Marlin_main.cpp 328 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. int8_t FarmMode = 0;
  170. bool prusa_sd_card_upload = false;
  171. unsigned int status_number = 0;
  172. unsigned long total_filament_used;
  173. unsigned int heating_status;
  174. unsigned int heating_status_counter;
  175. bool loading_flag = false;
  176. char snmm_filaments_used = 0;
  177. bool fan_state[2];
  178. int fan_edge_counter[2];
  179. int fan_speed[2];
  180. char dir_names[3][9];
  181. bool sortAlpha = false;
  182. float extruder_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. //shortcuts for more readable code
  192. #define _x current_position[X_AXIS]
  193. #define _y current_position[Y_AXIS]
  194. #define _z current_position[Z_AXIS]
  195. #define _e current_position[E_AXIS]
  196. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  197. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  198. bool axis_known_position[3] = {false, false, false};
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  203. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  204. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  205. #endif
  206. };
  207. #endif
  208. uint8_t active_extruder = 0;
  209. int fanSpeed=0;
  210. #ifdef FWRETRACT
  211. bool retracted[EXTRUDERS]={false
  212. #if EXTRUDERS > 1
  213. , false
  214. #if EXTRUDERS > 2
  215. , false
  216. #endif
  217. #endif
  218. };
  219. bool retracted_swap[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. float retract_length_swap = RETRACT_LENGTH_SWAP;
  228. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  229. #endif
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. bool cancel_heatup = false ;
  236. int8_t busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. const char errormagic[] PROGMEM = "Error:";
  240. const char echomagic[] PROGMEM = "echo:";
  241. bool no_response = false;
  242. uint8_t important_status;
  243. uint8_t saved_filament_type;
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. bool wizard_active = false; //autoload temporarily disabled during wizard
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. //===========================================================================
  303. //=============================Routines======================================
  304. //===========================================================================
  305. static void get_arc_coordinates();
  306. static bool setTargetedHotend(int code, uint8_t &extruder);
  307. static void print_time_remaining_init();
  308. static void wait_for_heater(long codenum, uint8_t extruder);
  309. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  513. }
  514. #ifdef MESH_BED_LEVELING
  515. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  516. #endif
  517. // Factory reset function
  518. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  519. // Level input parameter sets depth of reset
  520. int er_progress = 0;
  521. static void factory_reset(char level)
  522. {
  523. lcd_clear();
  524. switch (level) {
  525. // Level 0: Language reset
  526. case 0:
  527. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  528. WRITE(BEEPER, HIGH);
  529. _delay_ms(100);
  530. WRITE(BEEPER, LOW);
  531. lang_reset();
  532. break;
  533. //Level 1: Reset statistics
  534. case 1:
  535. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  536. WRITE(BEEPER, HIGH);
  537. _delay_ms(100);
  538. WRITE(BEEPER, LOW);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. //_delay_ms(2000);
  587. break;
  588. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  589. case 3:
  590. lcd_puts_P(PSTR("Factory RESET"));
  591. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  592. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. er_progress = 0;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. // Erase EEPROM
  601. for (int i = 0; i < 4096; i++) {
  602. eeprom_update_byte((uint8_t*)i, 0xFF);
  603. if (i % 41 == 0) {
  604. er_progress++;
  605. lcd_puts_at_P(3, 3, PSTR(" "));
  606. lcd_set_cursor(3, 3);
  607. lcd_print(er_progress);
  608. lcd_puts_P(PSTR("%"));
  609. }
  610. }
  611. break;
  612. case 4:
  613. bowden_menu();
  614. break;
  615. default:
  616. break;
  617. }
  618. }
  619. extern "C" {
  620. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  621. }
  622. int uart_putchar(char c, FILE *)
  623. {
  624. MYSERIAL.write(c);
  625. return 0;
  626. }
  627. void lcd_splash()
  628. {
  629. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  630. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  631. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  632. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  633. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  634. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  635. }
  636. void factory_reset()
  637. {
  638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  639. if (!READ(BTN_ENC))
  640. {
  641. _delay_ms(1000);
  642. if (!READ(BTN_ENC))
  643. {
  644. lcd_clear();
  645. lcd_puts_P(PSTR("Factory RESET"));
  646. SET_OUTPUT(BEEPER);
  647. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  648. WRITE(BEEPER, HIGH);
  649. while (!READ(BTN_ENC));
  650. WRITE(BEEPER, LOW);
  651. _delay_ms(2000);
  652. char level = reset_menu();
  653. factory_reset(level);
  654. switch (level) {
  655. case 0: _delay_ms(0); break;
  656. case 1: _delay_ms(0); break;
  657. case 2: _delay_ms(0); break;
  658. case 3: _delay_ms(0); break;
  659. }
  660. }
  661. }
  662. KEEPALIVE_STATE(IN_HANDLER);
  663. }
  664. void show_fw_version_warnings() {
  665. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  666. switch (FW_DEV_VERSION) {
  667. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  668. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  669. case(FW_VERSION_DEVEL):
  670. case(FW_VERSION_DEBUG):
  671. lcd_update_enable(false);
  672. lcd_clear();
  673. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  674. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  675. #else
  676. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  677. #endif
  678. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  679. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  680. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  681. lcd_wait_for_click();
  682. break;
  683. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  684. }
  685. lcd_update_enable(true);
  686. }
  687. //! @brief try to check if firmware is on right type of printer
  688. static void check_if_fw_is_on_right_printer(){
  689. #ifdef FILAMENT_SENSOR
  690. #ifdef IR_SENSOR
  691. swi2c_init();
  692. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  693. if (pat9125_detected){
  694. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  695. #endif //IR_SENSOR
  696. #ifdef PAT9125
  697. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  698. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  699. if (ir_detected){
  700. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  701. #endif //PAT9125
  702. #endif //FILAMENT_SENSOR
  703. }
  704. uint8_t check_printer_version()
  705. {
  706. uint8_t version_changed = 0;
  707. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  708. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  709. if (printer_type != PRINTER_TYPE) {
  710. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  711. else version_changed |= 0b10;
  712. }
  713. if (motherboard != MOTHERBOARD) {
  714. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  715. else version_changed |= 0b01;
  716. }
  717. return version_changed;
  718. }
  719. #ifdef BOOTAPP
  720. #include "bootapp.h" //bootloader support
  721. #endif //BOOTAPP
  722. #if (LANG_MODE != 0) //secondary language support
  723. #ifdef W25X20CL
  724. // language update from external flash
  725. #define LANGBOOT_BLOCKSIZE 0x1000u
  726. #define LANGBOOT_RAMBUFFER 0x0800
  727. void update_sec_lang_from_external_flash()
  728. {
  729. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  730. {
  731. uint8_t lang = boot_reserved >> 4;
  732. uint8_t state = boot_reserved & 0xf;
  733. lang_table_header_t header;
  734. uint32_t src_addr;
  735. if (lang_get_header(lang, &header, &src_addr))
  736. {
  737. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  738. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  739. _delay(100);
  740. boot_reserved = (state + 1) | (lang << 4);
  741. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  742. {
  743. cli();
  744. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  745. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  746. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  747. if (state == 0)
  748. {
  749. //TODO - check header integrity
  750. }
  751. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  752. }
  753. else
  754. {
  755. //TODO - check sec lang data integrity
  756. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  757. }
  758. }
  759. }
  760. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  761. }
  762. #ifdef DEBUG_W25X20CL
  763. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  764. {
  765. lang_table_header_t header;
  766. uint8_t count = 0;
  767. uint32_t addr = 0x00000;
  768. while (1)
  769. {
  770. printf_P(_n("LANGTABLE%d:"), count);
  771. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  772. if (header.magic != LANG_MAGIC)
  773. {
  774. printf_P(_n("NG!\n"));
  775. break;
  776. }
  777. printf_P(_n("OK\n"));
  778. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  779. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  780. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  781. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  782. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  783. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  784. addr += header.size;
  785. codes[count] = header.code;
  786. count ++;
  787. }
  788. return count;
  789. }
  790. void list_sec_lang_from_external_flash()
  791. {
  792. uint16_t codes[8];
  793. uint8_t count = lang_xflash_enum_codes(codes);
  794. printf_P(_n("XFlash lang count = %hhd\n"), count);
  795. }
  796. #endif //DEBUG_W25X20CL
  797. #endif //W25X20CL
  798. #endif //(LANG_MODE != 0)
  799. static void w25x20cl_err_msg()
  800. {
  801. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  802. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  803. }
  804. // "Setup" function is called by the Arduino framework on startup.
  805. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  806. // are initialized by the main() routine provided by the Arduino framework.
  807. void setup()
  808. {
  809. mmu_init();
  810. #ifdef UVLO_SUPPORT
  811. setup_uvlo_interrupt();
  812. #endif //UVLO_SUPPORT
  813. ultralcd_init();
  814. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  815. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  816. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  817. spi_init();
  818. lcd_splash();
  819. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  820. #ifdef W25X20CL
  821. bool w25x20cl_success = w25x20cl_init();
  822. if (w25x20cl_success)
  823. {
  824. optiboot_w25x20cl_enter();
  825. #if (LANG_MODE != 0) //secondary language support
  826. update_sec_lang_from_external_flash();
  827. #endif //(LANG_MODE != 0)
  828. }
  829. else
  830. {
  831. w25x20cl_err_msg();
  832. }
  833. #else
  834. const bool w25x20cl_success = true;
  835. #endif //W25X20CL
  836. setup_killpin();
  837. setup_powerhold();
  838. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  839. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  840. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  841. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  842. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  843. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  844. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  845. if (farm_mode)
  846. {
  847. no_response = true; //we need confirmation by recieving PRUSA thx
  848. important_status = 8;
  849. prusa_statistics(8);
  850. selectedSerialPort = 1;
  851. #ifdef TMC2130
  852. //increased extruder current (PFW363)
  853. tmc2130_current_h[E_AXIS] = 36;
  854. tmc2130_current_r[E_AXIS] = 36;
  855. #endif //TMC2130
  856. #ifdef FILAMENT_SENSOR
  857. //disabled filament autoload (PFW360)
  858. fsensor_autoload_set(false);
  859. #endif //FILAMENT_SENSOR
  860. }
  861. MYSERIAL.begin(BAUDRATE);
  862. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  863. #ifndef W25X20CL
  864. SERIAL_PROTOCOLLNPGM("start");
  865. #endif //W25X20CL
  866. stdout = uartout;
  867. SERIAL_ECHO_START;
  868. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  869. #ifdef DEBUG_SEC_LANG
  870. lang_table_header_t header;
  871. uint32_t src_addr = 0x00000;
  872. if (lang_get_header(1, &header, &src_addr))
  873. {
  874. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  875. #define LT_PRINT_TEST 2
  876. // flash usage
  877. // total p.test
  878. //0 252718 t+c text code
  879. //1 253142 424 170 254
  880. //2 253040 322 164 158
  881. //3 253248 530 135 395
  882. #if (LT_PRINT_TEST==1) //not optimized printf
  883. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  884. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  885. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  886. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  887. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  888. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  889. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  890. #elif (LT_PRINT_TEST==2) //optimized printf
  891. printf_P(
  892. _n(
  893. " _src_addr = 0x%08lx\n"
  894. " _lt_magic = 0x%08lx %S\n"
  895. " _lt_size = 0x%04x (%d)\n"
  896. " _lt_count = 0x%04x (%d)\n"
  897. " _lt_chsum = 0x%04x\n"
  898. " _lt_code = 0x%04x (%c%c)\n"
  899. " _lt_resv1 = 0x%08lx\n"
  900. ),
  901. src_addr,
  902. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  903. header.size, header.size,
  904. header.count, header.count,
  905. header.checksum,
  906. header.code, header.code >> 8, header.code & 0xff,
  907. header.signature
  908. );
  909. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  910. MYSERIAL.print(" _src_addr = 0x");
  911. MYSERIAL.println(src_addr, 16);
  912. MYSERIAL.print(" _lt_magic = 0x");
  913. MYSERIAL.print(header.magic, 16);
  914. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  915. MYSERIAL.print(" _lt_size = 0x");
  916. MYSERIAL.print(header.size, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print(header.size, 10);
  919. MYSERIAL.println(")");
  920. MYSERIAL.print(" _lt_count = 0x");
  921. MYSERIAL.print(header.count, 16);
  922. MYSERIAL.print(" (");
  923. MYSERIAL.print(header.count, 10);
  924. MYSERIAL.println(")");
  925. MYSERIAL.print(" _lt_chsum = 0x");
  926. MYSERIAL.println(header.checksum, 16);
  927. MYSERIAL.print(" _lt_code = 0x");
  928. MYSERIAL.print(header.code, 16);
  929. MYSERIAL.print(" (");
  930. MYSERIAL.print((char)(header.code >> 8), 0);
  931. MYSERIAL.print((char)(header.code & 0xff), 0);
  932. MYSERIAL.println(")");
  933. MYSERIAL.print(" _lt_resv1 = 0x");
  934. MYSERIAL.println(header.signature, 16);
  935. #endif //(LT_PRINT_TEST==)
  936. #undef LT_PRINT_TEST
  937. #if 0
  938. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  939. for (uint16_t i = 0; i < 1024; i++)
  940. {
  941. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  942. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  943. if ((i % 16) == 15) putchar('\n');
  944. }
  945. #endif
  946. uint16_t sum = 0;
  947. for (uint16_t i = 0; i < header.size; i++)
  948. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  949. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  950. sum -= header.checksum; //subtract checksum
  951. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  952. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  953. if (sum == header.checksum)
  954. printf_P(_n("Checksum OK\n"), sum);
  955. else
  956. printf_P(_n("Checksum NG\n"), sum);
  957. }
  958. else
  959. printf_P(_n("lang_get_header failed!\n"));
  960. #if 0
  961. for (uint16_t i = 0; i < 1024*10; i++)
  962. {
  963. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  964. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  965. if ((i % 16) == 15) putchar('\n');
  966. }
  967. #endif
  968. #if 0
  969. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  970. for (int i = 0; i < 4096; ++i) {
  971. int b = eeprom_read_byte((unsigned char*)i);
  972. if (b != 255) {
  973. SERIAL_ECHO(i);
  974. SERIAL_ECHO(":");
  975. SERIAL_ECHO(b);
  976. SERIAL_ECHOLN("");
  977. }
  978. }
  979. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  980. #endif
  981. #endif //DEBUG_SEC_LANG
  982. // Check startup - does nothing if bootloader sets MCUSR to 0
  983. byte mcu = MCUSR;
  984. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  985. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  986. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  987. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  988. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  989. if (mcu & 1) puts_P(MSG_POWERUP);
  990. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  991. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  992. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  993. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  994. MCUSR = 0;
  995. //SERIAL_ECHORPGM(MSG_MARLIN);
  996. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  997. #ifdef STRING_VERSION_CONFIG_H
  998. #ifdef STRING_CONFIG_H_AUTHOR
  999. SERIAL_ECHO_START;
  1000. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1001. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1002. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1003. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1004. SERIAL_ECHOPGM("Compiled: ");
  1005. SERIAL_ECHOLNPGM(__DATE__);
  1006. #endif
  1007. #endif
  1008. SERIAL_ECHO_START;
  1009. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1010. SERIAL_ECHO(freeMemory());
  1011. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1012. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1013. //lcd_update_enable(false); // why do we need this?? - andre
  1014. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1015. bool previous_settings_retrieved = false;
  1016. uint8_t hw_changed = check_printer_version();
  1017. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1018. previous_settings_retrieved = Config_RetrieveSettings();
  1019. }
  1020. else { //printer version was changed so use default settings
  1021. Config_ResetDefault();
  1022. }
  1023. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1024. tp_init(); // Initialize temperature loop
  1025. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1026. else
  1027. {
  1028. w25x20cl_err_msg();
  1029. printf_P(_n("W25X20CL not responding.\n"));
  1030. }
  1031. plan_init(); // Initialize planner;
  1032. factory_reset();
  1033. lcd_encoder_diff=0;
  1034. #ifdef TMC2130
  1035. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1036. if (silentMode == 0xff) silentMode = 0;
  1037. tmc2130_mode = TMC2130_MODE_NORMAL;
  1038. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1039. if (crashdet && !farm_mode)
  1040. {
  1041. crashdet_enable();
  1042. puts_P(_N("CrashDetect ENABLED!"));
  1043. }
  1044. else
  1045. {
  1046. crashdet_disable();
  1047. puts_P(_N("CrashDetect DISABLED"));
  1048. }
  1049. #ifdef TMC2130_LINEARITY_CORRECTION
  1050. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1051. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1052. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1053. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1054. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1055. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1056. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1057. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1058. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1059. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1060. #endif //TMC2130_LINEARITY_CORRECTION
  1061. #ifdef TMC2130_VARIABLE_RESOLUTION
  1062. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1063. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1064. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1065. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1066. #else //TMC2130_VARIABLE_RESOLUTION
  1067. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1068. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1069. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1070. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1071. #endif //TMC2130_VARIABLE_RESOLUTION
  1072. #endif //TMC2130
  1073. st_init(); // Initialize stepper, this enables interrupts!
  1074. #ifdef TMC2130
  1075. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1076. update_mode_profile();
  1077. tmc2130_init();
  1078. #endif //TMC2130
  1079. setup_photpin();
  1080. servo_init();
  1081. // Reset the machine correction matrix.
  1082. // It does not make sense to load the correction matrix until the machine is homed.
  1083. world2machine_reset();
  1084. #ifdef FILAMENT_SENSOR
  1085. fsensor_init();
  1086. #endif //FILAMENT_SENSOR
  1087. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1088. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1089. #endif
  1090. setup_homepin();
  1091. #ifdef TMC2130
  1092. if (1) {
  1093. // try to run to zero phase before powering the Z motor.
  1094. // Move in negative direction
  1095. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1096. // Round the current micro-micro steps to micro steps.
  1097. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1098. // Until the phase counter is reset to zero.
  1099. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1100. _delay(2);
  1101. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1102. _delay(2);
  1103. }
  1104. }
  1105. #endif //TMC2130
  1106. #if defined(Z_AXIS_ALWAYS_ON)
  1107. enable_z();
  1108. #endif
  1109. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1110. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1111. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1112. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1113. if (farm_mode)
  1114. {
  1115. prusa_statistics(8);
  1116. }
  1117. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1118. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1119. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1120. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1121. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1122. // where all the EEPROM entries are set to 0x0ff.
  1123. // Once a firmware boots up, it forces at least a language selection, which changes
  1124. // EEPROM_LANG to number lower than 0x0ff.
  1125. // 1) Set a high power mode.
  1126. #ifdef TMC2130
  1127. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1128. tmc2130_mode = TMC2130_MODE_NORMAL;
  1129. #endif //TMC2130
  1130. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1131. }
  1132. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1133. // but this times out if a blocking dialog is shown in setup().
  1134. card.initsd();
  1135. #ifdef DEBUG_SD_SPEED_TEST
  1136. if (card.cardOK)
  1137. {
  1138. uint8_t* buff = (uint8_t*)block_buffer;
  1139. uint32_t block = 0;
  1140. uint32_t sumr = 0;
  1141. uint32_t sumw = 0;
  1142. for (int i = 0; i < 1024; i++)
  1143. {
  1144. uint32_t u = _micros();
  1145. bool res = card.card.readBlock(i, buff);
  1146. u = _micros() - u;
  1147. if (res)
  1148. {
  1149. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1150. sumr += u;
  1151. u = _micros();
  1152. res = card.card.writeBlock(i, buff);
  1153. u = _micros() - u;
  1154. if (res)
  1155. {
  1156. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1157. sumw += u;
  1158. }
  1159. else
  1160. {
  1161. printf_P(PSTR("writeBlock %4d error\n"), i);
  1162. break;
  1163. }
  1164. }
  1165. else
  1166. {
  1167. printf_P(PSTR("readBlock %4d error\n"), i);
  1168. break;
  1169. }
  1170. }
  1171. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1172. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1173. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1174. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1175. }
  1176. else
  1177. printf_P(PSTR("Card NG!\n"));
  1178. #endif //DEBUG_SD_SPEED_TEST
  1179. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1180. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1181. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1182. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1183. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1184. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1185. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1186. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1187. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1188. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1189. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1190. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1191. #ifdef SNMM
  1192. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1193. int _z = BOWDEN_LENGTH;
  1194. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1195. }
  1196. #endif
  1197. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1198. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1199. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1200. #if (LANG_MODE != 0) //secondary language support
  1201. #ifdef DEBUG_W25X20CL
  1202. W25X20CL_SPI_ENTER();
  1203. uint8_t uid[8]; // 64bit unique id
  1204. w25x20cl_rd_uid(uid);
  1205. puts_P(_n("W25X20CL UID="));
  1206. for (uint8_t i = 0; i < 8; i ++)
  1207. printf_P(PSTR("%02hhx"), uid[i]);
  1208. putchar('\n');
  1209. list_sec_lang_from_external_flash();
  1210. #endif //DEBUG_W25X20CL
  1211. // lang_reset();
  1212. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1213. lcd_language();
  1214. #ifdef DEBUG_SEC_LANG
  1215. uint16_t sec_lang_code = lang_get_code(1);
  1216. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1217. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1218. lang_print_sec_lang(uartout);
  1219. #endif //DEBUG_SEC_LANG
  1220. #endif //(LANG_MODE != 0)
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1222. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1223. temp_cal_active = false;
  1224. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1225. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1226. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1227. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1228. int16_t z_shift = 0;
  1229. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1230. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1231. temp_cal_active = false;
  1232. }
  1233. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1234. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1235. }
  1236. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1237. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1238. }
  1239. //mbl_mode_init();
  1240. mbl_settings_init();
  1241. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1242. if (SilentModeMenu_MMU == 255) {
  1243. SilentModeMenu_MMU = 1;
  1244. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1245. }
  1246. check_babystep(); //checking if Z babystep is in allowed range
  1247. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1248. setup_fan_interrupt();
  1249. #endif //DEBUG_DISABLE_FANCHECK
  1250. #ifdef PAT9125
  1251. fsensor_setup_interrupt();
  1252. #endif //PAT9125
  1253. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1254. #ifndef DEBUG_DISABLE_STARTMSGS
  1255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1256. check_if_fw_is_on_right_printer();
  1257. show_fw_version_warnings();
  1258. switch (hw_changed) {
  1259. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1260. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1261. case(0b01):
  1262. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1263. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1264. break;
  1265. case(0b10):
  1266. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1267. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1268. break;
  1269. case(0b11):
  1270. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1271. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1272. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1273. break;
  1274. default: break; //no change, show no message
  1275. }
  1276. if (!previous_settings_retrieved) {
  1277. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1278. Config_StoreSettings();
  1279. }
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1281. lcd_wizard(WizState::Run);
  1282. }
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1284. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1285. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1286. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1287. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1288. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1289. // Show the message.
  1290. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1291. }
  1292. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1295. lcd_update_enable(true);
  1296. }
  1297. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1298. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1299. lcd_update_enable(true);
  1300. }
  1301. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1302. // Show the message.
  1303. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1304. }
  1305. }
  1306. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1307. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1308. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1309. update_current_firmware_version_to_eeprom();
  1310. lcd_selftest();
  1311. }
  1312. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1313. KEEPALIVE_STATE(IN_PROCESS);
  1314. #endif //DEBUG_DISABLE_STARTMSGS
  1315. lcd_update_enable(true);
  1316. lcd_clear();
  1317. lcd_update(2);
  1318. // Store the currently running firmware into an eeprom,
  1319. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1320. update_current_firmware_version_to_eeprom();
  1321. #ifdef TMC2130
  1322. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1323. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1324. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1325. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1326. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1327. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1328. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1329. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1330. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1331. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1332. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1333. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1334. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1335. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1336. #endif //TMC2130
  1337. #ifdef UVLO_SUPPORT
  1338. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1339. /*
  1340. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1341. else {
  1342. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1343. lcd_update_enable(true);
  1344. lcd_update(2);
  1345. lcd_setstatuspgm(_T(WELCOME_MSG));
  1346. }
  1347. */
  1348. manage_heater(); // Update temperatures
  1349. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1350. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1351. #endif
  1352. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1353. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1354. puts_P(_N("Automatic recovery!"));
  1355. #endif
  1356. recover_print(1);
  1357. }
  1358. else{
  1359. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1360. puts_P(_N("Normal recovery!"));
  1361. #endif
  1362. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1363. else {
  1364. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1365. lcd_update_enable(true);
  1366. lcd_update(2);
  1367. lcd_setstatuspgm(_T(WELCOME_MSG));
  1368. }
  1369. }
  1370. }
  1371. #endif //UVLO_SUPPORT
  1372. KEEPALIVE_STATE(NOT_BUSY);
  1373. #ifdef WATCHDOG
  1374. wdt_enable(WDTO_4S);
  1375. #endif //WATCHDOG
  1376. }
  1377. void trace();
  1378. #define CHUNK_SIZE 64 // bytes
  1379. #define SAFETY_MARGIN 1
  1380. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1381. int chunkHead = 0;
  1382. void serial_read_stream() {
  1383. setAllTargetHotends(0);
  1384. setTargetBed(0);
  1385. lcd_clear();
  1386. lcd_puts_P(PSTR(" Upload in progress"));
  1387. // first wait for how many bytes we will receive
  1388. uint32_t bytesToReceive;
  1389. // receive the four bytes
  1390. char bytesToReceiveBuffer[4];
  1391. for (int i=0; i<4; i++) {
  1392. int data;
  1393. while ((data = MYSERIAL.read()) == -1) {};
  1394. bytesToReceiveBuffer[i] = data;
  1395. }
  1396. // make it a uint32
  1397. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1398. // we're ready, notify the sender
  1399. MYSERIAL.write('+');
  1400. // lock in the routine
  1401. uint32_t receivedBytes = 0;
  1402. while (prusa_sd_card_upload) {
  1403. int i;
  1404. for (i=0; i<CHUNK_SIZE; i++) {
  1405. int data;
  1406. // check if we're not done
  1407. if (receivedBytes == bytesToReceive) {
  1408. break;
  1409. }
  1410. // read the next byte
  1411. while ((data = MYSERIAL.read()) == -1) {};
  1412. receivedBytes++;
  1413. // save it to the chunk
  1414. chunk[i] = data;
  1415. }
  1416. // write the chunk to SD
  1417. card.write_command_no_newline(&chunk[0]);
  1418. // notify the sender we're ready for more data
  1419. MYSERIAL.write('+');
  1420. // for safety
  1421. manage_heater();
  1422. // check if we're done
  1423. if(receivedBytes == bytesToReceive) {
  1424. trace(); // beep
  1425. card.closefile();
  1426. prusa_sd_card_upload = false;
  1427. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1428. }
  1429. }
  1430. }
  1431. /**
  1432. * Output a "busy" message at regular intervals
  1433. * while the machine is not accepting commands.
  1434. */
  1435. void host_keepalive() {
  1436. #ifndef HOST_KEEPALIVE_FEATURE
  1437. return;
  1438. #endif //HOST_KEEPALIVE_FEATURE
  1439. if (farm_mode) return;
  1440. long ms = _millis();
  1441. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1442. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1443. switch (busy_state) {
  1444. case IN_HANDLER:
  1445. case IN_PROCESS:
  1446. SERIAL_ECHO_START;
  1447. SERIAL_ECHOLNPGM("busy: processing");
  1448. break;
  1449. case PAUSED_FOR_USER:
  1450. SERIAL_ECHO_START;
  1451. SERIAL_ECHOLNPGM("busy: paused for user");
  1452. break;
  1453. case PAUSED_FOR_INPUT:
  1454. SERIAL_ECHO_START;
  1455. SERIAL_ECHOLNPGM("busy: paused for input");
  1456. break;
  1457. default:
  1458. break;
  1459. }
  1460. }
  1461. prev_busy_signal_ms = ms;
  1462. }
  1463. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1464. // Before loop(), the setup() function is called by the main() routine.
  1465. void loop()
  1466. {
  1467. KEEPALIVE_STATE(NOT_BUSY);
  1468. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1469. {
  1470. is_usb_printing = true;
  1471. usb_printing_counter--;
  1472. _usb_timer = _millis();
  1473. }
  1474. if (usb_printing_counter == 0)
  1475. {
  1476. is_usb_printing = false;
  1477. }
  1478. if (prusa_sd_card_upload)
  1479. {
  1480. //we read byte-by byte
  1481. serial_read_stream();
  1482. } else
  1483. {
  1484. get_command();
  1485. #ifdef SDSUPPORT
  1486. card.checkautostart(false);
  1487. #endif
  1488. if(buflen)
  1489. {
  1490. cmdbuffer_front_already_processed = false;
  1491. #ifdef SDSUPPORT
  1492. if(card.saving)
  1493. {
  1494. // Saving a G-code file onto an SD-card is in progress.
  1495. // Saving starts with M28, saving until M29 is seen.
  1496. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1497. card.write_command(CMDBUFFER_CURRENT_STRING);
  1498. if(card.logging)
  1499. process_commands();
  1500. else
  1501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1502. } else {
  1503. card.closefile();
  1504. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1505. }
  1506. } else {
  1507. process_commands();
  1508. }
  1509. #else
  1510. process_commands();
  1511. #endif //SDSUPPORT
  1512. if (! cmdbuffer_front_already_processed && buflen)
  1513. {
  1514. // ptr points to the start of the block currently being processed.
  1515. // The first character in the block is the block type.
  1516. char *ptr = cmdbuffer + bufindr;
  1517. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1518. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1519. union {
  1520. struct {
  1521. char lo;
  1522. char hi;
  1523. } lohi;
  1524. uint16_t value;
  1525. } sdlen;
  1526. sdlen.value = 0;
  1527. {
  1528. // This block locks the interrupts globally for 3.25 us,
  1529. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1530. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1531. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1532. cli();
  1533. // Reset the command to something, which will be ignored by the power panic routine,
  1534. // so this buffer length will not be counted twice.
  1535. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1536. // Extract the current buffer length.
  1537. sdlen.lohi.lo = *ptr ++;
  1538. sdlen.lohi.hi = *ptr;
  1539. // and pass it to the planner queue.
  1540. planner_add_sd_length(sdlen.value);
  1541. sei();
  1542. }
  1543. }
  1544. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1545. cli();
  1546. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1547. // and one for each command to previous block in the planner queue.
