Marlin_main.cpp 222 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. unsigned long PingTime = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. int bowden_length[4];
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. bool temp_cal_active = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. float HotendTempBckp = 0;
  225. int fanSpeedBckp = 0;
  226. float pause_lastpos[4];
  227. unsigned long pause_time = 0;
  228. unsigned long start_pause_print = millis();
  229. unsigned long load_filament_time;
  230. bool mesh_bed_leveling_flag = false;
  231. bool mesh_bed_run_from_menu = false;
  232. unsigned char lang_selected = 0;
  233. int8_t FarmMode = 0;
  234. bool prusa_sd_card_upload = false;
  235. unsigned int status_number = 0;
  236. unsigned long total_filament_used;
  237. unsigned int heating_status;
  238. unsigned int heating_status_counter;
  239. bool custom_message;
  240. bool loading_flag = false;
  241. unsigned int custom_message_type;
  242. unsigned int custom_message_state;
  243. char snmm_filaments_used = 0;
  244. bool volumetric_enabled = false;
  245. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  246. #if EXTRUDERS > 1
  247. , DEFAULT_NOMINAL_FILAMENT_DIA
  248. #if EXTRUDERS > 2
  249. , DEFAULT_NOMINAL_FILAMENT_DIA
  250. #endif
  251. #endif
  252. };
  253. float volumetric_multiplier[EXTRUDERS] = {1.0
  254. #if EXTRUDERS > 1
  255. , 1.0
  256. #if EXTRUDERS > 2
  257. , 1.0
  258. #endif
  259. #endif
  260. };
  261. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  262. float add_homing[3]={0,0,0};
  263. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  264. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  265. bool axis_known_position[3] = {false, false, false};
  266. float zprobe_zoffset;
  267. // Extruder offset
  268. #if EXTRUDERS > 1
  269. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  270. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  271. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  272. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  273. #endif
  274. };
  275. #endif
  276. uint8_t active_extruder = 0;
  277. int fanSpeed=0;
  278. #ifdef FWRETRACT
  279. bool autoretract_enabled=false;
  280. bool retracted[EXTRUDERS]={false
  281. #if EXTRUDERS > 1
  282. , false
  283. #if EXTRUDERS > 2
  284. , false
  285. #endif
  286. #endif
  287. };
  288. bool retracted_swap[EXTRUDERS]={false
  289. #if EXTRUDERS > 1
  290. , false
  291. #if EXTRUDERS > 2
  292. , false
  293. #endif
  294. #endif
  295. };
  296. float retract_length = RETRACT_LENGTH;
  297. float retract_length_swap = RETRACT_LENGTH_SWAP;
  298. float retract_feedrate = RETRACT_FEEDRATE;
  299. float retract_zlift = RETRACT_ZLIFT;
  300. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  301. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  302. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  303. #endif
  304. #ifdef ULTIPANEL
  305. #ifdef PS_DEFAULT_OFF
  306. bool powersupply = false;
  307. #else
  308. bool powersupply = true;
  309. #endif
  310. #endif
  311. bool cancel_heatup = false ;
  312. #ifdef FILAMENT_SENSOR
  313. //Variables for Filament Sensor input
  314. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  315. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  316. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  317. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  318. int delay_index1=0; //index into ring buffer
  319. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  320. float delay_dist=0; //delay distance counter
  321. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  322. #endif
  323. const char errormagic[] PROGMEM = "Error:";
  324. const char echomagic[] PROGMEM = "echo:";
  325. //===========================================================================
  326. //=============================Private Variables=============================
  327. //===========================================================================
  328. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  329. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  330. static float delta[3] = {0.0, 0.0, 0.0};
  331. // For tracing an arc
  332. static float offset[3] = {0.0, 0.0, 0.0};
  333. static bool home_all_axis = true;
  334. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  335. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  336. // Determines Absolute or Relative Coordinates.
  337. // Also there is bool axis_relative_modes[] per axis flag.
  338. static bool relative_mode = false;
  339. // String circular buffer. Commands may be pushed to the buffer from both sides:
  340. // Chained commands will be pushed to the front, interactive (from LCD menu)
  341. // and printing commands (from serial line or from SD card) are pushed to the tail.
  342. // First character of each entry indicates the type of the entry:
  343. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  344. // Command in cmdbuffer was sent over USB.
  345. #define CMDBUFFER_CURRENT_TYPE_USB 1
  346. // Command in cmdbuffer was read from SDCARD.
  347. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  348. // Command in cmdbuffer was generated by the UI.
  349. #define CMDBUFFER_CURRENT_TYPE_UI 3
  350. // Command in cmdbuffer was generated by another G-code.
  351. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  352. // How much space to reserve for the chained commands
  353. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  354. // which are pushed to the front of the queue?
  355. // Maximum 5 commands of max length 20 + null terminator.
  356. #define CMDBUFFER_RESERVE_FRONT (5*21)
  357. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  358. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  359. // Head of the circular buffer, where to read.
  360. static int bufindr = 0;
  361. // Tail of the buffer, where to write.
  362. static int bufindw = 0;
  363. // Number of lines in cmdbuffer.
  364. static int buflen = 0;
  365. // Flag for processing the current command inside the main Arduino loop().
  366. // If a new command was pushed to the front of a command buffer while
  367. // processing another command, this replaces the command on the top.
  368. // Therefore don't remove the command from the queue in the loop() function.
  369. static bool cmdbuffer_front_already_processed = false;
  370. // Type of a command, which is to be executed right now.
  371. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  372. // String of a command, which is to be executed right now.
  373. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  374. // Enable debugging of the command buffer.
  375. // Debugging information will be sent to serial line.
  376. // #define CMDBUFFER_DEBUG
  377. static int serial_count = 0; //index of character read from serial line
  378. static boolean comment_mode = false;
  379. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  380. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  381. //static float tt = 0;
  382. //static float bt = 0;
  383. //Inactivity shutdown variables
  384. static unsigned long previous_millis_cmd = 0;
  385. unsigned long max_inactive_time = 0;
  386. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  387. unsigned long starttime=0;
  388. unsigned long stoptime=0;
  389. unsigned long _usb_timer = 0;
  390. static uint8_t tmp_extruder;
  391. bool Stopped=false;
  392. #if NUM_SERVOS > 0
  393. Servo servos[NUM_SERVOS];
  394. #endif
  395. bool CooldownNoWait = true;
  396. bool target_direction;
  397. //Insert variables if CHDK is defined
  398. #ifdef CHDK
  399. unsigned long chdkHigh = 0;
  400. boolean chdkActive = false;
  401. #endif
  402. //===========================================================================
  403. //=============================Routines======================================
  404. //===========================================================================
  405. void get_arc_coordinates();
  406. bool setTargetedHotend(int code);
  407. void serial_echopair_P(const char *s_P, float v)
  408. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  409. void serial_echopair_P(const char *s_P, double v)
  410. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  411. void serial_echopair_P(const char *s_P, unsigned long v)
  412. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  413. #ifdef SDSUPPORT
  414. #include "SdFatUtil.h"
  415. int freeMemory() { return SdFatUtil::FreeRam(); }
  416. #else
  417. extern "C" {
  418. extern unsigned int __bss_end;
  419. extern unsigned int __heap_start;
  420. extern void *__brkval;
  421. int freeMemory() {
  422. int free_memory;
  423. if ((int)__brkval == 0)
  424. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  425. else
  426. free_memory = ((int)&free_memory) - ((int)__brkval);
  427. return free_memory;
  428. }
  429. }
  430. #endif //!SDSUPPORT
  431. // Pop the currently processed command from the queue.
  432. // It is expected, that there is at least one command in the queue.
  433. bool cmdqueue_pop_front()
  434. {
  435. if (buflen > 0) {
  436. #ifdef CMDBUFFER_DEBUG
  437. SERIAL_ECHOPGM("Dequeing ");
  438. SERIAL_ECHO(cmdbuffer+bufindr+1);
  439. SERIAL_ECHOLNPGM("");
  440. SERIAL_ECHOPGM("Old indices: buflen ");
  441. SERIAL_ECHO(buflen);
  442. SERIAL_ECHOPGM(", bufindr ");
  443. SERIAL_ECHO(bufindr);
  444. SERIAL_ECHOPGM(", bufindw ");
  445. SERIAL_ECHO(bufindw);
  446. SERIAL_ECHOPGM(", serial_count ");
  447. SERIAL_ECHO(serial_count);
  448. SERIAL_ECHOPGM(", bufsize ");
  449. SERIAL_ECHO(sizeof(cmdbuffer));
  450. SERIAL_ECHOLNPGM("");
  451. #endif /* CMDBUFFER_DEBUG */
  452. if (-- buflen == 0) {
  453. // Empty buffer.
  454. if (serial_count == 0)
  455. // No serial communication is pending. Reset both pointers to zero.
  456. bufindw = 0;
  457. bufindr = bufindw;
  458. } else {
  459. // There is at least one ready line in the buffer.
  460. // First skip the current command ID and iterate up to the end of the string.
  461. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  462. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  463. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  464. // If the end of the buffer was empty,
  465. if (bufindr == sizeof(cmdbuffer)) {
  466. // skip to the start and find the nonzero command.
  467. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  468. }
  469. #ifdef CMDBUFFER_DEBUG
  470. SERIAL_ECHOPGM("New indices: buflen ");
  471. SERIAL_ECHO(buflen);
  472. SERIAL_ECHOPGM(", bufindr ");
  473. SERIAL_ECHO(bufindr);
  474. SERIAL_ECHOPGM(", bufindw ");
  475. SERIAL_ECHO(bufindw);
  476. SERIAL_ECHOPGM(", serial_count ");
  477. SERIAL_ECHO(serial_count);
  478. SERIAL_ECHOPGM(" new command on the top: ");
  479. SERIAL_ECHO(cmdbuffer+bufindr+1);
  480. SERIAL_ECHOLNPGM("");
  481. #endif /* CMDBUFFER_DEBUG */
  482. }
  483. return true;
  484. }
  485. return false;
  486. }
  487. void cmdqueue_reset()
  488. {
  489. while (cmdqueue_pop_front()) ;
  490. }
  491. // How long a string could be pushed to the front of the command queue?
  492. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  493. // len_asked does not contain the zero terminator size.
  494. bool cmdqueue_could_enqueue_front(int len_asked)
  495. {
  496. // MAX_CMD_SIZE has to accommodate the zero terminator.
  497. if (len_asked >= MAX_CMD_SIZE)
  498. return false;
  499. // Remove the currently processed command from the queue.
  500. if (! cmdbuffer_front_already_processed) {
  501. cmdqueue_pop_front();
  502. cmdbuffer_front_already_processed = true;
  503. }
  504. if (bufindr == bufindw && buflen > 0)
  505. // Full buffer.
  506. return false;
  507. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  508. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  509. if (bufindw < bufindr) {
  510. int bufindr_new = bufindr - len_asked - 2;
  511. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  512. if (endw <= bufindr_new) {
  513. bufindr = bufindr_new;
  514. return true;
  515. }
  516. } else {
  517. // Otherwise the free space is split between the start and end.
  518. if (len_asked + 2 <= bufindr) {
  519. // Could fit at the start.
  520. bufindr -= len_asked + 2;
  521. return true;
  522. }
  523. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  524. if (endw <= bufindr_new) {
  525. memset(cmdbuffer, 0, bufindr);
  526. bufindr = bufindr_new;
  527. return true;
  528. }
  529. }
  530. return false;
  531. }
  532. // Could one enqueue a command of lenthg len_asked into the buffer,
  533. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  534. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  535. // len_asked does not contain the zero terminator size.
  536. bool cmdqueue_could_enqueue_back(int len_asked)
  537. {
  538. // MAX_CMD_SIZE has to accommodate the zero terminator.
  539. if (len_asked >= MAX_CMD_SIZE)
  540. return false;
  541. if (bufindr == bufindw && buflen > 0)
  542. // Full buffer.
  543. return false;
  544. if (serial_count > 0) {
  545. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  546. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  547. // serial data.
  548. // How much memory to reserve for the commands pushed to the front?
  549. // End of the queue, when pushing to the end.
  550. int endw = bufindw + len_asked + 2;
  551. if (bufindw < bufindr)
  552. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  553. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  554. // Otherwise the free space is split between the start and end.
  555. if (// Could one fit to the end, including the reserve?
  556. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  557. // Could one fit to the end, and the reserve to the start?
  558. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  559. return true;
  560. // Could one fit both to the start?
  561. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  562. // Mark the rest of the buffer as used.
  563. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  564. // and point to the start.
  565. bufindw = 0;
  566. return true;
  567. }
  568. } else {
  569. // How much memory to reserve for the commands pushed to the front?
  570. // End of the queue, when pushing to the end.
  571. int endw = bufindw + len_asked + 2;
  572. if (bufindw < bufindr)
  573. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  574. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  575. // Otherwise the free space is split between the start and end.
  576. if (// Could one fit to the end, including the reserve?
  577. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  578. // Could one fit to the end, and the reserve to the start?
  579. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  580. return true;
  581. // Could one fit both to the start?
  582. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  583. // Mark the rest of the buffer as used.
  584. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  585. // and point to the start.
  586. bufindw = 0;
  587. return true;
  588. }
  589. }
  590. return false;
  591. }
  592. #ifdef CMDBUFFER_DEBUG
  593. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  594. {
  595. SERIAL_ECHOPGM("Entry nr: ");
  596. SERIAL_ECHO(nr);
  597. SERIAL_ECHOPGM(", type: ");
  598. SERIAL_ECHO(int(*p));
  599. SERIAL_ECHOPGM(", cmd: ");
  600. SERIAL_ECHO(p+1);
  601. SERIAL_ECHOLNPGM("");
  602. }
  603. static void cmdqueue_dump_to_serial()
  604. {
  605. if (buflen == 0) {
  606. SERIAL_ECHOLNPGM("The command buffer is empty.");
  607. } else {
  608. SERIAL_ECHOPGM("Content of the buffer: entries ");
  609. SERIAL_ECHO(buflen);
  610. SERIAL_ECHOPGM(", indr ");
  611. SERIAL_ECHO(bufindr);
  612. SERIAL_ECHOPGM(", indw ");
  613. SERIAL_ECHO(bufindw);
  614. SERIAL_ECHOLNPGM("");
  615. int nr = 0;
  616. if (bufindr < bufindw) {
  617. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  618. cmdqueue_dump_to_serial_single_line(nr, p);
  619. // Skip the command.
  620. for (++p; *p != 0; ++ p);
  621. // Skip the gaps.
  622. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  623. }
  624. } else {
  625. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  626. cmdqueue_dump_to_serial_single_line(nr, p);
  627. // Skip the command.
  628. for (++p; *p != 0; ++ p);
  629. // Skip the gaps.
  630. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  631. }
  632. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  633. cmdqueue_dump_to_serial_single_line(nr, p);
  634. // Skip the command.
  635. for (++p; *p != 0; ++ p);
  636. // Skip the gaps.
  637. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  638. }
  639. }
  640. SERIAL_ECHOLNPGM("End of the buffer.");
  641. }
  642. }
  643. #endif /* CMDBUFFER_DEBUG */
  644. //adds an command to the main command buffer
  645. //thats really done in a non-safe way.
  646. //needs overworking someday
  647. // Currently the maximum length of a command piped through this function is around 20 characters
  648. void enquecommand(const char *cmd, bool from_progmem)
  649. {
  650. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  651. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  652. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  653. if (cmdqueue_could_enqueue_back(len)) {
  654. // This is dangerous if a mixing of serial and this happens
  655. // This may easily be tested: If serial_count > 0, we have a problem.
  656. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  657. if (from_progmem)
  658. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  659. else
  660. strcpy(cmdbuffer + bufindw + 1, cmd);
  661. SERIAL_ECHO_START;
  662. SERIAL_ECHORPGM(MSG_Enqueing);
  663. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  664. SERIAL_ECHOLNPGM("\"");
  665. bufindw += len + 2;
  666. if (bufindw == sizeof(cmdbuffer))
  667. bufindw = 0;
  668. ++ buflen;
  669. #ifdef CMDBUFFER_DEBUG
  670. cmdqueue_dump_to_serial();
  671. #endif /* CMDBUFFER_DEBUG */
  672. } else {
  673. SERIAL_ERROR_START;
  674. SERIAL_ECHORPGM(MSG_Enqueing);
  675. if (from_progmem)
  676. SERIAL_PROTOCOLRPGM(cmd);
  677. else
  678. SERIAL_ECHO(cmd);
  679. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  680. #ifdef CMDBUFFER_DEBUG
  681. cmdqueue_dump_to_serial();
  682. #endif /* CMDBUFFER_DEBUG */
  683. }
  684. }
  685. void enquecommand_front(const char *cmd, bool from_progmem)
  686. {
  687. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  688. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  689. if (cmdqueue_could_enqueue_front(len)) {
  690. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  691. if (from_progmem)
  692. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  693. else
  694. strcpy(cmdbuffer + bufindr + 1, cmd);
  695. ++ buflen;
  696. SERIAL_ECHO_START;
  697. SERIAL_ECHOPGM("Enqueing to the front: \"");
  698. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  699. SERIAL_ECHOLNPGM("\"");
  700. #ifdef CMDBUFFER_DEBUG
  701. cmdqueue_dump_to_serial();
  702. #endif /* CMDBUFFER_DEBUG */
  703. } else {
  704. SERIAL_ERROR_START;
  705. SERIAL_ECHOPGM("Enqueing to the front: \"");
  706. if (from_progmem)
  707. SERIAL_PROTOCOLRPGM(cmd);
  708. else
  709. SERIAL_ECHO(cmd);
  710. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  711. #ifdef CMDBUFFER_DEBUG
  712. cmdqueue_dump_to_serial();
  713. #endif /* CMDBUFFER_DEBUG */
  714. }
  715. }
  716. // Mark the command at the top of the command queue as new.
  717. // Therefore it will not be removed from the queue.
  718. void repeatcommand_front()
  719. {
  720. cmdbuffer_front_already_processed = true;
  721. }
  722. bool is_buffer_empty()
  723. {
  724. if (buflen == 0) return true;
  725. else return false;
  726. }
  727. void setup_killpin()
  728. {
  729. #if defined(KILL_PIN) && KILL_PIN > -1
  730. SET_INPUT(KILL_PIN);
  731. WRITE(KILL_PIN,HIGH);
  732. #endif
  733. }
  734. // Set home pin
  735. void setup_homepin(void)
  736. {
  737. #if defined(HOME_PIN) && HOME_PIN > -1
  738. SET_INPUT(HOME_PIN);
  739. WRITE(HOME_PIN,HIGH);
  740. #endif
  741. }
  742. void setup_photpin()
  743. {
  744. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  745. SET_OUTPUT(PHOTOGRAPH_PIN);
  746. WRITE(PHOTOGRAPH_PIN, LOW);
  747. #endif
  748. }
  749. void setup_powerhold()
  750. {
  751. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  752. SET_OUTPUT(SUICIDE_PIN);
  753. WRITE(SUICIDE_PIN, HIGH);
  754. #endif
  755. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  756. SET_OUTPUT(PS_ON_PIN);
  757. #if defined(PS_DEFAULT_OFF)
  758. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  759. #else
  760. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  761. #endif
  762. #endif
  763. }
  764. void suicide()
  765. {
  766. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  767. SET_OUTPUT(SUICIDE_PIN);
  768. WRITE(SUICIDE_PIN, LOW);
  769. #endif
  770. }
  771. void servo_init()
  772. {
  773. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  774. servos[0].attach(SERVO0_PIN);
  775. #endif
  776. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  777. servos[1].attach(SERVO1_PIN);
  778. #endif
  779. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  780. servos[2].attach(SERVO2_PIN);
  781. #endif
  782. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  783. servos[3].attach(SERVO3_PIN);
  784. #endif
  785. #if (NUM_SERVOS >= 5)
  786. #error "TODO: enter initalisation code for more servos"
  787. #endif
  788. }
  789. static void lcd_language_menu();
  790. #ifdef MESH_BED_LEVELING
  791. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  792. #endif
  793. // Factory reset function
  794. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  795. // Level input parameter sets depth of reset
  796. // Quiet parameter masks all waitings for user interact.
  797. int er_progress = 0;
  798. void factory_reset(char level, bool quiet)
  799. {
  800. lcd_implementation_clear();
  801. int cursor_pos = 0;
  802. switch (level) {
  803. // Level 0: Language reset
  804. case 0:
  805. WRITE(BEEPER, HIGH);
  806. _delay_ms(100);
  807. WRITE(BEEPER, LOW);
  808. lcd_force_language_selection();
  809. break;
  810. //Level 1: Reset statistics
  811. case 1:
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  816. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  817. lcd_menu_statistics();
  818. break;
  819. // Level 2: Prepare for shipping
  820. case 2:
  821. //lcd_printPGM(PSTR("Factory RESET"));
  822. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  823. // Force language selection at the next boot up.
  824. lcd_force_language_selection();
  825. // Force the "Follow calibration flow" message at the next boot up.
  826. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  827. farm_no = 0;
  828. farm_mode == false;
  829. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  830. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  831. WRITE(BEEPER, HIGH);
  832. _delay_ms(100);
  833. WRITE(BEEPER, LOW);
  834. //_delay_ms(2000);
  835. break;
  836. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  837. case 3:
  838. lcd_printPGM(PSTR("Factory RESET"));
  839. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  840. WRITE(BEEPER, HIGH);
  841. _delay_ms(100);
  842. WRITE(BEEPER, LOW);
  843. er_progress = 0;
  844. lcd_print_at_PGM(3, 3, PSTR(" "));
  845. lcd_implementation_print_at(3, 3, er_progress);
  846. // Erase EEPROM
  847. for (int i = 0; i < 4096; i++) {
  848. eeprom_write_byte((uint8_t*)i, 0xFF);
  849. if (i % 41 == 0) {
  850. er_progress++;
  851. lcd_print_at_PGM(3, 3, PSTR(" "));
  852. lcd_implementation_print_at(3, 3, er_progress);
  853. lcd_printPGM(PSTR("%"));
  854. }
  855. }
  856. break;
  857. case 4:
  858. bowden_menu();
  859. break;
  860. default:
  861. break;
  862. }
  863. }
  864. // "Setup" function is called by the Arduino framework on startup.
