Marlin_main.cpp 180 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. union Data
  196. {
  197. byte b[2];
  198. int value;
  199. };
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  252. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  253. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  254. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed=0;
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled=false;
  262. bool retracted[EXTRUDERS]={false
  263. #if EXTRUDERS > 1
  264. , false
  265. #if EXTRUDERS > 2
  266. , false
  267. #endif
  268. #endif
  269. };
  270. bool retracted_swap[EXTRUDERS]={false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. bool cancel_heatup = false ;
  294. #ifdef FILAMENT_SENSOR
  295. //Variables for Filament Sensor input
  296. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  297. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  298. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  299. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  300. int delay_index1=0; //index into ring buffer
  301. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  302. float delay_dist=0; //delay distance counter
  303. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  304. #endif
  305. const char errormagic[] PROGMEM = "Error:";
  306. const char echomagic[] PROGMEM = "echo:";
  307. //===========================================================================
  308. //=============================Private Variables=============================
  309. //===========================================================================
  310. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  311. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  312. static float delta[3] = {0.0, 0.0, 0.0};
  313. // For tracing an arc
  314. static float offset[3] = {0.0, 0.0, 0.0};
  315. static bool home_all_axis = true;
  316. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  317. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  318. // Determines Absolute or Relative Coordinates.
  319. // Also there is bool axis_relative_modes[] per axis flag.
  320. static bool relative_mode = false;
  321. // String circular buffer. Commands may be pushed to the buffer from both sides:
  322. // Chained commands will be pushed to the front, interactive (from LCD menu)
  323. // and printing commands (from serial line or from SD card) are pushed to the tail.
  324. // First character of each entry indicates the type of the entry:
  325. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  326. // Command in cmdbuffer was sent over USB.
  327. #define CMDBUFFER_CURRENT_TYPE_USB 1
  328. // Command in cmdbuffer was read from SDCARD.
  329. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  330. // Command in cmdbuffer was generated by the UI.
  331. #define CMDBUFFER_CURRENT_TYPE_UI 3
  332. // Command in cmdbuffer was generated by another G-code.
  333. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  334. // How much space to reserve for the chained commands
  335. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  336. // which are pushed to the front of the queue?
  337. // Maximum 5 commands of max length 20 + null terminator.
  338. #define CMDBUFFER_RESERVE_FRONT (5*21)
  339. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  340. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  341. // Head of the circular buffer, where to read.
  342. static int bufindr = 0;
  343. // Tail of the buffer, where to write.
  344. static int bufindw = 0;
  345. // Number of lines in cmdbuffer.
  346. static int buflen = 0;
  347. // Flag for processing the current command inside the main Arduino loop().
  348. // If a new command was pushed to the front of a command buffer while
  349. // processing another command, this replaces the command on the top.
  350. // Therefore don't remove the command from the queue in the loop() function.
  351. static bool cmdbuffer_front_already_processed = false;
  352. // Type of a command, which is to be executed right now.
  353. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  354. // String of a command, which is to be executed right now.
  355. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  356. // Enable debugging of the command buffer.
  357. // Debugging information will be sent to serial line.
  358. // #define CMDBUFFER_DEBUG
  359. static int serial_count = 0;
  360. static boolean comment_mode = false;
  361. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  362. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  363. //static float tt = 0;
  364. //static float bt = 0;
  365. //Inactivity shutdown variables
  366. static unsigned long previous_millis_cmd = 0;
  367. unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime=0;
  370. unsigned long stoptime=0;
  371. unsigned long _usb_timer = 0;
  372. static uint8_t tmp_extruder;
  373. bool Stopped=false;
  374. #if NUM_SERVOS > 0
  375. Servo servos[NUM_SERVOS];
  376. #endif
  377. bool CooldownNoWait = true;
  378. bool target_direction;
  379. //Insert variables if CHDK is defined
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. // Pop the currently processed command from the queue.
  414. // It is expected, that there is at least one command in the queue.