  1548. planner_add_sd_length(1);
  1549. sei();
  1550. }
  1551. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1552. // this block's SD card length will not be counted twice as its command type has been replaced
  1553. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1554. cmdqueue_pop_front();
  1555. }
  1556. host_keepalive();
  1557. }
  1558. }
  1559. //check heater every n milliseconds
  1560. manage_heater();
  1561. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1562. checkHitEndstops();
  1563. lcd_update(0);
  1564. #ifdef TMC2130
  1565. tmc2130_check_overtemp();
  1566. if (tmc2130_sg_crash)
  1567. {
  1568. uint8_t crash = tmc2130_sg_crash;
  1569. tmc2130_sg_crash = 0;
  1570. // crashdet_stop_and_save_print();
  1571. switch (crash)
  1572. {
  1573. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1574. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1575. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1576. }
  1577. }
  1578. #endif //TMC2130
  1579. mmu_loop();
  1580. }
  1581. #define DEFINE_PGM_READ_ANY(type, reader) \
  1582. static inline type pgm_read_any(const type *p) \
  1583. { return pgm_read_##reader##_near(p); }
  1584. DEFINE_PGM_READ_ANY(float, float);
  1585. DEFINE_PGM_READ_ANY(signed char, byte);
  1586. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1587. static const PROGMEM type array##_P[3] = \
  1588. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1589. static inline type array(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); } \
  1591. type array##_ext(int axis) \
  1592. { return pgm_read_any(&array##_P[axis]); }
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1597. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1598. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1599. static void axis_is_at_home(int axis) {
  1600. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1601. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1602. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1603. }
  1604. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1605. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1606. //! @return original feedmultiply
  1607. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1608. saved_feedrate = feedrate;
  1609. int l_feedmultiply = feedmultiply;
  1610. feedmultiply = 100;
  1611. previous_millis_cmd = _millis();
  1612. enable_endstops(enable_endstops_now);
  1613. return l_feedmultiply;
  1614. }
  1615. //! @param original_feedmultiply feedmultiply to restore
  1616. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1617. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1618. enable_endstops(false);
  1619. #endif
  1620. feedrate = saved_feedrate;
  1621. feedmultiply = original_feedmultiply;
  1622. previous_millis_cmd = _millis();
  1623. }
  1624. #ifdef ENABLE_AUTO_BED_LEVELING
  1625. #ifdef AUTO_BED_LEVELING_GRID
  1626. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1627. {
  1628. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1629. planeNormal.debug("planeNormal");
  1630. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1631. //bedLevel.debug("bedLevel");
  1632. //plan_bed_level_matrix.debug("bed level before");
  1633. //vector_3 uncorrected_position = plan_get_position_mm();
  1634. //uncorrected_position.debug("position before");
  1635. vector_3 corrected_position = plan_get_position();
  1636. // corrected_position.debug("position after");
  1637. current_position[X_AXIS] = corrected_position.x;
  1638. current_position[Y_AXIS] = corrected_position.y;
  1639. current_position[Z_AXIS] = corrected_position.z;
  1640. // put the bed at 0 so we don't go below it.
  1641. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. }
  1644. #else // not AUTO_BED_LEVELING_GRID
  1645. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1646. plan_bed_level_matrix.set_to_identity();
  1647. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1648. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1649. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1650. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1651. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1652. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1653. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1654. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1655. vector_3 corrected_position = plan_get_position();
  1656. current_position[X_AXIS] = corrected_position.x;
  1657. current_position[Y_AXIS] = corrected_position.y;
  1658. current_position[Z_AXIS] = corrected_position.z;
  1659. // put the bed at 0 so we don't go below it.
  1660. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. }
  1663. #endif // AUTO_BED_LEVELING_GRID
  1664. static void run_z_probe() {
  1665. plan_bed_level_matrix.set_to_identity();
  1666. feedrate = homing_feedrate[Z_AXIS];
  1667. // move down until you find the bed
  1668. float zPosition = -10;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. // we have to let the planner know where we are right now as it is not where we said to go.
  1672. zPosition = st_get_position_mm(Z_AXIS);
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1674. // move up the retract distance
  1675. zPosition += home_retract_mm(Z_AXIS);
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. // move back down slowly to find bed
  1679. feedrate = homing_feedrate[Z_AXIS]/4;
  1680. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1684. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1686. }
  1687. static void do_blocking_move_to(float x, float y, float z) {
  1688. float oldFeedRate = feedrate;
  1689. feedrate = homing_feedrate[Z_AXIS];
  1690. current_position[Z_AXIS] = z;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1692. st_synchronize();
  1693. feedrate = XY_TRAVEL_SPEED;
  1694. current_position[X_AXIS] = x;
  1695. current_position[Y_AXIS] = y;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = oldFeedRate;
  1699. }
  1700. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1701. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1702. }
  1703. /// Probe bed height at position (x,y), returns the measured z value
  1704. static float probe_pt(float x, float y, float z_before) {
  1705. // move to right place
  1706. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1707. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1708. run_z_probe();
  1709. float measured_z = current_position[Z_AXIS];
  1710. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1711. SERIAL_PROTOCOLPGM(" x: ");
  1712. SERIAL_PROTOCOL(x);
  1713. SERIAL_PROTOCOLPGM(" y: ");
  1714. SERIAL_PROTOCOL(y);
  1715. SERIAL_PROTOCOLPGM(" z: ");
  1716. SERIAL_PROTOCOL(measured_z);
  1717. SERIAL_PROTOCOLPGM("\n");
  1718. return measured_z;
  1719. }
  1720. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1721. #ifdef LIN_ADVANCE
  1722. /**
  1723. * M900: Set and/or Get advance K factor and WH/D ratio
  1724. *
  1725. * K<factor> Set advance K factor
  1726. * R<ratio> Set ratio directly (overrides WH/D)
  1727. * W<width> H<height> D<diam> Set ratio from WH/D
  1728. */
  1729. inline void gcode_M900() {
  1730. st_synchronize();
  1731. const float newK = code_seen('K') ? code_value_float() : -1;
  1732. if (newK >= 0) extruder_advance_k = newK;
  1733. float newR = code_seen('R') ? code_value_float() : -1;
  1734. if (newR < 0) {
  1735. const float newD = code_seen('D') ? code_value_float() : -1,
  1736. newW = code_seen('W') ? code_value_float() : -1,
  1737. newH = code_seen('H') ? code_value_float() : -1;
  1738. if (newD >= 0 && newW >= 0 && newH >= 0)
  1739. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1740. }
  1741. if (newR >= 0) advance_ed_ratio = newR;
  1742. SERIAL_ECHO_START;
  1743. SERIAL_ECHOPGM("Advance K=");
  1744. SERIAL_ECHOLN(extruder_advance_k);
  1745. SERIAL_ECHOPGM(" E/D=");
  1746. const float ratio = advance_ed_ratio;
  1747. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1748. }
  1749. #endif // LIN_ADVANCE
  1750. bool check_commands() {
  1751. bool end_command_found = false;
  1752. while (buflen)
  1753. {
  1754. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1755. if (!cmdbuffer_front_already_processed)
  1756. cmdqueue_pop_front();
  1757. cmdbuffer_front_already_processed = false;
  1758. }
  1759. return end_command_found;
  1760. }
  1761. #ifdef TMC2130
  1762. bool calibrate_z_auto()
  1763. {
  1764. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1765. lcd_clear();
  1766. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1767. bool endstops_enabled = enable_endstops(true);
  1768. int axis_up_dir = -home_dir(Z_AXIS);
  1769. tmc2130_home_enter(Z_AXIS_MASK);
  1770. current_position[Z_AXIS] = 0;
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. set_destination_to_current();
  1773. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1774. feedrate = homing_feedrate[Z_AXIS];
  1775. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1776. st_synchronize();
  1777. // current_position[axis] = 0;
  1778. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1779. tmc2130_home_exit();
  1780. enable_endstops(false);
  1781. current_position[Z_AXIS] = 0;
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. set_destination_to_current();
  1784. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1785. feedrate = homing_feedrate[Z_AXIS] / 2;
  1786. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1787. st_synchronize();
  1788. enable_endstops(endstops_enabled);
  1789. if (PRINTER_TYPE == PRINTER_MK3) {
  1790. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1791. }
  1792. else {
  1793. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1794. }
  1795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1796. return true;
  1797. }
  1798. #endif //TMC2130
  1799. #ifdef TMC2130
  1800. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1801. #else
  1802. void homeaxis(int axis, uint8_t cnt)
  1803. #endif //TMC2130
  1804. {
  1805. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1806. #define HOMEAXIS_DO(LETTER) \
  1807. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1808. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1809. {
  1810. int axis_home_dir = home_dir(axis);
  1811. feedrate = homing_feedrate[axis];
  1812. #ifdef TMC2130
  1813. tmc2130_home_enter(X_AXIS_MASK << axis);
  1814. #endif //TMC2130
  1815. // Move away a bit, so that the print head does not touch the end position,
  1816. // and the following movement to endstop has a chance to achieve the required velocity
  1817. // for the stall guard to work.
  1818. current_position[axis] = 0;
  1819. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1820. set_destination_to_current();
  1821. // destination[axis] = 11.f;
  1822. destination[axis] = -3.f * axis_home_dir;
  1823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1826. endstops_hit_on_purpose();
  1827. enable_endstops(false);
  1828. current_position[axis] = 0;
  1829. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1830. destination[axis] = 1. * axis_home_dir;
  1831. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1832. st_synchronize();
  1833. // Now continue to move up to the left end stop with the collision detection enabled.
  1834. enable_endstops(true);
  1835. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. for (uint8_t i = 0; i < cnt; i++)
  1839. {
  1840. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1841. endstops_hit_on_purpose();
  1842. enable_endstops(false);
  1843. current_position[axis] = 0;
  1844. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1845. destination[axis] = -10.f * axis_home_dir;
  1846. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1847. st_synchronize();
  1848. endstops_hit_on_purpose();
  1849. // Now move left up to the collision, this time with a repeatable velocity.
  1850. enable_endstops(true);
  1851. destination[axis] = 11.f * axis_home_dir;
  1852. #ifdef TMC2130
  1853. feedrate = homing_feedrate[axis];
  1854. #else //TMC2130
  1855. feedrate = homing_feedrate[axis] / 2;
  1856. #endif //TMC2130
  1857. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1858. st_synchronize();
  1859. #ifdef TMC2130
  1860. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1861. if (pstep) pstep[i] = mscnt >> 4;
  1862. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1863. #endif //TMC2130
  1864. }
  1865. endstops_hit_on_purpose();
  1866. enable_endstops(false);
  1867. #ifdef TMC2130
  1868. uint8_t orig = tmc2130_home_origin[axis];
  1869. uint8_t back = tmc2130_home_bsteps[axis];
  1870. if (tmc2130_home_enabled && (orig <= 63))
  1871. {
  1872. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1873. if (back > 0)
  1874. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1875. }
  1876. else
  1877. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1878. tmc2130_home_exit();
  1879. #endif //TMC2130
  1880. axis_is_at_home(axis);
  1881. axis_known_position[axis] = true;
  1882. // Move from minimum
  1883. #ifdef TMC2130
  1884. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1885. #else //TMC2130
  1886. float dist = - axis_home_dir * 0.01f * 64;
  1887. #endif //TMC2130
  1888. current_position[axis] -= dist;
  1889. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1890. current_position[axis] += dist;
  1891. destination[axis] = current_position[axis];
  1892. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1893. st_synchronize();
  1894. feedrate = 0.0;
  1895. }
  1896. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1897. {
  1898. #ifdef TMC2130
  1899. FORCE_HIGH_POWER_START;
  1900. #endif
  1901. int axis_home_dir = home_dir(axis);
  1902. current_position[axis] = 0;
  1903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1904. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1905. feedrate = homing_feedrate[axis];
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. #ifdef TMC2130
  1909. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1910. FORCE_HIGH_POWER_END;
  1911. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1912. return;
  1913. }
  1914. #endif //TMC2130
  1915. current_position[axis] = 0;
  1916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1917. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1918. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1919. st_synchronize();
  1920. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1921. feedrate = homing_feedrate[axis]/2 ;
  1922. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1923. st_synchronize();
  1924. #ifdef TMC2130
  1925. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1926. FORCE_HIGH_POWER_END;
  1927. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1928. return;
  1929. }
  1930. #endif //TMC2130
  1931. axis_is_at_home(axis);
  1932. destination[axis] = current_position[axis];
  1933. feedrate = 0.0;
  1934. endstops_hit_on_purpose();
  1935. axis_known_position[axis] = true;
  1936. #ifdef TMC2130
  1937. FORCE_HIGH_POWER_END;
  1938. #endif
  1939. }
  1940. enable_endstops(endstops_enabled);
  1941. }
  1942. /**/
  1943. void home_xy()
  1944. {
  1945. set_destination_to_current();
  1946. homeaxis(X_AXIS);
  1947. homeaxis(Y_AXIS);
  1948. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1949. endstops_hit_on_purpose();
  1950. }
  1951. void refresh_cmd_timeout(void)
  1952. {
  1953. previous_millis_cmd = _millis();
  1954. }
  1955. #ifdef FWRETRACT
  1956. void retract(bool retracting, bool swapretract = false) {
  1957. if(retracting && !retracted[active_extruder]) {
  1958. destination[X_AXIS]=current_position[X_AXIS];
  1959. destination[Y_AXIS]=current_position[Y_AXIS];
  1960. destination[Z_AXIS]=current_position[Z_AXIS];
  1961. destination[E_AXIS]=current_position[E_AXIS];
  1962. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1963. plan_set_e_position(current_position[E_AXIS]);
  1964. float oldFeedrate = feedrate;
  1965. feedrate=cs.retract_feedrate*60;
  1966. retracted[active_extruder]=true;
  1967. prepare_move();
  1968. current_position[Z_AXIS]-=cs.retract_zlift;
  1969. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1970. prepare_move();
  1971. feedrate = oldFeedrate;
  1972. } else if(!retracting && retracted[active_extruder]) {
  1973. destination[X_AXIS]=current_position[X_AXIS];
  1974. destination[Y_AXIS]=current_position[Y_AXIS];
  1975. destination[Z_AXIS]=current_position[Z_AXIS];
  1976. destination[E_AXIS]=current_position[E_AXIS];
  1977. current_position[Z_AXIS]+=cs.retract_zlift;
  1978. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1979. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1980. plan_set_e_position(current_position[E_AXIS]);
  1981. float oldFeedrate = feedrate;
  1982. feedrate=cs.retract_recover_feedrate*60;
  1983. retracted[active_extruder]=false;
  1984. prepare_move();
  1985. feedrate = oldFeedrate;
  1986. }
  1987. } //retract
  1988. #endif //FWRETRACT
  1989. void trace() {
  1990. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1991. _tone(BEEPER, 440);
  1992. _delay(25);
  1993. _noTone(BEEPER);
  1994. _delay(20);
  1995. }
  1996. /*
  1997. void ramming() {
  1998. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1999. if (current_temperature[0] < 230) {
  2000. //PLA
  2001. max_feedrate[E_AXIS] = 50;
  2002. //current_position[E_AXIS] -= 8;
  2003. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2004. //current_position[E_AXIS] += 8;
  2005. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2006. current_position[E_AXIS] += 5.4;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2008. current_position[E_AXIS] += 3.2;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2010. current_position[E_AXIS] += 3;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2012. st_synchronize();
  2013. max_feedrate[E_AXIS] = 80;
  2014. current_position[E_AXIS] -= 82;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2016. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2017. current_position[E_AXIS] -= 20;
  2018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2019. current_position[E_AXIS] += 5;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2021. current_position[E_AXIS] += 5;
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2023. current_position[E_AXIS] -= 10;
  2024. st_synchronize();
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2026. current_position[E_AXIS] += 10;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2028. current_position[E_AXIS] -= 10;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2030. current_position[E_AXIS] += 10;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2032. current_position[E_AXIS] -= 10;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2034. st_synchronize();
  2035. }
  2036. else {
  2037. //ABS
  2038. max_feedrate[E_AXIS] = 50;
  2039. //current_position[E_AXIS] -= 8;
  2040. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2041. //current_position[E_AXIS] += 8;
  2042. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2043. current_position[E_AXIS] += 3.1;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2045. current_position[E_AXIS] += 3.1;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2047. current_position[E_AXIS] += 4;
  2048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2049. st_synchronize();
  2050. //current_position[X_AXIS] += 23; //delay
  2051. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2052. //current_position[X_AXIS] -= 23; //delay
  2053. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2054. _delay(4700);
  2055. max_feedrate[E_AXIS] = 80;
  2056. current_position[E_AXIS] -= 92;
  2057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2058. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2059. current_position[E_AXIS] -= 5;
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2061. current_position[E_AXIS] += 5;
  2062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2063. current_position[E_AXIS] -= 5;
  2064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2065. st_synchronize();
  2066. current_position[E_AXIS] += 5;
  2067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2068. current_position[E_AXIS] -= 5;
  2069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2070. current_position[E_AXIS] += 5;
  2071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2072. current_position[E_AXIS] -= 5;
  2073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2074. st_synchronize();
  2075. }
  2076. }
  2077. */
  2078. #ifdef TMC2130
  2079. void force_high_power_mode(bool start_high_power_section) {
  2080. uint8_t silent;
  2081. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2082. if (silent == 1) {
  2083. //we are in silent mode, set to normal mode to enable crash detection
  2084. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2085. st_synchronize();
  2086. cli();
  2087. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2088. update_mode_profile();
  2089. tmc2130_init();
  2090. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2091. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2092. st_reset_timer();
  2093. sei();
  2094. }
  2095. }
  2096. #endif //TMC2130
  2097. #ifdef TMC2130
  2098. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2099. #else
  2100. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2101. #endif //TMC2130
  2102. {
  2103. st_synchronize();
  2104. #if 0
  2105. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2106. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2107. #endif
  2108. // Flag for the display update routine and to disable the print cancelation during homing.
  2109. homing_flag = true;
  2110. // Which axes should be homed?
  2111. bool home_x = home_x_axis;
  2112. bool home_y = home_y_axis;
  2113. bool home_z = home_z_axis;
  2114. // Either all X,Y,Z codes are present, or none of them.
  2115. bool home_all_axes = home_x == home_y && home_x == home_z;
  2116. if (home_all_axes)
  2117. // No X/Y/Z code provided means to home all axes.
  2118. home_x = home_y = home_z = true;
  2119. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2120. if (home_all_axes) {
  2121. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2122. feedrate = homing_feedrate[Z_AXIS];
  2123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2124. st_synchronize();
  2125. }
  2126. #ifdef ENABLE_AUTO_BED_LEVELING
  2127. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2128. #endif //ENABLE_AUTO_BED_LEVELING
  2129. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2130. // the planner will not perform any adjustments in the XY plane.
  2131. // Wait for the motors to stop and update the current position with the absolute values.
  2132. world2machine_revert_to_uncorrected();
  2133. // For mesh bed leveling deactivate the matrix temporarily.
  2134. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2135. // in a single axis only.
  2136. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2137. #ifdef MESH_BED_LEVELING
  2138. uint8_t mbl_was_active = mbl.active;
  2139. mbl.active = 0;
  2140. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2141. #endif
  2142. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2143. // consumed during the first movements following this statement.
  2144. if (home_z)
  2145. babystep_undo();
  2146. saved_feedrate = feedrate;
  2147. int l_feedmultiply = feedmultiply;
  2148. feedmultiply = 100;
  2149. previous_millis_cmd = _millis();
  2150. enable_endstops(true);
  2151. memcpy(destination, current_position, sizeof(destination));
  2152. feedrate = 0.0;
  2153. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2154. if(home_z)
  2155. homeaxis(Z_AXIS);
  2156. #endif
  2157. #ifdef QUICK_HOME
  2158. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2159. if(home_x && home_y) //first diagonal move
  2160. {
  2161. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2162. int x_axis_home_dir = home_dir(X_AXIS);
  2163. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2164. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2165. feedrate = homing_feedrate[X_AXIS];
  2166. if(homing_feedrate[Y_AXIS]<feedrate)
  2167. feedrate = homing_feedrate[Y_AXIS];
  2168. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2169. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2170. } else {
  2171. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2172. }
  2173. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2174. st_synchronize();
  2175. axis_is_at_home(X_AXIS);
  2176. axis_is_at_home(Y_AXIS);
  2177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2178. destination[X_AXIS] = current_position[X_AXIS];
  2179. destination[Y_AXIS] = current_position[Y_AXIS];
  2180. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2181. feedrate = 0.0;
  2182. st_synchronize();
  2183. endstops_hit_on_purpose();
  2184. current_position[X_AXIS] = destination[X_AXIS];
  2185. current_position[Y_AXIS] = destination[Y_AXIS];
  2186. current_position[Z_AXIS] = destination[Z_AXIS];
  2187. }
  2188. #endif /* QUICK_HOME */
  2189. #ifdef TMC2130
  2190. if(home_x)
  2191. {
  2192. if (!calib)
  2193. homeaxis(X_AXIS);
  2194. else
  2195. tmc2130_home_calibrate(X_AXIS);
  2196. }
  2197. if(home_y)
  2198. {
  2199. if (!calib)
  2200. homeaxis(Y_AXIS);
  2201. else
  2202. tmc2130_home_calibrate(Y_AXIS);
  2203. }
  2204. #else //TMC2130
  2205. if(home_x) homeaxis(X_AXIS);
  2206. if(home_y) homeaxis(Y_AXIS);
  2207. #endif //TMC2130
  2208. if(home_x_axis && home_x_value != 0)
  2209. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2210. if(home_y_axis && home_y_value != 0)
  2211. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2212. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2213. #ifndef Z_SAFE_HOMING
  2214. if(home_z) {
  2215. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2216. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2217. feedrate = max_feedrate[Z_AXIS];
  2218. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2219. st_synchronize();
  2220. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2221. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2222. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2223. {
  2224. homeaxis(X_AXIS);
  2225. homeaxis(Y_AXIS);
  2226. }
  2227. // 1st mesh bed leveling measurement point, corrected.
  2228. world2machine_initialize();
  2229. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2230. world2machine_reset();
  2231. if (destination[Y_AXIS] < Y_MIN_POS)
  2232. destination[Y_AXIS] = Y_MIN_POS;
  2233. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2234. feedrate = homing_feedrate[Z_AXIS]/10;
  2235. current_position[Z_AXIS] = 0;
  2236. enable_endstops(false);
  2237. #ifdef DEBUG_BUILD
  2238. SERIAL_ECHOLNPGM("plan_set_position()");
  2239. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2240. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2241. #endif
  2242. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2243. #ifdef DEBUG_BUILD
  2244. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2245. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2246. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2247. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2248. #endif
  2249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2250. st_synchronize();
  2251. current_position[X_AXIS] = destination[X_AXIS];
  2252. current_position[Y_AXIS] = destination[Y_AXIS];
  2253. enable_endstops(true);
  2254. endstops_hit_on_purpose();
  2255. homeaxis(Z_AXIS);
  2256. #else // MESH_BED_LEVELING
  2257. homeaxis(Z_AXIS);
  2258. #endif // MESH_BED_LEVELING
  2259. }
  2260. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2261. if(home_all_axes) {
  2262. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2263. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2264. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2265. feedrate = XY_TRAVEL_SPEED/60;
  2266. current_position[Z_AXIS] = 0;
  2267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2268. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2269. st_synchronize();
  2270. current_position[X_AXIS] = destination[X_AXIS];
  2271. current_position[Y_AXIS] = destination[Y_AXIS];
  2272. homeaxis(Z_AXIS);
  2273. }
  2274. // Let's see if X and Y are homed and probe is inside bed area.
  2275. if(home_z) {
  2276. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2277. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2278. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2279. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2280. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2281. current_position[Z_AXIS] = 0;
  2282. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2283. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2284. feedrate = max_feedrate[Z_AXIS];
  2285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2286. st_synchronize();
  2287. homeaxis(Z_AXIS);
  2288. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2289. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2290. SERIAL_ECHO_START;
  2291. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2292. } else {
  2293. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2294. SERIAL_ECHO_START;
  2295. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2296. }
  2297. }
  2298. #endif // Z_SAFE_HOMING
  2299. #endif // Z_HOME_DIR < 0
  2300. if(home_z_axis && home_z_value != 0)
  2301. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2302. #ifdef ENABLE_AUTO_BED_LEVELING
  2303. if(home_z)
  2304. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2305. #endif
  2306. // Set the planner and stepper routine positions.
  2307. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2308. // contains the machine coordinates.
  2309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2310. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2311. enable_endstops(false);
  2312. #endif
  2313. feedrate = saved_feedrate;
  2314. feedmultiply = l_feedmultiply;
  2315. previous_millis_cmd = _millis();
  2316. endstops_hit_on_purpose();
  2317. #ifndef MESH_BED_LEVELING
  2318. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2319. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2320. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2321. lcd_adjust_z();
  2322. #endif
  2323. // Load the machine correction matrix
  2324. world2machine_initialize();
  2325. // and correct the current_position XY axes to match the transformed coordinate system.
  2326. world2machine_update_current();
  2327. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2328. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2329. {
  2330. if (! home_z && mbl_was_active) {
  2331. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2332. mbl.active = true;
  2333. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2334. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2335. }
  2336. }
  2337. else
  2338. {
  2339. st_synchronize();
  2340. homing_flag = false;
  2341. }
  2342. #endif
  2343. if (farm_mode) { prusa_statistics(20); };
  2344. homing_flag = false;
  2345. #if 0
  2346. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2347. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2348. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2349. #endif
  2350. }
  2351. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2352. {
  2353. #ifdef TMC2130
  2354. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2355. #else
  2356. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2357. #endif //TMC2130
  2358. }
  2359. void adjust_bed_reset()
  2360. {
  2361. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2362. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2363. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2364. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2365. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2366. }
  2367. //! @brief Calibrate XYZ
  2368. //! @param onlyZ if true, calibrate only Z axis
  2369. //! @param verbosity_level
  2370. //! @retval true Succeeded
  2371. //! @retval false Failed
  2372. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2373. {
  2374. bool final_result = false;
  2375. #ifdef TMC2130
  2376. FORCE_HIGH_POWER_START;
  2377. #endif // TMC2130
  2378. // Only Z calibration?
  2379. if (!onlyZ)
  2380. {
  2381. setTargetBed(0);
  2382. setAllTargetHotends(0);
  2383. adjust_bed_reset(); //reset bed level correction
  2384. }
  2385. // Disable the default update procedure of the display. We will do a modal dialog.
  2386. lcd_update_enable(false);
  2387. // Let the planner use the uncorrected coordinates.
  2388. mbl.reset();
  2389. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2390. // the planner will not perform any adjustments in the XY plane.
  2391. // Wait for the motors to stop and update the current position with the absolute values.
  2392. world2machine_revert_to_uncorrected();
  2393. // Reset the baby step value applied without moving the axes.
  2394. babystep_reset();
  2395. // Mark all axes as in a need for homing.
  2396. memset(axis_known_position, 0, sizeof(axis_known_position));
  2397. // Home in the XY plane.
  2398. //set_destination_to_current();
  2399. int l_feedmultiply = setup_for_endstop_move();
  2400. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2401. home_xy();
  2402. enable_endstops(false);
  2403. current_position[X_AXIS] += 5;
  2404. current_position[Y_AXIS] += 5;
  2405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2406. st_synchronize();
  2407. // Let the user move the Z axes up to the end stoppers.
  2408. #ifdef TMC2130
  2409. if (calibrate_z_auto())
  2410. {
  2411. #else //TMC2130
  2412. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2413. {
  2414. #endif //TMC2130
  2415. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2416. if(onlyZ){
  2417. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2418. lcd_set_cursor(0, 3);
  2419. lcd_print(1);
  2420. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2421. }else{
  2422. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2423. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2424. lcd_set_cursor(0, 2);
  2425. lcd_print(1);
  2426. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2427. }
  2428. refresh_cmd_timeout();
  2429. #ifndef STEEL_SHEET
  2430. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2431. {
  2432. lcd_wait_for_cool_down();
  2433. }
  2434. #endif //STEEL_SHEET
  2435. if(!onlyZ)
  2436. {
  2437. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2438. #ifdef STEEL_SHEET
  2439. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2440. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2441. #endif //STEEL_SHEET
  2442. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2443. KEEPALIVE_STATE(IN_HANDLER);
  2444. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2445. lcd_set_cursor(0, 2);
  2446. lcd_print(1);
  2447. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2448. }
  2449. bool endstops_enabled = enable_endstops(false);
  2450. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2452. st_synchronize();
  2453. // Move the print head close to the bed.
  2454. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2455. enable_endstops(true);
  2456. #ifdef TMC2130
  2457. tmc2130_home_enter(Z_AXIS_MASK);
  2458. #endif //TMC2130
  2459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2460. st_synchronize();
  2461. #ifdef TMC2130
  2462. tmc2130_home_exit();
  2463. #endif //TMC2130
  2464. enable_endstops(endstops_enabled);
  2465. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2466. {
  2467. if (onlyZ)
  2468. {
  2469. clean_up_after_endstop_move(l_feedmultiply);
  2470. // Z only calibration.
  2471. // Load the machine correction matrix
  2472. world2machine_initialize();
  2473. // and correct the current_position to match the transformed coordinate system.
  2474. world2machine_update_current();
  2475. //FIXME
  2476. bool result = sample_mesh_and_store_reference();
  2477. if (result)
  2478. {
  2479. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2480. // Shipped, the nozzle height has been set already. The user can start printing now.
  2481. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2482. final_result = true;
  2483. // babystep_apply();
  2484. }
  2485. }
  2486. else
  2487. {
  2488. // Reset the baby step value and the baby step applied flag.
  2489. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2490. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2491. // Complete XYZ calibration.
  2492. uint8_t point_too_far_mask = 0;
  2493. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2494. clean_up_after_endstop_move(l_feedmultiply);
  2495. // Print head up.
  2496. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2498. st_synchronize();
  2499. //#ifndef NEW_XYZCAL
  2500. if (result >= 0)
  2501. {
  2502. #ifdef HEATBED_V2
  2503. sample_z();
  2504. #else //HEATBED_V2
  2505. point_too_far_mask = 0;
  2506. // Second half: The fine adjustment.
  2507. // Let the planner use the uncorrected coordinates.
  2508. mbl.reset();
  2509. world2machine_reset();
  2510. // Home in the XY plane.
  2511. int l_feedmultiply = setup_for_endstop_move();
  2512. home_xy();
  2513. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2514. clean_up_after_endstop_move(l_feedmultiply);
  2515. // Print head up.
  2516. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2518. st_synchronize();
  2519. // if (result >= 0) babystep_apply();
  2520. #endif //HEATBED_V2
  2521. }
  2522. //#endif //NEW_XYZCAL
  2523. lcd_update_enable(true);
  2524. lcd_update(2);
  2525. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2526. if (result >= 0)
  2527. {
  2528. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2529. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2530. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2531. final_result = true;
  2532. }
  2533. }
  2534. #ifdef TMC2130
  2535. tmc2130_home_exit();
  2536. #endif
  2537. }
  2538. else
  2539. {
  2540. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2541. final_result = false;
  2542. }
  2543. }
  2544. else
  2545. {
  2546. // Timeouted.
