Marlin_main.cpp 282 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. union Data
  216. {
  217. byte b[2];
  218. int value;
  219. };
  220. float homing_feedrate[] = HOMING_FEEDRATE;
  221. // Currently only the extruder axis may be switched to a relative mode.
  222. // Other axes are always absolute or relative based on the common relative_mode flag.
  223. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  224. int feedmultiply=100; //100->1 200->2
  225. int saved_feedmultiply;
  226. int extrudemultiply=100; //100->1 200->2
  227. int extruder_multiply[EXTRUDERS] = {100
  228. #if EXTRUDERS > 1
  229. , 100
  230. #if EXTRUDERS > 2
  231. , 100
  232. #endif
  233. #endif
  234. };
  235. int bowden_length[4] = {385, 385, 385, 385};
  236. bool is_usb_printing = false;
  237. bool homing_flag = false;
  238. bool temp_cal_active = false;
  239. unsigned long kicktime = millis()+100000;
  240. unsigned int usb_printing_counter;
  241. int lcd_change_fil_state = 0;
  242. int feedmultiplyBckp = 100;
  243. float HotendTempBckp = 0;
  244. int fanSpeedBckp = 0;
  245. float pause_lastpos[4];
  246. unsigned long pause_time = 0;
  247. unsigned long start_pause_print = millis();
  248. unsigned long t_fan_rising_edge = millis();
  249. //unsigned long load_filament_time;
  250. bool mesh_bed_leveling_flag = false;
  251. bool mesh_bed_run_from_menu = false;
  252. unsigned char lang_selected = 0;
  253. int8_t FarmMode = 0;
  254. bool prusa_sd_card_upload = false;
  255. unsigned int status_number = 0;
  256. unsigned long total_filament_used;
  257. unsigned int heating_status;
  258. unsigned int heating_status_counter;
  259. bool custom_message;
  260. bool loading_flag = false;
  261. unsigned int custom_message_type;
  262. unsigned int custom_message_state;
  263. char snmm_filaments_used = 0;
  264. float distance_from_min[2];
  265. bool fan_state[2];
  266. int fan_edge_counter[2];
  267. int fan_speed[2];
  268. char dir_names[3][9];
  269. bool sortAlpha = false;
  270. bool volumetric_enabled = false;
  271. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 1
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #if EXTRUDERS > 2
  275. , DEFAULT_NOMINAL_FILAMENT_DIA
  276. #endif
  277. #endif
  278. };
  279. float extruder_multiplier[EXTRUDERS] = {1.0
  280. #if EXTRUDERS > 1
  281. , 1.0
  282. #if EXTRUDERS > 2
  283. , 1.0
  284. #endif
  285. #endif
  286. };
  287. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  288. float add_homing[3]={0,0,0};
  289. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  290. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  291. bool axis_known_position[3] = {false, false, false};
  292. float zprobe_zoffset;
  293. // Extruder offset
  294. #if EXTRUDERS > 1
  295. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  296. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  297. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  298. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  299. #endif
  300. };
  301. #endif
  302. uint8_t active_extruder = 0;
  303. int fanSpeed=0;
  304. #ifdef FWRETRACT
  305. bool autoretract_enabled=false;
  306. bool retracted[EXTRUDERS]={false
  307. #if EXTRUDERS > 1
  308. , false
  309. #if EXTRUDERS > 2
  310. , false
  311. #endif
  312. #endif
  313. };
  314. bool retracted_swap[EXTRUDERS]={false
  315. #if EXTRUDERS > 1
  316. , false
  317. #if EXTRUDERS > 2
  318. , false
  319. #endif
  320. #endif
  321. };
  322. float retract_length = RETRACT_LENGTH;
  323. float retract_length_swap = RETRACT_LENGTH_SWAP;
  324. float retract_feedrate = RETRACT_FEEDRATE;
  325. float retract_zlift = RETRACT_ZLIFT;
  326. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  327. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  328. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  329. #endif
  330. #ifdef ULTIPANEL
  331. #ifdef PS_DEFAULT_OFF
  332. bool powersupply = false;
  333. #else
  334. bool powersupply = true;
  335. #endif
  336. #endif
  337. bool cancel_heatup = false ;
  338. #ifdef HOST_KEEPALIVE_FEATURE
  339. int busy_state = NOT_BUSY;
  340. static long prev_busy_signal_ms = -1;
  341. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  342. #else
  343. #define host_keepalive();
  344. #define KEEPALIVE_STATE(n);
  345. #endif
  346. const char errormagic[] PROGMEM = "Error:";
  347. const char echomagic[] PROGMEM = "echo:";
  348. //===========================================================================
  349. //=============================Private Variables=============================
  350. //===========================================================================
  351. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  352. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  353. static float delta[3] = {0.0, 0.0, 0.0};
  354. // For tracing an arc
  355. static float offset[3] = {0.0, 0.0, 0.0};
  356. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  357. // Determines Absolute or Relative Coordinates.
  358. // Also there is bool axis_relative_modes[] per axis flag.
  359. static bool relative_mode = false;
  360. #ifndef _DISABLE_M42_M226
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. #endif //_DISABLE_M42_M226
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool extruder_under_pressure = true;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. // Set home pin
  422. void setup_homepin(void)
  423. {
  424. #if defined(HOME_PIN) && HOME_PIN > -1
  425. SET_INPUT(HOME_PIN);
  426. WRITE(HOME_PIN,HIGH);
  427. #endif
  428. }
  429. void setup_photpin()
  430. {
  431. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  432. SET_OUTPUT(PHOTOGRAPH_PIN);
  433. WRITE(PHOTOGRAPH_PIN, LOW);
  434. #endif
  435. }
  436. void setup_powerhold()
  437. {
  438. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  439. SET_OUTPUT(SUICIDE_PIN);
  440. WRITE(SUICIDE_PIN, HIGH);
  441. #endif
  442. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  443. SET_OUTPUT(PS_ON_PIN);
  444. #if defined(PS_DEFAULT_OFF)
  445. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  454. SET_OUTPUT(SUICIDE_PIN);
  455. WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 5)
  473. #error "TODO: enter initalisation code for more servos"
  474. #endif
  475. }
  476. static void lcd_language_menu();
  477. void stop_and_save_print_to_ram(float z_move, float e_move);
  478. void restore_print_from_ram_and_continue(float e_move);
  479. bool fans_check_enabled = true;
  480. bool filament_autoload_enabled = true;
  481. #ifdef TMC2130
  482. extern int8_t CrashDetectMenu;
  483. void crashdet_enable()
  484. {
  485. // MYSERIAL.println("crashdet_enable");
  486. tmc2130_sg_stop_on_crash = true;
  487. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  488. CrashDetectMenu = 1;
  489. }
  490. void crashdet_disable()
  491. {
  492. // MYSERIAL.println("crashdet_disable");
  493. tmc2130_sg_stop_on_crash = false;
  494. tmc2130_sg_crash = 0;
  495. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  496. CrashDetectMenu = 0;
  497. }
  498. void crashdet_stop_and_save_print()
  499. {
  500. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  501. }
  502. void crashdet_restore_print_and_continue()
  503. {
  504. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  505. // babystep_apply();
  506. }
  507. void crashdet_stop_and_save_print2()
  508. {
  509. cli();
  510. planner_abort_hard(); //abort printing
  511. cmdqueue_reset(); //empty cmdqueue
  512. card.sdprinting = false;
  513. card.closefile();
  514. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  515. st_reset_timer();
  516. sei();
  517. }
  518. void crashdet_detected(uint8_t mask)
  519. {
  520. // printf("CRASH_DETECTED");
  521. /* while (!is_buffer_empty())
  522. {
  523. process_commands();
  524. cmdqueue_pop_front();
  525. }*/
  526. st_synchronize();
  527. lcd_update_enable(true);
  528. lcd_implementation_clear();
  529. lcd_update(2);
  530. if (mask & X_AXIS_MASK)
  531. {
  532. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  533. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  534. }
  535. if (mask & Y_AXIS_MASK)
  536. {
  537. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  538. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  539. }
  540. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  541. bool yesno = true;
  542. #else
  543. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  544. #endif
  545. lcd_update_enable(true);
  546. lcd_update(2);
  547. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  548. if (yesno)
  549. {
  550. enquecommand_P(PSTR("G28 X Y"));
  551. enquecommand_P(PSTR("CRASH_RECOVER"));
  552. }
  553. else
  554. {
  555. enquecommand_P(PSTR("CRASH_CANCEL"));
  556. }
  557. }
  558. void crashdet_recover()
  559. {
  560. crashdet_restore_print_and_continue();
  561. tmc2130_sg_stop_on_crash = true;
  562. }
  563. void crashdet_cancel()
  564. {
  565. card.sdprinting = false;
  566. card.closefile();
  567. tmc2130_sg_stop_on_crash = true;
  568. }
  569. #endif //TMC2130
  570. void failstats_reset_print()
  571. {
  572. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  573. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  574. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  576. }
  577. #ifdef MESH_BED_LEVELING
  578. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  579. #endif
  580. // Factory reset function
  581. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  582. // Level input parameter sets depth of reset
  583. // Quiet parameter masks all waitings for user interact.
  584. int er_progress = 0;
  585. void factory_reset(char level, bool quiet)
  586. {
  587. lcd_implementation_clear();
  588. int cursor_pos = 0;
  589. switch (level) {
  590. // Level 0: Language reset
  591. case 0:
  592. WRITE(BEEPER, HIGH);
  593. _delay_ms(100);
  594. WRITE(BEEPER, LOW);
  595. lcd_force_language_selection();
  596. break;
  597. //Level 1: Reset statistics
  598. case 1:
  599. WRITE(BEEPER, HIGH);
  600. _delay_ms(100);
  601. WRITE(BEEPER, LOW);
  602. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  603. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  604. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  605. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  606. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  607. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  608. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  609. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  610. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  611. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  612. lcd_menu_statistics();
  613. break;
  614. // Level 2: Prepare for shipping
  615. case 2:
  616. //lcd_printPGM(PSTR("Factory RESET"));
  617. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  618. // Force language selection at the next boot up.
  619. lcd_force_language_selection();
  620. // Force the "Follow calibration flow" message at the next boot up.
  621. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  622. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  623. farm_no = 0;
  624. farm_mode == false;
  625. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  626. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  627. WRITE(BEEPER, HIGH);
  628. _delay_ms(100);
  629. WRITE(BEEPER, LOW);
  630. //_delay_ms(2000);
  631. break;
  632. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  633. case 3:
  634. lcd_printPGM(PSTR("Factory RESET"));
  635. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  636. WRITE(BEEPER, HIGH);
  637. _delay_ms(100);
  638. WRITE(BEEPER, LOW);
  639. er_progress = 0;
  640. lcd_print_at_PGM(3, 3, PSTR(" "));
  641. lcd_implementation_print_at(3, 3, er_progress);
  642. // Erase EEPROM
  643. for (int i = 0; i < 4096; i++) {
  644. eeprom_write_byte((uint8_t*)i, 0xFF);
  645. if (i % 41 == 0) {
  646. er_progress++;
  647. lcd_print_at_PGM(3, 3, PSTR(" "));
  648. lcd_implementation_print_at(3, 3, er_progress);
  649. lcd_printPGM(PSTR("%"));
  650. }
  651. }
  652. break;
  653. case 4:
  654. bowden_menu();
  655. break;
  656. default:
  657. break;
  658. }
  659. }
  660. #include "LiquidCrystal.h"
  661. extern LiquidCrystal lcd;
  662. FILE _lcdout = {0};
  663. int lcd_putchar(char c, FILE *stream)
  664. {
  665. lcd.write(c);
  666. return 0;
  667. }
  668. FILE _uartout = {0};
  669. int uart_putchar(char c, FILE *stream)
  670. {
  671. MYSERIAL.write(c);
  672. return 0;
  673. }
  674. void lcd_splash()
  675. {
  676. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  677. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  678. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  679. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  680. }
  681. void factory_reset()
  682. {
  683. KEEPALIVE_STATE(PAUSED_FOR_USER);
  684. if (!READ(BTN_ENC))
  685. {
  686. _delay_ms(1000);
  687. if (!READ(BTN_ENC))
  688. {
  689. lcd_implementation_clear();
  690. lcd_printPGM(PSTR("Factory RESET"));
  691. SET_OUTPUT(BEEPER);
  692. WRITE(BEEPER, HIGH);
  693. while (!READ(BTN_ENC));
  694. WRITE(BEEPER, LOW);
  695. _delay_ms(2000);
  696. char level = reset_menu();
  697. factory_reset(level, false);
  698. switch (level) {
  699. case 0: _delay_ms(0); break;
  700. case 1: _delay_ms(0); break;
  701. case 2: _delay_ms(0); break;
  702. case 3: _delay_ms(0); break;
  703. }
  704. // _delay_ms(100);
  705. /*
  706. #ifdef MESH_BED_LEVELING
  707. _delay_ms(2000);
  708. if (!READ(BTN_ENC))
  709. {
  710. WRITE(BEEPER, HIGH);
  711. _delay_ms(100);
  712. WRITE(BEEPER, LOW);
  713. _delay_ms(200);
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. int _z = 0;
  718. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  719. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  720. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  721. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  722. }
  723. else
  724. {
  725. WRITE(BEEPER, HIGH);
  726. _delay_ms(100);
  727. WRITE(BEEPER, LOW);
  728. }
  729. #endif // mesh */
  730. }
  731. }
  732. else
  733. {
  734. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  735. }
  736. KEEPALIVE_STATE(IN_HANDLER);
  737. }
  738. void show_fw_version_warnings() {
  739. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  740. switch (FW_DEV_VERSION) {
  741. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  742. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  743. case(FW_VERSION_DEVEL):
  744. case(FW_VERSION_DEBUG):
  745. lcd_update_enable(false);
  746. lcd_implementation_clear();
  747. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  748. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  749. #else
  750. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  751. #endif
  752. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  753. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  754. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  755. lcd_wait_for_click();
  756. break;
  757. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  758. }
  759. lcd_update_enable(true);
  760. }
  761. uint8_t check_printer_version()
  762. {
  763. uint8_t version_changed = 0;
  764. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  765. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  766. if (printer_type != PRINTER_TYPE) {
  767. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  768. else version_changed |= 0b10;
  769. }
  770. if (motherboard != MOTHERBOARD) {
  771. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  772. else version_changed |= 0b01;
  773. }
  774. return version_changed;
  775. }
  776. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  777. {
  778. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  779. }
  780. // "Setup" function is called by the Arduino framework on startup.
  781. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  782. // are initialized by the main() routine provided by the Arduino framework.
  783. void setup()
  784. {
  785. lcd_init();
  786. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  787. lcd_splash();
  788. setup_killpin();
  789. setup_powerhold();
  790. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  791. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  792. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  793. if (farm_no == 0xFFFF) farm_no = 0;
  794. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  795. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  796. if (farm_mode)
  797. {
  798. prusa_statistics(8);
  799. selectedSerialPort = 1;
  800. }
  801. MYSERIAL.begin(BAUDRATE);
  802. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  803. stdout = uartout;
  804. SERIAL_PROTOCOLLNPGM("start");
  805. SERIAL_ECHO_START;
  806. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  807. #if 0
  808. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  809. for (int i = 0; i < 4096; ++i) {
  810. int b = eeprom_read_byte((unsigned char*)i);
  811. if (b != 255) {
  812. SERIAL_ECHO(i);
  813. SERIAL_ECHO(":");
  814. SERIAL_ECHO(b);
  815. SERIAL_ECHOLN("");
  816. }
  817. }
  818. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  819. #endif
  820. // Check startup - does nothing if bootloader sets MCUSR to 0
  821. byte mcu = MCUSR;
  822. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  823. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  824. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  825. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  826. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  827. if (mcu & 1) puts_P(MSG_POWERUP);
  828. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  829. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  830. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  831. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  832. MCUSR = 0;
  833. //SERIAL_ECHORPGM(MSG_MARLIN);
  834. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  835. #ifdef STRING_VERSION_CONFIG_H
  836. #ifdef STRING_CONFIG_H_AUTHOR
  837. SERIAL_ECHO_START;
  838. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  839. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  840. SERIAL_ECHORPGM(MSG_AUTHOR);
  841. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  842. SERIAL_ECHOPGM("Compiled: ");
  843. SERIAL_ECHOLNPGM(__DATE__);
  844. #endif
  845. #endif
  846. SERIAL_ECHO_START;
  847. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  848. SERIAL_ECHO(freeMemory());
  849. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  850. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  851. //lcd_update_enable(false); // why do we need this?? - andre
  852. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  853. bool previous_settings_retrieved = false;
  854. uint8_t hw_changed = check_printer_version();
  855. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  856. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  857. }
  858. else { //printer version was changed so use default settings
  859. Config_ResetDefault();
  860. }
  861. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  862. tp_init(); // Initialize temperature loop
  863. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  864. plan_init(); // Initialize planner;
  865. factory_reset();
  866. #ifdef TMC2130
  867. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  868. if (silentMode == 0xff) silentMode = 0;
  869. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  870. tmc2130_mode = TMC2130_MODE_NORMAL;
  871. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  872. if (crashdet)
  873. {
  874. crashdet_enable();
  875. MYSERIAL.println("CrashDetect ENABLED!");
  876. }
  877. else
  878. {
  879. crashdet_disable();
  880. MYSERIAL.println("CrashDetect DISABLED");
  881. }
  882. #ifdef TMC2130_LINEARITY_CORRECTION
  883. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  884. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  885. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  886. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  887. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  888. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  889. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  890. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  891. #endif //TMC2130_LINEARITY_CORRECTION
  892. #ifdef TMC2130_VARIABLE_RESOLUTION
  893. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  894. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  895. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  896. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  897. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  898. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  899. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  900. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  901. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  902. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  903. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  904. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  905. #else //TMC2130_VARIABLE_RESOLUTION
  906. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  907. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  908. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  909. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  910. #endif //TMC2130_VARIABLE_RESOLUTION
  911. #endif //TMC2130
  912. st_init(); // Initialize stepper, this enables interrupts!
  913. #ifdef TMC2130
  914. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  915. tmc2130_init();
  916. #endif //TMC2130
  917. setup_photpin();
  918. servo_init();
  919. // Reset the machine correction matrix.
  920. // It does not make sense to load the correction matrix until the machine is homed.
  921. world2machine_reset();
  922. #ifdef PAT9125
  923. fsensor_init();
  924. #endif //PAT9125
  925. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  926. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  927. #endif
  928. #ifdef DIGIPOT_I2C
  929. digipot_i2c_init();
  930. #endif
  931. setup_homepin();
  932. #ifdef TMC2130
  933. if (1) {
  934. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  935. // try to run to zero phase before powering the Z motor.
  936. // Move in negative direction
  937. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  938. // Round the current micro-micro steps to micro steps.
  939. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  940. // Until the phase counter is reset to zero.
  941. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  942. delay(2);
  943. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  944. delay(2);
  945. }
  946. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  947. }
  948. #endif //TMC2130
  949. #if defined(Z_AXIS_ALWAYS_ON)
  950. enable_z();
  951. #endif
  952. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  953. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  954. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  955. if (farm_no == 0xFFFF) farm_no = 0;
  956. if (farm_mode)
  957. {
  958. prusa_statistics(8);
  959. }
  960. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  961. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  962. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  963. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  964. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  965. // where all the EEPROM entries are set to 0x0ff.
  966. // Once a firmware boots up, it forces at least a language selection, which changes
  967. // EEPROM_LANG to number lower than 0x0ff.
  968. // 1) Set a high power mode.
  969. #ifdef TMC2130
  970. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  971. tmc2130_mode = TMC2130_MODE_NORMAL;
  972. #endif //TMC2130
  973. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  974. }
  975. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  976. // but this times out if a blocking dialog is shown in setup().
  977. card.initsd();
  978. #ifdef DEBUG_SD_SPEED_TEST
  979. if (card.cardOK)
  980. {
  981. uint8_t* buff = (uint8_t*)block_buffer;
  982. uint32_t block = 0;
  983. uint32_t sumr = 0;
  984. uint32_t sumw = 0;
  985. for (int i = 0; i < 1024; i++)
  986. {
  987. uint32_t u = micros();
  988. bool res = card.card.readBlock(i, buff);
  989. u = micros() - u;
  990. if (res)
  991. {
  992. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  993. sumr += u;
  994. u = micros();
  995. res = card.card.writeBlock(i, buff);
  996. u = micros() - u;
  997. if (res)
  998. {
  999. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1000. sumw += u;
  1001. }
  1002. else
  1003. {
  1004. printf_P(PSTR("writeBlock %4d error\n"), i);
  1005. break;
  1006. }
  1007. }
  1008. else
  1009. {
  1010. printf_P(PSTR("readBlock %4d error\n"), i);
  1011. break;
  1012. }
  1013. }
  1014. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1015. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1016. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1017. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1018. }
  1019. else
  1020. printf_P(PSTR("Card NG!\n"));
  1021. #endif DEBUG_SD_SPEED_TEST
  1022. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1023. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1024. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1025. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1026. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1027. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1028. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1029. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1030. #ifdef SNMM
  1031. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1032. int _z = BOWDEN_LENGTH;
  1033. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1034. }
  1035. #endif
  1036. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1037. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1038. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1039. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1040. if (lang_selected >= LANG_NUM){
  1041. lcd_mylang();
  1042. }
  1043. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1044. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1045. temp_cal_active = false;
  1046. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1047. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1048. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1049. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1050. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  1051. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  1052. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  1053. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  1054. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  1055. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  1056. temp_cal_active = true;
  1057. }
  1058. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1059. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1060. }
  1061. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1062. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1063. }
  1064. check_babystep(); //checking if Z babystep is in allowed range
  1065. #ifdef UVLO_SUPPORT
  1066. setup_uvlo_interrupt();
  1067. #endif //UVLO_SUPPORT
  1068. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1069. setup_fan_interrupt();
  1070. #endif //DEBUG_DISABLE_FANCHECK
  1071. #ifdef PAT9125
  1072. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1073. fsensor_setup_interrupt();
  1074. #endif //DEBUG_DISABLE_FSENSORCHECK
  1075. #endif //PAT9125
  1076. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1077. #ifndef DEBUG_DISABLE_STARTMSGS
  1078. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1079. show_fw_version_warnings();
  1080. switch (hw_changed) {
  1081. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1082. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1083. case(0b01):
  1084. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1085. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1086. break;
  1087. case(0b10):
  1088. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1089. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1090. break;
  1091. case(0b11):
  1092. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1093. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1094. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1095. break;
  1096. default: break; //no change, show no message
  1097. }
  1098. if (!previous_settings_retrieved) {
  1099. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1100. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1101. }
  1102. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1103. lcd_wizard(0);
  1104. }
  1105. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1106. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1107. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1108. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1109. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1110. // Show the message.
  1111. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1112. }
  1113. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1114. // Show the message.
  1115. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1116. lcd_update_enable(true);
  1117. }
  1118. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1119. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1120. lcd_update_enable(true);
  1121. }
  1122. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1123. // Show the message.
  1124. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1125. }
  1126. }
  1127. #ifndef DEBUG_DISABLE_FORCE_SELFTEST
  1128. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
  1129. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1130. update_current_firmware_version_to_eeprom();
  1131. lcd_selftest();
  1132. }
  1133. #endif //DEBUG_DISABLE_FORCE_SELFTEST
  1134. KEEPALIVE_STATE(IN_PROCESS);
  1135. #endif //DEBUG_DISABLE_STARTMSGS
  1136. lcd_update_enable(true);
  1137. lcd_implementation_clear();
  1138. lcd_update(2);
  1139. // Store the currently running firmware into an eeprom,
  1140. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1141. update_current_firmware_version_to_eeprom();
  1142. #ifdef TMC2130
  1143. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1144. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1145. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1146. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1147. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1148. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1149. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1150. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1151. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1152. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1153. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1154. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1155. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1156. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1157. #endif //TMC2130
  1158. #ifdef UVLO_SUPPORT
  1159. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1160. /*
  1161. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1162. else {
  1163. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1164. lcd_update_enable(true);
  1165. lcd_update(2);
  1166. lcd_setstatuspgm(WELCOME_MSG);
  1167. }
  1168. */
  1169. manage_heater(); // Update temperatures
  1170. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1171. MYSERIAL.println("Power panic detected!");
  1172. MYSERIAL.print("Current bed temp:");
  1173. MYSERIAL.println(degBed());
  1174. MYSERIAL.print("Saved bed temp:");
  1175. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1176. #endif
  1177. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1178. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1179. MYSERIAL.println("Automatic recovery!");
  1180. #endif
  1181. recover_print(1);
  1182. }
  1183. else{
  1184. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1185. MYSERIAL.println("Normal recovery!");
  1186. #endif
  1187. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1188. else {
  1189. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1190. lcd_update_enable(true);
  1191. lcd_update(2);
  1192. lcd_setstatuspgm(WELCOME_MSG);
  1193. }
  1194. }
  1195. }
  1196. #endif //UVLO_SUPPORT
  1197. KEEPALIVE_STATE(NOT_BUSY);
  1198. #ifdef WATCHDOG
  1199. wdt_enable(WDTO_4S);
  1200. #endif //WATCHDOG
  1201. }
  1202. #ifdef PAT9125
  1203. void fsensor_init() {
  1204. int pat9125 = pat9125_init();
  1205. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1206. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1207. if (!pat9125)
  1208. {
  1209. fsensor = 0; //disable sensor
  1210. fsensor_not_responding = true;
  1211. }
  1212. else {
  1213. fsensor_not_responding = false;
  1214. }
  1215. puts_P(PSTR("FSensor "));
  1216. if (fsensor)
  1217. {
  1218. puts_P(PSTR("ENABLED\n"));
  1219. fsensor_enable();
  1220. }
  1221. else
  1222. {
  1223. puts_P(PSTR("DISABLED\n"));
  1224. fsensor_disable();
  1225. }
  1226. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1227. filament_autoload_enabled = false;
  1228. fsensor_disable();
  1229. #endif //DEBUG_DISABLE_FSENSORCHECK
  1230. }
  1231. #endif //PAT9125
  1232. void trace();
  1233. #define CHUNK_SIZE 64 // bytes
  1234. #define SAFETY_MARGIN 1
  1235. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1236. int chunkHead = 0;
  1237. int serial_read_stream() {
  1238. setTargetHotend(0, 0);
  1239. setTargetBed(0);
  1240. lcd_implementation_clear();
  1241. lcd_printPGM(PSTR(" Upload in progress"));
  1242. // first wait for how many bytes we will receive
  1243. uint32_t bytesToReceive;
  1244. // receive the four bytes
  1245. char bytesToReceiveBuffer[4];
  1246. for (int i=0; i<4; i++) {
  1247. int data;
  1248. while ((data = MYSERIAL.read()) == -1) {};
  1249. bytesToReceiveBuffer[i] = data;
  1250. }
  1251. // make it a uint32
  1252. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1253. // we're ready, notify the sender
  1254. MYSERIAL.write('+');
  1255. // lock in the routine
  1256. uint32_t receivedBytes = 0;
  1257. while (prusa_sd_card_upload) {
  1258. int i;
  1259. for (i=0; i<CHUNK_SIZE; i++) {
  1260. int data;
  1261. // check if we're not done
  1262. if (receivedBytes == bytesToReceive) {
  1263. break;
  1264. }
  1265. // read the next byte
  1266. while ((data = MYSERIAL.read()) == -1) {};
  1267. receivedBytes++;
  1268. // save it to the chunk
  1269. chunk[i] = data;
  1270. }
  1271. // write the chunk to SD
  1272. card.write_command_no_newline(&chunk[0]);
  1273. // notify the sender we're ready for more data
  1274. MYSERIAL.write('+');
  1275. // for safety
  1276. manage_heater();
  1277. // check if we're done
  1278. if(receivedBytes == bytesToReceive) {
  1279. trace(); // beep
  1280. card.closefile();
  1281. prusa_sd_card_upload = false;
  1282. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1283. return 0;
  1284. }
  1285. }
  1286. }
  1287. #ifdef HOST_KEEPALIVE_FEATURE
  1288. /**
  1289. * Output a "busy" message at regular intervals
  1290. * while the machine is not accepting commands.
