temperature.cpp 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. #ifdef FANCHECK
  74. volatile bool fan_check_error = false;
  75. #endif
  76. unsigned char soft_pwm_bed;
  77. #ifdef BABYSTEPPING
  78. volatile int babystepsTodo[3]={0,0,0};
  79. #endif
  80. //===========================================================================
  81. //=============================private variables============================
  82. //===========================================================================
  83. static volatile bool temp_meas_ready = false;
  84. #ifdef PIDTEMP
  85. //static cannot be external:
  86. static float iState_sum[EXTRUDERS] = { 0 };
  87. static float dState_last[EXTRUDERS] = { 0 };
  88. static float pTerm[EXTRUDERS];
  89. static float iTerm[EXTRUDERS];
  90. static float dTerm[EXTRUDERS];
  91. //int output;
  92. static float pid_error[EXTRUDERS];
  93. static float iState_sum_min[EXTRUDERS];
  94. static float iState_sum_max[EXTRUDERS];
  95. // static float pid_input[EXTRUDERS];
  96. // static float pid_output[EXTRUDERS];
  97. static bool pid_reset[EXTRUDERS];
  98. #endif //PIDTEMP
  99. #ifdef PIDTEMPBED
  100. //static cannot be external:
  101. static float temp_iState_bed = { 0 };
  102. static float temp_dState_bed = { 0 };
  103. static float pTerm_bed;
  104. static float iTerm_bed;
  105. static float dTerm_bed;
  106. //int output;
  107. static float pid_error_bed;
  108. static float temp_iState_min_bed;
  109. static float temp_iState_max_bed;
  110. #else //PIDTEMPBED
  111. static unsigned long previous_millis_bed_heater;
  112. #endif //PIDTEMPBED
  113. static unsigned char soft_pwm[EXTRUDERS];
  114. #ifdef FAN_SOFT_PWM
  115. static unsigned char soft_pwm_fan;
  116. #endif
  117. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. uint8_t fanSpeedBckp = 255;
  122. bool fan_measuring = false;
  123. #endif
  124. #if EXTRUDERS > 3
  125. # error Unsupported number of extruders
  126. #elif EXTRUDERS > 2
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  128. #elif EXTRUDERS > 1
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  130. #else
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  132. #endif
  133. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  134. // Init min and max temp with extreme values to prevent false errors during startup
  135. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  136. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  137. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  138. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  139. #ifdef BED_MINTEMP
  140. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  141. #endif
  142. #ifdef BED_MAXTEMP
  143. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  144. #endif
  145. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  146. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  147. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  148. #else
  149. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  150. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  151. #endif
  152. static float analog2temp(int raw, uint8_t e);
  153. static float analog2tempBed(int raw);
  154. static float analog2tempAmbient(int raw);
  155. static void updateTemperaturesFromRawValues();
  156. enum TempRunawayStates
  157. {
  158. TempRunaway_INACTIVE = 0,
  159. TempRunaway_PREHEAT = 1,
  160. TempRunaway_ACTIVE = 2,
  161. };
  162. #ifdef WATCH_TEMP_PERIOD
  163. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  164. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. #endif //WATCH_TEMP_PERIOD
  166. #ifndef SOFT_PWM_SCALE
  167. #define SOFT_PWM_SCALE 0
  168. #endif
  169. //===========================================================================
  170. //============================= functions ============================
  171. //===========================================================================
  172. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  173. static float temp_runaway_status[4];
  174. static float temp_runaway_target[4];
  175. static float temp_runaway_timer[4];
  176. static int temp_runaway_error_counter[4];
  177. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  178. static void temp_runaway_stop(bool isPreheat, bool isBed);
  179. #endif
  180. void PID_autotune(float temp, int extruder, int ncycles)
  181. {
  182. pid_number_of_cycles = ncycles;
  183. pid_tuning_finished = false;
  184. float input = 0.0;
  185. pid_cycle=0;
  186. bool heating = true;
  187. unsigned long temp_millis = _millis();
  188. unsigned long t1=temp_millis;
  189. unsigned long t2=temp_millis;
  190. long t_high = 0;
  191. long t_low = 0;
  192. long bias, d;
  193. float Ku, Tu;
  194. float max = 0, min = 10000;
  195. uint8_t safety_check_cycles = 0;
  196. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  197. float temp_ambient;
  198. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  199. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  200. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  201. unsigned long extruder_autofan_last_check = _millis();
  202. #endif
  203. if ((extruder >= EXTRUDERS)
  204. #if (TEMP_BED_PIN <= -1)
  205. ||(extruder < 0)
  206. #endif
  207. ){
  208. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  209. pid_tuning_finished = true;
  210. pid_cycle = 0;
  211. return;
  212. }
  213. SERIAL_ECHOLN("PID Autotune start");
  214. disable_heater(); // switch off all heaters.
  215. if (extruder<0)
  216. {
  217. soft_pwm_bed = (MAX_BED_POWER)/2;
  218. timer02_set_pwm0(soft_pwm_bed << 1);
  219. bias = d = (MAX_BED_POWER)/2;
  220. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  221. }
  222. else
  223. {
  224. soft_pwm[extruder] = (PID_MAX)/2;
  225. bias = d = (PID_MAX)/2;
  226. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  227. }
  228. for(;;) {
  229. #ifdef WATCHDOG
  230. wdt_reset();
  231. #endif //WATCHDOG
  232. if(temp_meas_ready == true) { // temp sample ready
  233. updateTemperaturesFromRawValues();
  234. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  235. max=max(max,input);
  236. min=min(min,input);
  237. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  239. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  240. if(_millis() - extruder_autofan_last_check > 2500) {
  241. checkExtruderAutoFans();
  242. extruder_autofan_last_check = _millis();
  243. }
  244. #endif
  245. if(heating == true && input > temp) {
  246. if(_millis() - t2 > 5000) {
  247. heating=false;
  248. if (extruder<0)
  249. {
  250. soft_pwm_bed = (bias - d) >> 1;
  251. timer02_set_pwm0(soft_pwm_bed << 1);
  252. }
  253. else
  254. soft_pwm[extruder] = (bias - d) >> 1;
  255. t1=_millis();
  256. t_high=t1 - t2;
  257. max=temp;
  258. }
  259. }
  260. if(heating == false && input < temp) {
  261. if(_millis() - t1 > 5000) {
  262. heating=true;
  263. t2=_millis();
  264. t_low=t2 - t1;
  265. if(pid_cycle > 0) {
  266. bias += (d*(t_high - t_low))/(t_low + t_high);