  2547. }
  2548. lcd_update_enable(true);
  2549. #ifdef TMC2130
  2550. FORCE_HIGH_POWER_END;
  2551. #endif // TMC2130
  2552. return final_result;
  2553. }
  2554. void gcode_M114()
  2555. {
  2556. SERIAL_PROTOCOLPGM("X:");
  2557. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2558. SERIAL_PROTOCOLPGM(" Y:");
  2559. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2560. SERIAL_PROTOCOLPGM(" Z:");
  2561. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2562. SERIAL_PROTOCOLPGM(" E:");
  2563. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2564. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2565. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2566. SERIAL_PROTOCOLPGM(" Y:");
  2567. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2568. SERIAL_PROTOCOLPGM(" Z:");
  2569. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2570. SERIAL_PROTOCOLPGM(" E:");
  2571. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2572. SERIAL_PROTOCOLLN("");
  2573. }
  2574. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2575. {
  2576. st_synchronize();
  2577. float lastpos[4];
  2578. if (farm_mode)
  2579. {
  2580. prusa_statistics(22);
  2581. }
  2582. //First backup current position and settings
  2583. int feedmultiplyBckp = feedmultiply;
  2584. float HotendTempBckp = degTargetHotend(active_extruder);
  2585. int fanSpeedBckp = fanSpeed;
  2586. lastpos[X_AXIS] = current_position[X_AXIS];
  2587. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2588. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2589. lastpos[E_AXIS] = current_position[E_AXIS];
  2590. //Retract E
  2591. current_position[E_AXIS] += e_shift;
  2592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2593. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2594. st_synchronize();
  2595. //Lift Z
  2596. current_position[Z_AXIS] += z_shift;
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2598. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2599. st_synchronize();
  2600. //Move XY to side
  2601. current_position[X_AXIS] = x_position;
  2602. current_position[Y_AXIS] = y_position;
  2603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2604. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2605. st_synchronize();
  2606. //Beep, manage nozzle heater and wait for user to start unload filament
  2607. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2608. lcd_change_fil_state = 0;
  2609. // Unload filament
  2610. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2611. else unload_filament(); //unload filament for single material (used also in M702)
  2612. //finish moves
  2613. st_synchronize();
  2614. if (!mmu_enabled)
  2615. {
  2616. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2617. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2618. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2619. if (lcd_change_fil_state == 0)
  2620. {
  2621. lcd_clear();
  2622. lcd_set_cursor(0, 2);
  2623. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2624. current_position[X_AXIS] -= 100;
  2625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2626. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2627. st_synchronize();
  2628. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2629. }
  2630. }
  2631. if (mmu_enabled)
  2632. {
  2633. if (!automatic) {
  2634. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2635. mmu_M600_wait_and_beep();
  2636. if (saved_printing) {
  2637. lcd_clear();
  2638. lcd_set_cursor(0, 2);
  2639. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2640. mmu_command(MmuCmd::R0);
  2641. manage_response(false, false);
  2642. }
  2643. }
  2644. mmu_M600_load_filament(automatic, HotendTempBckp);
  2645. }
  2646. else
  2647. M600_load_filament();
  2648. if (!automatic) M600_check_state(HotendTempBckp);
  2649. lcd_update_enable(true);
  2650. //Not let's go back to print
  2651. fanSpeed = fanSpeedBckp;
  2652. //Feed a little of filament to stabilize pressure
  2653. if (!automatic)
  2654. {
  2655. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2657. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2658. }
  2659. //Move XY back
  2660. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2661. FILAMENTCHANGE_XYFEED, active_extruder);
  2662. st_synchronize();
  2663. //Move Z back
  2664. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2665. FILAMENTCHANGE_ZFEED, active_extruder);
  2666. st_synchronize();
  2667. //Set E position to original
  2668. plan_set_e_position(lastpos[E_AXIS]);
  2669. memcpy(current_position, lastpos, sizeof(lastpos));
  2670. memcpy(destination, current_position, sizeof(current_position));
  2671. //Recover feed rate
  2672. feedmultiply = feedmultiplyBckp;
  2673. char cmd[9];
  2674. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2675. enquecommand(cmd);
  2676. #ifdef IR_SENSOR
  2677. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2678. fsensor_check_autoload();
  2679. #endif //IR_SENSOR
  2680. lcd_setstatuspgm(_T(WELCOME_MSG));
  2681. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2682. }
  2683. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2684. //!
  2685. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2686. //! during extruding (loading) filament.
  2687. void marlin_rise_z(void)
  2688. {
  2689. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2690. }
  2691. void gcode_M701()
  2692. {
  2693. printf_P(PSTR("gcode_M701 begin\n"));
  2694. if (mmu_enabled)
  2695. {
  2696. extr_adj(tmp_extruder);//loads current extruder
  2697. mmu_extruder = tmp_extruder;
  2698. }
  2699. else
  2700. {
  2701. enable_z();
  2702. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2703. #ifdef FSENSOR_QUALITY
  2704. fsensor_oq_meassure_start(40);
  2705. #endif //FSENSOR_QUALITY
  2706. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2707. current_position[E_AXIS] += 40;
  2708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2709. st_synchronize();
  2710. marlin_rise_z();
  2711. current_position[E_AXIS] += 30;
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2713. load_filament_final_feed(); //slow sequence
  2714. st_synchronize();
  2715. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2716. delay_keep_alive(50);
  2717. _noTone(BEEPER);
  2718. if (!farm_mode && loading_flag) {
  2719. lcd_load_filament_color_check();
  2720. }
  2721. lcd_update_enable(true);
  2722. lcd_update(2);
  2723. lcd_setstatuspgm(_T(WELCOME_MSG));
  2724. disable_z();
  2725. loading_flag = false;
  2726. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2727. #ifdef FSENSOR_QUALITY
  2728. fsensor_oq_meassure_stop();
  2729. if (!fsensor_oq_result())
  2730. {
  2731. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2732. lcd_update_enable(true);
  2733. lcd_update(2);
  2734. if (disable)
  2735. fsensor_disable();
  2736. }
  2737. #endif //FSENSOR_QUALITY
  2738. }
  2739. }
  2740. /**
  2741. * @brief Get serial number from 32U2 processor
  2742. *
  2743. * Typical format of S/N is:CZPX0917X003XC13518
  2744. *
  2745. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2746. *
  2747. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2748. * reply is transmitted to serial port 1 character by character.
  2749. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2750. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2751. * in any case.
  2752. */
  2753. static void gcode_PRUSA_SN()
  2754. {
  2755. if (farm_mode) {
  2756. selectedSerialPort = 0;
  2757. putchar(';');
  2758. putchar('S');
  2759. int numbersRead = 0;
  2760. ShortTimer timeout;
  2761. timeout.start();
  2762. while (numbersRead < 19) {
  2763. while (MSerial.available() > 0) {
  2764. uint8_t serial_char = MSerial.read();
  2765. selectedSerialPort = 1;
  2766. putchar(serial_char);
  2767. numbersRead++;
  2768. selectedSerialPort = 0;
  2769. }
  2770. if (timeout.expired(100u)) break;
  2771. }
  2772. selectedSerialPort = 1;
  2773. putchar('\n');
  2774. #if 0
  2775. for (int b = 0; b < 3; b++) {
  2776. _tone(BEEPER, 110);
  2777. _delay(50);
  2778. _noTone(BEEPER);
  2779. _delay(50);
  2780. }
  2781. #endif
  2782. } else {
  2783. puts_P(_N("Not in farm mode."));
  2784. }
  2785. }
  2786. #ifdef BACKLASH_X
  2787. extern uint8_t st_backlash_x;
  2788. #endif //BACKLASH_X
  2789. #ifdef BACKLASH_Y
  2790. extern uint8_t st_backlash_y;
  2791. #endif //BACKLASH_Y
  2792. //! @brief Parse and process commands
  2793. //!
  2794. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2795. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2796. //!
  2797. //! Implemented Codes
  2798. //! -------------------
  2799. //!
  2800. //!@n PRUSA CODES
  2801. //!@n P F - Returns FW versions
  2802. //!@n P R - Returns revision of printer
  2803. //!
  2804. //!@n G0 -> G1
  2805. //!@n G1 - Coordinated Movement X Y Z E
  2806. //!@n G2 - CW ARC
  2807. //!@n G3 - CCW ARC
  2808. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2809. //!@n G10 - retract filament according to settings of M207
  2810. //!@n G11 - retract recover filament according to settings of M208
  2811. //!@n G28 - Home all Axis
  2812. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2813. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2814. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2815. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2816. //!@n G80 - Automatic mesh bed leveling
  2817. //!@n G81 - Print bed profile
  2818. //!@n G90 - Use Absolute Coordinates
  2819. //!@n G91 - Use Relative Coordinates
  2820. //!@n G92 - Set current position to coordinates given
  2821. //!
  2822. //!@n M Codes
  2823. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2824. //!@n M1 - Same as M0
  2825. //!@n M17 - Enable/Power all stepper motors
  2826. //!@n M18 - Disable all stepper motors; same as M84
  2827. //!@n M20 - List SD card
  2828. //!@n M21 - Init SD card
  2829. //!@n M22 - Release SD card
  2830. //!@n M23 - Select SD file (M23 filename.g)
  2831. //!@n M24 - Start/resume SD print
  2832. //!@n M25 - Pause SD print
  2833. //!@n M26 - Set SD position in bytes (M26 S12345)
  2834. //!@n M27 - Report SD print status
  2835. //!@n M28 - Start SD write (M28 filename.g)
  2836. //!@n M29 - Stop SD write
  2837. //!@n M30 - Delete file from SD (M30 filename.g)
  2838. //!@n M31 - Output time since last M109 or SD card start to serial
  2839. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2840. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2841. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2842. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2843. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2844. //!@n M73 - Show percent done and print time remaining
  2845. //!@n M80 - Turn on Power Supply
  2846. //!@n M81 - Turn off Power Supply
  2847. //!@n M82 - Set E codes absolute (default)
  2848. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2849. //!@n M84 - Disable steppers until next move,
  2850. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2851. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2852. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2853. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2854. //!@n M104 - Set extruder target temp
  2855. //!@n M105 - Read current temp
  2856. //!@n M106 - Fan on
  2857. //!@n M107 - Fan off
  2858. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2859. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2860. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2861. //!@n M112 - Emergency stop
  2862. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2863. //!@n M114 - Output current position to serial port
  2864. //!@n M115 - Capabilities string
  2865. //!@n M117 - display message
  2866. //!@n M119 - Output Endstop status to serial port
  2867. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2868. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2869. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2870. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2871. //!@n M140 - Set bed target temp
  2872. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2873. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2874. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2875. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2876. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2877. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2878. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2879. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2880. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2881. //!@n M206 - set additional homing offset
  2882. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2883. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2884. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2885. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2886. //!@n M220 S<factor in percent>- set speed factor override percentage
  2887. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2888. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2889. //!@n M240 - Trigger a camera to take a photograph
  2890. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2891. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2892. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2893. //!@n M301 - Set PID parameters P I and D
  2894. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2895. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2896. //!@n M304 - Set bed PID parameters P I and D
  2897. //!@n M400 - Finish all moves
  2898. //!@n M401 - Lower z-probe if present
  2899. //!@n M402 - Raise z-probe if present
  2900. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2901. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2902. //!@n M406 - Turn off Filament Sensor extrusion control
  2903. //!@n M407 - Displays measured filament diameter
  2904. //!@n M500 - stores parameters in EEPROM
  2905. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2906. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2907. //!@n M503 - print the current settings (from memory not from EEPROM)
  2908. //!@n M509 - force language selection on next restart
  2909. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2910. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2911. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2912. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2913. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2914. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2915. //!@n M907 - Set digital trimpot motor current using axis codes.
  2916. //!@n M908 - Control digital trimpot directly.
  2917. //!@n M350 - Set microstepping mode.
  2918. //!@n M351 - Toggle MS1 MS2 pins directly.
  2919. //!
  2920. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2921. //!@n M999 - Restart after being stopped by error
  2922. void process_commands()
  2923. {
  2924. #ifdef FANCHECK
  2925. if (fan_check_error){
  2926. fan_check_error = false;
  2927. lcd_pause_print();
  2928. return;
  2929. }
  2930. #endif
  2931. if (!buflen) return; //empty command
  2932. #ifdef FILAMENT_RUNOUT_SUPPORT
  2933. SET_INPUT(FR_SENS);
  2934. #endif
  2935. #ifdef CMDBUFFER_DEBUG
  2936. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2937. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2938. SERIAL_ECHOLNPGM("");
  2939. SERIAL_ECHOPGM("In cmdqueue: ");
  2940. SERIAL_ECHO(buflen);
  2941. SERIAL_ECHOLNPGM("");
  2942. #endif /* CMDBUFFER_DEBUG */
  2943. unsigned long codenum; //throw away variable
  2944. char *starpos = NULL;
  2945. #ifdef ENABLE_AUTO_BED_LEVELING
  2946. float x_tmp, y_tmp, z_tmp, real_z;
  2947. #endif
  2948. // PRUSA GCODES
  2949. KEEPALIVE_STATE(IN_HANDLER);
  2950. #ifdef SNMM
  2951. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2952. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2953. int8_t SilentMode;
  2954. #endif
  2955. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2956. starpos = (strchr(strchr_pointer + 5, '*'));
  2957. if (starpos != NULL)
  2958. *(starpos) = '\0';
  2959. lcd_setstatus(strchr_pointer + 5);
  2960. }
  2961. #ifdef TMC2130
  2962. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2963. {
  2964. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2965. {
  2966. uint8_t mask = 0;
  2967. if (code_seen('X')) mask |= X_AXIS_MASK;
  2968. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2969. crashdet_detected(mask);
  2970. }
  2971. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2972. crashdet_recover();
  2973. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2974. crashdet_cancel();
  2975. }
  2976. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2977. {
  2978. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2979. {
  2980. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2981. axis = (axis == 'E')?3:(axis - 'X');
  2982. if (axis < 4)
  2983. {
  2984. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2985. tmc2130_set_wave(axis, 247, fac);
  2986. }
  2987. }
  2988. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2989. {
  2990. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2991. axis = (axis == 'E')?3:(axis - 'X');
  2992. if (axis < 4)
  2993. {
  2994. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2995. uint16_t res = tmc2130_get_res(axis);
  2996. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2997. }
  2998. }
  2999. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3000. {
  3001. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3002. axis = (axis == 'E')?3:(axis - 'X');
  3003. if (axis < 4)
  3004. {
  3005. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3006. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3007. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3008. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3009. char* str_end = 0;
  3010. if (CMDBUFFER_CURRENT_STRING[14])
  3011. {
  3012. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3013. if (str_end && *str_end)
  3014. {
  3015. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3016. if (str_end && *str_end)
  3017. {
  3018. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3019. if (str_end && *str_end)
  3020. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3021. }
  3022. }
  3023. }
  3024. tmc2130_chopper_config[axis].toff = chop0;
  3025. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3026. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3027. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3028. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3029. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3030. }
  3031. }
  3032. }
  3033. #ifdef BACKLASH_X
  3034. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3035. {
  3036. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3037. st_backlash_x = bl;
  3038. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3039. }
  3040. #endif //BACKLASH_X
  3041. #ifdef BACKLASH_Y
  3042. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3043. {
  3044. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3045. st_backlash_y = bl;
  3046. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3047. }
  3048. #endif //BACKLASH_Y
  3049. #endif //TMC2130
  3050. else if(code_seen("PRUSA")){
  3051. if (code_seen("Ping")) { //! PRUSA Ping
  3052. if (farm_mode) {
  3053. PingTime = _millis();
  3054. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3055. }
  3056. }
  3057. else if (code_seen("PRN")) { //! PRUSA PRN
  3058. printf_P(_N("%d"), status_number);
  3059. }else if (code_seen("FAN")) { //! PRUSA FAN
  3060. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3061. }else if (code_seen("fn")) { //! PRUSA fn
  3062. if (farm_mode) {
  3063. printf_P(_N("%d"), farm_no);
  3064. }
  3065. else {
  3066. puts_P(_N("Not in farm mode."));
  3067. }
  3068. }
  3069. else if (code_seen("thx")) //! PRUSA thx
  3070. {
  3071. no_response = false;
  3072. }
  3073. else if (code_seen("uvlo")) //! PRUSA uvlo
  3074. {
  3075. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3076. enquecommand_P(PSTR("M24"));
  3077. }
  3078. #ifdef FILAMENT_SENSOR
  3079. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3080. {
  3081. fsensor_restore_print_and_continue();
  3082. }
  3083. #endif //FILAMENT_SENSOR
  3084. else if (code_seen("MMURES")) //! PRUSA MMURES
  3085. {
  3086. mmu_reset();
  3087. }
  3088. else if (code_seen("RESET")) { //! PRUSA RESET
  3089. // careful!
  3090. if (farm_mode) {
  3091. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3092. boot_app_magic = BOOT_APP_MAGIC;
  3093. boot_app_flags = BOOT_APP_FLG_RUN;
  3094. wdt_enable(WDTO_15MS);
  3095. cli();
  3096. while(1);
  3097. #else //WATCHDOG
  3098. asm volatile("jmp 0x3E000");
  3099. #endif //WATCHDOG
  3100. }
  3101. else {
  3102. MYSERIAL.println("Not in farm mode.");
  3103. }
  3104. }else if (code_seen("fv")) { //! PRUSA fv
  3105. // get file version
  3106. #ifdef SDSUPPORT
  3107. card.openFile(strchr_pointer + 3,true);
  3108. while (true) {
  3109. uint16_t readByte = card.get();
  3110. MYSERIAL.write(readByte);
  3111. if (readByte=='\n') {
  3112. break;
  3113. }
  3114. }
  3115. card.closefile();
  3116. #endif // SDSUPPORT
  3117. } else if (code_seen("M28")) { //! PRUSA M28
  3118. trace();
  3119. prusa_sd_card_upload = true;
  3120. card.openFile(strchr_pointer+4,false);
  3121. } else if (code_seen("SN")) { //! PRUSA SN
  3122. gcode_PRUSA_SN();
  3123. } else if(code_seen("Fir")){ //! PRUSA Fir
  3124. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3125. } else if(code_seen("Rev")){ //! PRUSA Rev
  3126. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3127. } else if(code_seen("Lang")) { //! PRUSA Lang
  3128. lang_reset();
  3129. } else if(code_seen("Lz")) { //! PRUSA Lz
  3130. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3131. } else if(code_seen("Beat")) { //! PRUSA Beat
  3132. // Kick farm link timer
  3133. kicktime = _millis();
  3134. } else if(code_seen("FR")) { //! PRUSA FR
  3135. // Factory full reset
  3136. factory_reset(0);
  3137. }
  3138. //else if (code_seen('Cal')) {
  3139. // lcd_calibration();
  3140. // }
  3141. }
  3142. else if (code_seen('^')) {
  3143. // nothing, this is a version line
  3144. } else if(code_seen('G'))
  3145. {
  3146. gcode_in_progress = (int)code_value();
  3147. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3148. switch (gcode_in_progress)
  3149. {
  3150. case 0: // G0 -> G1
  3151. case 1: // G1
  3152. if(Stopped == false) {
  3153. #ifdef FILAMENT_RUNOUT_SUPPORT
  3154. if(READ(FR_SENS)){
  3155. int feedmultiplyBckp=feedmultiply;
  3156. float target[4];
  3157. float lastpos[4];
  3158. target[X_AXIS]=current_position[X_AXIS];
  3159. target[Y_AXIS]=current_position[Y_AXIS];
  3160. target[Z_AXIS]=current_position[Z_AXIS];
  3161. target[E_AXIS]=current_position[E_AXIS];
  3162. lastpos[X_AXIS]=current_position[X_AXIS];
  3163. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3164. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3165. lastpos[E_AXIS]=current_position[E_AXIS];
  3166. //retract by E
  3167. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3169. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3170. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3171. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3172. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3173. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3174. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3175. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3176. //finish moves
  3177. st_synchronize();
  3178. //disable extruder steppers so filament can be removed
  3179. disable_e0();
  3180. disable_e1();
  3181. disable_e2();
  3182. _delay(100);
  3183. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3184. uint8_t cnt=0;
  3185. int counterBeep = 0;
  3186. lcd_wait_interact();
  3187. while(!lcd_clicked()){
  3188. cnt++;
  3189. manage_heater();
  3190. manage_inactivity(true);
  3191. //lcd_update(0);
  3192. if(cnt==0)
  3193. {
  3194. #if BEEPER > 0
  3195. if (counterBeep== 500){
  3196. counterBeep = 0;
  3197. }
  3198. SET_OUTPUT(BEEPER);
  3199. if (counterBeep== 0){
  3200. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3201. WRITE(BEEPER,HIGH);
  3202. }
  3203. if (counterBeep== 20){
  3204. WRITE(BEEPER,LOW);
  3205. }
  3206. counterBeep++;
  3207. #else
  3208. #endif
  3209. }
  3210. }
  3211. WRITE(BEEPER,LOW);
  3212. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3213. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3214. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3215. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3216. lcd_change_fil_state = 0;
  3217. lcd_loading_filament();
  3218. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3219. lcd_change_fil_state = 0;
  3220. lcd_alright();
  3221. switch(lcd_change_fil_state){
  3222. case 2:
  3223. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3224. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3225. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3226. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3227. lcd_loading_filament();
  3228. break;
  3229. case 3:
  3230. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3231. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3232. lcd_loading_color();
  3233. break;
  3234. default:
  3235. lcd_change_success();
  3236. break;
  3237. }
  3238. }
  3239. target[E_AXIS]+= 5;
  3240. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3241. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3242. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3243. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3244. //plan_set_e_position(current_position[E_AXIS]);
  3245. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3246. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3247. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3248. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3249. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3250. plan_set_e_position(lastpos[E_AXIS]);
  3251. feedmultiply=feedmultiplyBckp;
  3252. char cmd[9];
  3253. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3254. enquecommand(cmd);
  3255. }
  3256. #endif
  3257. get_coordinates(); // For X Y Z E F
  3258. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3259. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3260. }
  3261. #ifdef FWRETRACT
  3262. if(cs.autoretract_enabled)
  3263. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3264. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3265. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3266. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3267. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3268. retract(!retracted[active_extruder]);
  3269. return;
  3270. }
  3271. }
  3272. #endif //FWRETRACT
  3273. prepare_move();
  3274. //ClearToSend();
  3275. }
  3276. break;
  3277. case 2: // G2 - CW ARC
  3278. if(Stopped == false) {
  3279. get_arc_coordinates();
  3280. prepare_arc_move(true);
  3281. }
  3282. break;
  3283. case 3: // G3 - CCW ARC
  3284. if(Stopped == false) {
  3285. get_arc_coordinates();
  3286. prepare_arc_move(false);
  3287. }
  3288. break;
  3289. case 4: // G4 dwell
  3290. codenum = 0;
  3291. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3292. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3293. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3294. st_synchronize();
  3295. codenum += _millis(); // keep track of when we started waiting
  3296. previous_millis_cmd = _millis();
  3297. while(_millis() < codenum) {
  3298. manage_heater();
  3299. manage_inactivity();
  3300. lcd_update(0);
  3301. }
  3302. break;
  3303. #ifdef FWRETRACT
  3304. case 10: // G10 retract
  3305. #if EXTRUDERS > 1
  3306. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3307. retract(true,retracted_swap[active_extruder]);
  3308. #else
  3309. retract(true);
  3310. #endif
  3311. break;
  3312. case 11: // G11 retract_recover
  3313. #if EXTRUDERS > 1
  3314. retract(false,retracted_swap[active_extruder]);
  3315. #else
  3316. retract(false);
  3317. #endif
  3318. break;
  3319. #endif //FWRETRACT
  3320. case 28: //G28 Home all Axis one at a time
  3321. {
  3322. long home_x_value = 0;
  3323. long home_y_value = 0;
  3324. long home_z_value = 0;
  3325. // Which axes should be homed?
  3326. bool home_x = code_seen(axis_codes[X_AXIS]);
  3327. home_x_value = code_value_long();
  3328. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3329. home_y_value = code_value_long();
  3330. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3331. home_z_value = code_value_long();
  3332. bool without_mbl = code_seen('W');
  3333. // calibrate?
  3334. #ifdef TMC2130
  3335. bool calib = code_seen('C');
  3336. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3337. #else
  3338. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3339. #endif //TMC2130
  3340. if ((home_x || home_y || without_mbl || home_z) == false) {
  3341. // Push the commands to the front of the message queue in the reverse order!
  3342. // There shall be always enough space reserved for these commands.
  3343. goto case_G80;
  3344. }
  3345. break;
  3346. }
  3347. #ifdef ENABLE_AUTO_BED_LEVELING
  3348. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3349. {
  3350. #if Z_MIN_PIN == -1
  3351. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3352. #endif
  3353. // Prevent user from running a G29 without first homing in X and Y
  3354. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3355. {
  3356. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3357. SERIAL_ECHO_START;
  3358. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3359. break; // abort G29, since we don't know where we are
  3360. }
  3361. st_synchronize();
  3362. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3363. //vector_3 corrected_position = plan_get_position_mm();
  3364. //corrected_position.debug("position before G29");
  3365. plan_bed_level_matrix.set_to_identity();
  3366. vector_3 uncorrected_position = plan_get_position();
  3367. //uncorrected_position.debug("position durring G29");
  3368. current_position[X_AXIS] = uncorrected_position.x;
  3369. current_position[Y_AXIS] = uncorrected_position.y;
  3370. current_position[Z_AXIS] = uncorrected_position.z;
  3371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3372. int l_feedmultiply = setup_for_endstop_move();
  3373. feedrate = homing_feedrate[Z_AXIS];
  3374. #ifdef AUTO_BED_LEVELING_GRID
  3375. // probe at the points of a lattice grid
  3376. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3377. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3378. // solve the plane equation ax + by + d = z
  3379. // A is the matrix with rows [x y 1] for all the probed points
  3380. // B is the vector of the Z positions
  3381. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3382. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3383. // "A" matrix of the linear system of equations
  3384. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3385. // "B" vector of Z points
  3386. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3387. int probePointCounter = 0;
  3388. bool zig = true;
  3389. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3390. {
  3391. int xProbe, xInc;
  3392. if (zig)
  3393. {
  3394. xProbe = LEFT_PROBE_BED_POSITION;
  3395. //xEnd = RIGHT_PROBE_BED_POSITION;
  3396. xInc = xGridSpacing;
  3397. zig = false;
  3398. } else // zag
  3399. {
  3400. xProbe = RIGHT_PROBE_BED_POSITION;
  3401. //xEnd = LEFT_PROBE_BED_POSITION;
  3402. xInc = -xGridSpacing;
  3403. zig = true;
  3404. }
  3405. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3406. {
  3407. float z_before;
  3408. if (probePointCounter == 0)
  3409. {
  3410. // raise before probing
  3411. z_before = Z_RAISE_BEFORE_PROBING;
  3412. } else
  3413. {
  3414. // raise extruder
  3415. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3416. }
  3417. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3418. eqnBVector[probePointCounter] = measured_z;
  3419. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3420. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3421. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3422. probePointCounter++;
  3423. xProbe += xInc;
  3424. }
  3425. }
  3426. clean_up_after_endstop_move(l_feedmultiply);
  3427. // solve lsq problem
  3428. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3429. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3430. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3431. SERIAL_PROTOCOLPGM(" b: ");
  3432. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3433. SERIAL_PROTOCOLPGM(" d: ");
  3434. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3435. set_bed_level_equation_lsq(plane_equation_coefficients);
  3436. free(plane_equation_coefficients);
  3437. #else // AUTO_BED_LEVELING_GRID not defined
  3438. // Probe at 3 arbitrary points
  3439. // probe 1
  3440. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3441. // probe 2
  3442. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3443. // probe 3
  3444. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3445. clean_up_after_endstop_move(l_feedmultiply);
  3446. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3447. #endif // AUTO_BED_LEVELING_GRID
  3448. st_synchronize();
  3449. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3450. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3451. // When the bed is uneven, this height must be corrected.
  3452. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3453. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3454. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3455. z_tmp = current_position[Z_AXIS];
  3456. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3457. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3458. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3459. }
  3460. break;
  3461. #ifndef Z_PROBE_SLED
  3462. case 30: // G30 Single Z Probe
  3463. {
  3464. st_synchronize();
  3465. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3466. int l_feedmultiply = setup_for_endstop_move();
  3467. feedrate = homing_feedrate[Z_AXIS];
  3468. run_z_probe();
  3469. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3470. SERIAL_PROTOCOLPGM(" X: ");
  3471. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3472. SERIAL_PROTOCOLPGM(" Y: ");
  3473. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3474. SERIAL_PROTOCOLPGM(" Z: ");
  3475. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3476. SERIAL_PROTOCOLPGM("\n");
  3477. clean_up_after_endstop_move(l_feedmultiply);
  3478. }
  3479. break;
  3480. #else
  3481. case 31: // dock the sled
  3482. dock_sled(true);
  3483. break;
  3484. case 32: // undock the sled
  3485. dock_sled(false);
  3486. break;
  3487. #endif // Z_PROBE_SLED
  3488. #endif // ENABLE_AUTO_BED_LEVELING
  3489. #ifdef MESH_BED_LEVELING
  3490. case 30: // G30 Single Z Probe
  3491. {
  3492. st_synchronize();
  3493. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3494. int l_feedmultiply = setup_for_endstop_move();
  3495. feedrate = homing_feedrate[Z_AXIS];
  3496. find_bed_induction_sensor_point_z(-10.f, 3);
  3497. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3498. clean_up_after_endstop_move(l_feedmultiply);
  3499. }
  3500. break;
  3501. case 75:
  3502. {
  3503. for (int i = 40; i <= 110; i++)
  3504. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3505. }
  3506. break;
  3507. case 76: //! G76 - PINDA probe temperature calibration
  3508. {
  3509. #ifdef PINDA_THERMISTOR
  3510. if (true)
  3511. {
  3512. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3513. //we need to know accurate position of first calibration point
  3514. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3515. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3516. break;
  3517. }
  3518. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3519. {
  3520. // We don't know where we are! HOME!
  3521. // Push the commands to the front of the message queue in the reverse order!
  3522. // There shall be always enough space reserved for these commands.