  1291. */
  1292. void host_keepalive() {
  1293. if (farm_mode) return;
  1294. long ms = millis();
  1295. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1296. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1297. switch (busy_state) {
  1298. case IN_HANDLER:
  1299. case IN_PROCESS:
  1300. SERIAL_ECHO_START;
  1301. SERIAL_ECHOLNPGM("busy: processing");
  1302. break;
  1303. case PAUSED_FOR_USER:
  1304. SERIAL_ECHO_START;
  1305. SERIAL_ECHOLNPGM("busy: paused for user");
  1306. break;
  1307. case PAUSED_FOR_INPUT:
  1308. SERIAL_ECHO_START;
  1309. SERIAL_ECHOLNPGM("busy: paused for input");
  1310. break;
  1311. default:
  1312. break;
  1313. }
  1314. }
  1315. prev_busy_signal_ms = ms;
  1316. }
  1317. #endif
  1318. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1319. // Before loop(), the setup() function is called by the main() routine.
  1320. void loop()
  1321. {
  1322. KEEPALIVE_STATE(NOT_BUSY);
  1323. bool stack_integrity = true;
  1324. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1325. {
  1326. is_usb_printing = true;
  1327. usb_printing_counter--;
  1328. _usb_timer = millis();
  1329. }
  1330. if (usb_printing_counter == 0)
  1331. {
  1332. is_usb_printing = false;
  1333. }
  1334. if (prusa_sd_card_upload)
  1335. {
  1336. //we read byte-by byte
  1337. serial_read_stream();
  1338. } else
  1339. {
  1340. get_command();
  1341. #ifdef SDSUPPORT
  1342. card.checkautostart(false);
  1343. #endif
  1344. if(buflen)
  1345. {
  1346. cmdbuffer_front_already_processed = false;
  1347. #ifdef SDSUPPORT
  1348. if(card.saving)
  1349. {
  1350. // Saving a G-code file onto an SD-card is in progress.
  1351. // Saving starts with M28, saving until M29 is seen.
  1352. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1353. card.write_command(CMDBUFFER_CURRENT_STRING);
  1354. if(card.logging)
  1355. process_commands();
  1356. else
  1357. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1358. } else {
  1359. card.closefile();
  1360. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1361. }
  1362. } else {
  1363. process_commands();
  1364. }
  1365. #else
  1366. process_commands();
  1367. #endif //SDSUPPORT
  1368. if (! cmdbuffer_front_already_processed && buflen)
  1369. {
  1370. // ptr points to the start of the block currently being processed.
  1371. // The first character in the block is the block type.
  1372. char *ptr = cmdbuffer + bufindr;
  1373. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1374. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1375. union {
  1376. struct {
  1377. char lo;
  1378. char hi;
  1379. } lohi;
  1380. uint16_t value;
  1381. } sdlen;
  1382. sdlen.value = 0;
  1383. {
  1384. // This block locks the interrupts globally for 3.25 us,
  1385. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1386. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1387. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1388. cli();
  1389. // Reset the command to something, which will be ignored by the power panic routine,
  1390. // so this buffer length will not be counted twice.
  1391. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1392. // Extract the current buffer length.
  1393. sdlen.lohi.lo = *ptr ++;
  1394. sdlen.lohi.hi = *ptr;
  1395. // and pass it to the planner queue.
  1396. planner_add_sd_length(sdlen.value);
  1397. sei();
  1398. }
  1399. }
  1400. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1401. // this block's SD card length will not be counted twice as its command type has been replaced
  1402. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1403. cmdqueue_pop_front();
  1404. }
  1405. host_keepalive();
  1406. }
  1407. }
  1408. //check heater every n milliseconds
  1409. manage_heater();
  1410. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1411. checkHitEndstops();
  1412. lcd_update();
  1413. #ifdef PAT9125
  1414. fsensor_update();
  1415. #endif //PAT9125
  1416. #ifdef TMC2130
  1417. tmc2130_check_overtemp();
  1418. if (tmc2130_sg_crash)
  1419. {
  1420. uint8_t crash = tmc2130_sg_crash;
  1421. tmc2130_sg_crash = 0;
  1422. // crashdet_stop_and_save_print();
  1423. switch (crash)
  1424. {
  1425. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1426. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1427. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1428. }
  1429. }
  1430. #endif //TMC2130
  1431. }
  1432. #define DEFINE_PGM_READ_ANY(type, reader) \
  1433. static inline type pgm_read_any(const type *p) \
  1434. { return pgm_read_##reader##_near(p); }
  1435. DEFINE_PGM_READ_ANY(float, float);
  1436. DEFINE_PGM_READ_ANY(signed char, byte);
  1437. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1438. static const PROGMEM type array##_P[3] = \
  1439. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1440. static inline type array(int axis) \
  1441. { return pgm_read_any(&array##_P[axis]); } \
  1442. type array##_ext(int axis) \
  1443. { return pgm_read_any(&array##_P[axis]); }
  1444. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1445. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1446. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1447. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1448. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1449. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1450. static void axis_is_at_home(int axis) {
  1451. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1452. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1453. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1454. }
  1455. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1456. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1457. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1458. saved_feedrate = feedrate;
  1459. saved_feedmultiply = feedmultiply;
  1460. feedmultiply = 100;
  1461. previous_millis_cmd = millis();
  1462. enable_endstops(enable_endstops_now);
  1463. }
  1464. static void clean_up_after_endstop_move() {
  1465. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1466. enable_endstops(false);
  1467. #endif
  1468. feedrate = saved_feedrate;
  1469. feedmultiply = saved_feedmultiply;
  1470. previous_millis_cmd = millis();
  1471. }
  1472. #ifdef ENABLE_AUTO_BED_LEVELING
  1473. #ifdef AUTO_BED_LEVELING_GRID
  1474. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1475. {
  1476. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1477. planeNormal.debug("planeNormal");
  1478. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1479. //bedLevel.debug("bedLevel");
  1480. //plan_bed_level_matrix.debug("bed level before");
  1481. //vector_3 uncorrected_position = plan_get_position_mm();
  1482. //uncorrected_position.debug("position before");
  1483. vector_3 corrected_position = plan_get_position();
  1484. // corrected_position.debug("position after");
  1485. current_position[X_AXIS] = corrected_position.x;
  1486. current_position[Y_AXIS] = corrected_position.y;
  1487. current_position[Z_AXIS] = corrected_position.z;
  1488. // put the bed at 0 so we don't go below it.
  1489. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1490. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1491. }
  1492. #else // not AUTO_BED_LEVELING_GRID
  1493. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1494. plan_bed_level_matrix.set_to_identity();
  1495. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1496. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1497. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1498. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1499. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1500. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1501. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1502. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1503. vector_3 corrected_position = plan_get_position();
  1504. current_position[X_AXIS] = corrected_position.x;
  1505. current_position[Y_AXIS] = corrected_position.y;
  1506. current_position[Z_AXIS] = corrected_position.z;
  1507. // put the bed at 0 so we don't go below it.
  1508. current_position[Z_AXIS] = zprobe_zoffset;
  1509. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1510. }
  1511. #endif // AUTO_BED_LEVELING_GRID
  1512. static void run_z_probe() {
  1513. plan_bed_level_matrix.set_to_identity();
  1514. feedrate = homing_feedrate[Z_AXIS];
  1515. // move down until you find the bed
  1516. float zPosition = -10;
  1517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1518. st_synchronize();
  1519. // we have to let the planner know where we are right now as it is not where we said to go.
  1520. zPosition = st_get_position_mm(Z_AXIS);
  1521. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1522. // move up the retract distance
  1523. zPosition += home_retract_mm(Z_AXIS);
  1524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1525. st_synchronize();
  1526. // move back down slowly to find bed
  1527. feedrate = homing_feedrate[Z_AXIS]/4;
  1528. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1530. st_synchronize();
  1531. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1532. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1533. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1534. }
  1535. static void do_blocking_move_to(float x, float y, float z) {
  1536. float oldFeedRate = feedrate;
  1537. feedrate = homing_feedrate[Z_AXIS];
  1538. current_position[Z_AXIS] = z;
  1539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1540. st_synchronize();
  1541. feedrate = XY_TRAVEL_SPEED;
  1542. current_position[X_AXIS] = x;
  1543. current_position[Y_AXIS] = y;
  1544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1545. st_synchronize();
  1546. feedrate = oldFeedRate;
  1547. }
  1548. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1549. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1550. }
  1551. /// Probe bed height at position (x,y), returns the measured z value
  1552. static float probe_pt(float x, float y, float z_before) {
  1553. // move to right place
  1554. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1555. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1556. run_z_probe();
  1557. float measured_z = current_position[Z_AXIS];
  1558. SERIAL_PROTOCOLRPGM(MSG_BED);
  1559. SERIAL_PROTOCOLPGM(" x: ");
  1560. SERIAL_PROTOCOL(x);
  1561. SERIAL_PROTOCOLPGM(" y: ");
  1562. SERIAL_PROTOCOL(y);
  1563. SERIAL_PROTOCOLPGM(" z: ");
  1564. SERIAL_PROTOCOL(measured_z);
  1565. SERIAL_PROTOCOLPGM("\n");
  1566. return measured_z;
  1567. }
  1568. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1569. #ifdef LIN_ADVANCE
  1570. /**
  1571. * M900: Set and/or Get advance K factor and WH/D ratio
  1572. *
  1573. * K<factor> Set advance K factor
  1574. * R<ratio> Set ratio directly (overrides WH/D)
  1575. * W<width> H<height> D<diam> Set ratio from WH/D
  1576. */
  1577. inline void gcode_M900() {
  1578. st_synchronize();
  1579. const float newK = code_seen('K') ? code_value_float() : -1;
  1580. if (newK >= 0) extruder_advance_k = newK;
  1581. float newR = code_seen('R') ? code_value_float() : -1;
  1582. if (newR < 0) {
  1583. const float newD = code_seen('D') ? code_value_float() : -1,
  1584. newW = code_seen('W') ? code_value_float() : -1,
  1585. newH = code_seen('H') ? code_value_float() : -1;
  1586. if (newD >= 0 && newW >= 0 && newH >= 0)
  1587. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1588. }
  1589. if (newR >= 0) advance_ed_ratio = newR;
  1590. SERIAL_ECHO_START;
  1591. SERIAL_ECHOPGM("Advance K=");
  1592. SERIAL_ECHOLN(extruder_advance_k);
  1593. SERIAL_ECHOPGM(" E/D=");
  1594. const float ratio = advance_ed_ratio;
  1595. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1596. }
  1597. #endif // LIN_ADVANCE
  1598. bool check_commands() {
  1599. bool end_command_found = false;
  1600. while (buflen)
  1601. {
  1602. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1603. if (!cmdbuffer_front_already_processed)
  1604. cmdqueue_pop_front();
  1605. cmdbuffer_front_already_processed = false;
  1606. }
  1607. return end_command_found;
  1608. }
  1609. #ifdef TMC2130
  1610. bool calibrate_z_auto()
  1611. {
  1612. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1613. lcd_implementation_clear();
  1614. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1615. bool endstops_enabled = enable_endstops(true);
  1616. int axis_up_dir = -home_dir(Z_AXIS);
  1617. tmc2130_home_enter(Z_AXIS_MASK);
  1618. current_position[Z_AXIS] = 0;
  1619. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1620. set_destination_to_current();
  1621. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1622. feedrate = homing_feedrate[Z_AXIS];
  1623. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1624. st_synchronize();
  1625. // current_position[axis] = 0;
  1626. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1627. tmc2130_home_exit();
  1628. enable_endstops(false);
  1629. current_position[Z_AXIS] = 0;
  1630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1631. set_destination_to_current();
  1632. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1633. feedrate = homing_feedrate[Z_AXIS] / 2;
  1634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1635. st_synchronize();
  1636. enable_endstops(endstops_enabled);
  1637. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1638. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1639. return true;
  1640. }
  1641. #endif //TMC2130
  1642. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1643. {
  1644. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1645. #define HOMEAXIS_DO(LETTER) \
  1646. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1647. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1648. {
  1649. int axis_home_dir = home_dir(axis);
  1650. feedrate = homing_feedrate[axis];
  1651. #ifdef TMC2130
  1652. tmc2130_home_enter(X_AXIS_MASK << axis);
  1653. #endif //TMC2130
  1654. // Move right a bit, so that the print head does not touch the left end position,
  1655. // and the following left movement has a chance to achieve the required velocity
  1656. // for the stall guard to work.
  1657. current_position[axis] = 0;
  1658. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1659. set_destination_to_current();
  1660. // destination[axis] = 11.f;
  1661. destination[axis] = 3.f;
  1662. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1663. st_synchronize();
  1664. // Move left away from the possible collision with the collision detection disabled.
  1665. endstops_hit_on_purpose();
  1666. enable_endstops(false);
  1667. current_position[axis] = 0;
  1668. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1669. destination[axis] = - 1.;
  1670. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1671. st_synchronize();
  1672. // Now continue to move up to the left end stop with the collision detection enabled.
  1673. enable_endstops(true);
  1674. destination[axis] = - 1.1 * max_length(axis);
  1675. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1676. st_synchronize();
  1677. for (uint8_t i = 0; i < cnt; i++)
  1678. {
  1679. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1680. endstops_hit_on_purpose();
  1681. enable_endstops(false);
  1682. current_position[axis] = 0;
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. destination[axis] = 10.f;
  1685. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. endstops_hit_on_purpose();
  1688. // Now move left up to the collision, this time with a repeatable velocity.
  1689. enable_endstops(true);
  1690. destination[axis] = - 11.f;
  1691. #ifdef TMC2130
  1692. feedrate = homing_feedrate[axis];
  1693. #else //TMC2130
  1694. feedrate = homing_feedrate[axis] / 2;
  1695. #endif //TMC2130
  1696. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. #ifdef TMC2130
  1699. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1700. if (pstep) pstep[i] = mscnt >> 4;
  1701. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1702. #endif //TMC2130
  1703. }
  1704. endstops_hit_on_purpose();
  1705. enable_endstops(false);
  1706. #ifdef TMC2130
  1707. uint8_t orig = tmc2130_home_origin[axis];
  1708. uint8_t back = tmc2130_home_bsteps[axis];
  1709. if (tmc2130_home_enabled && (orig <= 63))
  1710. {
  1711. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1712. if (back > 0)
  1713. tmc2130_do_steps(axis, back, 1, 1000);
  1714. }
  1715. else
  1716. tmc2130_do_steps(axis, 8, 2, 1000);
  1717. tmc2130_home_exit();
  1718. #endif //TMC2130
  1719. axis_is_at_home(axis);
  1720. axis_known_position[axis] = true;
  1721. // Move from minimum
  1722. #ifdef TMC2130
  1723. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1724. #else //TMC2130
  1725. float dist = 0.01f * 64;
  1726. #endif //TMC2130
  1727. current_position[axis] -= dist;
  1728. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1729. current_position[axis] += dist;
  1730. destination[axis] = current_position[axis];
  1731. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1732. st_synchronize();
  1733. feedrate = 0.0;
  1734. }
  1735. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1736. {
  1737. int axis_home_dir = home_dir(axis);
  1738. current_position[axis] = 0;
  1739. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1740. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1741. feedrate = homing_feedrate[axis];
  1742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1743. st_synchronize();
  1744. current_position[axis] = 0;
  1745. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1746. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1747. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1748. st_synchronize();
  1749. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1750. feedrate = homing_feedrate[axis]/2 ;
  1751. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1752. st_synchronize();
  1753. axis_is_at_home(axis);
  1754. destination[axis] = current_position[axis];
  1755. feedrate = 0.0;
  1756. endstops_hit_on_purpose();
  1757. axis_known_position[axis] = true;
  1758. }
  1759. enable_endstops(endstops_enabled);
  1760. }
  1761. /**/
  1762. void home_xy()
  1763. {
  1764. set_destination_to_current();
  1765. homeaxis(X_AXIS);
  1766. homeaxis(Y_AXIS);
  1767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1768. endstops_hit_on_purpose();
  1769. }
  1770. void refresh_cmd_timeout(void)
  1771. {
  1772. previous_millis_cmd = millis();
  1773. }
  1774. #ifdef FWRETRACT
  1775. void retract(bool retracting, bool swapretract = false) {
  1776. if(retracting && !retracted[active_extruder]) {
  1777. destination[X_AXIS]=current_position[X_AXIS];
  1778. destination[Y_AXIS]=current_position[Y_AXIS];
  1779. destination[Z_AXIS]=current_position[Z_AXIS];
  1780. destination[E_AXIS]=current_position[E_AXIS];
  1781. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1782. plan_set_e_position(current_position[E_AXIS]);
  1783. float oldFeedrate = feedrate;
  1784. feedrate=retract_feedrate*60;
  1785. retracted[active_extruder]=true;
  1786. prepare_move();
  1787. current_position[Z_AXIS]-=retract_zlift;
  1788. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1789. prepare_move();
  1790. feedrate = oldFeedrate;
  1791. } else if(!retracting && retracted[active_extruder]) {
  1792. destination[X_AXIS]=current_position[X_AXIS];
  1793. destination[Y_AXIS]=current_position[Y_AXIS];
  1794. destination[Z_AXIS]=current_position[Z_AXIS];
  1795. destination[E_AXIS]=current_position[E_AXIS];
  1796. current_position[Z_AXIS]+=retract_zlift;
  1797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1798. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1799. plan_set_e_position(current_position[E_AXIS]);
  1800. float oldFeedrate = feedrate;
  1801. feedrate=retract_recover_feedrate*60;
  1802. retracted[active_extruder]=false;
  1803. prepare_move();
  1804. feedrate = oldFeedrate;
  1805. }
  1806. } //retract
  1807. #endif //FWRETRACT
  1808. void trace() {
  1809. tone(BEEPER, 440);
  1810. delay(25);
  1811. noTone(BEEPER);
  1812. delay(20);
  1813. }
  1814. /*
  1815. void ramming() {
  1816. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1817. if (current_temperature[0] < 230) {
  1818. //PLA
  1819. max_feedrate[E_AXIS] = 50;
  1820. //current_position[E_AXIS] -= 8;
  1821. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1822. //current_position[E_AXIS] += 8;
  1823. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1824. current_position[E_AXIS] += 5.4;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1826. current_position[E_AXIS] += 3.2;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1828. current_position[E_AXIS] += 3;
  1829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1830. st_synchronize();
  1831. max_feedrate[E_AXIS] = 80;
  1832. current_position[E_AXIS] -= 82;
  1833. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1834. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1835. current_position[E_AXIS] -= 20;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1837. current_position[E_AXIS] += 5;
  1838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1839. current_position[E_AXIS] += 5;
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1841. current_position[E_AXIS] -= 10;
  1842. st_synchronize();
  1843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1844. current_position[E_AXIS] += 10;
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1846. current_position[E_AXIS] -= 10;
  1847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1848. current_position[E_AXIS] += 10;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1850. current_position[E_AXIS] -= 10;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1852. st_synchronize();
  1853. }
  1854. else {
  1855. //ABS
  1856. max_feedrate[E_AXIS] = 50;
  1857. //current_position[E_AXIS] -= 8;
  1858. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1859. //current_position[E_AXIS] += 8;
  1860. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1861. current_position[E_AXIS] += 3.1;
  1862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1863. current_position[E_AXIS] += 3.1;
  1864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1865. current_position[E_AXIS] += 4;
  1866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1867. st_synchronize();
  1868. //current_position[X_AXIS] += 23; //delay
  1869. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1870. //current_position[X_AXIS] -= 23; //delay
  1871. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1872. delay(4700);
  1873. max_feedrate[E_AXIS] = 80;
  1874. current_position[E_AXIS] -= 92;
  1875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1876. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1877. current_position[E_AXIS] -= 5;
  1878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1879. current_position[E_AXIS] += 5;
  1880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1881. current_position[E_AXIS] -= 5;
  1882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1883. st_synchronize();
  1884. current_position[E_AXIS] += 5;
  1885. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1886. current_position[E_AXIS] -= 5;
  1887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1888. current_position[E_AXIS] += 5;
  1889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1890. current_position[E_AXIS] -= 5;
  1891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1892. st_synchronize();
  1893. }
  1894. }
  1895. */
  1896. #ifdef TMC2130
  1897. void force_high_power_mode(bool start_high_power_section) {
  1898. uint8_t silent;
  1899. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1900. if (silent == 1) {
  1901. //we are in silent mode, set to normal mode to enable crash detection
  1902. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1903. st_synchronize();
  1904. cli();
  1905. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1906. tmc2130_init();
  1907. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1908. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1909. st_reset_timer();
  1910. sei();
  1911. digipot_init();
  1912. }
  1913. }
  1914. #endif //TMC2130
  1915. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1916. {
  1917. bool final_result = false;
  1918. #ifdef TMC2130
  1919. FORCE_HIGH_POWER_START;
  1920. #endif // TMC2130
  1921. // Only Z calibration?
  1922. if (!onlyZ)
  1923. {
  1924. setTargetBed(0);
  1925. setTargetHotend(0, 0);
  1926. setTargetHotend(0, 1);
  1927. setTargetHotend(0, 2);
  1928. adjust_bed_reset(); //reset bed level correction
  1929. }
  1930. // Disable the default update procedure of the display. We will do a modal dialog.
  1931. lcd_update_enable(false);
  1932. // Let the planner use the uncorrected coordinates.
  1933. mbl.reset();
  1934. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1935. // the planner will not perform any adjustments in the XY plane.
  1936. // Wait for the motors to stop and update the current position with the absolute values.
  1937. world2machine_revert_to_uncorrected();
  1938. // Reset the baby step value applied without moving the axes.
  1939. babystep_reset();
  1940. // Mark all axes as in a need for homing.
  1941. memset(axis_known_position, 0, sizeof(axis_known_position));
  1942. // Home in the XY plane.
  1943. //set_destination_to_current();
  1944. setup_for_endstop_move();
  1945. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1946. home_xy();
  1947. enable_endstops(false);
  1948. current_position[X_AXIS] += 5;
  1949. current_position[Y_AXIS] += 5;
  1950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1951. st_synchronize();
  1952. // Let the user move the Z axes up to the end stoppers.
  1953. #ifdef TMC2130
  1954. if (calibrate_z_auto())
  1955. {
  1956. #else //TMC2130
  1957. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1958. {
  1959. #endif //TMC2130
  1960. refresh_cmd_timeout();
  1961. #ifndef STEEL_SHEET
  1962. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1963. {
  1964. lcd_wait_for_cool_down();
  1965. }
  1966. #endif //STEEL_SHEET
  1967. if(!onlyZ)
  1968. {
  1969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1970. #ifdef STEEL_SHEET
  1971. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1972. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1973. #endif //STEEL_SHEET
  1974. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1975. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1976. KEEPALIVE_STATE(IN_HANDLER);
  1977. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1978. lcd_implementation_print_at(0, 2, 1);
  1979. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1980. }
  1981. // Move the print head close to the bed.
  1982. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1983. bool endstops_enabled = enable_endstops(true);
  1984. #ifdef TMC2130
  1985. tmc2130_home_enter(Z_AXIS_MASK);
  1986. #endif //TMC2130
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1988. st_synchronize();
  1989. #ifdef TMC2130
  1990. tmc2130_home_exit();
  1991. #endif //TMC2130
  1992. enable_endstops(endstops_enabled);
  1993. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1994. {
  1995. int8_t verbosity_level = 0;
  1996. if (code_seen('V'))
  1997. {
  1998. // Just 'V' without a number counts as V1.
  1999. char c = strchr_pointer[1];
  2000. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2001. }
  2002. if (onlyZ)
  2003. {
  2004. clean_up_after_endstop_move();
  2005. // Z only calibration.
  2006. // Load the machine correction matrix
  2007. world2machine_initialize();
  2008. // and correct the current_position to match the transformed coordinate system.
  2009. world2machine_update_current();
  2010. //FIXME
  2011. bool result = sample_mesh_and_store_reference();
  2012. if (result)
  2013. {
  2014. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2015. // Shipped, the nozzle height has been set already. The user can start printing now.
  2016. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2017. final_result = true;
  2018. // babystep_apply();
  2019. }
  2020. }
  2021. else
  2022. {
  2023. // Reset the baby step value and the baby step applied flag.
  2024. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2025. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2026. // Complete XYZ calibration.
  2027. uint8_t point_too_far_mask = 0;
  2028. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2029. clean_up_after_endstop_move();
  2030. // Print head up.
  2031. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2033. st_synchronize();
  2034. #ifndef NEW_XYZCAL
  2035. if (result >= 0)
  2036. {
  2037. #ifdef HEATBED_V2
  2038. sample_z();
  2039. #else //HEATBED_V2
  2040. point_too_far_mask = 0;
  2041. // Second half: The fine adjustment.
  2042. // Let the planner use the uncorrected coordinates.
  2043. mbl.reset();
  2044. world2machine_reset();
  2045. // Home in the XY plane.
  2046. setup_for_endstop_move();
  2047. home_xy();
  2048. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2049. clean_up_after_endstop_move();
  2050. // Print head up.
  2051. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2053. st_synchronize();
  2054. // if (result >= 0) babystep_apply();
  2055. #endif //HEATBED_V2
  2056. }
  2057. #endif //NEW_XYZCAL
  2058. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2059. if (result >= 0)
  2060. {
  2061. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2062. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2063. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2064. final_result = true;
  2065. }
  2066. }
  2067. #ifdef TMC2130
  2068. tmc2130_home_exit();
  2069. #endif
  2070. }
  2071. else
  2072. {
  2073. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2074. final_result = false;
  2075. }
  2076. }
  2077. else
  2078. {
  2079. // Timeouted.