  415. bool cmdqueue_pop_front()
  416. {
  417. if (buflen > 0) {
  418. #ifdef CMDBUFFER_DEBUG
  419. SERIAL_ECHOPGM("Dequeing ");
  420. SERIAL_ECHO(cmdbuffer+bufindr+1);
  421. SERIAL_ECHOLNPGM("");
  422. SERIAL_ECHOPGM("Old indices: buflen ");
  423. SERIAL_ECHO(buflen);
  424. SERIAL_ECHOPGM(", bufindr ");
  425. SERIAL_ECHO(bufindr);
  426. SERIAL_ECHOPGM(", bufindw ");
  427. SERIAL_ECHO(bufindw);
  428. SERIAL_ECHOPGM(", serial_count ");
  429. SERIAL_ECHO(serial_count);
  430. SERIAL_ECHOPGM(", bufsize ");
  431. SERIAL_ECHO(sizeof(cmdbuffer));
  432. SERIAL_ECHOLNPGM("");
  433. #endif /* CMDBUFFER_DEBUG */
  434. if (-- buflen == 0) {
  435. // Empty buffer.
  436. if (serial_count == 0)
  437. // No serial communication is pending. Reset both pointers to zero.
  438. bufindw = 0;
  439. bufindr = bufindw;
  440. } else {
  441. // There is at least one ready line in the buffer.
  442. // First skip the current command ID and iterate up to the end of the string.
  443. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  444. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  445. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  446. // If the end of the buffer was empty,
  447. if (bufindr == sizeof(cmdbuffer)) {
  448. // skip to the start and find the nonzero command.
  449. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. }
  451. #ifdef CMDBUFFER_DEBUG
  452. SERIAL_ECHOPGM("New indices: buflen ");
  453. SERIAL_ECHO(buflen);
  454. SERIAL_ECHOPGM(", bufindr ");
  455. SERIAL_ECHO(bufindr);
  456. SERIAL_ECHOPGM(", bufindw ");
  457. SERIAL_ECHO(bufindw);
  458. SERIAL_ECHOPGM(", serial_count ");
  459. SERIAL_ECHO(serial_count);
  460. SERIAL_ECHOPGM(" new command on the top: ");
  461. SERIAL_ECHO(cmdbuffer+bufindr+1);
  462. SERIAL_ECHOLNPGM("");
  463. #endif /* CMDBUFFER_DEBUG */
  464. }
  465. return true;
  466. }
  467. return false;
  468. }
  469. void cmdqueue_reset()
  470. {
  471. while (cmdqueue_pop_front()) ;
  472. }
  473. // How long a string could be pushed to the front of the command queue?
  474. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  475. // len_asked does not contain the zero terminator size.
  476. bool cmdqueue_could_enqueue_front(int len_asked)
  477. {
  478. // MAX_CMD_SIZE has to accommodate the zero terminator.
  479. if (len_asked >= MAX_CMD_SIZE)
  480. return false;
  481. // Remove the currently processed command from the queue.
  482. if (! cmdbuffer_front_already_processed) {
  483. cmdqueue_pop_front();
  484. cmdbuffer_front_already_processed = true;
  485. }
  486. if (bufindr == bufindw && buflen > 0)
  487. // Full buffer.
  488. return false;
  489. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  490. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  491. if (bufindw < bufindr) {
  492. int bufindr_new = bufindr - len_asked - 2;
  493. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  494. if (endw <= bufindr_new) {
  495. bufindr = bufindr_new;
  496. return true;
  497. }
  498. } else {
  499. // Otherwise the free space is split between the start and end.
  500. if (len_asked + 2 <= bufindr) {
  501. // Could fit at the start.
  502. bufindr -= len_asked + 2;
  503. return true;
  504. }
  505. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  506. if (endw <= bufindr_new) {
  507. memset(cmdbuffer, 0, bufindr);
  508. bufindr = bufindr_new;
  509. return true;
  510. }
  511. }
  512. return false;
  513. }
  514. // Could one enqueue a command of lenthg len_asked into the buffer,
  515. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  516. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  517. // len_asked does not contain the zero terminator size.