  3523. repeatcommand_front(); // repeat G76 with all its parameters
  3524. enquecommand_front_P((PSTR("G28 W0")));
  3525. break;
  3526. }
  3527. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3528. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3529. if (result)
  3530. {
  3531. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3533. current_position[Z_AXIS] = 50;
  3534. current_position[Y_AXIS] = 180;
  3535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3536. st_synchronize();
  3537. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3538. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3539. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3541. st_synchronize();
  3542. gcode_G28(false, false, true);
  3543. }
  3544. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3545. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3546. current_position[Z_AXIS] = 100;
  3547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3548. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3549. lcd_temp_cal_show_result(false);
  3550. break;
  3551. }
  3552. }
  3553. lcd_update_enable(true);
  3554. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3555. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3556. float zero_z;
  3557. int z_shift = 0; //unit: steps
  3558. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3559. if (start_temp < 35) start_temp = 35;
  3560. if (start_temp < current_temperature_pinda) start_temp += 5;
  3561. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3562. // setTargetHotend(200, 0);
  3563. setTargetBed(70 + (start_temp - 30));
  3564. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3565. custom_message_state = 1;
  3566. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3567. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3569. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3570. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3572. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3574. st_synchronize();
  3575. while (current_temperature_pinda < start_temp)
  3576. {
  3577. delay_keep_alive(1000);
  3578. serialecho_temperatures();
  3579. }
  3580. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3581. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3583. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3584. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3586. st_synchronize();
  3587. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3588. if (find_z_result == false) {
  3589. lcd_temp_cal_show_result(find_z_result);
  3590. break;
  3591. }
  3592. zero_z = current_position[Z_AXIS];
  3593. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3594. int i = -1; for (; i < 5; i++)
  3595. {
  3596. float temp = (40 + i * 5);
  3597. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3598. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3599. if (start_temp <= temp) break;
  3600. }
  3601. for (i++; i < 5; i++)
  3602. {
  3603. float temp = (40 + i * 5);
  3604. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3605. custom_message_state = i + 2;
  3606. setTargetBed(50 + 10 * (temp - 30) / 5);
  3607. // setTargetHotend(255, 0);
  3608. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3610. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3611. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3613. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3615. st_synchronize();
  3616. while (current_temperature_pinda < temp)
  3617. {
  3618. delay_keep_alive(1000);
  3619. serialecho_temperatures();
  3620. }
  3621. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3623. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3624. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3626. st_synchronize();
  3627. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3628. if (find_z_result == false) {
  3629. lcd_temp_cal_show_result(find_z_result);
  3630. break;
  3631. }
  3632. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3633. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3634. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3635. }
  3636. lcd_temp_cal_show_result(true);
  3637. break;
  3638. }
  3639. #endif //PINDA_THERMISTOR
  3640. setTargetBed(PINDA_MIN_T);
  3641. float zero_z;
  3642. int z_shift = 0; //unit: steps
  3643. int t_c; // temperature
  3644. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3645. // We don't know where we are! HOME!
  3646. // Push the commands to the front of the message queue in the reverse order!
  3647. // There shall be always enough space reserved for these commands.
  3648. repeatcommand_front(); // repeat G76 with all its parameters
  3649. enquecommand_front_P((PSTR("G28 W0")));
  3650. break;
  3651. }
  3652. puts_P(_N("PINDA probe calibration start"));
  3653. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3654. custom_message_state = 1;
  3655. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3656. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3657. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3658. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3660. st_synchronize();
  3661. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3662. delay_keep_alive(1000);
  3663. serialecho_temperatures();
  3664. }
  3665. //enquecommand_P(PSTR("M190 S50"));
  3666. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3667. delay_keep_alive(1000);
  3668. serialecho_temperatures();
  3669. }
  3670. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3671. current_position[Z_AXIS] = 5;
  3672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3673. current_position[X_AXIS] = BED_X0;
  3674. current_position[Y_AXIS] = BED_Y0;
  3675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3676. st_synchronize();
  3677. find_bed_induction_sensor_point_z(-1.f);
  3678. zero_z = current_position[Z_AXIS];
  3679. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3680. for (int i = 0; i<5; i++) {
  3681. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3682. custom_message_state = i + 2;
  3683. t_c = 60 + i * 10;
  3684. setTargetBed(t_c);
  3685. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3686. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3687. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3689. st_synchronize();
  3690. while (degBed() < t_c) {
  3691. delay_keep_alive(1000);
  3692. serialecho_temperatures();
  3693. }
  3694. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3695. delay_keep_alive(1000);
  3696. serialecho_temperatures();
  3697. }
  3698. current_position[Z_AXIS] = 5;
  3699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3700. current_position[X_AXIS] = BED_X0;
  3701. current_position[Y_AXIS] = BED_Y0;
  3702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3703. st_synchronize();
  3704. find_bed_induction_sensor_point_z(-1.f);
  3705. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3706. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3707. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3708. }
  3709. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3710. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3711. puts_P(_N("Temperature calibration done."));
  3712. disable_x();
  3713. disable_y();
  3714. disable_z();
  3715. disable_e0();
  3716. disable_e1();
  3717. disable_e2();
  3718. setTargetBed(0); //set bed target temperature back to 0
  3719. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3720. temp_cal_active = true;
  3721. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3722. lcd_update_enable(true);
  3723. lcd_update(2);
  3724. }
  3725. break;
  3726. /**
  3727. * G80: Mesh-based Z probe, probes a grid and produces a
  3728. * mesh to compensate for variable bed height
  3729. *
  3730. * The S0 report the points as below
  3731. * @code{.unparsed}
  3732. * +----> X-axis
  3733. * |
  3734. * |
  3735. * v Y-axis
  3736. * @endcode
  3737. */
  3738. case 80:
  3739. #ifdef MK1BP
  3740. break;
  3741. #endif //MK1BP
  3742. case_G80:
  3743. {
  3744. mesh_bed_leveling_flag = true;
  3745. static bool run = false;
  3746. #ifdef SUPPORT_VERBOSITY
  3747. int8_t verbosity_level = 0;
  3748. if (code_seen('V')) {
  3749. // Just 'V' without a number counts as V1.
  3750. char c = strchr_pointer[1];
  3751. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3752. }
  3753. #endif //SUPPORT_VERBOSITY
  3754. // Firstly check if we know where we are
  3755. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3756. // We don't know where we are! HOME!
  3757. // Push the commands to the front of the message queue in the reverse order!
  3758. // There shall be always enough space reserved for these commands.
  3759. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3760. repeatcommand_front(); // repeat G80 with all its parameters
  3761. enquecommand_front_P((PSTR("G28 W0")));
  3762. }
  3763. else {
  3764. mesh_bed_leveling_flag = false;
  3765. }
  3766. break;
  3767. }
  3768. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3769. if (code_seen('N')) {
  3770. nMeasPoints = code_value_uint8();
  3771. if (nMeasPoints != 7) {
  3772. nMeasPoints = 3;
  3773. }
  3774. }
  3775. else {
  3776. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3777. }
  3778. uint8_t nProbeRetry = 3;
  3779. if (code_seen('R')) {
  3780. nProbeRetry = code_value_uint8();
  3781. if (nProbeRetry > 10) {
  3782. nProbeRetry = 10;
  3783. }
  3784. }
  3785. else {
  3786. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3787. }
  3788. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3789. bool temp_comp_start = true;
  3790. #ifdef PINDA_THERMISTOR
  3791. temp_comp_start = false;
  3792. #endif //PINDA_THERMISTOR
  3793. if (temp_comp_start)
  3794. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3795. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3796. temp_compensation_start();
  3797. run = true;
  3798. repeatcommand_front(); // repeat G80 with all its parameters
  3799. enquecommand_front_P((PSTR("G28 W0")));
  3800. }
  3801. else {
  3802. mesh_bed_leveling_flag = false;
  3803. }
  3804. break;
  3805. }
  3806. run = false;
  3807. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3808. mesh_bed_leveling_flag = false;
  3809. break;
  3810. }
  3811. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3812. unsigned int custom_message_type_old = custom_message_type;
  3813. unsigned int custom_message_state_old = custom_message_state;
  3814. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3815. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3816. lcd_update(1);
  3817. mbl.reset(); //reset mesh bed leveling
  3818. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3819. // consumed during the first movements following this statement.
  3820. babystep_undo();
  3821. // Cycle through all points and probe them
  3822. // First move up. During this first movement, the babystepping will be reverted.
  3823. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3825. // The move to the first calibration point.
  3826. current_position[X_AXIS] = BED_X0;
  3827. current_position[Y_AXIS] = BED_Y0;
  3828. #ifdef SUPPORT_VERBOSITY
  3829. if (verbosity_level >= 1)
  3830. {
  3831. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3832. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3833. }
  3834. #else //SUPPORT_VERBOSITY
  3835. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3836. #endif //SUPPORT_VERBOSITY
  3837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3838. // Wait until the move is finished.
  3839. st_synchronize();
  3840. uint8_t mesh_point = 0; //index number of calibration point
  3841. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3842. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3843. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3844. #ifdef SUPPORT_VERBOSITY
  3845. if (verbosity_level >= 1) {
  3846. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3847. }
  3848. #endif // SUPPORT_VERBOSITY
  3849. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3850. const char *kill_message = NULL;
  3851. while (mesh_point != nMeasPoints * nMeasPoints) {
  3852. // Get coords of a measuring point.
  3853. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3854. uint8_t iy = mesh_point / nMeasPoints;
  3855. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3856. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3857. custom_message_state--;
  3858. mesh_point++;
  3859. continue; //skip
  3860. }*/
  3861. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3862. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3863. {
  3864. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3865. }
  3866. float z0 = 0.f;
  3867. if (has_z && (mesh_point > 0)) {
  3868. uint16_t z_offset_u = 0;
  3869. if (nMeasPoints == 7) {
  3870. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3871. }
  3872. else {
  3873. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3874. }
  3875. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3876. #ifdef SUPPORT_VERBOSITY
  3877. if (verbosity_level >= 1) {
  3878. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3879. }
  3880. #endif // SUPPORT_VERBOSITY
  3881. }
  3882. // Move Z up to MESH_HOME_Z_SEARCH.
  3883. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3884. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3885. float init_z_bckp = current_position[Z_AXIS];
  3886. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3887. st_synchronize();
  3888. // Move to XY position of the sensor point.
  3889. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3890. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3891. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3892. #ifdef SUPPORT_VERBOSITY
  3893. if (verbosity_level >= 1) {
  3894. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3895. SERIAL_PROTOCOL(mesh_point);
  3896. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3897. }
  3898. #else //SUPPORT_VERBOSITY
  3899. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3900. #endif // SUPPORT_VERBOSITY
  3901. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3903. st_synchronize();
  3904. // Go down until endstop is hit
  3905. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3906. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3907. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3908. break;
  3909. }
  3910. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3911. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3912. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3914. st_synchronize();
  3915. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3916. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3917. break;
  3918. }
  3919. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3920. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3921. break;
  3922. }
  3923. }
  3924. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3925. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3926. break;
  3927. }
  3928. #ifdef SUPPORT_VERBOSITY
  3929. if (verbosity_level >= 10) {
  3930. SERIAL_ECHOPGM("X: ");
  3931. MYSERIAL.print(current_position[X_AXIS], 5);
  3932. SERIAL_ECHOLNPGM("");
  3933. SERIAL_ECHOPGM("Y: ");
  3934. MYSERIAL.print(current_position[Y_AXIS], 5);
  3935. SERIAL_PROTOCOLPGM("\n");
  3936. }
  3937. #endif // SUPPORT_VERBOSITY
  3938. float offset_z = 0;
  3939. #ifdef PINDA_THERMISTOR
  3940. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3941. #endif //PINDA_THERMISTOR
  3942. // #ifdef SUPPORT_VERBOSITY
  3943. /* if (verbosity_level >= 1)
  3944. {
  3945. SERIAL_ECHOPGM("mesh bed leveling: ");
  3946. MYSERIAL.print(current_position[Z_AXIS], 5);
  3947. SERIAL_ECHOPGM(" offset: ");
  3948. MYSERIAL.print(offset_z, 5);
  3949. SERIAL_ECHOLNPGM("");
  3950. }*/
  3951. // #endif // SUPPORT_VERBOSITY
  3952. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3953. custom_message_state--;
  3954. mesh_point++;
  3955. lcd_update(1);
  3956. }
  3957. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3958. #ifdef SUPPORT_VERBOSITY
  3959. if (verbosity_level >= 20) {
  3960. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3961. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3962. MYSERIAL.print(current_position[Z_AXIS], 5);
  3963. }
  3964. #endif // SUPPORT_VERBOSITY
  3965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3966. st_synchronize();
  3967. if (mesh_point != nMeasPoints * nMeasPoints) {
  3968. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3969. bool bState;
  3970. do { // repeat until Z-leveling o.k.
  3971. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3972. #ifdef TMC2130
  3973. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3974. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3975. #else // TMC2130
  3976. lcd_wait_for_click_delay(0); // ~ no timeout
  3977. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3978. #endif // TMC2130
  3979. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3980. bState=enable_z_endstop(false);
  3981. current_position[Z_AXIS] -= 1;
  3982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3983. st_synchronize();
  3984. enable_z_endstop(true);
  3985. #ifdef TMC2130
  3986. tmc2130_home_enter(Z_AXIS_MASK);
  3987. #endif // TMC2130
  3988. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3990. st_synchronize();
  3991. #ifdef TMC2130
  3992. tmc2130_home_exit();
  3993. #endif // TMC2130
  3994. enable_z_endstop(bState);
  3995. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3996. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3997. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3998. lcd_update_enable(true); // display / status-line recovery
  3999. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4000. repeatcommand_front(); // re-run (i.e. of "G80")
  4001. break;
  4002. }
  4003. clean_up_after_endstop_move(l_feedmultiply);
  4004. // SERIAL_ECHOLNPGM("clean up finished ");
  4005. bool apply_temp_comp = true;
  4006. #ifdef PINDA_THERMISTOR
  4007. apply_temp_comp = false;
  4008. #endif
  4009. if (apply_temp_comp)
  4010. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4011. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4012. // SERIAL_ECHOLNPGM("babystep applied");
  4013. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4014. #ifdef SUPPORT_VERBOSITY
  4015. if (verbosity_level >= 1) {
  4016. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4017. }
  4018. #endif // SUPPORT_VERBOSITY
  4019. for (uint8_t i = 0; i < 4; ++i) {
  4020. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4021. long correction = 0;
  4022. if (code_seen(codes[i]))
  4023. correction = code_value_long();
  4024. else if (eeprom_bed_correction_valid) {
  4025. unsigned char *addr = (i < 2) ?
  4026. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4027. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4028. correction = eeprom_read_int8(addr);
  4029. }
  4030. if (correction == 0)
  4031. continue;
  4032. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4033. SERIAL_ERROR_START;
  4034. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4035. SERIAL_ECHO(correction);
  4036. SERIAL_ECHOLNPGM(" microns");
  4037. }
  4038. else {
  4039. float offset = float(correction) * 0.001f;
  4040. switch (i) {
  4041. case 0:
  4042. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4043. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4044. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4045. }
  4046. }
  4047. break;
  4048. case 1:
  4049. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4050. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4051. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4052. }
  4053. }
  4054. break;
  4055. case 2:
  4056. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4057. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4058. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4059. }
  4060. }
  4061. break;
  4062. case 3:
  4063. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4064. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4065. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4066. }
  4067. }
  4068. break;
  4069. }
  4070. }
  4071. }
  4072. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4073. if (nMeasPoints == 3) {
  4074. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4075. }
  4076. /*
  4077. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4078. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4079. SERIAL_PROTOCOLPGM(",");
  4080. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4081. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4082. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4083. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4084. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4085. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4086. SERIAL_PROTOCOLPGM(" ");
  4087. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4088. }
  4089. SERIAL_PROTOCOLPGM("\n");
  4090. }
  4091. */
  4092. if (nMeasPoints == 7 && magnet_elimination) {
  4093. mbl_interpolation(nMeasPoints);
  4094. }
  4095. /*
  4096. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4097. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4098. SERIAL_PROTOCOLPGM(",");
  4099. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4100. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4101. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4102. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4103. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4104. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4105. SERIAL_PROTOCOLPGM(" ");
  4106. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4107. }
  4108. SERIAL_PROTOCOLPGM("\n");
  4109. }
  4110. */
  4111. // SERIAL_ECHOLNPGM("Upsample finished");
  4112. mbl.active = 1; //activate mesh bed leveling
  4113. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4114. go_home_with_z_lift();
  4115. // SERIAL_ECHOLNPGM("Go home finished");
  4116. //unretract (after PINDA preheat retraction)
  4117. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4118. current_position[E_AXIS] += default_retraction;
  4119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4120. }
  4121. KEEPALIVE_STATE(NOT_BUSY);
  4122. // Restore custom message state
  4123. lcd_setstatuspgm(_T(WELCOME_MSG));
  4124. custom_message_type = custom_message_type_old;
  4125. custom_message_state = custom_message_state_old;
  4126. mesh_bed_leveling_flag = false;
  4127. mesh_bed_run_from_menu = false;
  4128. lcd_update(2);
  4129. }
  4130. break;
  4131. /**
  4132. * G81: Print mesh bed leveling status and bed profile if activated
  4133. */
  4134. case 81:
  4135. if (mbl.active) {
  4136. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4137. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4138. SERIAL_PROTOCOLPGM(",");
  4139. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4140. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4141. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4142. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4143. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4144. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4145. SERIAL_PROTOCOLPGM(" ");
  4146. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4147. }
  4148. SERIAL_PROTOCOLPGM("\n");
  4149. }
  4150. }
  4151. else
  4152. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4153. break;
  4154. #if 0
  4155. /**
  4156. * G82: Single Z probe at current location
  4157. *
  4158. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4159. *
  4160. */
  4161. case 82:
  4162. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4163. int l_feedmultiply = setup_for_endstop_move();
  4164. find_bed_induction_sensor_point_z();
  4165. clean_up_after_endstop_move(l_feedmultiply);
  4166. SERIAL_PROTOCOLPGM("Bed found at: ");
  4167. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4168. SERIAL_PROTOCOLPGM("\n");
  4169. break;
  4170. /**
  4171. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4172. */
  4173. case 83:
  4174. {
  4175. int babystepz = code_seen('S') ? code_value() : 0;
  4176. int BabyPosition = code_seen('P') ? code_value() : 0;
  4177. if (babystepz != 0) {
  4178. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4179. // Is the axis indexed starting with zero or one?
  4180. if (BabyPosition > 4) {
  4181. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4182. }else{
  4183. // Save it to the eeprom
  4184. babystepLoadZ = babystepz;
  4185. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4186. // adjust the Z
  4187. babystepsTodoZadd(babystepLoadZ);
  4188. }
  4189. }
  4190. }
  4191. break;
  4192. /**
  4193. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4194. */
  4195. case 84:
  4196. babystepsTodoZsubtract(babystepLoadZ);
  4197. // babystepLoadZ = 0;
  4198. break;
  4199. /**
  4200. * G85: Prusa3D specific: Pick best babystep
  4201. */
  4202. case 85:
  4203. lcd_pick_babystep();
  4204. break;
  4205. #endif
  4206. /**
  4207. * G86: Prusa3D specific: Disable babystep correction after home.
  4208. * This G-code will be performed at the start of a calibration script.
  4209. */
  4210. case 86:
  4211. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4212. break;
  4213. /**
  4214. * G87: Prusa3D specific: Enable babystep correction after home
  4215. * This G-code will be performed at the end of a calibration script.
  4216. */
  4217. case 87:
  4218. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4219. break;
  4220. /**
  4221. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4222. */
  4223. case 88:
  4224. break;
  4225. #endif // ENABLE_MESH_BED_LEVELING
  4226. case 90: // G90
  4227. relative_mode = false;
  4228. break;
  4229. case 91: // G91
  4230. relative_mode = true;
  4231. break;
  4232. case 92: // G92
  4233. if(!code_seen(axis_codes[E_AXIS]))
  4234. st_synchronize();
  4235. for(int8_t i=0; i < NUM_AXIS; i++) {
  4236. if(code_seen(axis_codes[i])) {
  4237. if(i == E_AXIS) {
  4238. current_position[i] = code_value();
  4239. plan_set_e_position(current_position[E_AXIS]);
  4240. }
  4241. else {
  4242. current_position[i] = code_value()+cs.add_homing[i];
  4243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4244. }
  4245. }
  4246. }
  4247. break;
  4248. case 98: //! G98 (activate farm mode)
  4249. farm_mode = 1;
  4250. PingTime = _millis();
  4251. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4252. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4253. SilentModeMenu = SILENT_MODE_OFF;
  4254. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4255. break;
  4256. case 99: //! G99 (deactivate farm mode)
  4257. farm_mode = 0;
  4258. lcd_printer_connected();
  4259. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4260. lcd_update(2);
  4261. break;
  4262. default:
  4263. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4264. }
  4265. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4266. gcode_in_progress = 0;
  4267. } // end if(code_seen('G'))
  4268. else if(code_seen('M'))
  4269. {
  4270. int index;
  4271. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4272. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4273. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4274. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4275. } else
  4276. {
  4277. mcode_in_progress = (int)code_value();
  4278. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4279. switch(mcode_in_progress)
  4280. {
  4281. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4282. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4283. {
  4284. char *src = strchr_pointer + 2;
  4285. codenum = 0;
  4286. bool hasP = false, hasS = false;
  4287. if (code_seen('P')) {
  4288. codenum = code_value(); // milliseconds to wait
  4289. hasP = codenum > 0;
  4290. }
  4291. if (code_seen('S')) {
  4292. codenum = code_value() * 1000; // seconds to wait
  4293. hasS = codenum > 0;
  4294. }
  4295. starpos = strchr(src, '*');
  4296. if (starpos != NULL) *(starpos) = '\0';
  4297. while (*src == ' ') ++src;
  4298. if (!hasP && !hasS && *src != '\0') {
  4299. lcd_setstatus(src);
  4300. } else {
  4301. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4302. }
  4303. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4304. st_synchronize();
  4305. previous_millis_cmd = _millis();
  4306. if (codenum > 0){
  4307. codenum += _millis(); // keep track of when we started waiting
  4308. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4309. while(_millis() < codenum && !lcd_clicked()){
  4310. manage_heater();
  4311. manage_inactivity(true);
  4312. lcd_update(0);
  4313. }
  4314. KEEPALIVE_STATE(IN_HANDLER);
  4315. lcd_ignore_click(false);
  4316. }else{
  4317. marlin_wait_for_click();
  4318. }
  4319. if (IS_SD_PRINTING)
  4320. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4321. else
  4322. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4323. }
  4324. break;
  4325. case 17:
  4326. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4327. enable_x();
  4328. enable_y();
  4329. enable_z();
  4330. enable_e0();
  4331. enable_e1();
  4332. enable_e2();
  4333. break;
  4334. #ifdef SDSUPPORT
  4335. case 20: // M20 - list SD card
  4336. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4337. card.ls();
  4338. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4339. break;
  4340. case 21: // M21 - init SD card
  4341. card.initsd();
  4342. break;
  4343. case 22: //M22 - release SD card
  4344. card.release();
  4345. break;
  4346. case 23: //M23 - Select file
  4347. starpos = (strchr(strchr_pointer + 4,'*'));
  4348. if(starpos!=NULL)
  4349. *(starpos)='\0';
  4350. card.openFile(strchr_pointer + 4,true);
  4351. break;
  4352. case 24: //M24 - Start SD print
  4353. if (!card.paused)
  4354. failstats_reset_print();
  4355. card.startFileprint();
  4356. starttime=_millis();
  4357. break;
  4358. case 25: //M25 - Pause SD print
  4359. card.pauseSDPrint();
  4360. break;
  4361. case 26: //M26 - Set SD index
  4362. if(card.cardOK && code_seen('S')) {
  4363. card.setIndex(code_value_long());
  4364. }
  4365. break;
  4366. case 27: //M27 - Get SD status
  4367. card.getStatus();
  4368. break;
  4369. case 28: //M28 - Start SD write
  4370. starpos = (strchr(strchr_pointer + 4,'*'));
  4371. if(starpos != NULL){
  4372. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4373. strchr_pointer = strchr(npos,' ') + 1;
  4374. *(starpos) = '\0';
  4375. }
  4376. card.openFile(strchr_pointer+4,false);
  4377. break;
  4378. case 29: //M29 - Stop SD write
  4379. //processed in write to file routine above
  4380. //card,saving = false;
  4381. break;
  4382. case 30: //M30 <filename> Delete File
  4383. if (card.cardOK){
  4384. card.closefile();
  4385. starpos = (strchr(strchr_pointer + 4,'*'));
  4386. if(starpos != NULL){
  4387. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4388. strchr_pointer = strchr(npos,' ') + 1;
  4389. *(starpos) = '\0';
  4390. }
  4391. card.removeFile(strchr_pointer + 4);
  4392. }
  4393. break;
  4394. case 32: //M32 - Select file and start SD print
  4395. {
  4396. if(card.sdprinting) {
  4397. st_synchronize();
  4398. }
  4399. starpos = (strchr(strchr_pointer + 4,'*'));
  4400. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4401. if(namestartpos==NULL)
  4402. {
  4403. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4404. }
  4405. else
  4406. namestartpos++; //to skip the '!'
  4407. if(starpos!=NULL)
  4408. *(starpos)='\0';
  4409. bool call_procedure=(code_seen('P'));
  4410. if(strchr_pointer>namestartpos)
  4411. call_procedure=false; //false alert, 'P' found within filename
  4412. if( card.cardOK )
  4413. {
  4414. card.openFile(namestartpos,true,!call_procedure);
  4415. if(code_seen('S'))
  4416. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4417. card.setIndex(code_value_long());
  4418. card.startFileprint();
  4419. if(!call_procedure)
  4420. starttime=_millis(); //procedure calls count as normal print time.
  4421. }
  4422. } break;
  4423. case 928: //M928 - Start SD write
  4424. starpos = (strchr(strchr_pointer + 5,'*'));
  4425. if(starpos != NULL){
  4426. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4427. strchr_pointer = strchr(npos,' ') + 1;
  4428. *(starpos) = '\0';
  4429. }
  4430. card.openLogFile(strchr_pointer+5);
  4431. break;
  4432. #endif //SDSUPPORT
  4433. case 31: //M31 take time since the start of the SD print or an M109 command
  4434. {
  4435. stoptime=_millis();
  4436. char time[30];
  4437. unsigned long t=(stoptime-starttime)/1000;
  4438. int sec,min;
  4439. min=t/60;
  4440. sec=t%60;
  4441. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4442. SERIAL_ECHO_START;
  4443. SERIAL_ECHOLN(time);
  4444. lcd_setstatus(time);
  4445. autotempShutdown();
  4446. }
  4447. break;
  4448. case 42: //M42 -Change pin status via gcode
  4449. if (code_seen('S'))
  4450. {
  4451. int pin_status = code_value();
  4452. int pin_number = LED_PIN;
  4453. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4454. pin_number = code_value();
  4455. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4456. {
  4457. if (sensitive_pins[i] == pin_number)
  4458. {
  4459. pin_number = -1;
  4460. break;
  4461. }
  4462. }
  4463. #if defined(FAN_PIN) && FAN_PIN > -1
  4464. if (pin_number == FAN_PIN)
  4465. fanSpeed = pin_status;
  4466. #endif
  4467. if (pin_number > -1)
  4468. {
  4469. pinMode(pin_number, OUTPUT);
  4470. digitalWrite(pin_number, pin_status);
  4471. analogWrite(pin_number, pin_status);
  4472. }
  4473. }
  4474. break;
  4475. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4476. // Reset the baby step value and the baby step applied flag.
  4477. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4478. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4479. // Reset the skew and offset in both RAM and EEPROM.
  4480. reset_bed_offset_and_skew();
  4481. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4482. // the planner will not perform any adjustments in the XY plane.
  4483. // Wait for the motors to stop and update the current position with the absolute values.
  4484. world2machine_revert_to_uncorrected();
  4485. break;
  4486. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4487. {
  4488. int8_t verbosity_level = 0;
  4489. bool only_Z = code_seen('Z');
  4490. #ifdef SUPPORT_VERBOSITY
  4491. if (code_seen('V'))
  4492. {
  4493. // Just 'V' without a number counts as V1.
  4494. char c = strchr_pointer[1];
  4495. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4496. }
  4497. #endif //SUPPORT_VERBOSITY
  4498. gcode_M45(only_Z, verbosity_level);
  4499. }
  4500. break;
  4501. /*
  4502. case 46:
  4503. {
  4504. // M46: Prusa3D: Show the assigned IP address.
  4505. uint8_t ip[4];
  4506. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4507. if (hasIP) {
  4508. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4509. SERIAL_ECHO(int(ip[0]));
  4510. SERIAL_ECHOPGM(".");
  4511. SERIAL_ECHO(int(ip[1]));
  4512. SERIAL_ECHOPGM(".");
  4513. SERIAL_ECHO(int(ip[2]));
  4514. SERIAL_ECHOPGM(".");
  4515. SERIAL_ECHO(int(ip[3]));
  4516. SERIAL_ECHOLNPGM("");
  4517. } else {
  4518. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4519. }
  4520. break;
  4521. }
  4522. */
  4523. case 47:
  4524. //! M47: Prusa3D: Show end stops dialog on the display.
  4525. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4526. lcd_diag_show_end_stops();
  4527. KEEPALIVE_STATE(IN_HANDLER);
  4528. break;
  4529. #if 0
  4530. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4531. {
  4532. // Disable the default update procedure of the display. We will do a modal dialog.
  4533. lcd_update_enable(false);
  4534. // Let the planner use the uncorrected coordinates.
  4535. mbl.reset();
  4536. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4537. // the planner will not perform any adjustments in the XY plane.
  4538. // Wait for the motors to stop and update the current position with the absolute values.
  4539. world2machine_revert_to_uncorrected();
  4540. // Move the print head close to the bed.
  4541. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4543. st_synchronize();
  4544. // Home in the XY plane.
  4545. set_destination_to_current();
  4546. int l_feedmultiply = setup_for_endstop_move();
  4547. home_xy();
  4548. int8_t verbosity_level = 0;
  4549. if (code_seen('V')) {
  4550. // Just 'V' without a number counts as V1.
  4551. char c = strchr_pointer[1];
  4552. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4553. }
  4554. bool success = scan_bed_induction_points(verbosity_level);
  4555. clean_up_after_endstop_move(l_feedmultiply);
  4556. // Print head up.