  2080. }
  2081. lcd_update_enable(true);
  2082. #ifdef TMC2130
  2083. FORCE_HIGH_POWER_END;
  2084. #endif // TMC2130
  2085. return final_result;
  2086. }
  2087. void gcode_M114()
  2088. {
  2089. SERIAL_PROTOCOLPGM("X:");
  2090. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2091. SERIAL_PROTOCOLPGM(" Y:");
  2092. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2093. SERIAL_PROTOCOLPGM(" Z:");
  2094. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2095. SERIAL_PROTOCOLPGM(" E:");
  2096. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2097. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2098. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2099. SERIAL_PROTOCOLPGM(" Y:");
  2100. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2101. SERIAL_PROTOCOLPGM(" Z:");
  2102. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2103. SERIAL_PROTOCOLPGM(" E:");
  2104. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2105. SERIAL_PROTOCOLLN("");
  2106. }
  2107. void gcode_M701()
  2108. {
  2109. #ifdef SNMM
  2110. extr_adj(snmm_extruder);//loads current extruder
  2111. #else
  2112. enable_z();
  2113. custom_message = true;
  2114. custom_message_type = 2;
  2115. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2116. current_position[E_AXIS] += 70;
  2117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2118. current_position[E_AXIS] += 25;
  2119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2120. st_synchronize();
  2121. tone(BEEPER, 500);
  2122. delay_keep_alive(50);
  2123. noTone(BEEPER);
  2124. if (!farm_mode && loading_flag) {
  2125. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2126. while (!clean) {
  2127. lcd_update_enable(true);
  2128. lcd_update(2);
  2129. current_position[E_AXIS] += 25;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2131. st_synchronize();
  2132. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2133. }
  2134. }
  2135. lcd_update_enable(true);
  2136. lcd_update(2);
  2137. lcd_setstatuspgm(WELCOME_MSG);
  2138. disable_z();
  2139. loading_flag = false;
  2140. custom_message = false;
  2141. custom_message_type = 0;
  2142. #endif
  2143. }
  2144. void process_commands()
  2145. {
  2146. #ifdef FILAMENT_RUNOUT_SUPPORT
  2147. SET_INPUT(FR_SENS);
  2148. #endif
  2149. #ifdef CMDBUFFER_DEBUG
  2150. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2151. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2152. SERIAL_ECHOLNPGM("");
  2153. SERIAL_ECHOPGM("In cmdqueue: ");
  2154. SERIAL_ECHO(buflen);
  2155. SERIAL_ECHOLNPGM("");
  2156. #endif /* CMDBUFFER_DEBUG */
  2157. unsigned long codenum; //throw away variable
  2158. char *starpos = NULL;
  2159. #ifdef ENABLE_AUTO_BED_LEVELING
  2160. float x_tmp, y_tmp, z_tmp, real_z;
  2161. #endif
  2162. // PRUSA GCODES
  2163. KEEPALIVE_STATE(IN_HANDLER);
  2164. #ifdef SNMM
  2165. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2166. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2167. int8_t SilentMode;
  2168. #endif
  2169. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2170. starpos = (strchr(strchr_pointer + 5, '*'));
  2171. if (starpos != NULL)
  2172. *(starpos) = '\0';
  2173. lcd_setstatus(strchr_pointer + 5);
  2174. }
  2175. #ifdef TMC2130
  2176. else if(code_seen("CRASH_DETECTED"))
  2177. {
  2178. uint8_t mask = 0;
  2179. if (code_seen("X")) mask |= X_AXIS_MASK;
  2180. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2181. crashdet_detected(mask);
  2182. }
  2183. else if(code_seen("CRASH_RECOVER"))
  2184. crashdet_recover();
  2185. else if(code_seen("CRASH_CANCEL"))
  2186. crashdet_cancel();
  2187. #endif //TMC2130
  2188. else if(code_seen("PRUSA")){
  2189. if (code_seen("Ping")) { //PRUSA Ping
  2190. if (farm_mode) {
  2191. PingTime = millis();
  2192. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2193. }
  2194. }
  2195. else if (code_seen("PRN")) {
  2196. MYSERIAL.println(status_number);
  2197. }else if (code_seen("FAN")) {
  2198. MYSERIAL.print("E0:");
  2199. MYSERIAL.print(60*fan_speed[0]);
  2200. MYSERIAL.println(" RPM");
  2201. MYSERIAL.print("PRN0:");
  2202. MYSERIAL.print(60*fan_speed[1]);
  2203. MYSERIAL.println(" RPM");
  2204. }else if (code_seen("fn")) {
  2205. if (farm_mode) {
  2206. MYSERIAL.println(farm_no);
  2207. }
  2208. else {
  2209. MYSERIAL.println("Not in farm mode.");
  2210. }
  2211. }else if (code_seen("fv")) {
  2212. // get file version
  2213. #ifdef SDSUPPORT
  2214. card.openFile(strchr_pointer + 3,true);
  2215. while (true) {
  2216. uint16_t readByte = card.get();
  2217. MYSERIAL.write(readByte);
  2218. if (readByte=='\n') {
  2219. break;
  2220. }
  2221. }
  2222. card.closefile();
  2223. #endif // SDSUPPORT
  2224. } else if (code_seen("M28")) {
  2225. trace();
  2226. prusa_sd_card_upload = true;
  2227. card.openFile(strchr_pointer+4,false);
  2228. } else if (code_seen("SN")) {
  2229. if (farm_mode) {
  2230. selectedSerialPort = 0;
  2231. MSerial.write(";S");
  2232. // S/N is:CZPX0917X003XC13518
  2233. int numbersRead = 0;
  2234. while (numbersRead < 19) {
  2235. while (MSerial.available() > 0) {
  2236. uint8_t serial_char = MSerial.read();
  2237. selectedSerialPort = 1;
  2238. MSerial.write(serial_char);
  2239. numbersRead++;
  2240. selectedSerialPort = 0;
  2241. }
  2242. }
  2243. selectedSerialPort = 1;
  2244. MSerial.write('\n');
  2245. /*for (int b = 0; b < 3; b++) {
  2246. tone(BEEPER, 110);
  2247. delay(50);
  2248. noTone(BEEPER);
  2249. delay(50);
  2250. }*/
  2251. } else {
  2252. MYSERIAL.println("Not in farm mode.");
  2253. }
  2254. } else if(code_seen("Fir")){
  2255. SERIAL_PROTOCOLLN(FW_VERSION);
  2256. } else if(code_seen("Rev")){
  2257. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2258. } else if(code_seen("Lang")) {
  2259. lcd_force_language_selection();
  2260. } else if(code_seen("Lz")) {
  2261. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2262. } else if (code_seen("SERIAL LOW")) {
  2263. MYSERIAL.println("SERIAL LOW");
  2264. MYSERIAL.begin(BAUDRATE);
  2265. return;
  2266. } else if (code_seen("SERIAL HIGH")) {
  2267. MYSERIAL.println("SERIAL HIGH");
  2268. MYSERIAL.begin(1152000);
  2269. return;
  2270. } else if(code_seen("Beat")) {
  2271. // Kick farm link timer
  2272. kicktime = millis();
  2273. } else if(code_seen("FR")) {
  2274. // Factory full reset
  2275. factory_reset(0,true);
  2276. }
  2277. //else if (code_seen('Cal')) {
  2278. // lcd_calibration();
  2279. // }
  2280. }
  2281. else if (code_seen('^')) {
  2282. // nothing, this is a version line
  2283. } else if(code_seen('G'))
  2284. {
  2285. switch((int)code_value())
  2286. {
  2287. case 0: // G0 -> G1
  2288. case 1: // G1
  2289. if(Stopped == false) {
  2290. #ifdef FILAMENT_RUNOUT_SUPPORT
  2291. if(READ(FR_SENS)){
  2292. feedmultiplyBckp=feedmultiply;
  2293. float target[4];
  2294. float lastpos[4];
  2295. target[X_AXIS]=current_position[X_AXIS];
  2296. target[Y_AXIS]=current_position[Y_AXIS];
  2297. target[Z_AXIS]=current_position[Z_AXIS];
  2298. target[E_AXIS]=current_position[E_AXIS];
  2299. lastpos[X_AXIS]=current_position[X_AXIS];
  2300. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2301. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2302. lastpos[E_AXIS]=current_position[E_AXIS];
  2303. //retract by E
  2304. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2305. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2306. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2307. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2308. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2309. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2310. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2311. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2313. //finish moves
  2314. st_synchronize();
  2315. //disable extruder steppers so filament can be removed
  2316. disable_e0();
  2317. disable_e1();
  2318. disable_e2();
  2319. delay(100);
  2320. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2321. uint8_t cnt=0;
  2322. int counterBeep = 0;
  2323. lcd_wait_interact();
  2324. while(!lcd_clicked()){
  2325. cnt++;
  2326. manage_heater();
  2327. manage_inactivity(true);
  2328. //lcd_update();
  2329. if(cnt==0)
  2330. {
  2331. #if BEEPER > 0
  2332. if (counterBeep== 500){
  2333. counterBeep = 0;
  2334. }
  2335. SET_OUTPUT(BEEPER);
  2336. if (counterBeep== 0){
  2337. WRITE(BEEPER,HIGH);
  2338. }
  2339. if (counterBeep== 20){
  2340. WRITE(BEEPER,LOW);
  2341. }
  2342. counterBeep++;
  2343. #else
  2344. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2345. lcd_buzz(1000/6,100);
  2346. #else
  2347. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2348. #endif
  2349. #endif
  2350. }
  2351. }
  2352. WRITE(BEEPER,LOW);
  2353. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2354. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2355. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2356. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2357. lcd_change_fil_state = 0;
  2358. lcd_loading_filament();
  2359. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2360. lcd_change_fil_state = 0;
  2361. lcd_alright();
  2362. switch(lcd_change_fil_state){
  2363. case 2:
  2364. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2365. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2366. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2367. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2368. lcd_loading_filament();
  2369. break;
  2370. case 3:
  2371. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2372. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2373. lcd_loading_color();
  2374. break;
  2375. default:
  2376. lcd_change_success();
  2377. break;
  2378. }
  2379. }
  2380. target[E_AXIS]+= 5;
  2381. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2382. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2384. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2385. //plan_set_e_position(current_position[E_AXIS]);
  2386. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2387. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2388. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2389. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2390. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2391. plan_set_e_position(lastpos[E_AXIS]);
  2392. feedmultiply=feedmultiplyBckp;
  2393. char cmd[9];
  2394. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2395. enquecommand(cmd);
  2396. }
  2397. #endif
  2398. get_coordinates(); // For X Y Z E F
  2399. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2400. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2401. }
  2402. #ifdef FWRETRACT
  2403. if(autoretract_enabled)
  2404. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2405. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2406. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2407. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2408. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2409. retract(!retracted);
  2410. return;
  2411. }
  2412. }
  2413. #endif //FWRETRACT
  2414. prepare_move();
  2415. //ClearToSend();
  2416. }
  2417. break;
  2418. case 2: // G2 - CW ARC
  2419. if(Stopped == false) {
  2420. get_arc_coordinates();
  2421. prepare_arc_move(true);
  2422. }
  2423. break;
  2424. case 3: // G3 - CCW ARC
  2425. if(Stopped == false) {
  2426. get_arc_coordinates();
  2427. prepare_arc_move(false);
  2428. }
  2429. break;
  2430. case 4: // G4 dwell
  2431. codenum = 0;
  2432. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2433. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2434. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2435. st_synchronize();
  2436. codenum += millis(); // keep track of when we started waiting
  2437. previous_millis_cmd = millis();
  2438. while(millis() < codenum) {
  2439. manage_heater();
  2440. manage_inactivity();
  2441. lcd_update();
  2442. }
  2443. break;
  2444. #ifdef FWRETRACT
  2445. case 10: // G10 retract
  2446. #if EXTRUDERS > 1
  2447. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2448. retract(true,retracted_swap[active_extruder]);
  2449. #else
  2450. retract(true);
  2451. #endif
  2452. break;
  2453. case 11: // G11 retract_recover
  2454. #if EXTRUDERS > 1
  2455. retract(false,retracted_swap[active_extruder]);
  2456. #else
  2457. retract(false);
  2458. #endif
  2459. break;
  2460. #endif //FWRETRACT
  2461. case 28: //G28 Home all Axis one at a time
  2462. {
  2463. st_synchronize();
  2464. #if 0
  2465. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2466. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2467. #endif
  2468. // Flag for the display update routine and to disable the print cancelation during homing.
  2469. homing_flag = true;
  2470. // Which axes should be homed?
  2471. bool home_x = code_seen(axis_codes[X_AXIS]);
  2472. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2473. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2474. // calibrate?
  2475. bool calib = code_seen('C');
  2476. // Either all X,Y,Z codes are present, or none of them.
  2477. bool home_all_axes = home_x == home_y && home_x == home_z;
  2478. if (home_all_axes)
  2479. // No X/Y/Z code provided means to home all axes.
  2480. home_x = home_y = home_z = true;
  2481. #ifdef ENABLE_AUTO_BED_LEVELING
  2482. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2483. #endif //ENABLE_AUTO_BED_LEVELING
  2484. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2485. // the planner will not perform any adjustments in the XY plane.
  2486. // Wait for the motors to stop and update the current position with the absolute values.
  2487. world2machine_revert_to_uncorrected();
  2488. // For mesh bed leveling deactivate the matrix temporarily.
  2489. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2490. // in a single axis only.
  2491. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2492. #ifdef MESH_BED_LEVELING
  2493. uint8_t mbl_was_active = mbl.active;
  2494. mbl.active = 0;
  2495. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2496. #endif
  2497. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2498. // consumed during the first movements following this statement.
  2499. if (home_z)
  2500. babystep_undo();
  2501. saved_feedrate = feedrate;
  2502. saved_feedmultiply = feedmultiply;
  2503. feedmultiply = 100;
  2504. previous_millis_cmd = millis();
  2505. enable_endstops(true);
  2506. memcpy(destination, current_position, sizeof(destination));
  2507. feedrate = 0.0;
  2508. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2509. if(home_z)
  2510. homeaxis(Z_AXIS);
  2511. #endif
  2512. #ifdef QUICK_HOME
  2513. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2514. if(home_x && home_y) //first diagonal move
  2515. {
  2516. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2517. int x_axis_home_dir = home_dir(X_AXIS);
  2518. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2519. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2520. feedrate = homing_feedrate[X_AXIS];
  2521. if(homing_feedrate[Y_AXIS]<feedrate)
  2522. feedrate = homing_feedrate[Y_AXIS];
  2523. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2524. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2525. } else {
  2526. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2527. }
  2528. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2529. st_synchronize();
  2530. axis_is_at_home(X_AXIS);
  2531. axis_is_at_home(Y_AXIS);
  2532. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2533. destination[X_AXIS] = current_position[X_AXIS];
  2534. destination[Y_AXIS] = current_position[Y_AXIS];
  2535. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2536. feedrate = 0.0;
  2537. st_synchronize();
  2538. endstops_hit_on_purpose();
  2539. current_position[X_AXIS] = destination[X_AXIS];
  2540. current_position[Y_AXIS] = destination[Y_AXIS];
  2541. current_position[Z_AXIS] = destination[Z_AXIS];
  2542. }
  2543. #endif /* QUICK_HOME */
  2544. #ifdef TMC2130
  2545. if(home_x)
  2546. {
  2547. if (!calib)
  2548. homeaxis(X_AXIS);
  2549. else
  2550. tmc2130_home_calibrate(X_AXIS);
  2551. }
  2552. if(home_y)
  2553. {
  2554. if (!calib)
  2555. homeaxis(Y_AXIS);
  2556. else
  2557. tmc2130_home_calibrate(Y_AXIS);
  2558. }
  2559. #endif //TMC2130
  2560. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2561. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2562. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2563. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2564. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2565. #ifndef Z_SAFE_HOMING
  2566. if(home_z) {
  2567. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2568. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2569. feedrate = max_feedrate[Z_AXIS];
  2570. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2571. st_synchronize();
  2572. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2573. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2574. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2575. {
  2576. homeaxis(X_AXIS);
  2577. homeaxis(Y_AXIS);
  2578. }
  2579. // 1st mesh bed leveling measurement point, corrected.
  2580. world2machine_initialize();
  2581. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2582. world2machine_reset();
  2583. if (destination[Y_AXIS] < Y_MIN_POS)
  2584. destination[Y_AXIS] = Y_MIN_POS;
  2585. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2586. feedrate = homing_feedrate[Z_AXIS]/10;
  2587. current_position[Z_AXIS] = 0;
  2588. enable_endstops(false);
  2589. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2590. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2591. st_synchronize();
  2592. current_position[X_AXIS] = destination[X_AXIS];
  2593. current_position[Y_AXIS] = destination[Y_AXIS];
  2594. enable_endstops(true);
  2595. endstops_hit_on_purpose();
  2596. homeaxis(Z_AXIS);
  2597. #else // MESH_BED_LEVELING
  2598. homeaxis(Z_AXIS);
  2599. #endif // MESH_BED_LEVELING
  2600. }
  2601. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2602. if(home_all_axes) {
  2603. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2604. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2605. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2606. feedrate = XY_TRAVEL_SPEED/60;
  2607. current_position[Z_AXIS] = 0;
  2608. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2609. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2610. st_synchronize();
  2611. current_position[X_AXIS] = destination[X_AXIS];
  2612. current_position[Y_AXIS] = destination[Y_AXIS];
  2613. homeaxis(Z_AXIS);
  2614. }
  2615. // Let's see if X and Y are homed and probe is inside bed area.
  2616. if(home_z) {
  2617. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2618. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2619. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2620. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2621. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2622. current_position[Z_AXIS] = 0;
  2623. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2624. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2625. feedrate = max_feedrate[Z_AXIS];
  2626. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2627. st_synchronize();
  2628. homeaxis(Z_AXIS);
  2629. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2630. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2631. SERIAL_ECHO_START;
  2632. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2633. } else {
  2634. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2635. SERIAL_ECHO_START;
  2636. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2637. }
  2638. }
  2639. #endif // Z_SAFE_HOMING
  2640. #endif // Z_HOME_DIR < 0
  2641. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2642. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2643. #ifdef ENABLE_AUTO_BED_LEVELING
  2644. if(home_z)
  2645. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2646. #endif
  2647. // Set the planner and stepper routine positions.
  2648. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2649. // contains the machine coordinates.
  2650. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2651. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2652. enable_endstops(false);
  2653. #endif
  2654. feedrate = saved_feedrate;
  2655. feedmultiply = saved_feedmultiply;
  2656. previous_millis_cmd = millis();
  2657. endstops_hit_on_purpose();
  2658. #ifndef MESH_BED_LEVELING
  2659. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2660. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2661. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2662. lcd_adjust_z();
  2663. #endif
  2664. // Load the machine correction matrix
  2665. world2machine_initialize();
  2666. // and correct the current_position XY axes to match the transformed coordinate system.
  2667. world2machine_update_current();
  2668. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2669. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2670. {
  2671. if (! home_z && mbl_was_active) {
  2672. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2673. mbl.active = true;
  2674. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2675. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2676. }
  2677. }
  2678. else
  2679. {
  2680. st_synchronize();
  2681. homing_flag = false;
  2682. // Push the commands to the front of the message queue in the reverse order!
  2683. // There shall be always enough space reserved for these commands.
  2684. // enquecommand_front_P((PSTR("G80")));
  2685. goto case_G80;
  2686. }
  2687. #endif
  2688. if (farm_mode) { prusa_statistics(20); };
  2689. homing_flag = false;
  2690. #if 0
  2691. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2692. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2693. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2694. #endif
  2695. break;
  2696. }
  2697. #ifdef ENABLE_AUTO_BED_LEVELING
  2698. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2699. {
  2700. #if Z_MIN_PIN == -1
  2701. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2702. #endif
  2703. // Prevent user from running a G29 without first homing in X and Y
  2704. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2705. {
  2706. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2707. SERIAL_ECHO_START;
  2708. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2709. break; // abort G29, since we don't know where we are
  2710. }
  2711. st_synchronize();
  2712. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2713. //vector_3 corrected_position = plan_get_position_mm();
  2714. //corrected_position.debug("position before G29");
  2715. plan_bed_level_matrix.set_to_identity();
  2716. vector_3 uncorrected_position = plan_get_position();
  2717. //uncorrected_position.debug("position durring G29");
  2718. current_position[X_AXIS] = uncorrected_position.x;
  2719. current_position[Y_AXIS] = uncorrected_position.y;
  2720. current_position[Z_AXIS] = uncorrected_position.z;
  2721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2722. setup_for_endstop_move();
  2723. feedrate = homing_feedrate[Z_AXIS];
  2724. #ifdef AUTO_BED_LEVELING_GRID
  2725. // probe at the points of a lattice grid
  2726. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2727. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2728. // solve the plane equation ax + by + d = z
  2729. // A is the matrix with rows [x y 1] for all the probed points
  2730. // B is the vector of the Z positions
  2731. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2732. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2733. // "A" matrix of the linear system of equations
  2734. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2735. // "B" vector of Z points
  2736. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2737. int probePointCounter = 0;
  2738. bool zig = true;
  2739. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2740. {
  2741. int xProbe, xInc;
  2742. if (zig)
  2743. {
  2744. xProbe = LEFT_PROBE_BED_POSITION;
  2745. //xEnd = RIGHT_PROBE_BED_POSITION;
  2746. xInc = xGridSpacing;
  2747. zig = false;
  2748. } else // zag
  2749. {
  2750. xProbe = RIGHT_PROBE_BED_POSITION;
  2751. //xEnd = LEFT_PROBE_BED_POSITION;
  2752. xInc = -xGridSpacing;
  2753. zig = true;
  2754. }
  2755. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2756. {
  2757. float z_before;
  2758. if (probePointCounter == 0)
  2759. {
  2760. // raise before probing
  2761. z_before = Z_RAISE_BEFORE_PROBING;
  2762. } else
  2763. {
  2764. // raise extruder
  2765. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2766. }
  2767. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2768. eqnBVector[probePointCounter] = measured_z;
  2769. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2770. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2771. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2772. probePointCounter++;
  2773. xProbe += xInc;
  2774. }
  2775. }
  2776. clean_up_after_endstop_move();
  2777. // solve lsq problem
  2778. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2779. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2780. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2781. SERIAL_PROTOCOLPGM(" b: ");
  2782. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2783. SERIAL_PROTOCOLPGM(" d: ");
  2784. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2785. set_bed_level_equation_lsq(plane_equation_coefficients);
  2786. free(plane_equation_coefficients);
  2787. #else // AUTO_BED_LEVELING_GRID not defined
  2788. // Probe at 3 arbitrary points
  2789. // probe 1
  2790. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2791. // probe 2
  2792. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2793. // probe 3
  2794. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2795. clean_up_after_endstop_move();
  2796. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2797. #endif // AUTO_BED_LEVELING_GRID
  2798. st_synchronize();
  2799. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2800. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2801. // When the bed is uneven, this height must be corrected.
  2802. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2803. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2804. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2805. z_tmp = current_position[Z_AXIS];
  2806. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2807. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2808. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2809. }
  2810. break;
  2811. #ifndef Z_PROBE_SLED
  2812. case 30: // G30 Single Z Probe
  2813. {
  2814. st_synchronize();
  2815. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2816. setup_for_endstop_move();
  2817. feedrate = homing_feedrate[Z_AXIS];
  2818. run_z_probe();
  2819. SERIAL_PROTOCOLPGM(MSG_BED);
  2820. SERIAL_PROTOCOLPGM(" X: ");
  2821. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2822. SERIAL_PROTOCOLPGM(" Y: ");
  2823. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2824. SERIAL_PROTOCOLPGM(" Z: ");
  2825. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2826. SERIAL_PROTOCOLPGM("\n");
  2827. clean_up_after_endstop_move();
  2828. }
  2829. break;
  2830. #else
  2831. case 31: // dock the sled
  2832. dock_sled(true);
  2833. break;
  2834. case 32: // undock the sled
  2835. dock_sled(false);
  2836. break;
  2837. #endif // Z_PROBE_SLED
  2838. #endif // ENABLE_AUTO_BED_LEVELING
  2839. #ifdef MESH_BED_LEVELING
  2840. case 30: // G30 Single Z Probe
  2841. {
  2842. st_synchronize();
  2843. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2844. setup_for_endstop_move();
  2845. feedrate = homing_feedrate[Z_AXIS];
  2846. find_bed_induction_sensor_point_z(-10.f, 3);
  2847. SERIAL_PROTOCOLRPGM(MSG_BED);
  2848. SERIAL_PROTOCOLPGM(" X: ");
  2849. MYSERIAL.print(current_position[X_AXIS], 5);
  2850. SERIAL_PROTOCOLPGM(" Y: ");
  2851. MYSERIAL.print(current_position[Y_AXIS], 5);
  2852. SERIAL_PROTOCOLPGM(" Z: ");
  2853. MYSERIAL.print(current_position[Z_AXIS], 5);
  2854. SERIAL_PROTOCOLPGM("\n");
  2855. clean_up_after_endstop_move();
  2856. }
  2857. break;
  2858. case 75:
  2859. {
  2860. for (int i = 40; i <= 110; i++) {
  2861. MYSERIAL.print(i);
  2862. MYSERIAL.print(" ");
  2863. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2864. }
  2865. }
  2866. break;
  2867. case 76: //PINDA probe temperature calibration
  2868. {
  2869. #ifdef PINDA_THERMISTOR
  2870. if (true)
  2871. {
  2872. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2873. {
  2874. // We don't know where we are! HOME!
  2875. // Push the commands to the front of the message queue in the reverse order!
  2876. // There shall be always enough space reserved for these commands.
  2877. repeatcommand_front(); // repeat G76 with all its parameters
  2878. enquecommand_front_P((PSTR("G28 W0")));
  2879. break;
  2880. }
  2881. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2882. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2883. if (result)
  2884. {
  2885. current_position[Z_AXIS] = 50;
  2886. current_position[Y_AXIS] = 190;
  2887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2888. st_synchronize();
  2889. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2890. }
  2891. lcd_update_enable(true);
  2892. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2893. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2894. float zero_z;
  2895. int z_shift = 0; //unit: steps
  2896. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2897. if (start_temp < 35) start_temp = 35;
  2898. if (start_temp < current_temperature_pinda) start_temp += 5;
  2899. SERIAL_ECHOPGM("start temperature: ");
  2900. MYSERIAL.println(start_temp);
  2901. // setTargetHotend(200, 0);
  2902. setTargetBed(70 + (start_temp - 30));
  2903. custom_message = true;
  2904. custom_message_type = 4;
  2905. custom_message_state = 1;
  2906. custom_message = MSG_TEMP_CALIBRATION;
  2907. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2908. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2909. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2911. st_synchronize();
  2912. while (current_temperature_pinda < start_temp)
  2913. {
  2914. delay_keep_alive(1000);
  2915. serialecho_temperatures();
  2916. }
  2917. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2918. current_position[Z_AXIS] = 5;
  2919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2920. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2921. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2923. st_synchronize();
  2924. find_bed_induction_sensor_point_z(-1.f);
  2925. zero_z = current_position[Z_AXIS];
  2926. //current_position[Z_AXIS]
  2927. SERIAL_ECHOLNPGM("");
  2928. SERIAL_ECHOPGM("ZERO: ");
  2929. MYSERIAL.print(current_position[Z_AXIS]);
  2930. SERIAL_ECHOLNPGM("");
  2931. int i = -1; for (; i < 5; i++)
  2932. {
  2933. float temp = (40 + i * 5);
  2934. SERIAL_ECHOPGM("Step: ");
  2935. MYSERIAL.print(i + 2);
  2936. SERIAL_ECHOLNPGM("/6 (skipped)");
  2937. SERIAL_ECHOPGM("PINDA temperature: ");
  2938. MYSERIAL.print((40 + i*5));
  2939. SERIAL_ECHOPGM(" Z shift (mm):");
  2940. MYSERIAL.print(0);
  2941. SERIAL_ECHOLNPGM("");
  2942. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2943. if (start_temp <= temp) break;
  2944. }
  2945. for (i++; i < 5; i++)
  2946. {
  2947. float temp = (40 + i * 5);
  2948. SERIAL_ECHOPGM("Step: ");
  2949. MYSERIAL.print(i + 2);
  2950. SERIAL_ECHOLNPGM("/6");
  2951. custom_message_state = i + 2;
  2952. setTargetBed(50 + 10 * (temp - 30) / 5);
  2953. // setTargetHotend(255, 0);
  2954. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2955. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2956. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2958. st_synchronize();
  2959. while (current_temperature_pinda < temp)
  2960. {
  2961. delay_keep_alive(1000);
  2962. serialecho_temperatures();
  2963. }
  2964. current_position[Z_AXIS] = 5;
  2965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2966. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2967. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2969. st_synchronize();
  2970. find_bed_induction_sensor_point_z(-1.f);
  2971. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2972. SERIAL_ECHOLNPGM("");
  2973. SERIAL_ECHOPGM("PINDA temperature: ");
  2974. MYSERIAL.print(current_temperature_pinda);
  2975. SERIAL_ECHOPGM(" Z shift (mm):");
  2976. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2977. SERIAL_ECHOLNPGM("");
  2978. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2979. }
  2980. custom_message_type = 0;
  2981. custom_message = false;
  2982. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2983. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2984. disable_x();
  2985. disable_y();
  2986. disable_z();
  2987. disable_e0();
  2988. disable_e1();
  2989. disable_e2();
  2990. setTargetBed(0); //set bed target temperature back to 0
  2991. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2992. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2993. lcd_update_enable(true);
  2994. lcd_update(2);
  2995. break;
  2996. }
  2997. #endif //PINDA_THERMISTOR
  2998. setTargetBed(PINDA_MIN_T);
  2999. float zero_z;
  3000. int z_shift = 0; //unit: steps
  3001. int t_c; // temperature
  3002. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3003. // We don't know where we are! HOME!