  267. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  268. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  269. else d = bias;
  270. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  271. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  272. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  273. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  274. if(pid_cycle > 2) {
  275. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  276. Tu = ((float)(t_low + t_high)/1000.0);
  277. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  278. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  279. _Kp = 0.6*Ku;
  280. _Ki = 2*_Kp/Tu;
  281. _Kd = _Kp*Tu/8;
  282. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. /*
  287. _Kp = 0.33*Ku;
  288. _Ki = _Kp/Tu;
  289. _Kd = _Kp*Tu/3;
  290. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  291. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  292. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  293. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  294. _Kp = 0.2*Ku;
  295. _Ki = 2*_Kp/Tu;
  296. _Kd = _Kp*Tu/3;
  297. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  298. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  299. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  300. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  301. */
  302. }
  303. }
  304. if (extruder<0)
  305. {
  306. soft_pwm_bed = (bias + d) >> 1;
  307. timer02_set_pwm0(soft_pwm_bed << 1);
  308. }
  309. else
  310. soft_pwm[extruder] = (bias + d) >> 1;
  311. pid_cycle++;
  312. min=temp;
  313. }
  314. }
  315. }
  316. if(input > (temp + 20)) {
  317. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  318. pid_tuning_finished = true;
  319. pid_cycle = 0;
  320. return;
  321. }
  322. if(_millis() - temp_millis > 2000) {
  323. int p;
  324. if (extruder<0){
  325. p=soft_pwm_bed;
  326. SERIAL_PROTOCOLPGM("B:");
  327. }else{
  328. p=soft_pwm[extruder];
  329. SERIAL_PROTOCOLPGM("T:");
  330. }
  331. SERIAL_PROTOCOL(input);
  332. SERIAL_PROTOCOLPGM(" @:");
  333. SERIAL_PROTOCOLLN(p);
  334. if (safety_check_cycles == 0) { //save ambient temp
  335. temp_ambient = input;
  336. //SERIAL_ECHOPGM("Ambient T: ");
  337. //MYSERIAL.println(temp_ambient);
  338. safety_check_cycles++;
  339. }
  340. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  341. safety_check_cycles++;
  342. }
  343. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  344. safety_check_cycles++;
  345. //SERIAL_ECHOPGM("Time from beginning: ");
  346. //MYSERIAL.print(safety_check_cycles_count * 2);
  347. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  348. //MYSERIAL.println(input - temp_ambient);
  349. if (abs(input - temp_ambient) < 5.0) {
  350. temp_runaway_stop(false, (extruder<0));
  351. pid_tuning_finished = true;
  352. return;
  353. }
  354. }
  355. temp_millis = _millis();
  356. }
  357. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. if(pid_cycle > ncycles) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. lcd_update(0);
  370. }
  371. }
  372. void updatePID()
  373. {
  374. #ifdef PIDTEMP
  375. for(int e = 0; e < EXTRUDERS; e++) {
  376. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  377. }
  378. #endif
  379. #ifdef PIDTEMPBED
  380. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  381. #endif
  382. }
  383. int getHeaterPower(int heater) {
  384. if (heater<0)
  385. return soft_pwm_bed;
  386. return soft_pwm[heater];
  387. }
  388. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  389. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  390. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  391. #if defined(FAN_PIN) && FAN_PIN > -1
  392. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  396. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  397. #endif
  398. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  399. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  400. #endif
  401. #endif
  402. void setExtruderAutoFanState(int pin, bool state)
  403. {
  404. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  405. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  406. pinMode(pin, OUTPUT);
  407. digitalWrite(pin, newFanSpeed);
  408. //analogWrite(pin, newFanSpeed);
  409. }
  410. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  411. void countFanSpeed()
  412. {
  413. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  414. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  415. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  416. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  417. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  418. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  419. SERIAL_ECHOLNPGM(" ");*/
  420. fan_edge_counter[0] = 0;
  421. fan_edge_counter[1] = 0;
  422. }
  423. void checkFanSpeed()
  424. {
  425. uint8_t max_print_fan_errors = 0;
  426. uint8_t max_extruder_fan_errors = 0;
  427. #ifdef FAN_SOFT_PWM
  428. max_print_fan_errors = 3; //15 seconds
  429. max_extruder_fan_errors = 2; //10seconds
  430. #else //FAN_SOFT_PWM
  431. max_print_fan_errors = 15; //15 seconds
  432. max_extruder_fan_errors = 5; //5 seconds
  433. #endif //FAN_SOFT_PWM
  434. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  435. static unsigned char fan_speed_errors[2] = { 0,0 };
  436. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  437. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  438. else fan_speed_errors[0] = 0;
  439. #endif
  440. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  441. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  442. else fan_speed_errors[1] = 0;
  443. #endif
  444. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  445. fan_speed_errors[0] = 0;
  446. fanSpeedError(0); //extruder fan
  447. }
  448. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  449. fan_speed_errors[1] = 0;
  450. fanSpeedError(1); //print fan
  451. }
  452. }
  453. void fanSpeedError(unsigned char _fan) {
  454. if (get_message_level() != 0 && isPrintPaused) return;
  455. //to ensure that target temp. is not set to zero in case taht we are resuming print
  456. if (card.sdprinting) {
  457. if (heating_status != 0) {
  458. lcd_print_stop();
  459. }
  460. else {
  461. fan_check_error = true;
  462. }
  463. }
  464. else {
  465. setTargetHotend0(0);
  466. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  467. }
  468. switch (_fan) {
  469. case 0:
  470. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  471. if (get_message_level() == 0) {
  472. Sound_MakeCustom(200,0,true);
  473. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  474. }
  475. break;
  476. case 1:
  477. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  478. if (get_message_level() == 0) {
  479. Sound_MakeCustom(200,0,true);
  480. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  481. }
  482. break;
  483. }
  484. }
  485. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  486. void checkExtruderAutoFans()
  487. {
  488. uint8_t fanState = 0;
  489. // which fan pins need to be turned on?