  865. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  866. // are initialized by the main() routine provided by the Arduino framework.
  867. void setup()
  868. {
  869. setup_killpin();
  870. setup_powerhold();
  871. MYSERIAL.begin(BAUDRATE);
  872. SERIAL_PROTOCOLLNPGM("start");
  873. SERIAL_ECHO_START;
  874. #if 0
  875. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  876. for (int i = 0; i < 4096; ++i) {
  877. int b = eeprom_read_byte((unsigned char*)i);
  878. if (b != 255) {
  879. SERIAL_ECHO(i);
  880. SERIAL_ECHO(":");
  881. SERIAL_ECHO(b);
  882. SERIAL_ECHOLN("");
  883. }
  884. }
  885. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  886. #endif
  887. // Check startup - does nothing if bootloader sets MCUSR to 0
  888. byte mcu = MCUSR;
  889. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  890. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  891. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  892. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  893. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  894. MCUSR = 0;
  895. //SERIAL_ECHORPGM(MSG_MARLIN);
  896. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  897. #ifdef STRING_VERSION_CONFIG_H
  898. #ifdef STRING_CONFIG_H_AUTHOR
  899. SERIAL_ECHO_START;
  900. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  901. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  902. SERIAL_ECHORPGM(MSG_AUTHOR);
  903. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  904. SERIAL_ECHOPGM("Compiled: ");
  905. SERIAL_ECHOLNPGM(__DATE__);
  906. #endif
  907. #endif
  908. SERIAL_ECHO_START;
  909. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  910. SERIAL_ECHO(freeMemory());
  911. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  912. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  913. lcd_update_enable(false);
  914. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  915. Config_RetrieveSettings();
  916. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  917. tp_init(); // Initialize temperature loop
  918. plan_init(); // Initialize planner;
  919. watchdog_init();
  920. st_init(); // Initialize stepper, this enables interrupts!
  921. setup_photpin();
  922. servo_init();
  923. // Reset the machine correction matrix.
  924. // It does not make sense to load the correction matrix until the machine is homed.
  925. world2machine_reset();
  926. lcd_init();
  927. if (!READ(BTN_ENC))
  928. {
  929. _delay_ms(1000);
  930. if (!READ(BTN_ENC))
  931. {
  932. lcd_implementation_clear();
  933. lcd_printPGM(PSTR("Factory RESET"));
  934. SET_OUTPUT(BEEPER);
  935. WRITE(BEEPER, HIGH);
  936. while (!READ(BTN_ENC));
  937. WRITE(BEEPER, LOW);
  938. _delay_ms(2000);
  939. char level = reset_menu();
  940. factory_reset(level, false);
  941. switch (level) {
  942. case 0: _delay_ms(0); break;
  943. case 1: _delay_ms(0); break;
  944. case 2: _delay_ms(0); break;
  945. case 3: _delay_ms(0); break;
  946. }
  947. // _delay_ms(100);
  948. /*
  949. #ifdef MESH_BED_LEVELING
  950. _delay_ms(2000);
  951. if (!READ(BTN_ENC))
  952. {
  953. WRITE(BEEPER, HIGH);
  954. _delay_ms(100);
  955. WRITE(BEEPER, LOW);
  956. _delay_ms(200);
  957. WRITE(BEEPER, HIGH);
  958. _delay_ms(100);
  959. WRITE(BEEPER, LOW);
  960. int _z = 0;
  961. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  962. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  963. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  964. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  965. }
  966. else
  967. {
  968. WRITE(BEEPER, HIGH);
  969. _delay_ms(100);
  970. WRITE(BEEPER, LOW);
  971. }
  972. #endif // mesh */
  973. }
  974. }
  975. else
  976. {
  977. _delay_ms(1000); // wait 1sec to display the splash screen
  978. }
  979. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  980. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  981. #endif
  982. #ifdef DIGIPOT_I2C
  983. digipot_i2c_init();
  984. #endif
  985. setup_homepin();
  986. #if defined(Z_AXIS_ALWAYS_ON)
  987. enable_z();
  988. #endif
  989. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  990. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  991. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  992. if (farm_no == 0xFFFF) farm_no = 0;
  993. if (farm_mode)
  994. {
  995. prusa_statistics(8);
  996. }
  997. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  998. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  999. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1000. // but this times out if a blocking dialog is shown in setup().
  1001. card.initsd();
  1002. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1003. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1004. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1005. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1006. // where all the EEPROM entries are set to 0x0ff.
  1007. // Once a firmware boots up, it forces at least a language selection, which changes
  1008. // EEPROM_LANG to number lower than 0x0ff.
  1009. // 1) Set a high power mode.
  1010. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1011. }
  1012. #ifdef SNMM
  1013. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1014. int _z = BOWDEN_LENGTH;
  1015. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1016. }
  1017. #endif
  1018. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1019. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1020. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1021. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1022. if (lang_selected >= LANG_NUM){
  1023. lcd_mylang();
  1024. }
  1025. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1026. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1027. temp_cal_active = false;
  1028. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1029. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1030. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1031. }
  1032. check_babystep(); //checking if Z babystep is in allowed range
  1033. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1034. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1035. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1036. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1037. // Show the message.
  1038. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1039. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1040. // Show the message.
  1041. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1042. lcd_update_enable(true);
  1043. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1044. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1045. lcd_update_enable(true);
  1046. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1047. // Show the message.
  1048. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1049. }
  1050. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1051. lcd_update_enable(true);
  1052. // Store the currently running firmware into an eeprom,
  1053. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1054. update_current_firmware_version_to_eeprom();
  1055. }
  1056. void trace();
  1057. #define CHUNK_SIZE 64 // bytes
  1058. #define SAFETY_MARGIN 1
  1059. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1060. int chunkHead = 0;
  1061. int serial_read_stream() {
  1062. setTargetHotend(0, 0);
  1063. setTargetBed(0);
  1064. lcd_implementation_clear();
  1065. lcd_printPGM(PSTR(" Upload in progress"));
  1066. // first wait for how many bytes we will receive
  1067. uint32_t bytesToReceive;
  1068. // receive the four bytes
  1069. char bytesToReceiveBuffer[4];
  1070. for (int i=0; i<4; i++) {
  1071. int data;
  1072. while ((data = MYSERIAL.read()) == -1) {};
  1073. bytesToReceiveBuffer[i] = data;
  1074. }
  1075. // make it a uint32
  1076. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1077. // we're ready, notify the sender
  1078. MYSERIAL.write('+');
  1079. // lock in the routine
  1080. uint32_t receivedBytes = 0;
  1081. while (prusa_sd_card_upload) {
  1082. int i;
  1083. for (i=0; i<CHUNK_SIZE; i++) {
  1084. int data;
  1085. // check if we're not done
  1086. if (receivedBytes == bytesToReceive) {
  1087. break;
  1088. }
  1089. // read the next byte
  1090. while ((data = MYSERIAL.read()) == -1) {};
  1091. receivedBytes++;
  1092. // save it to the chunk
  1093. chunk[i] = data;
  1094. }
  1095. // write the chunk to SD
  1096. card.write_command_no_newline(&chunk[0]);
  1097. // notify the sender we're ready for more data
  1098. MYSERIAL.write('+');
  1099. // for safety
  1100. manage_heater();
  1101. // check if we're done
  1102. if(receivedBytes == bytesToReceive) {
  1103. trace(); // beep
  1104. card.closefile();
  1105. prusa_sd_card_upload = false;
  1106. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1107. return 0;
  1108. }
  1109. }
  1110. }
  1111. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1112. // Before loop(), the setup() function is called by the main() routine.
  1113. void loop()
  1114. {
  1115. bool stack_integrity = true;
  1116. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1117. {
  1118. is_usb_printing = true;
  1119. usb_printing_counter--;
  1120. _usb_timer = millis();
  1121. }
  1122. if (usb_printing_counter == 0)
  1123. {
  1124. is_usb_printing = false;
  1125. }
  1126. if (prusa_sd_card_upload)
  1127. {
  1128. //we read byte-by byte
  1129. serial_read_stream();
  1130. } else
  1131. {
  1132. get_command();
  1133. #ifdef SDSUPPORT
  1134. card.checkautostart(false);
  1135. #endif
  1136. if(buflen)
  1137. {
  1138. #ifdef SDSUPPORT
  1139. if(card.saving)
  1140. {
  1141. // Saving a G-code file onto an SD-card is in progress.
  1142. // Saving starts with M28, saving until M29 is seen.
  1143. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1144. card.write_command(CMDBUFFER_CURRENT_STRING);
  1145. if(card.logging)
  1146. process_commands();
  1147. else
  1148. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1149. } else {
  1150. card.closefile();
  1151. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1152. }
  1153. } else {
  1154. process_commands();
  1155. }
  1156. #else
  1157. process_commands();
  1158. #endif //SDSUPPORT
  1159. if (! cmdbuffer_front_already_processed)
  1160. cmdqueue_pop_front();
  1161. cmdbuffer_front_already_processed = false;
  1162. }
  1163. }
  1164. //check heater every n milliseconds
  1165. manage_heater();
  1166. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1167. checkHitEndstops();
  1168. lcd_update();
  1169. }
  1170. void get_command()
  1171. {
  1172. // Test and reserve space for the new command string.
  1173. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1174. return;
  1175. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1176. while (MYSERIAL.available() > 0) {
  1177. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1178. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1179. rx_buffer_full = true; //sets flag that buffer was full
  1180. }
  1181. char serial_char = MYSERIAL.read();
  1182. TimeSent = millis();
  1183. TimeNow = millis();
  1184. if (serial_char < 0)
  1185. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1186. // and Marlin does not support such file names anyway.
  1187. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1188. // to a hang-up of the print process from an SD card.
  1189. continue;
  1190. if(serial_char == '\n' ||
  1191. serial_char == '\r' ||
  1192. (serial_char == ':' && comment_mode == false) ||
  1193. serial_count >= (MAX_CMD_SIZE - 1) )
  1194. {
  1195. if(!serial_count) { //if empty line
  1196. comment_mode = false; //for new command
  1197. return;
  1198. }
  1199. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1200. if(!comment_mode){
  1201. comment_mode = false; //for new command
  1202. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1203. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1204. {
  1205. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1206. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1207. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1208. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1209. // M110 - set current line number.
  1210. // Line numbers not sent in succession.
  1211. SERIAL_ERROR_START;
  1212. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1213. SERIAL_ERRORLN(gcode_LastN);
  1214. //Serial.println(gcode_N);
  1215. FlushSerialRequestResend();
  1216. serial_count = 0;
  1217. return;
  1218. }
  1219. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1220. {
  1221. byte checksum = 0;
  1222. char *p = cmdbuffer+bufindw+1;
  1223. while (p != strchr_pointer)
  1224. checksum = checksum^(*p++);
  1225. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1226. SERIAL_ERROR_START;
  1227. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1228. SERIAL_ERRORLN(gcode_LastN);
  1229. FlushSerialRequestResend();
  1230. serial_count = 0;
  1231. return;
  1232. }
  1233. // If no errors, remove the checksum and continue parsing.
  1234. *strchr_pointer = 0;
  1235. }
  1236. else
  1237. {
  1238. SERIAL_ERROR_START;
  1239. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1240. SERIAL_ERRORLN(gcode_LastN);
  1241. FlushSerialRequestResend();
  1242. serial_count = 0;
  1243. return;
  1244. }
  1245. gcode_LastN = gcode_N;
  1246. //if no errors, continue parsing
  1247. } // end of 'N' command
  1248. }
  1249. else // if we don't receive 'N' but still see '*'
  1250. {
  1251. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1252. {
  1253. SERIAL_ERROR_START;
  1254. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1255. SERIAL_ERRORLN(gcode_LastN);
  1256. serial_count = 0;
  1257. return;
  1258. }
  1259. } // end of '*' command
  1260. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1261. if (! IS_SD_PRINTING) {
  1262. usb_printing_counter = 10;
  1263. is_usb_printing = true;
  1264. }
  1265. if (Stopped == true) {
  1266. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1267. if (gcode >= 0 && gcode <= 3) {
  1268. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1269. LCD_MESSAGERPGM(MSG_STOPPED);
  1270. }
  1271. }
  1272. } // end of 'G' command
  1273. //If command was e-stop process now
  1274. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1275. kill();
  1276. // Store the current line into buffer, move to the next line.
  1277. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1278. #ifdef CMDBUFFER_DEBUG
  1279. SERIAL_ECHO_START;
  1280. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1281. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1282. SERIAL_ECHOLNPGM("");
  1283. #endif /* CMDBUFFER_DEBUG */
  1284. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1285. if (bufindw == sizeof(cmdbuffer))
  1286. bufindw = 0;
  1287. ++ buflen;
  1288. #ifdef CMDBUFFER_DEBUG
  1289. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1290. SERIAL_ECHO(buflen);
  1291. SERIAL_ECHOLNPGM("");
  1292. #endif /* CMDBUFFER_DEBUG */
  1293. } // end of 'not comment mode'
  1294. serial_count = 0; //clear buffer
  1295. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1296. // in the queue, as this function will reserve the memory.
  1297. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1298. return;
  1299. } // end of "end of line" processing
  1300. else {
  1301. // Not an "end of line" symbol. Store the new character into a buffer.
  1302. if(serial_char == ';') comment_mode = true;
  1303. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1304. }
  1305. } // end of serial line processing loop
  1306. if(farm_mode){
  1307. TimeNow = millis();
  1308. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1309. cmdbuffer[bufindw+serial_count+1] = 0;
  1310. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1311. if (bufindw == sizeof(cmdbuffer))
  1312. bufindw = 0;
  1313. ++ buflen;
  1314. serial_count = 0;
  1315. SERIAL_ECHOPGM("TIMEOUT:");
  1316. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1317. return;
  1318. }
  1319. }
  1320. //add comment
  1321. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1322. rx_buffer_full = false;
  1323. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1324. serial_count = 0;
  1325. }
  1326. #ifdef SDSUPPORT
  1327. if(!card.sdprinting || serial_count!=0){
  1328. // If there is a half filled buffer from serial line, wait until return before
  1329. // continuing with the serial line.
  1330. return;
  1331. }
  1332. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1333. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1334. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1335. static bool stop_buffering=false;
  1336. if(buflen==0) stop_buffering=false;
  1337. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1338. while( !card.eof() && !stop_buffering) {
  1339. int16_t n=card.get();
  1340. char serial_char = (char)n;
  1341. if(serial_char == '\n' ||
  1342. serial_char == '\r' ||
  1343. (serial_char == '#' && comment_mode == false) ||
  1344. (serial_char == ':' && comment_mode == false) ||
  1345. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1346. {
  1347. if(card.eof()){
  1348. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1349. stoptime=millis();
  1350. char time[30];
  1351. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1352. pause_time = 0;
  1353. int hours, minutes;
  1354. minutes=(t/60)%60;
  1355. hours=t/60/60;
  1356. save_statistics(total_filament_used, t);
  1357. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1358. SERIAL_ECHO_START;
  1359. SERIAL_ECHOLN(time);
  1360. lcd_setstatus(time);
  1361. card.printingHasFinished();
  1362. card.checkautostart(true);
  1363. if (farm_mode)
  1364. {
  1365. prusa_statistics(6);
  1366. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1367. }
  1368. }
  1369. if(serial_char=='#')
  1370. stop_buffering=true;
  1371. if(!serial_count)
  1372. {
  1373. comment_mode = false; //for new command
  1374. return; //if empty line
  1375. }
  1376. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1377. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1378. ++ buflen;
  1379. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1380. if (bufindw == sizeof(cmdbuffer))
  1381. bufindw = 0;
  1382. comment_mode = false; //for new command
  1383. serial_count = 0; //clear buffer
  1384. // The following line will reserve buffer space if available.
  1385. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1386. return;
  1387. }
  1388. else
  1389. {
  1390. if(serial_char == ';') comment_mode = true;
  1391. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1392. }
  1393. }
  1394. #endif //SDSUPPORT
  1395. }
  1396. // Return True if a character was found
  1397. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1398. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1399. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1400. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1401. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1402. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1403. #define DEFINE_PGM_READ_ANY(type, reader) \
  1404. static inline type pgm_read_any(const type *p) \
  1405. { return pgm_read_##reader##_near(p); }
  1406. DEFINE_PGM_READ_ANY(float, float);
  1407. DEFINE_PGM_READ_ANY(signed char, byte);
  1408. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1409. static const PROGMEM type array##_P[3] = \
  1410. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1411. static inline type array(int axis) \
  1412. { return pgm_read_any(&array##_P[axis]); } \
  1413. type array##_ext(int axis) \
  1414. { return pgm_read_any(&array##_P[axis]); }
  1415. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1416. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1417. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1418. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1419. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1420. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1421. static void axis_is_at_home(int axis) {
  1422. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1423. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1424. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1425. }
  1426. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1427. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1428. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1429. saved_feedrate = feedrate;
  1430. saved_feedmultiply = feedmultiply;
  1431. feedmultiply = 100;
  1432. previous_millis_cmd = millis();
  1433. enable_endstops(enable_endstops_now);
  1434. }
  1435. static void clean_up_after_endstop_move() {
  1436. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1437. enable_endstops(false);
  1438. #endif
  1439. feedrate = saved_feedrate;
  1440. feedmultiply = saved_feedmultiply;
  1441. previous_millis_cmd = millis();
  1442. }
  1443. #ifdef ENABLE_AUTO_BED_LEVELING
  1444. #ifdef AUTO_BED_LEVELING_GRID
  1445. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1446. {
  1447. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1448. planeNormal.debug("planeNormal");
  1449. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1450. //bedLevel.debug("bedLevel");
  1451. //plan_bed_level_matrix.debug("bed level before");
  1452. //vector_3 uncorrected_position = plan_get_position_mm();
  1453. //uncorrected_position.debug("position before");
  1454. vector_3 corrected_position = plan_get_position();
  1455. // corrected_position.debug("position after");
  1456. current_position[X_AXIS] = corrected_position.x;
  1457. current_position[Y_AXIS] = corrected_position.y;
  1458. current_position[Z_AXIS] = corrected_position.z;
  1459. // put the bed at 0 so we don't go below it.
  1460. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1461. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1462. }
  1463. #else // not AUTO_BED_LEVELING_GRID
  1464. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1465. plan_bed_level_matrix.set_to_identity();
  1466. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1467. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1468. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1469. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1470. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1471. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1472. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1473. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1474. vector_3 corrected_position = plan_get_position();
  1475. current_position[X_AXIS] = corrected_position.x;
  1476. current_position[Y_AXIS] = corrected_position.y;
  1477. current_position[Z_AXIS] = corrected_position.z;
  1478. // put the bed at 0 so we don't go below it.
  1479. current_position[Z_AXIS] = zprobe_zoffset;
  1480. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1481. }
  1482. #endif // AUTO_BED_LEVELING_GRID
  1483. static void run_z_probe() {
  1484. plan_bed_level_matrix.set_to_identity();
  1485. feedrate = homing_feedrate[Z_AXIS];
  1486. // move down until you find the bed
  1487. float zPosition = -10;
  1488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1489. st_synchronize();
  1490. // we have to let the planner know where we are right now as it is not where we said to go.