  3004. // Push the commands to the front of the message queue in the reverse order!
  3005. // There shall be always enough space reserved for these commands.
  3006. repeatcommand_front(); // repeat G76 with all its parameters
  3007. enquecommand_front_P((PSTR("G28 W0")));
  3008. break;
  3009. }
  3010. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3011. custom_message = true;
  3012. custom_message_type = 4;
  3013. custom_message_state = 1;
  3014. custom_message = MSG_TEMP_CALIBRATION;
  3015. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3016. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3017. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3019. st_synchronize();
  3020. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3021. delay_keep_alive(1000);
  3022. serialecho_temperatures();
  3023. }
  3024. //enquecommand_P(PSTR("M190 S50"));
  3025. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3026. delay_keep_alive(1000);
  3027. serialecho_temperatures();
  3028. }
  3029. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3030. current_position[Z_AXIS] = 5;
  3031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3032. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3033. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3035. st_synchronize();
  3036. find_bed_induction_sensor_point_z(-1.f);
  3037. zero_z = current_position[Z_AXIS];
  3038. //current_position[Z_AXIS]
  3039. SERIAL_ECHOLNPGM("");
  3040. SERIAL_ECHOPGM("ZERO: ");
  3041. MYSERIAL.print(current_position[Z_AXIS]);
  3042. SERIAL_ECHOLNPGM("");
  3043. for (int i = 0; i<5; i++) {
  3044. SERIAL_ECHOPGM("Step: ");
  3045. MYSERIAL.print(i+2);
  3046. SERIAL_ECHOLNPGM("/6");
  3047. custom_message_state = i + 2;
  3048. t_c = 60 + i * 10;
  3049. setTargetBed(t_c);
  3050. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3051. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3052. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3054. st_synchronize();
  3055. while (degBed() < t_c) {
  3056. delay_keep_alive(1000);
  3057. serialecho_temperatures();
  3058. }
  3059. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3060. delay_keep_alive(1000);
  3061. serialecho_temperatures();
  3062. }
  3063. current_position[Z_AXIS] = 5;
  3064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3065. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3066. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3068. st_synchronize();
  3069. find_bed_induction_sensor_point_z(-1.f);
  3070. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3071. SERIAL_ECHOLNPGM("");
  3072. SERIAL_ECHOPGM("Temperature: ");
  3073. MYSERIAL.print(t_c);
  3074. SERIAL_ECHOPGM(" Z shift (mm):");
  3075. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3076. SERIAL_ECHOLNPGM("");
  3077. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3078. }
  3079. custom_message_type = 0;
  3080. custom_message = false;
  3081. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3082. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3083. disable_x();
  3084. disable_y();
  3085. disable_z();
  3086. disable_e0();
  3087. disable_e1();
  3088. disable_e2();
  3089. setTargetBed(0); //set bed target temperature back to 0
  3090. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3091. lcd_update_enable(true);
  3092. lcd_update(2);
  3093. }
  3094. break;
  3095. #ifdef DIS
  3096. case 77:
  3097. {
  3098. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3099. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3100. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3101. float dimension_x = 40;
  3102. float dimension_y = 40;
  3103. int points_x = 40;
  3104. int points_y = 40;
  3105. float offset_x = 74;
  3106. float offset_y = 33;
  3107. if (code_seen('X')) dimension_x = code_value();
  3108. if (code_seen('Y')) dimension_y = code_value();
  3109. if (code_seen('XP')) points_x = code_value();
  3110. if (code_seen('YP')) points_y = code_value();
  3111. if (code_seen('XO')) offset_x = code_value();
  3112. if (code_seen('YO')) offset_y = code_value();
  3113. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3114. } break;
  3115. #endif
  3116. case 79: {
  3117. for (int i = 255; i > 0; i = i - 5) {
  3118. fanSpeed = i;
  3119. //delay_keep_alive(2000);
  3120. for (int j = 0; j < 100; j++) {
  3121. delay_keep_alive(100);
  3122. }
  3123. fan_speed[1];
  3124. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3125. }
  3126. }break;
  3127. /**
  3128. * G80: Mesh-based Z probe, probes a grid and produces a
  3129. * mesh to compensate for variable bed height
  3130. *
  3131. * The S0 report the points as below
  3132. *
  3133. * +----> X-axis
  3134. * |
  3135. * |
  3136. * v Y-axis
  3137. *
  3138. */
  3139. case 80:
  3140. #ifdef MK1BP
  3141. break;
  3142. #endif //MK1BP
  3143. case_G80:
  3144. {
  3145. mesh_bed_leveling_flag = true;
  3146. int8_t verbosity_level = 0;
  3147. static bool run = false;
  3148. if (code_seen('V')) {
  3149. // Just 'V' without a number counts as V1.
  3150. char c = strchr_pointer[1];
  3151. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3152. }
  3153. // Firstly check if we know where we are
  3154. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3155. // We don't know where we are! HOME!
  3156. // Push the commands to the front of the message queue in the reverse order!
  3157. // There shall be always enough space reserved for these commands.
  3158. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3159. repeatcommand_front(); // repeat G80 with all its parameters
  3160. enquecommand_front_P((PSTR("G28 W0")));
  3161. }
  3162. else {
  3163. mesh_bed_leveling_flag = false;
  3164. }
  3165. break;
  3166. }
  3167. bool temp_comp_start = true;
  3168. #ifdef PINDA_THERMISTOR
  3169. temp_comp_start = false;
  3170. #endif //PINDA_THERMISTOR
  3171. if (temp_comp_start)
  3172. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3173. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3174. temp_compensation_start();
  3175. run = true;
  3176. repeatcommand_front(); // repeat G80 with all its parameters
  3177. enquecommand_front_P((PSTR("G28 W0")));
  3178. }
  3179. else {
  3180. mesh_bed_leveling_flag = false;
  3181. }
  3182. break;
  3183. }
  3184. run = false;
  3185. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3186. mesh_bed_leveling_flag = false;
  3187. break;
  3188. }
  3189. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3190. bool custom_message_old = custom_message;
  3191. unsigned int custom_message_type_old = custom_message_type;
  3192. unsigned int custom_message_state_old = custom_message_state;
  3193. custom_message = true;
  3194. custom_message_type = 1;
  3195. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3196. lcd_update(1);
  3197. mbl.reset(); //reset mesh bed leveling
  3198. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3199. // consumed during the first movements following this statement.
  3200. babystep_undo();
  3201. // Cycle through all points and probe them
  3202. // First move up. During this first movement, the babystepping will be reverted.
  3203. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3205. // The move to the first calibration point.
  3206. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3207. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3208. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3209. #ifdef SUPPORT_VERBOSITY
  3210. if (verbosity_level >= 1) {
  3211. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3212. }
  3213. #endif //SUPPORT_VERBOSITY
  3214. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3216. // Wait until the move is finished.
  3217. st_synchronize();
  3218. int mesh_point = 0; //index number of calibration point
  3219. int ix = 0;
  3220. int iy = 0;
  3221. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3222. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3223. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3224. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3225. #ifdef SUPPORT_VERBOSITY
  3226. if (verbosity_level >= 1) {
  3227. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3228. }
  3229. #endif // SUPPORT_VERBOSITY
  3230. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3231. const char *kill_message = NULL;
  3232. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3233. // Get coords of a measuring point.
  3234. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3235. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3236. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3237. float z0 = 0.f;
  3238. if (has_z && mesh_point > 0) {
  3239. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3240. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3241. //#if 0
  3242. #ifdef SUPPORT_VERBOSITY
  3243. if (verbosity_level >= 1) {
  3244. SERIAL_ECHOLNPGM("");
  3245. SERIAL_ECHOPGM("Bed leveling, point: ");
  3246. MYSERIAL.print(mesh_point);
  3247. SERIAL_ECHOPGM(", calibration z: ");
  3248. MYSERIAL.print(z0, 5);
  3249. SERIAL_ECHOLNPGM("");
  3250. }
  3251. #endif // SUPPORT_VERBOSITY
  3252. //#endif
  3253. }
  3254. // Move Z up to MESH_HOME_Z_SEARCH.
  3255. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3257. st_synchronize();
  3258. // Move to XY position of the sensor point.
  3259. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3260. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3261. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3262. #ifdef SUPPORT_VERBOSITY
  3263. if (verbosity_level >= 1) {
  3264. SERIAL_PROTOCOL(mesh_point);
  3265. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3266. }
  3267. #endif // SUPPORT_VERBOSITY
  3268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3269. st_synchronize();
  3270. // Go down until endstop is hit
  3271. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3272. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3273. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3274. break;
  3275. }
  3276. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3277. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3278. break;
  3279. }
  3280. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3281. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3282. break;
  3283. }
  3284. #ifdef SUPPORT_VERBOSITY
  3285. if (verbosity_level >= 10) {
  3286. SERIAL_ECHOPGM("X: ");
  3287. MYSERIAL.print(current_position[X_AXIS], 5);
  3288. SERIAL_ECHOLNPGM("");
  3289. SERIAL_ECHOPGM("Y: ");
  3290. MYSERIAL.print(current_position[Y_AXIS], 5);
  3291. SERIAL_PROTOCOLPGM("\n");
  3292. }
  3293. #endif // SUPPORT_VERBOSITY
  3294. float offset_z = 0;
  3295. #ifdef PINDA_THERMISTOR
  3296. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3297. #endif //PINDA_THERMISTOR
  3298. // #ifdef SUPPORT_VERBOSITY
  3299. /* if (verbosity_level >= 1)
  3300. {
  3301. SERIAL_ECHOPGM("mesh bed leveling: ");
  3302. MYSERIAL.print(current_position[Z_AXIS], 5);
  3303. SERIAL_ECHOPGM(" offset: ");
  3304. MYSERIAL.print(offset_z, 5);
  3305. SERIAL_ECHOLNPGM("");
  3306. }*/
  3307. // #endif // SUPPORT_VERBOSITY
  3308. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3309. custom_message_state--;
  3310. mesh_point++;
  3311. lcd_update(1);
  3312. }
  3313. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3314. #ifdef SUPPORT_VERBOSITY
  3315. if (verbosity_level >= 20) {
  3316. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3317. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3318. MYSERIAL.print(current_position[Z_AXIS], 5);
  3319. }
  3320. #endif // SUPPORT_VERBOSITY
  3321. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3322. st_synchronize();
  3323. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3324. kill(kill_message);
  3325. SERIAL_ECHOLNPGM("killed");
  3326. }
  3327. clean_up_after_endstop_move();
  3328. // SERIAL_ECHOLNPGM("clean up finished ");
  3329. bool apply_temp_comp = true;
  3330. #ifdef PINDA_THERMISTOR
  3331. apply_temp_comp = false;
  3332. #endif
  3333. if (apply_temp_comp)
  3334. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3335. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3336. // SERIAL_ECHOLNPGM("babystep applied");
  3337. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3338. #ifdef SUPPORT_VERBOSITY
  3339. if (verbosity_level >= 1) {
  3340. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3341. }
  3342. #endif // SUPPORT_VERBOSITY
  3343. for (uint8_t i = 0; i < 4; ++i) {
  3344. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3345. long correction = 0;
  3346. if (code_seen(codes[i]))
  3347. correction = code_value_long();
  3348. else if (eeprom_bed_correction_valid) {
  3349. unsigned char *addr = (i < 2) ?
  3350. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3351. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3352. correction = eeprom_read_int8(addr);
  3353. }
  3354. if (correction == 0)
  3355. continue;
  3356. float offset = float(correction) * 0.001f;
  3357. if (fabs(offset) > 0.101f) {
  3358. SERIAL_ERROR_START;
  3359. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3360. SERIAL_ECHO(offset);
  3361. SERIAL_ECHOLNPGM(" microns");
  3362. }
  3363. else {
  3364. switch (i) {
  3365. case 0:
  3366. for (uint8_t row = 0; row < 3; ++row) {
  3367. mbl.z_values[row][1] += 0.5f * offset;
  3368. mbl.z_values[row][0] += offset;
  3369. }
  3370. break;
  3371. case 1:
  3372. for (uint8_t row = 0; row < 3; ++row) {
  3373. mbl.z_values[row][1] += 0.5f * offset;
  3374. mbl.z_values[row][2] += offset;
  3375. }
  3376. break;
  3377. case 2:
  3378. for (uint8_t col = 0; col < 3; ++col) {
  3379. mbl.z_values[1][col] += 0.5f * offset;
  3380. mbl.z_values[0][col] += offset;
  3381. }
  3382. break;
  3383. case 3:
  3384. for (uint8_t col = 0; col < 3; ++col) {
  3385. mbl.z_values[1][col] += 0.5f * offset;
  3386. mbl.z_values[2][col] += offset;
  3387. }
  3388. break;
  3389. }
  3390. }
  3391. }
  3392. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3393. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3394. // SERIAL_ECHOLNPGM("Upsample finished");
  3395. mbl.active = 1; //activate mesh bed leveling
  3396. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3397. go_home_with_z_lift();
  3398. // SERIAL_ECHOLNPGM("Go home finished");
  3399. //unretract (after PINDA preheat retraction)
  3400. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3401. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3403. }
  3404. KEEPALIVE_STATE(NOT_BUSY);
  3405. // Restore custom message state
  3406. custom_message = custom_message_old;
  3407. custom_message_type = custom_message_type_old;
  3408. custom_message_state = custom_message_state_old;
  3409. mesh_bed_leveling_flag = false;
  3410. mesh_bed_run_from_menu = false;
  3411. lcd_update(2);
  3412. }
  3413. break;
  3414. /**
  3415. * G81: Print mesh bed leveling status and bed profile if activated
  3416. */
  3417. case 81:
  3418. if (mbl.active) {
  3419. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3420. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3421. SERIAL_PROTOCOLPGM(",");
  3422. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3423. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3424. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3425. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3426. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3427. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3428. SERIAL_PROTOCOLPGM(" ");
  3429. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3430. }
  3431. SERIAL_PROTOCOLPGM("\n");
  3432. }
  3433. }
  3434. else
  3435. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3436. break;
  3437. #if 0
  3438. /**
  3439. * G82: Single Z probe at current location
  3440. *
  3441. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3442. *
  3443. */
  3444. case 82:
  3445. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3446. setup_for_endstop_move();
  3447. find_bed_induction_sensor_point_z();
  3448. clean_up_after_endstop_move();
  3449. SERIAL_PROTOCOLPGM("Bed found at: ");
  3450. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3451. SERIAL_PROTOCOLPGM("\n");
  3452. break;
  3453. /**
  3454. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3455. */
  3456. case 83:
  3457. {
  3458. int babystepz = code_seen('S') ? code_value() : 0;
  3459. int BabyPosition = code_seen('P') ? code_value() : 0;
  3460. if (babystepz != 0) {
  3461. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3462. // Is the axis indexed starting with zero or one?
  3463. if (BabyPosition > 4) {
  3464. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3465. }else{
  3466. // Save it to the eeprom
  3467. babystepLoadZ = babystepz;
  3468. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3469. // adjust the Z
  3470. babystepsTodoZadd(babystepLoadZ);
  3471. }
  3472. }
  3473. }
  3474. break;
  3475. /**
  3476. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3477. */
  3478. case 84:
  3479. babystepsTodoZsubtract(babystepLoadZ);
  3480. // babystepLoadZ = 0;
  3481. break;
  3482. /**
  3483. * G85: Prusa3D specific: Pick best babystep
  3484. */
  3485. case 85:
  3486. lcd_pick_babystep();
  3487. break;
  3488. #endif
  3489. /**
  3490. * G86: Prusa3D specific: Disable babystep correction after home.
  3491. * This G-code will be performed at the start of a calibration script.
  3492. */
  3493. case 86:
  3494. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3495. break;
  3496. /**
  3497. * G87: Prusa3D specific: Enable babystep correction after home
  3498. * This G-code will be performed at the end of a calibration script.
  3499. */
  3500. case 87:
  3501. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3502. break;
  3503. /**
  3504. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3505. */
  3506. case 88:
  3507. break;
  3508. #endif // ENABLE_MESH_BED_LEVELING
  3509. case 90: // G90
  3510. relative_mode = false;
  3511. break;
  3512. case 91: // G91
  3513. relative_mode = true;
  3514. break;
  3515. case 92: // G92
  3516. if(!code_seen(axis_codes[E_AXIS]))
  3517. st_synchronize();
  3518. for(int8_t i=0; i < NUM_AXIS; i++) {
  3519. if(code_seen(axis_codes[i])) {
  3520. if(i == E_AXIS) {
  3521. current_position[i] = code_value();
  3522. plan_set_e_position(current_position[E_AXIS]);
  3523. }
  3524. else {
  3525. current_position[i] = code_value()+add_homing[i];
  3526. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3527. }
  3528. }
  3529. }
  3530. break;
  3531. case 98: //activate farm mode
  3532. farm_mode = 1;
  3533. PingTime = millis();
  3534. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3535. break;
  3536. case 99: //deactivate farm mode
  3537. farm_mode = 0;
  3538. lcd_printer_connected();
  3539. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3540. lcd_update(2);
  3541. break;
  3542. default:
  3543. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3544. }
  3545. } // end if(code_seen('G'))
  3546. else if(code_seen('M'))
  3547. {
  3548. int index;
  3549. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3550. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3551. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3552. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3553. } else
  3554. switch((int)code_value())
  3555. {
  3556. #ifdef ULTIPANEL
  3557. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3558. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3559. {
  3560. char *src = strchr_pointer + 2;
  3561. codenum = 0;
  3562. bool hasP = false, hasS = false;
  3563. if (code_seen('P')) {
  3564. codenum = code_value(); // milliseconds to wait
  3565. hasP = codenum > 0;
  3566. }
  3567. if (code_seen('S')) {
  3568. codenum = code_value() * 1000; // seconds to wait
  3569. hasS = codenum > 0;
  3570. }
  3571. starpos = strchr(src, '*');
  3572. if (starpos != NULL) *(starpos) = '\0';
  3573. while (*src == ' ') ++src;
  3574. if (!hasP && !hasS && *src != '\0') {
  3575. lcd_setstatus(src);
  3576. } else {
  3577. LCD_MESSAGERPGM(MSG_USERWAIT);
  3578. }
  3579. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3580. st_synchronize();
  3581. previous_millis_cmd = millis();
  3582. if (codenum > 0){
  3583. codenum += millis(); // keep track of when we started waiting
  3584. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3585. while(millis() < codenum && !lcd_clicked()){
  3586. manage_heater();
  3587. manage_inactivity(true);
  3588. lcd_update();
  3589. }
  3590. KEEPALIVE_STATE(IN_HANDLER);
  3591. lcd_ignore_click(false);
  3592. }else{
  3593. if (!lcd_detected())
  3594. break;
  3595. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3596. while(!lcd_clicked()){
  3597. manage_heater();
  3598. manage_inactivity(true);
  3599. lcd_update();
  3600. }
  3601. KEEPALIVE_STATE(IN_HANDLER);
  3602. }
  3603. if (IS_SD_PRINTING)
  3604. LCD_MESSAGERPGM(MSG_RESUMING);
  3605. else
  3606. LCD_MESSAGERPGM(WELCOME_MSG);
  3607. }
  3608. break;
  3609. #endif
  3610. case 17:
  3611. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3612. enable_x();
  3613. enable_y();
  3614. enable_z();
  3615. enable_e0();
  3616. enable_e1();
  3617. enable_e2();
  3618. break;
  3619. #ifdef SDSUPPORT
  3620. case 20: // M20 - list SD card
  3621. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3622. card.ls();
  3623. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3624. break;
  3625. case 21: // M21 - init SD card
  3626. card.initsd();
  3627. break;
  3628. case 22: //M22 - release SD card
  3629. card.release();
  3630. break;
  3631. case 23: //M23 - Select file
  3632. starpos = (strchr(strchr_pointer + 4,'*'));
  3633. if(starpos!=NULL)
  3634. *(starpos)='\0';
  3635. card.openFile(strchr_pointer + 4,true);
  3636. break;
  3637. case 24: //M24 - Start SD print
  3638. if (!card.paused)
  3639. failstats_reset_print();
  3640. card.startFileprint();
  3641. starttime=millis();
  3642. break;
  3643. case 25: //M25 - Pause SD print
  3644. card.pauseSDPrint();
  3645. break;
  3646. case 26: //M26 - Set SD index
  3647. if(card.cardOK && code_seen('S')) {
  3648. card.setIndex(code_value_long());
  3649. }
  3650. break;
  3651. case 27: //M27 - Get SD status
  3652. card.getStatus();
  3653. break;
  3654. case 28: //M28 - Start SD write
  3655. starpos = (strchr(strchr_pointer + 4,'*'));
  3656. if(starpos != NULL){
  3657. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3658. strchr_pointer = strchr(npos,' ') + 1;
  3659. *(starpos) = '\0';
  3660. }
  3661. card.openFile(strchr_pointer+4,false);
  3662. break;
  3663. case 29: //M29 - Stop SD write
  3664. //processed in write to file routine above
  3665. //card,saving = false;
  3666. break;
  3667. case 30: //M30 <filename> Delete File
  3668. if (card.cardOK){
  3669. card.closefile();
  3670. starpos = (strchr(strchr_pointer + 4,'*'));
  3671. if(starpos != NULL){
  3672. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3673. strchr_pointer = strchr(npos,' ') + 1;
  3674. *(starpos) = '\0';
  3675. }
  3676. card.removeFile(strchr_pointer + 4);
  3677. }
  3678. break;
  3679. case 32: //M32 - Select file and start SD print
  3680. {
  3681. if(card.sdprinting) {
  3682. st_synchronize();
  3683. }
  3684. starpos = (strchr(strchr_pointer + 4,'*'));
  3685. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3686. if(namestartpos==NULL)
  3687. {
  3688. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3689. }
  3690. else
  3691. namestartpos++; //to skip the '!'
  3692. if(starpos!=NULL)
  3693. *(starpos)='\0';
  3694. bool call_procedure=(code_seen('P'));
  3695. if(strchr_pointer>namestartpos)
  3696. call_procedure=false; //false alert, 'P' found within filename
  3697. if( card.cardOK )
  3698. {
  3699. card.openFile(namestartpos,true,!call_procedure);
  3700. if(code_seen('S'))
  3701. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3702. card.setIndex(code_value_long());
  3703. card.startFileprint();
  3704. if(!call_procedure)
  3705. starttime=millis(); //procedure calls count as normal print time.
  3706. }
  3707. } break;
  3708. case 928: //M928 - Start SD write
  3709. starpos = (strchr(strchr_pointer + 5,'*'));
  3710. if(starpos != NULL){
  3711. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3712. strchr_pointer = strchr(npos,' ') + 1;
  3713. *(starpos) = '\0';
  3714. }
  3715. card.openLogFile(strchr_pointer+5);
  3716. break;
  3717. #endif //SDSUPPORT
  3718. case 31: //M31 take time since the start of the SD print or an M109 command
  3719. {
  3720. stoptime=millis();
  3721. char time[30];
  3722. unsigned long t=(stoptime-starttime)/1000;
  3723. int sec,min;
  3724. min=t/60;
  3725. sec=t%60;
  3726. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3727. SERIAL_ECHO_START;
  3728. SERIAL_ECHOLN(time);
  3729. lcd_setstatus(time);
  3730. autotempShutdown();
  3731. }
  3732. break;
  3733. #ifndef _DISABLE_M42_M226
  3734. case 42: //M42 -Change pin status via gcode
  3735. if (code_seen('S'))
  3736. {
  3737. int pin_status = code_value();
  3738. int pin_number = LED_PIN;
  3739. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3740. pin_number = code_value();
  3741. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3742. {
  3743. if (sensitive_pins[i] == pin_number)
  3744. {
  3745. pin_number = -1;
  3746. break;
  3747. }
  3748. }
  3749. #if defined(FAN_PIN) && FAN_PIN > -1
  3750. if (pin_number == FAN_PIN)
  3751. fanSpeed = pin_status;
  3752. #endif
  3753. if (pin_number > -1)
  3754. {
  3755. pinMode(pin_number, OUTPUT);
  3756. digitalWrite(pin_number, pin_status);
  3757. analogWrite(pin_number, pin_status);
  3758. }
  3759. }
  3760. break;
  3761. #endif //_DISABLE_M42_M226
  3762. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3763. // Reset the baby step value and the baby step applied flag.
  3764. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3765. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3766. // Reset the skew and offset in both RAM and EEPROM.
  3767. reset_bed_offset_and_skew();
  3768. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3769. // the planner will not perform any adjustments in the XY plane.
  3770. // Wait for the motors to stop and update the current position with the absolute values.
  3771. world2machine_revert_to_uncorrected();
  3772. break;
  3773. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3774. {
  3775. int8_t verbosity_level = 0;
  3776. bool only_Z = code_seen('Z');
  3777. #ifdef SUPPORT_VERBOSITY
  3778. if (code_seen('V'))
  3779. {
  3780. // Just 'V' without a number counts as V1.
  3781. char c = strchr_pointer[1];
  3782. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3783. }
  3784. #endif //SUPPORT_VERBOSITY
  3785. gcode_M45(only_Z, verbosity_level);
  3786. }
  3787. break;
  3788. /*
  3789. case 46:
  3790. {
  3791. // M46: Prusa3D: Show the assigned IP address.
  3792. uint8_t ip[4];
  3793. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3794. if (hasIP) {
  3795. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3796. SERIAL_ECHO(int(ip[0]));
  3797. SERIAL_ECHOPGM(".");
  3798. SERIAL_ECHO(int(ip[1]));
  3799. SERIAL_ECHOPGM(".");
  3800. SERIAL_ECHO(int(ip[2]));
  3801. SERIAL_ECHOPGM(".");
  3802. SERIAL_ECHO(int(ip[3]));
  3803. SERIAL_ECHOLNPGM("");
  3804. } else {
  3805. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3806. }
  3807. break;
  3808. }
  3809. */
  3810. case 47:
  3811. // M47: Prusa3D: Show end stops dialog on the display.
  3812. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3813. lcd_diag_show_end_stops();
  3814. KEEPALIVE_STATE(IN_HANDLER);
  3815. break;
  3816. #if 0
  3817. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3818. {
  3819. // Disable the default update procedure of the display. We will do a modal dialog.
  3820. lcd_update_enable(false);
  3821. // Let the planner use the uncorrected coordinates.
  3822. mbl.reset();
  3823. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3824. // the planner will not perform any adjustments in the XY plane.
  3825. // Wait for the motors to stop and update the current position with the absolute values.
  3826. world2machine_revert_to_uncorrected();
  3827. // Move the print head close to the bed.
  3828. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3830. st_synchronize();
  3831. // Home in the XY plane.
  3832. set_destination_to_current();
  3833. setup_for_endstop_move();
  3834. home_xy();
  3835. int8_t verbosity_level = 0;
  3836. if (code_seen('V')) {
  3837. // Just 'V' without a number counts as V1.