  490. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  491. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  492. fanState |= 1;
  493. #endif
  494. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  495. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  496. {
  497. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  498. fanState |= 1;
  499. else
  500. fanState |= 2;
  501. }
  502. #endif
  503. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  504. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  505. {
  506. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  507. fanState |= 1;
  508. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  509. fanState |= 2;
  510. else
  511. fanState |= 4;
  512. }
  513. #endif
  514. // update extruder auto fan states
  515. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  516. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  517. #endif
  518. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  519. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  520. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  521. #endif
  522. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  523. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  524. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  525. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  526. #endif
  527. }
  528. #endif // any extruder auto fan pins set
  529. // ready for eventually parameters adjusting
  530. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  531. //void resetPID(uint8_t extruder)
  532. {
  533. }
  534. void manage_heater()
  535. {
  536. #ifdef WATCHDOG
  537. wdt_reset();
  538. #endif //WATCHDOG
  539. float pid_input;
  540. float pid_output;
  541. if(temp_meas_ready != true) //better readability
  542. return;
  543. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  544. updateTemperaturesFromRawValues();
  545. check_max_temp();
  546. check_min_temp();
  547. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  548. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  549. #endif
  550. for(int e = 0; e < EXTRUDERS; e++)
  551. {
  552. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  553. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  554. #endif
  555. #ifdef PIDTEMP
  556. pid_input = current_temperature[e];
  557. #ifndef PID_OPENLOOP
  558. if(target_temperature[e] == 0) {
  559. pid_output = 0;
  560. pid_reset[e] = true;
  561. } else {
  562. pid_error[e] = target_temperature[e] - pid_input;
  563. if(pid_reset[e]) {
  564. iState_sum[e] = 0.0;
  565. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  566. pid_reset[e] = false;
  567. }
  568. #ifndef PonM
  569. pTerm[e] = cs.Kp * pid_error[e];
  570. iState_sum[e] += pid_error[e];
  571. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  572. iTerm[e] = cs.Ki * iState_sum[e];
  573. // PID_K1 defined in Configuration.h in the PID settings
  574. #define K2 (1.0-PID_K1)
  575. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  576. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  577. if (pid_output > PID_MAX) {
  578. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  579. pid_output=PID_MAX;
  580. } else if (pid_output < 0) {
  581. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  582. pid_output=0;
  583. }
  584. #else // PonM ("Proportional on Measurement" method)
  585. iState_sum[e] += cs.Ki * pid_error[e];
  586. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  587. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  588. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  589. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  590. pid_output = constrain(pid_output, 0, PID_MAX);
  591. #endif // PonM
  592. }
  593. dState_last[e] = pid_input;
  594. #else
  595. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  596. #endif //PID_OPENLOOP
  597. #ifdef PID_DEBUG
  598. SERIAL_ECHO_START;
  599. SERIAL_ECHO(" PID_DEBUG ");
  600. SERIAL_ECHO(e);
  601. SERIAL_ECHO(": Input ");
  602. SERIAL_ECHO(pid_input);
  603. SERIAL_ECHO(" Output ");
  604. SERIAL_ECHO(pid_output);
  605. SERIAL_ECHO(" pTerm ");
  606. SERIAL_ECHO(pTerm[e]);
  607. SERIAL_ECHO(" iTerm ");
  608. SERIAL_ECHO(iTerm[e]);
  609. SERIAL_ECHO(" dTerm ");
  610. SERIAL_ECHOLN(-dTerm[e]);
  611. #endif //PID_DEBUG
  612. #else /* PID off */
  613. pid_output = 0;
  614. if(current_temperature[e] < target_temperature[e]) {
  615. pid_output = PID_MAX;
  616. }
  617. #endif
  618. // Check if temperature is within the correct range
  619. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  620. {
  621. soft_pwm[e] = (int)pid_output >> 1;
  622. }
  623. else
  624. {
  625. soft_pwm[e] = 0;
  626. }
  627. #ifdef WATCH_TEMP_PERIOD
  628. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  629. {
  630. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  631. {
  632. setTargetHotend(0, e);
  633. LCD_MESSAGEPGM("Heating failed");
  634. SERIAL_ECHO_START;
  635. SERIAL_ECHOLN("Heating failed");
  636. }else{
  637. watchmillis[e] = 0;
  638. }
  639. }
  640. #endif
  641. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  642. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  643. disable_heater();
  644. if(IsStopped() == false) {
  645. SERIAL_ERROR_START;
  646. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  647. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  648. }
  649. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  650. Stop();
  651. #endif
  652. }
  653. #endif
  654. } // End extruder for loop
  655. #define FAN_CHECK_PERIOD 5000 //5s
  656. #define FAN_CHECK_DURATION 100 //100ms
  657. #ifndef DEBUG_DISABLE_FANCHECK
  658. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  659. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  660. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  661. #ifdef FAN_SOFT_PWM
  662. #ifdef FANCHECK
  663. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  664. extruder_autofan_last_check = _millis();
  665. fanSpeedBckp = fanSpeedSoftPwm;
  666. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  667. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  668. fanSpeedSoftPwm = 255;
  669. }
  670. fan_measuring = true;
  671. }
  672. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  673. countFanSpeed();
  674. checkFanSpeed();
  675. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  676. fanSpeedSoftPwm = fanSpeedBckp;
  677. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  678. extruder_autofan_last_check = _millis();
  679. fan_measuring = false;
  680. }
  681. #endif //FANCHECK
  682. checkExtruderAutoFans();
  683. #else //FAN_SOFT_PWM
  684. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  685. {
  686. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  687. countFanSpeed();
  688. checkFanSpeed();
  689. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  690. checkExtruderAutoFans();
  691. extruder_autofan_last_check = _millis();
  692. }
  693. #endif //FAN_SOFT_PWM
  694. #endif
  695. #endif //DEBUG_DISABLE_FANCHECK
  696. #ifndef PIDTEMPBED
  697. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  698. return;
  699. previous_millis_bed_heater = _millis();
  700. #endif
  701. #if TEMP_SENSOR_BED != 0
  702. #ifdef PIDTEMPBED
  703. pid_input = current_temperature_bed;
  704. #ifndef PID_OPENLOOP
  705. pid_error_bed = target_temperature_bed - pid_input;
  706. pTerm_bed = cs.bedKp * pid_error_bed;
  707. temp_iState_bed += pid_error_bed;
  708. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  709. iTerm_bed = cs.bedKi * temp_iState_bed;
  710. //PID_K1 defined in Configuration.h in the PID settings
  711. #define K2 (1.0-PID_K1)
  712. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  713. temp_dState_bed = pid_input;
  714. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  715. if (pid_output > MAX_BED_POWER) {
  716. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  717. pid_output=MAX_BED_POWER;
  718. } else if (pid_output < 0){
  719. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  720. pid_output=0;
  721. }
  722. #else
  723. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  724. #endif //PID_OPENLOOP
  725. if(current_temperature_bed < BED_MAXTEMP)
  726. {
  727. soft_pwm_bed = (int)pid_output >> 1;
  728. timer02_set_pwm0(soft_pwm_bed << 1);
  729. }
  730. else {
  731. soft_pwm_bed = 0;
  732. timer02_set_pwm0(soft_pwm_bed << 1);
  733. }
  734. #elif !defined(BED_LIMIT_SWITCHING)
  735. // Check if temperature is within the correct range
  736. if(current_temperature_bed < BED_MAXTEMP)
  737. {
  738. if(current_temperature_bed >= target_temperature_bed)
  739. {
  740. soft_pwm_bed = 0;
  741. timer02_set_pwm0(soft_pwm_bed << 1);
  742. }
  743. else
  744. {
  745. soft_pwm_bed = MAX_BED_POWER>>1;
  746. timer02_set_pwm0(soft_pwm_bed << 1);
  747. }
  748. }
  749. else
  750. {
  751. soft_pwm_bed = 0;
  752. timer02_set_pwm0(soft_pwm_bed << 1);
  753. WRITE(HEATER_BED_PIN,LOW);
  754. }
  755. #else //#ifdef BED_LIMIT_SWITCHING
  756. // Check if temperature is within the correct band
  757. if(current_temperature_bed < BED_MAXTEMP)
  758. {
  759. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  760. {
  761. soft_pwm_bed = 0;
  762. timer02_set_pwm0(soft_pwm_bed << 1);
  763. }
  764. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  765. {
  766. soft_pwm_bed = MAX_BED_POWER>>1;
  767. timer02_set_pwm0(soft_pwm_bed << 1);
  768. }
  769. }
  770. else
  771. {
  772. soft_pwm_bed = 0;
  773. timer02_set_pwm0(soft_pwm_bed << 1);
  774. WRITE(HEATER_BED_PIN,LOW);
  775. }
  776. #endif
  777. if(target_temperature_bed==0)
  778. {
  779. soft_pwm_bed = 0;
  780. timer02_set_pwm0(soft_pwm_bed << 1);
  781. }
  782. #endif
  783. host_keepalive();
  784. }
  785. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  786. // Derived from RepRap FiveD extruder::getTemperature()
  787. // For hot end temperature measurement.