  518. bool cmdqueue_could_enqueue_back(int len_asked)
  519. {
  520. // MAX_CMD_SIZE has to accommodate the zero terminator.
  521. if (len_asked >= MAX_CMD_SIZE)
  522. return false;
  523. if (bufindr == bufindw && buflen > 0)
  524. // Full buffer.
  525. return false;
  526. if (serial_count > 0) {
  527. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  528. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  529. // serial data.
  530. // How much memory to reserve for the commands pushed to the front?
  531. // End of the queue, when pushing to the end.
  532. int endw = bufindw + len_asked + 2;
  533. if (bufindw < bufindr)
  534. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  535. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  536. // Otherwise the free space is split between the start and end.
  537. if (// Could one fit to the end, including the reserve?
  538. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  539. // Could one fit to the end, and the reserve to the start?
  540. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  541. return true;
  542. // Could one fit both to the start?
  543. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  544. // Mark the rest of the buffer as used.
  545. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  546. // and point to the start.
  547. bufindw = 0;
  548. return true;
  549. }
  550. } else {
  551. // How much memory to reserve for the commands pushed to the front?
  552. // End of the queue, when pushing to the end.
  553. int endw = bufindw + len_asked + 2;
  554. if (bufindw < bufindr)
  555. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  556. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  557. // Otherwise the free space is split between the start and end.
  558. if (// Could one fit to the end, including the reserve?
  559. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  560. // Could one fit to the end, and the reserve to the start?
  561. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  562. return true;
  563. // Could one fit both to the start?
  564. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  565. // Mark the rest of the buffer as used.
  566. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  567. // and point to the start.
  568. bufindw = 0;
  569. return true;
  570. }
  571. }
  572. return false;
  573. }
  574. #ifdef CMDBUFFER_DEBUG
  575. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  576. {
  577. SERIAL_ECHOPGM("Entry nr: ");
  578. SERIAL_ECHO(nr);
  579. SERIAL_ECHOPGM(", type: ");
  580. SERIAL_ECHO(int(*p));
  581. SERIAL_ECHOPGM(", cmd: ");
  582. SERIAL_ECHO(p+1);
  583. SERIAL_ECHOLNPGM("");
  584. }
  585. static void cmdqueue_dump_to_serial()
  586. {
  587. if (buflen == 0) {
  588. SERIAL_ECHOLNPGM("The command buffer is empty.");
  589. } else {
  590. SERIAL_ECHOPGM("Content of the buffer: entries ");
  591. SERIAL_ECHO(buflen);
  592. SERIAL_ECHOPGM(", indr ");
  593. SERIAL_ECHO(bufindr);
  594. SERIAL_ECHOPGM(", indw ");
  595. SERIAL_ECHO(bufindw);
  596. SERIAL_ECHOLNPGM("");
  597. int nr = 0;
  598. if (bufindr < bufindw) {
  599. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  600. cmdqueue_dump_to_serial_single_line(nr, p);
  601. // Skip the command.
  602. for (++p; *p != 0; ++ p);
  603. // Skip the gaps.
  604. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  605. }
  606. } else {
  607. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  608. cmdqueue_dump_to_serial_single_line(nr, p);
  609. // Skip the command.
  610. for (++p; *p != 0; ++ p);
  611. // Skip the gaps.
  612. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  613. }
  614. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  615. cmdqueue_dump_to_serial_single_line(nr, p);
  616. // Skip the command.
  617. for (++p; *p != 0; ++ p);
  618. // Skip the gaps.
  619. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  620. }
  621. }
  622. SERIAL_ECHOLNPGM("End of the buffer.");
  623. }
  624. }
  625. #endif /* CMDBUFFER_DEBUG */
  626. //adds an command to the main command buffer
  627. //thats really done in a non-safe way.
