)
  1583. // EXTRUDER 0
  1584. if (soft_pwm_0 < slow_pwm_count) {
  1585. // turn OFF heather only if the minimum time is up
  1586. if (state_timer_heater_0 == 0) {
  1587. // if change state set timer
  1588. if (state_heater_0 == 1) {
  1589. state_timer_heater_0 = MIN_STATE_TIME;
  1590. }
  1591. state_heater_0 = 0;
  1592. WRITE(HEATER_0_PIN, 0);
  1593. #ifdef HEATERS_PARALLEL
  1594. WRITE(HEATER_1_PIN, 0);
  1595. #endif
  1596. }
  1597. }
  1598. #if EXTRUDERS > 1
  1599. // EXTRUDER 1
  1600. if (soft_pwm_1 < slow_pwm_count) {
  1601. // turn OFF heather only if the minimum time is up
  1602. if (state_timer_heater_1 == 0) {
  1603. // if change state set timer
  1604. if (state_heater_1 == 1) {
  1605. state_timer_heater_1 = MIN_STATE_TIME;
  1606. }
  1607. state_heater_1 = 0;
  1608. WRITE(HEATER_1_PIN, 0);
  1609. }
  1610. }
  1611. #endif
  1612. #if EXTRUDERS > 2
  1613. // EXTRUDER 2
  1614. if (soft_pwm_2 < slow_pwm_count) {
  1615. // turn OFF heather only if the minimum time is up
  1616. if (state_timer_heater_2 == 0) {
  1617. // if change state set timer
  1618. if (state_heater_2 == 1) {
  1619. state_timer_heater_2 = MIN_STATE_TIME;
  1620. }
  1621. state_heater_2 = 0;
  1622. WRITE(HEATER_2_PIN, 0);
  1623. }
  1624. }
  1625. #endif
  1626. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1627. // BED
  1628. if (soft_pwm_b < slow_pwm_count) {
  1629. // turn OFF heather only if the minimum time is up
  1630. if (state_timer_heater_b == 0) {
  1631. // if change state set timer
  1632. if (state_heater_b == 1) {
  1633. state_timer_heater_b = MIN_STATE_TIME;
  1634. }
  1635. state_heater_b = 0;
  1636. WRITE(HEATER_BED_PIN, 0);
  1637. }
  1638. }
  1639. #endif
  1640. #ifdef FAN_SOFT_PWM
  1641. if (pwm_count == 0){
  1642. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1643. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1644. }
  1645. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1646. #endif
  1647. pwm_count += (1 << SOFT_PWM_SCALE);
  1648. pwm_count &= 0x7f;
  1649. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1650. if ((pwm_count % 64) == 0) {
  1651. slow_pwm_count++;
  1652. slow_pwm_count &= 0x7f;
  1653. // Extruder 0
  1654. if (state_timer_heater_0 > 0) {
  1655. state_timer_heater_0--;
  1656. }
  1657. #if EXTRUDERS > 1
  1658. // Extruder 1
  1659. if (state_timer_heater_1 > 0)
  1660. state_timer_heater_1--;
  1661. #endif
  1662. #if EXTRUDERS > 2
  1663. // Extruder 2
  1664. if (state_timer_heater_2 > 0)
  1665. state_timer_heater_2--;
  1666. #endif
  1667. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1668. // Bed
  1669. if (state_timer_heater_b > 0)
  1670. state_timer_heater_b--;
  1671. #endif
  1672. } //if ((pwm_count % 64) == 0) {
  1673. #endif //ifndef SLOW_PWM_HEATERS
  1674. #ifdef BABYSTEPPING
  1675. for(uint8_t axis=0;axis<3;axis++)
  1676. {
  1677. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1678. if(curTodo>0)
  1679. {
  1680. babystep(axis,/*fwd*/true);
  1681. babystepsTodo[axis]--; //less to do next time
  1682. }
  1683. else
  1684. if(curTodo<0)
  1685. {
  1686. babystep(axis,/*fwd*/false);
  1687. babystepsTodo[axis]++; //less to do next time
  1688. }
  1689. }
  1690. #endif //BABYSTEPPING
  1691. check_fans();
  1692. }
  1693. void check_min_max_temp()
  1694. {
  1695. /*
  1696. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1697. if(current_temperature_raw[0] <= maxttemp_raw[0]) {
  1698. #else
  1699. if(current_temperature_raw[0] >= maxttemp_raw[0]) {
  1700. #endif
  1701. max_temp_error(0);
  1702. }
  1703. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1704. if(current_temperature_raw[0] >= minttemp_raw[0]) {
  1705. #else
  1706. if(current_temperature_raw[0] <= minttemp_raw[0]) {
  1707. #endif
  1708. min_temp_error(0);
  1709. }
  1710. #if EXTRUDERS > 1
  1711. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1712. if(current_temperature_raw[1] <= maxttemp_raw[1]) {
  1713. #else
  1714. if(current_temperature_raw[1] >= maxttemp_raw[1]) {
  1715. #endif
  1716. max_temp_error(1);
  1717. }
  1718. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1719. if(current_temperature_raw[1] >= minttemp_raw[1]) {
  1720. #else
  1721. if(current_temperature_raw[1] <= minttemp_raw[1]) {
  1722. #endif
  1723. min_temp_error(1);
  1724. }
  1725. #endif
  1726. #if EXTRUDERS > 2
  1727. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1728. if(current_temperature_raw[2] <= maxttemp_raw[2]) {
  1729. #else
  1730. if(current_temperature_raw[2] >= maxttemp_raw[2]) {
  1731. #endif
  1732. max_temp_error(2);
  1733. }
  1734. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1735. if(current_temperature_raw[2] >= minttemp_raw[2]) {
  1736. #else
  1737. if(current_temperature_raw[2] <= minttemp_raw[2]) {
  1738. #endif
  1739. min_temp_error(2);
  1740. }
  1741. #endif
  1742. // No bed MINTEMP error?
  1743. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1744. # if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1745. if(current_temperature_bed_raw <= bed_maxttemp_raw) {
  1746. #else
  1747. if(current_temperature_bed_raw >= bed_maxttemp_raw) {
  1748. #endif
  1749. target_temperature_bed = 0;
  1750. bed_max_temp_error();
  1751. }
  1752. }
  1753. # if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1754. if(current_temperature_bed_raw >= bed_minttemp_raw) {
  1755. #else
  1756. if(current_temperature_bed_raw <= bed_minttemp_raw) {
  1757. #endif
  1758. bed_min_temp_error();
  1759. }
  1760. #endif*/
  1761. }
  1762. void check_fans() {
  1763. if (READ(TACH_0) != fan_state[0]) {
  1764. fan_edge_counter[0] ++;
  1765. fan_state[0] = !fan_state[0];
  1766. }
  1767. //if (READ(TACH_1) != fan_state[1]) {
  1768. // fan_edge_counter[1] ++;
  1769. // fan_state[1] = !fan_state[1];
  1770. //}
  1771. }
  1772. #ifdef PIDTEMP
  1773. // Apply the scale factors to the PID values
  1774. float scalePID_i(float i)
  1775. {
  1776. return i*PID_dT;
  1777. }
  1778. float unscalePID_i(float i)
  1779. {
  1780. return i/PID_dT;
  1781. }
  1782. float scalePID_d(float d)
  1783. {
  1784. return d/PID_dT;
  1785. }
  1786. float unscalePID_d(float d)
  1787. {
  1788. return d*PID_dT;
  1789. }
  1790. #endif //PIDTEMP