  788. static float analog2temp(int raw, uint8_t e) {
  789. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  790. if(e > EXTRUDERS)
  791. #else
  792. if(e >= EXTRUDERS)
  793. #endif
  794. {
  795. SERIAL_ERROR_START;
  796. SERIAL_ERROR((int)e);
  797. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  798. kill(PSTR(""), 6);
  799. return 0.0;
  800. }
  801. #ifdef HEATER_0_USES_MAX6675
  802. if (e == 0)
  803. {
  804. return 0.25 * raw;
  805. }
  806. #endif
  807. if(heater_ttbl_map[e] != NULL)
  808. {
  809. float celsius = 0;
  810. uint8_t i;
  811. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  812. for (i=1; i<heater_ttbllen_map[e]; i++)
  813. {
  814. if (PGM_RD_W((*tt)[i][0]) > raw)
  815. {
  816. celsius = PGM_RD_W((*tt)[i-1][1]) +
  817. (raw - PGM_RD_W((*tt)[i-1][0])) *
  818. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  819. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  820. break;
  821. }
  822. }
  823. // Overflow: Set to last value in the table
  824. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  825. return celsius;
  826. }
  827. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  828. }
  829. // Derived from RepRap FiveD extruder::getTemperature()
  830. // For bed temperature measurement.
  831. static float analog2tempBed(int raw) {
  832. #ifdef BED_USES_THERMISTOR
  833. float celsius = 0;
  834. byte i;
  835. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  836. {
  837. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  838. {
  839. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  840. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  841. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  842. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  843. break;
  844. }
  845. }
  846. // Overflow: Set to last value in the table
  847. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  848. // temperature offset adjustment
  849. #ifdef BED_OFFSET
  850. float _offset = BED_OFFSET;
  851. float _offset_center = BED_OFFSET_CENTER;
  852. float _offset_start = BED_OFFSET_START;
  853. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  854. float _second_koef = (_offset / 2) / (100 - _offset_center);
  855. if (celsius >= _offset_start && celsius <= _offset_center)
  856. {
  857. celsius = celsius + (_first_koef * (celsius - _offset_start));
  858. }
  859. else if (celsius > _offset_center && celsius <= 100)
  860. {
  861. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  862. }
  863. else if (celsius > 100)
  864. {
  865. celsius = celsius + _offset;
  866. }
  867. #endif
  868. return celsius;
  869. #elif defined BED_USES_AD595
  870. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  871. #else
  872. return 0;
  873. #endif
  874. }
  875. #ifdef AMBIENT_THERMISTOR
  876. static float analog2tempAmbient(int raw)
  877. {
  878. float celsius = 0;
  879. byte i;
  880. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  881. {
  882. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  883. {
  884. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  885. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  886. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  887. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  888. break;
  889. }
  890. }
  891. // Overflow: Set to last value in the table
  892. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  893. return celsius;
  894. }
  895. #endif //AMBIENT_THERMISTOR
  896. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  897. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  898. static void updateTemperaturesFromRawValues()
  899. {
  900. for(uint8_t e=0;e<EXTRUDERS;e++)
  901. {
  902. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  903. }
  904. #ifdef PINDA_THERMISTOR
  905. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  906. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  907. #endif
  908. #ifdef AMBIENT_THERMISTOR
  909. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  910. #endif
  911. #ifdef DEBUG_HEATER_BED_SIM
  912. current_temperature_bed = target_temperature_bed;
  913. #else //DEBUG_HEATER_BED_SIM
  914. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  915. #endif //DEBUG_HEATER_BED_SIM
  916. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  917. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  918. #endif
  919. CRITICAL_SECTION_START;
  920. temp_meas_ready = false;
  921. CRITICAL_SECTION_END;
  922. }
  923. void tp_init()
  924. {
  925. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  926. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  927. MCUCR=(1<<JTD);
  928. MCUCR=(1<<JTD);
  929. #endif
  930. // Finish init of mult extruder arrays
  931. for(int e = 0; e < EXTRUDERS; e++) {
  932. // populate with the first value
  933. maxttemp[e] = maxttemp[0];
  934. #ifdef PIDTEMP
  935. iState_sum_min[e] = 0.0;
  936. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  937. #endif //PIDTEMP
  938. #ifdef PIDTEMPBED
  939. temp_iState_min_bed = 0.0;
  940. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  941. #endif //PIDTEMPBED
  942. }
  943. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  944. SET_OUTPUT(HEATER_0_PIN);
  945. #endif
  946. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  947. SET_OUTPUT(HEATER_1_PIN);
  948. #endif
  949. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  950. SET_OUTPUT(HEATER_2_PIN);
  951. #endif
  952. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  953. SET_OUTPUT(HEATER_BED_PIN);
  954. #endif
  955. #if defined(FAN_PIN) && (FAN_PIN > -1)
  956. SET_OUTPUT(FAN_PIN);
  957. #ifdef FAST_PWM_FAN
  958. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  959. #endif
  960. #ifdef FAN_SOFT_PWM
  961. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  962. #endif
  963. #endif
  964. #ifdef HEATER_0_USES_MAX6675
  965. #ifndef SDSUPPORT
  966. SET_OUTPUT(SCK_PIN);
  967. WRITE(SCK_PIN,0);
  968. SET_OUTPUT(MOSI_PIN);
  969. WRITE(MOSI_PIN,1);
  970. SET_INPUT(MISO_PIN);
  971. WRITE(MISO_PIN,1);
  972. #endif
  973. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  974. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  975. pinMode(SS_PIN, OUTPUT);
  976. digitalWrite(SS_PIN,0);
  977. pinMode(MAX6675_SS, OUTPUT);
  978. digitalWrite(MAX6675_SS,1);
  979. #endif
  980. adc_init();
  981. #ifdef SYSTEM_TIMER_2
  982. timer02_init();
  983. OCR2B = 128;
  984. TIMSK2 |= (1<<OCIE2B);
  985. #else //SYSTEM_TIMER_2
  986. // Use timer0 for temperature measurement
  987. // Interleave temperature interrupt with millies interrupt
  988. OCR0B = 128;
  989. TIMSK0 |= (1<<OCIE0B);
  990. #endif //SYSTEM_TIMER_2
  991. // Wait for temperature measurement to settle
  992. _delay(250);
  993. #ifdef HEATER_0_MINTEMP
  994. minttemp[0] = HEATER_0_MINTEMP;
  995. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  996. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  997. minttemp_raw[0] += OVERSAMPLENR;
  998. #else
  999. minttemp_raw[0] -= OVERSAMPLENR;
  1000. #endif
  1001. }
  1002. #endif //MINTEMP
  1003. #ifdef HEATER_0_MAXTEMP
  1004. maxttemp[0] = HEATER_0_MAXTEMP;
  1005. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1006. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1007. maxttemp_raw[0] -= OVERSAMPLENR;
  1008. #else
  1009. maxttemp_raw[0] += OVERSAMPLENR;
  1010. #endif
  1011. }
  1012. #endif //MAXTEMP
  1013. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1014. minttemp[1] = HEATER_1_MINTEMP;
  1015. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1016. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1017. minttemp_raw[1] += OVERSAMPLENR;
  1018. #else
  1019. minttemp_raw[1] -= OVERSAMPLENR;
  1020. #endif
  1021. }
  1022. #endif // MINTEMP 1
  1023. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1024. maxttemp[1] = HEATER_1_MAXTEMP;
  1025. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1026. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1027. maxttemp_raw[1] -= OVERSAMPLENR;
  1028. #else
  1029. maxttemp_raw[1] += OVERSAMPLENR;
  1030. #endif
  1031. }
  1032. #endif //MAXTEMP 1
  1033. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1034. minttemp[2] = HEATER_2_MINTEMP;
  1035. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1036. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1037. minttemp_raw[2] += OVERSAMPLENR;
  1038. #else
  1039. minttemp_raw[2] -= OVERSAMPLENR;
  1040. #endif
  1041. }
  1042. #endif //MINTEMP 2
  1043. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1044. maxttemp[2] = HEATER_2_MAXTEMP;