  1491. zPosition = st_get_position_mm(Z_AXIS);
  1492. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1493. // move up the retract distance
  1494. zPosition += home_retract_mm(Z_AXIS);
  1495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1496. st_synchronize();
  1497. // move back down slowly to find bed
  1498. feedrate = homing_feedrate[Z_AXIS]/4;
  1499. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1501. st_synchronize();
  1502. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1503. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1504. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1505. }
  1506. static void do_blocking_move_to(float x, float y, float z) {
  1507. float oldFeedRate = feedrate;
  1508. feedrate = homing_feedrate[Z_AXIS];
  1509. current_position[Z_AXIS] = z;
  1510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1511. st_synchronize();
  1512. feedrate = XY_TRAVEL_SPEED;
  1513. current_position[X_AXIS] = x;
  1514. current_position[Y_AXIS] = y;
  1515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1516. st_synchronize();
  1517. feedrate = oldFeedRate;
  1518. }
  1519. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1520. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1521. }
  1522. /// Probe bed height at position (x,y), returns the measured z value
  1523. static float probe_pt(float x, float y, float z_before) {
  1524. // move to right place
  1525. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1526. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1527. run_z_probe();
  1528. float measured_z = current_position[Z_AXIS];
  1529. SERIAL_PROTOCOLRPGM(MSG_BED);
  1530. SERIAL_PROTOCOLPGM(" x: ");
  1531. SERIAL_PROTOCOL(x);
  1532. SERIAL_PROTOCOLPGM(" y: ");
  1533. SERIAL_PROTOCOL(y);
  1534. SERIAL_PROTOCOLPGM(" z: ");
  1535. SERIAL_PROTOCOL(measured_z);
  1536. SERIAL_PROTOCOLPGM("\n");
  1537. return measured_z;
  1538. }
  1539. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1540. void homeaxis(int axis) {
  1541. #define HOMEAXIS_DO(LETTER) \
  1542. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1543. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1544. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1545. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1546. 0) {
  1547. int axis_home_dir = home_dir(axis);
  1548. current_position[axis] = 0;
  1549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1550. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1551. feedrate = homing_feedrate[axis];
  1552. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1553. st_synchronize();
  1554. current_position[axis] = 0;
  1555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1556. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1557. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1558. st_synchronize();
  1559. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1560. feedrate = homing_feedrate[axis]/2 ;
  1561. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1562. st_synchronize();
  1563. axis_is_at_home(axis);
  1564. destination[axis] = current_position[axis];
  1565. feedrate = 0.0;
  1566. endstops_hit_on_purpose();
  1567. axis_known_position[axis] = true;
  1568. }
  1569. }
  1570. void home_xy()
  1571. {
  1572. set_destination_to_current();
  1573. homeaxis(X_AXIS);
  1574. homeaxis(Y_AXIS);
  1575. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1576. endstops_hit_on_purpose();
  1577. }
  1578. void refresh_cmd_timeout(void)
  1579. {
  1580. previous_millis_cmd = millis();
  1581. }
  1582. #ifdef FWRETRACT
  1583. void retract(bool retracting, bool swapretract = false) {
  1584. if(retracting && !retracted[active_extruder]) {
  1585. destination[X_AXIS]=current_position[X_AXIS];
  1586. destination[Y_AXIS]=current_position[Y_AXIS];
  1587. destination[Z_AXIS]=current_position[Z_AXIS];
  1588. destination[E_AXIS]=current_position[E_AXIS];
  1589. if (swapretract) {
  1590. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1591. } else {
  1592. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1593. }
  1594. plan_set_e_position(current_position[E_AXIS]);
  1595. float oldFeedrate = feedrate;
  1596. feedrate=retract_feedrate*60;
  1597. retracted[active_extruder]=true;
  1598. prepare_move();
  1599. current_position[Z_AXIS]-=retract_zlift;
  1600. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1601. prepare_move();
  1602. feedrate = oldFeedrate;
  1603. } else if(!retracting && retracted[active_extruder]) {
  1604. destination[X_AXIS]=current_position[X_AXIS];
  1605. destination[Y_AXIS]=current_position[Y_AXIS];
  1606. destination[Z_AXIS]=current_position[Z_AXIS];
  1607. destination[E_AXIS]=current_position[E_AXIS];
  1608. current_position[Z_AXIS]+=retract_zlift;
  1609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1610. //prepare_move();
  1611. if (swapretract) {
  1612. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1613. } else {
  1614. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1615. }
  1616. plan_set_e_position(current_position[E_AXIS]);
  1617. float oldFeedrate = feedrate;
  1618. feedrate=retract_recover_feedrate*60;
  1619. retracted[active_extruder]=false;
  1620. prepare_move();
  1621. feedrate = oldFeedrate;
  1622. }
  1623. } //retract
  1624. #endif //FWRETRACT
  1625. void trace() {
  1626. tone(BEEPER, 440);
  1627. delay(25);
  1628. noTone(BEEPER);
  1629. delay(20);
  1630. }
  1631. /*
  1632. void ramming() {
  1633. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1634. if (current_temperature[0] < 230) {
  1635. //PLA
  1636. max_feedrate[E_AXIS] = 50;
  1637. //current_position[E_AXIS] -= 8;
  1638. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1639. //current_position[E_AXIS] += 8;
  1640. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1641. current_position[E_AXIS] += 5.4;
  1642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1643. current_position[E_AXIS] += 3.2;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1645. current_position[E_AXIS] += 3;
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1647. st_synchronize();
  1648. max_feedrate[E_AXIS] = 80;
  1649. current_position[E_AXIS] -= 82;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1651. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1652. current_position[E_AXIS] -= 20;
  1653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1654. current_position[E_AXIS] += 5;
  1655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1656. current_position[E_AXIS] += 5;
  1657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1658. current_position[E_AXIS] -= 10;
  1659. st_synchronize();
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1661. current_position[E_AXIS] += 10;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1663. current_position[E_AXIS] -= 10;
  1664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1665. current_position[E_AXIS] += 10;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1667. current_position[E_AXIS] -= 10;
  1668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1669. st_synchronize();
  1670. }
  1671. else {
  1672. //ABS
  1673. max_feedrate[E_AXIS] = 50;
  1674. //current_position[E_AXIS] -= 8;
  1675. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1676. //current_position[E_AXIS] += 8;
  1677. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1678. current_position[E_AXIS] += 3.1;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1680. current_position[E_AXIS] += 3.1;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1682. current_position[E_AXIS] += 4;
  1683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1684. st_synchronize();
  1685. //current_position[X_AXIS] += 23; //delay
  1686. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1687. //current_position[X_AXIS] -= 23; //delay
  1688. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1689. delay(4700);
  1690. max_feedrate[E_AXIS] = 80;
  1691. current_position[E_AXIS] -= 92;
  1692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1693. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1694. current_position[E_AXIS] -= 5;
  1695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1696. current_position[E_AXIS] += 5;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1698. current_position[E_AXIS] -= 5;
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1700. st_synchronize();
  1701. current_position[E_AXIS] += 5;
  1702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1703. current_position[E_AXIS] -= 5;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1705. current_position[E_AXIS] += 5;
  1706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1707. current_position[E_AXIS] -= 5;
  1708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1709. st_synchronize();
  1710. }
  1711. }
  1712. */
  1713. void process_commands()
  1714. {
  1715. #ifdef FILAMENT_RUNOUT_SUPPORT
  1716. SET_INPUT(FR_SENS);
  1717. #endif
  1718. #ifdef CMDBUFFER_DEBUG
  1719. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1720. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1721. SERIAL_ECHOLNPGM("");
  1722. SERIAL_ECHOPGM("In cmdqueue: ");
  1723. SERIAL_ECHO(buflen);
  1724. SERIAL_ECHOLNPGM("");
  1725. #endif /* CMDBUFFER_DEBUG */
  1726. unsigned long codenum; //throw away variable
  1727. char *starpos = NULL;
  1728. #ifdef ENABLE_AUTO_BED_LEVELING
  1729. float x_tmp, y_tmp, z_tmp, real_z;
  1730. #endif
  1731. // PRUSA GCODES
  1732. #ifdef SNMM
  1733. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1734. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1735. int8_t SilentMode;
  1736. #endif
  1737. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1738. starpos = (strchr(strchr_pointer + 5, '*'));
  1739. if (starpos != NULL)
  1740. *(starpos) = '\0';
  1741. lcd_setstatus(strchr_pointer + 5);
  1742. }
  1743. else if(code_seen("PRUSA")){
  1744. if (code_seen("Ping")) { //PRUSA Ping
  1745. if (farm_mode) {
  1746. PingTime = millis();
  1747. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1748. }
  1749. }
  1750. else if (code_seen("PRN")) {
  1751. MYSERIAL.println(status_number);
  1752. }else if (code_seen("fn")) {
  1753. if (farm_mode) {
  1754. MYSERIAL.println(farm_no);
  1755. }
  1756. else {
  1757. MYSERIAL.println("Not in farm mode.");
  1758. }
  1759. }else if (code_seen("fv")) {
  1760. // get file version
  1761. #ifdef SDSUPPORT
  1762. card.openFile(strchr_pointer + 3,true);
  1763. while (true) {
  1764. uint16_t readByte = card.get();
  1765. MYSERIAL.write(readByte);
  1766. if (readByte=='\n') {
  1767. break;
  1768. }
  1769. }
  1770. card.closefile();
  1771. #endif // SDSUPPORT
  1772. } else if (code_seen("M28")) {
  1773. trace();
  1774. prusa_sd_card_upload = true;
  1775. card.openFile(strchr_pointer+4,false);
  1776. } else if(code_seen("Fir")){
  1777. SERIAL_PROTOCOLLN(FW_version);
  1778. } else if(code_seen("Rev")){
  1779. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1780. } else if(code_seen("Lang")) {
  1781. lcd_force_language_selection();
  1782. } else if(code_seen("Lz")) {
  1783. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1784. } else if (code_seen("SERIAL LOW")) {
  1785. MYSERIAL.println("SERIAL LOW");
  1786. MYSERIAL.begin(BAUDRATE);
  1787. return;
  1788. } else if (code_seen("SERIAL HIGH")) {
  1789. MYSERIAL.println("SERIAL HIGH");
  1790. MYSERIAL.begin(1152000);
  1791. return;
  1792. } else if(code_seen("Beat")) {
  1793. // Kick farm link timer
  1794. kicktime = millis();
  1795. } else if(code_seen("FR")) {
  1796. // Factory full reset
  1797. factory_reset(0,true);
  1798. }
  1799. //else if (code_seen('Cal')) {
  1800. // lcd_calibration();
  1801. // }
  1802. }
  1803. else if (code_seen('^')) {
  1804. // nothing, this is a version line
  1805. } else if(code_seen('G'))
  1806. {
  1807. switch((int)code_value())
  1808. {
  1809. case 0: // G0 -> G1
  1810. case 1: // G1
  1811. if(Stopped == false) {
  1812. #ifdef FILAMENT_RUNOUT_SUPPORT
  1813. if(READ(FR_SENS)){
  1814. feedmultiplyBckp=feedmultiply;
  1815. float target[4];
  1816. float lastpos[4];
  1817. target[X_AXIS]=current_position[X_AXIS];
  1818. target[Y_AXIS]=current_position[Y_AXIS];
  1819. target[Z_AXIS]=current_position[Z_AXIS];
  1820. target[E_AXIS]=current_position[E_AXIS];
  1821. lastpos[X_AXIS]=current_position[X_AXIS];
  1822. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1823. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1824. lastpos[E_AXIS]=current_position[E_AXIS];
  1825. //retract by E
  1826. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1827. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1828. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1829. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1830. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1831. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1832. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1833. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1834. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1835. //finish moves
  1836. st_synchronize();
  1837. //disable extruder steppers so filament can be removed
  1838. disable_e0();
  1839. disable_e1();
  1840. disable_e2();
  1841. delay(100);
  1842. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1843. uint8_t cnt=0;
  1844. int counterBeep = 0;
  1845. lcd_wait_interact();
  1846. while(!lcd_clicked()){
  1847. cnt++;
  1848. manage_heater();
  1849. manage_inactivity(true);
  1850. //lcd_update();
  1851. if(cnt==0)
  1852. {
  1853. #if BEEPER > 0
  1854. if (counterBeep== 500){
  1855. counterBeep = 0;
  1856. }
  1857. SET_OUTPUT(BEEPER);
  1858. if (counterBeep== 0){
  1859. WRITE(BEEPER,HIGH);
  1860. }
  1861. if (counterBeep== 20){
  1862. WRITE(BEEPER,LOW);
  1863. }
  1864. counterBeep++;
  1865. #else
  1866. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1867. lcd_buzz(1000/6,100);
  1868. #else
  1869. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1870. #endif
  1871. #endif
  1872. }
  1873. }
  1874. WRITE(BEEPER,LOW);
  1875. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1876. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1877. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1878. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1879. lcd_change_fil_state = 0;
  1880. lcd_loading_filament();
  1881. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1882. lcd_change_fil_state = 0;
  1883. lcd_alright();
  1884. switch(lcd_change_fil_state){
  1885. case 2:
  1886. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1888. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1890. lcd_loading_filament();
  1891. break;
  1892. case 3:
  1893. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1894. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1895. lcd_loading_color();
  1896. break;
  1897. default:
  1898. lcd_change_success();
  1899. break;
  1900. }
  1901. }
  1902. target[E_AXIS]+= 5;
  1903. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1904. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1905. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1906. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1907. //plan_set_e_position(current_position[E_AXIS]);
  1908. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1909. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1910. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1911. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1912. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1913. plan_set_e_position(lastpos[E_AXIS]);
  1914. feedmultiply=feedmultiplyBckp;
  1915. char cmd[9];
  1916. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1917. enquecommand(cmd);
  1918. }
  1919. #endif
  1920. get_coordinates(); // For X Y Z E F
  1921. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1922. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1923. }
  1924. #ifdef FWRETRACT
  1925. if(autoretract_enabled)
  1926. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1927. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1928. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1929. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1930. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1931. retract(!retracted);
  1932. return;
  1933. }
  1934. }
  1935. #endif //FWRETRACT
  1936. prepare_move();
  1937. //ClearToSend();
  1938. }
  1939. break;
  1940. case 2: // G2 - CW ARC
  1941. if(Stopped == false) {
  1942. get_arc_coordinates();
  1943. prepare_arc_move(true);
  1944. }
  1945. break;
  1946. case 3: // G3 - CCW ARC
  1947. if(Stopped == false) {
  1948. get_arc_coordinates();
  1949. prepare_arc_move(false);
  1950. }
  1951. break;
  1952. case 4: // G4 dwell
  1953. LCD_MESSAGERPGM(MSG_DWELL);
  1954. codenum = 0;
  1955. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1956. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1957. st_synchronize();
  1958. codenum += millis(); // keep track of when we started waiting
  1959. previous_millis_cmd = millis();
  1960. while(millis() < codenum) {
  1961. manage_heater();
  1962. manage_inactivity();
  1963. lcd_update();
  1964. }
  1965. break;
  1966. #ifdef FWRETRACT
  1967. case 10: // G10 retract
  1968. #if EXTRUDERS > 1
  1969. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1970. retract(true,retracted_swap[active_extruder]);
  1971. #else
  1972. retract(true);
  1973. #endif
  1974. break;
  1975. case 11: // G11 retract_recover
  1976. #if EXTRUDERS > 1
  1977. retract(false,retracted_swap[active_extruder]);
  1978. #else
  1979. retract(false);
  1980. #endif
  1981. break;
  1982. #endif //FWRETRACT
  1983. case 28: //G28 Home all Axis one at a time
  1984. homing_flag = true;
  1985. #ifdef ENABLE_AUTO_BED_LEVELING
  1986. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1987. #endif //ENABLE_AUTO_BED_LEVELING
  1988. // For mesh bed leveling deactivate the matrix temporarily
  1989. #ifdef MESH_BED_LEVELING
  1990. mbl.active = 0;
  1991. #endif
  1992. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1993. // the planner will not perform any adjustments in the XY plane.
  1994. // Wait for the motors to stop and update the current position with the absolute values.
  1995. world2machine_revert_to_uncorrected();
  1996. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1997. // consumed during the first movements following this statement.
  1998. babystep_undo();
  1999. saved_feedrate = feedrate;
  2000. saved_feedmultiply = feedmultiply;
  2001. feedmultiply = 100;
  2002. previous_millis_cmd = millis();
  2003. enable_endstops(true);
  2004. for(int8_t i=0; i < NUM_AXIS; i++)
  2005. destination[i] = current_position[i];
  2006. feedrate = 0.0;
  2007. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2008. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2009. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2010. homeaxis(Z_AXIS);
  2011. }
  2012. #endif
  2013. #ifdef QUICK_HOME
  2014. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2015. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2016. {
  2017. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2018. int x_axis_home_dir = home_dir(X_AXIS);
  2019. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2020. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2021. feedrate = homing_feedrate[X_AXIS];
  2022. if(homing_feedrate[Y_AXIS]<feedrate)
  2023. feedrate = homing_feedrate[Y_AXIS];
  2024. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2025. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2026. } else {
  2027. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2028. }
  2029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2030. st_synchronize();
  2031. axis_is_at_home(X_AXIS);
  2032. axis_is_at_home(Y_AXIS);
  2033. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2034. destination[X_AXIS] = current_position[X_AXIS];
  2035. destination[Y_AXIS] = current_position[Y_AXIS];
  2036. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2037. feedrate = 0.0;
  2038. st_synchronize();
  2039. endstops_hit_on_purpose();
  2040. current_position[X_AXIS] = destination[X_AXIS];
  2041. current_position[Y_AXIS] = destination[Y_AXIS];
  2042. current_position[Z_AXIS] = destination[Z_AXIS];
  2043. }
  2044. #endif /* QUICK_HOME */
  2045. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2046. homeaxis(X_AXIS);
  2047. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2048. homeaxis(Y_AXIS);
  2049. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2050. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2051. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2052. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2053. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2054. #ifndef Z_SAFE_HOMING
  2055. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2056. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2057. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2058. feedrate = max_feedrate[Z_AXIS];
  2059. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2060. st_synchronize();
  2061. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2062. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2063. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2064. {
  2065. homeaxis(X_AXIS);
  2066. homeaxis(Y_AXIS);
  2067. }
  2068. // 1st mesh bed leveling measurement point, corrected.
  2069. world2machine_initialize();
  2070. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2071. world2machine_reset();
  2072. if (destination[Y_AXIS] < Y_MIN_POS)
  2073. destination[Y_AXIS] = Y_MIN_POS;
  2074. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2075. feedrate = homing_feedrate[Z_AXIS]/10;
  2076. current_position[Z_AXIS] = 0;
  2077. enable_endstops(false);
  2078. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2079. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2080. st_synchronize();
  2081. current_position[X_AXIS] = destination[X_AXIS];
  2082. current_position[Y_AXIS] = destination[Y_AXIS];
  2083. enable_endstops(true);
  2084. endstops_hit_on_purpose();
  2085. homeaxis(Z_AXIS);
  2086. #else // MESH_BED_LEVELING
  2087. homeaxis(Z_AXIS);
  2088. #endif // MESH_BED_LEVELING
  2089. }
  2090. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2091. if(home_all_axis) {
  2092. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2093. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2094. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2095. feedrate = XY_TRAVEL_SPEED/60;
  2096. current_position[Z_AXIS] = 0;
  2097. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2098. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2099. st_synchronize();
  2100. current_position[X_AXIS] = destination[X_AXIS];
  2101. current_position[Y_AXIS] = destination[Y_AXIS];
  2102. homeaxis(Z_AXIS);
  2103. }
  2104. // Let's see if X and Y are homed and probe is inside bed area.
  2105. if(code_seen(axis_codes[Z_AXIS])) {
  2106. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2107. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2108. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2109. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2110. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2111. current_position[Z_AXIS] = 0;
  2112. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2113. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2114. feedrate = max_feedrate[Z_AXIS];
  2115. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2116. st_synchronize();
  2117. homeaxis(Z_AXIS);
  2118. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2119. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2120. SERIAL_ECHO_START;
  2121. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2122. } else {
  2123. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2124. SERIAL_ECHO_START;
  2125. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2126. }
  2127. }
  2128. #endif // Z_SAFE_HOMING
  2129. #endif // Z_HOME_DIR < 0
  2130. if(code_seen(axis_codes[Z_AXIS])) {
  2131. if(code_value_long() != 0) {
  2132. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2133. }
  2134. }
  2135. #ifdef ENABLE_AUTO_BED_LEVELING
  2136. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2137. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2138. }
  2139. #endif
  2140. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2141. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2142. enable_endstops(false);
  2143. #endif
  2144. feedrate = saved_feedrate;
  2145. feedmultiply = saved_feedmultiply;
  2146. previous_millis_cmd = millis();
  2147. endstops_hit_on_purpose();
  2148. #ifndef MESH_BED_LEVELING
  2149. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2150. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2151. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2152. lcd_adjust_z();
  2153. #endif
  2154. // Load the machine correction matrix
  2155. world2machine_initialize();
  2156. // and correct the current_position to match the transformed coordinate system.
  2157. world2machine_update_current();
  2158. #ifdef MESH_BED_LEVELING
  2159. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2160. {
  2161. }
  2162. else
  2163. {
  2164. st_synchronize();
  2165. homing_flag = false;
  2166. // Push the commands to the front of the message queue in the reverse order!
  2167. // There shall be always enough space reserved for these commands.
  2168. // enquecommand_front_P((PSTR("G80")));
  2169. goto case_G80;
  2170. }
  2171. #endif
  2172. if (farm_mode) { prusa_statistics(20); };
  2173. homing_flag = false;
  2174. break;
  2175. #ifdef ENABLE_AUTO_BED_LEVELING
  2176. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2177. {
  2178. #if Z_MIN_PIN == -1
  2179. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2180. #endif
  2181. // Prevent user from running a G29 without first homing in X and Y
  2182. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2183. {
  2184. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2185. SERIAL_ECHO_START;
  2186. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2187. break; // abort G29, since we don't know where we are
  2188. }
  2189. st_synchronize();
  2190. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2191. //vector_3 corrected_position = plan_get_position_mm();
  2192. //corrected_position.debug("position before G29");
  2193. plan_bed_level_matrix.set_to_identity();
  2194. vector_3 uncorrected_position = plan_get_position();
  2195. //uncorrected_position.debug("position durring G29");
  2196. current_position[X_AXIS] = uncorrected_position.x;
  2197. current_position[Y_AXIS] = uncorrected_position.y;
  2198. current_position[Z_AXIS] = uncorrected_position.z;
  2199. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2200. setup_for_endstop_move();
  2201. feedrate = homing_feedrate[Z_AXIS];
  2202. #ifdef AUTO_BED_LEVELING_GRID
  2203. // probe at the points of a lattice grid
  2204. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2205. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2206. // solve the plane equation ax + by + d = z
  2207. // A is the matrix with rows [x y 1] for all the probed points
  2208. // B is the vector of the Z positions
  2209. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2210. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2211. // "A" matrix of the linear system of equations
  2212. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2213. // "B" vector of Z points
  2214. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2215. int probePointCounter = 0;
  2216. bool zig = true;
  2217. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2218. {
  2219. int xProbe, xInc;
  2220. if (zig)
  2221. {
  2222. xProbe = LEFT_PROBE_BED_POSITION;
  2223. //xEnd = RIGHT_PROBE_BED_POSITION;
  2224. xInc = xGridSpacing;
  2225. zig = false;
  2226. } else // zag
  2227. {
  2228. xProbe = RIGHT_PROBE_BED_POSITION;
  2229. //xEnd = LEFT_PROBE_BED_POSITION;
  2230. xInc = -xGridSpacing;
  2231. zig = true;
  2232. }
  2233. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2234. {
  2235. float z_before;
  2236. if (probePointCounter == 0)
  2237. {
  2238. // raise before probing
  2239. z_before = Z_RAISE_BEFORE_PROBING;
  2240. } else
  2241. {
  2242. // raise extruder
  2243. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2244. }
  2245. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2246. eqnBVector[probePointCounter] = measured_z;
  2247. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2248. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2249. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2250. probePointCounter++;
  2251. xProbe += xInc;
  2252. }
  2253. }
  2254. clean_up_after_endstop_move();
  2255. // solve lsq problem
  2256. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2257. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2258. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2259. SERIAL_PROTOCOLPGM(" b: ");
  2260. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2261. SERIAL_PROTOCOLPGM(" d: ");
  2262. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2263. set_bed_level_equation_lsq(plane_equation_coefficients);
  2264. free(plane_equation_coefficients);
  2265. #else // AUTO_BED_LEVELING_GRID not defined
  2266. // Probe at 3 arbitrary points
  2267. // probe 1
  2268. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2269. // probe 2
  2270. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2271. // probe 3
  2272. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2273. clean_up_after_endstop_move();
  2274. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2275. #endif // AUTO_BED_LEVELING_GRID
  2276. st_synchronize();
  2277. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2278. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2279. // When the bed is uneven, this height must be corrected.