  3838. char c = strchr_pointer[1];
  3839. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3840. }
  3841. bool success = scan_bed_induction_points(verbosity_level);
  3842. clean_up_after_endstop_move();
  3843. // Print head up.
  3844. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3846. st_synchronize();
  3847. lcd_update_enable(true);
  3848. break;
  3849. }
  3850. #endif
  3851. // M48 Z-Probe repeatability measurement function.
  3852. //
  3853. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3854. //
  3855. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3856. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3857. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3858. // regenerated.
  3859. //
  3860. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3861. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3862. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3863. //
  3864. #ifdef ENABLE_AUTO_BED_LEVELING
  3865. #ifdef Z_PROBE_REPEATABILITY_TEST
  3866. case 48: // M48 Z-Probe repeatability
  3867. {
  3868. #if Z_MIN_PIN == -1
  3869. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3870. #endif
  3871. double sum=0.0;
  3872. double mean=0.0;
  3873. double sigma=0.0;
  3874. double sample_set[50];
  3875. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3876. double X_current, Y_current, Z_current;
  3877. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3878. if (code_seen('V') || code_seen('v')) {
  3879. verbose_level = code_value();
  3880. if (verbose_level<0 || verbose_level>4 ) {
  3881. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3882. goto Sigma_Exit;
  3883. }
  3884. }
  3885. if (verbose_level > 0) {
  3886. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3887. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3888. }
  3889. if (code_seen('n')) {
  3890. n_samples = code_value();
  3891. if (n_samples<4 || n_samples>50 ) {
  3892. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3893. goto Sigma_Exit;
  3894. }
  3895. }
  3896. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3897. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3898. Z_current = st_get_position_mm(Z_AXIS);
  3899. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3900. ext_position = st_get_position_mm(E_AXIS);
  3901. if (code_seen('X') || code_seen('x') ) {
  3902. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3903. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3904. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3905. goto Sigma_Exit;
  3906. }
  3907. }
  3908. if (code_seen('Y') || code_seen('y') ) {
  3909. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3910. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3911. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3912. goto Sigma_Exit;
  3913. }
  3914. }
  3915. if (code_seen('L') || code_seen('l') ) {
  3916. n_legs = code_value();
  3917. if ( n_legs==1 )
  3918. n_legs = 2;
  3919. if ( n_legs<0 || n_legs>15 ) {
  3920. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3921. goto Sigma_Exit;
  3922. }
  3923. }
  3924. //
  3925. // Do all the preliminary setup work. First raise the probe.
  3926. //
  3927. st_synchronize();
  3928. plan_bed_level_matrix.set_to_identity();
  3929. plan_buffer_line( X_current, Y_current, Z_start_location,
  3930. ext_position,
  3931. homing_feedrate[Z_AXIS]/60,
  3932. active_extruder);
  3933. st_synchronize();
  3934. //
  3935. // Now get everything to the specified probe point So we can safely do a probe to
  3936. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3937. // use that as a starting point for each probe.
  3938. //
  3939. if (verbose_level > 2)
  3940. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3941. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3942. ext_position,
  3943. homing_feedrate[X_AXIS]/60,
  3944. active_extruder);
  3945. st_synchronize();
  3946. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3947. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3948. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3949. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3950. //
  3951. // OK, do the inital probe to get us close to the bed.
  3952. // Then retrace the right amount and use that in subsequent probes
  3953. //
  3954. setup_for_endstop_move();
  3955. run_z_probe();
  3956. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3957. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3958. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3959. ext_position,
  3960. homing_feedrate[X_AXIS]/60,
  3961. active_extruder);
  3962. st_synchronize();
  3963. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3964. for( n=0; n<n_samples; n++) {
  3965. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3966. if ( n_legs) {
  3967. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3968. int rotational_direction, l;
  3969. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3970. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3971. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3972. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3973. //SERIAL_ECHOPAIR(" theta: ",theta);
  3974. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3975. //SERIAL_PROTOCOLLNPGM("");
  3976. for( l=0; l<n_legs-1; l++) {
  3977. if (rotational_direction==1)
  3978. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3979. else
  3980. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3981. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3982. if ( radius<0.0 )
  3983. radius = -radius;
  3984. X_current = X_probe_location + cos(theta) * radius;
  3985. Y_current = Y_probe_location + sin(theta) * radius;
  3986. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3987. X_current = X_MIN_POS;
  3988. if ( X_current>X_MAX_POS)
  3989. X_current = X_MAX_POS;
  3990. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3991. Y_current = Y_MIN_POS;
  3992. if ( Y_current>Y_MAX_POS)
  3993. Y_current = Y_MAX_POS;
  3994. if (verbose_level>3 ) {
  3995. SERIAL_ECHOPAIR("x: ", X_current);
  3996. SERIAL_ECHOPAIR("y: ", Y_current);
  3997. SERIAL_PROTOCOLLNPGM("");
  3998. }
  3999. do_blocking_move_to( X_current, Y_current, Z_current );
  4000. }
  4001. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4002. }
  4003. setup_for_endstop_move();
  4004. run_z_probe();
  4005. sample_set[n] = current_position[Z_AXIS];
  4006. //
  4007. // Get the current mean for the data points we have so far
  4008. //
  4009. sum=0.0;
  4010. for( j=0; j<=n; j++) {
  4011. sum = sum + sample_set[j];
  4012. }
  4013. mean = sum / (double (n+1));
  4014. //
  4015. // Now, use that mean to calculate the standard deviation for the
  4016. // data points we have so far
  4017. //
  4018. sum=0.0;
  4019. for( j=0; j<=n; j++) {
  4020. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4021. }
  4022. sigma = sqrt( sum / (double (n+1)) );
  4023. if (verbose_level > 1) {
  4024. SERIAL_PROTOCOL(n+1);
  4025. SERIAL_PROTOCOL(" of ");
  4026. SERIAL_PROTOCOL(n_samples);
  4027. SERIAL_PROTOCOLPGM(" z: ");
  4028. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4029. }
  4030. if (verbose_level > 2) {
  4031. SERIAL_PROTOCOL(" mean: ");
  4032. SERIAL_PROTOCOL_F(mean,6);
  4033. SERIAL_PROTOCOL(" sigma: ");
  4034. SERIAL_PROTOCOL_F(sigma,6);
  4035. }
  4036. if (verbose_level > 0)
  4037. SERIAL_PROTOCOLPGM("\n");
  4038. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4039. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4040. st_synchronize();
  4041. }
  4042. delay(1000);
  4043. clean_up_after_endstop_move();
  4044. // enable_endstops(true);
  4045. if (verbose_level > 0) {
  4046. SERIAL_PROTOCOLPGM("Mean: ");
  4047. SERIAL_PROTOCOL_F(mean, 6);
  4048. SERIAL_PROTOCOLPGM("\n");
  4049. }
  4050. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4051. SERIAL_PROTOCOL_F(sigma, 6);
  4052. SERIAL_PROTOCOLPGM("\n\n");
  4053. Sigma_Exit:
  4054. break;
  4055. }
  4056. #endif // Z_PROBE_REPEATABILITY_TEST
  4057. #endif // ENABLE_AUTO_BED_LEVELING
  4058. case 104: // M104
  4059. if(setTargetedHotend(104)){
  4060. break;
  4061. }
  4062. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4063. setWatch();
  4064. break;
  4065. case 112: // M112 -Emergency Stop
  4066. kill("", 3);
  4067. break;
  4068. case 140: // M140 set bed temp
  4069. if (code_seen('S')) setTargetBed(code_value());
  4070. break;
  4071. case 105 : // M105
  4072. if(setTargetedHotend(105)){
  4073. break;
  4074. }
  4075. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4076. SERIAL_PROTOCOLPGM("ok T:");
  4077. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4078. SERIAL_PROTOCOLPGM(" /");
  4079. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4080. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4081. SERIAL_PROTOCOLPGM(" B:");
  4082. SERIAL_PROTOCOL_F(degBed(),1);
  4083. SERIAL_PROTOCOLPGM(" /");
  4084. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4085. #endif //TEMP_BED_PIN
  4086. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4087. SERIAL_PROTOCOLPGM(" T");
  4088. SERIAL_PROTOCOL(cur_extruder);
  4089. SERIAL_PROTOCOLPGM(":");
  4090. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4091. SERIAL_PROTOCOLPGM(" /");
  4092. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4093. }
  4094. #else
  4095. SERIAL_ERROR_START;
  4096. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  4097. #endif
  4098. SERIAL_PROTOCOLPGM(" @:");
  4099. #ifdef EXTRUDER_WATTS
  4100. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4101. SERIAL_PROTOCOLPGM("W");
  4102. #else
  4103. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4104. #endif
  4105. SERIAL_PROTOCOLPGM(" B@:");
  4106. #ifdef BED_WATTS
  4107. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4108. SERIAL_PROTOCOLPGM("W");
  4109. #else
  4110. SERIAL_PROTOCOL(getHeaterPower(-1));
  4111. #endif
  4112. #ifdef PINDA_THERMISTOR
  4113. SERIAL_PROTOCOLPGM(" P:");
  4114. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4115. #endif //PINDA_THERMISTOR
  4116. #ifdef AMBIENT_THERMISTOR
  4117. SERIAL_PROTOCOLPGM(" A:");
  4118. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4119. #endif //AMBIENT_THERMISTOR
  4120. #ifdef SHOW_TEMP_ADC_VALUES
  4121. {float raw = 0.0;
  4122. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4123. SERIAL_PROTOCOLPGM(" ADC B:");
  4124. SERIAL_PROTOCOL_F(degBed(),1);
  4125. SERIAL_PROTOCOLPGM("C->");
  4126. raw = rawBedTemp();
  4127. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4128. SERIAL_PROTOCOLPGM(" Rb->");
  4129. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4130. SERIAL_PROTOCOLPGM(" Rxb->");
  4131. SERIAL_PROTOCOL_F(raw, 5);
  4132. #endif
  4133. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4134. SERIAL_PROTOCOLPGM(" T");
  4135. SERIAL_PROTOCOL(cur_extruder);
  4136. SERIAL_PROTOCOLPGM(":");
  4137. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4138. SERIAL_PROTOCOLPGM("C->");
  4139. raw = rawHotendTemp(cur_extruder);
  4140. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4141. SERIAL_PROTOCOLPGM(" Rt");
  4142. SERIAL_PROTOCOL(cur_extruder);
  4143. SERIAL_PROTOCOLPGM("->");
  4144. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4145. SERIAL_PROTOCOLPGM(" Rx");
  4146. SERIAL_PROTOCOL(cur_extruder);
  4147. SERIAL_PROTOCOLPGM("->");
  4148. SERIAL_PROTOCOL_F(raw, 5);
  4149. }}
  4150. #endif
  4151. SERIAL_PROTOCOLLN("");
  4152. KEEPALIVE_STATE(NOT_BUSY);
  4153. return;
  4154. break;
  4155. case 109:
  4156. {// M109 - Wait for extruder heater to reach target.
  4157. if(setTargetedHotend(109)){
  4158. break;
  4159. }
  4160. LCD_MESSAGERPGM(MSG_HEATING);
  4161. heating_status = 1;
  4162. if (farm_mode) { prusa_statistics(1); };
  4163. #ifdef AUTOTEMP
  4164. autotemp_enabled=false;
  4165. #endif
  4166. if (code_seen('S')) {
  4167. setTargetHotend(code_value(), tmp_extruder);
  4168. CooldownNoWait = true;
  4169. } else if (code_seen('R')) {
  4170. setTargetHotend(code_value(), tmp_extruder);
  4171. CooldownNoWait = false;
  4172. }
  4173. #ifdef AUTOTEMP
  4174. if (code_seen('S')) autotemp_min=code_value();
  4175. if (code_seen('B')) autotemp_max=code_value();
  4176. if (code_seen('F'))
  4177. {
  4178. autotemp_factor=code_value();
  4179. autotemp_enabled=true;
  4180. }
  4181. #endif
  4182. setWatch();
  4183. codenum = millis();
  4184. /* See if we are heating up or cooling down */
  4185. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4186. KEEPALIVE_STATE(NOT_BUSY);
  4187. cancel_heatup = false;
  4188. wait_for_heater(codenum); //loops until target temperature is reached
  4189. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4190. KEEPALIVE_STATE(IN_HANDLER);
  4191. heating_status = 2;
  4192. if (farm_mode) { prusa_statistics(2); };
  4193. //starttime=millis();
  4194. previous_millis_cmd = millis();
  4195. }
  4196. break;
  4197. case 190: // M190 - Wait for bed heater to reach target.
  4198. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4199. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4200. heating_status = 3;
  4201. if (farm_mode) { prusa_statistics(1); };
  4202. if (code_seen('S'))
  4203. {
  4204. setTargetBed(code_value());
  4205. CooldownNoWait = true;
  4206. }
  4207. else if (code_seen('R'))
  4208. {
  4209. setTargetBed(code_value());
  4210. CooldownNoWait = false;
  4211. }
  4212. codenum = millis();
  4213. cancel_heatup = false;
  4214. target_direction = isHeatingBed(); // true if heating, false if cooling
  4215. KEEPALIVE_STATE(NOT_BUSY);
  4216. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4217. {
  4218. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4219. {
  4220. if (!farm_mode) {
  4221. float tt = degHotend(active_extruder);
  4222. SERIAL_PROTOCOLPGM("T:");
  4223. SERIAL_PROTOCOL(tt);
  4224. SERIAL_PROTOCOLPGM(" E:");
  4225. SERIAL_PROTOCOL((int)active_extruder);
  4226. SERIAL_PROTOCOLPGM(" B:");
  4227. SERIAL_PROTOCOL_F(degBed(), 1);
  4228. SERIAL_PROTOCOLLN("");
  4229. }
  4230. codenum = millis();
  4231. }
  4232. manage_heater();
  4233. manage_inactivity();
  4234. lcd_update();
  4235. }
  4236. LCD_MESSAGERPGM(MSG_BED_DONE);
  4237. KEEPALIVE_STATE(IN_HANDLER);
  4238. heating_status = 4;
  4239. previous_millis_cmd = millis();
  4240. #endif
  4241. break;
  4242. #if defined(FAN_PIN) && FAN_PIN > -1
  4243. case 106: //M106 Fan On
  4244. if (code_seen('S')){
  4245. fanSpeed=constrain(code_value(),0,255);
  4246. }
  4247. else {
  4248. fanSpeed=255;
  4249. }
  4250. break;
  4251. case 107: //M107 Fan Off
  4252. fanSpeed = 0;
  4253. break;
  4254. #endif //FAN_PIN
  4255. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4256. case 80: // M80 - Turn on Power Supply
  4257. SET_OUTPUT(PS_ON_PIN); //GND
  4258. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4259. // If you have a switch on suicide pin, this is useful
  4260. // if you want to start another print with suicide feature after
  4261. // a print without suicide...
  4262. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4263. SET_OUTPUT(SUICIDE_PIN);
  4264. WRITE(SUICIDE_PIN, HIGH);
  4265. #endif
  4266. #ifdef ULTIPANEL
  4267. powersupply = true;
  4268. LCD_MESSAGERPGM(WELCOME_MSG);
  4269. lcd_update();
  4270. #endif
  4271. break;
  4272. #endif
  4273. case 81: // M81 - Turn off Power Supply
  4274. disable_heater();
  4275. st_synchronize();
  4276. disable_e0();
  4277. disable_e1();
  4278. disable_e2();
  4279. finishAndDisableSteppers();
  4280. fanSpeed = 0;
  4281. delay(1000); // Wait a little before to switch off
  4282. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4283. st_synchronize();
  4284. suicide();
  4285. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4286. SET_OUTPUT(PS_ON_PIN);
  4287. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4288. #endif
  4289. #ifdef ULTIPANEL
  4290. powersupply = false;
  4291. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4292. /*
  4293. MACHNAME = "Prusa i3"
  4294. MSGOFF = "Vypnuto"
  4295. "Prusai3"" ""vypnuto""."
  4296. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4297. */
  4298. lcd_update();
  4299. #endif
  4300. break;
  4301. case 82:
  4302. axis_relative_modes[3] = false;
  4303. break;
  4304. case 83:
  4305. axis_relative_modes[3] = true;
  4306. break;
  4307. case 18: //compatibility
  4308. case 84: // M84
  4309. if(code_seen('S')){
  4310. stepper_inactive_time = code_value() * 1000;
  4311. }
  4312. else
  4313. {
  4314. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4315. if(all_axis)
  4316. {
  4317. st_synchronize();
  4318. disable_e0();
  4319. disable_e1();
  4320. disable_e2();
  4321. finishAndDisableSteppers();
  4322. }
  4323. else
  4324. {
  4325. st_synchronize();
  4326. if (code_seen('X')) disable_x();
  4327. if (code_seen('Y')) disable_y();
  4328. if (code_seen('Z')) disable_z();
  4329. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4330. if (code_seen('E')) {
  4331. disable_e0();
  4332. disable_e1();
  4333. disable_e2();
  4334. }
  4335. #endif
  4336. }
  4337. }
  4338. snmm_filaments_used = 0;
  4339. break;
  4340. case 85: // M85
  4341. if(code_seen('S')) {
  4342. max_inactive_time = code_value() * 1000;
  4343. }
  4344. break;
  4345. case 92: // M92
  4346. for(int8_t i=0; i < NUM_AXIS; i++)
  4347. {
  4348. if(code_seen(axis_codes[i]))
  4349. {
  4350. if(i == 3) { // E
  4351. float value = code_value();
  4352. if(value < 20.0) {
  4353. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4354. max_jerk[E_AXIS] *= factor;
  4355. max_feedrate[i] *= factor;
  4356. axis_steps_per_sqr_second[i] *= factor;
  4357. }
  4358. axis_steps_per_unit[i] = value;
  4359. }
  4360. else {
  4361. axis_steps_per_unit[i] = code_value();
  4362. }
  4363. }
  4364. }
  4365. break;
  4366. case 110: // M110 - reset line pos
  4367. if (code_seen('N'))
  4368. gcode_LastN = code_value_long();
  4369. break;
  4370. #ifdef HOST_KEEPALIVE_FEATURE
  4371. case 113: // M113 - Get or set Host Keepalive interval
  4372. if (code_seen('S')) {
  4373. host_keepalive_interval = (uint8_t)code_value_short();
  4374. // NOMORE(host_keepalive_interval, 60);
  4375. }
  4376. else {
  4377. SERIAL_ECHO_START;
  4378. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4379. SERIAL_PROTOCOLLN("");
  4380. }
  4381. break;
  4382. #endif
  4383. case 115: // M115
  4384. if (code_seen('V')) {
  4385. // Report the Prusa version number.
  4386. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4387. } else if (code_seen('U')) {
  4388. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4389. // pause the print and ask the user to upgrade the firmware.
  4390. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4391. } else {
  4392. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4393. }
  4394. break;
  4395. /* case 117: // M117 display message
  4396. starpos = (strchr(strchr_pointer + 5,'*'));
  4397. if(starpos!=NULL)
  4398. *(starpos)='\0';
  4399. lcd_setstatus(strchr_pointer + 5);
  4400. break;*/
  4401. case 114: // M114
  4402. gcode_M114();
  4403. break;
  4404. case 120: // M120
  4405. enable_endstops(false) ;
  4406. break;
  4407. case 121: // M121
  4408. enable_endstops(true) ;
  4409. break;
  4410. case 119: // M119
  4411. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4412. SERIAL_PROTOCOLLN("");
  4413. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4414. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4415. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4416. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4417. }else{
  4418. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4419. }
  4420. SERIAL_PROTOCOLLN("");
  4421. #endif
  4422. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4423. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4424. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4425. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4426. }else{
  4427. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4428. }
  4429. SERIAL_PROTOCOLLN("");
  4430. #endif
  4431. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4432. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4433. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4434. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4435. }else{
  4436. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4437. }
  4438. SERIAL_PROTOCOLLN("");
  4439. #endif
  4440. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4441. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4442. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4443. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4444. }else{
  4445. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4446. }
  4447. SERIAL_PROTOCOLLN("");
  4448. #endif
  4449. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4450. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4451. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4452. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4453. }else{
  4454. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4455. }
  4456. SERIAL_PROTOCOLLN("");
  4457. #endif
  4458. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4459. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4460. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4461. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4462. }else{
  4463. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4464. }
  4465. SERIAL_PROTOCOLLN("");
  4466. #endif
  4467. break;
  4468. //TODO: update for all axis, use for loop
  4469. #ifdef BLINKM
  4470. case 150: // M150
  4471. {
  4472. byte red;
  4473. byte grn;
  4474. byte blu;
  4475. if(code_seen('R')) red = code_value();
  4476. if(code_seen('U')) grn = code_value();
  4477. if(code_seen('B')) blu = code_value();
  4478. SendColors(red,grn,blu);
  4479. }
  4480. break;
  4481. #endif //BLINKM
  4482. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4483. {
  4484. tmp_extruder = active_extruder;
  4485. if(code_seen('T')) {
  4486. tmp_extruder = code_value();
  4487. if(tmp_extruder >= EXTRUDERS) {
  4488. SERIAL_ECHO_START;
  4489. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4490. break;
  4491. }
  4492. }
  4493. float area = .0;
  4494. if(code_seen('D')) {
  4495. float diameter = (float)code_value();
  4496. if (diameter == 0.0) {
  4497. // setting any extruder filament size disables volumetric on the assumption that
  4498. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4499. // for all extruders
  4500. volumetric_enabled = false;
  4501. } else {
  4502. filament_size[tmp_extruder] = (float)code_value();
  4503. // make sure all extruders have some sane value for the filament size
  4504. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4505. #if EXTRUDERS > 1
  4506. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4507. #if EXTRUDERS > 2
  4508. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4509. #endif
  4510. #endif
  4511. volumetric_enabled = true;
  4512. }
  4513. } else {
  4514. //reserved for setting filament diameter via UFID or filament measuring device
  4515. break;
  4516. }
  4517. calculate_extruder_multipliers();
  4518. }
  4519. break;
  4520. case 201: // M201
  4521. for(int8_t i=0; i < NUM_AXIS; i++)
  4522. {
  4523. if(code_seen(axis_codes[i]))
  4524. {
  4525. max_acceleration_units_per_sq_second[i] = code_value();
  4526. }
  4527. }
  4528. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4529. reset_acceleration_rates();
  4530. break;
  4531. #if 0 // Not used for Sprinter/grbl gen6
  4532. case 202: // M202
  4533. for(int8_t i=0; i < NUM_AXIS; i++) {
  4534. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4535. }
  4536. break;
  4537. #endif
  4538. case 203: // M203 max feedrate mm/sec
  4539. for(int8_t i=0; i < NUM_AXIS; i++) {
  4540. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4541. }
  4542. break;
  4543. case 204: // M204 acclereration S normal moves T filmanent only moves
  4544. {
  4545. if(code_seen('S')) acceleration = code_value() ;
  4546. if(code_seen('T')) retract_acceleration = code_value() ;
  4547. }
  4548. break;
  4549. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4550. {
  4551. if(code_seen('S')) minimumfeedrate = code_value();
  4552. if(code_seen('T')) mintravelfeedrate = code_value();
  4553. if(code_seen('B')) minsegmenttime = code_value() ;
  4554. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4555. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4556. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4557. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4558. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4559. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4560. }
  4561. break;
  4562. case 206: // M206 additional homing offset
  4563. for(int8_t i=0; i < 3; i++)
  4564. {
  4565. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4566. }
  4567. break;
  4568. #ifdef FWRETRACT
  4569. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4570. {
  4571. if(code_seen('S'))
  4572. {
  4573. retract_length = code_value() ;
  4574. }
  4575. if(code_seen('F'))
  4576. {
  4577. retract_feedrate = code_value()/60 ;
  4578. }
  4579. if(code_seen('Z'))
  4580. {
  4581. retract_zlift = code_value() ;
  4582. }
  4583. }break;
  4584. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4585. {
  4586. if(code_seen('S'))
  4587. {
  4588. retract_recover_length = code_value() ;
  4589. }
  4590. if(code_seen('F'))
  4591. {
  4592. retract_recover_feedrate = code_value()/60 ;
  4593. }
  4594. }break;
  4595. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4596. {
  4597. if(code_seen('S'))
  4598. {
  4599. int t= code_value() ;
  4600. switch(t)
  4601. {
  4602. case 0:
  4603. {
  4604. autoretract_enabled=false;
  4605. retracted[0]=false;
  4606. #if EXTRUDERS > 1
  4607. retracted[1]=false;
  4608. #endif
  4609. #if EXTRUDERS > 2
  4610. retracted[2]=false;
  4611. #endif
  4612. }break;
  4613. case 1:
  4614. {
  4615. autoretract_enabled=true;
  4616. retracted[0]=false;
  4617. #if EXTRUDERS > 1
  4618. retracted[1]=false;
  4619. #endif
  4620. #if EXTRUDERS > 2
  4621. retracted[2]=false;
  4622. #endif
  4623. }break;
  4624. default:
  4625. SERIAL_ECHO_START;
  4626. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4627. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4628. SERIAL_ECHOLNPGM("\"(1)");
  4629. }
  4630. }
  4631. }break;
  4632. #endif // FWRETRACT
  4633. #if EXTRUDERS > 1
  4634. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4635. {
  4636. if(setTargetedHotend(218)){
  4637. break;
  4638. }
  4639. if(code_seen('X'))
  4640. {
  4641. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4642. }
  4643. if(code_seen('Y'))
  4644. {
  4645. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4646. }
  4647. SERIAL_ECHO_START;
  4648. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4649. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4650. {
  4651. SERIAL_ECHO(" ");
  4652. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4653. SERIAL_ECHO(",");
  4654. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4655. }
  4656. SERIAL_ECHOLN("");
  4657. }break;
  4658. #endif
  4659. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4660. {
  4661. if(code_seen('S'))
  4662. {
  4663. feedmultiply = code_value() ;
  4664. }
  4665. }
  4666. break;
  4667. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4668. {
  4669. if(code_seen('S'))
  4670. {
  4671. int tmp_code = code_value();
  4672. if (code_seen('T'))
  4673. {
  4674. if(setTargetedHotend(221)){
  4675. break;
  4676. }
  4677. extruder_multiply[tmp_extruder] = tmp_code;
  4678. }
  4679. else
  4680. {
  4681. extrudemultiply = tmp_code ;
  4682. }
  4683. }
  4684. calculate_extruder_multipliers();
  4685. }
  4686. break;
  4687. #ifndef _DISABLE_M42_M226
  4688. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4689. {
  4690. if(code_seen('P')){
  4691. int pin_number = code_value(); // pin number
  4692. int pin_state = -1; // required pin state - default is inverted
  4693. if(code_seen('S')) pin_state = code_value(); // required pin state
  4694. if(pin_state >= -1 && pin_state <= 1){
  4695. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4696. {
  4697. if (sensitive_pins[i] == pin_number)
  4698. {
  4699. pin_number = -1;
  4700. break;
  4701. }
  4702. }
  4703. if (pin_number > -1)
  4704. {
  4705. int target = LOW;
  4706. st_synchronize();
  4707. pinMode(pin_number, INPUT);
  4708. switch(pin_state){
  4709. case 1:
  4710. target = HIGH;
  4711. break;
  4712. case 0:
  4713. target = LOW;
  4714. break;
  4715. case -1:
  4716. target = !digitalRead(pin_number);
  4717. break;
  4718. }
  4719. while(digitalRead(pin_number) != target){
  4720. manage_heater();
  4721. manage_inactivity();
  4722. lcd_update();
  4723. }
  4724. }
  4725. }
  4726. }
  4727. }
  4728. break;
  4729. #endif //_DISABLE_M42_M226
  4730. #if NUM_SERVOS > 0
  4731. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4732. {
  4733. int servo_index = -1;
  4734. int servo_position = 0;
  4735. if (code_seen('P'))
  4736. servo_index = code_value();
  4737. if (code_seen('S')) {
  4738. servo_position = code_value();
  4739. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4740. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4741. servos[servo_index].attach(0);
  4742. #endif
  4743. servos[servo_index].write(servo_position);
  4744. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4745. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4746. servos[servo_index].detach();
  4747. #endif
  4748. }
  4749. else {
  4750. SERIAL_ECHO_START;
  4751. SERIAL_ECHO("Servo ");
  4752. SERIAL_ECHO(servo_index);
  4753. SERIAL_ECHOLN(" out of range");
  4754. }
  4755. }
  4756. else if (servo_index >= 0) {
  4757. SERIAL_PROTOCOL(MSG_OK);
  4758. SERIAL_PROTOCOL(" Servo ");
  4759. SERIAL_PROTOCOL(servo_index);
  4760. SERIAL_PROTOCOL(": ");
  4761. SERIAL_PROTOCOL(servos[servo_index].read());
  4762. SERIAL_PROTOCOLLN("");
  4763. }
  4764. }
  4765. break;
  4766. #endif // NUM_SERVOS > 0
  4767. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4768. case 300: // M300
  4769. {
  4770. int beepS = code_seen('S') ? code_value() : 110;
  4771. int beepP = code_seen('P') ? code_value() : 1000;
  4772. if (beepS > 0)
  4773. {
  4774. #if BEEPER > 0
  4775. tone(BEEPER, beepS);
  4776. delay(beepP);
  4777. noTone(BEEPER);
  4778. #elif defined(ULTRALCD)
  4779. lcd_buzz(beepS, beepP);
  4780. #elif defined(LCD_USE_I2C_BUZZER)
  4781. lcd_buzz(beepP, beepS);
  4782. #endif
  4783. }
  4784. else
  4785. {
  4786. delay(beepP);
  4787. }
  4788. }
  4789. break;
  4790. #endif // M300
  4791. #ifdef PIDTEMP
  4792. case 301: // M301
  4793. {
  4794. if(code_seen('P')) Kp = code_value();
  4795. if(code_seen('I')) Ki = scalePID_i(code_value());
  4796. if(code_seen('D')) Kd = scalePID_d(code_value());
  4797. #ifdef PID_ADD_EXTRUSION_RATE
  4798. if(code_seen('C')) Kc = code_value();
  4799. #endif
  4800. updatePID();
  4801. SERIAL_PROTOCOLRPGM(MSG_OK);
  4802. SERIAL_PROTOCOL(" p:");
  4803. SERIAL_PROTOCOL(Kp);
  4804. SERIAL_PROTOCOL(" i:");