  628. //needs overworking someday
  629. // Currently the maximum length of a command piped through this function is around 20 characters
  630. void enquecommand(const char *cmd, bool from_progmem)
  631. {
  632. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  633. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  634. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  635. if (cmdqueue_could_enqueue_back(len)) {
  636. // This is dangerous if a mixing of serial and this happens
  637. // This may easily be tested: If serial_count > 0, we have a problem.
  638. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  639. if (from_progmem)
  640. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  641. else
  642. strcpy(cmdbuffer + bufindw + 1, cmd);
  643. SERIAL_ECHO_START;
  644. SERIAL_ECHORPGM(MSG_Enqueing);
  645. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  646. SERIAL_ECHOLNPGM("\"");
  647. bufindw += len + 2;
  648. if (bufindw == sizeof(cmdbuffer))
  649. bufindw = 0;
  650. ++ buflen;
  651. #ifdef CMDBUFFER_DEBUG
  652. cmdqueue_dump_to_serial();
  653. #endif /* CMDBUFFER_DEBUG */
  654. } else {
  655. SERIAL_ERROR_START;
  656. SERIAL_ECHORPGM(MSG_Enqueing);
  657. if (from_progmem)
  658. SERIAL_PROTOCOLRPGM(cmd);
  659. else
  660. SERIAL_ECHO(cmd);
  661. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  662. #ifdef CMDBUFFER_DEBUG
  663. cmdqueue_dump_to_serial();
  664. #endif /* CMDBUFFER_DEBUG */
  665. }
  666. }
  667. void enquecommand_front(const char *cmd, bool from_progmem)
  668. {
  669. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  670. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  671. if (cmdqueue_could_enqueue_front(len)) {
  672. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  673. if (from_progmem)
  674. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  675. else
  676. strcpy(cmdbuffer + bufindr + 1, cmd);
  677. ++ buflen;
  678. SERIAL_ECHO_START;
  679. SERIAL_ECHOPGM("Enqueing to the front: \"");
  680. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  681. SERIAL_ECHOLNPGM("\"");
  682. #ifdef CMDBUFFER_DEBUG
  683. cmdqueue_dump_to_serial();
  684. #endif /* CMDBUFFER_DEBUG */
  685. } else {
  686. SERIAL_ERROR_START;
  687. SERIAL_ECHOPGM("Enqueing to the front: \"");
  688. if (from_progmem)
  689. SERIAL_PROTOCOLRPGM(cmd);
  690. else
  691. SERIAL_ECHO(cmd);
  692. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  693. #ifdef CMDBUFFER_DEBUG
  694. cmdqueue_dump_to_serial();
  695. #endif /* CMDBUFFER_DEBUG */
  696. }
  697. }
  698. // Mark the command at the top of the command queue as new.
  699. // Therefore it will not be removed from the queue.