  2280. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2281. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2282. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2283. z_tmp = current_position[Z_AXIS];
  2284. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2285. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2287. }
  2288. break;
  2289. #ifndef Z_PROBE_SLED
  2290. case 30: // G30 Single Z Probe
  2291. {
  2292. st_synchronize();
  2293. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2294. setup_for_endstop_move();
  2295. feedrate = homing_feedrate[Z_AXIS];
  2296. run_z_probe();
  2297. SERIAL_PROTOCOLPGM(MSG_BED);
  2298. SERIAL_PROTOCOLPGM(" X: ");
  2299. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2300. SERIAL_PROTOCOLPGM(" Y: ");
  2301. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2302. SERIAL_PROTOCOLPGM(" Z: ");
  2303. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2304. SERIAL_PROTOCOLPGM("\n");
  2305. clean_up_after_endstop_move();
  2306. }
  2307. break;
  2308. #else
  2309. case 31: // dock the sled
  2310. dock_sled(true);
  2311. break;
  2312. case 32: // undock the sled
  2313. dock_sled(false);
  2314. break;
  2315. #endif // Z_PROBE_SLED
  2316. #endif // ENABLE_AUTO_BED_LEVELING
  2317. #ifdef MESH_BED_LEVELING
  2318. case 30: // G30 Single Z Probe
  2319. {
  2320. st_synchronize();
  2321. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2322. setup_for_endstop_move();
  2323. feedrate = homing_feedrate[Z_AXIS];
  2324. find_bed_induction_sensor_point_z(-10.f, 3);
  2325. SERIAL_PROTOCOLRPGM(MSG_BED);
  2326. SERIAL_PROTOCOLPGM(" X: ");
  2327. MYSERIAL.print(current_position[X_AXIS], 5);
  2328. SERIAL_PROTOCOLPGM(" Y: ");
  2329. MYSERIAL.print(current_position[Y_AXIS], 5);
  2330. SERIAL_PROTOCOLPGM(" Z: ");
  2331. MYSERIAL.print(current_position[Z_AXIS], 5);
  2332. SERIAL_PROTOCOLPGM("\n");
  2333. clean_up_after_endstop_move();
  2334. }
  2335. break;
  2336. case 75:
  2337. {
  2338. for (int i = 40; i <= 110; i++) {
  2339. MYSERIAL.print(i);
  2340. MYSERIAL.print(" ");
  2341. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2342. }
  2343. }
  2344. break;
  2345. case 76: //PINDA probe temperature calibration
  2346. {
  2347. setTargetBed(PINDA_MIN_T);
  2348. float zero_z;
  2349. int z_shift = 0; //unit: steps
  2350. int t_c; // temperature
  2351. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2352. // We don't know where we are! HOME!
  2353. // Push the commands to the front of the message queue in the reverse order!
  2354. // There shall be always enough space reserved for these commands.
  2355. repeatcommand_front(); // repeat G76 with all its parameters
  2356. enquecommand_front_P((PSTR("G28 W0")));
  2357. break;
  2358. }
  2359. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2360. custom_message = true;
  2361. custom_message_type = 4;
  2362. custom_message_state = 1;
  2363. custom_message = MSG_TEMP_CALIBRATION;
  2364. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2365. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2366. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2368. st_synchronize();
  2369. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2370. delay_keep_alive(1000);
  2371. serialecho_temperatures();
  2372. }
  2373. //enquecommand_P(PSTR("M190 S50"));
  2374. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2375. delay_keep_alive(1000);
  2376. serialecho_temperatures();
  2377. }
  2378. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2379. current_position[Z_AXIS] = 5;
  2380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2381. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2382. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2384. st_synchronize();
  2385. find_bed_induction_sensor_point_z(-1.f);
  2386. zero_z = current_position[Z_AXIS];
  2387. //current_position[Z_AXIS]
  2388. SERIAL_ECHOLNPGM("");
  2389. SERIAL_ECHOPGM("ZERO: ");
  2390. MYSERIAL.print(current_position[Z_AXIS]);
  2391. SERIAL_ECHOLNPGM("");
  2392. for (int i = 0; i<5; i++) {
  2393. SERIAL_ECHOPGM("Step: ");
  2394. MYSERIAL.print(i+2);
  2395. SERIAL_ECHOLNPGM("/6");
  2396. custom_message_state = i + 2;
  2397. t_c = 60 + i * 10;
  2398. setTargetBed(t_c);
  2399. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2400. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2401. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2403. st_synchronize();
  2404. while (degBed() < t_c) {
  2405. delay_keep_alive(1000);
  2406. serialecho_temperatures();
  2407. }
  2408. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2409. delay_keep_alive(1000);
  2410. serialecho_temperatures();
  2411. }
  2412. current_position[Z_AXIS] = 5;
  2413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2414. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2415. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2417. st_synchronize();
  2418. find_bed_induction_sensor_point_z(-1.f);
  2419. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2420. SERIAL_ECHOLNPGM("");
  2421. SERIAL_ECHOPGM("Temperature: ");
  2422. MYSERIAL.print(t_c);
  2423. SERIAL_ECHOPGM(" Z shift (mm):");
  2424. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2425. SERIAL_ECHOLNPGM("");
  2426. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2427. }
  2428. custom_message_type = 0;
  2429. custom_message = false;
  2430. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2431. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2432. disable_x();
  2433. disable_y();
  2434. disable_z();
  2435. disable_e0();
  2436. disable_e1();
  2437. disable_e2();
  2438. setTargetBed(0); //set bed target temperature back to 0
  2439. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2440. lcd_update_enable(true);
  2441. lcd_update(2);
  2442. }
  2443. break;
  2444. #ifdef DIS
  2445. case 77:
  2446. {
  2447. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2448. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2449. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2450. float dimension_x = 40;
  2451. float dimension_y = 40;
  2452. int points_x = 40;
  2453. int points_y = 40;
  2454. float offset_x = 74;
  2455. float offset_y = 33;
  2456. if (code_seen('X')) dimension_x = code_value();
  2457. if (code_seen('Y')) dimension_y = code_value();
  2458. if (code_seen('XP')) points_x = code_value();
  2459. if (code_seen('YP')) points_y = code_value();
  2460. if (code_seen('XO')) offset_x = code_value();
  2461. if (code_seen('YO')) offset_y = code_value();
  2462. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2463. } break;
  2464. #endif
  2465. /**
  2466. * G80: Mesh-based Z probe, probes a grid and produces a
  2467. * mesh to compensate for variable bed height
  2468. *
  2469. * The S0 report the points as below
  2470. *
  2471. * +----> X-axis
  2472. * |
  2473. * |
  2474. * v Y-axis
  2475. *
  2476. */
  2477. case 80:
  2478. case_G80:
  2479. {
  2480. mesh_bed_leveling_flag = true;
  2481. int8_t verbosity_level = 0;
  2482. static bool run = false;
  2483. if (code_seen('V')) {
  2484. // Just 'V' without a number counts as V1.
  2485. char c = strchr_pointer[1];
  2486. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2487. }
  2488. // Firstly check if we know where we are
  2489. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2490. // We don't know where we are! HOME!
  2491. // Push the commands to the front of the message queue in the reverse order!
  2492. // There shall be always enough space reserved for these commands.
  2493. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2494. repeatcommand_front(); // repeat G80 with all its parameters
  2495. enquecommand_front_P((PSTR("G28 W0")));
  2496. }
  2497. else {
  2498. mesh_bed_leveling_flag = false;
  2499. }
  2500. break;
  2501. }
  2502. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2503. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2504. temp_compensation_start();
  2505. run = true;
  2506. repeatcommand_front(); // repeat G80 with all its parameters
  2507. enquecommand_front_P((PSTR("G28 W0")));
  2508. }
  2509. else {
  2510. mesh_bed_leveling_flag = false;
  2511. }
  2512. break;
  2513. }
  2514. run = false;
  2515. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2516. mesh_bed_leveling_flag = false;
  2517. break;
  2518. }
  2519. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2520. bool custom_message_old = custom_message;
  2521. unsigned int custom_message_type_old = custom_message_type;
  2522. unsigned int custom_message_state_old = custom_message_state;
  2523. custom_message = true;
  2524. custom_message_type = 1;
  2525. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2526. lcd_update(1);
  2527. mbl.reset(); //reset mesh bed leveling
  2528. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2529. // consumed during the first movements following this statement.
  2530. babystep_undo();
  2531. // Cycle through all points and probe them
  2532. // First move up. During this first movement, the babystepping will be reverted.
  2533. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2535. // The move to the first calibration point.
  2536. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2537. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2538. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2539. if (verbosity_level >= 1) {
  2540. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2541. }
  2542. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2544. // Wait until the move is finished.
  2545. st_synchronize();
  2546. int mesh_point = 0; //index number of calibration point
  2547. int ix = 0;
  2548. int iy = 0;
  2549. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2550. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2551. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2552. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2553. if (verbosity_level >= 1) {
  2554. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2555. }
  2556. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2557. const char *kill_message = NULL;
  2558. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2559. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2560. // Get coords of a measuring point.
  2561. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2562. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2563. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2564. float z0 = 0.f;
  2565. if (has_z && mesh_point > 0) {
  2566. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2567. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2568. //#if 0
  2569. if (verbosity_level >= 1) {
  2570. SERIAL_ECHOPGM("Bed leveling, point: ");
  2571. MYSERIAL.print(mesh_point);
  2572. SERIAL_ECHOPGM(", calibration z: ");
  2573. MYSERIAL.print(z0, 5);
  2574. SERIAL_ECHOLNPGM("");
  2575. }
  2576. //#endif
  2577. }
  2578. // Move Z up to MESH_HOME_Z_SEARCH.
  2579. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2581. st_synchronize();
  2582. // Move to XY position of the sensor point.
  2583. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2584. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2585. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2586. if (verbosity_level >= 1) {
  2587. SERIAL_PROTOCOL(mesh_point);
  2588. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2589. }
  2590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2591. st_synchronize();
  2592. // Go down until endstop is hit
  2593. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2594. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2595. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2596. break;
  2597. }
  2598. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2599. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2600. break;
  2601. }
  2602. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2603. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2604. break;
  2605. }
  2606. if (verbosity_level >= 10) {
  2607. SERIAL_ECHOPGM("X: ");
  2608. MYSERIAL.print(current_position[X_AXIS], 5);
  2609. SERIAL_ECHOLNPGM("");
  2610. SERIAL_ECHOPGM("Y: ");
  2611. MYSERIAL.print(current_position[Y_AXIS], 5);
  2612. SERIAL_PROTOCOLPGM("\n");
  2613. }
  2614. if (verbosity_level >= 1) {
  2615. SERIAL_ECHOPGM("mesh bed leveling: ");
  2616. MYSERIAL.print(current_position[Z_AXIS], 5);
  2617. SERIAL_ECHOLNPGM("");
  2618. }
  2619. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2620. custom_message_state--;
  2621. mesh_point++;
  2622. lcd_update(1);
  2623. }
  2624. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2625. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2626. if (verbosity_level >= 20) {
  2627. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2628. MYSERIAL.print(current_position[Z_AXIS], 5);
  2629. }
  2630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2631. st_synchronize();
  2632. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2633. kill(kill_message);
  2634. SERIAL_ECHOLNPGM("killed");
  2635. }
  2636. clean_up_after_endstop_move();
  2637. SERIAL_ECHOLNPGM("clean up finished ");
  2638. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2639. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2640. SERIAL_ECHOLNPGM("babystep applied");
  2641. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2642. if (verbosity_level >= 1) {
  2643. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2644. }
  2645. for (uint8_t i = 0; i < 4; ++i) {
  2646. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2647. long correction = 0;
  2648. if (code_seen(codes[i]))
  2649. correction = code_value_long();
  2650. else if (eeprom_bed_correction_valid) {
  2651. unsigned char *addr = (i < 2) ?
  2652. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2653. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2654. correction = eeprom_read_int8(addr);
  2655. }
  2656. if (correction == 0)
  2657. continue;
  2658. float offset = float(correction) * 0.001f;
  2659. if (fabs(offset) > 0.101f) {
  2660. SERIAL_ERROR_START;
  2661. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2662. SERIAL_ECHO(offset);
  2663. SERIAL_ECHOLNPGM(" microns");
  2664. }
  2665. else {
  2666. switch (i) {
  2667. case 0:
  2668. for (uint8_t row = 0; row < 3; ++row) {
  2669. mbl.z_values[row][1] += 0.5f * offset;
  2670. mbl.z_values[row][0] += offset;
  2671. }
  2672. break;
  2673. case 1:
  2674. for (uint8_t row = 0; row < 3; ++row) {
  2675. mbl.z_values[row][1] += 0.5f * offset;
  2676. mbl.z_values[row][2] += offset;
  2677. }
  2678. break;
  2679. case 2:
  2680. for (uint8_t col = 0; col < 3; ++col) {
  2681. mbl.z_values[1][col] += 0.5f * offset;
  2682. mbl.z_values[0][col] += offset;
  2683. }
  2684. break;
  2685. case 3:
  2686. for (uint8_t col = 0; col < 3; ++col) {
  2687. mbl.z_values[1][col] += 0.5f * offset;
  2688. mbl.z_values[2][col] += offset;
  2689. }
  2690. break;
  2691. }
  2692. }
  2693. }
  2694. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2695. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2696. SERIAL_ECHOLNPGM("Upsample finished");
  2697. mbl.active = 1; //activate mesh bed leveling
  2698. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2699. go_home_with_z_lift();
  2700. SERIAL_ECHOLNPGM("Go home finished");
  2701. //unretract (after PINDA preheat retraction)
  2702. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2703. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2705. }
  2706. // Restore custom message state
  2707. custom_message = custom_message_old;
  2708. custom_message_type = custom_message_type_old;
  2709. custom_message_state = custom_message_state_old;
  2710. mesh_bed_leveling_flag = false;
  2711. mesh_bed_run_from_menu = false;
  2712. lcd_update(2);
  2713. }
  2714. break;
  2715. /**
  2716. * G81: Print mesh bed leveling status and bed profile if activated
  2717. */
  2718. case 81:
  2719. if (mbl.active) {
  2720. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2721. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2722. SERIAL_PROTOCOLPGM(",");
  2723. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2724. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2725. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2726. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2727. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2728. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2729. SERIAL_PROTOCOLPGM(" ");
  2730. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2731. }
  2732. SERIAL_PROTOCOLPGM("\n");
  2733. }
  2734. }
  2735. else
  2736. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2737. break;
  2738. #if 0
  2739. /**
  2740. * G82: Single Z probe at current location
  2741. *
  2742. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2743. *
  2744. */
  2745. case 82:
  2746. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2747. setup_for_endstop_move();
  2748. find_bed_induction_sensor_point_z();
  2749. clean_up_after_endstop_move();
  2750. SERIAL_PROTOCOLPGM("Bed found at: ");
  2751. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2752. SERIAL_PROTOCOLPGM("\n");
  2753. break;
  2754. /**
  2755. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2756. */
  2757. case 83:
  2758. {
  2759. int babystepz = code_seen('S') ? code_value() : 0;
  2760. int BabyPosition = code_seen('P') ? code_value() : 0;
  2761. if (babystepz != 0) {
  2762. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2763. // Is the axis indexed starting with zero or one?
  2764. if (BabyPosition > 4) {
  2765. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2766. }else{
  2767. // Save it to the eeprom
  2768. babystepLoadZ = babystepz;
  2769. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2770. // adjust the Z
  2771. babystepsTodoZadd(babystepLoadZ);
  2772. }
  2773. }
  2774. }
  2775. break;
  2776. /**
  2777. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2778. */
  2779. case 84:
  2780. babystepsTodoZsubtract(babystepLoadZ);
  2781. // babystepLoadZ = 0;
  2782. break;
  2783. /**
  2784. * G85: Prusa3D specific: Pick best babystep
  2785. */
  2786. case 85:
  2787. lcd_pick_babystep();
  2788. break;
  2789. #endif
  2790. /**
  2791. * G86: Prusa3D specific: Disable babystep correction after home.
  2792. * This G-code will be performed at the start of a calibration script.
  2793. */
  2794. case 86:
  2795. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2796. break;
  2797. /**
  2798. * G87: Prusa3D specific: Enable babystep correction after home
  2799. * This G-code will be performed at the end of a calibration script.
  2800. */
  2801. case 87:
  2802. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2803. break;
  2804. /**
  2805. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2806. */
  2807. case 88:
  2808. break;
  2809. #endif // ENABLE_MESH_BED_LEVELING
  2810. case 90: // G90
  2811. relative_mode = false;
  2812. break;
  2813. case 91: // G91
  2814. relative_mode = true;
  2815. break;
  2816. case 92: // G92
  2817. if(!code_seen(axis_codes[E_AXIS]))
  2818. st_synchronize();
  2819. for(int8_t i=0; i < NUM_AXIS; i++) {
  2820. if(code_seen(axis_codes[i])) {
  2821. if(i == E_AXIS) {
  2822. current_position[i] = code_value();
  2823. plan_set_e_position(current_position[E_AXIS]);
  2824. }
  2825. else {
  2826. current_position[i] = code_value()+add_homing[i];
  2827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2828. }
  2829. }
  2830. }
  2831. break;
  2832. case 98: //activate farm mode
  2833. farm_mode = 1;
  2834. PingTime = millis();
  2835. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2836. break;
  2837. case 99: //deactivate farm mode
  2838. farm_mode = 0;
  2839. lcd_printer_connected();
  2840. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2841. lcd_update(2);
  2842. break;
  2843. }
  2844. } // end if(code_seen('G'))
  2845. else if(code_seen('M'))
  2846. {
  2847. int index;
  2848. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2849. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2850. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2851. SERIAL_ECHOLNPGM("Invalid M code");
  2852. } else
  2853. switch((int)code_value())
  2854. {
  2855. #ifdef ULTIPANEL
  2856. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2857. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2858. {
  2859. char *src = strchr_pointer + 2;
  2860. codenum = 0;
  2861. bool hasP = false, hasS = false;
  2862. if (code_seen('P')) {
  2863. codenum = code_value(); // milliseconds to wait
  2864. hasP = codenum > 0;
  2865. }
  2866. if (code_seen('S')) {
  2867. codenum = code_value() * 1000; // seconds to wait
  2868. hasS = codenum > 0;
  2869. }
  2870. starpos = strchr(src, '*');
  2871. if (starpos != NULL) *(starpos) = '\0';
  2872. while (*src == ' ') ++src;
  2873. if (!hasP && !hasS && *src != '\0') {
  2874. lcd_setstatus(src);
  2875. } else {
  2876. LCD_MESSAGERPGM(MSG_USERWAIT);
  2877. }
  2878. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2879. st_synchronize();
  2880. previous_millis_cmd = millis();
  2881. if (codenum > 0){
  2882. codenum += millis(); // keep track of when we started waiting
  2883. while(millis() < codenum && !lcd_clicked()){
  2884. manage_heater();
  2885. manage_inactivity(true);
  2886. lcd_update();
  2887. }
  2888. lcd_ignore_click(false);
  2889. }else{
  2890. if (!lcd_detected())
  2891. break;
  2892. while(!lcd_clicked()){
  2893. manage_heater();
  2894. manage_inactivity(true);
  2895. lcd_update();
  2896. }
  2897. }
  2898. if (IS_SD_PRINTING)
  2899. LCD_MESSAGERPGM(MSG_RESUMING);
  2900. else
  2901. LCD_MESSAGERPGM(WELCOME_MSG);
  2902. }
  2903. break;
  2904. #endif
  2905. case 17:
  2906. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2907. enable_x();
  2908. enable_y();
  2909. enable_z();
  2910. enable_e0();
  2911. enable_e1();
  2912. enable_e2();
  2913. break;
  2914. #ifdef SDSUPPORT
  2915. case 20: // M20 - list SD card
  2916. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2917. card.ls();
  2918. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2919. break;
  2920. case 21: // M21 - init SD card
  2921. card.initsd();
  2922. break;
  2923. case 22: //M22 - release SD card
  2924. card.release();
  2925. break;
  2926. case 23: //M23 - Select file
  2927. starpos = (strchr(strchr_pointer + 4,'*'));
  2928. if(starpos!=NULL)
  2929. *(starpos)='\0';
  2930. card.openFile(strchr_pointer + 4,true);
  2931. break;
  2932. case 24: //M24 - Start SD print
  2933. card.startFileprint();
  2934. starttime=millis();
  2935. break;
  2936. case 25: //M25 - Pause SD print
  2937. card.pauseSDPrint();
  2938. break;
  2939. case 26: //M26 - Set SD index
  2940. if(card.cardOK && code_seen('S')) {
  2941. card.setIndex(code_value_long());
  2942. }
  2943. break;
  2944. case 27: //M27 - Get SD status
  2945. card.getStatus();
  2946. break;
  2947. case 28: //M28 - Start SD write
  2948. starpos = (strchr(strchr_pointer + 4,'*'));
  2949. if(starpos != NULL){
  2950. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2951. strchr_pointer = strchr(npos,' ') + 1;
  2952. *(starpos) = '\0';
  2953. }
  2954. card.openFile(strchr_pointer+4,false);
  2955. break;
  2956. case 29: //M29 - Stop SD write
  2957. //processed in write to file routine above
  2958. //card,saving = false;
  2959. break;
  2960. case 30: //M30 <filename> Delete File
  2961. if (card.cardOK){
  2962. card.closefile();
  2963. starpos = (strchr(strchr_pointer + 4,'*'));
  2964. if(starpos != NULL){
  2965. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2966. strchr_pointer = strchr(npos,' ') + 1;
  2967. *(starpos) = '\0';
  2968. }
  2969. card.removeFile(strchr_pointer + 4);
  2970. }
  2971. break;
  2972. case 32: //M32 - Select file and start SD print
  2973. {
  2974. if(card.sdprinting) {
  2975. st_synchronize();
  2976. }
  2977. starpos = (strchr(strchr_pointer + 4,'*'));
  2978. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2979. if(namestartpos==NULL)
  2980. {
  2981. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2982. }
  2983. else
  2984. namestartpos++; //to skip the '!'