  1045. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1046. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1047. maxttemp_raw[2] -= OVERSAMPLENR;
  1048. #else
  1049. maxttemp_raw[2] += OVERSAMPLENR;
  1050. #endif
  1051. }
  1052. #endif //MAXTEMP 2
  1053. #ifdef BED_MINTEMP
  1054. /* No bed MINTEMP error implemented?!? */
  1055. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1056. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1057. bed_minttemp_raw += OVERSAMPLENR;
  1058. #else
  1059. bed_minttemp_raw -= OVERSAMPLENR;
  1060. #endif
  1061. }
  1062. #endif //BED_MINTEMP
  1063. #ifdef BED_MAXTEMP
  1064. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1065. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1066. bed_maxttemp_raw -= OVERSAMPLENR;
  1067. #else
  1068. bed_maxttemp_raw += OVERSAMPLENR;
  1069. #endif
  1070. }
  1071. #endif //BED_MAXTEMP
  1072. }
  1073. void setWatch()
  1074. {
  1075. #ifdef WATCH_TEMP_PERIOD
  1076. for (int e = 0; e < EXTRUDERS; e++)
  1077. {
  1078. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1079. {
  1080. watch_start_temp[e] = degHotend(e);
  1081. watchmillis[e] = _millis();
  1082. }
  1083. }
  1084. #endif
  1085. }
  1086. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1087. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1088. {
  1089. float __delta;
  1090. float __hysteresis = 0;
  1091. int __timeout = 0;
  1092. bool temp_runaway_check_active = false;
  1093. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1094. static int __preheat_counter[2] = { 0,0};
  1095. static int __preheat_errors[2] = { 0,0};
  1096. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1097. {
  1098. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1099. if (_isbed)
  1100. {
  1101. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1102. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1103. }
  1104. #endif
  1105. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1106. if (!_isbed)
  1107. {
  1108. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1109. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1110. }
  1111. #endif
  1112. temp_runaway_timer[_heater_id] = _millis();
  1113. if (_output == 0)
  1114. {
  1115. temp_runaway_check_active = false;
  1116. temp_runaway_error_counter[_heater_id] = 0;
  1117. }
  1118. if (temp_runaway_target[_heater_id] != _target_temperature)
  1119. {
  1120. if (_target_temperature > 0)
  1121. {
  1122. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1123. temp_runaway_target[_heater_id] = _target_temperature;
  1124. __preheat_start[_heater_id] = _current_temperature;
  1125. __preheat_counter[_heater_id] = 0;
  1126. }
  1127. else
  1128. {
  1129. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1130. temp_runaway_target[_heater_id] = _target_temperature;
  1131. }
  1132. }
  1133. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1134. {
  1135. __preheat_counter[_heater_id]++;
  1136. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1137. {
  1138. /*SERIAL_ECHOPGM("Heater:");
  1139. MYSERIAL.print(_heater_id);
  1140. SERIAL_ECHOPGM(" T:");
  1141. MYSERIAL.print(_current_temperature);
  1142. SERIAL_ECHOPGM(" Tstart:");
  1143. MYSERIAL.print(__preheat_start[_heater_id]);
  1144. SERIAL_ECHOPGM(" delta:");
  1145. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1146. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1147. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1148. __delta=2.0;
  1149. if(_isbed)
  1150. {
  1151. __delta=3.0;
  1152. if(_current_temperature>90.0) __delta=2.0;
  1153. if(_current_temperature>105.0) __delta=0.6;
  1154. }
  1155. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1156. __preheat_errors[_heater_id]++;
  1157. /*SERIAL_ECHOPGM(" Preheat errors:");
  1158. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1159. }
  1160. else {
  1161. //SERIAL_ECHOLNPGM("");
  1162. __preheat_errors[_heater_id] = 0;
  1163. }
  1164. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1165. {
  1166. if (farm_mode) { prusa_statistics(0); }
  1167. temp_runaway_stop(true, _isbed);
  1168. if (farm_mode) { prusa_statistics(91); }
  1169. }
  1170. __preheat_start[_heater_id] = _current_temperature;
  1171. __preheat_counter[_heater_id] = 0;
  1172. }
  1173. }
  1174. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1175. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1176. {
  1177. /*SERIAL_ECHOPGM("Heater:");
  1178. MYSERIAL.print(_heater_id);
  1179. MYSERIAL.println(" ->tempRunaway");*/
  1180. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1181. temp_runaway_check_active = false;
  1182. temp_runaway_error_counter[_heater_id] = 0;
  1183. }
  1184. if (_output > 0)
  1185. {
  1186. temp_runaway_check_active = true;
  1187. }
  1188. if (temp_runaway_check_active)
  1189. {
  1190. // we are in range
  1191. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1192. {
  1193. temp_runaway_check_active = false;
  1194. temp_runaway_error_counter[_heater_id] = 0;
  1195. }
  1196. else
  1197. {
  1198. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1199. {
  1200. temp_runaway_error_counter[_heater_id]++;
  1201. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1202. {
  1203. if (farm_mode) { prusa_statistics(0); }
  1204. temp_runaway_stop(false, _isbed);
  1205. if (farm_mode) { prusa_statistics(90); }
  1206. }
  1207. }
  1208. }
  1209. }
  1210. }
  1211. }
  1212. void temp_runaway_stop(bool isPreheat, bool isBed)
  1213. {
  1214. cancel_heatup = true;
  1215. quickStop();
  1216. if (card.sdprinting)
  1217. {
  1218. card.sdprinting = false;
  1219. card.closefile();
  1220. }
  1221. // Clean the input command queue
  1222. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1223. cmdqueue_reset();
  1224. disable_heater();
  1225. disable_x();
  1226. disable_y();
  1227. disable_e0();
  1228. disable_e1();
  1229. disable_e2();
  1230. manage_heater();
  1231. lcd_update(0);
  1232. Sound_MakeCustom(200,0,true);
  1233. if (isPreheat)
  1234. {
  1235. Stop();
  1236. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1237. SERIAL_ERROR_START;
  1238. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1239. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1240. SET_OUTPUT(FAN_PIN);
  1241. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1242. #ifdef FAN_SOFT_PWM
  1243. fanSpeedSoftPwm = 255;
  1244. #else //FAN_SOFT_PWM
  1245. analogWrite(FAN_PIN, 255);
  1246. #endif //FAN_SOFT_PWM
  1247. fanSpeed = 255;
  1248. delayMicroseconds(2000);
  1249. }
  1250. else
  1251. {
  1252. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1253. SERIAL_ERROR_START;
  1254. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1255. }
  1256. }
  1257. #endif
  1258. void disable_heater()
  1259. {
  1260. setAllTargetHotends(0);
  1261. setTargetBed(0);
  1262. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1263. target_temperature[0]=0;
  1264. soft_pwm[0]=0;
  1265. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1266. WRITE(HEATER_0_PIN,LOW);
  1267. #endif
  1268. #endif
  1269. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1270. target_temperature[1]=0;
  1271. soft_pwm[1]=0;
  1272. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1273. WRITE(HEATER_1_PIN,LOW);
  1274. #endif
  1275. #endif
  1276. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1277. target_temperature[2]=0;
  1278. soft_pwm[2]=0;
  1279. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1280. WRITE(HEATER_2_PIN,LOW);
  1281. #endif
  1282. #endif
  1283. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1284. target_temperature_bed=0;
  1285. soft_pwm_bed=0;
  1286. timer02_set_pwm0(soft_pwm_bed << 1);
  1287. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1288. WRITE(HEATER_BED_PIN,LOW);
  1289. #endif
  1290. #endif
  1291. }
  1292. void max_temp_error(uint8_t e) {
  1293. disable_heater();
  1294. if(IsStopped() == false) {
  1295. SERIAL_ERROR_START;
  1296. SERIAL_ERRORLN((int)e);
  1297. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1298. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1299. }
  1300. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1301. Stop();
  1302. #endif
  1303. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1304. SET_OUTPUT(FAN_PIN);
  1305. SET_OUTPUT(BEEPER);
  1306. WRITE(FAN_PIN, 1);
  1307. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1308. WRITE(BEEPER, 1);
  1309. // fanSpeed will consumed by the check_axes_activity() routine.