  700. void repeatcommand_front()
  701. {
  702. cmdbuffer_front_already_processed = true;
  703. }
  704. void setup_killpin()
  705. {
  706. #if defined(KILL_PIN) && KILL_PIN > -1
  707. SET_INPUT(KILL_PIN);
  708. WRITE(KILL_PIN,HIGH);
  709. #endif
  710. }
  711. // Set home pin
  712. void setup_homepin(void)
  713. {
  714. #if defined(HOME_PIN) && HOME_PIN > -1
  715. SET_INPUT(HOME_PIN);
  716. WRITE(HOME_PIN,HIGH);
  717. #endif
  718. }
  719. void setup_photpin()
  720. {
  721. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  722. SET_OUTPUT(PHOTOGRAPH_PIN);
  723. WRITE(PHOTOGRAPH_PIN, LOW);
  724. #endif
  725. }
  726. void setup_powerhold()
  727. {
  728. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  729. SET_OUTPUT(SUICIDE_PIN);
  730. WRITE(SUICIDE_PIN, HIGH);
  731. #endif
  732. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  733. SET_OUTPUT(PS_ON_PIN);
  734. #if defined(PS_DEFAULT_OFF)
  735. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  736. #else
  737. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  738. #endif
  739. #endif
  740. }
  741. void suicide()
  742. {
  743. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  744. SET_OUTPUT(SUICIDE_PIN);
  745. WRITE(SUICIDE_PIN, LOW);
  746. #endif
  747. }
  748. void servo_init()
  749. {
  750. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  751. servos[0].attach(SERVO0_PIN);
  752. #endif
  753. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  754. servos[1].attach(SERVO1_PIN);
  755. #endif
  756. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  757. servos[2].attach(SERVO2_PIN);
  758. #endif
  759. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  760. servos[3].attach(SERVO3_PIN);
  761. #endif
  762. #if (NUM_SERVOS >= 5)
  763. #error "TODO: enter initalisation code for more servos"
  764. #endif
  765. }
  766. static void lcd_language_menu();
  767. #ifdef MESH_BED_LEVELING
  768. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  769. #endif
  770. // "Setup" function is called by the Arduino framework on startup.
  771. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  772. // are initialized by the main() routine provided by the Arduino framework.
  773. void setup()
  774. {
  775. setup_killpin();
  776. setup_powerhold();
  777. MYSERIAL.begin(BAUDRATE);
  778. SERIAL_PROTOCOLLNPGM("start");
  779. SERIAL_ECHO_START;
  780. #if 0
  781. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  782. for (int i = 0; i < 4096; ++ i) {
  783. int b = eeprom_read_byte((unsigned char*)i);
  784. if (b != 255) {
  785. SERIAL_ECHO(i);
  786. SERIAL_ECHO(":");
  787. SERIAL_ECHO(b);
  788. SERIAL_ECHOLN("");
  789. }
  790. }
  791. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  792. #endif
  793. // Check startup - does nothing if bootloader sets MCUSR to 0
  794. byte mcu = MCUSR;
  795. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  796. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  797. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  798. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  799. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  800. MCUSR=0;
  801. //SERIAL_ECHORPGM(MSG_MARLIN);
  802. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  803. #ifdef STRING_VERSION_CONFIG_H
  804. #ifdef STRING_CONFIG_H_AUTHOR
  805. SERIAL_ECHO_START;
  806. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  807. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  808. SERIAL_ECHORPGM(MSG_AUTHOR);
  809. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  810. SERIAL_ECHOPGM("Compiled: ");
  811. SERIAL_ECHOLNPGM(__DATE__);
  812. #endif
  813. #endif
  814. SERIAL_ECHO_START;
  815. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  816. SERIAL_ECHO(freeMemory());
  817. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  818. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  819. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  820. Config_RetrieveSettings();
  821. tp_init(); // Initialize temperature loop
  822. plan_init(); // Initialize planner;
  823. watchdog_init();
  824. st_init(); // Initialize stepper, this enables interrupts!
  825. setup_photpin();
  826. servo_init();
  827. // Reset the machine correction matrix.
  828. // It does not make sense to load the correction matrix until the machine is homed.
