fsensor.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "planner.h"
  8. #include "fastio.h"
  9. #include "cmdqueue.h"
  10. #include "ultralcd.h"
  11. #include "ConfigurationStore.h"
  12. //! @name Basic parameters
  13. //! @{
  14. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  15. #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection
  16. //! @}
  17. //! @name Optical quality measurement parameters
  18. //! @{
  19. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  20. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  21. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  22. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  23. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  24. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  25. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  26. //! @}
  27. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  28. #define FSENSOR_INT_PIN 63 //!< filament sensor interrupt pin PK1
  29. #define FSENSOR_INT_PIN_MSK 0x02 //!< filament sensor interrupt pin mask (bit1)
  30. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  31. uint8_t fsensor_int_pin_old = 0;
  32. int16_t fsensor_chunk_len = 0;
  33. //! enabled = initialized and sampled every chunk event
  34. bool fsensor_enabled = true;
  35. //! runout watching is done in fsensor_update (called from main loop)
  36. bool fsensor_watch_runout = true;
  37. //! not responding - is set if any communication error occurred during initialization or readout
  38. bool fsensor_not_responding = false;
  39. //! printing saved
  40. bool fsensor_printing_saved = false;
  41. //! enable/disable quality meassurement
  42. bool fsensor_oq_meassure_enabled = false;
  43. //! number of errors, updated in ISR
  44. uint8_t fsensor_err_cnt = 0;
  45. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  46. int16_t fsensor_st_cnt = 0;
  47. //! last dy value from pat9125 sensor (used in ISR)
  48. int16_t fsensor_dy_old = 0;
  49. //! log flag: 0=log disabled, 1=log enabled
  50. uint8_t fsensor_log = 1;
  51. //! @name filament autoload variables
  52. //! @{
  53. //! autoload feature enabled
  54. bool fsensor_autoload_enabled = true;
  55. //! autoload watching enable/disable flag
  56. bool fsensor_watch_autoload = false;
  57. //
  58. uint16_t fsensor_autoload_y;
  59. //
  60. uint8_t fsensor_autoload_c;
  61. //
  62. uint32_t fsensor_autoload_last_millis;
  63. //
  64. uint8_t fsensor_autoload_sum;
  65. //! @}
  66. //! @name filament optical quality measurement variables
  67. //! @{
  68. //! Measurement enable/disable flag
  69. bool fsensor_oq_meassure = false;
  70. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  71. uint8_t fsensor_oq_skipchunk;
  72. //! number of samples from start of measurement
  73. uint8_t fsensor_oq_samples;
  74. //! sum of steps in positive direction movements
  75. uint16_t fsensor_oq_st_sum;
  76. //! sum of deltas in positive direction movements
  77. uint16_t fsensor_oq_yd_sum;
  78. //! sum of errors during measurement
  79. uint16_t fsensor_oq_er_sum;
  80. //! max error counter value during measurement
  81. uint8_t fsensor_oq_er_max;
  82. //! minimum delta value
  83. int16_t fsensor_oq_yd_min;
  84. //! maximum delta value
  85. int16_t fsensor_oq_yd_max;
  86. //! sum of shutter value
  87. uint16_t fsensor_oq_sh_sum;
  88. //! @}
  89. void fsensor_stop_and_save_print(void)
  90. {
  91. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  92. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  93. }
  94. void fsensor_restore_print_and_continue(void)
  95. {
  96. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  97. fsensor_watch_runout = true;
  98. fsensor_err_cnt = 0;
  99. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  100. }
  101. void fsensor_init(void)
  102. {
  103. uint8_t pat9125 = pat9125_init();
  104. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  105. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  106. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  107. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  108. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  109. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  110. if (!pat9125)
  111. {
  112. fsensor = 0; //disable sensor
  113. fsensor_not_responding = true;
  114. }
  115. else
  116. fsensor_not_responding = false;
  117. if (fsensor)
  118. fsensor_enable();
  119. else
  120. fsensor_disable();
  121. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  122. }
  123. bool fsensor_enable(void)
  124. {
  125. uint8_t pat9125 = pat9125_init();
  126. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  127. if (pat9125)
  128. fsensor_not_responding = false;
  129. else
  130. fsensor_not_responding = true;
  131. fsensor_enabled = pat9125?true:false;
  132. fsensor_watch_runout = true;
  133. fsensor_oq_meassure = false;
  134. fsensor_err_cnt = 0;
  135. fsensor_dy_old = 0;
  136. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  137. FSensorStateMenu = fsensor_enabled?1:0;
  138. return fsensor_enabled;
  139. }
  140. void fsensor_disable(void)
  141. {
  142. fsensor_enabled = false;
  143. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  144. FSensorStateMenu = 0;
  145. }
  146. void fsensor_autoload_set(bool State)
  147. {
  148. fsensor_autoload_enabled = State;
  149. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  150. }