  2985. if(starpos!=NULL)
  2986. *(starpos)='\0';
  2987. bool call_procedure=(code_seen('P'));
  2988. if(strchr_pointer>namestartpos)
  2989. call_procedure=false; //false alert, 'P' found within filename
  2990. if( card.cardOK )
  2991. {
  2992. card.openFile(namestartpos,true,!call_procedure);
  2993. if(code_seen('S'))
  2994. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2995. card.setIndex(code_value_long());
  2996. card.startFileprint();
  2997. if(!call_procedure)
  2998. starttime=millis(); //procedure calls count as normal print time.
  2999. }
  3000. } break;
  3001. case 928: //M928 - Start SD write
  3002. starpos = (strchr(strchr_pointer + 5,'*'));
  3003. if(starpos != NULL){
  3004. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3005. strchr_pointer = strchr(npos,' ') + 1;
  3006. *(starpos) = '\0';
  3007. }
  3008. card.openLogFile(strchr_pointer+5);
  3009. break;
  3010. #endif //SDSUPPORT
  3011. case 31: //M31 take time since the start of the SD print or an M109 command
  3012. {
  3013. stoptime=millis();
  3014. char time[30];
  3015. unsigned long t=(stoptime-starttime)/1000;
  3016. int sec,min;
  3017. min=t/60;
  3018. sec=t%60;
  3019. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3020. SERIAL_ECHO_START;
  3021. SERIAL_ECHOLN(time);
  3022. lcd_setstatus(time);
  3023. autotempShutdown();
  3024. }
  3025. break;
  3026. case 42: //M42 -Change pin status via gcode
  3027. if (code_seen('S'))
  3028. {
  3029. int pin_status = code_value();
  3030. int pin_number = LED_PIN;
  3031. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3032. pin_number = code_value();
  3033. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3034. {
  3035. if (sensitive_pins[i] == pin_number)
  3036. {
  3037. pin_number = -1;
  3038. break;
  3039. }
  3040. }
  3041. #if defined(FAN_PIN) && FAN_PIN > -1
  3042. if (pin_number == FAN_PIN)
  3043. fanSpeed = pin_status;
  3044. #endif
  3045. if (pin_number > -1)
  3046. {
  3047. pinMode(pin_number, OUTPUT);
  3048. digitalWrite(pin_number, pin_status);
  3049. analogWrite(pin_number, pin_status);
  3050. }
  3051. }
  3052. break;
  3053. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3054. // Reset the baby step value and the baby step applied flag.
  3055. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3056. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3057. // Reset the skew and offset in both RAM and EEPROM.
  3058. reset_bed_offset_and_skew();
  3059. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3060. // the planner will not perform any adjustments in the XY plane.
  3061. // Wait for the motors to stop and update the current position with the absolute values.
  3062. world2machine_revert_to_uncorrected();
  3063. break;
  3064. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3065. {
  3066. // Only Z calibration?
  3067. bool onlyZ = code_seen('Z');
  3068. if (!onlyZ) {
  3069. setTargetBed(0);
  3070. setTargetHotend(0, 0);
  3071. setTargetHotend(0, 1);
  3072. setTargetHotend(0, 2);
  3073. adjust_bed_reset(); //reset bed level correction
  3074. }
  3075. // Disable the default update procedure of the display. We will do a modal dialog.
  3076. lcd_update_enable(false);
  3077. // Let the planner use the uncorrected coordinates.
  3078. mbl.reset();
  3079. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3080. // the planner will not perform any adjustments in the XY plane.
  3081. // Wait for the motors to stop and update the current position with the absolute values.
  3082. world2machine_revert_to_uncorrected();
  3083. // Reset the baby step value applied without moving the axes.
  3084. babystep_reset();
  3085. // Mark all axes as in a need for homing.
  3086. memset(axis_known_position, 0, sizeof(axis_known_position));
  3087. // Let the user move the Z axes up to the end stoppers.
  3088. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3089. refresh_cmd_timeout();
  3090. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3091. lcd_wait_for_cool_down();
  3092. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3093. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3094. lcd_implementation_print_at(0, 2, 1);
  3095. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3096. }
  3097. // Move the print head close to the bed.
  3098. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3100. st_synchronize();
  3101. // Home in the XY plane.
  3102. set_destination_to_current();
  3103. setup_for_endstop_move();
  3104. home_xy();
  3105. int8_t verbosity_level = 0;
  3106. if (code_seen('V')) {
  3107. // Just 'V' without a number counts as V1.
  3108. char c = strchr_pointer[1];
  3109. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3110. }
  3111. if (onlyZ) {
  3112. clean_up_after_endstop_move();
  3113. // Z only calibration.
  3114. // Load the machine correction matrix
  3115. world2machine_initialize();
  3116. // and correct the current_position to match the transformed coordinate system.
  3117. world2machine_update_current();
  3118. //FIXME
  3119. bool result = sample_mesh_and_store_reference();
  3120. if (result) {
  3121. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3122. // Shipped, the nozzle height has been set already. The user can start printing now.
  3123. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3124. // babystep_apply();
  3125. }
  3126. } else {
  3127. // Reset the baby step value and the baby step applied flag.
  3128. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3129. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3130. // Complete XYZ calibration.
  3131. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  3132. uint8_t point_too_far_mask = 0;
  3133. clean_up_after_endstop_move();
  3134. // Print head up.
  3135. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3137. st_synchronize();
  3138. if (result >= 0) {
  3139. // Second half: The fine adjustment.
  3140. // Let the planner use the uncorrected coordinates.
  3141. mbl.reset();
  3142. world2machine_reset();
  3143. // Home in the XY plane.
  3144. setup_for_endstop_move();
  3145. home_xy();
  3146. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3147. clean_up_after_endstop_move();
  3148. // Print head up.
  3149. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3151. st_synchronize();
  3152. // if (result >= 0) babystep_apply();
  3153. }
  3154. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3155. if (result >= 0) {
  3156. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3157. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3158. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3159. }
  3160. }
  3161. } else {
  3162. // Timeouted.
  3163. }
  3164. lcd_update_enable(true);
  3165. break;
  3166. }
  3167. /*
  3168. case 46:
  3169. {
  3170. // M46: Prusa3D: Show the assigned IP address.
  3171. uint8_t ip[4];
  3172. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3173. if (hasIP) {
  3174. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3175. SERIAL_ECHO(int(ip[0]));
  3176. SERIAL_ECHOPGM(".");
  3177. SERIAL_ECHO(int(ip[1]));
  3178. SERIAL_ECHOPGM(".");
  3179. SERIAL_ECHO(int(ip[2]));
  3180. SERIAL_ECHOPGM(".");
  3181. SERIAL_ECHO(int(ip[3]));
  3182. SERIAL_ECHOLNPGM("");
  3183. } else {
  3184. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3185. }
  3186. break;
  3187. }
  3188. */
  3189. case 47:
  3190. // M47: Prusa3D: Show end stops dialog on the display.
  3191. lcd_diag_show_end_stops();
  3192. break;
  3193. #if 0
  3194. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3195. {
  3196. // Disable the default update procedure of the display. We will do a modal dialog.
  3197. lcd_update_enable(false);
  3198. // Let the planner use the uncorrected coordinates.
  3199. mbl.reset();
  3200. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3201. // the planner will not perform any adjustments in the XY plane.
  3202. // Wait for the motors to stop and update the current position with the absolute values.
  3203. world2machine_revert_to_uncorrected();
  3204. // Move the print head close to the bed.
  3205. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3207. st_synchronize();
  3208. // Home in the XY plane.
  3209. set_destination_to_current();
  3210. setup_for_endstop_move();
  3211. home_xy();
  3212. int8_t verbosity_level = 0;
  3213. if (code_seen('V')) {
  3214. // Just 'V' without a number counts as V1.
  3215. char c = strchr_pointer[1];
  3216. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3217. }
  3218. bool success = scan_bed_induction_points(verbosity_level);
  3219. clean_up_after_endstop_move();
  3220. // Print head up.
  3221. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3223. st_synchronize();
  3224. lcd_update_enable(true);
  3225. break;
  3226. }
  3227. #endif
  3228. // M48 Z-Probe repeatability measurement function.
  3229. //
  3230. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3231. //
  3232. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3233. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3234. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3235. // regenerated.
  3236. //
  3237. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3238. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3239. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3240. //
  3241. #ifdef ENABLE_AUTO_BED_LEVELING
  3242. #ifdef Z_PROBE_REPEATABILITY_TEST
  3243. case 48: // M48 Z-Probe repeatability
  3244. {
  3245. #if Z_MIN_PIN == -1
  3246. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3247. #endif
  3248. double sum=0.0;
  3249. double mean=0.0;
  3250. double sigma=0.0;
  3251. double sample_set[50];
  3252. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3253. double X_current, Y_current, Z_current;
  3254. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3255. if (code_seen('V') || code_seen('v')) {
  3256. verbose_level = code_value();
  3257. if (verbose_level<0 || verbose_level>4 ) {
  3258. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3259. goto Sigma_Exit;
  3260. }
  3261. }
  3262. if (verbose_level > 0) {
  3263. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3264. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3265. }
  3266. if (code_seen('n')) {
  3267. n_samples = code_value();
  3268. if (n_samples<4 || n_samples>50 ) {
  3269. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3270. goto Sigma_Exit;
  3271. }
  3272. }
  3273. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3274. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3275. Z_current = st_get_position_mm(Z_AXIS);
  3276. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3277. ext_position = st_get_position_mm(E_AXIS);
  3278. if (code_seen('X') || code_seen('x') ) {
  3279. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3280. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3281. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3282. goto Sigma_Exit;
  3283. }
  3284. }
  3285. if (code_seen('Y') || code_seen('y') ) {
  3286. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3287. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3288. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3289. goto Sigma_Exit;
  3290. }
  3291. }
  3292. if (code_seen('L') || code_seen('l') ) {
  3293. n_legs = code_value();
  3294. if ( n_legs==1 )
  3295. n_legs = 2;
  3296. if ( n_legs<0 || n_legs>15 ) {
  3297. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3298. goto Sigma_Exit;
  3299. }
  3300. }
  3301. //
  3302. // Do all the preliminary setup work. First raise the probe.
  3303. //
  3304. st_synchronize();
  3305. plan_bed_level_matrix.set_to_identity();
  3306. plan_buffer_line( X_current, Y_current, Z_start_location,
  3307. ext_position,
  3308. homing_feedrate[Z_AXIS]/60,
  3309. active_extruder);
  3310. st_synchronize();
  3311. //
  3312. // Now get everything to the specified probe point So we can safely do a probe to
  3313. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3314. // use that as a starting point for each probe.
  3315. //
  3316. if (verbose_level > 2)
  3317. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3318. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3319. ext_position,
  3320. homing_feedrate[X_AXIS]/60,
  3321. active_extruder);
  3322. st_synchronize();
  3323. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3324. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3325. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3326. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3327. //
  3328. // OK, do the inital probe to get us close to the bed.
  3329. // Then retrace the right amount and use that in subsequent probes
  3330. //
  3331. setup_for_endstop_move();
  3332. run_z_probe();
  3333. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3334. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3335. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3336. ext_position,
  3337. homing_feedrate[X_AXIS]/60,
  3338. active_extruder);
  3339. st_synchronize();
  3340. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3341. for( n=0; n<n_samples; n++) {
  3342. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3343. if ( n_legs) {
  3344. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3345. int rotational_direction, l;
  3346. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3347. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3348. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3349. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3350. //SERIAL_ECHOPAIR(" theta: ",theta);
  3351. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3352. //SERIAL_PROTOCOLLNPGM("");
  3353. for( l=0; l<n_legs-1; l++) {
  3354. if (rotational_direction==1)
  3355. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3356. else
  3357. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3358. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3359. if ( radius<0.0 )
  3360. radius = -radius;
  3361. X_current = X_probe_location + cos(theta) * radius;
  3362. Y_current = Y_probe_location + sin(theta) * radius;
  3363. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3364. X_current = X_MIN_POS;
  3365. if ( X_current>X_MAX_POS)
  3366. X_current = X_MAX_POS;
  3367. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3368. Y_current = Y_MIN_POS;
  3369. if ( Y_current>Y_MAX_POS)
  3370. Y_current = Y_MAX_POS;
  3371. if (verbose_level>3 ) {
  3372. SERIAL_ECHOPAIR("x: ", X_current);
  3373. SERIAL_ECHOPAIR("y: ", Y_current);
  3374. SERIAL_PROTOCOLLNPGM("");
  3375. }
  3376. do_blocking_move_to( X_current, Y_current, Z_current );
  3377. }
  3378. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3379. }
  3380. setup_for_endstop_move();
  3381. run_z_probe();
  3382. sample_set[n] = current_position[Z_AXIS];
  3383. //
  3384. // Get the current mean for the data points we have so far
  3385. //
  3386. sum=0.0;
  3387. for( j=0; j<=n; j++) {
  3388. sum = sum + sample_set[j];
  3389. }
  3390. mean = sum / (double (n+1));
  3391. //
  3392. // Now, use that mean to calculate the standard deviation for the
  3393. // data points we have so far
  3394. //
  3395. sum=0.0;
  3396. for( j=0; j<=n; j++) {
  3397. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3398. }
  3399. sigma = sqrt( sum / (double (n+1)) );
  3400. if (verbose_level > 1) {
  3401. SERIAL_PROTOCOL(n+1);
  3402. SERIAL_PROTOCOL(" of ");
  3403. SERIAL_PROTOCOL(n_samples);
  3404. SERIAL_PROTOCOLPGM(" z: ");
  3405. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3406. }
  3407. if (verbose_level > 2) {
  3408. SERIAL_PROTOCOL(" mean: ");
  3409. SERIAL_PROTOCOL_F(mean,6);
  3410. SERIAL_PROTOCOL(" sigma: ");
  3411. SERIAL_PROTOCOL_F(sigma,6);
  3412. }
  3413. if (verbose_level > 0)
  3414. SERIAL_PROTOCOLPGM("\n");
  3415. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3416. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3417. st_synchronize();
  3418. }
  3419. delay(1000);
  3420. clean_up_after_endstop_move();
  3421. // enable_endstops(true);
  3422. if (verbose_level > 0) {
  3423. SERIAL_PROTOCOLPGM("Mean: ");
  3424. SERIAL_PROTOCOL_F(mean, 6);
  3425. SERIAL_PROTOCOLPGM("\n");
  3426. }
  3427. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3428. SERIAL_PROTOCOL_F(sigma, 6);
  3429. SERIAL_PROTOCOLPGM("\n\n");
  3430. Sigma_Exit:
  3431. break;
  3432. }
  3433. #endif // Z_PROBE_REPEATABILITY_TEST
  3434. #endif // ENABLE_AUTO_BED_LEVELING
  3435. case 104: // M104
  3436. if(setTargetedHotend(104)){
  3437. break;
  3438. }
  3439. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3440. setWatch();
  3441. break;
  3442. case 112: // M112 -Emergency Stop
  3443. kill();
  3444. break;
  3445. case 140: // M140 set bed temp
  3446. if (code_seen('S')) setTargetBed(code_value());
  3447. break;
  3448. case 105 : // M105
  3449. if(setTargetedHotend(105)){
  3450. break;
  3451. }
  3452. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3453. SERIAL_PROTOCOLPGM("ok T:");
  3454. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3455. SERIAL_PROTOCOLPGM(" /");
  3456. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3457. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3458. SERIAL_PROTOCOLPGM(" B:");
  3459. SERIAL_PROTOCOL_F(degBed(),1);
  3460. SERIAL_PROTOCOLPGM(" /");
  3461. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3462. #endif //TEMP_BED_PIN
  3463. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3464. SERIAL_PROTOCOLPGM(" T");
  3465. SERIAL_PROTOCOL(cur_extruder);
  3466. SERIAL_PROTOCOLPGM(":");
  3467. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3468. SERIAL_PROTOCOLPGM(" /");
  3469. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3470. }
  3471. #else
  3472. SERIAL_ERROR_START;
  3473. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3474. #endif
  3475. SERIAL_PROTOCOLPGM(" @:");
  3476. #ifdef EXTRUDER_WATTS
  3477. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3478. SERIAL_PROTOCOLPGM("W");
  3479. #else
  3480. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3481. #endif
  3482. SERIAL_PROTOCOLPGM(" B@:");
  3483. #ifdef BED_WATTS
  3484. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3485. SERIAL_PROTOCOLPGM("W");
  3486. #else
  3487. SERIAL_PROTOCOL(getHeaterPower(-1));
  3488. #endif
  3489. #ifdef SHOW_TEMP_ADC_VALUES
  3490. {float raw = 0.0;
  3491. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3492. SERIAL_PROTOCOLPGM(" ADC B:");
  3493. SERIAL_PROTOCOL_F(degBed(),1);
  3494. SERIAL_PROTOCOLPGM("C->");
  3495. raw = rawBedTemp();
  3496. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3497. SERIAL_PROTOCOLPGM(" Rb->");
  3498. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3499. SERIAL_PROTOCOLPGM(" Rxb->");
  3500. SERIAL_PROTOCOL_F(raw, 5);
  3501. #endif
  3502. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3503. SERIAL_PROTOCOLPGM(" T");
  3504. SERIAL_PROTOCOL(cur_extruder);
  3505. SERIAL_PROTOCOLPGM(":");
  3506. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3507. SERIAL_PROTOCOLPGM("C->");
  3508. raw = rawHotendTemp(cur_extruder);
  3509. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3510. SERIAL_PROTOCOLPGM(" Rt");
  3511. SERIAL_PROTOCOL(cur_extruder);
  3512. SERIAL_PROTOCOLPGM("->");
  3513. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3514. SERIAL_PROTOCOLPGM(" Rx");
  3515. SERIAL_PROTOCOL(cur_extruder);
  3516. SERIAL_PROTOCOLPGM("->");
  3517. SERIAL_PROTOCOL_F(raw, 5);
  3518. }}
  3519. #endif
  3520. SERIAL_PROTOCOLLN("");
  3521. return;
  3522. break;
  3523. case 109:
  3524. {// M109 - Wait for extruder heater to reach target.
  3525. if(setTargetedHotend(109)){
  3526. break;
  3527. }
  3528. LCD_MESSAGERPGM(MSG_HEATING);
  3529. heating_status = 1;
  3530. if (farm_mode) { prusa_statistics(1); };
  3531. #ifdef AUTOTEMP
  3532. autotemp_enabled=false;
  3533. #endif
  3534. if (code_seen('S')) {
  3535. setTargetHotend(code_value(), tmp_extruder);
  3536. CooldownNoWait = true;
  3537. } else if (code_seen('R')) {
  3538. setTargetHotend(code_value(), tmp_extruder);
  3539. CooldownNoWait = false;
  3540. }
  3541. #ifdef AUTOTEMP
  3542. if (code_seen('S')) autotemp_min=code_value();
  3543. if (code_seen('B')) autotemp_max=code_value();
  3544. if (code_seen('F'))
  3545. {
  3546. autotemp_factor=code_value();
  3547. autotemp_enabled=true;
  3548. }
  3549. #endif
  3550. setWatch();
  3551. codenum = millis();
  3552. /* See if we are heating up or cooling down */
  3553. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3554. cancel_heatup = false;
  3555. wait_for_heater(codenum); //loops until target temperature is reached
  3556. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3557. heating_status = 2;
  3558. if (farm_mode) { prusa_statistics(2); };
  3559. //starttime=millis();
  3560. previous_millis_cmd = millis();
  3561. }
  3562. break;
  3563. case 190: // M190 - Wait for bed heater to reach target.