  829. world2machine_reset();
  830. lcd_init();
  831. if (!READ(BTN_ENC))
  832. {
  833. _delay_ms(1000);
  834. if (!READ(BTN_ENC))
  835. {
  836. SET_OUTPUT(BEEPER);
  837. WRITE(BEEPER, HIGH);
  838. lcd_force_language_selection();
  839. farm_no = 0;
  840. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  841. farm_mode = false;
  842. while (!READ(BTN_ENC));
  843. WRITE(BEEPER, LOW);
  844. #ifdef MESH_BED_LEVELING
  845. _delay_ms(2000);
  846. if (!READ(BTN_ENC))
  847. {
  848. WRITE(BEEPER, HIGH);
  849. _delay_ms(100);
  850. WRITE(BEEPER, LOW);
  851. _delay_ms(200);
  852. WRITE(BEEPER, HIGH);
  853. _delay_ms(100);
  854. WRITE(BEEPER, LOW);
  855. int _z = 0;
  856. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  857. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  858. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  859. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  860. }
  861. else
  862. {
  863. WRITE(BEEPER, HIGH);
  864. _delay_ms(100);
  865. WRITE(BEEPER, LOW);
  866. }
  867. #endif // mesh
  868. }
  869. }
  870. else
  871. {
  872. _delay_ms(1000); // wait 1sec to display the splash screen
  873. }
  874. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  875. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  876. #endif
  877. #ifdef DIGIPOT_I2C
  878. digipot_i2c_init();
  879. #endif
  880. setup_homepin();
  881. #if defined(Z_AXIS_ALWAYS_ON)
  882. enable_z();
  883. #endif
  884. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  885. if (farm_no > 0)
  886. {
  887. farm_mode = true;
  888. farm_no = farm_no;
  889. prusa_statistics(8);
  890. }
  891. else
  892. {
  893. farm_mode = false;
  894. farm_no = 0;
  895. }
  896. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  897. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  898. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  899. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  900. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  901. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  902. // where all the EEPROM entries are set to 0x0ff.
  903. // Once a firmware boots up, it forces at least a language selection, which changes
  904. // EEPROM_LANG to number lower than 0x0ff.
  905. // 1) Set a high power mode.
  906. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  907. }
  908. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  909. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  910. // is being written into the EEPROM, so the update procedure will be triggered only once.
  911. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  912. if (lang_selected >= LANG_NUM){
  913. lcd_mylang();
  914. }
  915. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  916. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  917. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  918. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  919. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  920. // Get the selected laugnage index before display update.
  921. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  922. if (lang_selected >= LANG_NUM)
  923. lang_selected = LANG_ID_DEFAULT; // Czech language
  924. // Show the message.
  925. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  926. lcd_update_enable(true);
  927. lcd_implementation_clear();
  928. }
  929. // Store the currently running firmware into an eeprom,
  930. // so the next time the firmware gets updated, it will know from which version it has been updated.
  931. update_current_firmware_version_to_eeprom();
  932. }
  933. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  934. // Before loop(), the setup() function is called by the main() routine.
  935. void loop()
  936. {
  937. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  938. {
  939. is_usb_printing = true;
  940. usb_printing_counter--;
  941. _usb_timer = millis();
  942. }
  943. if (usb_printing_counter == 0)
  944. {
  945. is_usb_printing = false;
  946. }
  947. get_command();
  948. #ifdef SDSUPPORT
  949. card.checkautostart(false);
  950. #endif
  951. if(buflen)
  952. {
  953. #ifdef SDSUPPORT
  954. if(card.saving)
  955. {
  956. // Saving a G-code file onto an SD-card is in progress.
  957. // Saving starts with M28, saving until M29 is seen.
  958. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  959. card.write_command(CMDBUFFER_CURRENT_STRING);
  960. if(card.logging)
  961. process_commands();
  962. else
  963. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  964. } else {
  965. card.closefile();
  966. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  967. }
  968. } else {
  969. process_commands();
  970. }
  971. #else
  972. process_commands();
  973. #endif //SDSUPPORT
  974. if (! cmdbuffer_front_already_processed)
  975. cmdqueue_pop_front();
  976. cmdbuffer_front_already_processed = false;
  977. }
  978. //check heater every n milliseconds
  979. manage_heater();
  980. manage_inactivity();
  981. checkHitEndstops();
  982. lcd_update();
  983. }
  984. void get_command()
  985. {
  986. // Test and reserve space for the new command string.
  987. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  988. return;
  989. while (MYSERIAL.available() > 0) {
  990. char serial_char = MYSERIAL.read();
  991. TimeSent = millis();
  992. TimeNow = millis();
  993. if (serial_char < 0)
  994. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  995. // and Marlin does not support such file names anyway.