  1310. fanSpeed=255;
  1311. if (farm_mode) { prusa_statistics(93); }
  1312. }
  1313. void min_temp_error(uint8_t e) {
  1314. #ifdef DEBUG_DISABLE_MINTEMP
  1315. return;
  1316. #endif
  1317. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1318. disable_heater();
  1319. if(IsStopped() == false) {
  1320. SERIAL_ERROR_START;
  1321. SERIAL_ERRORLN((int)e);
  1322. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1323. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1324. }
  1325. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1326. Stop();
  1327. #endif
  1328. if (farm_mode) { prusa_statistics(92); }
  1329. }
  1330. void bed_max_temp_error(void) {
  1331. #if HEATER_BED_PIN > -1
  1332. WRITE(HEATER_BED_PIN, 0);
  1333. #endif
  1334. if(IsStopped() == false) {
  1335. SERIAL_ERROR_START;
  1336. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1337. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1338. }
  1339. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1340. Stop();
  1341. #endif
  1342. }
  1343. void bed_min_temp_error(void) {
  1344. #ifdef DEBUG_DISABLE_MINTEMP
  1345. return;
  1346. #endif
  1347. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1348. #if HEATER_BED_PIN > -1
  1349. WRITE(HEATER_BED_PIN, 0);
  1350. #endif
  1351. if(IsStopped() == false) {
  1352. SERIAL_ERROR_START;
  1353. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1354. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1355. }
  1356. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1357. Stop();
  1358. #endif
  1359. }
  1360. #ifdef HEATER_0_USES_MAX6675
  1361. #define MAX6675_HEAT_INTERVAL 250
  1362. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1363. int max6675_temp = 2000;
  1364. int read_max6675()
  1365. {
  1366. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1367. return max6675_temp;
  1368. max6675_previous_millis = _millis();
  1369. max6675_temp = 0;
  1370. #ifdef PRR
  1371. PRR &= ~(1<<PRSPI);
  1372. #elif defined PRR0
  1373. PRR0 &= ~(1<<PRSPI);
  1374. #endif
  1375. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1376. // enable TT_MAX6675
  1377. WRITE(MAX6675_SS, 0);
  1378. // ensure 100ns delay - a bit extra is fine
  1379. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1380. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1381. // read MSB
  1382. SPDR = 0;
  1383. for (;(SPSR & (1<<SPIF)) == 0;);
  1384. max6675_temp = SPDR;
  1385. max6675_temp <<= 8;
  1386. // read LSB
  1387. SPDR = 0;
  1388. for (;(SPSR & (1<<SPIF)) == 0;);
  1389. max6675_temp |= SPDR;
  1390. // disable TT_MAX6675
  1391. WRITE(MAX6675_SS, 1);
  1392. if (max6675_temp & 4)
  1393. {
  1394. // thermocouple open
  1395. max6675_temp = 2000;
  1396. }
  1397. else
  1398. {
  1399. max6675_temp = max6675_temp >> 3;
  1400. }
  1401. return max6675_temp;
  1402. }
  1403. #endif
  1404. extern "C" {
  1405. void adc_ready(void) //callback from adc when sampling finished
  1406. {
  1407. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1408. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1409. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1410. #ifdef VOLT_PWR_PIN
  1411. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1412. #endif
  1413. #ifdef AMBIENT_THERMISTOR
  1414. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1415. #endif //AMBIENT_THERMISTOR
  1416. #ifdef VOLT_BED_PIN
  1417. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1418. #endif
  1419. temp_meas_ready = true;
  1420. }
  1421. } // extern "C"
  1422. // Timer2 (originaly timer0) is shared with millies
  1423. #ifdef SYSTEM_TIMER_2
  1424. ISR(TIMER2_COMPB_vect)
  1425. #else //SYSTEM_TIMER_2
  1426. ISR(TIMER0_COMPB_vect)
  1427. #endif //SYSTEM_TIMER_2
  1428. {
  1429. static bool _lock = false;
  1430. if (_lock) return;
  1431. _lock = true;
  1432. asm("sei");
  1433. if (!temp_meas_ready) adc_cycle();
  1434. lcd_buttons_update();
  1435. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1436. static unsigned char soft_pwm_0;
  1437. #ifdef SLOW_PWM_HEATERS
  1438. static unsigned char slow_pwm_count = 0;
  1439. static unsigned char state_heater_0 = 0;
  1440. static unsigned char state_timer_heater_0 = 0;
  1441. #endif
  1442. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1443. static unsigned char soft_pwm_1;
  1444. #ifdef SLOW_PWM_HEATERS
  1445. static unsigned char state_heater_1 = 0;
  1446. static unsigned char state_timer_heater_1 = 0;
  1447. #endif
  1448. #endif
  1449. #if EXTRUDERS > 2
  1450. static unsigned char soft_pwm_2;
  1451. #ifdef SLOW_PWM_HEATERS
  1452. static unsigned char state_heater_2 = 0;
  1453. static unsigned char state_timer_heater_2 = 0;
  1454. #endif
  1455. #endif
  1456. #if HEATER_BED_PIN > -1
  1457. static unsigned char soft_pwm_b;
  1458. #ifdef SLOW_PWM_HEATERS
  1459. static unsigned char state_heater_b = 0;
  1460. static unsigned char state_timer_heater_b = 0;
  1461. #endif
  1462. #endif
  1463. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1464. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1465. #endif
  1466. #ifndef SLOW_PWM_HEATERS
  1467. /*
  1468. * standard PWM modulation
  1469. */
  1470. if (pwm_count == 0)
  1471. {
  1472. soft_pwm_0 = soft_pwm[0];
  1473. if(soft_pwm_0 > 0)
  1474. {
  1475. WRITE(HEATER_0_PIN,1);
  1476. #ifdef HEATERS_PARALLEL
  1477. WRITE(HEATER_1_PIN,1);
  1478. #endif
  1479. } else WRITE(HEATER_0_PIN,0);
  1480. #if EXTRUDERS > 1
  1481. soft_pwm_1 = soft_pwm[1];
  1482. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1483. #endif
  1484. #if EXTRUDERS > 2
  1485. soft_pwm_2 = soft_pwm[2];
  1486. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1487. #endif
  1488. }
  1489. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1490. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1491. {
  1492. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1493. #ifndef SYSTEM_TIMER_2