  4805. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4806. SERIAL_PROTOCOL(" d:");
  4807. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4808. #ifdef PID_ADD_EXTRUSION_RATE
  4809. SERIAL_PROTOCOL(" c:");
  4810. //Kc does not have scaling applied above, or in resetting defaults
  4811. SERIAL_PROTOCOL(Kc);
  4812. #endif
  4813. SERIAL_PROTOCOLLN("");
  4814. }
  4815. break;
  4816. #endif //PIDTEMP
  4817. #ifdef PIDTEMPBED
  4818. case 304: // M304
  4819. {
  4820. if(code_seen('P')) bedKp = code_value();
  4821. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4822. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4823. updatePID();
  4824. SERIAL_PROTOCOLRPGM(MSG_OK);
  4825. SERIAL_PROTOCOL(" p:");
  4826. SERIAL_PROTOCOL(bedKp);
  4827. SERIAL_PROTOCOL(" i:");
  4828. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4829. SERIAL_PROTOCOL(" d:");
  4830. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4831. SERIAL_PROTOCOLLN("");
  4832. }
  4833. break;
  4834. #endif //PIDTEMP
  4835. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4836. {
  4837. #ifdef CHDK
  4838. SET_OUTPUT(CHDK);
  4839. WRITE(CHDK, HIGH);
  4840. chdkHigh = millis();
  4841. chdkActive = true;
  4842. #else
  4843. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4844. const uint8_t NUM_PULSES=16;
  4845. const float PULSE_LENGTH=0.01524;
  4846. for(int i=0; i < NUM_PULSES; i++) {
  4847. WRITE(PHOTOGRAPH_PIN, HIGH);
  4848. _delay_ms(PULSE_LENGTH);
  4849. WRITE(PHOTOGRAPH_PIN, LOW);
  4850. _delay_ms(PULSE_LENGTH);
  4851. }
  4852. delay(7.33);
  4853. for(int i=0; i < NUM_PULSES; i++) {
  4854. WRITE(PHOTOGRAPH_PIN, HIGH);
  4855. _delay_ms(PULSE_LENGTH);
  4856. WRITE(PHOTOGRAPH_PIN, LOW);
  4857. _delay_ms(PULSE_LENGTH);
  4858. }
  4859. #endif
  4860. #endif //chdk end if
  4861. }
  4862. break;
  4863. #ifdef DOGLCD
  4864. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4865. {
  4866. if (code_seen('C')) {
  4867. lcd_setcontrast( ((int)code_value())&63 );
  4868. }
  4869. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4870. SERIAL_PROTOCOL(lcd_contrast);
  4871. SERIAL_PROTOCOLLN("");
  4872. }
  4873. break;
  4874. #endif
  4875. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4876. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4877. {
  4878. float temp = .0;
  4879. if (code_seen('S')) temp=code_value();
  4880. set_extrude_min_temp(temp);
  4881. }
  4882. break;
  4883. #endif
  4884. case 303: // M303 PID autotune
  4885. {
  4886. float temp = 150.0;
  4887. int e=0;
  4888. int c=5;
  4889. if (code_seen('E')) e=code_value();
  4890. if (e<0)
  4891. temp=70;
  4892. if (code_seen('S')) temp=code_value();
  4893. if (code_seen('C')) c=code_value();
  4894. PID_autotune(temp, e, c);
  4895. }
  4896. break;
  4897. case 400: // M400 finish all moves
  4898. {
  4899. st_synchronize();
  4900. }
  4901. break;
  4902. case 500: // M500 Store settings in EEPROM
  4903. {
  4904. Config_StoreSettings(EEPROM_OFFSET);
  4905. }
  4906. break;
  4907. case 501: // M501 Read settings from EEPROM
  4908. {
  4909. Config_RetrieveSettings(EEPROM_OFFSET);
  4910. }
  4911. break;
  4912. case 502: // M502 Revert to default settings
  4913. {
  4914. Config_ResetDefault();
  4915. }
  4916. break;
  4917. case 503: // M503 print settings currently in memory
  4918. {
  4919. Config_PrintSettings();
  4920. }
  4921. break;
  4922. case 509: //M509 Force language selection
  4923. {
  4924. lcd_force_language_selection();
  4925. SERIAL_ECHO_START;
  4926. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4927. }
  4928. break;
  4929. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4930. case 540:
  4931. {
  4932. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4933. }
  4934. break;
  4935. #endif
  4936. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4937. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4938. {
  4939. float value;
  4940. if (code_seen('Z'))
  4941. {
  4942. value = code_value();
  4943. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4944. {
  4945. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4946. SERIAL_ECHO_START;
  4947. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4948. SERIAL_PROTOCOLLN("");
  4949. }
  4950. else
  4951. {
  4952. SERIAL_ECHO_START;
  4953. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4954. SERIAL_ECHORPGM(MSG_Z_MIN);
  4955. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4956. SERIAL_ECHORPGM(MSG_Z_MAX);
  4957. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4958. SERIAL_PROTOCOLLN("");
  4959. }
  4960. }
  4961. else
  4962. {
  4963. SERIAL_ECHO_START;
  4964. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4965. SERIAL_ECHO(-zprobe_zoffset);
  4966. SERIAL_PROTOCOLLN("");
  4967. }
  4968. break;
  4969. }
  4970. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4971. #ifdef FILAMENTCHANGEENABLE
  4972. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4973. {
  4974. #ifdef PAT9125
  4975. bool old_fsensor_enabled = fsensor_enabled;
  4976. fsensor_enabled = false; //temporary solution for unexpected restarting
  4977. #endif //PAT9125
  4978. st_synchronize();
  4979. float target[4];
  4980. float lastpos[4];
  4981. if (farm_mode)
  4982. {
  4983. prusa_statistics(22);
  4984. }
  4985. feedmultiplyBckp=feedmultiply;
  4986. int8_t TooLowZ = 0;
  4987. float HotendTempBckp = degTargetHotend(active_extruder);
  4988. int fanSpeedBckp = fanSpeed;
  4989. target[X_AXIS]=current_position[X_AXIS];
  4990. target[Y_AXIS]=current_position[Y_AXIS];
  4991. target[Z_AXIS]=current_position[Z_AXIS];
  4992. target[E_AXIS]=current_position[E_AXIS];
  4993. lastpos[X_AXIS]=current_position[X_AXIS];
  4994. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4995. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4996. lastpos[E_AXIS]=current_position[E_AXIS];
  4997. //Restract extruder
  4998. if(code_seen('E'))
  4999. {
  5000. target[E_AXIS]+= code_value();
  5001. }
  5002. else
  5003. {
  5004. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5005. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5006. #endif
  5007. }
  5008. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5009. //Lift Z
  5010. if(code_seen('Z'))
  5011. {
  5012. target[Z_AXIS]+= code_value();
  5013. }
  5014. else
  5015. {
  5016. #ifdef FILAMENTCHANGE_ZADD
  5017. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5018. if(target[Z_AXIS] < 10){
  5019. target[Z_AXIS]+= 10 ;
  5020. TooLowZ = 1;
  5021. }else{
  5022. TooLowZ = 0;
  5023. }
  5024. #endif
  5025. }
  5026. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5027. //Move XY to side
  5028. if(code_seen('X'))
  5029. {
  5030. target[X_AXIS]+= code_value();
  5031. }
  5032. else
  5033. {
  5034. #ifdef FILAMENTCHANGE_XPOS
  5035. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5036. #endif
  5037. }
  5038. if(code_seen('Y'))
  5039. {
  5040. target[Y_AXIS]= code_value();
  5041. }
  5042. else
  5043. {
  5044. #ifdef FILAMENTCHANGE_YPOS
  5045. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5046. #endif
  5047. }
  5048. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5049. st_synchronize();
  5050. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5051. uint8_t cnt = 0;
  5052. int counterBeep = 0;
  5053. fanSpeed = 0;
  5054. unsigned long waiting_start_time = millis();
  5055. uint8_t wait_for_user_state = 0;
  5056. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5057. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5058. //cnt++;
  5059. manage_heater();
  5060. manage_inactivity(true);
  5061. /*#ifdef SNMM
  5062. target[E_AXIS] += 0.002;
  5063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5064. #endif // SNMM*/
  5065. //if (cnt == 0)
  5066. {
  5067. #if BEEPER > 0
  5068. if (counterBeep == 500) {
  5069. counterBeep = 0;
  5070. }
  5071. SET_OUTPUT(BEEPER);
  5072. if (counterBeep == 0) {
  5073. WRITE(BEEPER, HIGH);
  5074. }
  5075. if (counterBeep == 20) {
  5076. WRITE(BEEPER, LOW);
  5077. }
  5078. counterBeep++;
  5079. #else
  5080. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5081. lcd_buzz(1000 / 6, 100);
  5082. #else
  5083. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5084. #endif
  5085. #endif
  5086. }
  5087. switch (wait_for_user_state) {
  5088. case 0:
  5089. delay_keep_alive(4);
  5090. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5091. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5092. wait_for_user_state = 1;
  5093. setTargetHotend(0, 0);
  5094. setTargetHotend(0, 1);
  5095. setTargetHotend(0, 2);
  5096. st_synchronize();
  5097. disable_e0();
  5098. disable_e1();
  5099. disable_e2();
  5100. }
  5101. break;
  5102. case 1:
  5103. delay_keep_alive(4);
  5104. if (lcd_clicked()) {
  5105. setTargetHotend(HotendTempBckp, active_extruder);
  5106. lcd_wait_for_heater();
  5107. wait_for_user_state = 2;
  5108. }
  5109. break;
  5110. case 2:
  5111. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5112. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5113. waiting_start_time = millis();
  5114. wait_for_user_state = 0;
  5115. }
  5116. else {
  5117. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5118. lcd.setCursor(1, 4);
  5119. lcd.print(ftostr3(degHotend(active_extruder)));
  5120. }
  5121. break;
  5122. }
  5123. }
  5124. WRITE(BEEPER, LOW);
  5125. lcd_change_fil_state = 0;
  5126. // Unload filament
  5127. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5128. KEEPALIVE_STATE(IN_HANDLER);
  5129. custom_message = true;
  5130. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5131. if (code_seen('L'))
  5132. {
  5133. target[E_AXIS] += code_value();
  5134. }
  5135. else
  5136. {
  5137. #ifdef SNMM
  5138. #else
  5139. #ifdef FILAMENTCHANGE_FINALRETRACT
  5140. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5141. #endif
  5142. #endif // SNMM
  5143. }
  5144. #ifdef SNMM
  5145. target[E_AXIS] += 12;
  5146. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5147. target[E_AXIS] += 6;
  5148. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5149. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5150. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5151. st_synchronize();
  5152. target[E_AXIS] += (FIL_COOLING);
  5153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5154. target[E_AXIS] += (FIL_COOLING*-1);
  5155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5156. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5158. st_synchronize();
  5159. #else
  5160. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5161. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5162. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5163. st_synchronize();
  5164. #ifdef TMC2130
  5165. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5166. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5167. #else
  5168. digipot_current(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5169. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5170. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5171. #endif //TMC2130
  5172. target[E_AXIS] -= 45;
  5173. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5174. st_synchronize();
  5175. target[E_AXIS] -= 15;
  5176. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5177. st_synchronize();
  5178. target[E_AXIS] -= 20;
  5179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5180. st_synchronize();
  5181. #ifdef TMC2130
  5182. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5183. #else
  5184. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5185. if(silentMode) digipot_current(2, tmp_motor[2]); //set E back to normal operation currents
  5186. else digipot_current(2, tmp_motor_loud[2]);
  5187. #endif //TMC2130
  5188. #endif // SNMM
  5189. //finish moves
  5190. st_synchronize();
  5191. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5192. //disable extruder steppers so filament can be removed
  5193. disable_e0();
  5194. disable_e1();
  5195. disable_e2();
  5196. delay(100);
  5197. WRITE(BEEPER, HIGH);
  5198. counterBeep = 0;
  5199. while(!lcd_clicked() && (counterBeep < 50)) {
  5200. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5201. delay_keep_alive(100);
  5202. counterBeep++;
  5203. }
  5204. WRITE(BEEPER, LOW);
  5205. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5206. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5207. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5208. //lcd_return_to_status();
  5209. lcd_update_enable(true);
  5210. //Wait for user to insert filament
  5211. lcd_wait_interact();
  5212. //load_filament_time = millis();
  5213. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5214. #ifdef PAT9125
  5215. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5216. #endif //PAT9125
  5217. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5218. while(!lcd_clicked())
  5219. {
  5220. manage_heater();
  5221. manage_inactivity(true);
  5222. #ifdef PAT9125
  5223. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5224. {
  5225. tone(BEEPER, 1000);
  5226. delay_keep_alive(50);
  5227. noTone(BEEPER);
  5228. break;
  5229. }
  5230. #endif //PAT9125
  5231. /*#ifdef SNMM
  5232. target[E_AXIS] += 0.002;
  5233. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5234. #endif // SNMM*/
  5235. }
  5236. #ifdef PAT9125
  5237. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5238. #endif //PAT9125
  5239. //WRITE(BEEPER, LOW);
  5240. KEEPALIVE_STATE(IN_HANDLER);
  5241. #ifdef SNMM
  5242. display_loading();
  5243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5244. do {
  5245. target[E_AXIS] += 0.002;
  5246. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5247. delay_keep_alive(2);
  5248. } while (!lcd_clicked());
  5249. KEEPALIVE_STATE(IN_HANDLER);
  5250. /*if (millis() - load_filament_time > 2) {
  5251. load_filament_time = millis();
  5252. target[E_AXIS] += 0.001;
  5253. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5254. }*/
  5255. //Filament inserted
  5256. //Feed the filament to the end of nozzle quickly
  5257. st_synchronize();
  5258. target[E_AXIS] += bowden_length[snmm_extruder];
  5259. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5260. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5261. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5262. target[E_AXIS] += 40;
  5263. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5264. target[E_AXIS] += 10;
  5265. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5266. #else
  5267. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5268. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5269. #endif // SNMM
  5270. //Extrude some filament
  5271. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5272. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5273. //Wait for user to check the state
  5274. lcd_change_fil_state = 0;
  5275. lcd_loading_filament();
  5276. tone(BEEPER, 500);
  5277. delay_keep_alive(50);
  5278. noTone(BEEPER);
  5279. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5280. lcd_change_fil_state = 0;
  5281. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5282. lcd_alright();
  5283. KEEPALIVE_STATE(IN_HANDLER);
  5284. switch(lcd_change_fil_state){
  5285. // Filament failed to load so load it again
  5286. case 2:
  5287. #ifdef SNMM
  5288. display_loading();
  5289. do {
  5290. target[E_AXIS] += 0.002;
  5291. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5292. delay_keep_alive(2);
  5293. } while (!lcd_clicked());
  5294. st_synchronize();
  5295. target[E_AXIS] += bowden_length[snmm_extruder];
  5296. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5297. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5298. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5299. target[E_AXIS] += 40;
  5300. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5301. target[E_AXIS] += 10;
  5302. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5303. #else
  5304. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5305. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5306. #endif
  5307. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5308. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5309. lcd_loading_filament();
  5310. break;
  5311. // Filament loaded properly but color is not clear
  5312. case 3:
  5313. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5314. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5315. lcd_loading_color();
  5316. break;
  5317. // Everything good
  5318. default:
  5319. lcd_change_success();
  5320. lcd_update_enable(true);
  5321. break;
  5322. }
  5323. }
  5324. //Not let's go back to print
  5325. fanSpeed = fanSpeedBckp;
  5326. //Feed a little of filament to stabilize pressure
  5327. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5328. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5329. //Retract
  5330. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5331. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5332. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5333. //Move XY back
  5334. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5335. //Move Z back
  5336. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5337. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5338. //Unretract
  5339. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5340. //Set E position to original
  5341. plan_set_e_position(lastpos[E_AXIS]);
  5342. //Recover feed rate
  5343. feedmultiply=feedmultiplyBckp;
  5344. char cmd[9];
  5345. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5346. enquecommand(cmd);
  5347. lcd_setstatuspgm(WELCOME_MSG);
  5348. custom_message = false;
  5349. custom_message_type = 0;
  5350. #ifdef PAT9125
  5351. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5352. if (fsensor_M600)
  5353. {
  5354. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5355. st_synchronize();
  5356. while (!is_buffer_empty())
  5357. {
  5358. process_commands();
  5359. cmdqueue_pop_front();
  5360. }
  5361. fsensor_enable();
  5362. fsensor_restore_print_and_continue();
  5363. }
  5364. #endif //PAT9125
  5365. }
  5366. break;
  5367. #endif //FILAMENTCHANGEENABLE
  5368. case 601: {
  5369. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5370. }
  5371. break;
  5372. case 602: {
  5373. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5374. }
  5375. break;
  5376. #ifdef LIN_ADVANCE
  5377. case 900: // M900: Set LIN_ADVANCE options.
  5378. gcode_M900();
  5379. break;
  5380. #endif
  5381. case 907: // M907 Set digital trimpot motor current using axis codes.
  5382. {
  5383. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5384. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5385. if(code_seen('B')) digipot_current(4,code_value());
  5386. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5387. #endif
  5388. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5389. if(code_seen('X')) digipot_current(0, code_value());
  5390. #endif
  5391. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5392. if(code_seen('Z')) digipot_current(1, code_value());
  5393. #endif
  5394. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5395. if(code_seen('E')) digipot_current(2, code_value());
  5396. #endif
  5397. #ifdef DIGIPOT_I2C
  5398. // this one uses actual amps in floating point
  5399. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5400. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5401. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5402. #endif
  5403. }
  5404. break;
  5405. case 908: // M908 Control digital trimpot directly.
  5406. {
  5407. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5408. uint8_t channel,current;
  5409. if(code_seen('P')) channel=code_value();
  5410. if(code_seen('S')) current=code_value();
  5411. digitalPotWrite(channel, current);
  5412. #endif
  5413. }
  5414. break;
  5415. #ifdef TMC2130
  5416. case 910: // M910 TMC2130 init
  5417. {
  5418. tmc2130_init();
  5419. }
  5420. break;
  5421. case 911: // M911 Set TMC2130 holding currents
  5422. {
  5423. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5424. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5425. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5426. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5427. }
  5428. break;
  5429. case 912: // M912 Set TMC2130 running currents
  5430. {
  5431. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5432. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5433. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5434. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5435. }
  5436. break;
  5437. case 913: // M913 Print TMC2130 currents
  5438. {
  5439. tmc2130_print_currents();
  5440. }
  5441. break;
  5442. case 914: // M914 Set normal mode
  5443. {
  5444. tmc2130_mode = TMC2130_MODE_NORMAL;
  5445. tmc2130_init();
  5446. }
  5447. break;
  5448. case 915: // M915 Set silent mode
  5449. {
  5450. tmc2130_mode = TMC2130_MODE_SILENT;
  5451. tmc2130_init();
  5452. }
  5453. break;
  5454. case 916: // M916 Set sg_thrs
  5455. {
  5456. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5457. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5458. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5459. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5460. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5461. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5462. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5463. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5464. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5465. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5466. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5467. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5468. }
  5469. break;
  5470. case 917: // M917 Set TMC2130 pwm_ampl
  5471. {
  5472. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5473. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5474. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5475. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5476. }
  5477. break;
  5478. case 918: // M918 Set TMC2130 pwm_grad
  5479. {
  5480. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5481. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5482. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5483. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5484. }
  5485. break;
  5486. #endif //TMC2130
  5487. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5488. {
  5489. #ifdef TMC2130
  5490. if(code_seen('E'))
  5491. {
  5492. uint16_t res_new = code_value();
  5493. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5494. {
  5495. st_synchronize();
  5496. uint8_t axis = E_AXIS;
  5497. uint16_t res = tmc2130_get_res(axis);
  5498. tmc2130_set_res(axis, res_new);
  5499. if (res_new > res)
  5500. {
  5501. uint16_t fac = (res_new / res);
  5502. axis_steps_per_unit[axis] *= fac;
  5503. position[E_AXIS] *= fac;
  5504. }
  5505. else
  5506. {
  5507. uint16_t fac = (res / res_new);
  5508. axis_steps_per_unit[axis] /= fac;
  5509. position[E_AXIS] /= fac;
  5510. }
  5511. }
  5512. }
  5513. #else //TMC2130
  5514. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5515. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5516. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5517. if(code_seen('B')) microstep_mode(4,code_value());
  5518. microstep_readings();
  5519. #endif
  5520. #endif //TMC2130
  5521. }
  5522. break;
  5523. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5524. {
  5525. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5526. if(code_seen('S')) switch((int)code_value())
  5527. {
  5528. case 1:
  5529. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5530. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5531. break;
  5532. case 2:
  5533. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5534. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5535. break;
  5536. }
  5537. microstep_readings();
  5538. #endif
  5539. }
  5540. break;
  5541. case 701: //M701: load filament
  5542. {
  5543. gcode_M701();
  5544. }
  5545. break;
  5546. case 702:
  5547. {
  5548. #ifdef SNMM
  5549. if (code_seen('U')) {
  5550. extr_unload_used(); //unload all filaments which were used in current print
  5551. }
  5552. else if (code_seen('C')) {
  5553. extr_unload(); //unload just current filament
  5554. }
  5555. else {
  5556. extr_unload_all(); //unload all filaments
  5557. }
  5558. #else
  5559. #ifdef PAT9125
  5560. bool old_fsensor_enabled = fsensor_enabled;
  5561. fsensor_enabled = false;
  5562. #endif //PAT9125
  5563. custom_message = true;
  5564. custom_message_type = 2;
  5565. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5566. // extr_unload2();
  5567. current_position[E_AXIS] -= 45;
  5568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5569. st_synchronize();
  5570. current_position[E_AXIS] -= 15;
  5571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5572. st_synchronize();
  5573. current_position[E_AXIS] -= 20;
  5574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5575. st_synchronize();
  5576. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5577. //disable extruder steppers so filament can be removed
  5578. disable_e0();
  5579. disable_e1();
  5580. disable_e2();
  5581. delay(100);
  5582. WRITE(BEEPER, HIGH);
  5583. uint8_t counterBeep = 0;
  5584. while (!lcd_clicked() && (counterBeep < 50)) {
  5585. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5586. delay_keep_alive(100);
  5587. counterBeep++;
  5588. }
  5589. WRITE(BEEPER, LOW);
  5590. st_synchronize();
  5591. while (lcd_clicked()) delay_keep_alive(100);
  5592. lcd_update_enable(true);
  5593. lcd_setstatuspgm(WELCOME_MSG);
  5594. custom_message = false;
  5595. custom_message_type = 0;
  5596. #ifdef PAT9125
  5597. fsensor_enabled = old_fsensor_enabled;
  5598. #endif //PAT9125
  5599. #endif
  5600. }
  5601. break;
  5602. case 999: // M999: Restart after being stopped
  5603. Stopped = false;
  5604. lcd_reset_alert_level();
  5605. gcode_LastN = Stopped_gcode_LastN;
  5606. FlushSerialRequestResend();
  5607. break;
  5608. default:
  5609. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5610. }
  5611. } // end if(code_seen('M')) (end of M codes)
  5612. else if(code_seen('T'))
  5613. {
  5614. int index;
  5615. st_synchronize();
  5616. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5617. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5618. SERIAL_ECHOLNPGM("Invalid T code.");
  5619. }
  5620. else {
  5621. if (*(strchr_pointer + index) == '?') {
  5622. tmp_extruder = choose_extruder_menu();
  5623. }
  5624. else {
  5625. tmp_extruder = code_value();
  5626. }
  5627. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5628. #ifdef SNMM
  5629. #ifdef LIN_ADVANCE
  5630. if (snmm_extruder != tmp_extruder)
  5631. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5632. #endif
  5633. snmm_extruder = tmp_extruder;
  5634. delay(100);
  5635. disable_e0();
  5636. disable_e1();
  5637. disable_e2();
  5638. pinMode(E_MUX0_PIN, OUTPUT);
  5639. pinMode(E_MUX1_PIN, OUTPUT);
  5640. pinMode(E_MUX2_PIN, OUTPUT);
  5641. delay(100);
  5642. SERIAL_ECHO_START;
  5643. SERIAL_ECHO("T:");
  5644. SERIAL_ECHOLN((int)tmp_extruder);
  5645. switch (tmp_extruder) {
  5646. case 1:
  5647. WRITE(E_MUX0_PIN, HIGH);
  5648. WRITE(E_MUX1_PIN, LOW);
  5649. WRITE(E_MUX2_PIN, LOW);
  5650. break;
  5651. case 2:
  5652. WRITE(E_MUX0_PIN, LOW);
  5653. WRITE(E_MUX1_PIN, HIGH);
  5654. WRITE(E_MUX2_PIN, LOW);
  5655. break;
  5656. case 3:
  5657. WRITE(E_MUX0_PIN, HIGH);
  5658. WRITE(E_MUX1_PIN, HIGH);
  5659. WRITE(E_MUX2_PIN, LOW);
  5660. break;
  5661. default:
  5662. WRITE(E_MUX0_PIN, LOW);
  5663. WRITE(E_MUX1_PIN, LOW);
  5664. WRITE(E_MUX2_PIN, LOW);
  5665. break;
  5666. }
  5667. delay(100);
  5668. #else
  5669. if (tmp_extruder >= EXTRUDERS) {
  5670. SERIAL_ECHO_START;
  5671. SERIAL_ECHOPGM("T");
  5672. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5673. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5674. }
  5675. else {
  5676. boolean make_move = false;
  5677. if (code_seen('F')) {
  5678. make_move = true;
  5679. next_feedrate = code_value();
  5680. if (next_feedrate > 0.0) {
  5681. feedrate = next_feedrate;
  5682. }
  5683. }
  5684. #if EXTRUDERS > 1
  5685. if (tmp_extruder != active_extruder) {
  5686. // Save current position to return to after applying extruder offset
  5687. memcpy(destination, current_position, sizeof(destination));
  5688. // Offset extruder (only by XY)
  5689. int i;
  5690. for (i = 0; i < 2; i++) {
  5691. current_position[i] = current_position[i] -
  5692. extruder_offset[i][active_extruder] +
  5693. extruder_offset[i][tmp_extruder];
  5694. }
  5695. // Set the new active extruder and position
  5696. active_extruder = tmp_extruder;
  5697. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5698. // Move to the old position if 'F' was in the parameters
  5699. if (make_move && Stopped == false) {
  5700. prepare_move();
  5701. }
  5702. }
  5703. #endif
  5704. SERIAL_ECHO_START;
  5705. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5706. SERIAL_PROTOCOLLN((int)active_extruder);
  5707. }
  5708. #endif
  5709. }
  5710. } // end if(code_seen('T')) (end of T codes)
  5711. #ifdef DEBUG_DCODES
  5712. else if (code_seen('D')) // D codes (debug)
  5713. {
  5714. switch((int)code_value())
  5715. {
  5716. case -1: // D-1 - Endless loop
  5717. dcode__1(); break;
  5718. case 0: // D0 - Reset
  5719. dcode_0(); break;
  5720. case 1: // D1 - Clear EEPROM
  5721. dcode_1(); break;
  5722. case 2: // D2 - Read/Write RAM
  5723. dcode_2(); break;
  5724. case 3: // D3 - Read/Write EEPROM
  5725. dcode_3(); break;
  5726. case 4: // D4 - Read/Write PIN
  5727. dcode_4(); break;
  5728. case 5: // D5 - Read/Write FLASH
  5729. // dcode_5(); break;
  5730. break;
  5731. case 6: // D6 - Read/Write external FLASH
  5732. dcode_6(); break;
  5733. case 7: // D7 - Read/Write Bootloader
  5734. dcode_7(); break;
  5735. case 8: // D8 - Read/Write PINDA
  5736. dcode_8(); break;
  5737. case 9: // D9 - Read/Write ADC
  5738. dcode_9(); break;
  5739. case 10: // D10 - XYZ calibration = OK
  5740. dcode_10(); break;
  5741. #ifdef TMC2130
  5742. case 2130: // D9125 - TMC2130
  5743. dcode_2130(); break;
  5744. #endif //TMC2130
  5745. #ifdef PAT9125
  5746. case 9125: // D9125 - PAT9125
  5747. dcode_9125(); break;
  5748. #endif //PAT9125
  5749. }
  5750. }
  5751. #endif //DEBUG_DCODES
  5752. else
  5753. {
  5754. SERIAL_ECHO_START;
  5755. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5756. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5757. SERIAL_ECHOLNPGM("\"(2)");
  5758. }
  5759. KEEPALIVE_STATE(NOT_BUSY);
  5760. ClearToSend();
  5761. }
  5762. void FlushSerialRequestResend()
  5763. {
  5764. //char cmdbuffer[bufindr][100]="Resend:";
  5765. MYSERIAL.flush();
  5766. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5767. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5768. previous_millis_cmd = millis();
  5769. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5770. }
  5771. // Confirm the execution of a command, if sent from a serial line.