  996. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  997. // to a hang-up of the print process from an SD card.
  998. continue;
  999. if(serial_char == '\n' ||
  1000. serial_char == '\r' ||
  1001. (serial_char == ':' && comment_mode == false) ||
  1002. serial_count >= (MAX_CMD_SIZE - 1) )
  1003. {
  1004. if(!serial_count) { //if empty line
  1005. comment_mode = false; //for new command
  1006. return;
  1007. }
  1008. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1009. if(!comment_mode){
  1010. comment_mode = false; //for new command
  1011. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1012. {
  1013. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1014. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1015. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1016. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1017. // M110 - set current line number.
  1018. // Line numbers not sent in succession.
  1019. SERIAL_ERROR_START;
  1020. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1021. SERIAL_ERRORLN(gcode_LastN);
  1022. //Serial.println(gcode_N);
  1023. FlushSerialRequestResend();
  1024. serial_count = 0;
  1025. return;
  1026. }
  1027. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1028. {
  1029. byte checksum = 0;
  1030. char *p = cmdbuffer+bufindw+1;
  1031. while (p != strchr_pointer)
  1032. checksum = checksum^(*p++);
  1033. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1034. SERIAL_ERROR_START;
  1035. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1036. SERIAL_ERRORLN(gcode_LastN);
  1037. FlushSerialRequestResend();
  1038. serial_count = 0;
  1039. return;
  1040. }
  1041. // If no errors, remove the checksum and continue parsing.
  1042. *strchr_pointer = 0;
  1043. }
  1044. else
  1045. {
  1046. SERIAL_ERROR_START;
  1047. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1048. SERIAL_ERRORLN(gcode_LastN);
  1049. FlushSerialRequestResend();
  1050. serial_count = 0;
  1051. return;
  1052. }
  1053. gcode_LastN = gcode_N;
  1054. //if no errors, continue parsing
  1055. } // end of 'N' command
  1056. else // if we don't receive 'N' but still see '*'
  1057. {
  1058. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1059. {
  1060. SERIAL_ERROR_START;
  1061. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1062. SERIAL_ERRORLN(gcode_LastN);
  1063. serial_count = 0;
  1064. return;
  1065. }
  1066. } // end of '*' command
  1067. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1068. if (! IS_SD_PRINTING) {
  1069. usb_printing_counter = 10;
  1070. is_usb_printing = true;
  1071. }
  1072. if (Stopped == true) {
  1073. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1074. if (gcode >= 0 && gcode <= 3) {
  1075. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1076. LCD_MESSAGERPGM(MSG_STOPPED);
  1077. }
  1078. }
  1079. } // end of 'G' command
  1080. //If command was e-stop process now
  1081. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1082. kill();
  1083. // Store the current line into buffer, move to the next line.
  1084. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1085. #ifdef CMDBUFFER_DEBUG
  1086. SERIAL_ECHO_START;
  1087. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1088. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1089. SERIAL_ECHOLNPGM("");
  1090. #endif /* CMDBUFFER_DEBUG */
  1091. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1092. if (bufindw == sizeof(cmdbuffer))
  1093. bufindw = 0;
  1094. ++ buflen;
  1095. #ifdef CMDBUFFER_DEBUG
  1096. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1097. SERIAL_ECHO(buflen);
  1098. SERIAL_ECHOLNPGM("");
  1099. #endif /* CMDBUFFER_DEBUG */
  1100. } // end of 'not comment mode'
  1101. serial_count = 0; //clear buffer
  1102. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1103. // in the queue, as this function will reserve the memory.
  1104. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1105. return;
  1106. } // end of "end of line" processing
  1107. else {
  1108. // Not an "end of line" symbol. Store the new character into a buffer.