  4557. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4559. st_synchronize();
  4560. lcd_update_enable(true);
  4561. break;
  4562. }
  4563. #endif
  4564. #ifdef ENABLE_AUTO_BED_LEVELING
  4565. #ifdef Z_PROBE_REPEATABILITY_TEST
  4566. //! M48 Z-Probe repeatability measurement function.
  4567. //!
  4568. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4569. //!
  4570. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4571. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4572. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4573. //! regenerated.
  4574. //!
  4575. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4576. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4577. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4578. //!
  4579. case 48: // M48 Z-Probe repeatability
  4580. {
  4581. #if Z_MIN_PIN == -1
  4582. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4583. #endif
  4584. double sum=0.0;
  4585. double mean=0.0;
  4586. double sigma=0.0;
  4587. double sample_set[50];
  4588. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4589. double X_current, Y_current, Z_current;
  4590. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4591. if (code_seen('V') || code_seen('v')) {
  4592. verbose_level = code_value();
  4593. if (verbose_level<0 || verbose_level>4 ) {
  4594. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4595. goto Sigma_Exit;
  4596. }
  4597. }
  4598. if (verbose_level > 0) {
  4599. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4600. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4601. }
  4602. if (code_seen('n')) {
  4603. n_samples = code_value();
  4604. if (n_samples<4 || n_samples>50 ) {
  4605. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4606. goto Sigma_Exit;
  4607. }
  4608. }
  4609. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4610. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4611. Z_current = st_get_position_mm(Z_AXIS);
  4612. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4613. ext_position = st_get_position_mm(E_AXIS);
  4614. if (code_seen('X') || code_seen('x') ) {
  4615. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4616. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4617. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4618. goto Sigma_Exit;
  4619. }
  4620. }
  4621. if (code_seen('Y') || code_seen('y') ) {
  4622. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4623. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4624. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4625. goto Sigma_Exit;
  4626. }
  4627. }
  4628. if (code_seen('L') || code_seen('l') ) {
  4629. n_legs = code_value();
  4630. if ( n_legs==1 )
  4631. n_legs = 2;
  4632. if ( n_legs<0 || n_legs>15 ) {
  4633. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4634. goto Sigma_Exit;
  4635. }
  4636. }
  4637. //
  4638. // Do all the preliminary setup work. First raise the probe.
  4639. //
  4640. st_synchronize();
  4641. plan_bed_level_matrix.set_to_identity();
  4642. plan_buffer_line( X_current, Y_current, Z_start_location,
  4643. ext_position,
  4644. homing_feedrate[Z_AXIS]/60,
  4645. active_extruder);
  4646. st_synchronize();
  4647. //
  4648. // Now get everything to the specified probe point So we can safely do a probe to
  4649. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4650. // use that as a starting point for each probe.
  4651. //
  4652. if (verbose_level > 2)
  4653. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4654. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4655. ext_position,
  4656. homing_feedrate[X_AXIS]/60,
  4657. active_extruder);
  4658. st_synchronize();
  4659. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4660. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4661. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4662. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4663. //
  4664. // OK, do the inital probe to get us close to the bed.
  4665. // Then retrace the right amount and use that in subsequent probes
  4666. //
  4667. int l_feedmultiply = setup_for_endstop_move();
  4668. run_z_probe();
  4669. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4670. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4671. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4672. ext_position,
  4673. homing_feedrate[X_AXIS]/60,
  4674. active_extruder);
  4675. st_synchronize();
  4676. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4677. for( n=0; n<n_samples; n++) {
  4678. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4679. if ( n_legs) {
  4680. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4681. int rotational_direction, l;
  4682. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4683. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4684. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4685. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4686. //SERIAL_ECHOPAIR(" theta: ",theta);
  4687. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4688. //SERIAL_PROTOCOLLNPGM("");
  4689. for( l=0; l<n_legs-1; l++) {
  4690. if (rotational_direction==1)
  4691. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4692. else
  4693. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4694. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4695. if ( radius<0.0 )
  4696. radius = -radius;
  4697. X_current = X_probe_location + cos(theta) * radius;
  4698. Y_current = Y_probe_location + sin(theta) * radius;
  4699. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4700. X_current = X_MIN_POS;
  4701. if ( X_current>X_MAX_POS)
  4702. X_current = X_MAX_POS;
  4703. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4704. Y_current = Y_MIN_POS;
  4705. if ( Y_current>Y_MAX_POS)
  4706. Y_current = Y_MAX_POS;
  4707. if (verbose_level>3 ) {
  4708. SERIAL_ECHOPAIR("x: ", X_current);
  4709. SERIAL_ECHOPAIR("y: ", Y_current);
  4710. SERIAL_PROTOCOLLNPGM("");
  4711. }
  4712. do_blocking_move_to( X_current, Y_current, Z_current );
  4713. }
  4714. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4715. }
  4716. int l_feedmultiply = setup_for_endstop_move();
  4717. run_z_probe();
  4718. sample_set[n] = current_position[Z_AXIS];
  4719. //
  4720. // Get the current mean for the data points we have so far
  4721. //
  4722. sum=0.0;
  4723. for( j=0; j<=n; j++) {
  4724. sum = sum + sample_set[j];
  4725. }
  4726. mean = sum / (double (n+1));
  4727. //
  4728. // Now, use that mean to calculate the standard deviation for the
  4729. // data points we have so far
  4730. //
  4731. sum=0.0;
  4732. for( j=0; j<=n; j++) {
  4733. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4734. }
  4735. sigma = sqrt( sum / (double (n+1)) );
  4736. if (verbose_level > 1) {
  4737. SERIAL_PROTOCOL(n+1);
  4738. SERIAL_PROTOCOL(" of ");
  4739. SERIAL_PROTOCOL(n_samples);
  4740. SERIAL_PROTOCOLPGM(" z: ");
  4741. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4742. }
  4743. if (verbose_level > 2) {
  4744. SERIAL_PROTOCOL(" mean: ");
  4745. SERIAL_PROTOCOL_F(mean,6);
  4746. SERIAL_PROTOCOL(" sigma: ");
  4747. SERIAL_PROTOCOL_F(sigma,6);
  4748. }
  4749. if (verbose_level > 0)
  4750. SERIAL_PROTOCOLPGM("\n");
  4751. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4752. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4753. st_synchronize();
  4754. }
  4755. _delay(1000);
  4756. clean_up_after_endstop_move(l_feedmultiply);
  4757. // enable_endstops(true);
  4758. if (verbose_level > 0) {
  4759. SERIAL_PROTOCOLPGM("Mean: ");
  4760. SERIAL_PROTOCOL_F(mean, 6);
  4761. SERIAL_PROTOCOLPGM("\n");
  4762. }
  4763. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4764. SERIAL_PROTOCOL_F(sigma, 6);
  4765. SERIAL_PROTOCOLPGM("\n\n");
  4766. Sigma_Exit:
  4767. break;
  4768. }
  4769. #endif // Z_PROBE_REPEATABILITY_TEST
  4770. #endif // ENABLE_AUTO_BED_LEVELING
  4771. case 73: //M73 show percent done and time remaining
  4772. if(code_seen('P')) print_percent_done_normal = code_value();
  4773. if(code_seen('R')) print_time_remaining_normal = code_value();
  4774. if(code_seen('Q')) print_percent_done_silent = code_value();
  4775. if(code_seen('S')) print_time_remaining_silent = code_value();
  4776. {
  4777. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4778. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4779. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4780. }
  4781. break;
  4782. case 104: // M104
  4783. {
  4784. uint8_t extruder;
  4785. if(setTargetedHotend(104,extruder)){
  4786. break;
  4787. }
  4788. if (code_seen('S'))
  4789. {
  4790. setTargetHotendSafe(code_value(), extruder);
  4791. }
  4792. setWatch();
  4793. break;
  4794. }
  4795. case 112: // M112 -Emergency Stop
  4796. kill(_n(""), 3);
  4797. break;
  4798. case 140: // M140 set bed temp
  4799. if (code_seen('S')) setTargetBed(code_value());
  4800. break;
  4801. case 105 : // M105
  4802. {
  4803. uint8_t extruder;
  4804. if(setTargetedHotend(105, extruder)){
  4805. break;
  4806. }
  4807. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4808. SERIAL_PROTOCOLPGM("ok T:");
  4809. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4810. SERIAL_PROTOCOLPGM(" /");
  4811. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4812. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4813. SERIAL_PROTOCOLPGM(" B:");
  4814. SERIAL_PROTOCOL_F(degBed(),1);
  4815. SERIAL_PROTOCOLPGM(" /");
  4816. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4817. #endif //TEMP_BED_PIN
  4818. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4819. SERIAL_PROTOCOLPGM(" T");
  4820. SERIAL_PROTOCOL(cur_extruder);
  4821. SERIAL_PROTOCOLPGM(":");
  4822. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4823. SERIAL_PROTOCOLPGM(" /");
  4824. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4825. }
  4826. #else
  4827. SERIAL_ERROR_START;
  4828. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4829. #endif
  4830. SERIAL_PROTOCOLPGM(" @:");
  4831. #ifdef EXTRUDER_WATTS
  4832. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4833. SERIAL_PROTOCOLPGM("W");
  4834. #else
  4835. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4836. #endif
  4837. SERIAL_PROTOCOLPGM(" B@:");
  4838. #ifdef BED_WATTS
  4839. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4840. SERIAL_PROTOCOLPGM("W");
  4841. #else
  4842. SERIAL_PROTOCOL(getHeaterPower(-1));
  4843. #endif
  4844. #ifdef PINDA_THERMISTOR
  4845. SERIAL_PROTOCOLPGM(" P:");
  4846. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4847. #endif //PINDA_THERMISTOR
  4848. #ifdef AMBIENT_THERMISTOR
  4849. SERIAL_PROTOCOLPGM(" A:");
  4850. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4851. #endif //AMBIENT_THERMISTOR
  4852. #ifdef SHOW_TEMP_ADC_VALUES
  4853. {float raw = 0.0;
  4854. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4855. SERIAL_PROTOCOLPGM(" ADC B:");
  4856. SERIAL_PROTOCOL_F(degBed(),1);
  4857. SERIAL_PROTOCOLPGM("C->");
  4858. raw = rawBedTemp();
  4859. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4860. SERIAL_PROTOCOLPGM(" Rb->");
  4861. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4862. SERIAL_PROTOCOLPGM(" Rxb->");
  4863. SERIAL_PROTOCOL_F(raw, 5);
  4864. #endif
  4865. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4866. SERIAL_PROTOCOLPGM(" T");
  4867. SERIAL_PROTOCOL(cur_extruder);
  4868. SERIAL_PROTOCOLPGM(":");
  4869. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4870. SERIAL_PROTOCOLPGM("C->");
  4871. raw = rawHotendTemp(cur_extruder);
  4872. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4873. SERIAL_PROTOCOLPGM(" Rt");
  4874. SERIAL_PROTOCOL(cur_extruder);
  4875. SERIAL_PROTOCOLPGM("->");
  4876. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4877. SERIAL_PROTOCOLPGM(" Rx");
  4878. SERIAL_PROTOCOL(cur_extruder);
  4879. SERIAL_PROTOCOLPGM("->");
  4880. SERIAL_PROTOCOL_F(raw, 5);
  4881. }}
  4882. #endif
  4883. SERIAL_PROTOCOLLN("");
  4884. KEEPALIVE_STATE(NOT_BUSY);
  4885. return;
  4886. break;
  4887. }
  4888. case 109:
  4889. {// M109 - Wait for extruder heater to reach target.
  4890. uint8_t extruder;
  4891. if(setTargetedHotend(109, extruder)){
  4892. break;
  4893. }
  4894. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4895. heating_status = 1;
  4896. if (farm_mode) { prusa_statistics(1); };
  4897. #ifdef AUTOTEMP
  4898. autotemp_enabled=false;
  4899. #endif
  4900. if (code_seen('S')) {
  4901. setTargetHotendSafe(code_value(), extruder);
  4902. CooldownNoWait = true;
  4903. } else if (code_seen('R')) {
  4904. setTargetHotendSafe(code_value(), extruder);
  4905. CooldownNoWait = false;
  4906. }
  4907. #ifdef AUTOTEMP
  4908. if (code_seen('S')) autotemp_min=code_value();
  4909. if (code_seen('B')) autotemp_max=code_value();
  4910. if (code_seen('F'))
  4911. {
  4912. autotemp_factor=code_value();
  4913. autotemp_enabled=true;
  4914. }
  4915. #endif
  4916. setWatch();
  4917. codenum = _millis();
  4918. /* See if we are heating up or cooling down */
  4919. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4920. KEEPALIVE_STATE(NOT_BUSY);
  4921. cancel_heatup = false;
  4922. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4923. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4924. KEEPALIVE_STATE(IN_HANDLER);
  4925. heating_status = 2;
  4926. if (farm_mode) { prusa_statistics(2); };
  4927. //starttime=_millis();
  4928. previous_millis_cmd = _millis();
  4929. }
  4930. break;
  4931. case 190: // M190 - Wait for bed heater to reach target.
  4932. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4933. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4934. heating_status = 3;
  4935. if (farm_mode) { prusa_statistics(1); };
  4936. if (code_seen('S'))
  4937. {
  4938. setTargetBed(code_value());
  4939. CooldownNoWait = true;
  4940. }
  4941. else if (code_seen('R'))
  4942. {
  4943. setTargetBed(code_value());
  4944. CooldownNoWait = false;
  4945. }
  4946. codenum = _millis();
  4947. cancel_heatup = false;
  4948. target_direction = isHeatingBed(); // true if heating, false if cooling
  4949. KEEPALIVE_STATE(NOT_BUSY);
  4950. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4951. {
  4952. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4953. {
  4954. if (!farm_mode) {
  4955. float tt = degHotend(active_extruder);
  4956. SERIAL_PROTOCOLPGM("T:");
  4957. SERIAL_PROTOCOL(tt);
  4958. SERIAL_PROTOCOLPGM(" E:");
  4959. SERIAL_PROTOCOL((int)active_extruder);
  4960. SERIAL_PROTOCOLPGM(" B:");
  4961. SERIAL_PROTOCOL_F(degBed(), 1);
  4962. SERIAL_PROTOCOLLN("");
  4963. }
  4964. codenum = _millis();
  4965. }
  4966. manage_heater();
  4967. manage_inactivity();
  4968. lcd_update(0);
  4969. }
  4970. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4971. KEEPALIVE_STATE(IN_HANDLER);
  4972. heating_status = 4;
  4973. previous_millis_cmd = _millis();
  4974. #endif
  4975. break;
  4976. #if defined(FAN_PIN) && FAN_PIN > -1
  4977. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4978. if (code_seen('S')){
  4979. fanSpeed=constrain(code_value(),0,255);
  4980. }
  4981. else {
  4982. fanSpeed=255;
  4983. }
  4984. break;
  4985. case 107: //M107 Fan Off
  4986. fanSpeed = 0;
  4987. break;
  4988. #endif //FAN_PIN
  4989. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4990. case 80: // M80 - Turn on Power Supply
  4991. SET_OUTPUT(PS_ON_PIN); //GND
  4992. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4993. // If you have a switch on suicide pin, this is useful
  4994. // if you want to start another print with suicide feature after
  4995. // a print without suicide...
  4996. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4997. SET_OUTPUT(SUICIDE_PIN);
  4998. WRITE(SUICIDE_PIN, HIGH);
  4999. #endif
  5000. powersupply = true;
  5001. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5002. lcd_update(0);
  5003. break;
  5004. #endif
  5005. case 81: // M81 - Turn off Power Supply
  5006. disable_heater();
  5007. st_synchronize();
  5008. disable_e0();
  5009. disable_e1();
  5010. disable_e2();
  5011. finishAndDisableSteppers();
  5012. fanSpeed = 0;
  5013. _delay(1000); // Wait a little before to switch off
  5014. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5015. st_synchronize();
  5016. suicide();
  5017. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5018. SET_OUTPUT(PS_ON_PIN);
  5019. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5020. #endif
  5021. powersupply = false;
  5022. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5023. lcd_update(0);
  5024. break;
  5025. case 82:
  5026. axis_relative_modes[3] = false;
  5027. break;
  5028. case 83:
  5029. axis_relative_modes[3] = true;
  5030. break;
  5031. case 18: //compatibility
  5032. case 84: // M84
  5033. if(code_seen('S')){
  5034. stepper_inactive_time = code_value() * 1000;
  5035. }
  5036. else
  5037. {
  5038. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5039. if(all_axis)
  5040. {
  5041. st_synchronize();
  5042. disable_e0();
  5043. disable_e1();
  5044. disable_e2();
  5045. finishAndDisableSteppers();
  5046. }
  5047. else
  5048. {
  5049. st_synchronize();
  5050. if (code_seen('X')) disable_x();
  5051. if (code_seen('Y')) disable_y();
  5052. if (code_seen('Z')) disable_z();
  5053. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5054. if (code_seen('E')) {
  5055. disable_e0();
  5056. disable_e1();
  5057. disable_e2();
  5058. }
  5059. #endif
  5060. }
  5061. }
  5062. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5063. print_time_remaining_init();
  5064. snmm_filaments_used = 0;
  5065. break;
  5066. case 85: // M85
  5067. if(code_seen('S')) {
  5068. max_inactive_time = code_value() * 1000;
  5069. }
  5070. break;
  5071. #ifdef SAFETYTIMER
  5072. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5073. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5074. if (code_seen('S')) {
  5075. safetytimer_inactive_time = code_value() * 1000;
  5076. safetyTimer.start();
  5077. }
  5078. break;
  5079. #endif
  5080. case 92: // M92
  5081. for(int8_t i=0; i < NUM_AXIS; i++)
  5082. {
  5083. if(code_seen(axis_codes[i]))
  5084. {
  5085. if(i == 3) { // E
  5086. float value = code_value();
  5087. if(value < 20.0) {
  5088. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5089. cs.max_jerk[E_AXIS] *= factor;
  5090. max_feedrate[i] *= factor;
  5091. axis_steps_per_sqr_second[i] *= factor;
  5092. }
  5093. cs.axis_steps_per_unit[i] = value;
  5094. }
  5095. else {
  5096. cs.axis_steps_per_unit[i] = code_value();
  5097. }
  5098. }
  5099. }
  5100. break;
  5101. case 110: //! M110 N<line number> - reset line pos
  5102. if (code_seen('N'))
  5103. gcode_LastN = code_value_long();
  5104. break;
  5105. case 113: // M113 - Get or set Host Keepalive interval
  5106. if (code_seen('S')) {
  5107. host_keepalive_interval = (uint8_t)code_value_short();
  5108. // NOMORE(host_keepalive_interval, 60);
  5109. }
  5110. else {
  5111. SERIAL_ECHO_START;
  5112. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5113. SERIAL_PROTOCOLLN("");
  5114. }
  5115. break;
  5116. case 115: // M115
  5117. if (code_seen('V')) {
  5118. // Report the Prusa version number.
  5119. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5120. } else if (code_seen('U')) {
  5121. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5122. // pause the print and ask the user to upgrade the firmware.
  5123. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5124. } else {
  5125. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5126. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5127. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5128. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5129. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5130. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5131. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5132. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5133. SERIAL_ECHOPGM(" UUID:");
  5134. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5135. }
  5136. break;
  5137. /* case 117: // M117 display message
  5138. starpos = (strchr(strchr_pointer + 5,'*'));
  5139. if(starpos!=NULL)
  5140. *(starpos)='\0';
  5141. lcd_setstatus(strchr_pointer + 5);
  5142. break;*/
  5143. case 114: // M114
  5144. gcode_M114();
  5145. break;
  5146. case 120: //! M120 - Disable endstops
  5147. enable_endstops(false) ;
  5148. break;
  5149. case 121: //! M121 - Enable endstops
  5150. enable_endstops(true) ;
  5151. break;
  5152. case 119: // M119
  5153. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5154. SERIAL_PROTOCOLLN("");
  5155. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5156. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5157. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5158. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5159. }else{
  5160. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5161. }
  5162. SERIAL_PROTOCOLLN("");
  5163. #endif
  5164. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5165. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5166. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5167. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5168. }else{
  5169. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5170. }
  5171. SERIAL_PROTOCOLLN("");
  5172. #endif
  5173. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5174. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5175. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5176. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5177. }else{
  5178. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5179. }
  5180. SERIAL_PROTOCOLLN("");
  5181. #endif
  5182. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5183. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5184. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5185. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5186. }else{
  5187. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5188. }
  5189. SERIAL_PROTOCOLLN("");
  5190. #endif
  5191. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5192. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5193. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5194. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5195. }else{
  5196. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5197. }
  5198. SERIAL_PROTOCOLLN("");
  5199. #endif
  5200. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5201. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5202. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5203. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5204. }else{
  5205. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5206. }
  5207. SERIAL_PROTOCOLLN("");
  5208. #endif
  5209. break;
  5210. //TODO: update for all axis, use for loop
  5211. #ifdef BLINKM
  5212. case 150: // M150
  5213. {
  5214. byte red;
  5215. byte grn;
  5216. byte blu;
  5217. if(code_seen('R')) red = code_value();
  5218. if(code_seen('U')) grn = code_value();
  5219. if(code_seen('B')) blu = code_value();
  5220. SendColors(red,grn,blu);
  5221. }
  5222. break;
  5223. #endif //BLINKM
  5224. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5225. {
  5226. uint8_t extruder = active_extruder;
  5227. if(code_seen('T')) {
  5228. extruder = code_value();
  5229. if(extruder >= EXTRUDERS) {
  5230. SERIAL_ECHO_START;
  5231. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5232. break;
  5233. }
  5234. }
  5235. if(code_seen('D')) {
  5236. float diameter = (float)code_value();
  5237. if (diameter == 0.0) {
  5238. // setting any extruder filament size disables volumetric on the assumption that
  5239. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5240. // for all extruders
  5241. cs.volumetric_enabled = false;
  5242. } else {
  5243. cs.filament_size[extruder] = (float)code_value();
  5244. // make sure all extruders have some sane value for the filament size
  5245. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5246. #if EXTRUDERS > 1
  5247. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5248. #if EXTRUDERS > 2
  5249. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5250. #endif
  5251. #endif
  5252. cs.volumetric_enabled = true;
  5253. }
  5254. } else {
  5255. //reserved for setting filament diameter via UFID or filament measuring device
  5256. break;
  5257. }
  5258. calculate_extruder_multipliers();
  5259. }
  5260. break;
  5261. case 201: // M201
  5262. for (int8_t i = 0; i < NUM_AXIS; i++)
  5263. {
  5264. if (code_seen(axis_codes[i]))
  5265. {
  5266. unsigned long val = code_value();
  5267. #ifdef TMC2130
  5268. unsigned long val_silent = val;
  5269. if ((i == X_AXIS) || (i == Y_AXIS))
  5270. {
  5271. if (val > NORMAL_MAX_ACCEL_XY)
  5272. val = NORMAL_MAX_ACCEL_XY;
  5273. if (val_silent > SILENT_MAX_ACCEL_XY)
  5274. val_silent = SILENT_MAX_ACCEL_XY;
  5275. }
  5276. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5277. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5278. #else //TMC2130
  5279. max_acceleration_units_per_sq_second[i] = val;
  5280. #endif //TMC2130
  5281. }
  5282. }
  5283. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5284. reset_acceleration_rates();
  5285. break;
  5286. #if 0 // Not used for Sprinter/grbl gen6
  5287. case 202: // M202
  5288. for(int8_t i=0; i < NUM_AXIS; i++) {
  5289. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5290. }
  5291. break;
  5292. #endif
  5293. case 203: // M203 max feedrate mm/sec
  5294. for (int8_t i = 0; i < NUM_AXIS; i++)
  5295. {
  5296. if (code_seen(axis_codes[i]))
  5297. {
  5298. float val = code_value();
  5299. #ifdef TMC2130
  5300. float val_silent = val;
  5301. if ((i == X_AXIS) || (i == Y_AXIS))
  5302. {
  5303. if (val > NORMAL_MAX_FEEDRATE_XY)
  5304. val = NORMAL_MAX_FEEDRATE_XY;
  5305. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5306. val_silent = SILENT_MAX_FEEDRATE_XY;
  5307. }
  5308. cs.max_feedrate_normal[i] = val;
  5309. cs.max_feedrate_silent[i] = val_silent;
  5310. #else //TMC2130
  5311. max_feedrate[i] = val;
  5312. #endif //TMC2130
  5313. }
  5314. }
  5315. break;
  5316. case 204:
  5317. //! M204 acclereration settings.
  5318. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5319. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5320. {
  5321. if(code_seen('S')) {
  5322. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5323. // and it is also generated by Slic3r to control acceleration per extrusion type
  5324. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5325. cs.acceleration = code_value();
  5326. // Interpret the T value as retract acceleration in the old Marlin format.
  5327. if(code_seen('T'))
  5328. cs.retract_acceleration = code_value();
  5329. } else {
  5330. // New acceleration format, compatible with the upstream Marlin.
  5331. if(code_seen('P'))
  5332. cs.acceleration = code_value();
  5333. if(code_seen('R'))
  5334. cs.retract_acceleration = code_value();
  5335. if(code_seen('T')) {
  5336. // Interpret the T value as the travel acceleration in the new Marlin format.