  1494. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1495. #endif //SYSTEM_TIMER_2
  1496. }
  1497. #endif
  1498. #ifdef FAN_SOFT_PWM
  1499. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1500. {
  1501. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1502. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1503. }
  1504. #endif
  1505. if(soft_pwm_0 < pwm_count)
  1506. {
  1507. WRITE(HEATER_0_PIN,0);
  1508. #ifdef HEATERS_PARALLEL
  1509. WRITE(HEATER_1_PIN,0);
  1510. #endif
  1511. }
  1512. #if EXTRUDERS > 1
  1513. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1514. #endif
  1515. #if EXTRUDERS > 2
  1516. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1517. #endif
  1518. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1519. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))) WRITE(HEATER_BED_PIN,0);
  1520. #endif
  1521. #ifdef FAN_SOFT_PWM
  1522. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1523. #endif
  1524. pwm_count += (1 << SOFT_PWM_SCALE);
  1525. pwm_count &= 0x7f;
  1526. #else //ifndef SLOW_PWM_HEATERS
  1527. /*
  1528. * SLOW PWM HEATERS
  1529. *
  1530. * for heaters drived by relay
  1531. */
  1532. #ifndef MIN_STATE_TIME
  1533. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1534. #endif
  1535. if (slow_pwm_count == 0) {
  1536. // EXTRUDER 0
  1537. soft_pwm_0 = soft_pwm[0];
  1538. if (soft_pwm_0 > 0) {
  1539. // turn ON heather only if the minimum time is up
  1540. if (state_timer_heater_0 == 0) {
  1541. // if change state set timer
  1542. if (state_heater_0 == 0) {
  1543. state_timer_heater_0 = MIN_STATE_TIME;
  1544. }
  1545. state_heater_0 = 1;
  1546. WRITE(HEATER_0_PIN, 1);
  1547. #ifdef HEATERS_PARALLEL
  1548. WRITE(HEATER_1_PIN, 1);
  1549. #endif
  1550. }
  1551. } else {
  1552. // turn OFF heather only if the minimum time is up
  1553. if (state_timer_heater_0 == 0) {
  1554. // if change state set timer
  1555. if (state_heater_0 == 1) {
  1556. state_timer_heater_0 = MIN_STATE_TIME;
  1557. }
  1558. state_heater_0 = 0;
  1559. WRITE(HEATER_0_PIN, 0);
  1560. #ifdef HEATERS_PARALLEL
  1561. WRITE(HEATER_1_PIN, 0);
  1562. #endif
  1563. }
  1564. }
  1565. #if EXTRUDERS > 1
  1566. // EXTRUDER 1
  1567. soft_pwm_1 = soft_pwm[1];
  1568. if (soft_pwm_1 > 0) {
  1569. // turn ON heather only if the minimum time is up
  1570. if (state_timer_heater_1 == 0) {
  1571. // if change state set timer
  1572. if (state_heater_1 == 0) {
  1573. state_timer_heater_1 = MIN_STATE_TIME;
  1574. }
  1575. state_heater_1 = 1;
  1576. WRITE(HEATER_1_PIN, 1);
  1577. }
  1578. } else {
  1579. // turn OFF heather only if the minimum time is up
  1580. if (state_timer_heater_1 == 0) {
  1581. // if change state set timer
  1582. if (state_heater_1 == 1) {
  1583. state_timer_heater_1 = MIN_STATE_TIME;
  1584. }
  1585. state_heater_1 = 0;
  1586. WRITE(HEATER_1_PIN, 0);
  1587. }
  1588. }
  1589. #endif
  1590. #if EXTRUDERS > 2
  1591. // EXTRUDER 2
  1592. soft_pwm_2 = soft_pwm[2];
  1593. if (soft_pwm_2 > 0) {
  1594. // turn ON heather only if the minimum time is up
  1595. if (state_timer_heater_2 == 0) {
  1596. // if change state set timer
  1597. if (state_heater_2 == 0) {
  1598. state_timer_heater_2 = MIN_STATE_TIME;
  1599. }
  1600. state_heater_2 = 1;
  1601. WRITE(HEATER_2_PIN, 1);
  1602. }
  1603. } else {
  1604. // turn OFF heather only if the minimum time is up
  1605. if (state_timer_heater_2 == 0) {
  1606. // if change state set timer
  1607. if (state_heater_2 == 1) {
  1608. state_timer_heater_2 = MIN_STATE_TIME;
  1609. }
  1610. state_heater_2 = 0;
  1611. WRITE(HEATER_2_PIN, 0);
  1612. }
  1613. }
  1614. #endif
  1615. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1616. // BED
  1617. soft_pwm_b = soft_pwm_bed;
  1618. if (soft_pwm_b > 0) {
  1619. // turn ON heather only if the minimum time is up
  1620. if (state_timer_heater_b == 0) {
  1621. // if change state set timer
  1622. if (state_heater_b == 0) {
  1623. state_timer_heater_b = MIN_STATE_TIME;
  1624. }
  1625. state_heater_b = 1;
  1626. //WRITE(HEATER_BED_PIN, 1);
  1627. }
  1628. } else {
  1629. // turn OFF heather only if the minimum time is up
  1630. if (state_timer_heater_b == 0) {
  1631. // if change state set timer
  1632. if (state_heater_b == 1) {
  1633. state_timer_heater_b = MIN_STATE_TIME;
  1634. }
  1635. state_heater_b = 0;
  1636. WRITE(HEATER_BED_PIN, 0);
  1637. }
  1638. }
  1639. #endif
  1640. } // if (slow_pwm_count == 0)
  1641. // EXTRUDER 0
  1642. if (soft_pwm_0 < slow_pwm_count) {
  1643. // turn OFF heather only if the minimum time is up
  1644. if (state_timer_heater_0 == 0) {
  1645. // if change state set timer
  1646. if (state_heater_0 == 1) {
  1647. state_timer_heater_0 = MIN_STATE_TIME;
  1648. }
  1649. state_heater_0 = 0;
  1650. WRITE(HEATER_0_PIN, 0);
  1651. #ifdef HEATERS_PARALLEL
  1652. WRITE(HEATER_1_PIN, 0);
  1653. #endif
  1654. }
  1655. }
  1656. #if EXTRUDERS > 1
  1657. // EXTRUDER 1
  1658. if (soft_pwm_1 < slow_pwm_count) {
  1659. // turn OFF heather only if the minimum time is up
  1660. if (state_timer_heater_1 == 0) {
  1661. // if change state set timer
  1662. if (state_heater_1 == 1) {
  1663. state_timer_heater_1 = MIN_STATE_TIME;
  1664. }
  1665. state_heater_1 = 0;
  1666. WRITE(HEATER_1_PIN, 0);
  1667. }
  1668. }
  1669. #endif
  1670. #if EXTRUDERS > 2
  1671. // EXTRUDER 2
  1672. if (soft_pwm_2 < slow_pwm_count) {
  1673. // turn OFF heather only if the minimum time is up
  1674. if (state_timer_heater_2 == 0) {
  1675. // if change state set timer
  1676. if (state_heater_2 == 1) {
  1677. state_timer_heater_2 = MIN_STATE_TIME;
  1678. }
  1679. state_heater_2 = 0;
  1680. WRITE(HEATER_2_PIN, 0);
  1681. }
  1682. }
  1683. #endif
  1684. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1685. // BED
  1686. if (soft_pwm_b < slow_pwm_count) {
  1687. // turn OFF heather only if the minimum time is up