  3564. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3565. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3566. heating_status = 3;
  3567. if (farm_mode) { prusa_statistics(1); };
  3568. if (code_seen('S'))
  3569. {
  3570. setTargetBed(code_value());
  3571. CooldownNoWait = true;
  3572. }
  3573. else if (code_seen('R'))
  3574. {
  3575. setTargetBed(code_value());
  3576. CooldownNoWait = false;
  3577. }
  3578. codenum = millis();
  3579. cancel_heatup = false;
  3580. target_direction = isHeatingBed(); // true if heating, false if cooling
  3581. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3582. {
  3583. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3584. {
  3585. if (!farm_mode) {
  3586. float tt = degHotend(active_extruder);
  3587. SERIAL_PROTOCOLPGM("T:");
  3588. SERIAL_PROTOCOL(tt);
  3589. SERIAL_PROTOCOLPGM(" E:");
  3590. SERIAL_PROTOCOL((int)active_extruder);
  3591. SERIAL_PROTOCOLPGM(" B:");
  3592. SERIAL_PROTOCOL_F(degBed(), 1);
  3593. SERIAL_PROTOCOLLN("");
  3594. }
  3595. codenum = millis();
  3596. }
  3597. manage_heater();
  3598. manage_inactivity();
  3599. lcd_update();
  3600. }
  3601. LCD_MESSAGERPGM(MSG_BED_DONE);
  3602. heating_status = 4;
  3603. previous_millis_cmd = millis();
  3604. #endif
  3605. break;
  3606. #if defined(FAN_PIN) && FAN_PIN > -1
  3607. case 106: //M106 Fan On
  3608. if (code_seen('S')){
  3609. fanSpeed=constrain(code_value(),0,255);
  3610. }
  3611. else {
  3612. fanSpeed=255;
  3613. }
  3614. break;
  3615. case 107: //M107 Fan Off
  3616. fanSpeed = 0;
  3617. break;
  3618. #endif //FAN_PIN
  3619. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3620. case 80: // M80 - Turn on Power Supply
  3621. SET_OUTPUT(PS_ON_PIN); //GND
  3622. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3623. // If you have a switch on suicide pin, this is useful
  3624. // if you want to start another print with suicide feature after
  3625. // a print without suicide...
  3626. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3627. SET_OUTPUT(SUICIDE_PIN);
  3628. WRITE(SUICIDE_PIN, HIGH);
  3629. #endif
  3630. #ifdef ULTIPANEL
  3631. powersupply = true;
  3632. LCD_MESSAGERPGM(WELCOME_MSG);
  3633. lcd_update();
  3634. #endif
  3635. break;
  3636. #endif
  3637. case 81: // M81 - Turn off Power Supply
  3638. disable_heater();
  3639. st_synchronize();
  3640. disable_e0();
  3641. disable_e1();
  3642. disable_e2();
  3643. finishAndDisableSteppers();
  3644. fanSpeed = 0;
  3645. delay(1000); // Wait a little before to switch off
  3646. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3647. st_synchronize();
  3648. suicide();
  3649. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3650. SET_OUTPUT(PS_ON_PIN);
  3651. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3652. #endif
  3653. #ifdef ULTIPANEL
  3654. powersupply = false;
  3655. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3656. /*
  3657. MACHNAME = "Prusa i3"
  3658. MSGOFF = "Vypnuto"
  3659. "Prusai3"" ""vypnuto""."
  3660. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3661. */
  3662. lcd_update();
  3663. #endif
  3664. break;
  3665. case 82:
  3666. axis_relative_modes[3] = false;
  3667. break;
  3668. case 83:
  3669. axis_relative_modes[3] = true;
  3670. break;
  3671. case 18: //compatibility
  3672. case 84: // M84
  3673. if(code_seen('S')){
  3674. stepper_inactive_time = code_value() * 1000;
  3675. }
  3676. else
  3677. {
  3678. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3679. if(all_axis)
  3680. {
  3681. st_synchronize();
  3682. disable_e0();
  3683. disable_e1();
  3684. disable_e2();
  3685. finishAndDisableSteppers();
  3686. }
  3687. else
  3688. {
  3689. st_synchronize();
  3690. if (code_seen('X')) disable_x();
  3691. if (code_seen('Y')) disable_y();
  3692. if (code_seen('Z')) disable_z();
  3693. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3694. if (code_seen('E')) {
  3695. disable_e0();
  3696. disable_e1();
  3697. disable_e2();
  3698. }
  3699. #endif
  3700. }
  3701. }
  3702. snmm_filaments_used = 0;
  3703. break;
  3704. case 85: // M85
  3705. if(code_seen('S')) {
  3706. max_inactive_time = code_value() * 1000;
  3707. }
  3708. break;
  3709. case 92: // M92
  3710. for(int8_t i=0; i < NUM_AXIS; i++)
  3711. {
  3712. if(code_seen(axis_codes[i]))
  3713. {
  3714. if(i == 3) { // E
  3715. float value = code_value();
  3716. if(value < 20.0) {
  3717. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3718. max_jerk[E_AXIS] *= factor;
  3719. max_feedrate[i] *= factor;
  3720. axis_steps_per_sqr_second[i] *= factor;
  3721. }
  3722. axis_steps_per_unit[i] = value;
  3723. }
  3724. else {
  3725. axis_steps_per_unit[i] = code_value();
  3726. }
  3727. }
  3728. }
  3729. break;
  3730. case 115: // M115
  3731. if (code_seen('V')) {
  3732. // Report the Prusa version number.
  3733. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3734. } else if (code_seen('U')) {
  3735. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3736. // pause the print and ask the user to upgrade the firmware.
  3737. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3738. } else {
  3739. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3740. }
  3741. break;
  3742. /* case 117: // M117 display message
  3743. starpos = (strchr(strchr_pointer + 5,'*'));
  3744. if(starpos!=NULL)
  3745. *(starpos)='\0';
  3746. lcd_setstatus(strchr_pointer + 5);
  3747. break;*/
  3748. case 114: // M114
  3749. SERIAL_PROTOCOLPGM("X:");
  3750. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3751. SERIAL_PROTOCOLPGM(" Y:");
  3752. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3753. SERIAL_PROTOCOLPGM(" Z:");
  3754. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3755. SERIAL_PROTOCOLPGM(" E:");
  3756. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3757. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3758. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3759. SERIAL_PROTOCOLPGM(" Y:");
  3760. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3761. SERIAL_PROTOCOLPGM(" Z:");
  3762. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3763. SERIAL_PROTOCOLLN("");
  3764. break;
  3765. case 120: // M120
  3766. enable_endstops(false) ;
  3767. break;
  3768. case 121: // M121
  3769. enable_endstops(true) ;
  3770. break;
  3771. case 119: // M119
  3772. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3773. SERIAL_PROTOCOLLN("");
  3774. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3775. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3776. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3777. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3778. }else{
  3779. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3780. }
  3781. SERIAL_PROTOCOLLN("");
  3782. #endif
  3783. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3784. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3785. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3786. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3787. }else{
  3788. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3789. }
  3790. SERIAL_PROTOCOLLN("");
  3791. #endif
  3792. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3793. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3794. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3795. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3796. }else{
  3797. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3798. }
  3799. SERIAL_PROTOCOLLN("");
  3800. #endif
  3801. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3802. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3803. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3804. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3805. }else{
  3806. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3807. }
  3808. SERIAL_PROTOCOLLN("");
  3809. #endif
  3810. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3811. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3812. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3813. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3814. }else{
  3815. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3816. }
  3817. SERIAL_PROTOCOLLN("");
  3818. #endif
  3819. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3820. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3821. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3822. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3823. }else{
  3824. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3825. }
  3826. SERIAL_PROTOCOLLN("");
  3827. #endif
  3828. break;
  3829. //TODO: update for all axis, use for loop
  3830. #ifdef BLINKM
  3831. case 150: // M150
  3832. {
  3833. byte red;
  3834. byte grn;
  3835. byte blu;
  3836. if(code_seen('R')) red = code_value();
  3837. if(code_seen('U')) grn = code_value();
  3838. if(code_seen('B')) blu = code_value();
  3839. SendColors(red,grn,blu);
  3840. }
  3841. break;
  3842. #endif //BLINKM
  3843. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3844. {
  3845. tmp_extruder = active_extruder;
  3846. if(code_seen('T')) {
  3847. tmp_extruder = code_value();
  3848. if(tmp_extruder >= EXTRUDERS) {
  3849. SERIAL_ECHO_START;
  3850. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3851. break;
  3852. }
  3853. }
  3854. float area = .0;
  3855. if(code_seen('D')) {
  3856. float diameter = (float)code_value();
  3857. if (diameter == 0.0) {
  3858. // setting any extruder filament size disables volumetric on the assumption that
  3859. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3860. // for all extruders
  3861. volumetric_enabled = false;
  3862. } else {
  3863. filament_size[tmp_extruder] = (float)code_value();
  3864. // make sure all extruders have some sane value for the filament size
  3865. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3866. #if EXTRUDERS > 1
  3867. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3868. #if EXTRUDERS > 2
  3869. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3870. #endif
  3871. #endif
  3872. volumetric_enabled = true;
  3873. }
  3874. } else {
  3875. //reserved for setting filament diameter via UFID or filament measuring device
  3876. break;
  3877. }
  3878. calculate_volumetric_multipliers();
  3879. }
  3880. break;
  3881. case 201: // M201
  3882. for(int8_t i=0; i < NUM_AXIS; i++)
  3883. {
  3884. if(code_seen(axis_codes[i]))
  3885. {
  3886. max_acceleration_units_per_sq_second[i] = code_value();
  3887. }
  3888. }
  3889. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3890. reset_acceleration_rates();
  3891. break;
  3892. #if 0 // Not used for Sprinter/grbl gen6
  3893. case 202: // M202
  3894. for(int8_t i=0; i < NUM_AXIS; i++) {
  3895. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3896. }
  3897. break;
  3898. #endif
  3899. case 203: // M203 max feedrate mm/sec
  3900. for(int8_t i=0; i < NUM_AXIS; i++) {
  3901. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3902. }
  3903. break;
  3904. case 204: // M204 acclereration S normal moves T filmanent only moves
  3905. {
  3906. if(code_seen('S')) acceleration = code_value() ;
  3907. if(code_seen('T')) retract_acceleration = code_value() ;
  3908. }
  3909. break;
  3910. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3911. {
  3912. if(code_seen('S')) minimumfeedrate = code_value();
  3913. if(code_seen('T')) mintravelfeedrate = code_value();
  3914. if(code_seen('B')) minsegmenttime = code_value() ;
  3915. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3916. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3917. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3918. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3919. }
  3920. break;
  3921. case 206: // M206 additional homing offset
  3922. for(int8_t i=0; i < 3; i++)
  3923. {
  3924. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3925. }
  3926. break;
  3927. #ifdef FWRETRACT
  3928. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3929. {
  3930. if(code_seen('S'))
  3931. {
  3932. retract_length = code_value() ;
  3933. }
  3934. if(code_seen('F'))
  3935. {
  3936. retract_feedrate = code_value()/60 ;
  3937. }
  3938. if(code_seen('Z'))
  3939. {
  3940. retract_zlift = code_value() ;
  3941. }
  3942. }break;
  3943. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3944. {
  3945. if(code_seen('S'))
  3946. {
  3947. retract_recover_length = code_value() ;
  3948. }
  3949. if(code_seen('F'))
  3950. {
  3951. retract_recover_feedrate = code_value()/60 ;
  3952. }
  3953. }break;
  3954. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3955. {
  3956. if(code_seen('S'))
  3957. {
  3958. int t= code_value() ;
  3959. switch(t)
  3960. {
  3961. case 0:
  3962. {
  3963. autoretract_enabled=false;
  3964. retracted[0]=false;
  3965. #if EXTRUDERS > 1
  3966. retracted[1]=false;
  3967. #endif
  3968. #if EXTRUDERS > 2
  3969. retracted[2]=false;
  3970. #endif
  3971. }break;
  3972. case 1:
  3973. {
  3974. autoretract_enabled=true;
  3975. retracted[0]=false;
  3976. #if EXTRUDERS > 1
  3977. retracted[1]=false;
  3978. #endif
  3979. #if EXTRUDERS > 2
  3980. retracted[2]=false;
  3981. #endif
  3982. }break;
  3983. default:
  3984. SERIAL_ECHO_START;
  3985. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3986. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3987. SERIAL_ECHOLNPGM("\"");
  3988. }
  3989. }
  3990. }break;
  3991. #endif // FWRETRACT
  3992. #if EXTRUDERS > 1
  3993. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3994. {
  3995. if(setTargetedHotend(218)){
  3996. break;
  3997. }
  3998. if(code_seen('X'))
  3999. {
  4000. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4001. }
  4002. if(code_seen('Y'))
  4003. {
  4004. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4005. }
  4006. SERIAL_ECHO_START;
  4007. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4008. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4009. {
  4010. SERIAL_ECHO(" ");
  4011. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4012. SERIAL_ECHO(",");
  4013. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4014. }
  4015. SERIAL_ECHOLN("");
  4016. }break;
  4017. #endif
  4018. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4019. {
  4020. if(code_seen('S'))
  4021. {
  4022. feedmultiply = code_value() ;
  4023. }
  4024. }
  4025. break;
  4026. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4027. {
  4028. if(code_seen('S'))
  4029. {
  4030. int tmp_code = code_value();
  4031. if (code_seen('T'))
  4032. {
  4033. if(setTargetedHotend(221)){
  4034. break;
  4035. }
  4036. extruder_multiply[tmp_extruder] = tmp_code;
  4037. }
  4038. else
  4039. {
  4040. extrudemultiply = tmp_code ;
  4041. }
  4042. }
  4043. }
  4044. break;
  4045. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4046. {
  4047. if(code_seen('P')){
  4048. int pin_number = code_value(); // pin number
  4049. int pin_state = -1; // required pin state - default is inverted
  4050. if(code_seen('S')) pin_state = code_value(); // required pin state
  4051. if(pin_state >= -1 && pin_state <= 1){
  4052. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4053. {
  4054. if (sensitive_pins[i] == pin_number)
  4055. {
  4056. pin_number = -1;
  4057. break;
  4058. }
  4059. }
  4060. if (pin_number > -1)
  4061. {
  4062. int target = LOW;
  4063. st_synchronize();
  4064. pinMode(pin_number, INPUT);
  4065. switch(pin_state){
  4066. case 1:
  4067. target = HIGH;
  4068. break;
  4069. case 0:
  4070. target = LOW;
  4071. break;
  4072. case -1:
  4073. target = !digitalRead(pin_number);
  4074. break;
  4075. }
  4076. while(digitalRead(pin_number) != target){
  4077. manage_heater();
  4078. manage_inactivity();
  4079. lcd_update();
  4080. }
  4081. }
  4082. }
  4083. }
  4084. }
  4085. break;
  4086. #if NUM_SERVOS > 0
  4087. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4088. {
  4089. int servo_index = -1;
  4090. int servo_position = 0;
  4091. if (code_seen('P'))
  4092. servo_index = code_value();
  4093. if (code_seen('S')) {
  4094. servo_position = code_value();
  4095. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4096. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4097. servos[servo_index].attach(0);
  4098. #endif
  4099. servos[servo_index].write(servo_position);
  4100. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4101. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4102. servos[servo_index].detach();
  4103. #endif
  4104. }
  4105. else {
  4106. SERIAL_ECHO_START;
  4107. SERIAL_ECHO("Servo ");
  4108. SERIAL_ECHO(servo_index);
  4109. SERIAL_ECHOLN(" out of range");
  4110. }
  4111. }
  4112. else if (servo_index >= 0) {
  4113. SERIAL_PROTOCOL(MSG_OK);
  4114. SERIAL_PROTOCOL(" Servo ");
  4115. SERIAL_PROTOCOL(servo_index);
  4116. SERIAL_PROTOCOL(": ");
  4117. SERIAL_PROTOCOL(servos[servo_index].read());
  4118. SERIAL_PROTOCOLLN("");
  4119. }
  4120. }
  4121. break;
  4122. #endif // NUM_SERVOS > 0
  4123. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4124. case 300: // M300
  4125. {
  4126. int beepS = code_seen('S') ? code_value() : 110;
  4127. int beepP = code_seen('P') ? code_value() : 1000;
  4128. if (beepS > 0)
  4129. {
  4130. #if BEEPER > 0
  4131. tone(BEEPER, beepS);
  4132. delay(beepP);
  4133. noTone(BEEPER);
  4134. #elif defined(ULTRALCD)
  4135. lcd_buzz(beepS, beepP);
  4136. #elif defined(LCD_USE_I2C_BUZZER)
  4137. lcd_buzz(beepP, beepS);
  4138. #endif
  4139. }
  4140. else
  4141. {
  4142. delay(beepP);
  4143. }
  4144. }
  4145. break;
  4146. #endif // M300
  4147. #ifdef PIDTEMP
  4148. case 301: // M301
  4149. {
  4150. if(code_seen('P')) Kp = code_value();
  4151. if(code_seen('I')) Ki = scalePID_i(code_value());
  4152. if(code_seen('D')) Kd = scalePID_d(code_value());
  4153. #ifdef PID_ADD_EXTRUSION_RATE
  4154. if(code_seen('C')) Kc = code_value();
  4155. #endif
  4156. updatePID();
  4157. SERIAL_PROTOCOLRPGM(MSG_OK);
  4158. SERIAL_PROTOCOL(" p:");
  4159. SERIAL_PROTOCOL(Kp);
  4160. SERIAL_PROTOCOL(" i:");
  4161. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4162. SERIAL_PROTOCOL(" d:");
  4163. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4164. #ifdef PID_ADD_EXTRUSION_RATE
  4165. SERIAL_PROTOCOL(" c:");
  4166. //Kc does not have scaling applied above, or in resetting defaults
  4167. SERIAL_PROTOCOL(Kc);
  4168. #endif
  4169. SERIAL_PROTOCOLLN("");
  4170. }
  4171. break;
  4172. #endif //PIDTEMP
  4173. #ifdef PIDTEMPBED
  4174. case 304: // M304
  4175. {
  4176. if(code_seen('P')) bedKp = code_value();
  4177. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4178. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4179. updatePID();
  4180. SERIAL_PROTOCOLRPGM(MSG_OK);
  4181. SERIAL_PROTOCOL(" p:");
  4182. SERIAL_PROTOCOL(bedKp);
  4183. SERIAL_PROTOCOL(" i:");
  4184. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4185. SERIAL_PROTOCOL(" d:");
  4186. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4187. SERIAL_PROTOCOLLN("");
  4188. }
  4189. break;
  4190. #endif //PIDTEMP
  4191. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4192. {
  4193. #ifdef CHDK
  4194. SET_OUTPUT(CHDK);
  4195. WRITE(CHDK, HIGH);
  4196. chdkHigh = millis();
  4197. chdkActive = true;
  4198. #else
  4199. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4200. const uint8_t NUM_PULSES=16;
  4201. const float PULSE_LENGTH=0.01524;
  4202. for(int i=0; i < NUM_PULSES; i++) {
  4203. WRITE(PHOTOGRAPH_PIN, HIGH);
  4204. _delay_ms(PULSE_LENGTH);
  4205. WRITE(PHOTOGRAPH_PIN, LOW);
  4206. _delay_ms(PULSE_LENGTH);
  4207. }
  4208. delay(7.33);
  4209. for(int i=0; i < NUM_PULSES; i++) {
  4210. WRITE(PHOTOGRAPH_PIN, HIGH);
  4211. _delay_ms(PULSE_LENGTH);
  4212. WRITE(PHOTOGRAPH_PIN, LOW);
  4213. _delay_ms(PULSE_LENGTH);
  4214. }
  4215. #endif
  4216. #endif //chdk end if
  4217. }
  4218. break;
  4219. #ifdef DOGLCD
  4220. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4221. {
  4222. if (code_seen('C')) {
  4223. lcd_setcontrast( ((int)code_value())&63 );
  4224. }
  4225. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4226. SERIAL_PROTOCOL(lcd_contrast);
  4227. SERIAL_PROTOCOLLN("");
  4228. }
  4229. break;
  4230. #endif
  4231. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4232. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4233. {
  4234. float temp = .0;
  4235. if (code_seen('S')) temp=code_value();
  4236. set_extrude_min_temp(temp);
  4237. }
  4238. break;
  4239. #endif
  4240. case 303: // M303 PID autotune
  4241. {
  4242. float temp = 150.0;
  4243. int e=0;
  4244. int c=5;
  4245. if (code_seen('E')) e=code_value();
  4246. if (e<0)
  4247. temp=70;
  4248. if (code_seen('S')) temp=code_value();
  4249. if (code_seen('C')) c=code_value();
  4250. PID_autotune(temp, e, c);
  4251. }
  4252. break;
  4253. case 400: // M400 finish all moves
  4254. {
  4255. st_synchronize();
  4256. }
  4257. break;
  4258. #ifdef FILAMENT_SENSOR
  4259. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4260. {
  4261. #if (FILWIDTH_PIN > -1)
  4262. if(code_seen('N')) filament_width_nominal=code_value();
  4263. else{
  4264. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4265. SERIAL_PROTOCOLLN(filament_width_nominal);
  4266. }
  4267. #endif
  4268. }
  4269. break;
  4270. case 405: //M405 Turn on filament sensor for control
  4271. {
  4272. if(code_seen('D')) meas_delay_cm=code_value();
  4273. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4274. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4275. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4276. {
  4277. int temp_ratio = widthFil_to_size_ratio();
  4278. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4279. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4280. }
  4281. delay_index1=0;
  4282. delay_index2=0;
  4283. }
  4284. filament_sensor = true ;
  4285. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4286. //SERIAL_PROTOCOL(filament_width_meas);
  4287. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4288. //SERIAL_PROTOCOL(extrudemultiply);
  4289. }
  4290. break;
  4291. case 406: //M406 Turn off filament sensor for control
  4292. {
  4293. filament_sensor = false ;
  4294. }
  4295. break;