  5772. // Execution of a command from a SD card will not be confirmed.
  5773. void ClearToSend()
  5774. {
  5775. previous_millis_cmd = millis();
  5776. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5777. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5778. }
  5779. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5780. void update_currents() {
  5781. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5782. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5783. float tmp_motor[3];
  5784. //SERIAL_ECHOLNPGM("Currents updated: ");
  5785. if (destination[Z_AXIS] < Z_SILENT) {
  5786. //SERIAL_ECHOLNPGM("LOW");
  5787. for (uint8_t i = 0; i < 3; i++) {
  5788. digipot_current(i, current_low[i]);
  5789. /*MYSERIAL.print(int(i));
  5790. SERIAL_ECHOPGM(": ");
  5791. MYSERIAL.println(current_low[i]);*/
  5792. }
  5793. }
  5794. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5795. //SERIAL_ECHOLNPGM("HIGH");
  5796. for (uint8_t i = 0; i < 3; i++) {
  5797. digipot_current(i, current_high[i]);
  5798. /*MYSERIAL.print(int(i));
  5799. SERIAL_ECHOPGM(": ");
  5800. MYSERIAL.println(current_high[i]);*/
  5801. }
  5802. }
  5803. else {
  5804. for (uint8_t i = 0; i < 3; i++) {
  5805. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5806. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5807. digipot_current(i, tmp_motor[i]);
  5808. /*MYSERIAL.print(int(i));
  5809. SERIAL_ECHOPGM(": ");
  5810. MYSERIAL.println(tmp_motor[i]);*/
  5811. }
  5812. }
  5813. }
  5814. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5815. void get_coordinates()
  5816. {
  5817. bool seen[4]={false,false,false,false};
  5818. for(int8_t i=0; i < NUM_AXIS; i++) {
  5819. if(code_seen(axis_codes[i]))
  5820. {
  5821. bool relative = axis_relative_modes[i] || relative_mode;
  5822. destination[i] = (float)code_value();
  5823. if (i == E_AXIS) {
  5824. float emult = extruder_multiplier[active_extruder];
  5825. if (emult != 1.) {
  5826. if (! relative) {
  5827. destination[i] -= current_position[i];
  5828. relative = true;
  5829. }
  5830. destination[i] *= emult;
  5831. }
  5832. }
  5833. if (relative)
  5834. destination[i] += current_position[i];
  5835. seen[i]=true;
  5836. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5837. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5838. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5839. }
  5840. else destination[i] = current_position[i]; //Are these else lines really needed?
  5841. }
  5842. if(code_seen('F')) {
  5843. next_feedrate = code_value();
  5844. #ifdef MAX_SILENT_FEEDRATE
  5845. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5846. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5847. #endif //MAX_SILENT_FEEDRATE
  5848. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5849. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  5850. {
  5851. // float e_max_speed =
  5852. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  5853. }
  5854. }
  5855. }
  5856. void get_arc_coordinates()
  5857. {
  5858. #ifdef SF_ARC_FIX
  5859. bool relative_mode_backup = relative_mode;
  5860. relative_mode = true;
  5861. #endif
  5862. get_coordinates();
  5863. #ifdef SF_ARC_FIX
  5864. relative_mode=relative_mode_backup;
  5865. #endif
  5866. if(code_seen('I')) {
  5867. offset[0] = code_value();
  5868. }
  5869. else {
  5870. offset[0] = 0.0;
  5871. }
  5872. if(code_seen('J')) {
  5873. offset[1] = code_value();
  5874. }
  5875. else {
  5876. offset[1] = 0.0;
  5877. }
  5878. }
  5879. void clamp_to_software_endstops(float target[3])
  5880. {
  5881. #ifdef DEBUG_DISABLE_SWLIMITS
  5882. return;
  5883. #endif //DEBUG_DISABLE_SWLIMITS
  5884. world2machine_clamp(target[0], target[1]);
  5885. // Clamp the Z coordinate.
  5886. if (min_software_endstops) {
  5887. float negative_z_offset = 0;
  5888. #ifdef ENABLE_AUTO_BED_LEVELING
  5889. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5890. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5891. #endif
  5892. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5893. }
  5894. if (max_software_endstops) {
  5895. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5896. }
  5897. }
  5898. #ifdef MESH_BED_LEVELING
  5899. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5900. float dx = x - current_position[X_AXIS];
  5901. float dy = y - current_position[Y_AXIS];
  5902. float dz = z - current_position[Z_AXIS];
  5903. int n_segments = 0;
  5904. if (mbl.active) {
  5905. float len = abs(dx) + abs(dy);
  5906. if (len > 0)
  5907. // Split to 3cm segments or shorter.
  5908. n_segments = int(ceil(len / 30.f));
  5909. }
  5910. if (n_segments > 1) {
  5911. float de = e - current_position[E_AXIS];
  5912. for (int i = 1; i < n_segments; ++ i) {
  5913. float t = float(i) / float(n_segments);
  5914. plan_buffer_line(
  5915. current_position[X_AXIS] + t * dx,
  5916. current_position[Y_AXIS] + t * dy,
  5917. current_position[Z_AXIS] + t * dz,
  5918. current_position[E_AXIS] + t * de,
  5919. feed_rate, extruder);
  5920. }
  5921. }
  5922. // The rest of the path.
  5923. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5924. current_position[X_AXIS] = x;
  5925. current_position[Y_AXIS] = y;
  5926. current_position[Z_AXIS] = z;
  5927. current_position[E_AXIS] = e;
  5928. }
  5929. #endif // MESH_BED_LEVELING
  5930. void prepare_move()
  5931. {
  5932. clamp_to_software_endstops(destination);
  5933. previous_millis_cmd = millis();
  5934. // Do not use feedmultiply for E or Z only moves
  5935. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5937. }
  5938. else {
  5939. #ifdef MESH_BED_LEVELING
  5940. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5941. #else
  5942. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5943. #endif
  5944. }
  5945. for(int8_t i=0; i < NUM_AXIS; i++) {
  5946. current_position[i] = destination[i];
  5947. }
  5948. }
  5949. void prepare_arc_move(char isclockwise) {
  5950. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5951. // Trace the arc
  5952. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5953. // As far as the parser is concerned, the position is now == target. In reality the
  5954. // motion control system might still be processing the action and the real tool position
  5955. // in any intermediate location.
  5956. for(int8_t i=0; i < NUM_AXIS; i++) {
  5957. current_position[i] = destination[i];
  5958. }
  5959. previous_millis_cmd = millis();
  5960. }
  5961. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5962. #if defined(FAN_PIN)
  5963. #if CONTROLLERFAN_PIN == FAN_PIN
  5964. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5965. #endif
  5966. #endif
  5967. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5968. unsigned long lastMotorCheck = 0;
  5969. void controllerFan()
  5970. {
  5971. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5972. {
  5973. lastMotorCheck = millis();
  5974. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5975. #if EXTRUDERS > 2
  5976. || !READ(E2_ENABLE_PIN)
  5977. #endif
  5978. #if EXTRUDER > 1
  5979. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5980. || !READ(X2_ENABLE_PIN)
  5981. #endif
  5982. || !READ(E1_ENABLE_PIN)
  5983. #endif
  5984. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5985. {
  5986. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5987. }
  5988. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5989. {
  5990. digitalWrite(CONTROLLERFAN_PIN, 0);
  5991. analogWrite(CONTROLLERFAN_PIN, 0);
  5992. }
  5993. else
  5994. {
  5995. // allows digital or PWM fan output to be used (see M42 handling)
  5996. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5997. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5998. }
  5999. }
  6000. }
  6001. #endif
  6002. #ifdef TEMP_STAT_LEDS
  6003. static bool blue_led = false;
  6004. static bool red_led = false;
  6005. static uint32_t stat_update = 0;
  6006. void handle_status_leds(void) {
  6007. float max_temp = 0.0;
  6008. if(millis() > stat_update) {
  6009. stat_update += 500; // Update every 0.5s
  6010. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6011. max_temp = max(max_temp, degHotend(cur_extruder));
  6012. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6013. }
  6014. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6015. max_temp = max(max_temp, degTargetBed());
  6016. max_temp = max(max_temp, degBed());
  6017. #endif
  6018. if((max_temp > 55.0) && (red_led == false)) {
  6019. digitalWrite(STAT_LED_RED, 1);
  6020. digitalWrite(STAT_LED_BLUE, 0);
  6021. red_led = true;
  6022. blue_led = false;
  6023. }
  6024. if((max_temp < 54.0) && (blue_led == false)) {
  6025. digitalWrite(STAT_LED_RED, 0);
  6026. digitalWrite(STAT_LED_BLUE, 1);
  6027. red_led = false;
  6028. blue_led = true;
  6029. }
  6030. }
  6031. }
  6032. #endif
  6033. #ifdef SAFETYTIMER
  6034. /**
  6035. * @brief Turn off heating after 15 minutes of inactivity
  6036. */
  6037. static void handleSafetyTimer()
  6038. {
  6039. #if (EXTRUDERS > 1)
  6040. #error Implemented only for one extruder.
  6041. #endif //(EXTRUDERS > 1)
  6042. static Timer safetyTimer;
  6043. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  6044. (!degTargetBed() && !degTargetHotend(0)))
  6045. {
  6046. safetyTimer.stop();
  6047. }
  6048. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6049. {
  6050. safetyTimer.start();
  6051. }
  6052. else if (safetyTimer.expired(15*60*1000))
  6053. {
  6054. setTargetBed(0);
  6055. setTargetHotend(0, 0);
  6056. }
  6057. }
  6058. #endif //SAFETYTIMER
  6059. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6060. {
  6061. #ifdef PAT9125
  6062. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6063. {
  6064. if (fsensor_autoload_enabled)
  6065. {
  6066. if (fsensor_check_autoload())
  6067. {
  6068. if (degHotend0() > EXTRUDE_MINTEMP)
  6069. {
  6070. fsensor_autoload_check_stop();
  6071. tone(BEEPER, 1000);
  6072. delay_keep_alive(50);
  6073. noTone(BEEPER);
  6074. loading_flag = true;
  6075. enquecommand_front_P((PSTR("M701")));
  6076. }
  6077. else
  6078. {
  6079. lcd_update_enable(false);
  6080. lcd_implementation_clear();
  6081. lcd.setCursor(0, 0);
  6082. lcd_printPGM(MSG_ERROR);
  6083. lcd.setCursor(0, 2);
  6084. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6085. delay(2000);
  6086. lcd_implementation_clear();
  6087. lcd_update_enable(true);
  6088. }
  6089. }
  6090. }
  6091. else
  6092. fsensor_autoload_check_start();
  6093. }
  6094. else
  6095. if (fsensor_autoload_enabled)
  6096. fsensor_autoload_check_stop();
  6097. #endif //PAT9125
  6098. #ifdef SAFETYTIMER
  6099. handleSafetyTimer();
  6100. #endif //SAFETYTIMER
  6101. #ifdef SAFETYTIMER
  6102. handleSafetyTimer();
  6103. #endif //SAFETYTIMER
  6104. #if defined(KILL_PIN) && KILL_PIN > -1
  6105. static int killCount = 0; // make the inactivity button a bit less responsive
  6106. const int KILL_DELAY = 10000;
  6107. #endif
  6108. if(buflen < (BUFSIZE-1)){
  6109. get_command();
  6110. }
  6111. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6112. if(max_inactive_time)
  6113. kill("", 4);
  6114. if(stepper_inactive_time) {
  6115. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6116. {
  6117. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6118. disable_x();
  6119. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6120. disable_y();
  6121. disable_z();
  6122. disable_e0();
  6123. disable_e1();
  6124. disable_e2();
  6125. }
  6126. }
  6127. }
  6128. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6129. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6130. {
  6131. chdkActive = false;
  6132. WRITE(CHDK, LOW);
  6133. }
  6134. #endif
  6135. #if defined(KILL_PIN) && KILL_PIN > -1
  6136. // Check if the kill button was pressed and wait just in case it was an accidental
  6137. // key kill key press
  6138. // -------------------------------------------------------------------------------
  6139. if( 0 == READ(KILL_PIN) )
  6140. {
  6141. killCount++;
  6142. }
  6143. else if (killCount > 0)
  6144. {
  6145. killCount--;
  6146. }
  6147. // Exceeded threshold and we can confirm that it was not accidental
  6148. // KILL the machine
  6149. // ----------------------------------------------------------------
  6150. if ( killCount >= KILL_DELAY)
  6151. {
  6152. kill("", 5);
  6153. }
  6154. #endif
  6155. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6156. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6157. #endif
  6158. #ifdef EXTRUDER_RUNOUT_PREVENT
  6159. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6160. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6161. {
  6162. bool oldstatus=READ(E0_ENABLE_PIN);
  6163. enable_e0();
  6164. float oldepos=current_position[E_AXIS];
  6165. float oldedes=destination[E_AXIS];
  6166. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6167. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6168. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6169. current_position[E_AXIS]=oldepos;
  6170. destination[E_AXIS]=oldedes;
  6171. plan_set_e_position(oldepos);
  6172. previous_millis_cmd=millis();
  6173. st_synchronize();
  6174. WRITE(E0_ENABLE_PIN,oldstatus);
  6175. }
  6176. #endif
  6177. #ifdef TEMP_STAT_LEDS
  6178. handle_status_leds();
  6179. #endif
  6180. check_axes_activity();
  6181. }
  6182. void kill(const char *full_screen_message, unsigned char id)
  6183. {
  6184. SERIAL_ECHOPGM("KILL: ");
  6185. MYSERIAL.println(int(id));
  6186. //return;
  6187. cli(); // Stop interrupts
  6188. disable_heater();
  6189. disable_x();
  6190. // SERIAL_ECHOLNPGM("kill - disable Y");
  6191. disable_y();
  6192. disable_z();
  6193. disable_e0();
  6194. disable_e1();
  6195. disable_e2();
  6196. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6197. pinMode(PS_ON_PIN,INPUT);
  6198. #endif
  6199. SERIAL_ERROR_START;
  6200. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6201. if (full_screen_message != NULL) {
  6202. SERIAL_ERRORLNRPGM(full_screen_message);
  6203. lcd_display_message_fullscreen_P(full_screen_message);
  6204. } else {
  6205. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6206. }
  6207. // FMC small patch to update the LCD before ending
  6208. sei(); // enable interrupts
  6209. for ( int i=5; i--; lcd_update())
  6210. {
  6211. delay(200);
  6212. }
  6213. cli(); // disable interrupts
  6214. suicide();
  6215. while(1)
  6216. {
  6217. #ifdef WATCHDOG
  6218. wdt_reset();
  6219. #endif //WATCHDOG
  6220. /* Intentionally left empty */
  6221. } // Wait for reset
  6222. }
  6223. void Stop()
  6224. {
  6225. disable_heater();
  6226. if(Stopped == false) {
  6227. Stopped = true;
  6228. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6229. SERIAL_ERROR_START;
  6230. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6231. LCD_MESSAGERPGM(MSG_STOPPED);
  6232. }
  6233. }
  6234. bool IsStopped() { return Stopped; };
  6235. #ifdef FAST_PWM_FAN
  6236. void setPwmFrequency(uint8_t pin, int val)
  6237. {
  6238. val &= 0x07;
  6239. switch(digitalPinToTimer(pin))
  6240. {
  6241. #if defined(TCCR0A)
  6242. case TIMER0A:
  6243. case TIMER0B:
  6244. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6245. // TCCR0B |= val;
  6246. break;
  6247. #endif
  6248. #if defined(TCCR1A)
  6249. case TIMER1A:
  6250. case TIMER1B:
  6251. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6252. // TCCR1B |= val;
  6253. break;
  6254. #endif
  6255. #if defined(TCCR2)
  6256. case TIMER2:
  6257. case TIMER2:
  6258. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6259. TCCR2 |= val;
  6260. break;
  6261. #endif
  6262. #if defined(TCCR2A)
  6263. case TIMER2A:
  6264. case TIMER2B:
  6265. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6266. TCCR2B |= val;
  6267. break;
  6268. #endif
  6269. #if defined(TCCR3A)
  6270. case TIMER3A:
  6271. case TIMER3B:
  6272. case TIMER3C:
  6273. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6274. TCCR3B |= val;
  6275. break;
  6276. #endif
  6277. #if defined(TCCR4A)
  6278. case TIMER4A:
  6279. case TIMER4B:
  6280. case TIMER4C:
  6281. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6282. TCCR4B |= val;
  6283. break;
  6284. #endif
  6285. #if defined(TCCR5A)
  6286. case TIMER5A:
  6287. case TIMER5B:
  6288. case TIMER5C:
  6289. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6290. TCCR5B |= val;
  6291. break;
  6292. #endif
  6293. }
  6294. }
  6295. #endif //FAST_PWM_FAN
  6296. bool setTargetedHotend(int code){
  6297. tmp_extruder = active_extruder;
  6298. if(code_seen('T')) {
  6299. tmp_extruder = code_value();
  6300. if(tmp_extruder >= EXTRUDERS) {
  6301. SERIAL_ECHO_START;
  6302. switch(code){
  6303. case 104:
  6304. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6305. break;
  6306. case 105:
  6307. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6308. break;
  6309. case 109:
  6310. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6311. break;
  6312. case 218:
  6313. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6314. break;
  6315. case 221:
  6316. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6317. break;
  6318. }
  6319. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6320. return true;
  6321. }
  6322. }
  6323. return false;
  6324. }
  6325. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6326. {
  6327. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6328. {
  6329. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6330. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6331. }
  6332. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6333. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6334. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6335. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6336. total_filament_used = 0;
  6337. }
  6338. float calculate_extruder_multiplier(float diameter) {
  6339. float out = 1.f;
  6340. if (volumetric_enabled && diameter > 0.f) {
  6341. float area = M_PI * diameter * diameter * 0.25;
  6342. out = 1.f / area;
  6343. }
  6344. if (extrudemultiply != 100)
  6345. out *= float(extrudemultiply) * 0.01f;
  6346. return out;
  6347. }
  6348. void calculate_extruder_multipliers() {
  6349. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6350. #if EXTRUDERS > 1
  6351. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6352. #if EXTRUDERS > 2
  6353. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6354. #endif
  6355. #endif
  6356. }
  6357. void delay_keep_alive(unsigned int ms)
  6358. {
  6359. for (;;) {
  6360. manage_heater();
  6361. // Manage inactivity, but don't disable steppers on timeout.
  6362. manage_inactivity(true);
  6363. lcd_update();
  6364. if (ms == 0)
  6365. break;
  6366. else if (ms >= 50) {
  6367. delay(50);
  6368. ms -= 50;
  6369. } else {
  6370. delay(ms);
  6371. ms = 0;
  6372. }
  6373. }
  6374. }
  6375. void wait_for_heater(long codenum) {
  6376. #ifdef TEMP_RESIDENCY_TIME
  6377. long residencyStart;
  6378. residencyStart = -1;
  6379. /* continue to loop until we have reached the target temp
  6380. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6381. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6382. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6383. #else
  6384. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6385. #endif //TEMP_RESIDENCY_TIME
  6386. if ((millis() - codenum) > 1000UL)
  6387. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6388. if (!farm_mode) {
  6389. SERIAL_PROTOCOLPGM("T:");
  6390. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6391. SERIAL_PROTOCOLPGM(" E:");
  6392. SERIAL_PROTOCOL((int)tmp_extruder);
  6393. #ifdef TEMP_RESIDENCY_TIME
  6394. SERIAL_PROTOCOLPGM(" W:");
  6395. if (residencyStart > -1)
  6396. {
  6397. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6398. SERIAL_PROTOCOLLN(codenum);
  6399. }
  6400. else
  6401. {
  6402. SERIAL_PROTOCOLLN("?");
  6403. }
  6404. }
  6405. #else
  6406. SERIAL_PROTOCOLLN("");
  6407. #endif
  6408. codenum = millis();
  6409. }
  6410. manage_heater();
  6411. manage_inactivity();
  6412. lcd_update();
  6413. #ifdef TEMP_RESIDENCY_TIME
  6414. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6415. or when current temp falls outside the hysteresis after target temp was reached */
  6416. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6417. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6418. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6419. {
  6420. residencyStart = millis();
  6421. }
  6422. #endif //TEMP_RESIDENCY_TIME
  6423. }
  6424. }
  6425. void check_babystep() {
  6426. int babystep_z;
  6427. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6428. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6429. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6430. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6431. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6432. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6433. lcd_update_enable(true);
  6434. }
  6435. }
  6436. #ifdef DIS
  6437. void d_setup()
  6438. {
  6439. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6440. pinMode(D_DATA, INPUT_PULLUP);
  6441. pinMode(D_REQUIRE, OUTPUT);
  6442. digitalWrite(D_REQUIRE, HIGH);
  6443. }
  6444. float d_ReadData()
  6445. {
  6446. int digit[13];
  6447. String mergeOutput;
  6448. float output;
  6449. digitalWrite(D_REQUIRE, HIGH);
  6450. for (int i = 0; i<13; i++)
  6451. {
  6452. for (int j = 0; j < 4; j++)
  6453. {
  6454. while (digitalRead(D_DATACLOCK) == LOW) {}
  6455. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6456. bitWrite(digit[i], j, digitalRead(D_DATA));
  6457. }
  6458. }
  6459. digitalWrite(D_REQUIRE, LOW);
  6460. mergeOutput = "";
  6461. output = 0;
  6462. for (int r = 5; r <= 10; r++) //Merge digits
  6463. {
  6464. mergeOutput += digit[r];
  6465. }
  6466. output = mergeOutput.toFloat();
  6467. if (digit[4] == 8) //Handle sign
  6468. {
  6469. output *= -1;
  6470. }
  6471. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6472. {
  6473. output /= 10;
  6474. }
  6475. return output;
  6476. }
  6477. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6478. int t1 = 0;
  6479. int t_delay = 0;
  6480. int digit[13];
  6481. int m;
  6482. char str[3];
  6483. //String mergeOutput;
  6484. char mergeOutput[15];
  6485. float output;
  6486. int mesh_point = 0; //index number of calibration point
  6487. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6488. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6489. float mesh_home_z_search = 4;
  6490. float row[x_points_num];
  6491. int ix = 0;
  6492. int iy = 0;
  6493. char* filename_wldsd = "wldsd.txt";
  6494. char data_wldsd[70];
  6495. char numb_wldsd[10];
  6496. d_setup();
  6497. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6498. // We don't know where we are! HOME!
  6499. // Push the commands to the front of the message queue in the reverse order!
  6500. // There shall be always enough space reserved for these commands.