  1688. if (state_timer_heater_b == 0) {
  1689. // if change state set timer
  1690. if (state_heater_b == 1) {
  1691. state_timer_heater_b = MIN_STATE_TIME;
  1692. }
  1693. state_heater_b = 0;
  1694. WRITE(HEATER_BED_PIN, 0);
  1695. }
  1696. }
  1697. #endif
  1698. #ifdef FAN_SOFT_PWM
  1699. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1700. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1701. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1702. }
  1703. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1704. #endif
  1705. pwm_count += (1 << SOFT_PWM_SCALE);
  1706. pwm_count &= 0x7f;
  1707. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1708. if ((pwm_count % 64) == 0) {
  1709. slow_pwm_count++;
  1710. slow_pwm_count &= 0x7f;
  1711. // Extruder 0
  1712. if (state_timer_heater_0 > 0) {
  1713. state_timer_heater_0--;
  1714. }
  1715. #if EXTRUDERS > 1
  1716. // Extruder 1
  1717. if (state_timer_heater_1 > 0)
  1718. state_timer_heater_1--;
  1719. #endif
  1720. #if EXTRUDERS > 2
  1721. // Extruder 2
  1722. if (state_timer_heater_2 > 0)
  1723. state_timer_heater_2--;
  1724. #endif
  1725. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1726. // Bed
  1727. if (state_timer_heater_b > 0)
  1728. state_timer_heater_b--;
  1729. #endif
  1730. } //if ((pwm_count % 64) == 0) {
  1731. #endif //ifndef SLOW_PWM_HEATERS
  1732. #ifdef BABYSTEPPING
  1733. for(uint8_t axis=0;axis<3;axis++)
  1734. {
  1735. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1736. if(curTodo>0)
  1737. {
  1738. asm("cli");
  1739. babystep(axis,/*fwd*/true);
  1740. babystepsTodo[axis]--; //less to do next time
  1741. asm("sei");
  1742. }
  1743. else
  1744. if(curTodo<0)
  1745. {
  1746. asm("cli");
  1747. babystep(axis,/*fwd*/false);
  1748. babystepsTodo[axis]++; //less to do next time
  1749. asm("sei");
  1750. }
  1751. }
  1752. #endif //BABYSTEPPING
  1753. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1754. check_fans();
  1755. #endif //(defined(TACH_0))
  1756. _lock = false;
  1757. }
  1758. void check_max_temp()
  1759. {
  1760. //heater
  1761. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1762. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1763. #else
  1764. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1765. #endif
  1766. max_temp_error(0);
  1767. }
  1768. //bed
  1769. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1770. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1771. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1772. #else
  1773. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1774. #endif
  1775. target_temperature_bed = 0;
  1776. bed_max_temp_error();
  1777. }
  1778. #endif
  1779. }
  1780. void check_min_temp_heater0()
  1781. {
  1782. //heater
  1783. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1784. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1785. #else
  1786. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1787. #endif
  1788. min_temp_error(0);
  1789. }
  1790. }
  1791. void check_min_temp_bed()
  1792. {
  1793. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1794. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1795. #else
  1796. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1797. #endif
  1798. bed_min_temp_error();
  1799. }
  1800. }
  1801. void check_min_temp()
  1802. {
  1803. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1804. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1805. #ifdef AMBIENT_THERMISTOR
  1806. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1807. { // ambient temperature is low
  1808. #endif //AMBIENT_THERMISTOR
  1809. // *** 'common' part of code for MK2.5 & MK3
  1810. // * nozzle checking
  1811. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1812. { // ~ nozzle heating is on
  1813. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1814. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1815. {
  1816. bCheckingOnHeater=true; // not necessary
  1817. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1818. }
  1819. }
  1820. else { // ~ nozzle heating is off
  1821. oTimer4minTempHeater.start();
  1822. bCheckingOnHeater=false;
  1823. }
  1824. // * bed checking
  1825. if(target_temperature_bed>BED_MINTEMP)
  1826. { // ~ bed heating is on
  1827. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1828. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1829. {
  1830. bCheckingOnBed=true; // not necessary
  1831. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1832. }
  1833. }
  1834. else { // ~ bed heating is off
  1835. oTimer4minTempBed.start();
  1836. bCheckingOnBed=false;
  1837. }
  1838. // *** end of 'common' part
  1839. #ifdef AMBIENT_THERMISTOR
  1840. }
  1841. else { // ambient temperature is standard
  1842. check_min_temp_heater0();
  1843. check_min_temp_bed();
  1844. }
  1845. #endif //AMBIENT_THERMISTOR
  1846. }
  1847. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1848. void check_fans() {
  1849. #ifdef FAN_SOFT_PWM
  1850. if (READ(TACH_0) != fan_state[0]) {
  1851. if(fan_measuring) fan_edge_counter[0] ++;
  1852. fan_state[0] = !fan_state[0];
  1853. }
  1854. #else //FAN_SOFT_PWM
  1855. if (READ(TACH_0) != fan_state[0]) {
  1856. fan_edge_counter[0] ++;
  1857. fan_state[0] = !fan_state[0];
  1858. }
  1859. #endif
  1860. //if (READ(TACH_1) != fan_state[1]) {
  1861. // fan_edge_counter[1] ++;
  1862. // fan_state[1] = !fan_state[1];
  1863. //}
  1864. }
  1865. #endif //TACH_0
  1866. #ifdef PIDTEMP
  1867. // Apply the scale factors to the PID values
  1868. float scalePID_i(float i)
  1869. {
  1870. return i*PID_dT;
  1871. }
  1872. float unscalePID_i(float i)
  1873. {
  1874. return i/PID_dT;
  1875. }
  1876. float scalePID_d(float d)
  1877. {
  1878. return d/PID_dT;
  1879. }
  1880. float unscalePID_d(float d)
  1881. {
  1882. return d*PID_dT;
  1883. }
  1884. #endif //PIDTEMP