  4296. case 407: //M407 Display measured filament diameter
  4297. {
  4298. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4299. SERIAL_PROTOCOLLN(filament_width_meas);
  4300. }
  4301. break;
  4302. #endif
  4303. case 500: // M500 Store settings in EEPROM
  4304. {
  4305. Config_StoreSettings();
  4306. }
  4307. break;
  4308. case 501: // M501 Read settings from EEPROM
  4309. {
  4310. Config_RetrieveSettings();
  4311. }
  4312. break;
  4313. case 502: // M502 Revert to default settings
  4314. {
  4315. Config_ResetDefault();
  4316. }
  4317. break;
  4318. case 503: // M503 print settings currently in memory
  4319. {
  4320. Config_PrintSettings();
  4321. }
  4322. break;
  4323. case 509: //M509 Force language selection
  4324. {
  4325. lcd_force_language_selection();
  4326. SERIAL_ECHO_START;
  4327. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4328. }
  4329. break;
  4330. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4331. case 540:
  4332. {
  4333. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4334. }
  4335. break;
  4336. #endif
  4337. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4338. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4339. {
  4340. float value;
  4341. if (code_seen('Z'))
  4342. {
  4343. value = code_value();
  4344. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4345. {
  4346. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4347. SERIAL_ECHO_START;
  4348. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4349. SERIAL_PROTOCOLLN("");
  4350. }
  4351. else
  4352. {
  4353. SERIAL_ECHO_START;
  4354. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4355. SERIAL_ECHORPGM(MSG_Z_MIN);
  4356. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4357. SERIAL_ECHORPGM(MSG_Z_MAX);
  4358. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4359. SERIAL_PROTOCOLLN("");
  4360. }
  4361. }
  4362. else
  4363. {
  4364. SERIAL_ECHO_START;
  4365. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4366. SERIAL_ECHO(-zprobe_zoffset);
  4367. SERIAL_PROTOCOLLN("");
  4368. }
  4369. break;
  4370. }
  4371. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4372. #ifdef FILAMENTCHANGEENABLE
  4373. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4374. {
  4375. st_synchronize();
  4376. float target[4];
  4377. float lastpos[4];
  4378. if (farm_mode)
  4379. {
  4380. prusa_statistics(22);
  4381. }
  4382. feedmultiplyBckp=feedmultiply;
  4383. int8_t TooLowZ = 0;
  4384. target[X_AXIS]=current_position[X_AXIS];
  4385. target[Y_AXIS]=current_position[Y_AXIS];
  4386. target[Z_AXIS]=current_position[Z_AXIS];
  4387. target[E_AXIS]=current_position[E_AXIS];
  4388. lastpos[X_AXIS]=current_position[X_AXIS];
  4389. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4390. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4391. lastpos[E_AXIS]=current_position[E_AXIS];
  4392. //Restract extruder
  4393. if(code_seen('E'))
  4394. {
  4395. target[E_AXIS]+= code_value();
  4396. }
  4397. else
  4398. {
  4399. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4400. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4401. #endif
  4402. }
  4403. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4404. //Lift Z
  4405. if(code_seen('Z'))
  4406. {
  4407. target[Z_AXIS]+= code_value();
  4408. }
  4409. else
  4410. {
  4411. #ifdef FILAMENTCHANGE_ZADD
  4412. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4413. if(target[Z_AXIS] < 10){
  4414. target[Z_AXIS]+= 10 ;
  4415. TooLowZ = 1;
  4416. }else{
  4417. TooLowZ = 0;
  4418. }
  4419. #endif
  4420. }
  4421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4422. //Move XY to side
  4423. if(code_seen('X'))
  4424. {
  4425. target[X_AXIS]+= code_value();
  4426. }
  4427. else
  4428. {
  4429. #ifdef FILAMENTCHANGE_XPOS
  4430. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4431. #endif
  4432. }
  4433. if(code_seen('Y'))
  4434. {
  4435. target[Y_AXIS]= code_value();
  4436. }
  4437. else
  4438. {
  4439. #ifdef FILAMENTCHANGE_YPOS
  4440. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4441. #endif
  4442. }
  4443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4444. st_synchronize();
  4445. custom_message = true;
  4446. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4447. // Unload filament
  4448. if(code_seen('L'))
  4449. {
  4450. target[E_AXIS]+= code_value();
  4451. }
  4452. else
  4453. {
  4454. #ifdef SNMM
  4455. #else
  4456. #ifdef FILAMENTCHANGE_FINALRETRACT
  4457. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4458. #endif
  4459. #endif // SNMM
  4460. }
  4461. #ifdef SNMM
  4462. target[E_AXIS] += 12;
  4463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4464. target[E_AXIS] += 6;
  4465. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4466. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4467. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4468. st_synchronize();
  4469. target[E_AXIS] += (FIL_COOLING);
  4470. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4471. target[E_AXIS] += (FIL_COOLING*-1);
  4472. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4473. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4474. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4475. st_synchronize();
  4476. #else
  4477. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4478. #endif // SNMM
  4479. //finish moves
  4480. st_synchronize();
  4481. //disable extruder steppers so filament can be removed
  4482. disable_e0();
  4483. disable_e1();
  4484. disable_e2();
  4485. delay(100);
  4486. //Wait for user to insert filament
  4487. uint8_t cnt=0;
  4488. int counterBeep = 0;
  4489. lcd_wait_interact();
  4490. load_filament_time = millis();
  4491. while(!lcd_clicked()){
  4492. cnt++;
  4493. manage_heater();
  4494. manage_inactivity(true);
  4495. /*#ifdef SNMM
  4496. target[E_AXIS] += 0.002;
  4497. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4498. #endif // SNMM*/
  4499. if(cnt==0)
  4500. {
  4501. #if BEEPER > 0
  4502. if (counterBeep== 500){
  4503. counterBeep = 0;
  4504. }
  4505. SET_OUTPUT(BEEPER);
  4506. if (counterBeep== 0){
  4507. WRITE(BEEPER,HIGH);
  4508. }
  4509. if (counterBeep== 20){
  4510. WRITE(BEEPER,LOW);
  4511. }
  4512. counterBeep++;
  4513. #else
  4514. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4515. lcd_buzz(1000/6,100);
  4516. #else
  4517. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4518. #endif
  4519. #endif
  4520. }
  4521. }
  4522. #ifdef SNMM
  4523. display_loading();
  4524. do {
  4525. target[E_AXIS] += 0.002;
  4526. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4527. delay_keep_alive(2);
  4528. } while (!lcd_clicked());
  4529. /*if (millis() - load_filament_time > 2) {
  4530. load_filament_time = millis();
  4531. target[E_AXIS] += 0.001;
  4532. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4533. }*/
  4534. #endif
  4535. //Filament inserted
  4536. WRITE(BEEPER,LOW);
  4537. //Feed the filament to the end of nozzle quickly
  4538. #ifdef SNMM
  4539. st_synchronize();
  4540. target[E_AXIS] += bowden_length[snmm_extruder];
  4541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4542. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4544. target[E_AXIS] += 40;
  4545. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4546. target[E_AXIS] += 10;
  4547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4548. #else
  4549. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4550. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4551. #endif // SNMM
  4552. //Extrude some filament
  4553. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4554. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4555. //Wait for user to check the state
  4556. lcd_change_fil_state = 0;
  4557. lcd_loading_filament();
  4558. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4559. lcd_change_fil_state = 0;
  4560. lcd_alright();
  4561. switch(lcd_change_fil_state){
  4562. // Filament failed to load so load it again
  4563. case 2:
  4564. #ifdef SNMM
  4565. display_loading();
  4566. do {
  4567. target[E_AXIS] += 0.002;
  4568. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4569. delay_keep_alive(2);
  4570. } while (!lcd_clicked());
  4571. st_synchronize();
  4572. target[E_AXIS] += bowden_length[snmm_extruder];
  4573. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4574. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4575. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4576. target[E_AXIS] += 40;
  4577. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4578. target[E_AXIS] += 10;
  4579. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4580. #else
  4581. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4582. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4583. #endif
  4584. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4585. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4586. lcd_loading_filament();
  4587. break;
  4588. // Filament loaded properly but color is not clear
  4589. case 3:
  4590. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4591. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4592. lcd_loading_color();
  4593. break;
  4594. // Everything good
  4595. default:
  4596. lcd_change_success();
  4597. lcd_update_enable(true);
  4598. break;
  4599. }
  4600. }
  4601. //Not let's go back to print
  4602. //Feed a little of filament to stabilize pressure
  4603. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4605. //Retract
  4606. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4607. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4608. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4609. //Move XY back
  4610. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4611. //Move Z back
  4612. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4613. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4614. //Unretract
  4615. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4616. //Set E position to original
  4617. plan_set_e_position(lastpos[E_AXIS]);
  4618. //Recover feed rate
  4619. feedmultiply=feedmultiplyBckp;
  4620. char cmd[9];
  4621. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4622. enquecommand(cmd);
  4623. lcd_setstatuspgm(WELCOME_MSG);
  4624. custom_message = false;
  4625. custom_message_type = 0;
  4626. }
  4627. break;
  4628. #endif //FILAMENTCHANGEENABLE
  4629. case 601: {
  4630. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4631. }
  4632. break;
  4633. case 602: {
  4634. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4635. }
  4636. break;
  4637. case 907: // M907 Set digital trimpot motor current using axis codes.
  4638. {
  4639. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4640. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4641. if(code_seen('B')) digipot_current(4,code_value());
  4642. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4643. #endif
  4644. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4645. if(code_seen('X')) digipot_current(0, code_value());
  4646. #endif
  4647. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4648. if(code_seen('Z')) digipot_current(1, code_value());
  4649. #endif
  4650. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4651. if(code_seen('E')) digipot_current(2, code_value());
  4652. #endif
  4653. #ifdef DIGIPOT_I2C
  4654. // this one uses actual amps in floating point
  4655. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4656. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4657. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4658. #endif
  4659. }
  4660. break;
  4661. case 908: // M908 Control digital trimpot directly.
  4662. {
  4663. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4664. uint8_t channel,current;
  4665. if(code_seen('P')) channel=code_value();
  4666. if(code_seen('S')) current=code_value();
  4667. digitalPotWrite(channel, current);
  4668. #endif
  4669. }
  4670. break;
  4671. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4672. {
  4673. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4674. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4675. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4676. if(code_seen('B')) microstep_mode(4,code_value());
  4677. microstep_readings();
  4678. #endif
  4679. }
  4680. break;
  4681. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4682. {
  4683. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4684. if(code_seen('S')) switch((int)code_value())
  4685. {
  4686. case 1:
  4687. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4688. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4689. break;
  4690. case 2:
  4691. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4692. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4693. break;
  4694. }
  4695. microstep_readings();
  4696. #endif
  4697. }
  4698. break;
  4699. case 701: //M701: load filament
  4700. {
  4701. enable_z();
  4702. custom_message = true;
  4703. custom_message_type = 2;
  4704. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4705. current_position[E_AXIS] += 70;
  4706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4707. current_position[E_AXIS] += 25;
  4708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4709. st_synchronize();
  4710. if (!farm_mode && loading_flag) {
  4711. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4712. while (!clean) {
  4713. lcd_update_enable(true);
  4714. lcd_update(2);
  4715. current_position[E_AXIS] += 25;
  4716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4717. st_synchronize();
  4718. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4719. }
  4720. }
  4721. lcd_update_enable(true);
  4722. lcd_update(2);
  4723. lcd_setstatuspgm(WELCOME_MSG);
  4724. disable_z();
  4725. loading_flag = false;
  4726. custom_message = false;
  4727. custom_message_type = 0;
  4728. }
  4729. break;
  4730. case 702:
  4731. {
  4732. #ifdef SNMM
  4733. if (code_seen('U')) {
  4734. extr_unload_used();
  4735. }
  4736. else {
  4737. extr_unload_all();
  4738. }
  4739. #else
  4740. custom_message = true;
  4741. custom_message_type = 2;
  4742. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4743. current_position[E_AXIS] += 3;
  4744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  4745. current_position[E_AXIS] -= 80;
  4746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4747. st_synchronize();
  4748. lcd_setstatuspgm(WELCOME_MSG);
  4749. custom_message = false;
  4750. custom_message_type = 0;
  4751. #endif
  4752. }
  4753. break;
  4754. case 999: // M999: Restart after being stopped
  4755. Stopped = false;
  4756. lcd_reset_alert_level();
  4757. gcode_LastN = Stopped_gcode_LastN;
  4758. FlushSerialRequestResend();
  4759. break;
  4760. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4761. }
  4762. } // end if(code_seen('M')) (end of M codes)
  4763. else if(code_seen('T'))
  4764. {
  4765. int index;
  4766. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4767. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4768. SERIAL_ECHOLNPGM("Invalid T code.");
  4769. }
  4770. else {
  4771. tmp_extruder = code_value();
  4772. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4773. #ifdef SNMM
  4774. snmm_extruder = tmp_extruder;
  4775. st_synchronize();
  4776. delay(100);
  4777. disable_e0();
  4778. disable_e1();
  4779. disable_e2();
  4780. pinMode(E_MUX0_PIN, OUTPUT);
  4781. pinMode(E_MUX1_PIN, OUTPUT);
  4782. pinMode(E_MUX2_PIN, OUTPUT);
  4783. delay(100);
  4784. SERIAL_ECHO_START;
  4785. SERIAL_ECHO("T:");
  4786. SERIAL_ECHOLN((int)tmp_extruder);
  4787. switch (tmp_extruder) {
  4788. case 1:
  4789. WRITE(E_MUX0_PIN, HIGH);
  4790. WRITE(E_MUX1_PIN, LOW);
  4791. WRITE(E_MUX2_PIN, LOW);
  4792. break;
  4793. case 2:
  4794. WRITE(E_MUX0_PIN, LOW);
  4795. WRITE(E_MUX1_PIN, HIGH);
  4796. WRITE(E_MUX2_PIN, LOW);
  4797. break;
  4798. case 3:
  4799. WRITE(E_MUX0_PIN, HIGH);
  4800. WRITE(E_MUX1_PIN, HIGH);
  4801. WRITE(E_MUX2_PIN, LOW);
  4802. break;
  4803. default:
  4804. WRITE(E_MUX0_PIN, LOW);
  4805. WRITE(E_MUX1_PIN, LOW);
  4806. WRITE(E_MUX2_PIN, LOW);
  4807. break;
  4808. }
  4809. delay(100);
  4810. #else
  4811. if (tmp_extruder >= EXTRUDERS) {
  4812. SERIAL_ECHO_START;
  4813. SERIAL_ECHOPGM("T");
  4814. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4815. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4816. }
  4817. else {
  4818. boolean make_move = false;
  4819. if (code_seen('F')) {
  4820. make_move = true;
  4821. next_feedrate = code_value();
  4822. if (next_feedrate > 0.0) {
  4823. feedrate = next_feedrate;
  4824. }
  4825. }
  4826. #if EXTRUDERS > 1
  4827. if (tmp_extruder != active_extruder) {
  4828. // Save current position to return to after applying extruder offset
  4829. memcpy(destination, current_position, sizeof(destination));
  4830. // Offset extruder (only by XY)
  4831. int i;
  4832. for (i = 0; i < 2; i++) {
  4833. current_position[i] = current_position[i] -
  4834. extruder_offset[i][active_extruder] +
  4835. extruder_offset[i][tmp_extruder];
  4836. }
  4837. // Set the new active extruder and position
  4838. active_extruder = tmp_extruder;
  4839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4840. // Move to the old position if 'F' was in the parameters
  4841. if (make_move && Stopped == false) {
  4842. prepare_move();
  4843. }
  4844. }
  4845. #endif
  4846. SERIAL_ECHO_START;
  4847. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4848. SERIAL_PROTOCOLLN((int)active_extruder);
  4849. }
  4850. #endif
  4851. }
  4852. } // end if(code_seen('T')) (end of T codes)
  4853. else
  4854. {
  4855. SERIAL_ECHO_START;
  4856. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4857. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4858. SERIAL_ECHOLNPGM("\"");
  4859. }
  4860. ClearToSend();
  4861. }
  4862. void FlushSerialRequestResend()
  4863. {
  4864. //char cmdbuffer[bufindr][100]="Resend:";
  4865. MYSERIAL.flush();
  4866. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4867. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4868. ClearToSend();
  4869. }
  4870. // Confirm the execution of a command, if sent from a serial line.
  4871. // Execution of a command from a SD card will not be confirmed.
  4872. void ClearToSend()
  4873. {
  4874. previous_millis_cmd = millis();
  4875. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4876. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4877. }
  4878. void get_coordinates()
  4879. {
  4880. bool seen[4]={false,false,false,false};
  4881. for(int8_t i=0; i < NUM_AXIS; i++) {
  4882. if(code_seen(axis_codes[i]))
  4883. {
  4884. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4885. seen[i]=true;
  4886. }
  4887. else destination[i] = current_position[i]; //Are these else lines really needed?
  4888. }
  4889. if(code_seen('F')) {
  4890. next_feedrate = code_value();
  4891. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4892. }
  4893. }
  4894. void get_arc_coordinates()
  4895. {
  4896. #ifdef SF_ARC_FIX
  4897. bool relative_mode_backup = relative_mode;
  4898. relative_mode = true;
  4899. #endif
  4900. get_coordinates();
  4901. #ifdef SF_ARC_FIX
  4902. relative_mode=relative_mode_backup;
  4903. #endif
  4904. if(code_seen('I')) {
  4905. offset[0] = code_value();
  4906. }
  4907. else {
  4908. offset[0] = 0.0;
  4909. }
  4910. if(code_seen('J')) {
  4911. offset[1] = code_value();
  4912. }
  4913. else {
  4914. offset[1] = 0.0;
  4915. }
  4916. }
  4917. void clamp_to_software_endstops(float target[3])
  4918. {
  4919. world2machine_clamp(target[0], target[1]);
  4920. // Clamp the Z coordinate.
  4921. if (min_software_endstops) {
  4922. float negative_z_offset = 0;
  4923. #ifdef ENABLE_AUTO_BED_LEVELING
  4924. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4925. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4926. #endif
  4927. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4928. }
  4929. if (max_software_endstops) {
  4930. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4931. }
  4932. }
  4933. #ifdef MESH_BED_LEVELING
  4934. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4935. float dx = x - current_position[X_AXIS];
  4936. float dy = y - current_position[Y_AXIS];
  4937. float dz = z - current_position[Z_AXIS];
  4938. int n_segments = 0;
  4939. if (mbl.active) {
  4940. float len = abs(dx) + abs(dy);
  4941. if (len > 0)
  4942. // Split to 3cm segments or shorter.
  4943. n_segments = int(ceil(len / 30.f));
  4944. }
  4945. if (n_segments > 1) {
  4946. float de = e - current_position[E_AXIS];
  4947. for (int i = 1; i < n_segments; ++ i) {
  4948. float t = float(i) / float(n_segments);
  4949. plan_buffer_line(
  4950. current_position[X_AXIS] + t * dx,
  4951. current_position[Y_AXIS] + t * dy,
  4952. current_position[Z_AXIS] + t * dz,
  4953. current_position[E_AXIS] + t * de,
  4954. feed_rate, extruder);
  4955. }
  4956. }
  4957. // The rest of the path.
  4958. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4959. current_position[X_AXIS] = x;
  4960. current_position[Y_AXIS] = y;
  4961. current_position[Z_AXIS] = z;
  4962. current_position[E_AXIS] = e;
  4963. }
  4964. #endif // MESH_BED_LEVELING
  4965. void prepare_move()
  4966. {
  4967. clamp_to_software_endstops(destination);
  4968. previous_millis_cmd = millis();
  4969. // Do not use feedmultiply for E or Z only moves
  4970. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4971. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4972. }
  4973. else {
  4974. #ifdef MESH_BED_LEVELING
  4975. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4976. #else
  4977. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4978. #endif
  4979. }
  4980. for(int8_t i=0; i < NUM_AXIS; i++) {
  4981. current_position[i] = destination[i];
  4982. }
  4983. }
  4984. void prepare_arc_move(char isclockwise) {
  4985. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4986. // Trace the arc
  4987. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4988. // As far as the parser is concerned, the position is now == target. In reality the
  4989. // motion control system might still be processing the action and the real tool position
  4990. // in any intermediate location.