  5337. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5338. // travel_acceleration = code_value();
  5339. }
  5340. }
  5341. }
  5342. break;
  5343. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5344. {
  5345. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5346. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5347. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5348. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5349. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5350. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5351. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5352. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5353. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5354. }
  5355. break;
  5356. case 206: // M206 additional homing offset
  5357. for(int8_t i=0; i < 3; i++)
  5358. {
  5359. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5360. }
  5361. break;
  5362. #ifdef FWRETRACT
  5363. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5364. {
  5365. if(code_seen('S'))
  5366. {
  5367. cs.retract_length = code_value() ;
  5368. }
  5369. if(code_seen('F'))
  5370. {
  5371. cs.retract_feedrate = code_value()/60 ;
  5372. }
  5373. if(code_seen('Z'))
  5374. {
  5375. cs.retract_zlift = code_value() ;
  5376. }
  5377. }break;
  5378. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5379. {
  5380. if(code_seen('S'))
  5381. {
  5382. cs.retract_recover_length = code_value() ;
  5383. }
  5384. if(code_seen('F'))
  5385. {
  5386. cs.retract_recover_feedrate = code_value()/60 ;
  5387. }
  5388. }break;
  5389. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5390. {
  5391. if(code_seen('S'))
  5392. {
  5393. int t= code_value() ;
  5394. switch(t)
  5395. {
  5396. case 0:
  5397. {
  5398. cs.autoretract_enabled=false;
  5399. retracted[0]=false;
  5400. #if EXTRUDERS > 1
  5401. retracted[1]=false;
  5402. #endif
  5403. #if EXTRUDERS > 2
  5404. retracted[2]=false;
  5405. #endif
  5406. }break;
  5407. case 1:
  5408. {
  5409. cs.autoretract_enabled=true;
  5410. retracted[0]=false;
  5411. #if EXTRUDERS > 1
  5412. retracted[1]=false;
  5413. #endif
  5414. #if EXTRUDERS > 2
  5415. retracted[2]=false;
  5416. #endif
  5417. }break;
  5418. default:
  5419. SERIAL_ECHO_START;
  5420. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5421. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5422. SERIAL_ECHOLNPGM("\"(1)");
  5423. }
  5424. }
  5425. }break;
  5426. #endif // FWRETRACT
  5427. #if EXTRUDERS > 1
  5428. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5429. {
  5430. uint8_t extruder;
  5431. if(setTargetedHotend(218, extruder)){
  5432. break;
  5433. }
  5434. if(code_seen('X'))
  5435. {
  5436. extruder_offset[X_AXIS][extruder] = code_value();
  5437. }
  5438. if(code_seen('Y'))
  5439. {
  5440. extruder_offset[Y_AXIS][extruder] = code_value();
  5441. }
  5442. SERIAL_ECHO_START;
  5443. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5444. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5445. {
  5446. SERIAL_ECHO(" ");
  5447. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5448. SERIAL_ECHO(",");
  5449. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5450. }
  5451. SERIAL_ECHOLN("");
  5452. }break;
  5453. #endif
  5454. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5455. {
  5456. if (code_seen('B')) //backup current speed factor
  5457. {
  5458. saved_feedmultiply_mm = feedmultiply;
  5459. }
  5460. if(code_seen('S'))
  5461. {
  5462. feedmultiply = code_value() ;
  5463. }
  5464. if (code_seen('R')) { //restore previous feedmultiply
  5465. feedmultiply = saved_feedmultiply_mm;
  5466. }
  5467. }
  5468. break;
  5469. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5470. {
  5471. if(code_seen('S'))
  5472. {
  5473. int tmp_code = code_value();
  5474. if (code_seen('T'))
  5475. {
  5476. uint8_t extruder;
  5477. if(setTargetedHotend(221, extruder)){
  5478. break;
  5479. }
  5480. extruder_multiply[extruder] = tmp_code;
  5481. }
  5482. else
  5483. {
  5484. extrudemultiply = tmp_code ;
  5485. }
  5486. }
  5487. calculate_extruder_multipliers();
  5488. }
  5489. break;
  5490. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5491. {
  5492. if(code_seen('P')){
  5493. int pin_number = code_value(); // pin number
  5494. int pin_state = -1; // required pin state - default is inverted
  5495. if(code_seen('S')) pin_state = code_value(); // required pin state
  5496. if(pin_state >= -1 && pin_state <= 1){
  5497. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5498. {
  5499. if (sensitive_pins[i] == pin_number)
  5500. {
  5501. pin_number = -1;
  5502. break;
  5503. }
  5504. }
  5505. if (pin_number > -1)
  5506. {
  5507. int target = LOW;
  5508. st_synchronize();
  5509. pinMode(pin_number, INPUT);
  5510. switch(pin_state){
  5511. case 1:
  5512. target = HIGH;
  5513. break;
  5514. case 0:
  5515. target = LOW;
  5516. break;
  5517. case -1:
  5518. target = !digitalRead(pin_number);
  5519. break;
  5520. }
  5521. while(digitalRead(pin_number) != target){
  5522. manage_heater();
  5523. manage_inactivity();
  5524. lcd_update(0);
  5525. }
  5526. }
  5527. }
  5528. }
  5529. }
  5530. break;
  5531. #if NUM_SERVOS > 0
  5532. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5533. {
  5534. int servo_index = -1;
  5535. int servo_position = 0;
  5536. if (code_seen('P'))
  5537. servo_index = code_value();
  5538. if (code_seen('S')) {
  5539. servo_position = code_value();
  5540. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5541. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5542. servos[servo_index].attach(0);
  5543. #endif
  5544. servos[servo_index].write(servo_position);
  5545. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5546. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5547. servos[servo_index].detach();
  5548. #endif
  5549. }
  5550. else {
  5551. SERIAL_ECHO_START;
  5552. SERIAL_ECHO("Servo ");
  5553. SERIAL_ECHO(servo_index);
  5554. SERIAL_ECHOLN(" out of range");
  5555. }
  5556. }
  5557. else if (servo_index >= 0) {
  5558. SERIAL_PROTOCOL(MSG_OK);
  5559. SERIAL_PROTOCOL(" Servo ");
  5560. SERIAL_PROTOCOL(servo_index);
  5561. SERIAL_PROTOCOL(": ");
  5562. SERIAL_PROTOCOL(servos[servo_index].read());
  5563. SERIAL_PROTOCOLLN("");
  5564. }
  5565. }
  5566. break;
  5567. #endif // NUM_SERVOS > 0
  5568. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5569. case 300: // M300
  5570. {
  5571. int beepS = code_seen('S') ? code_value() : 110;
  5572. int beepP = code_seen('P') ? code_value() : 1000;
  5573. if (beepS > 0)
  5574. {
  5575. #if BEEPER > 0
  5576. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5577. _tone(BEEPER, beepS);
  5578. _delay(beepP);
  5579. _noTone(BEEPER);
  5580. #endif
  5581. }
  5582. else
  5583. {
  5584. _delay(beepP);
  5585. }
  5586. }
  5587. break;
  5588. #endif // M300
  5589. #ifdef PIDTEMP
  5590. case 301: // M301
  5591. {
  5592. if(code_seen('P')) cs.Kp = code_value();
  5593. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5594. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5595. #ifdef PID_ADD_EXTRUSION_RATE
  5596. if(code_seen('C')) Kc = code_value();
  5597. #endif
  5598. updatePID();
  5599. SERIAL_PROTOCOLRPGM(MSG_OK);
  5600. SERIAL_PROTOCOL(" p:");
  5601. SERIAL_PROTOCOL(cs.Kp);
  5602. SERIAL_PROTOCOL(" i:");
  5603. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5604. SERIAL_PROTOCOL(" d:");
  5605. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5606. #ifdef PID_ADD_EXTRUSION_RATE
  5607. SERIAL_PROTOCOL(" c:");
  5608. //Kc does not have scaling applied above, or in resetting defaults
  5609. SERIAL_PROTOCOL(Kc);
  5610. #endif
  5611. SERIAL_PROTOCOLLN("");
  5612. }
  5613. break;
  5614. #endif //PIDTEMP
  5615. #ifdef PIDTEMPBED
  5616. case 304: // M304
  5617. {
  5618. if(code_seen('P')) cs.bedKp = code_value();
  5619. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5620. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5621. updatePID();
  5622. SERIAL_PROTOCOLRPGM(MSG_OK);
  5623. SERIAL_PROTOCOL(" p:");
  5624. SERIAL_PROTOCOL(cs.bedKp);
  5625. SERIAL_PROTOCOL(" i:");
  5626. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5627. SERIAL_PROTOCOL(" d:");
  5628. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5629. SERIAL_PROTOCOLLN("");
  5630. }
  5631. break;
  5632. #endif //PIDTEMP
  5633. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5634. {
  5635. #ifdef CHDK
  5636. SET_OUTPUT(CHDK);
  5637. WRITE(CHDK, HIGH);
  5638. chdkHigh = _millis();
  5639. chdkActive = true;
  5640. #else
  5641. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5642. const uint8_t NUM_PULSES=16;
  5643. const float PULSE_LENGTH=0.01524;
  5644. for(int i=0; i < NUM_PULSES; i++) {
  5645. WRITE(PHOTOGRAPH_PIN, HIGH);
  5646. _delay_ms(PULSE_LENGTH);
  5647. WRITE(PHOTOGRAPH_PIN, LOW);
  5648. _delay_ms(PULSE_LENGTH);
  5649. }
  5650. _delay(7.33);
  5651. for(int i=0; i < NUM_PULSES; i++) {
  5652. WRITE(PHOTOGRAPH_PIN, HIGH);
  5653. _delay_ms(PULSE_LENGTH);
  5654. WRITE(PHOTOGRAPH_PIN, LOW);
  5655. _delay_ms(PULSE_LENGTH);
  5656. }
  5657. #endif
  5658. #endif //chdk end if
  5659. }
  5660. break;
  5661. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5662. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5663. {
  5664. float temp = .0;
  5665. if (code_seen('S')) temp=code_value();
  5666. set_extrude_min_temp(temp);
  5667. }
  5668. break;
  5669. #endif
  5670. case 303: // M303 PID autotune
  5671. {
  5672. float temp = 150.0;
  5673. int e=0;
  5674. int c=5;
  5675. if (code_seen('E')) e=code_value();
  5676. if (e<0)
  5677. temp=70;
  5678. if (code_seen('S')) temp=code_value();
  5679. if (code_seen('C')) c=code_value();
  5680. PID_autotune(temp, e, c);
  5681. }
  5682. break;
  5683. case 400: // M400 finish all moves
  5684. {
  5685. st_synchronize();
  5686. }
  5687. break;
  5688. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5689. {
  5690. //! currently three different materials are needed (default, flex and PVA)
  5691. //! add storing this information for different load/unload profiles etc. in the future
  5692. //!firmware does not wait for "ok" from mmu
  5693. if (mmu_enabled)
  5694. {
  5695. uint8_t extruder = 255;
  5696. uint8_t filament = FILAMENT_UNDEFINED;
  5697. if(code_seen('E')) extruder = code_value();
  5698. if(code_seen('F')) filament = code_value();
  5699. mmu_set_filament_type(extruder, filament);
  5700. }
  5701. }
  5702. break;
  5703. case 500: // M500 Store settings in EEPROM
  5704. {
  5705. Config_StoreSettings();
  5706. }
  5707. break;
  5708. case 501: // M501 Read settings from EEPROM
  5709. {
  5710. Config_RetrieveSettings();
  5711. }
  5712. break;
  5713. case 502: // M502 Revert to default settings
  5714. {
  5715. Config_ResetDefault();
  5716. }
  5717. break;
  5718. case 503: // M503 print settings currently in memory
  5719. {
  5720. Config_PrintSettings();
  5721. }
  5722. break;
  5723. case 509: //M509 Force language selection
  5724. {
  5725. lang_reset();
  5726. SERIAL_ECHO_START;
  5727. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5728. }
  5729. break;
  5730. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5731. case 540:
  5732. {
  5733. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5734. }
  5735. break;
  5736. #endif
  5737. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5738. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5739. {
  5740. float value;
  5741. if (code_seen('Z'))
  5742. {
  5743. value = code_value();
  5744. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5745. {
  5746. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5747. SERIAL_ECHO_START;
  5748. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5749. SERIAL_PROTOCOLLN("");
  5750. }
  5751. else
  5752. {
  5753. SERIAL_ECHO_START;
  5754. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5755. SERIAL_ECHORPGM(MSG_Z_MIN);
  5756. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5757. SERIAL_ECHORPGM(MSG_Z_MAX);
  5758. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5759. SERIAL_PROTOCOLLN("");
  5760. }
  5761. }
  5762. else
  5763. {
  5764. SERIAL_ECHO_START;
  5765. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5766. SERIAL_ECHO(-cs.zprobe_zoffset);
  5767. SERIAL_PROTOCOLLN("");
  5768. }
  5769. break;
  5770. }
  5771. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5772. #ifdef FILAMENTCHANGEENABLE
  5773. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5774. {
  5775. st_synchronize();
  5776. float x_position = current_position[X_AXIS];
  5777. float y_position = current_position[Y_AXIS];
  5778. float z_shift = 0;
  5779. float e_shift_init = 0;
  5780. float e_shift_late = 0;
  5781. bool automatic = false;
  5782. //Retract extruder
  5783. if(code_seen('E'))
  5784. {
  5785. e_shift_init = code_value();
  5786. }
  5787. else
  5788. {
  5789. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5790. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5791. #endif
  5792. }
  5793. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5794. if (code_seen('L'))
  5795. {
  5796. e_shift_late = code_value();
  5797. }
  5798. else
  5799. {
  5800. #ifdef FILAMENTCHANGE_FINALRETRACT
  5801. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5802. #endif
  5803. }
  5804. //Lift Z
  5805. if(code_seen('Z'))
  5806. {
  5807. z_shift = code_value();
  5808. }
  5809. else
  5810. {
  5811. #ifdef FILAMENTCHANGE_ZADD
  5812. z_shift= FILAMENTCHANGE_ZADD ;
  5813. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5814. #endif
  5815. }
  5816. //Move XY to side
  5817. if(code_seen('X'))
  5818. {
  5819. x_position = code_value();
  5820. }
  5821. else
  5822. {
  5823. #ifdef FILAMENTCHANGE_XPOS
  5824. x_position = FILAMENTCHANGE_XPOS;
  5825. #endif
  5826. }
  5827. if(code_seen('Y'))
  5828. {
  5829. y_position = code_value();
  5830. }
  5831. else
  5832. {
  5833. #ifdef FILAMENTCHANGE_YPOS
  5834. y_position = FILAMENTCHANGE_YPOS ;
  5835. #endif
  5836. }
  5837. if (mmu_enabled && code_seen("AUTO"))
  5838. automatic = true;
  5839. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5840. }
  5841. break;
  5842. #endif //FILAMENTCHANGEENABLE
  5843. case 601: //! M601 - Pause print
  5844. {
  5845. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5846. lcd_pause_print();
  5847. }
  5848. break;
  5849. case 602: { //! M602 - Resume print
  5850. lcd_resume_print();
  5851. }
  5852. break;
  5853. #ifdef PINDA_THERMISTOR
  5854. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5855. {
  5856. int set_target_pinda = 0;
  5857. if (code_seen('S')) {
  5858. set_target_pinda = code_value();
  5859. }
  5860. else {
  5861. break;
  5862. }
  5863. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5864. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5865. SERIAL_PROTOCOL(set_target_pinda);
  5866. SERIAL_PROTOCOLLN("");
  5867. codenum = _millis();
  5868. cancel_heatup = false;
  5869. bool is_pinda_cooling = false;
  5870. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5871. is_pinda_cooling = true;
  5872. }
  5873. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5874. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5875. {
  5876. SERIAL_PROTOCOLPGM("P:");
  5877. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5878. SERIAL_PROTOCOLPGM("/");
  5879. SERIAL_PROTOCOL(set_target_pinda);
  5880. SERIAL_PROTOCOLLN("");
  5881. codenum = _millis();
  5882. }
  5883. manage_heater();
  5884. manage_inactivity();
  5885. lcd_update(0);
  5886. }
  5887. LCD_MESSAGERPGM(MSG_OK);
  5888. break;
  5889. }
  5890. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5891. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5892. uint8_t cal_status = calibration_status_pinda();
  5893. int16_t usteps = 0;
  5894. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5895. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5896. for (uint8_t i = 0; i < 6; i++)
  5897. {
  5898. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5899. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5900. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5901. SERIAL_PROTOCOLPGM(", ");
  5902. SERIAL_PROTOCOL(35 + (i * 5));
  5903. SERIAL_PROTOCOLPGM(", ");
  5904. SERIAL_PROTOCOL(usteps);
  5905. SERIAL_PROTOCOLPGM(", ");
  5906. SERIAL_PROTOCOL(mm * 1000);
  5907. SERIAL_PROTOCOLLN("");
  5908. }
  5909. }
  5910. else if (code_seen('!')) { // ! - Set factory default values
  5911. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5912. int16_t z_shift = 8; //40C - 20um - 8usteps
  5913. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5914. z_shift = 24; //45C - 60um - 24usteps
  5915. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5916. z_shift = 48; //50C - 120um - 48usteps
  5917. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5918. z_shift = 80; //55C - 200um - 80usteps
  5919. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5920. z_shift = 120; //60C - 300um - 120usteps
  5921. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5922. SERIAL_PROTOCOLLN("factory restored");
  5923. }
  5924. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5925. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5926. int16_t z_shift = 0;
  5927. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5928. SERIAL_PROTOCOLLN("zerorized");
  5929. }
  5930. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5931. int16_t usteps = code_value();
  5932. if (code_seen('I')) {
  5933. uint8_t index = code_value();
  5934. if (index < 5) {
  5935. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5936. SERIAL_PROTOCOLLN("OK");
  5937. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5938. for (uint8_t i = 0; i < 6; i++)
  5939. {
  5940. usteps = 0;
  5941. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5942. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5943. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5944. SERIAL_PROTOCOLPGM(", ");
  5945. SERIAL_PROTOCOL(35 + (i * 5));
  5946. SERIAL_PROTOCOLPGM(", ");
  5947. SERIAL_PROTOCOL(usteps);
  5948. SERIAL_PROTOCOLPGM(", ");
  5949. SERIAL_PROTOCOL(mm * 1000);
  5950. SERIAL_PROTOCOLLN("");
  5951. }
  5952. }
  5953. }
  5954. }
  5955. else {
  5956. SERIAL_PROTOCOLPGM("no valid command");
  5957. }
  5958. break;
  5959. #endif //PINDA_THERMISTOR
  5960. #ifdef LIN_ADVANCE
  5961. case 900: // M900: Set LIN_ADVANCE options.
  5962. gcode_M900();
  5963. break;
  5964. #endif
  5965. case 907: // M907 Set digital trimpot motor current using axis codes.
  5966. {
  5967. #ifdef TMC2130
  5968. for (int i = 0; i < NUM_AXIS; i++)
  5969. if(code_seen(axis_codes[i]))
  5970. {
  5971. long cur_mA = code_value_long();
  5972. uint8_t val = tmc2130_cur2val(cur_mA);
  5973. tmc2130_set_current_h(i, val);
  5974. tmc2130_set_current_r(i, val);
  5975. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5976. }
  5977. #else //TMC2130
  5978. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5979. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5980. if(code_seen('B')) st_current_set(4,code_value());
  5981. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5982. #endif
  5983. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5984. if(code_seen('X')) st_current_set(0, code_value());
  5985. #endif
  5986. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5987. if(code_seen('Z')) st_current_set(1, code_value());
  5988. #endif
  5989. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5990. if(code_seen('E')) st_current_set(2, code_value());
  5991. #endif
  5992. #endif //TMC2130
  5993. }
  5994. break;
  5995. case 908: // M908 Control digital trimpot directly.
  5996. {
  5997. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5998. uint8_t channel,current;
  5999. if(code_seen('P')) channel=code_value();
  6000. if(code_seen('S')) current=code_value();
  6001. digitalPotWrite(channel, current);
  6002. #endif
  6003. }
  6004. break;
  6005. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6006. case 910: //! M910 - TMC2130 init
  6007. {
  6008. tmc2130_init();
  6009. }
  6010. break;
  6011. case 911: //! M911 - Set TMC2130 holding currents
  6012. {
  6013. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6014. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6015. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6016. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6017. }
  6018. break;
  6019. case 912: //! M912 - Set TMC2130 running currents
  6020. {
  6021. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6022. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6023. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6024. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6025. }
  6026. break;
  6027. case 913: //! M913 - Print TMC2130 currents
  6028. {
  6029. tmc2130_print_currents();
  6030. }
  6031. break;
  6032. case 914: //! M914 - Set normal mode
  6033. {
  6034. tmc2130_mode = TMC2130_MODE_NORMAL;
  6035. update_mode_profile();
  6036. tmc2130_init();
  6037. }
  6038. break;
  6039. case 915: //! M915 - Set silent mode
  6040. {
  6041. tmc2130_mode = TMC2130_MODE_SILENT;
  6042. update_mode_profile();
  6043. tmc2130_init();
  6044. }
  6045. break;
  6046. case 916: //! M916 - Set sg_thrs
  6047. {
  6048. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6049. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6050. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6051. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6052. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6053. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6054. }
  6055. break;
  6056. case 917: //! M917 - Set TMC2130 pwm_ampl
  6057. {
  6058. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6059. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6060. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6061. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6062. }
  6063. break;
  6064. case 918: //! M918 - Set TMC2130 pwm_grad
  6065. {
  6066. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6067. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6068. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6069. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6070. }
  6071. break;
  6072. #endif //TMC2130_SERVICE_CODES_M910_M918
  6073. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6074. {
  6075. #ifdef TMC2130
  6076. if(code_seen('E'))
  6077. {
  6078. uint16_t res_new = code_value();
  6079. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6080. {
  6081. st_synchronize();
  6082. uint8_t axis = E_AXIS;
  6083. uint16_t res = tmc2130_get_res(axis);
  6084. tmc2130_set_res(axis, res_new);
  6085. cs.axis_ustep_resolution[axis] = res_new;
  6086. if (res_new > res)
  6087. {
  6088. uint16_t fac = (res_new / res);
  6089. cs.axis_steps_per_unit[axis] *= fac;
  6090. position[E_AXIS] *= fac;
  6091. }
  6092. else
  6093. {
  6094. uint16_t fac = (res / res_new);
  6095. cs.axis_steps_per_unit[axis] /= fac;
  6096. position[E_AXIS] /= fac;
  6097. }
  6098. }
  6099. }
  6100. #else //TMC2130
  6101. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6102. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6103. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6104. if(code_seen('B')) microstep_mode(4,code_value());
  6105. microstep_readings();
  6106. #endif
  6107. #endif //TMC2130
  6108. }
  6109. break;
  6110. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6111. {
  6112. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6113. if(code_seen('S')) switch((int)code_value())
  6114. {
  6115. case 1:
  6116. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6117. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6118. break;
  6119. case 2:
  6120. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6121. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6122. break;
  6123. }
  6124. microstep_readings();
  6125. #endif
  6126. }
  6127. break;
  6128. case 701: //! M701 - load filament
  6129. {
  6130. if (mmu_enabled && code_seen('E'))
  6131. tmp_extruder = code_value();
  6132. gcode_M701();
  6133. }
  6134. break;
  6135. case 702: //! M702 [U C] -
  6136. {
  6137. #ifdef SNMM
  6138. if (code_seen('U'))
  6139. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6140. else if (code_seen('C'))
  6141. extr_unload(); //! if "C" unload just current filament
  6142. else
  6143. extr_unload_all(); //! otherwise unload all filaments
  6144. #else
  6145. if (code_seen('C')) {
  6146. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6147. }
  6148. else {
  6149. if(mmu_enabled) extr_unload(); //! unload current filament
  6150. else unload_filament();
  6151. }
  6152. #endif //SNMM
  6153. }
  6154. break;
  6155. case 999: // M999: Restart after being stopped
  6156. Stopped = false;
  6157. lcd_reset_alert_level();
  6158. gcode_LastN = Stopped_gcode_LastN;
  6159. FlushSerialRequestResend();
  6160. break;
  6161. default:
  6162. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6163. }
  6164. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6165. mcode_in_progress = 0;
  6166. }
  6167. }
  6168. // end if(code_seen('M')) (end of M codes)
  6169. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6170. //! select filament in case of MMU_V2
  6171. //! if extruder is "?", open menu to let the user select extruder/filament
  6172. //!
  6173. //! For MMU_V2:
  6174. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6175. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6176. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6177. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6178. else if(code_seen('T'))
  6179. {
  6180. int index;
  6181. bool load_to_nozzle = false;
  6182. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6183. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6184. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6185. SERIAL_ECHOLNPGM("Invalid T code.");
  6186. }
  6187. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6188. if (mmu_enabled)
  6189. {
  6190. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6191. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6192. {
  6193. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6194. }
  6195. else
  6196. {
  6197. st_synchronize();
  6198. mmu_command(MmuCmd::T0 + tmp_extruder);
  6199. manage_response(true, true, MMU_TCODE_MOVE);
  6200. }
  6201. }
  6202. }
  6203. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6204. if (mmu_enabled)
  6205. {
  6206. st_synchronize();
  6207. mmu_continue_loading(is_usb_printing);
  6208. mmu_extruder = tmp_extruder; //filament change is finished
  6209. mmu_load_to_nozzle();
  6210. }
  6211. }
  6212. else {
  6213. if (*(strchr_pointer + index) == '?')
  6214. {
  6215. if(mmu_enabled)
  6216. {
  6217. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6218. load_to_nozzle = true;
  6219. } else
  6220. {
  6221. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6222. }
  6223. }
  6224. else {
  6225. tmp_extruder = code_value();
  6226. if (mmu_enabled && lcd_autoDepleteEnabled())
  6227. {
  6228. tmp_extruder = ad_getAlternative(tmp_extruder);
  6229. }
  6230. }
  6231. st_synchronize();
  6232. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6233. if (mmu_enabled)
  6234. {
  6235. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6236. {
  6237. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6238. }
  6239. else
  6240. {
  6241. mmu_command(MmuCmd::T0 + tmp_extruder);
  6242. manage_response(true, true, MMU_TCODE_MOVE);
  6243. mmu_continue_loading(is_usb_printing);
  6244. mmu_extruder = tmp_extruder; //filament change is finished
  6245. if (load_to_nozzle)// for single material usage with mmu
  6246. {
  6247. mmu_load_to_nozzle();
  6248. }
  6249. }
  6250. }
  6251. else
  6252. {
  6253. #ifdef SNMM
  6254. #ifdef LIN_ADVANCE
  6255. if (mmu_extruder != tmp_extruder)
  6256. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6257. #endif
  6258. mmu_extruder = tmp_extruder;
  6259. _delay(100);
  6260. disable_e0();
  6261. disable_e1();
  6262. disable_e2();
  6263. pinMode(E_MUX0_PIN, OUTPUT);
  6264. pinMode(E_MUX1_PIN, OUTPUT);
  6265. _delay(100);
  6266. SERIAL_ECHO_START;
  6267. SERIAL_ECHO("T:");
  6268. SERIAL_ECHOLN((int)tmp_extruder);
  6269. switch (tmp_extruder) {
  6270. case 1:
  6271. WRITE(E_MUX0_PIN, HIGH);
  6272. WRITE(E_MUX1_PIN, LOW);
  6273. break;
  6274. case 2:
  6275. WRITE(E_MUX0_PIN, LOW);
  6276. WRITE(E_MUX1_PIN, HIGH);
  6277. break;
  6278. case 3:
  6279. WRITE(E_MUX0_PIN, HIGH);
  6280. WRITE(E_MUX1_PIN, HIGH);
  6281. break;
  6282. default:
  6283. WRITE(E_MUX0_PIN, LOW);
  6284. WRITE(E_MUX1_PIN, LOW);
  6285. break;
  6286. }
  6287. _delay(100);
  6288. #else //SNMM
  6289. if (tmp_extruder >= EXTRUDERS) {
  6290. SERIAL_ECHO_START;
  6291. SERIAL_ECHOPGM("T");
  6292. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6293. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6294. }
  6295. else {
  6296. #if EXTRUDERS > 1
  6297. boolean make_move = false;
  6298. #endif
  6299. if (code_seen('F')) {
  6300. #if EXTRUDERS > 1
  6301. make_move = true;
  6302. #endif
  6303. next_feedrate = code_value();
  6304. if (next_feedrate > 0.0) {
  6305. feedrate = next_feedrate;
  6306. }
  6307. }
  6308. #if EXTRUDERS > 1
  6309. if (tmp_extruder != active_extruder) {
  6310. // Save current position to return to after applying extruder offset
  6311. memcpy(destination, current_position, sizeof(destination));
  6312. // Offset extruder (only by XY)
  6313. int i;
  6314. for (i = 0; i < 2; i++) {
  6315. current_position[i] = current_position[i] -
  6316. extruder_offset[i][active_extruder] +
  6317. extruder_offset[i][tmp_extruder];
  6318. }
  6319. // Set the new active extruder and position
  6320. active_extruder = tmp_extruder;
  6321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6322. // Move to the old position if 'F' was in the parameters
  6323. if (make_move && Stopped == false) {
  6324. prepare_move();
  6325. }
  6326. }
  6327. #endif
  6328. SERIAL_ECHO_START;
  6329. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6330. SERIAL_PROTOCOLLN((int)active_extruder);
  6331. }
  6332. #endif //SNMM
  6333. }
  6334. }
  6335. } // end if(code_seen('T')) (end of T codes)
  6336. else if (code_seen('D')) // D codes (debug)
  6337. {
  6338. switch((int)code_value())
  6339. {
  6340. case -1: //! D-1 - Endless loop
  6341. dcode__1(); break;
  6342. #ifdef DEBUG_DCODES
  6343. case 0: //! D0 - Reset
  6344. dcode_0(); break;
  6345. case 1: //! D1 - Clear EEPROM
  6346. dcode_1(); break;
  6347. case 2: //! D2 - Read/Write RAM
  6348. dcode_2(); break;
  6349. #endif //DEBUG_DCODES
  6350. #ifdef DEBUG_DCODE3
  6351. case 3: //! D3 - Read/Write EEPROM
  6352. dcode_3(); break;
  6353. #endif //DEBUG_DCODE3
  6354. #ifdef DEBUG_DCODES
  6355. case 4: //! D4 - Read/Write PIN
  6356. dcode_4(); break;
  6357. #endif //DEBUG_DCODES
  6358. #ifdef DEBUG_DCODE5
  6359. case 5: // D5 - Read/Write FLASH
  6360. dcode_5(); break;
  6361. break;
  6362. #endif //DEBUG_DCODE5
  6363. #ifdef DEBUG_DCODES
  6364. case 6: // D6 - Read/Write external FLASH
  6365. dcode_6(); break;
  6366. case 7: //! D7 - Read/Write Bootloader
  6367. dcode_7(); break;
  6368. case 8: //! D8 - Read/Write PINDA
  6369. dcode_8(); break;
  6370. case 9: //! D9 - Read/Write ADC
  6371. dcode_9(); break;
  6372. case 10: //! D10 - XYZ calibration = OK
  6373. dcode_10(); break;
  6374. #endif //DEBUG_DCODES
  6375. #ifdef HEATBED_ANALYSIS
  6376. case 80:
  6377. {
  6378. float dimension_x = 40;
  6379. float dimension_y = 40;
  6380. int points_x = 40;
  6381. int points_y = 40;
  6382. float offset_x = 74;
  6383. float offset_y = 33;
  6384. if (code_seen('E')) dimension_x = code_value();
  6385. if (code_seen('F')) dimension_y = code_value();
  6386. if (code_seen('G')) {points_x = code_value(); }
  6387. if (code_seen('H')) {points_y = code_value(); }
  6388. if (code_seen('I')) {offset_x = code_value(); }
  6389. if (code_seen('J')) {offset_y = code_value(); }
  6390. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6391. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6392. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6393. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6394. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6395. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6396. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6397. }break;
  6398. case 81:
  6399. {
  6400. float dimension_x = 40;
  6401. float dimension_y = 40;
  6402. int points_x = 40;
  6403. int points_y = 40;
  6404. float offset_x = 74;
  6405. float offset_y = 33;
  6406. if (code_seen('E')) dimension_x = code_value();
  6407. if (code_seen('F')) dimension_y = code_value();
  6408. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6409. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6410. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6411. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6412. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6413. } break;
  6414. #endif //HEATBED_ANALYSIS
  6415. #ifdef DEBUG_DCODES
  6416. case 106: //D106 print measured fan speed for different pwm values
  6417. {
  6418. for (int i = 255; i > 0; i = i - 5) {
  6419. fanSpeed = i;
  6420. //delay_keep_alive(2000);
  6421. for (int j = 0; j < 100; j++) {
  6422. delay_keep_alive(100);
  6423. }
  6424. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6425. }
  6426. }break;
  6427. #ifdef TMC2130
  6428. case 2130: //! D2130 - TMC2130
  6429. dcode_2130(); break;
  6430. #endif //TMC2130
  6431. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6432. case 9125: //! D9125 - FILAMENT_SENSOR
  6433. dcode_9125(); break;
  6434. #endif //FILAMENT_SENSOR
  6435. #endif //DEBUG_DCODES
  6436. }
  6437. }
  6438. else
  6439. {
  6440. SERIAL_ECHO_START;
  6441. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6442. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6443. SERIAL_ECHOLNPGM("\"(2)");
  6444. }
  6445. KEEPALIVE_STATE(NOT_BUSY);
  6446. ClearToSend();
  6447. }
  6448. void FlushSerialRequestResend()
  6449. {
  6450. //char cmdbuffer[bufindr][100]="Resend:";
  6451. MYSERIAL.flush();
  6452. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6453. }
  6454. // Confirm the execution of a command, if sent from a serial line.
  6455. // Execution of a command from a SD card will not be confirmed.
  6456. void ClearToSend()
  6457. {
  6458. previous_millis_cmd = _millis();
  6459. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6460. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6461. }
  6462. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6463. void update_currents() {
  6464. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6465. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6466. float tmp_motor[3];
  6467. //SERIAL_ECHOLNPGM("Currents updated: ");
  6468. if (destination[Z_AXIS] < Z_SILENT) {
  6469. //SERIAL_ECHOLNPGM("LOW");
  6470. for (uint8_t i = 0; i < 3; i++) {
  6471. st_current_set(i, current_low[i]);
  6472. /*MYSERIAL.print(int(i));
  6473. SERIAL_ECHOPGM(": ");
  6474. MYSERIAL.println(current_low[i]);*/
  6475. }
  6476. }
  6477. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6478. //SERIAL_ECHOLNPGM("HIGH");
  6479. for (uint8_t i = 0; i < 3; i++) {
  6480. st_current_set(i, current_high[i]);
  6481. /*MYSERIAL.print(int(i));
  6482. SERIAL_ECHOPGM(": ");
  6483. MYSERIAL.println(current_high[i]);*/
  6484. }
  6485. }
  6486. else {
  6487. for (uint8_t i = 0; i < 3; i++) {
  6488. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6489. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6490. st_current_set(i, tmp_motor[i]);
  6491. /*MYSERIAL.print(int(i));
  6492. SERIAL_ECHOPGM(": ");
  6493. MYSERIAL.println(tmp_motor[i]);*/
  6494. }
  6495. }
  6496. }
  6497. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6498. void get_coordinates()
  6499. {
  6500. bool seen[4]={false,false,false,false};
  6501. for(int8_t i=0; i < NUM_AXIS; i++) {
  6502. if(code_seen(axis_codes[i]))
  6503. {
  6504. bool relative = axis_relative_modes[i] || relative_mode;
  6505. destination[i] = (float)code_value();
  6506. if (i == E_AXIS) {
  6507. float emult = extruder_multiplier[active_extruder];
  6508. if (emult != 1.) {
  6509. if (! relative) {
  6510. destination[i] -= current_position[i];
  6511. relative = true;
  6512. }
  6513. destination[i] *= emult;
  6514. }
  6515. }
  6516. if (relative)
  6517. destination[i] += current_position[i];
  6518. seen[i]=true;
  6519. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6520. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6521. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6522. }
  6523. else destination[i] = current_position[i]; //Are these else lines really needed?