  6501. repeatcommand_front(); // repeat G80 with all its parameters
  6502. enquecommand_front_P((PSTR("G28 W0")));
  6503. enquecommand_front_P((PSTR("G1 Z5")));
  6504. return;
  6505. }
  6506. bool custom_message_old = custom_message;
  6507. unsigned int custom_message_type_old = custom_message_type;
  6508. unsigned int custom_message_state_old = custom_message_state;
  6509. custom_message = true;
  6510. custom_message_type = 1;
  6511. custom_message_state = (x_points_num * y_points_num) + 10;
  6512. lcd_update(1);
  6513. mbl.reset();
  6514. babystep_undo();
  6515. card.openFile(filename_wldsd, false);
  6516. current_position[Z_AXIS] = mesh_home_z_search;
  6517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6518. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6519. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6520. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6521. setup_for_endstop_move(false);
  6522. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6523. SERIAL_PROTOCOL(x_points_num);
  6524. SERIAL_PROTOCOLPGM(",");
  6525. SERIAL_PROTOCOL(y_points_num);
  6526. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6527. SERIAL_PROTOCOL(mesh_home_z_search);
  6528. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6529. SERIAL_PROTOCOL(x_dimension);
  6530. SERIAL_PROTOCOLPGM(",");
  6531. SERIAL_PROTOCOL(y_dimension);
  6532. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6533. while (mesh_point != x_points_num * y_points_num) {
  6534. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6535. iy = mesh_point / x_points_num;
  6536. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6537. float z0 = 0.f;
  6538. current_position[Z_AXIS] = mesh_home_z_search;
  6539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6540. st_synchronize();
  6541. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6542. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6544. st_synchronize();
  6545. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6546. break;
  6547. card.closefile();
  6548. }
  6549. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6550. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6551. //strcat(data_wldsd, numb_wldsd);
  6552. //MYSERIAL.println(data_wldsd);
  6553. //delay(1000);
  6554. //delay(3000);
  6555. //t1 = millis();
  6556. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6557. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6558. memset(digit, 0, sizeof(digit));
  6559. //cli();
  6560. digitalWrite(D_REQUIRE, LOW);
  6561. for (int i = 0; i<13; i++)
  6562. {
  6563. //t1 = millis();
  6564. for (int j = 0; j < 4; j++)
  6565. {
  6566. while (digitalRead(D_DATACLOCK) == LOW) {}
  6567. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6568. bitWrite(digit[i], j, digitalRead(D_DATA));
  6569. }
  6570. //t_delay = (millis() - t1);
  6571. //SERIAL_PROTOCOLPGM(" ");
  6572. //SERIAL_PROTOCOL_F(t_delay, 5);
  6573. //SERIAL_PROTOCOLPGM(" ");
  6574. }
  6575. //sei();
  6576. digitalWrite(D_REQUIRE, HIGH);
  6577. mergeOutput[0] = '\0';
  6578. output = 0;
  6579. for (int r = 5; r <= 10; r++) //Merge digits
  6580. {
  6581. sprintf(str, "%d", digit[r]);
  6582. strcat(mergeOutput, str);
  6583. }
  6584. output = atof(mergeOutput);
  6585. if (digit[4] == 8) //Handle sign
  6586. {
  6587. output *= -1;
  6588. }
  6589. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6590. {
  6591. output *= 0.1;
  6592. }
  6593. //output = d_ReadData();
  6594. //row[ix] = current_position[Z_AXIS];
  6595. memset(data_wldsd, 0, sizeof(data_wldsd));
  6596. for (int i = 0; i <3; i++) {
  6597. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6598. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6599. strcat(data_wldsd, numb_wldsd);
  6600. strcat(data_wldsd, ";");
  6601. }
  6602. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6603. dtostrf(output, 8, 5, numb_wldsd);
  6604. strcat(data_wldsd, numb_wldsd);
  6605. //strcat(data_wldsd, ";");
  6606. card.write_command(data_wldsd);
  6607. //row[ix] = d_ReadData();
  6608. row[ix] = output; // current_position[Z_AXIS];
  6609. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6610. for (int i = 0; i < x_points_num; i++) {
  6611. SERIAL_PROTOCOLPGM(" ");
  6612. SERIAL_PROTOCOL_F(row[i], 5);
  6613. }
  6614. SERIAL_PROTOCOLPGM("\n");
  6615. }
  6616. custom_message_state--;
  6617. mesh_point++;
  6618. lcd_update(1);
  6619. }
  6620. card.closefile();
  6621. }
  6622. #endif
  6623. void temp_compensation_start() {
  6624. custom_message = true;
  6625. custom_message_type = 5;
  6626. custom_message_state = PINDA_HEAT_T + 1;
  6627. lcd_update(2);
  6628. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6629. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6630. }
  6631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6632. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6633. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6634. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6636. st_synchronize();
  6637. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6638. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6639. delay_keep_alive(1000);
  6640. custom_message_state = PINDA_HEAT_T - i;
  6641. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6642. else lcd_update(1);
  6643. }
  6644. custom_message_type = 0;
  6645. custom_message_state = 0;
  6646. custom_message = false;
  6647. }
  6648. void temp_compensation_apply() {
  6649. int i_add;
  6650. int compensation_value;
  6651. int z_shift = 0;
  6652. float z_shift_mm;
  6653. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6654. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6655. i_add = (target_temperature_bed - 60) / 10;
  6656. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6657. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6658. }else {
  6659. //interpolation
  6660. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6661. }
  6662. SERIAL_PROTOCOLPGM("\n");
  6663. SERIAL_PROTOCOLPGM("Z shift applied:");
  6664. MYSERIAL.print(z_shift_mm);
  6665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6666. st_synchronize();
  6667. plan_set_z_position(current_position[Z_AXIS]);
  6668. }
  6669. else {
  6670. //we have no temp compensation data
  6671. }
  6672. }
  6673. float temp_comp_interpolation(float inp_temperature) {
  6674. //cubic spline interpolation
  6675. int n, i, j, k;
  6676. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6677. int shift[10];
  6678. int temp_C[10];
  6679. n = 6; //number of measured points
  6680. shift[0] = 0;
  6681. for (i = 0; i < n; i++) {
  6682. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6683. temp_C[i] = 50 + i * 10; //temperature in C
  6684. #ifdef PINDA_THERMISTOR
  6685. temp_C[i] = 35 + i * 5; //temperature in C
  6686. #else
  6687. temp_C[i] = 50 + i * 10; //temperature in C
  6688. #endif
  6689. x[i] = (float)temp_C[i];
  6690. f[i] = (float)shift[i];
  6691. }
  6692. if (inp_temperature < x[0]) return 0;
  6693. for (i = n - 1; i>0; i--) {
  6694. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6695. h[i - 1] = x[i] - x[i - 1];
  6696. }
  6697. //*********** formation of h, s , f matrix **************
  6698. for (i = 1; i<n - 1; i++) {
  6699. m[i][i] = 2 * (h[i - 1] + h[i]);
  6700. if (i != 1) {
  6701. m[i][i - 1] = h[i - 1];
  6702. m[i - 1][i] = h[i - 1];
  6703. }
  6704. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6705. }
  6706. //*********** forward elimination **************
  6707. for (i = 1; i<n - 2; i++) {
  6708. temp = (m[i + 1][i] / m[i][i]);
  6709. for (j = 1; j <= n - 1; j++)
  6710. m[i + 1][j] -= temp*m[i][j];
  6711. }
  6712. //*********** backward substitution *********
  6713. for (i = n - 2; i>0; i--) {
  6714. sum = 0;
  6715. for (j = i; j <= n - 2; j++)
  6716. sum += m[i][j] * s[j];
  6717. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6718. }
  6719. for (i = 0; i<n - 1; i++)
  6720. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6721. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6722. b = s[i] / 2;
  6723. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6724. d = f[i];
  6725. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6726. }
  6727. return sum;
  6728. }
  6729. #ifdef PINDA_THERMISTOR
  6730. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6731. {
  6732. if (!temp_cal_active) return 0;
  6733. if (!calibration_status_pinda()) return 0;
  6734. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6735. }
  6736. #endif //PINDA_THERMISTOR
  6737. void long_pause() //long pause print
  6738. {
  6739. st_synchronize();
  6740. //save currently set parameters to global variables
  6741. saved_feedmultiply = feedmultiply;
  6742. HotendTempBckp = degTargetHotend(active_extruder);
  6743. fanSpeedBckp = fanSpeed;
  6744. start_pause_print = millis();
  6745. //save position
  6746. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6747. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6748. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6749. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6750. //retract
  6751. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6753. //lift z
  6754. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6755. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6757. //set nozzle target temperature to 0
  6758. setTargetHotend(0, 0);
  6759. setTargetHotend(0, 1);
  6760. setTargetHotend(0, 2);
  6761. //Move XY to side
  6762. current_position[X_AXIS] = X_PAUSE_POS;
  6763. current_position[Y_AXIS] = Y_PAUSE_POS;
  6764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6765. // Turn off the print fan
  6766. fanSpeed = 0;
  6767. st_synchronize();
  6768. }
  6769. void serialecho_temperatures() {
  6770. float tt = degHotend(active_extruder);
  6771. SERIAL_PROTOCOLPGM("T:");
  6772. SERIAL_PROTOCOL(tt);
  6773. SERIAL_PROTOCOLPGM(" E:");
  6774. SERIAL_PROTOCOL((int)active_extruder);
  6775. SERIAL_PROTOCOLPGM(" B:");
  6776. SERIAL_PROTOCOL_F(degBed(), 1);
  6777. SERIAL_PROTOCOLLN("");
  6778. }
  6779. extern uint32_t sdpos_atomic;
  6780. #ifdef UVLO_SUPPORT
  6781. void uvlo_()
  6782. {
  6783. unsigned long time_start = millis();
  6784. bool sd_print = card.sdprinting;
  6785. // Conserve power as soon as possible.
  6786. disable_x();
  6787. disable_y();
  6788. disable_e0();
  6789. #ifdef TMC2130
  6790. tmc2130_set_current_h(Z_AXIS, 20);
  6791. tmc2130_set_current_r(Z_AXIS, 20);
  6792. tmc2130_set_current_h(E_AXIS, 20);
  6793. tmc2130_set_current_r(E_AXIS, 20);
  6794. #endif //TMC2130
  6795. // Indicate that the interrupt has been triggered.
  6796. // SERIAL_ECHOLNPGM("UVLO");
  6797. // Read out the current Z motor microstep counter. This will be later used
  6798. // for reaching the zero full step before powering off.
  6799. uint16_t z_microsteps = 0;
  6800. #ifdef TMC2130
  6801. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6802. #endif //TMC2130
  6803. // Calculate the file position, from which to resume this print.
  6804. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6805. {
  6806. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6807. sd_position -= sdlen_planner;
  6808. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6809. sd_position -= sdlen_cmdqueue;
  6810. if (sd_position < 0) sd_position = 0;
  6811. }
  6812. // Backup the feedrate in mm/min.
  6813. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6814. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6815. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6816. // are in action.
  6817. planner_abort_hard();
  6818. // Store the current extruder position.
  6819. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6820. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6821. // Clean the input command queue.
  6822. cmdqueue_reset();
  6823. card.sdprinting = false;
  6824. // card.closefile();
  6825. // Enable stepper driver interrupt to move Z axis.
  6826. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6827. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6828. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6829. sei();
  6830. plan_buffer_line(
  6831. current_position[X_AXIS],
  6832. current_position[Y_AXIS],
  6833. current_position[Z_AXIS],
  6834. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6835. 95, active_extruder);
  6836. st_synchronize();
  6837. disable_e0();
  6838. plan_buffer_line(
  6839. current_position[X_AXIS],
  6840. current_position[Y_AXIS],
  6841. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6842. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6843. 40, active_extruder);
  6844. st_synchronize();
  6845. disable_e0();
  6846. plan_buffer_line(
  6847. current_position[X_AXIS],
  6848. current_position[Y_AXIS],
  6849. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6850. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6851. 40, active_extruder);
  6852. st_synchronize();
  6853. disable_e0();
  6854. disable_z();
  6855. // Move Z up to the next 0th full step.
  6856. // Write the file position.
  6857. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6858. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6859. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6860. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6861. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6862. // Scale the z value to 1u resolution.
  6863. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6864. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6865. }
  6866. // Read out the current Z motor microstep counter. This will be later used
  6867. // for reaching the zero full step before powering off.
  6868. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6869. // Store the current position.
  6870. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6871. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6872. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6873. // Store the current feed rate, temperatures and fan speed.
  6874. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6875. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6876. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6877. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6878. // Finaly store the "power outage" flag.
  6879. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6880. st_synchronize();
  6881. SERIAL_ECHOPGM("stps");
  6882. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  6883. disable_z();
  6884. // Increment power failure counter
  6885. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6886. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6887. SERIAL_ECHOLNPGM("UVLO - end");
  6888. MYSERIAL.println(millis() - time_start);
  6889. #if 0
  6890. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6891. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6893. st_synchronize();
  6894. #endif
  6895. cli();
  6896. volatile unsigned int ppcount = 0;
  6897. SET_OUTPUT(BEEPER);
  6898. WRITE(BEEPER, HIGH);
  6899. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6900. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6901. }
  6902. WRITE(BEEPER, LOW);
  6903. while(1){
  6904. #if 1
  6905. WRITE(BEEPER, LOW);
  6906. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6907. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6908. }
  6909. #endif
  6910. };
  6911. }
  6912. #endif //UVLO_SUPPORT
  6913. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  6914. void setup_fan_interrupt() {
  6915. //INT7
  6916. DDRE &= ~(1 << 7); //input pin
  6917. PORTE &= ~(1 << 7); //no internal pull-up
  6918. //start with sensing rising edge
  6919. EICRB &= ~(1 << 6);
  6920. EICRB |= (1 << 7);
  6921. //enable INT7 interrupt
  6922. EIMSK |= (1 << 7);
  6923. }
  6924. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6925. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6926. ISR(INT7_vect) {
  6927. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6928. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6929. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6930. t_fan_rising_edge = millis_nc();
  6931. }
  6932. else { //interrupt was triggered by falling edge
  6933. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6934. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6935. }
  6936. }
  6937. EICRB ^= (1 << 6); //change edge
  6938. }
  6939. #endif
  6940. #ifdef UVLO_SUPPORT
  6941. void setup_uvlo_interrupt() {
  6942. DDRE &= ~(1 << 4); //input pin
  6943. PORTE &= ~(1 << 4); //no internal pull-up
  6944. //sensing falling edge
  6945. EICRB |= (1 << 0);
  6946. EICRB &= ~(1 << 1);
  6947. //enable INT4 interrupt
  6948. EIMSK |= (1 << 4);
  6949. }
  6950. ISR(INT4_vect) {
  6951. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6952. SERIAL_ECHOLNPGM("INT4");
  6953. if (IS_SD_PRINTING) uvlo_();
  6954. }
  6955. void recover_print(uint8_t automatic) {
  6956. char cmd[30];
  6957. lcd_update_enable(true);
  6958. lcd_update(2);
  6959. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6960. recover_machine_state_after_power_panic();
  6961. // Set the target bed and nozzle temperatures.
  6962. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6963. enquecommand(cmd);
  6964. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6965. enquecommand(cmd);
  6966. // Lift the print head, so one may remove the excess priming material.
  6967. if (current_position[Z_AXIS] < 25)
  6968. enquecommand_P(PSTR("G1 Z25 F800"));
  6969. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6970. enquecommand_P(PSTR("G28 X Y"));
  6971. // Set the target bed and nozzle temperatures and wait.
  6972. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6973. enquecommand(cmd);
  6974. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6975. enquecommand(cmd);
  6976. enquecommand_P(PSTR("M83")); //E axis relative mode
  6977. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6978. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6979. if(automatic == 0){
  6980. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6981. }
  6982. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6983. // Mark the power panic status as inactive.
  6984. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6985. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6986. delay_keep_alive(1000);
  6987. }*/
  6988. SERIAL_ECHOPGM("After waiting for temp:");
  6989. SERIAL_ECHOPGM("Current position X_AXIS:");
  6990. MYSERIAL.println(current_position[X_AXIS]);
  6991. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6992. MYSERIAL.println(current_position[Y_AXIS]);
  6993. // Restart the print.
  6994. restore_print_from_eeprom();
  6995. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6996. MYSERIAL.print(current_position[Z_AXIS]);
  6997. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6998. MYSERIAL.print(current_position[E_AXIS]);
  6999. }
  7000. void recover_machine_state_after_power_panic()
  7001. {
  7002. char cmd[30];
  7003. // 1) Recover the logical cordinates at the time of the power panic.
  7004. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7005. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7006. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7007. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7008. // The current position after power panic is moved to the next closest 0th full step.
  7009. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7010. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7011. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7012. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7013. sprintf_P(cmd, PSTR("G92 E"));
  7014. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7015. enquecommand(cmd);
  7016. }
  7017. memcpy(destination, current_position, sizeof(destination));
  7018. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7019. print_world_coordinates();
  7020. // 2) Initialize the logical to physical coordinate system transformation.
  7021. world2machine_initialize();
  7022. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7023. mbl.active = false;
  7024. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7025. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7026. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7027. // Scale the z value to 10u resolution.
  7028. int16_t v;
  7029. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7030. if (v != 0)
  7031. mbl.active = true;
  7032. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7033. }
  7034. if (mbl.active)
  7035. mbl.upsample_3x3();
  7036. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7037. // print_mesh_bed_leveling_table();
  7038. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7039. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7040. babystep_load();
  7041. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7042. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7043. // 6) Power up the motors, mark their positions as known.
  7044. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7045. axis_known_position[X_AXIS] = true; enable_x();
  7046. axis_known_position[Y_AXIS] = true; enable_y();
  7047. axis_known_position[Z_AXIS] = true; enable_z();
  7048. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7049. print_physical_coordinates();
  7050. // 7) Recover the target temperatures.
  7051. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7052. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7053. }
  7054. void restore_print_from_eeprom() {
  7055. float x_rec, y_rec, z_pos;
  7056. int feedrate_rec;
  7057. uint8_t fan_speed_rec;
  7058. char cmd[30];
  7059. char* c;
  7060. char filename[13];
  7061. uint8_t depth = 0;
  7062. char dir_name[9];
  7063. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7064. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7065. SERIAL_ECHOPGM("Feedrate:");
  7066. MYSERIAL.println(feedrate_rec);
  7067. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7068. MYSERIAL.println(int(depth));
  7069. for (int i = 0; i < depth; i++) {
  7070. for (int j = 0; j < 8; j++) {
  7071. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7072. }
  7073. dir_name[8] = '\0';
  7074. MYSERIAL.println(dir_name);
  7075. card.chdir(dir_name);
  7076. }
  7077. for (int i = 0; i < 8; i++) {
  7078. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7079. }
  7080. filename[8] = '\0';
  7081. MYSERIAL.print(filename);
  7082. strcat_P(filename, PSTR(".gco"));
  7083. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7084. for (c = &cmd[4]; *c; c++)
  7085. *c = tolower(*c);
  7086. enquecommand(cmd);
  7087. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7088. SERIAL_ECHOPGM("Position read from eeprom:");
  7089. MYSERIAL.println(position);
  7090. // E axis relative mode.
  7091. enquecommand_P(PSTR("M83"));
  7092. // Move to the XY print position in logical coordinates, where the print has been killed.
  7093. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7094. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7095. strcat_P(cmd, PSTR(" F2000"));
  7096. enquecommand(cmd);
  7097. // Move the Z axis down to the print, in logical coordinates.
  7098. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7099. enquecommand(cmd);
  7100. // Unretract.
  7101. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7102. // Set the feedrate saved at the power panic.
  7103. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7104. enquecommand(cmd);
  7105. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7106. {
  7107. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7108. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7109. }
  7110. // Set the fan speed saved at the power panic.
  7111. strcpy_P(cmd, PSTR("M106 S"));
  7112. strcat(cmd, itostr3(int(fan_speed_rec)));
  7113. enquecommand(cmd);
  7114. // Set a position in the file.
  7115. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7116. enquecommand(cmd);
  7117. // Start SD print.
  7118. enquecommand_P(PSTR("M24"));
  7119. }
  7120. #endif //UVLO_SUPPORT
  7121. ////////////////////////////////////////////////////////////////////////////////
  7122. // new save/restore printing
  7123. //extern uint32_t sdpos_atomic;
  7124. bool saved_printing = false;
  7125. uint32_t saved_sdpos = 0;
  7126. float saved_pos[4] = {0, 0, 0, 0};
  7127. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  7128. float saved_feedrate2 = 0;
  7129. uint8_t saved_active_extruder = 0;
  7130. bool saved_extruder_under_pressure = false;
  7131. void stop_and_save_print_to_ram(float z_move, float e_move)
  7132. {
  7133. if (saved_printing) return;
  7134. cli();
  7135. unsigned char nplanner_blocks = number_of_blocks();
  7136. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7137. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7138. saved_sdpos -= sdlen_planner;
  7139. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7140. saved_sdpos -= sdlen_cmdqueue;
  7141. #if 0
  7142. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7143. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7144. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7145. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7146. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7147. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7148. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7149. {
  7150. card.setIndex(saved_sdpos);
  7151. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7152. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7153. MYSERIAL.print(char(card.get()));
  7154. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7155. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7156. MYSERIAL.print(char(card.get()));
  7157. SERIAL_ECHOLNPGM("End of command buffer");
  7158. }
  7159. {
  7160. // Print the content of the planner buffer, line by line:
  7161. card.setIndex(saved_sdpos);
  7162. int8_t iline = 0;
  7163. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7164. SERIAL_ECHOPGM("Planner line (from file): ");
  7165. MYSERIAL.print(int(iline), DEC);
  7166. SERIAL_ECHOPGM(", length: ");
  7167. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7168. SERIAL_ECHOPGM(", steps: (");
  7169. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7170. SERIAL_ECHOPGM(",");
  7171. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7172. SERIAL_ECHOPGM(",");
  7173. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7174. SERIAL_ECHOPGM(",");
  7175. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7176. SERIAL_ECHOPGM("), events: ");
  7177. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7178. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7179. MYSERIAL.print(char(card.get()));
  7180. }
  7181. }
  7182. {
  7183. // Print the content of the command buffer, line by line:
  7184. int8_t iline = 0;
  7185. union {
  7186. struct {
  7187. char lo;
  7188. char hi;
  7189. } lohi;
  7190. uint16_t value;
  7191. } sdlen_single;
  7192. int _bufindr = bufindr;
  7193. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7194. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7195. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7196. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7197. }
  7198. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7199. MYSERIAL.print(int(iline), DEC);
  7200. SERIAL_ECHOPGM(", type: ");
  7201. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7202. SERIAL_ECHOPGM(", len: ");
  7203. MYSERIAL.println(sdlen_single.value, DEC);
  7204. // Print the content of the buffer line.
  7205. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7206. SERIAL_ECHOPGM("Buffer line (from file): ");
  7207. MYSERIAL.print(int(iline), DEC);
  7208. MYSERIAL.println(int(iline), DEC);
  7209. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7210. MYSERIAL.print(char(card.get()));
  7211. if (-- _buflen == 0)
  7212. break;
  7213. // First skip the current command ID and iterate up to the end of the string.
  7214. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7215. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7216. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7217. // If the end of the buffer was empty,
  7218. if (_bufindr == sizeof(cmdbuffer)) {
  7219. // skip to the start and find the nonzero command.
  7220. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7221. }
  7222. }
  7223. }
  7224. #endif
  7225. #if 0
  7226. saved_feedrate2 = feedrate; //save feedrate
  7227. #else
  7228. // Try to deduce the feedrate from the first block of the planner.
  7229. // Speed is in mm/min.
  7230. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7231. #endif
  7232. planner_abort_hard(); //abort printing
  7233. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7234. saved_active_extruder = active_extruder; //save active_extruder
  7235. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7236. cmdqueue_reset(); //empty cmdqueue
  7237. card.sdprinting = false;
  7238. // card.closefile();
  7239. saved_printing = true;
  7240. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7241. st_reset_timer();
  7242. sei();
  7243. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7244. #if 1
  7245. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7246. char buf[48];
  7247. strcpy_P(buf, PSTR("G1 Z"));
  7248. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7249. strcat_P(buf, PSTR(" E"));
  7250. // Relative extrusion
  7251. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7252. strcat_P(buf, PSTR(" F"));
  7253. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7254. // At this point the command queue is empty.
  7255. enquecommand(buf, false);
  7256. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7257. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7258. repeatcommand_front();
  7259. #else
  7260. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7261. st_synchronize(); //wait moving
  7262. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7263. memcpy(destination, current_position, sizeof(destination));
  7264. #endif
  7265. }
  7266. }
  7267. void restore_print_from_ram_and_continue(float e_move)
  7268. {
  7269. if (!saved_printing) return;
  7270. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7271. // current_position[axis] = st_get_position_mm(axis);
  7272. active_extruder = saved_active_extruder; //restore active_extruder
  7273. feedrate = saved_feedrate2; //restore feedrate
  7274. float e = saved_pos[E_AXIS] - e_move;
  7275. plan_set_e_position(e);
  7276. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7277. st_synchronize();
  7278. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7279. memcpy(destination, current_position, sizeof(destination));
  7280. card.setIndex(saved_sdpos);
  7281. sdpos_atomic = saved_sdpos;
  7282. card.sdprinting = true;
  7283. saved_printing = false;
  7284. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7285. }
  7286. void print_world_coordinates()
  7287. {
  7288. SERIAL_ECHOPGM("world coordinates: (");
  7289. MYSERIAL.print(current_position[X_AXIS], 3);
  7290. SERIAL_ECHOPGM(", ");
  7291. MYSERIAL.print(current_position[Y_AXIS], 3);
  7292. SERIAL_ECHOPGM(", ");
  7293. MYSERIAL.print(current_position[Z_AXIS], 3);
  7294. SERIAL_ECHOLNPGM(")");
  7295. }
  7296. void print_physical_coordinates()
  7297. {
  7298. SERIAL_ECHOPGM("physical coordinates: (");
  7299. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7300. SERIAL_ECHOPGM(", ");
  7301. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7302. SERIAL_ECHOPGM(", ");
  7303. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7304. SERIAL_ECHOLNPGM(")");
  7305. }
  7306. void print_mesh_bed_leveling_table()
  7307. {
  7308. SERIAL_ECHOPGM("mesh bed leveling: ");
  7309. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7310. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7311. MYSERIAL.print(mbl.z_values[y][x], 3);
  7312. SERIAL_ECHOPGM(" ");
  7313. }
  7314. SERIAL_ECHOLNPGM("");
  7315. }
  7316. #define FIL_LOAD_LENGTH 60
  7317. void extr_unload2() { //unloads filament
  7318. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7319. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7320. // int8_t SilentMode;
  7321. uint8_t snmm_extruder = 0;
  7322. if (degHotend0() > EXTRUDE_MINTEMP) {
  7323. lcd_implementation_clear();
  7324. lcd_display_message_fullscreen_P(PSTR(""));
  7325. max_feedrate[E_AXIS] = 50;
  7326. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7327. // lcd.print(" ");
  7328. // lcd.print(snmm_extruder + 1);
  7329. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7330. if (current_position[Z_AXIS] < 15) {
  7331. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7332. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7333. }
  7334. current_position[E_AXIS] += 10; //extrusion
  7335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7336. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7337. if (current_temperature[0] < 230) { //PLA & all other filaments
  7338. current_position[E_AXIS] += 5.4;
  7339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7340. current_position[E_AXIS] += 3.2;
  7341. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7342. current_position[E_AXIS] += 3;
  7343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7344. }
  7345. else { //ABS
  7346. current_position[E_AXIS] += 3.1;
  7347. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7348. current_position[E_AXIS] += 3.1;
  7349. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7350. current_position[E_AXIS] += 4;
  7351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7352. /*current_position[X_AXIS] += 23; //delay
  7353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7354. current_position[X_AXIS] -= 23; //delay
  7355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7356. delay_keep_alive(4700);
  7357. }
  7358. max_feedrate[E_AXIS] = 80;
  7359. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7361. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7363. st_synchronize();
  7364. //digipot_init();
  7365. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7366. // else digipot_current(2, tmp_motor_loud[2]);
  7367. lcd_update_enable(true);
  7368. // lcd_return_to_status();
  7369. max_feedrate[E_AXIS] = 50;
  7370. }
  7371. else {
  7372. lcd_implementation_clear();
  7373. lcd.setCursor(0, 0);
  7374. lcd_printPGM(MSG_ERROR);
  7375. lcd.setCursor(0, 2);
  7376. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7377. delay(2000);
  7378. lcd_implementation_clear();
  7379. }
  7380. // lcd_return_to_status();
  7381. }