  4991. for(int8_t i=0; i < NUM_AXIS; i++) {
  4992. current_position[i] = destination[i];
  4993. }
  4994. previous_millis_cmd = millis();
  4995. }
  4996. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4997. #if defined(FAN_PIN)
  4998. #if CONTROLLERFAN_PIN == FAN_PIN
  4999. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5000. #endif
  5001. #endif
  5002. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5003. unsigned long lastMotorCheck = 0;
  5004. void controllerFan()
  5005. {
  5006. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5007. {
  5008. lastMotorCheck = millis();
  5009. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5010. #if EXTRUDERS > 2
  5011. || !READ(E2_ENABLE_PIN)
  5012. #endif
  5013. #if EXTRUDER > 1
  5014. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5015. || !READ(X2_ENABLE_PIN)
  5016. #endif
  5017. || !READ(E1_ENABLE_PIN)
  5018. #endif
  5019. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5020. {
  5021. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5022. }
  5023. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5024. {
  5025. digitalWrite(CONTROLLERFAN_PIN, 0);
  5026. analogWrite(CONTROLLERFAN_PIN, 0);
  5027. }
  5028. else
  5029. {
  5030. // allows digital or PWM fan output to be used (see M42 handling)
  5031. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5032. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5033. }
  5034. }
  5035. }
  5036. #endif
  5037. #ifdef TEMP_STAT_LEDS
  5038. static bool blue_led = false;
  5039. static bool red_led = false;
  5040. static uint32_t stat_update = 0;
  5041. void handle_status_leds(void) {
  5042. float max_temp = 0.0;
  5043. if(millis() > stat_update) {
  5044. stat_update += 500; // Update every 0.5s
  5045. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5046. max_temp = max(max_temp, degHotend(cur_extruder));
  5047. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5048. }
  5049. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5050. max_temp = max(max_temp, degTargetBed());
  5051. max_temp = max(max_temp, degBed());
  5052. #endif
  5053. if((max_temp > 55.0) && (red_led == false)) {
  5054. digitalWrite(STAT_LED_RED, 1);
  5055. digitalWrite(STAT_LED_BLUE, 0);
  5056. red_led = true;
  5057. blue_led = false;
  5058. }
  5059. if((max_temp < 54.0) && (blue_led == false)) {
  5060. digitalWrite(STAT_LED_RED, 0);
  5061. digitalWrite(STAT_LED_BLUE, 1);
  5062. red_led = false;
  5063. blue_led = true;
  5064. }
  5065. }
  5066. }
  5067. #endif
  5068. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5069. {
  5070. #if defined(KILL_PIN) && KILL_PIN > -1
  5071. static int killCount = 0; // make the inactivity button a bit less responsive
  5072. const int KILL_DELAY = 10000;
  5073. #endif
  5074. if(buflen < (BUFSIZE-1)){
  5075. get_command();
  5076. }
  5077. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5078. if(max_inactive_time)
  5079. kill();
  5080. if(stepper_inactive_time) {
  5081. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5082. {
  5083. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5084. disable_x();
  5085. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5086. disable_y();
  5087. disable_z();
  5088. disable_e0();
  5089. disable_e1();
  5090. disable_e2();
  5091. }
  5092. }
  5093. }
  5094. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5095. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5096. {
  5097. chdkActive = false;
  5098. WRITE(CHDK, LOW);
  5099. }
  5100. #endif
  5101. #if defined(KILL_PIN) && KILL_PIN > -1
  5102. // Check if the kill button was pressed and wait just in case it was an accidental
  5103. // key kill key press
  5104. // -------------------------------------------------------------------------------
  5105. if( 0 == READ(KILL_PIN) )
  5106. {
  5107. killCount++;
  5108. }
  5109. else if (killCount > 0)
  5110. {
  5111. killCount--;
  5112. }
  5113. // Exceeded threshold and we can confirm that it was not accidental
  5114. // KILL the machine
  5115. // ----------------------------------------------------------------
  5116. if ( killCount >= KILL_DELAY)
  5117. {
  5118. kill();
  5119. }
  5120. #endif
  5121. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5122. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5123. #endif
  5124. #ifdef EXTRUDER_RUNOUT_PREVENT
  5125. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5126. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5127. {
  5128. bool oldstatus=READ(E0_ENABLE_PIN);
  5129. enable_e0();
  5130. float oldepos=current_position[E_AXIS];
  5131. float oldedes=destination[E_AXIS];
  5132. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5133. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5134. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5135. current_position[E_AXIS]=oldepos;
  5136. destination[E_AXIS]=oldedes;
  5137. plan_set_e_position(oldepos);
  5138. previous_millis_cmd=millis();
  5139. st_synchronize();
  5140. WRITE(E0_ENABLE_PIN,oldstatus);
  5141. }
  5142. #endif
  5143. #ifdef TEMP_STAT_LEDS
  5144. handle_status_leds();
  5145. #endif
  5146. check_axes_activity();
  5147. }
  5148. void kill(const char *full_screen_message)
  5149. {
  5150. cli(); // Stop interrupts
  5151. disable_heater();
  5152. disable_x();
  5153. // SERIAL_ECHOLNPGM("kill - disable Y");
  5154. disable_y();
  5155. disable_z();
  5156. disable_e0();
  5157. disable_e1();
  5158. disable_e2();
  5159. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5160. pinMode(PS_ON_PIN,INPUT);
  5161. #endif
  5162. SERIAL_ERROR_START;
  5163. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5164. if (full_screen_message != NULL) {
  5165. SERIAL_ERRORLNRPGM(full_screen_message);
  5166. lcd_display_message_fullscreen_P(full_screen_message);
  5167. } else {
  5168. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5169. }
  5170. // FMC small patch to update the LCD before ending
  5171. sei(); // enable interrupts
  5172. for ( int i=5; i--; lcd_update())
  5173. {
  5174. delay(200);
  5175. }
  5176. cli(); // disable interrupts
  5177. suicide();
  5178. while(1) { /* Intentionally left empty */ } // Wait for reset
  5179. }
  5180. void Stop()
  5181. {
  5182. disable_heater();
  5183. if(Stopped == false) {
  5184. Stopped = true;
  5185. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5186. SERIAL_ERROR_START;
  5187. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5188. LCD_MESSAGERPGM(MSG_STOPPED);
  5189. }
  5190. }
  5191. bool IsStopped() { return Stopped; };
  5192. #ifdef FAST_PWM_FAN
  5193. void setPwmFrequency(uint8_t pin, int val)
  5194. {
  5195. val &= 0x07;
  5196. switch(digitalPinToTimer(pin))
  5197. {
  5198. #if defined(TCCR0A)
  5199. case TIMER0A:
  5200. case TIMER0B:
  5201. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5202. // TCCR0B |= val;
  5203. break;
  5204. #endif
  5205. #if defined(TCCR1A)
  5206. case TIMER1A:
  5207. case TIMER1B:
  5208. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5209. // TCCR1B |= val;
  5210. break;
  5211. #endif
  5212. #if defined(TCCR2)
  5213. case TIMER2:
  5214. case TIMER2:
  5215. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5216. TCCR2 |= val;
  5217. break;
  5218. #endif
  5219. #if defined(TCCR2A)
  5220. case TIMER2A:
  5221. case TIMER2B:
  5222. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5223. TCCR2B |= val;
  5224. break;
  5225. #endif
  5226. #if defined(TCCR3A)
  5227. case TIMER3A:
  5228. case TIMER3B:
  5229. case TIMER3C:
  5230. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5231. TCCR3B |= val;
  5232. break;
  5233. #endif
  5234. #if defined(TCCR4A)
  5235. case TIMER4A:
  5236. case TIMER4B:
  5237. case TIMER4C:
  5238. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5239. TCCR4B |= val;
  5240. break;
  5241. #endif
  5242. #if defined(TCCR5A)
  5243. case TIMER5A:
  5244. case TIMER5B:
  5245. case TIMER5C:
  5246. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5247. TCCR5B |= val;
  5248. break;
  5249. #endif
  5250. }
  5251. }
  5252. #endif //FAST_PWM_FAN
  5253. bool setTargetedHotend(int code){
  5254. tmp_extruder = active_extruder;
  5255. if(code_seen('T')) {
  5256. tmp_extruder = code_value();
  5257. if(tmp_extruder >= EXTRUDERS) {
  5258. SERIAL_ECHO_START;
  5259. switch(code){
  5260. case 104:
  5261. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5262. break;
  5263. case 105:
  5264. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5265. break;
  5266. case 109:
  5267. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5268. break;
  5269. case 218:
  5270. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5271. break;
  5272. case 221:
  5273. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5274. break;
  5275. }
  5276. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5277. return true;
  5278. }
  5279. }
  5280. return false;
  5281. }
  5282. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5283. {
  5284. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5285. {
  5286. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5287. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5288. }
  5289. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5290. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5291. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5292. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5293. total_filament_used = 0;
  5294. }
  5295. float calculate_volumetric_multiplier(float diameter) {
  5296. float area = .0;
  5297. float radius = .0;
  5298. radius = diameter * .5;
  5299. if (! volumetric_enabled || radius == 0) {
  5300. area = 1;
  5301. }
  5302. else {
  5303. area = M_PI * pow(radius, 2);
  5304. }
  5305. return 1.0 / area;
  5306. }
  5307. void calculate_volumetric_multipliers() {
  5308. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5309. #if EXTRUDERS > 1
  5310. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5311. #if EXTRUDERS > 2
  5312. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5313. #endif
  5314. #endif
  5315. }
  5316. void delay_keep_alive(unsigned int ms)
  5317. {
  5318. for (;;) {
  5319. manage_heater();
  5320. // Manage inactivity, but don't disable steppers on timeout.
  5321. manage_inactivity(true);
  5322. lcd_update();
  5323. if (ms == 0)
  5324. break;
  5325. else if (ms >= 50) {
  5326. delay(50);
  5327. ms -= 50;
  5328. } else {
  5329. delay(ms);
  5330. ms = 0;
  5331. }
  5332. }
  5333. }
  5334. void wait_for_heater(long codenum) {
  5335. #ifdef TEMP_RESIDENCY_TIME
  5336. long residencyStart;
  5337. residencyStart = -1;
  5338. /* continue to loop until we have reached the target temp
  5339. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5340. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5341. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5342. #else
  5343. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5344. #endif //TEMP_RESIDENCY_TIME
  5345. if ((millis() - codenum) > 1000UL)
  5346. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5347. if (!farm_mode) {
  5348. SERIAL_PROTOCOLPGM("T:");
  5349. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5350. SERIAL_PROTOCOLPGM(" E:");
  5351. SERIAL_PROTOCOL((int)tmp_extruder);
  5352. #ifdef TEMP_RESIDENCY_TIME
  5353. SERIAL_PROTOCOLPGM(" W:");
  5354. if (residencyStart > -1)
  5355. {
  5356. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5357. SERIAL_PROTOCOLLN(codenum);
  5358. }
  5359. else
  5360. {
  5361. SERIAL_PROTOCOLLN("?");
  5362. }
  5363. }
  5364. #else
  5365. SERIAL_PROTOCOLLN("");
  5366. #endif
  5367. codenum = millis();
  5368. }
  5369. manage_heater();
  5370. manage_inactivity();
  5371. lcd_update();
  5372. #ifdef TEMP_RESIDENCY_TIME
  5373. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5374. or when current temp falls outside the hysteresis after target temp was reached */
  5375. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5376. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5377. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5378. {
  5379. residencyStart = millis();
  5380. }
  5381. #endif //TEMP_RESIDENCY_TIME
  5382. }
  5383. }
  5384. void check_babystep() {
  5385. int babystep_z;
  5386. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5387. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5388. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5389. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5390. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5391. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5392. lcd_update_enable(true);
  5393. }
  5394. }
  5395. #ifdef DIS
  5396. void d_setup()
  5397. {
  5398. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5399. pinMode(D_DATA, INPUT_PULLUP);
  5400. pinMode(D_REQUIRE, OUTPUT);
  5401. digitalWrite(D_REQUIRE, HIGH);
  5402. }
  5403. float d_ReadData()
  5404. {
  5405. int digit[13];
  5406. String mergeOutput;
  5407. float output;
  5408. digitalWrite(D_REQUIRE, HIGH);
  5409. for (int i = 0; i<13; i++)
  5410. {
  5411. for (int j = 0; j < 4; j++)
  5412. {
  5413. while (digitalRead(D_DATACLOCK) == LOW) {}
  5414. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5415. bitWrite(digit[i], j, digitalRead(D_DATA));
  5416. }
  5417. }
  5418. digitalWrite(D_REQUIRE, LOW);
  5419. mergeOutput = "";
  5420. output = 0;
  5421. for (int r = 5; r <= 10; r++) //Merge digits
  5422. {
  5423. mergeOutput += digit[r];
  5424. }
  5425. output = mergeOutput.toFloat();
  5426. if (digit[4] == 8) //Handle sign
  5427. {
  5428. output *= -1;
  5429. }
  5430. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5431. {
  5432. output /= 10;
  5433. }
  5434. return output;
  5435. }
  5436. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5437. int t1 = 0;
  5438. int t_delay = 0;
  5439. int digit[13];
  5440. int m;
  5441. char str[3];
  5442. //String mergeOutput;
  5443. char mergeOutput[15];
  5444. float output;
  5445. int mesh_point = 0; //index number of calibration point
  5446. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5447. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5448. float mesh_home_z_search = 4;
  5449. float row[x_points_num];
  5450. int ix = 0;
  5451. int iy = 0;
  5452. char* filename_wldsd = "wldsd.txt";
  5453. char data_wldsd[70];
  5454. char numb_wldsd[10];
  5455. d_setup();
  5456. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5457. // We don't know where we are! HOME!
  5458. // Push the commands to the front of the message queue in the reverse order!
  5459. // There shall be always enough space reserved for these commands.
  5460. repeatcommand_front(); // repeat G80 with all its parameters
  5461. enquecommand_front_P((PSTR("G28 W0")));
  5462. enquecommand_front_P((PSTR("G1 Z5")));
  5463. return;
  5464. }
  5465. bool custom_message_old = custom_message;
  5466. unsigned int custom_message_type_old = custom_message_type;
  5467. unsigned int custom_message_state_old = custom_message_state;
  5468. custom_message = true;
  5469. custom_message_type = 1;
  5470. custom_message_state = (x_points_num * y_points_num) + 10;
  5471. lcd_update(1);
  5472. mbl.reset();
  5473. babystep_undo();
  5474. card.openFile(filename_wldsd, false);
  5475. current_position[Z_AXIS] = mesh_home_z_search;
  5476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5477. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5478. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5479. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5480. setup_for_endstop_move(false);
  5481. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5482. SERIAL_PROTOCOL(x_points_num);
  5483. SERIAL_PROTOCOLPGM(",");
  5484. SERIAL_PROTOCOL(y_points_num);
  5485. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5486. SERIAL_PROTOCOL(mesh_home_z_search);
  5487. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5488. SERIAL_PROTOCOL(x_dimension);
  5489. SERIAL_PROTOCOLPGM(",");
  5490. SERIAL_PROTOCOL(y_dimension);
  5491. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5492. while (mesh_point != x_points_num * y_points_num) {
  5493. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5494. iy = mesh_point / x_points_num;
  5495. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5496. float z0 = 0.f;
  5497. current_position[Z_AXIS] = mesh_home_z_search;
  5498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5499. st_synchronize();
  5500. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5501. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5503. st_synchronize();
  5504. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5505. break;
  5506. card.closefile();
  5507. }
  5508. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5509. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5510. //strcat(data_wldsd, numb_wldsd);
  5511. //MYSERIAL.println(data_wldsd);
  5512. //delay(1000);
  5513. //delay(3000);
  5514. //t1 = millis();
  5515. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5516. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5517. memset(digit, 0, sizeof(digit));
  5518. //cli();
  5519. digitalWrite(D_REQUIRE, LOW);
  5520. for (int i = 0; i<13; i++)
  5521. {
  5522. //t1 = millis();
  5523. for (int j = 0; j < 4; j++)
  5524. {
  5525. while (digitalRead(D_DATACLOCK) == LOW) {}
  5526. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5527. bitWrite(digit[i], j, digitalRead(D_DATA));
  5528. }
  5529. //t_delay = (millis() - t1);
  5530. //SERIAL_PROTOCOLPGM(" ");
  5531. //SERIAL_PROTOCOL_F(t_delay, 5);
  5532. //SERIAL_PROTOCOLPGM(" ");
  5533. }
  5534. //sei();
  5535. digitalWrite(D_REQUIRE, HIGH);
  5536. mergeOutput[0] = '\0';
  5537. output = 0;
  5538. for (int r = 5; r <= 10; r++) //Merge digits
  5539. {
  5540. sprintf(str, "%d", digit[r]);
  5541. strcat(mergeOutput, str);
  5542. }
  5543. output = atof(mergeOutput);
  5544. if (digit[4] == 8) //Handle sign
  5545. {
  5546. output *= -1;
  5547. }
  5548. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5549. {
  5550. output *= 0.1;
  5551. }
  5552. //output = d_ReadData();
  5553. //row[ix] = current_position[Z_AXIS];
  5554. memset(data_wldsd, 0, sizeof(data_wldsd));
  5555. for (int i = 0; i <3; i++) {
  5556. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5557. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5558. strcat(data_wldsd, numb_wldsd);
  5559. strcat(data_wldsd, ";");
  5560. }
  5561. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5562. dtostrf(output, 8, 5, numb_wldsd);
  5563. strcat(data_wldsd, numb_wldsd);
  5564. //strcat(data_wldsd, ";");
  5565. card.write_command(data_wldsd);
  5566. //row[ix] = d_ReadData();
  5567. row[ix] = output; // current_position[Z_AXIS];
  5568. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5569. for (int i = 0; i < x_points_num; i++) {
  5570. SERIAL_PROTOCOLPGM(" ");
  5571. SERIAL_PROTOCOL_F(row[i], 5);
  5572. }
  5573. SERIAL_PROTOCOLPGM("\n");
  5574. }
  5575. custom_message_state--;
  5576. mesh_point++;
  5577. lcd_update(1);
  5578. }
  5579. card.closefile();
  5580. }
  5581. #endif
  5582. void temp_compensation_start() {
  5583. custom_message = true;
  5584. custom_message_type = 5;
  5585. custom_message_state = PINDA_HEAT_T + 1;
  5586. lcd_update(2);
  5587. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5588. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5589. }
  5590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5591. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5592. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5593. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5595. st_synchronize();
  5596. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5597. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5598. delay_keep_alive(1000);
  5599. custom_message_state = PINDA_HEAT_T - i;
  5600. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5601. else lcd_update(1);
  5602. }
  5603. custom_message_type = 0;
  5604. custom_message_state = 0;
  5605. custom_message = false;
  5606. }
  5607. void temp_compensation_apply() {
  5608. int i_add;
  5609. int compensation_value;
  5610. int z_shift = 0;
  5611. float z_shift_mm;
  5612. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5613. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5614. i_add = (target_temperature_bed - 60) / 10;
  5615. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5616. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5617. }else {
  5618. //interpolation
  5619. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5620. }
  5621. SERIAL_PROTOCOLPGM("\n");
  5622. SERIAL_PROTOCOLPGM("Z shift applied:");
  5623. MYSERIAL.print(z_shift_mm);
  5624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5625. st_synchronize();
  5626. plan_set_z_position(current_position[Z_AXIS]);
  5627. }
  5628. else {
  5629. //we have no temp compensation data
  5630. }
  5631. }
  5632. float temp_comp_interpolation(float inp_temperature) {
  5633. //cubic spline interpolation
  5634. int n, i, j, k;
  5635. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5636. int shift[10];
  5637. int temp_C[10];
  5638. n = 6; //number of measured points
  5639. shift[0] = 0;
  5640. for (i = 0; i < n; i++) {
  5641. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5642. temp_C[i] = 50 + i * 10; //temperature in C
  5643. x[i] = (float)temp_C[i];
  5644. f[i] = (float)shift[i];
  5645. }
  5646. if (inp_temperature < x[0]) return 0;
  5647. for (i = n - 1; i>0; i--) {
  5648. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5649. h[i - 1] = x[i] - x[i - 1];
  5650. }
  5651. //*********** formation of h, s , f matrix **************
  5652. for (i = 1; i<n - 1; i++) {
  5653. m[i][i] = 2 * (h[i - 1] + h[i]);
  5654. if (i != 1) {
  5655. m[i][i - 1] = h[i - 1];
  5656. m[i - 1][i] = h[i - 1];
  5657. }
  5658. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5659. }
  5660. //*********** forward elimination **************
  5661. for (i = 1; i<n - 2; i++) {
  5662. temp = (m[i + 1][i] / m[i][i]);
  5663. for (j = 1; j <= n - 1; j++)
  5664. m[i + 1][j] -= temp*m[i][j];
  5665. }
  5666. //*********** backward substitution *********
  5667. for (i = n - 2; i>0; i--) {
  5668. sum = 0;
  5669. for (j = i; j <= n - 2; j++)
  5670. sum += m[i][j] * s[j];
  5671. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5672. }
  5673. for (i = 0; i<n - 1; i++)
  5674. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5675. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5676. b = s[i] / 2;
  5677. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5678. d = f[i];
  5679. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5680. }
  5681. return sum;
  5682. }
  5683. void long_pause() //long pause print
  5684. {
  5685. st_synchronize();
  5686. //save currently set parameters to global variables
  5687. saved_feedmultiply = feedmultiply;
  5688. HotendTempBckp = degTargetHotend(active_extruder);
  5689. fanSpeedBckp = fanSpeed;
  5690. start_pause_print = millis();
  5691. //save position
  5692. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5693. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5694. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5695. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5696. //retract
  5697. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5699. //lift z
  5700. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5701. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5703. //set nozzle target temperature to 0
  5704. setTargetHotend(0, 0);
  5705. setTargetHotend(0, 1);
  5706. setTargetHotend(0, 2);
  5707. //Move XY to side
  5708. current_position[X_AXIS] = X_PAUSE_POS;
  5709. current_position[Y_AXIS] = Y_PAUSE_POS;
  5710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5711. // Turn off the print fan
  5712. fanSpeed = 0;
  5713. st_synchronize();
  5714. }
  5715. void serialecho_temperatures() {
  5716. float tt = degHotend(active_extruder);
  5717. SERIAL_PROTOCOLPGM("T:");
  5718. SERIAL_PROTOCOL(tt);
  5719. SERIAL_PROTOCOLPGM(" E:");
  5720. SERIAL_PROTOCOL((int)active_extruder);
  5721. SERIAL_PROTOCOLPGM(" B:");
  5722. SERIAL_PROTOCOL_F(degBed(), 1);
  5723. SERIAL_PROTOCOLLN("");
  5724. }