  151. void pciSetup(byte pin)
  152. {
  153. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  154. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  155. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  156. }
  157. void fsensor_autoload_check_start(void)
  158. {
  159. // puts_P(_N("fsensor_autoload_check_start\n"));
  160. if (!fsensor_enabled) return;
  161. if (!fsensor_autoload_enabled) return;
  162. if (fsensor_watch_autoload) return;
  163. if (!pat9125_update_y()) //update sensor
  164. {
  165. fsensor_disable();
  166. fsensor_not_responding = true;
  167. fsensor_watch_autoload = false;
  168. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  169. return;
  170. }
  171. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  172. fsensor_autoload_y = pat9125_y; //save current y value
  173. fsensor_autoload_c = 0; //reset number of changes counter
  174. fsensor_autoload_sum = 0;
  175. fsensor_autoload_last_millis = millis();
  176. fsensor_watch_runout = false;
  177. fsensor_watch_autoload = true;
  178. fsensor_err_cnt = 0;
  179. }
  180. void fsensor_autoload_check_stop(void)
  181. {
  182. // puts_P(_N("fsensor_autoload_check_stop\n"));
  183. if (!fsensor_enabled) return;
  184. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  185. if (!fsensor_autoload_enabled) return;
  186. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  187. if (!fsensor_watch_autoload) return;
  188. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  189. fsensor_autoload_sum = 0;
  190. fsensor_watch_autoload = false;
  191. fsensor_watch_runout = true;
  192. fsensor_err_cnt = 0;
  193. }
  194. bool fsensor_check_autoload(void)
  195. {
  196. if (!fsensor_enabled) return false;
  197. if (!fsensor_autoload_enabled) return false;
  198. if (!fsensor_watch_autoload)
  199. {
  200. fsensor_autoload_check_start();
  201. return false;
  202. }
  203. #if 0
  204. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  205. #endif
  206. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  207. fsensor_autoload_last_millis = millis();
  208. if (!pat9125_update_y()) //update sensor
  209. {
  210. fsensor_disable();
  211. fsensor_not_responding = true;
  212. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  213. return false;
  214. }
  215. int16_t dy = pat9125_y - fsensor_autoload_y;
  216. if (dy) //? dy value is nonzero
  217. {
  218. if (dy > 0) //? delta-y value is positive (inserting)
  219. {
  220. fsensor_autoload_sum += dy;
  221. fsensor_autoload_c += 3; //increment change counter by 3
  222. }
  223. else if (fsensor_autoload_c > 1)
  224. fsensor_autoload_c -= 2; //decrement change counter by 2
  225. fsensor_autoload_y = pat9125_y; //save current value
  226. }
  227. else if (fsensor_autoload_c > 0)
  228. fsensor_autoload_c--;
  229. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  230. #if 0
  231. puts_P(_N("fsensor_check_autoload\n"));
  232. if (fsensor_autoload_c != fsensor_autoload_c_old)
  233. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  234. #endif
  235. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  236. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  237. {
  238. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  239. return true;
  240. }
  241. return false;
  242. }
  243. void fsensor_oq_meassure_set(bool State)
  244. {
  245. fsensor_oq_meassure_enabled = State;
  246. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  247. }
  248. void fsensor_oq_meassure_start(uint8_t skip)
  249. {
  250. if (!fsensor_enabled) return;
  251. if (!fsensor_oq_meassure_enabled) return;
  252. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  253. fsensor_oq_skipchunk = skip;
  254. fsensor_oq_samples = 0;
  255. fsensor_oq_st_sum = 0;
  256. fsensor_oq_yd_sum = 0;
  257. fsensor_oq_er_sum = 0;
  258. fsensor_oq_er_max = 0;
  259. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  260. fsensor_oq_yd_max = 0;
  261. fsensor_oq_sh_sum = 0;
  262. pat9125_update();
  263. pat9125_y = 0;
  264. fsensor_watch_runout = false;
  265. fsensor_oq_meassure = true;
  266. }
  267. void fsensor_oq_meassure_stop(void)
  268. {
  269. if (!fsensor_enabled) return;
  270. if (!fsensor_oq_meassure_enabled) return;
  271. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  272. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  273. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  274. fsensor_oq_meassure = false;
  275. fsensor_watch_runout = true;
  276. fsensor_err_cnt = 0;
  277. }
  278. const char _OK[] PROGMEM = "OK";
  279. const char _NG[] PROGMEM = "NG!";
  280. bool fsensor_oq_result(void)
  281. {
  282. if (!fsensor_enabled) return true;
  283. if (!fsensor_oq_meassure_enabled) return true;
  284. printf_P(_N("fsensor_oq_result\n"));
  285. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  286. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  287. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  288. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  289. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  290. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  291. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  292. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  293. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  294. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  295. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  296. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  297. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  298. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  299. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  300. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  301. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  302. if (yd_qua >= 8) res_sh_avg = true;