  6524. }
  6525. if(code_seen('F')) {
  6526. next_feedrate = code_value();
  6527. #ifdef MAX_SILENT_FEEDRATE
  6528. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6529. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6530. #endif //MAX_SILENT_FEEDRATE
  6531. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6532. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6533. {
  6534. // float e_max_speed =
  6535. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6536. }
  6537. }
  6538. }
  6539. void get_arc_coordinates()
  6540. {
  6541. #ifdef SF_ARC_FIX
  6542. bool relative_mode_backup = relative_mode;
  6543. relative_mode = true;
  6544. #endif
  6545. get_coordinates();
  6546. #ifdef SF_ARC_FIX
  6547. relative_mode=relative_mode_backup;
  6548. #endif
  6549. if(code_seen('I')) {
  6550. offset[0] = code_value();
  6551. }
  6552. else {
  6553. offset[0] = 0.0;
  6554. }
  6555. if(code_seen('J')) {
  6556. offset[1] = code_value();
  6557. }
  6558. else {
  6559. offset[1] = 0.0;
  6560. }
  6561. }
  6562. void clamp_to_software_endstops(float target[3])
  6563. {
  6564. #ifdef DEBUG_DISABLE_SWLIMITS
  6565. return;
  6566. #endif //DEBUG_DISABLE_SWLIMITS
  6567. world2machine_clamp(target[0], target[1]);
  6568. // Clamp the Z coordinate.
  6569. if (min_software_endstops) {
  6570. float negative_z_offset = 0;
  6571. #ifdef ENABLE_AUTO_BED_LEVELING
  6572. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6573. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6574. #endif
  6575. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6576. }
  6577. if (max_software_endstops) {
  6578. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6579. }
  6580. }
  6581. #ifdef MESH_BED_LEVELING
  6582. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6583. float dx = x - current_position[X_AXIS];
  6584. float dy = y - current_position[Y_AXIS];
  6585. float dz = z - current_position[Z_AXIS];
  6586. int n_segments = 0;
  6587. if (mbl.active) {
  6588. float len = abs(dx) + abs(dy);
  6589. if (len > 0)
  6590. // Split to 3cm segments or shorter.
  6591. n_segments = int(ceil(len / 30.f));
  6592. }
  6593. if (n_segments > 1) {
  6594. float de = e - current_position[E_AXIS];
  6595. for (int i = 1; i < n_segments; ++ i) {
  6596. float t = float(i) / float(n_segments);
  6597. if (saved_printing || (mbl.active == false)) return;
  6598. plan_buffer_line(
  6599. current_position[X_AXIS] + t * dx,
  6600. current_position[Y_AXIS] + t * dy,
  6601. current_position[Z_AXIS] + t * dz,
  6602. current_position[E_AXIS] + t * de,
  6603. feed_rate, extruder);
  6604. }
  6605. }
  6606. // The rest of the path.
  6607. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6608. current_position[X_AXIS] = x;
  6609. current_position[Y_AXIS] = y;
  6610. current_position[Z_AXIS] = z;
  6611. current_position[E_AXIS] = e;
  6612. }
  6613. #endif // MESH_BED_LEVELING
  6614. void prepare_move()
  6615. {
  6616. clamp_to_software_endstops(destination);
  6617. previous_millis_cmd = _millis();
  6618. // Do not use feedmultiply for E or Z only moves
  6619. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6620. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6621. }
  6622. else {
  6623. #ifdef MESH_BED_LEVELING
  6624. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6625. #else
  6626. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6627. #endif
  6628. }
  6629. for(int8_t i=0; i < NUM_AXIS; i++) {
  6630. current_position[i] = destination[i];
  6631. }
  6632. }
  6633. void prepare_arc_move(char isclockwise) {
  6634. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6635. // Trace the arc
  6636. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6637. // As far as the parser is concerned, the position is now == target. In reality the
  6638. // motion control system might still be processing the action and the real tool position
  6639. // in any intermediate location.
  6640. for(int8_t i=0; i < NUM_AXIS; i++) {
  6641. current_position[i] = destination[i];
  6642. }
  6643. previous_millis_cmd = _millis();
  6644. }
  6645. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6646. #if defined(FAN_PIN)
  6647. #if CONTROLLERFAN_PIN == FAN_PIN
  6648. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6649. #endif
  6650. #endif
  6651. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6652. unsigned long lastMotorCheck = 0;
  6653. void controllerFan()
  6654. {
  6655. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6656. {
  6657. lastMotorCheck = _millis();
  6658. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6659. #if EXTRUDERS > 2
  6660. || !READ(E2_ENABLE_PIN)
  6661. #endif
  6662. #if EXTRUDER > 1
  6663. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6664. || !READ(X2_ENABLE_PIN)
  6665. #endif
  6666. || !READ(E1_ENABLE_PIN)
  6667. #endif
  6668. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6669. {
  6670. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6671. }
  6672. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6673. {
  6674. digitalWrite(CONTROLLERFAN_PIN, 0);
  6675. analogWrite(CONTROLLERFAN_PIN, 0);
  6676. }
  6677. else
  6678. {
  6679. // allows digital or PWM fan output to be used (see M42 handling)
  6680. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6681. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6682. }
  6683. }
  6684. }
  6685. #endif
  6686. #ifdef TEMP_STAT_LEDS
  6687. static bool blue_led = false;
  6688. static bool red_led = false;
  6689. static uint32_t stat_update = 0;
  6690. void handle_status_leds(void) {
  6691. float max_temp = 0.0;
  6692. if(_millis() > stat_update) {
  6693. stat_update += 500; // Update every 0.5s
  6694. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6695. max_temp = max(max_temp, degHotend(cur_extruder));
  6696. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6697. }
  6698. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6699. max_temp = max(max_temp, degTargetBed());
  6700. max_temp = max(max_temp, degBed());
  6701. #endif
  6702. if((max_temp > 55.0) && (red_led == false)) {
  6703. digitalWrite(STAT_LED_RED, 1);
  6704. digitalWrite(STAT_LED_BLUE, 0);
  6705. red_led = true;
  6706. blue_led = false;
  6707. }
  6708. if((max_temp < 54.0) && (blue_led == false)) {
  6709. digitalWrite(STAT_LED_RED, 0);
  6710. digitalWrite(STAT_LED_BLUE, 1);
  6711. red_led = false;
  6712. blue_led = true;
  6713. }
  6714. }
  6715. }
  6716. #endif
  6717. #ifdef SAFETYTIMER
  6718. /**
  6719. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6720. *
  6721. * Full screen blocking notification message is shown after heater turning off.
  6722. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6723. * damage print.
  6724. *
  6725. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6726. */
  6727. static void handleSafetyTimer()
  6728. {
  6729. #if (EXTRUDERS > 1)
  6730. #error Implemented only for one extruder.
  6731. #endif //(EXTRUDERS > 1)
  6732. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6733. {
  6734. safetyTimer.stop();
  6735. }
  6736. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6737. {
  6738. safetyTimer.start();
  6739. }
  6740. else if (safetyTimer.expired(safetytimer_inactive_time))
  6741. {
  6742. setTargetBed(0);
  6743. setAllTargetHotends(0);
  6744. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6745. }
  6746. }
  6747. #endif //SAFETYTIMER
  6748. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6749. {
  6750. bool bInhibitFlag;
  6751. #ifdef FILAMENT_SENSOR
  6752. if (mmu_enabled == false)
  6753. {
  6754. //-// if (mcode_in_progress != 600) //M600 not in progress
  6755. #ifdef PAT9125
  6756. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6757. #endif // PAT9125
  6758. #ifdef IR_SENSOR
  6759. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6760. #endif // IR_SENSOR
  6761. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6762. {
  6763. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6764. {
  6765. if (fsensor_check_autoload())
  6766. {
  6767. #ifdef PAT9125
  6768. fsensor_autoload_check_stop();
  6769. #endif //PAT9125
  6770. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6771. if(0)
  6772. {
  6773. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6774. _tone(BEEPER, 1000);
  6775. delay_keep_alive(50);
  6776. _noTone(BEEPER);
  6777. loading_flag = true;
  6778. enquecommand_front_P((PSTR("M701")));
  6779. }
  6780. else
  6781. {
  6782. /*
  6783. lcd_update_enable(false);
  6784. show_preheat_nozzle_warning();
  6785. lcd_update_enable(true);
  6786. */
  6787. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6788. bFilamentFirstRun=false;
  6789. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6790. {
  6791. bFilamentPreheatState=true;
  6792. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6793. menu_submenu(mFilamentItemForce);
  6794. }
  6795. else
  6796. {
  6797. menu_submenu(mFilamentMenu);
  6798. lcd_timeoutToStatus.start();
  6799. }
  6800. }
  6801. }
  6802. }
  6803. else
  6804. {
  6805. #ifdef PAT9125
  6806. fsensor_autoload_check_stop();
  6807. #endif //PAT9125
  6808. fsensor_update();
  6809. }
  6810. }
  6811. }
  6812. #endif //FILAMENT_SENSOR
  6813. #ifdef SAFETYTIMER
  6814. handleSafetyTimer();
  6815. #endif //SAFETYTIMER
  6816. #if defined(KILL_PIN) && KILL_PIN > -1
  6817. static int killCount = 0; // make the inactivity button a bit less responsive
  6818. const int KILL_DELAY = 10000;
  6819. #endif
  6820. if(buflen < (BUFSIZE-1)){
  6821. get_command();
  6822. }
  6823. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6824. if(max_inactive_time)
  6825. kill(_n(""), 4);
  6826. if(stepper_inactive_time) {
  6827. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6828. {
  6829. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6830. disable_x();
  6831. disable_y();
  6832. disable_z();
  6833. disable_e0();
  6834. disable_e1();
  6835. disable_e2();
  6836. }
  6837. }
  6838. }
  6839. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6840. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6841. {
  6842. chdkActive = false;
  6843. WRITE(CHDK, LOW);
  6844. }
  6845. #endif
  6846. #if defined(KILL_PIN) && KILL_PIN > -1
  6847. // Check if the kill button was pressed and wait just in case it was an accidental
  6848. // key kill key press
  6849. // -------------------------------------------------------------------------------
  6850. if( 0 == READ(KILL_PIN) )
  6851. {
  6852. killCount++;
  6853. }
  6854. else if (killCount > 0)
  6855. {
  6856. killCount--;
  6857. }
  6858. // Exceeded threshold and we can confirm that it was not accidental
  6859. // KILL the machine
  6860. // ----------------------------------------------------------------
  6861. if ( killCount >= KILL_DELAY)
  6862. {
  6863. kill("", 5);
  6864. }
  6865. #endif
  6866. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6867. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6868. #endif
  6869. #ifdef EXTRUDER_RUNOUT_PREVENT
  6870. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6871. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6872. {
  6873. bool oldstatus=READ(E0_ENABLE_PIN);
  6874. enable_e0();
  6875. float oldepos=current_position[E_AXIS];
  6876. float oldedes=destination[E_AXIS];
  6877. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6878. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6879. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6880. current_position[E_AXIS]=oldepos;
  6881. destination[E_AXIS]=oldedes;
  6882. plan_set_e_position(oldepos);
  6883. previous_millis_cmd=_millis();
  6884. st_synchronize();
  6885. WRITE(E0_ENABLE_PIN,oldstatus);
  6886. }
  6887. #endif
  6888. #ifdef TEMP_STAT_LEDS
  6889. handle_status_leds();
  6890. #endif
  6891. check_axes_activity();
  6892. mmu_loop();
  6893. }
  6894. void kill(const char *full_screen_message, unsigned char id)
  6895. {
  6896. printf_P(_N("KILL: %d\n"), id);
  6897. //return;
  6898. cli(); // Stop interrupts
  6899. disable_heater();
  6900. disable_x();
  6901. // SERIAL_ECHOLNPGM("kill - disable Y");
  6902. disable_y();
  6903. disable_z();
  6904. disable_e0();
  6905. disable_e1();
  6906. disable_e2();
  6907. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6908. pinMode(PS_ON_PIN,INPUT);
  6909. #endif
  6910. SERIAL_ERROR_START;
  6911. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  6912. if (full_screen_message != NULL) {
  6913. SERIAL_ERRORLNRPGM(full_screen_message);
  6914. lcd_display_message_fullscreen_P(full_screen_message);
  6915. } else {
  6916. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  6917. }
  6918. // FMC small patch to update the LCD before ending
  6919. sei(); // enable interrupts
  6920. for ( int i=5; i--; lcd_update(0))
  6921. {
  6922. _delay(200);
  6923. }
  6924. cli(); // disable interrupts
  6925. suicide();
  6926. while(1)
  6927. {
  6928. #ifdef WATCHDOG
  6929. wdt_reset();
  6930. #endif //WATCHDOG
  6931. /* Intentionally left empty */
  6932. } // Wait for reset
  6933. }
  6934. void Stop()
  6935. {
  6936. disable_heater();
  6937. if(Stopped == false) {
  6938. Stopped = true;
  6939. lcd_print_stop();
  6940. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6941. SERIAL_ERROR_START;
  6942. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6943. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6944. }
  6945. }
  6946. bool IsStopped() { return Stopped; };
  6947. #ifdef FAST_PWM_FAN
  6948. void setPwmFrequency(uint8_t pin, int val)
  6949. {
  6950. val &= 0x07;
  6951. switch(digitalPinToTimer(pin))
  6952. {
  6953. #if defined(TCCR0A)
  6954. case TIMER0A:
  6955. case TIMER0B:
  6956. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6957. // TCCR0B |= val;
  6958. break;
  6959. #endif
  6960. #if defined(TCCR1A)
  6961. case TIMER1A:
  6962. case TIMER1B:
  6963. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6964. // TCCR1B |= val;
  6965. break;
  6966. #endif
  6967. #if defined(TCCR2)
  6968. case TIMER2:
  6969. case TIMER2:
  6970. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6971. TCCR2 |= val;
  6972. break;
  6973. #endif
  6974. #if defined(TCCR2A)
  6975. case TIMER2A:
  6976. case TIMER2B:
  6977. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6978. TCCR2B |= val;
  6979. break;
  6980. #endif
  6981. #if defined(TCCR3A)
  6982. case TIMER3A:
  6983. case TIMER3B:
  6984. case TIMER3C:
  6985. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6986. TCCR3B |= val;
  6987. break;
  6988. #endif
  6989. #if defined(TCCR4A)
  6990. case TIMER4A:
  6991. case TIMER4B:
  6992. case TIMER4C:
  6993. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6994. TCCR4B |= val;
  6995. break;
  6996. #endif
  6997. #if defined(TCCR5A)
  6998. case TIMER5A:
  6999. case TIMER5B:
  7000. case TIMER5C:
  7001. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7002. TCCR5B |= val;
  7003. break;
  7004. #endif
  7005. }
  7006. }
  7007. #endif //FAST_PWM_FAN
  7008. //! @brief Get and validate extruder number
  7009. //!
  7010. //! If it is not specified, active_extruder is returned in parameter extruder.
  7011. //! @param [in] code M code number
  7012. //! @param [out] extruder
  7013. //! @return error
  7014. //! @retval true Invalid extruder specified in T code
  7015. //! @retval false Valid extruder specified in T code, or not specifiead
  7016. bool setTargetedHotend(int code, uint8_t &extruder)
  7017. {
  7018. extruder = active_extruder;
  7019. if(code_seen('T')) {
  7020. extruder = code_value();
  7021. if(extruder >= EXTRUDERS) {
  7022. SERIAL_ECHO_START;
  7023. switch(code){
  7024. case 104:
  7025. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7026. break;
  7027. case 105:
  7028. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7029. break;
  7030. case 109:
  7031. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7032. break;
  7033. case 218:
  7034. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7035. break;
  7036. case 221:
  7037. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7038. break;
  7039. }
  7040. SERIAL_PROTOCOLLN((int)extruder);
  7041. return true;
  7042. }
  7043. }
  7044. return false;
  7045. }
  7046. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7047. {
  7048. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7049. {
  7050. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7051. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7052. }
  7053. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7054. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7055. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7056. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7057. total_filament_used = 0;
  7058. }
  7059. float calculate_extruder_multiplier(float diameter) {
  7060. float out = 1.f;
  7061. if (cs.volumetric_enabled && diameter > 0.f) {
  7062. float area = M_PI * diameter * diameter * 0.25;
  7063. out = 1.f / area;
  7064. }
  7065. if (extrudemultiply != 100)
  7066. out *= float(extrudemultiply) * 0.01f;
  7067. return out;
  7068. }
  7069. void calculate_extruder_multipliers() {
  7070. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7071. #if EXTRUDERS > 1
  7072. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7073. #if EXTRUDERS > 2
  7074. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7075. #endif
  7076. #endif
  7077. }
  7078. void delay_keep_alive(unsigned int ms)
  7079. {
  7080. for (;;) {
  7081. manage_heater();
  7082. // Manage inactivity, but don't disable steppers on timeout.
  7083. manage_inactivity(true);
  7084. lcd_update(0);
  7085. if (ms == 0)
  7086. break;
  7087. else if (ms >= 50) {
  7088. _delay(50);
  7089. ms -= 50;
  7090. } else {
  7091. _delay(ms);
  7092. ms = 0;
  7093. }
  7094. }
  7095. }
  7096. static void wait_for_heater(long codenum, uint8_t extruder) {
  7097. #ifdef TEMP_RESIDENCY_TIME
  7098. long residencyStart;
  7099. residencyStart = -1;
  7100. /* continue to loop until we have reached the target temp
  7101. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7102. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7103. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7104. #else
  7105. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7106. #endif //TEMP_RESIDENCY_TIME
  7107. if ((_millis() - codenum) > 1000UL)
  7108. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7109. if (!farm_mode) {
  7110. SERIAL_PROTOCOLPGM("T:");
  7111. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7112. SERIAL_PROTOCOLPGM(" E:");
  7113. SERIAL_PROTOCOL((int)extruder);
  7114. #ifdef TEMP_RESIDENCY_TIME
  7115. SERIAL_PROTOCOLPGM(" W:");
  7116. if (residencyStart > -1)
  7117. {
  7118. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7119. SERIAL_PROTOCOLLN(codenum);
  7120. }
  7121. else
  7122. {
  7123. SERIAL_PROTOCOLLN("?");
  7124. }
  7125. }
  7126. #else
  7127. SERIAL_PROTOCOLLN("");
  7128. #endif
  7129. codenum = _millis();
  7130. }
  7131. manage_heater();
  7132. manage_inactivity(true); //do not disable steppers
  7133. lcd_update(0);
  7134. #ifdef TEMP_RESIDENCY_TIME
  7135. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7136. or when current temp falls outside the hysteresis after target temp was reached */
  7137. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7138. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7139. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7140. {
  7141. residencyStart = _millis();
  7142. }
  7143. #endif //TEMP_RESIDENCY_TIME
  7144. }
  7145. }
  7146. void check_babystep()
  7147. {
  7148. int babystep_z;
  7149. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7150. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7151. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7152. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7153. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7154. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7155. lcd_update_enable(true);
  7156. }
  7157. }
  7158. #ifdef HEATBED_ANALYSIS
  7159. void d_setup()
  7160. {
  7161. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7162. pinMode(D_DATA, INPUT_PULLUP);
  7163. pinMode(D_REQUIRE, OUTPUT);
  7164. digitalWrite(D_REQUIRE, HIGH);
  7165. }
  7166. float d_ReadData()
  7167. {
  7168. int digit[13];
  7169. String mergeOutput;
  7170. float output;
  7171. digitalWrite(D_REQUIRE, HIGH);
  7172. for (int i = 0; i<13; i++)
  7173. {
  7174. for (int j = 0; j < 4; j++)
  7175. {
  7176. while (digitalRead(D_DATACLOCK) == LOW) {}
  7177. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7178. bitWrite(digit[i], j, digitalRead(D_DATA));
  7179. }
  7180. }
  7181. digitalWrite(D_REQUIRE, LOW);
  7182. mergeOutput = "";
  7183. output = 0;
  7184. for (int r = 5; r <= 10; r++) //Merge digits
  7185. {
  7186. mergeOutput += digit[r];
  7187. }
  7188. output = mergeOutput.toFloat();
  7189. if (digit[4] == 8) //Handle sign
  7190. {
  7191. output *= -1;
  7192. }
  7193. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7194. {
  7195. output /= 10;
  7196. }
  7197. return output;
  7198. }
  7199. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7200. int t1 = 0;
  7201. int t_delay = 0;
  7202. int digit[13];
  7203. int m;
  7204. char str[3];
  7205. //String mergeOutput;
  7206. char mergeOutput[15];
  7207. float output;
  7208. int mesh_point = 0; //index number of calibration point
  7209. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7210. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7211. float mesh_home_z_search = 4;
  7212. float measure_z_heigth = 0.2f;
  7213. float row[x_points_num];
  7214. int ix = 0;
  7215. int iy = 0;
  7216. const char* filename_wldsd = "mesh.txt";
  7217. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7218. char numb_wldsd[8]; // (" -A.BCD" + null)
  7219. #ifdef MICROMETER_LOGGING
  7220. d_setup();
  7221. #endif //MICROMETER_LOGGING
  7222. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7223. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7224. unsigned int custom_message_type_old = custom_message_type;
  7225. unsigned int custom_message_state_old = custom_message_state;
  7226. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7227. custom_message_state = (x_points_num * y_points_num) + 10;
  7228. lcd_update(1);
  7229. //mbl.reset();
  7230. babystep_undo();
  7231. card.openFile(filename_wldsd, false);
  7232. /*destination[Z_AXIS] = mesh_home_z_search;
  7233. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7234. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7235. for(int8_t i=0; i < NUM_AXIS; i++) {
  7236. current_position[i] = destination[i];
  7237. }
  7238. st_synchronize();
  7239. */
  7240. destination[Z_AXIS] = measure_z_heigth;
  7241. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7242. for(int8_t i=0; i < NUM_AXIS; i++) {
  7243. current_position[i] = destination[i];
  7244. }
  7245. st_synchronize();
  7246. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7247. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7248. SERIAL_PROTOCOL(x_points_num);
  7249. SERIAL_PROTOCOLPGM(",");
  7250. SERIAL_PROTOCOL(y_points_num);
  7251. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7252. SERIAL_PROTOCOL(mesh_home_z_search);
  7253. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7254. SERIAL_PROTOCOL(x_dimension);
  7255. SERIAL_PROTOCOLPGM(",");
  7256. SERIAL_PROTOCOL(y_dimension);
  7257. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7258. while (mesh_point != x_points_num * y_points_num) {
  7259. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7260. iy = mesh_point / x_points_num;
  7261. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7262. float z0 = 0.f;
  7263. /*destination[Z_AXIS] = mesh_home_z_search;
  7264. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7265. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7266. for(int8_t i=0; i < NUM_AXIS; i++) {
  7267. current_position[i] = destination[i];
  7268. }
  7269. st_synchronize();*/
  7270. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7271. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7272. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7273. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7274. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7275. for(int8_t i=0; i < NUM_AXIS; i++) {
  7276. current_position[i] = destination[i];
  7277. }
  7278. st_synchronize();
  7279. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7280. delay_keep_alive(1000);
  7281. #ifdef MICROMETER_LOGGING
  7282. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7283. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7284. //strcat(data_wldsd, numb_wldsd);
  7285. //MYSERIAL.println(data_wldsd);
  7286. //delay(1000);
  7287. //delay(3000);
  7288. //t1 = millis();
  7289. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7290. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7291. memset(digit, 0, sizeof(digit));
  7292. //cli();
  7293. digitalWrite(D_REQUIRE, LOW);
  7294. for (int i = 0; i<13; i++)
  7295. {
  7296. //t1 = millis();
  7297. for (int j = 0; j < 4; j++)
  7298. {
  7299. while (digitalRead(D_DATACLOCK) == LOW) {}
  7300. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7301. //printf_P(PSTR("Done %d\n"), j);
  7302. bitWrite(digit[i], j, digitalRead(D_DATA));
  7303. }
  7304. //t_delay = (millis() - t1);
  7305. //SERIAL_PROTOCOLPGM(" ");
  7306. //SERIAL_PROTOCOL_F(t_delay, 5);
  7307. //SERIAL_PROTOCOLPGM(" ");
  7308. }
  7309. //sei();
  7310. digitalWrite(D_REQUIRE, HIGH);
  7311. mergeOutput[0] = '\0';
  7312. output = 0;
  7313. for (int r = 5; r <= 10; r++) //Merge digits
  7314. {
  7315. sprintf(str, "%d", digit[r]);
  7316. strcat(mergeOutput, str);
  7317. }
  7318. output = atof(mergeOutput);
  7319. if (digit[4] == 8) //Handle sign
  7320. {
  7321. output *= -1;
  7322. }
  7323. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7324. {
  7325. output *= 0.1;
  7326. }
  7327. //output = d_ReadData();
  7328. //row[ix] = current_position[Z_AXIS];
  7329. //row[ix] = d_ReadData();
  7330. row[ix] = output;
  7331. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7332. memset(data_wldsd, 0, sizeof(data_wldsd));
  7333. for (int i = 0; i < x_points_num; i++) {
  7334. SERIAL_PROTOCOLPGM(" ");
  7335. SERIAL_PROTOCOL_F(row[i], 5);
  7336. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7337. dtostrf(row[i], 7, 3, numb_wldsd);
  7338. strcat(data_wldsd, numb_wldsd);
  7339. }
  7340. card.write_command(data_wldsd);
  7341. SERIAL_PROTOCOLPGM("\n");
  7342. }
  7343. custom_message_state--;
  7344. mesh_point++;
  7345. lcd_update(1);
  7346. }
  7347. #endif //MICROMETER_LOGGING
  7348. card.closefile();
  7349. //clean_up_after_endstop_move(l_feedmultiply);
  7350. }
  7351. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7352. int t1 = 0;
  7353. int t_delay = 0;
  7354. int digit[13];
  7355. int m;
  7356. char str[3];
  7357. //String mergeOutput;
  7358. char mergeOutput[15];
  7359. float output;
  7360. int mesh_point = 0; //index number of calibration point
  7361. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7362. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7363. float mesh_home_z_search = 4;
  7364. float row[x_points_num];
  7365. int ix = 0;
  7366. int iy = 0;
  7367. const char* filename_wldsd = "wldsd.txt";
  7368. char data_wldsd[70];
  7369. char numb_wldsd[10];
  7370. d_setup();
  7371. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7372. // We don't know where we are! HOME!
  7373. // Push the commands to the front of the message queue in the reverse order!
  7374. // There shall be always enough space reserved for these commands.