  303. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  304. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  305. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  306. return res;
  307. }
  308. ISR(PCINT2_vect)
  309. {
  310. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  311. fsensor_int_pin_old = PINK;
  312. static bool _lock = false;
  313. if (_lock) return;
  314. _lock = true;
  315. int st_cnt = fsensor_st_cnt;
  316. fsensor_st_cnt = 0;
  317. sei();
  318. uint8_t old_err_cnt = fsensor_err_cnt;
  319. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  320. if (!pat9125_res)
  321. {
  322. fsensor_disable();
  323. fsensor_not_responding = true;
  324. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  325. }
  326. if (st_cnt != 0)
  327. { //movement
  328. if (st_cnt > 0) //positive movement
  329. {
  330. if (pat9125_y < 0)
  331. {
  332. if (fsensor_err_cnt)
  333. fsensor_err_cnt += 2;
  334. else
  335. fsensor_err_cnt++;
  336. }
  337. else if (pat9125_y > 0)
  338. {
  339. if (fsensor_err_cnt)
  340. fsensor_err_cnt--;
  341. }
  342. else //(pat9125_y == 0)
  343. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  344. fsensor_err_cnt++;
  345. if (fsensor_oq_meassure)
  346. {
  347. if (fsensor_oq_skipchunk)
  348. {
  349. fsensor_oq_skipchunk--;
  350. fsensor_err_cnt = 0;
  351. }
  352. else
  353. {
  354. if (st_cnt == fsensor_chunk_len)
  355. {
  356. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  357. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  358. }
  359. fsensor_oq_samples++;
  360. fsensor_oq_st_sum += st_cnt;
  361. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  362. if (fsensor_err_cnt > old_err_cnt)
  363. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  364. if (fsensor_oq_er_max < fsensor_err_cnt)
  365. fsensor_oq_er_max = fsensor_err_cnt;
  366. fsensor_oq_sh_sum += pat9125_s;
  367. }
  368. }
  369. }
  370. else //negative movement
  371. {
  372. }
  373. }
  374. else
  375. { //no movement
  376. }
  377. #ifdef DEBUG_FSENSOR_LOG
  378. if (fsensor_log)
  379. {
  380. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  381. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  382. }
  383. #endif //DEBUG_FSENSOR_LOG
  384. fsensor_dy_old = pat9125_y;
  385. pat9125_y = 0;
  386. _lock = false;
  387. return;
  388. }
  389. void fsensor_st_block_begin(block_t* bl)
  390. {
  391. if (!fsensor_enabled) return;
  392. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  393. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  394. {
  395. if (_READ(63)) _WRITE(63, LOW);
  396. else _WRITE(63, HIGH);
  397. }
  398. }
  399. void fsensor_st_block_chunk(block_t* bl, int cnt)
  400. {
  401. if (!fsensor_enabled) return;
  402. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  403. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  404. {
  405. if (_READ(63)) _WRITE(63, LOW);
  406. else _WRITE(63, HIGH);
  407. }
  408. }
  409. //! @brief filament sensor update (perform M600 on filament runout)
  410. //!
  411. //! Works only if filament sensor is enabled.
  412. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  413. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  414. void fsensor_update(void)
  415. {
  416. if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  417. {
  418. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  419. fsensor_autoload_enabled = false;
  420. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  421. fsensor_oq_meassure_enabled = true;
  422. fsensor_stop_and_save_print();
  423. fsensor_err_cnt = 0;
  424. fsensor_oq_meassure_start(0);
  425. enquecommand_front_P((PSTR("G1 E-3 F200")));
  426. process_commands();
  427. KEEPALIVE_STATE(IN_HANDLER);
  428. cmdqueue_pop_front();
  429. st_synchronize();
  430. enquecommand_front_P((PSTR("G1 E3 F200")));
  431. process_commands();
  432. KEEPALIVE_STATE(IN_HANDLER);
  433. cmdqueue_pop_front();
  434. st_synchronize();
  435. uint8_t err_cnt = fsensor_err_cnt;
  436. fsensor_oq_meassure_stop();
  437. bool err = false;
  438. err |= (err_cnt > 1);
  439. err |= (fsensor_oq_er_sum > 2);
  440. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  441. if (!err)
  442. {
  443. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  444. fsensor_restore_print_and_continue();
  445. }
  446. else
  447. {
  448. printf_P(PSTR("fsensor_update - M600\n"));
  449. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  450. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  451. enquecommand_front_P(PSTR("FSENSOR_RECOVER"));
  452. enquecommand_front_P((PSTR("M600")));
  453. fsensor_watch_runout = false;
  454. }
  455. fsensor_autoload_enabled = autoload_enabled_tmp;
  456. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  457. }
  458. }
  459. void fsensor_setup_interrupt(void)
  460. {
  461. pinMode(FSENSOR_INT_PIN, OUTPUT);
  462. digitalWrite(FSENSOR_INT_PIN, LOW);
  463. fsensor_int_pin_old = 0;
  464. pciSetup(FSENSOR_INT_PIN);
  465. }