  7375. repeatcommand_front(); // repeat G80 with all its parameters
  7376. enquecommand_front_P((PSTR("G28 W0")));
  7377. enquecommand_front_P((PSTR("G1 Z5")));
  7378. return;
  7379. }
  7380. unsigned int custom_message_type_old = custom_message_type;
  7381. unsigned int custom_message_state_old = custom_message_state;
  7382. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7383. custom_message_state = (x_points_num * y_points_num) + 10;
  7384. lcd_update(1);
  7385. mbl.reset();
  7386. babystep_undo();
  7387. card.openFile(filename_wldsd, false);
  7388. current_position[Z_AXIS] = mesh_home_z_search;
  7389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7390. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7391. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7392. int l_feedmultiply = setup_for_endstop_move(false);
  7393. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7394. SERIAL_PROTOCOL(x_points_num);
  7395. SERIAL_PROTOCOLPGM(",");
  7396. SERIAL_PROTOCOL(y_points_num);
  7397. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7398. SERIAL_PROTOCOL(mesh_home_z_search);
  7399. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7400. SERIAL_PROTOCOL(x_dimension);
  7401. SERIAL_PROTOCOLPGM(",");
  7402. SERIAL_PROTOCOL(y_dimension);
  7403. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7404. while (mesh_point != x_points_num * y_points_num) {
  7405. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7406. iy = mesh_point / x_points_num;
  7407. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7408. float z0 = 0.f;
  7409. current_position[Z_AXIS] = mesh_home_z_search;
  7410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7411. st_synchronize();
  7412. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7413. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7415. st_synchronize();
  7416. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7417. break;
  7418. card.closefile();
  7419. }
  7420. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7421. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7422. //strcat(data_wldsd, numb_wldsd);
  7423. //MYSERIAL.println(data_wldsd);
  7424. //_delay(1000);
  7425. //_delay(3000);
  7426. //t1 = _millis();
  7427. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7428. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7429. memset(digit, 0, sizeof(digit));
  7430. //cli();
  7431. digitalWrite(D_REQUIRE, LOW);
  7432. for (int i = 0; i<13; i++)
  7433. {
  7434. //t1 = _millis();
  7435. for (int j = 0; j < 4; j++)
  7436. {
  7437. while (digitalRead(D_DATACLOCK) == LOW) {}
  7438. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7439. bitWrite(digit[i], j, digitalRead(D_DATA));
  7440. }
  7441. //t_delay = (_millis() - t1);
  7442. //SERIAL_PROTOCOLPGM(" ");
  7443. //SERIAL_PROTOCOL_F(t_delay, 5);
  7444. //SERIAL_PROTOCOLPGM(" ");
  7445. }
  7446. //sei();
  7447. digitalWrite(D_REQUIRE, HIGH);
  7448. mergeOutput[0] = '\0';
  7449. output = 0;
  7450. for (int r = 5; r <= 10; r++) //Merge digits
  7451. {
  7452. sprintf(str, "%d", digit[r]);
  7453. strcat(mergeOutput, str);
  7454. }
  7455. output = atof(mergeOutput);
  7456. if (digit[4] == 8) //Handle sign
  7457. {
  7458. output *= -1;
  7459. }
  7460. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7461. {
  7462. output *= 0.1;
  7463. }
  7464. //output = d_ReadData();
  7465. //row[ix] = current_position[Z_AXIS];
  7466. memset(data_wldsd, 0, sizeof(data_wldsd));
  7467. for (int i = 0; i <3; i++) {
  7468. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7469. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7470. strcat(data_wldsd, numb_wldsd);
  7471. strcat(data_wldsd, ";");
  7472. }
  7473. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7474. dtostrf(output, 8, 5, numb_wldsd);
  7475. strcat(data_wldsd, numb_wldsd);
  7476. //strcat(data_wldsd, ";");
  7477. card.write_command(data_wldsd);
  7478. //row[ix] = d_ReadData();
  7479. row[ix] = output; // current_position[Z_AXIS];
  7480. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7481. for (int i = 0; i < x_points_num; i++) {
  7482. SERIAL_PROTOCOLPGM(" ");
  7483. SERIAL_PROTOCOL_F(row[i], 5);
  7484. }
  7485. SERIAL_PROTOCOLPGM("\n");
  7486. }
  7487. custom_message_state--;
  7488. mesh_point++;
  7489. lcd_update(1);
  7490. }
  7491. card.closefile();
  7492. clean_up_after_endstop_move(l_feedmultiply);
  7493. }
  7494. #endif //HEATBED_ANALYSIS
  7495. void temp_compensation_start() {
  7496. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7497. custom_message_state = PINDA_HEAT_T + 1;
  7498. lcd_update(2);
  7499. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7500. current_position[E_AXIS] -= default_retraction;
  7501. }
  7502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7503. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7504. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7505. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7507. st_synchronize();
  7508. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7509. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7510. delay_keep_alive(1000);
  7511. custom_message_state = PINDA_HEAT_T - i;
  7512. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7513. else lcd_update(1);
  7514. }
  7515. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7516. custom_message_state = 0;
  7517. }
  7518. void temp_compensation_apply() {
  7519. int i_add;
  7520. int z_shift = 0;
  7521. float z_shift_mm;
  7522. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7523. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7524. i_add = (target_temperature_bed - 60) / 10;
  7525. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7526. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7527. }else {
  7528. //interpolation
  7529. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7530. }
  7531. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7533. st_synchronize();
  7534. plan_set_z_position(current_position[Z_AXIS]);
  7535. }
  7536. else {
  7537. //we have no temp compensation data
  7538. }
  7539. }
  7540. float temp_comp_interpolation(float inp_temperature) {
  7541. //cubic spline interpolation
  7542. int n, i, j;
  7543. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7544. int shift[10];
  7545. int temp_C[10];
  7546. n = 6; //number of measured points
  7547. shift[0] = 0;
  7548. for (i = 0; i < n; i++) {
  7549. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7550. temp_C[i] = 50 + i * 10; //temperature in C
  7551. #ifdef PINDA_THERMISTOR
  7552. temp_C[i] = 35 + i * 5; //temperature in C
  7553. #else
  7554. temp_C[i] = 50 + i * 10; //temperature in C
  7555. #endif
  7556. x[i] = (float)temp_C[i];
  7557. f[i] = (float)shift[i];
  7558. }
  7559. if (inp_temperature < x[0]) return 0;
  7560. for (i = n - 1; i>0; i--) {
  7561. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7562. h[i - 1] = x[i] - x[i - 1];
  7563. }
  7564. //*********** formation of h, s , f matrix **************
  7565. for (i = 1; i<n - 1; i++) {
  7566. m[i][i] = 2 * (h[i - 1] + h[i]);
  7567. if (i != 1) {
  7568. m[i][i - 1] = h[i - 1];
  7569. m[i - 1][i] = h[i - 1];
  7570. }
  7571. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7572. }
  7573. //*********** forward elimination **************
  7574. for (i = 1; i<n - 2; i++) {
  7575. temp = (m[i + 1][i] / m[i][i]);
  7576. for (j = 1; j <= n - 1; j++)
  7577. m[i + 1][j] -= temp*m[i][j];
  7578. }
  7579. //*********** backward substitution *********
  7580. for (i = n - 2; i>0; i--) {
  7581. sum = 0;
  7582. for (j = i; j <= n - 2; j++)
  7583. sum += m[i][j] * s[j];
  7584. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7585. }
  7586. for (i = 0; i<n - 1; i++)
  7587. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7588. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7589. b = s[i] / 2;
  7590. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7591. d = f[i];
  7592. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7593. }
  7594. return sum;
  7595. }
  7596. #ifdef PINDA_THERMISTOR
  7597. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7598. {
  7599. if (!temp_cal_active) return 0;
  7600. if (!calibration_status_pinda()) return 0;
  7601. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7602. }
  7603. #endif //PINDA_THERMISTOR
  7604. void long_pause() //long pause print
  7605. {
  7606. st_synchronize();
  7607. start_pause_print = _millis();
  7608. //retract
  7609. current_position[E_AXIS] -= default_retraction;
  7610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7611. //lift z
  7612. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7613. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7615. //Move XY to side
  7616. current_position[X_AXIS] = X_PAUSE_POS;
  7617. current_position[Y_AXIS] = Y_PAUSE_POS;
  7618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7619. // Turn off the print fan
  7620. fanSpeed = 0;
  7621. st_synchronize();
  7622. }
  7623. void serialecho_temperatures() {
  7624. float tt = degHotend(active_extruder);
  7625. SERIAL_PROTOCOLPGM("T:");
  7626. SERIAL_PROTOCOL(tt);
  7627. SERIAL_PROTOCOLPGM(" E:");
  7628. SERIAL_PROTOCOL((int)active_extruder);
  7629. SERIAL_PROTOCOLPGM(" B:");
  7630. SERIAL_PROTOCOL_F(degBed(), 1);
  7631. SERIAL_PROTOCOLLN("");
  7632. }
  7633. extern uint32_t sdpos_atomic;
  7634. #ifdef UVLO_SUPPORT
  7635. void uvlo_()
  7636. {
  7637. unsigned long time_start = _millis();
  7638. bool sd_print = card.sdprinting;
  7639. // Conserve power as soon as possible.
  7640. disable_x();
  7641. disable_y();
  7642. #ifdef TMC2130
  7643. tmc2130_set_current_h(Z_AXIS, 20);
  7644. tmc2130_set_current_r(Z_AXIS, 20);
  7645. tmc2130_set_current_h(E_AXIS, 20);
  7646. tmc2130_set_current_r(E_AXIS, 20);
  7647. #endif //TMC2130
  7648. // Indicate that the interrupt has been triggered.
  7649. // SERIAL_ECHOLNPGM("UVLO");
  7650. // Read out the current Z motor microstep counter. This will be later used
  7651. // for reaching the zero full step before powering off.
  7652. uint16_t z_microsteps = 0;
  7653. #ifdef TMC2130
  7654. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7655. #endif //TMC2130
  7656. // Calculate the file position, from which to resume this print.
  7657. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7658. {
  7659. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7660. sd_position -= sdlen_planner;
  7661. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7662. sd_position -= sdlen_cmdqueue;
  7663. if (sd_position < 0) sd_position = 0;
  7664. }
  7665. // Backup the feedrate in mm/min.
  7666. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7667. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7668. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7669. // are in action.
  7670. planner_abort_hard();
  7671. // Store the current extruder position.
  7672. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7673. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7674. // Clean the input command queue.
  7675. cmdqueue_reset();
  7676. card.sdprinting = false;
  7677. // card.closefile();
  7678. // Enable stepper driver interrupt to move Z axis.
  7679. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7680. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7681. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7682. sei();
  7683. plan_buffer_line(
  7684. current_position[X_AXIS],
  7685. current_position[Y_AXIS],
  7686. current_position[Z_AXIS],
  7687. current_position[E_AXIS] - default_retraction,
  7688. 95, active_extruder);
  7689. st_synchronize();
  7690. disable_e0();
  7691. plan_buffer_line(
  7692. current_position[X_AXIS],
  7693. current_position[Y_AXIS],
  7694. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7695. current_position[E_AXIS] - default_retraction,
  7696. 40, active_extruder);
  7697. st_synchronize();
  7698. disable_e0();
  7699. disable_z();
  7700. // Move Z up to the next 0th full step.
  7701. // Write the file position.
  7702. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7703. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7704. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7705. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7706. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7707. // Scale the z value to 1u resolution.
  7708. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7709. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7710. }
  7711. // Read out the current Z motor microstep counter. This will be later used
  7712. // for reaching the zero full step before powering off.
  7713. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7714. // Store the current position.
  7715. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7716. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7717. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7718. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7719. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7720. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7721. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7722. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7723. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7724. #if EXTRUDERS > 1
  7725. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7726. #if EXTRUDERS > 2
  7727. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7728. #endif
  7729. #endif
  7730. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7731. // Finaly store the "power outage" flag.
  7732. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7733. st_synchronize();
  7734. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7735. disable_z();
  7736. // Increment power failure counter
  7737. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7738. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7739. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7740. #if 0
  7741. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7742. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7744. st_synchronize();
  7745. #endif
  7746. wdt_enable(WDTO_500MS);
  7747. WRITE(BEEPER,HIGH);
  7748. while(1)
  7749. ;
  7750. }
  7751. void uvlo_tiny()
  7752. {
  7753. uint16_t z_microsteps=0;
  7754. // Conserve power as soon as possible.
  7755. disable_x();
  7756. disable_y();
  7757. disable_e0();
  7758. #ifdef TMC2130
  7759. tmc2130_set_current_h(Z_AXIS, 20);
  7760. tmc2130_set_current_r(Z_AXIS, 20);
  7761. #endif //TMC2130
  7762. // Read out the current Z motor microstep counter
  7763. #ifdef TMC2130
  7764. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7765. #endif //TMC2130
  7766. planner_abort_hard();
  7767. disable_z();
  7768. // Finaly store the "power outage" flag.
  7769. //if(sd_print)
  7770. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==1){
  7771. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7772. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS),z_microsteps);
  7773. }
  7774. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7775. // Increment power failure counter
  7776. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7777. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7778. wdt_enable(WDTO_500MS);
  7779. WRITE(BEEPER,HIGH);
  7780. while(1)
  7781. ;
  7782. }
  7783. #endif //UVLO_SUPPORT
  7784. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7785. void setup_fan_interrupt() {
  7786. //INT7
  7787. DDRE &= ~(1 << 7); //input pin
  7788. PORTE &= ~(1 << 7); //no internal pull-up
  7789. //start with sensing rising edge
  7790. EICRB &= ~(1 << 6);
  7791. EICRB |= (1 << 7);
  7792. //enable INT7 interrupt
  7793. EIMSK |= (1 << 7);
  7794. }
  7795. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7796. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7797. ISR(INT7_vect) {
  7798. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7799. #ifdef FAN_SOFT_PWM
  7800. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7801. #else //FAN_SOFT_PWM
  7802. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7803. #endif //FAN_SOFT_PWM
  7804. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7805. t_fan_rising_edge = millis_nc();
  7806. }
  7807. else { //interrupt was triggered by falling edge
  7808. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7809. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7810. }
  7811. }
  7812. EICRB ^= (1 << 6); //change edge
  7813. }
  7814. #endif
  7815. #ifdef UVLO_SUPPORT
  7816. void setup_uvlo_interrupt() {
  7817. DDRE &= ~(1 << 4); //input pin
  7818. PORTE &= ~(1 << 4); //no internal pull-up
  7819. //sensing falling edge
  7820. EICRB |= (1 << 0);
  7821. EICRB &= ~(1 << 1);
  7822. //enable INT4 interrupt
  7823. EIMSK |= (1 << 4);
  7824. }
  7825. ISR(INT4_vect) {
  7826. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7827. SERIAL_ECHOLNPGM("INT4");
  7828. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7829. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7830. }
  7831. void recover_print(uint8_t automatic) {
  7832. char cmd[30];
  7833. lcd_update_enable(true);
  7834. lcd_update(2);
  7835. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7836. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7837. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7838. // Lift the print head, so one may remove the excess priming material.
  7839. if(!bTiny&&(current_position[Z_AXIS]<25))
  7840. enquecommand_P(PSTR("G1 Z25 F800"));
  7841. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7842. enquecommand_P(PSTR("G28 X Y"));
  7843. // Set the target bed and nozzle temperatures and wait.
  7844. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7845. enquecommand(cmd);
  7846. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7847. enquecommand(cmd);
  7848. enquecommand_P(PSTR("M83")); //E axis relative mode
  7849. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7850. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7851. if(automatic == 0){
  7852. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7853. }
  7854. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7855. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7856. // Restart the print.
  7857. restore_print_from_eeprom();
  7858. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7859. }
  7860. void recover_machine_state_after_power_panic(bool bTiny)
  7861. {
  7862. char cmd[30];
  7863. // 1) Recover the logical cordinates at the time of the power panic.
  7864. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7865. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7866. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7867. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7868. // The current position after power panic is moved to the next closest 0th full step.
  7869. if(bTiny){
  7870. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7871. }
  7872. else{
  7873. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7874. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7875. }
  7876. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7877. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7878. sprintf_P(cmd, PSTR("G92 E"));
  7879. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7880. enquecommand(cmd);
  7881. }
  7882. memcpy(destination, current_position, sizeof(destination));
  7883. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7884. print_world_coordinates();
  7885. // 2) Initialize the logical to physical coordinate system transformation.
  7886. world2machine_initialize();
  7887. // 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7888. mbl.active = false;
  7889. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7890. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7891. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7892. // Scale the z value to 10u resolution.
  7893. int16_t v;
  7894. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7895. if (v != 0)
  7896. mbl.active = true;
  7897. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7898. }
  7899. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7900. // print_mesh_bed_leveling_table();
  7901. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7902. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7903. babystep_load();
  7904. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7906. // 6) Power up the motors, mark their positions as known.
  7907. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7908. axis_known_position[X_AXIS] = true; enable_x();
  7909. axis_known_position[Y_AXIS] = true; enable_y();
  7910. axis_known_position[Z_AXIS] = true; enable_z();
  7911. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7912. print_physical_coordinates();
  7913. // 7) Recover the target temperatures.
  7914. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7915. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7916. // 8) Recover extruder multipilers
  7917. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7918. #if EXTRUDERS > 1
  7919. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7920. #if EXTRUDERS > 2
  7921. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7922. #endif
  7923. #endif
  7924. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7925. }
  7926. void restore_print_from_eeprom() {
  7927. int feedrate_rec;
  7928. uint8_t fan_speed_rec;
  7929. char cmd[30];
  7930. char filename[13];
  7931. uint8_t depth = 0;
  7932. char dir_name[9];
  7933. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7934. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7935. SERIAL_ECHOPGM("Feedrate:");
  7936. MYSERIAL.println(feedrate_rec);
  7937. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7938. MYSERIAL.println(int(depth));
  7939. for (int i = 0; i < depth; i++) {
  7940. for (int j = 0; j < 8; j++) {
  7941. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7942. }
  7943. dir_name[8] = '\0';
  7944. MYSERIAL.println(dir_name);
  7945. strcpy(dir_names[i], dir_name);
  7946. card.chdir(dir_name);
  7947. }
  7948. for (int i = 0; i < 8; i++) {
  7949. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7950. }
  7951. filename[8] = '\0';
  7952. MYSERIAL.print(filename);
  7953. strcat_P(filename, PSTR(".gco"));
  7954. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7955. enquecommand(cmd);
  7956. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7957. SERIAL_ECHOPGM("Position read from eeprom:");
  7958. MYSERIAL.println(position);
  7959. // E axis relative mode.
  7960. enquecommand_P(PSTR("M83"));
  7961. // Move to the XY print position in logical coordinates, where the print has been killed.
  7962. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7963. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7964. strcat_P(cmd, PSTR(" F2000"));
  7965. enquecommand(cmd);
  7966. // Move the Z axis down to the print, in logical coordinates.
  7967. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32( eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) - (UVLO_Z_AXIS_SHIFT +
  7968. float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS])));
  7969. enquecommand(cmd);
  7970. // Unretract.
  7971. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7972. // Set the feedrate saved at the power panic.
  7973. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7974. enquecommand(cmd);
  7975. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7976. {
  7977. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7978. }
  7979. // Set the fan speed saved at the power panic.
  7980. strcpy_P(cmd, PSTR("M106 S"));
  7981. strcat(cmd, itostr3(int(fan_speed_rec)));
  7982. enquecommand(cmd);
  7983. // Set a position in the file.
  7984. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7985. enquecommand(cmd);
  7986. enquecommand_P(PSTR("G4 S0"));
  7987. enquecommand_P(PSTR("PRUSA uvlo"));
  7988. }
  7989. #endif //UVLO_SUPPORT
  7990. //! @brief Immediately stop print moves
  7991. //!
  7992. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7993. //! If printing from sd card, position in file is saved.
  7994. //! If printing from USB, line number is saved.
  7995. //!
  7996. //! @param z_move
  7997. //! @param e_move
  7998. void stop_and_save_print_to_ram(float z_move, float e_move)
  7999. {
  8000. if (saved_printing) return;
  8001. #if 0
  8002. unsigned char nplanner_blocks;
  8003. #endif
  8004. unsigned char nlines;
  8005. uint16_t sdlen_planner;
  8006. uint16_t sdlen_cmdqueue;
  8007. cli();
  8008. if (card.sdprinting) {
  8009. #if 0
  8010. nplanner_blocks = number_of_blocks();
  8011. #endif
  8012. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8013. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8014. saved_sdpos -= sdlen_planner;
  8015. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8016. saved_sdpos -= sdlen_cmdqueue;
  8017. saved_printing_type = PRINTING_TYPE_SD;
  8018. }
  8019. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8020. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8021. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8022. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8023. saved_sdpos -= nlines;
  8024. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8025. saved_printing_type = PRINTING_TYPE_USB;
  8026. }
  8027. else {
  8028. saved_printing_type = PRINTING_TYPE_NONE;
  8029. //not sd printing nor usb printing
  8030. }
  8031. #if 0
  8032. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8033. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8034. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8035. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8036. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8037. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8038. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8039. {
  8040. card.setIndex(saved_sdpos);
  8041. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8042. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8043. MYSERIAL.print(char(card.get()));
  8044. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8045. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8046. MYSERIAL.print(char(card.get()));
  8047. SERIAL_ECHOLNPGM("End of command buffer");
  8048. }
  8049. {
  8050. // Print the content of the planner buffer, line by line:
  8051. card.setIndex(saved_sdpos);
  8052. int8_t iline = 0;
  8053. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8054. SERIAL_ECHOPGM("Planner line (from file): ");
  8055. MYSERIAL.print(int(iline), DEC);
  8056. SERIAL_ECHOPGM(", length: ");
  8057. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8058. SERIAL_ECHOPGM(", steps: (");
  8059. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8060. SERIAL_ECHOPGM(",");
  8061. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8062. SERIAL_ECHOPGM(",");
  8063. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8064. SERIAL_ECHOPGM(",");
  8065. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8066. SERIAL_ECHOPGM("), events: ");
  8067. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8068. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8069. MYSERIAL.print(char(card.get()));
  8070. }
  8071. }
  8072. {
  8073. // Print the content of the command buffer, line by line:
  8074. int8_t iline = 0;
  8075. union {
  8076. struct {
  8077. char lo;
  8078. char hi;
  8079. } lohi;
  8080. uint16_t value;
  8081. } sdlen_single;
  8082. int _bufindr = bufindr;
  8083. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8084. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8085. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8086. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8087. }
  8088. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8089. MYSERIAL.print(int(iline), DEC);
  8090. SERIAL_ECHOPGM(", type: ");
  8091. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8092. SERIAL_ECHOPGM(", len: ");
  8093. MYSERIAL.println(sdlen_single.value, DEC);
  8094. // Print the content of the buffer line.
  8095. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8096. SERIAL_ECHOPGM("Buffer line (from file): ");
  8097. MYSERIAL.println(int(iline), DEC);
  8098. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8099. MYSERIAL.print(char(card.get()));
  8100. if (-- _buflen == 0)
  8101. break;
  8102. // First skip the current command ID and iterate up to the end of the string.
  8103. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8104. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8105. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8106. // If the end of the buffer was empty,
  8107. if (_bufindr == sizeof(cmdbuffer)) {
  8108. // skip to the start and find the nonzero command.
  8109. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8110. }
  8111. }
  8112. }
  8113. #endif
  8114. #if 0
  8115. saved_feedrate2 = feedrate; //save feedrate
  8116. #else
  8117. // Try to deduce the feedrate from the first block of the planner.
  8118. // Speed is in mm/min.
  8119. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8120. #endif
  8121. planner_abort_hard(); //abort printing
  8122. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8123. saved_active_extruder = active_extruder; //save active_extruder
  8124. saved_extruder_temperature = degTargetHotend(active_extruder);
  8125. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8126. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8127. saved_fanSpeed = fanSpeed;
  8128. cmdqueue_reset(); //empty cmdqueue
  8129. card.sdprinting = false;
  8130. // card.closefile();
  8131. saved_printing = true;
  8132. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8133. st_reset_timer();
  8134. sei();
  8135. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8136. #if 1
  8137. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8138. char buf[48];
  8139. // First unretract (relative extrusion)
  8140. if(!saved_extruder_relative_mode){
  8141. strcpy_P(buf, PSTR("M83"));
  8142. enquecommand(buf, false);
  8143. }
  8144. //retract 45mm/s
  8145. strcpy_P(buf, PSTR("G1 E"));
  8146. dtostrf(e_move, 6, 3, buf + strlen(buf));
  8147. strcat_P(buf, PSTR(" F"));
  8148. dtostrf(2700, 8, 3, buf + strlen(buf));
  8149. enquecommand(buf, false);
  8150. // Then lift Z axis
  8151. strcpy_P(buf, PSTR("G1 Z"));
  8152. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  8153. strcat_P(buf, PSTR(" F"));
  8154. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  8155. // At this point the command queue is empty.
  8156. enquecommand(buf, false);
  8157. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8158. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8159. repeatcommand_front();
  8160. #else
  8161. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8162. st_synchronize(); //wait moving
  8163. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8164. memcpy(destination, current_position, sizeof(destination));
  8165. #endif
  8166. }
  8167. }
  8168. //! @brief Restore print from ram
  8169. //!
  8170. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8171. //! waits for extruder temperature restore, then restores position and continues
  8172. //! print moves.
  8173. //! Internaly lcd_update() is called by wait_for_heater().
  8174. //!
  8175. //! @param e_move
  8176. void restore_print_from_ram_and_continue(float e_move)
  8177. {
  8178. if (!saved_printing) return;
  8179. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8180. // current_position[axis] = st_get_position_mm(axis);
  8181. active_extruder = saved_active_extruder; //restore active_extruder
  8182. if (saved_extruder_temperature) {
  8183. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8184. heating_status = 1;
  8185. wait_for_heater(_millis(), saved_active_extruder);
  8186. heating_status = 2;
  8187. }
  8188. feedrate = saved_feedrate2; //restore feedrate
  8189. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8190. fanSpeed = saved_fanSpeed;
  8191. float e = saved_pos[E_AXIS] - e_move;
  8192. plan_set_e_position(e);
  8193. //first move print head in XY to the saved position:
  8194. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8195. st_synchronize();
  8196. //then move Z
  8197. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8198. st_synchronize();
  8199. //and finaly unretract (35mm/s)
  8200. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8201. st_synchronize();
  8202. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8203. memcpy(destination, current_position, sizeof(destination));
  8204. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8205. card.setIndex(saved_sdpos);
  8206. sdpos_atomic = saved_sdpos;
  8207. card.sdprinting = true;
  8208. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8209. }
  8210. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8211. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8212. serial_count = 0;
  8213. FlushSerialRequestResend();
  8214. }
  8215. else {
  8216. //not sd printing nor usb printing
  8217. }
  8218. lcd_setstatuspgm(_T(WELCOME_MSG));
  8219. saved_printing = false;
  8220. }
  8221. void print_world_coordinates()
  8222. {
  8223. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8224. }
  8225. void print_physical_coordinates()
  8226. {
  8227. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8228. }
  8229. void print_mesh_bed_leveling_table()
  8230. {
  8231. SERIAL_ECHOPGM("mesh bed leveling: ");
  8232. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8233. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8234. MYSERIAL.print(mbl.z_values[y][x], 3);
  8235. SERIAL_ECHOPGM(" ");
  8236. }
  8237. SERIAL_ECHOLNPGM("");
  8238. }
  8239. uint16_t print_time_remaining() {
  8240. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8241. #ifdef TMC2130
  8242. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8243. else print_t = print_time_remaining_silent;
  8244. #else
  8245. print_t = print_time_remaining_normal;
  8246. #endif //TMC2130
  8247. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8248. return print_t;
  8249. }
  8250. uint8_t calc_percent_done()
  8251. {
  8252. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8253. uint8_t percent_done = 0;
  8254. #ifdef TMC2130
  8255. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8256. percent_done = print_percent_done_normal;
  8257. }
  8258. else if (print_percent_done_silent <= 100) {
  8259. percent_done = print_percent_done_silent;
  8260. }
  8261. #else
  8262. if (print_percent_done_normal <= 100) {
  8263. percent_done = print_percent_done_normal;
  8264. }
  8265. #endif //TMC2130
  8266. else {
  8267. percent_done = card.percentDone();
  8268. }
  8269. return percent_done;
  8270. }
  8271. static void print_time_remaining_init()
  8272. {
  8273. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8274. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8275. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8276. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8277. }
  8278. void load_filament_final_feed()
  8279. {
  8280. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8281. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8282. }
  8283. //! @brief Wait for user to check the state
  8284. //! @par nozzle_temp nozzle temperature to load filament
  8285. void M600_check_state(float nozzle_temp)
  8286. {
  8287. lcd_change_fil_state = 0;
  8288. while (lcd_change_fil_state != 1)
  8289. {
  8290. lcd_change_fil_state = 0;
  8291. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8292. lcd_alright();
  8293. KEEPALIVE_STATE(IN_HANDLER);
  8294. switch(lcd_change_fil_state)
  8295. {
  8296. // Filament failed to load so load it again
  8297. case 2:
  8298. if (mmu_enabled)
  8299. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8300. else
  8301. M600_load_filament_movements();
  8302. break;
  8303. // Filament loaded properly but color is not clear
  8304. case 3:
  8305. st_synchronize();
  8306. load_filament_final_feed();
  8307. lcd_loading_color();
  8308. st_synchronize();
  8309. break;
  8310. // Everything good
  8311. default:
  8312. lcd_change_success();
  8313. break;
  8314. }
  8315. }
  8316. }
  8317. //! @brief Wait for user action
  8318. //!
  8319. //! Beep, manage nozzle heater and wait for user to start unload filament
  8320. //! If times out, active extruder temperature is set to 0.
  8321. //!
  8322. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8323. void M600_wait_for_user(float HotendTempBckp) {
  8324. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8325. int counterBeep = 0;
  8326. unsigned long waiting_start_time = _millis();
  8327. uint8_t wait_for_user_state = 0;
  8328. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8329. bool bFirst=true;
  8330. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8331. manage_heater();
  8332. manage_inactivity(true);
  8333. #if BEEPER > 0
  8334. if (counterBeep == 500) {
  8335. counterBeep = 0;
  8336. }
  8337. SET_OUTPUT(BEEPER);
  8338. if (counterBeep == 0) {
  8339. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8340. {
  8341. bFirst=false;
  8342. WRITE(BEEPER, HIGH);
  8343. }
  8344. }
  8345. if (counterBeep == 20) {
  8346. WRITE(BEEPER, LOW);
  8347. }
  8348. counterBeep++;
  8349. #endif //BEEPER > 0
  8350. switch (wait_for_user_state) {
  8351. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8352. delay_keep_alive(4);
  8353. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8354. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8355. wait_for_user_state = 1;
  8356. setAllTargetHotends(0);
  8357. st_synchronize();
  8358. disable_e0();
  8359. disable_e1();
  8360. disable_e2();
  8361. }
  8362. break;
  8363. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8364. delay_keep_alive(4);
  8365. if (lcd_clicked()) {
  8366. setTargetHotend(HotendTempBckp, active_extruder);
  8367. lcd_wait_for_heater();
  8368. wait_for_user_state = 2;
  8369. }
  8370. break;
  8371. case 2: //waiting for nozzle to reach target temperature
  8372. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8373. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8374. waiting_start_time = _millis();
  8375. wait_for_user_state = 0;
  8376. }
  8377. else {
  8378. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8379. lcd_set_cursor(1, 4);
  8380. lcd_print(ftostr3(degHotend(active_extruder)));
  8381. }
  8382. break;
  8383. }
  8384. }
  8385. WRITE(BEEPER, LOW);
  8386. }
  8387. void M600_load_filament_movements()
  8388. {
  8389. #ifdef SNMM
  8390. display_loading();
  8391. do
  8392. {
  8393. current_position[E_AXIS] += 0.002;
  8394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8395. delay_keep_alive(2);
  8396. }
  8397. while (!lcd_clicked());
  8398. st_synchronize();
  8399. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8401. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8403. current_position[E_AXIS] += 40;
  8404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8405. current_position[E_AXIS] += 10;
  8406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8407. #else
  8408. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8410. #endif
  8411. load_filament_final_feed();
  8412. lcd_loading_filament();
  8413. st_synchronize();
  8414. }
  8415. void M600_load_filament() {
  8416. //load filament for single material and SNMM
  8417. lcd_wait_interact();
  8418. //load_filament_time = _millis();
  8419. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8420. #ifdef PAT9125
  8421. fsensor_autoload_check_start();
  8422. #endif //PAT9125
  8423. while(!lcd_clicked())
  8424. {
  8425. manage_heater();
  8426. manage_inactivity(true);
  8427. #ifdef FILAMENT_SENSOR
  8428. if (fsensor_check_autoload())
  8429. {
  8430. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8431. _tone(BEEPER, 1000);
  8432. delay_keep_alive(50);
  8433. _noTone(BEEPER);
  8434. break;
  8435. }
  8436. #endif //FILAMENT_SENSOR
  8437. }
  8438. #ifdef PAT9125
  8439. fsensor_autoload_check_stop();
  8440. #endif //PAT9125
  8441. KEEPALIVE_STATE(IN_HANDLER);
  8442. #ifdef FSENSOR_QUALITY
  8443. fsensor_oq_meassure_start(70);
  8444. #endif //FSENSOR_QUALITY
  8445. M600_load_filament_movements();
  8446. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8447. _tone(BEEPER, 500);
  8448. delay_keep_alive(50);
  8449. _noTone(BEEPER);
  8450. #ifdef FSENSOR_QUALITY
  8451. fsensor_oq_meassure_stop();
  8452. if (!fsensor_oq_result())
  8453. {
  8454. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8455. lcd_update_enable(true);
  8456. lcd_update(2);
  8457. if (disable)
  8458. fsensor_disable();
  8459. }
  8460. #endif //FSENSOR_QUALITY
  8461. lcd_update_enable(false);
  8462. }
  8463. //! @brief Wait for click
  8464. //!
  8465. //! Set
  8466. void marlin_wait_for_click()
  8467. {
  8468. int8_t busy_state_backup = busy_state;
  8469. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8470. lcd_consume_click();
  8471. while(!lcd_clicked())
  8472. {
  8473. manage_heater();
  8474. manage_inactivity(true);
  8475. lcd_update(0);
  8476. }
  8477. KEEPALIVE_STATE(busy_state_backup);
  8478. }
  8479. #define FIL_LOAD_LENGTH 60