  1109. if(serial_char == ';') comment_mode = true;
  1110. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1111. }
  1112. } // end of serial line processing loop
  1113. if(farm_mode){
  1114. TimeNow = millis();
  1115. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1116. cmdbuffer[bufindw+serial_count+1] = 0;
  1117. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1118. if (bufindw == sizeof(cmdbuffer))
  1119. bufindw = 0;
  1120. ++ buflen;
  1121. serial_count = 0;
  1122. SERIAL_ECHOPGM("TIMEOUT:");
  1123. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1124. return;
  1125. }
  1126. }
  1127. #ifdef SDSUPPORT
  1128. if(!card.sdprinting || serial_count!=0){
  1129. // If there is a half filled buffer from serial line, wait until return before
  1130. // continuing with the serial line.
  1131. return;
  1132. }
  1133. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1134. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1135. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1136. static bool stop_buffering=false;
  1137. if(buflen==0) stop_buffering=false;
  1138. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1139. while( !card.eof() && !stop_buffering) {
  1140. int16_t n=card.get();
  1141. char serial_char = (char)n;
  1142. if(serial_char == '\n' ||
  1143. serial_char == '\r' ||
  1144. (serial_char == '#' && comment_mode == false) ||
  1145. (serial_char == ':' && comment_mode == false) ||
  1146. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1147. {
  1148. if(card.eof()){
  1149. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1150. stoptime=millis();
  1151. char time[30];
  1152. unsigned long t=(stoptime-starttime)/1000;
  1153. int hours, minutes;
  1154. minutes=(t/60)%60;
  1155. hours=t/60/60;
  1156. save_statistics(total_filament_used, t);
  1157. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1158. SERIAL_ECHO_START;
  1159. SERIAL_ECHOLN(time);
  1160. lcd_setstatus(time);
  1161. card.printingHasFinished();
  1162. card.checkautostart(true);
  1163. if (farm_mode)
  1164. {
  1165. prusa_statistics(6);
  1166. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1167. }
  1168. }
  1169. if(serial_char=='#')
  1170. stop_buffering=true;
  1171. if(!serial_count)
  1172. {
  1173. comment_mode = false; //for new command
  1174. return; //if empty line
  1175. }
  1176. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1177. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1178. ++ buflen;
  1179. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1180. if (bufindw == sizeof(cmdbuffer))
  1181. bufindw = 0;
  1182. comment_mode = false; //for new command
  1183. serial_count = 0; //clear buffer
  1184. // The following line will reserve buffer space if available.
  1185. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1186. return;
  1187. }
  1188. else
  1189. {
  1190. if(serial_char == ';') comment_mode = true;
  1191. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1192. }
  1193. }
  1194. #endif //SDSUPPORT
  1195. }
  1196. // Return True if a character was found
  1197. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1198. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1199. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1200. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1201. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1202. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1203. #define DEFINE_PGM_READ_ANY(type, reader) \
  1204. static inline type pgm_read_any(const type *p) \
  1205. { return pgm_read_##reader##_near(p); }
  1206. DEFINE_PGM_READ_ANY(float, float);
  1207. DEFINE_PGM_READ_ANY(signed char, byte);
  1208. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1209. static const PROGMEM type array##_P[3] = \
  1210. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1211. static inline type array(int axis) \
  1212. { return pgm_read_any(&array##_P[axis]); } \
  1213. type array##_ext(int axis) \
  1214. { return pgm_read_any(&array##_P[axis]); }
  1215. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1216. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1217. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1218. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1219. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1220. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1221. static void axis_is_at_home(int axis) {
  1222. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1223. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1224. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1225. }
  1226. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1227. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1228. static void setup_for_endstop_move() {
  1229. saved_feedrate = feedrate;
  1230. saved_feedmultiply = feedmultiply;
  1231. feedmultiply = 100;
  1232. previous_millis_cmd = millis();
  1233. enable_endstops(true);
  1234. }
  1235. static void clean_up_after_endstop_move() {
  1236. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1237. enable_endstops(false);
  1238. #endif
  1239. feedrate = saved_feedrate;
  1240. feedmultiply = saved_feedmultiply;
  1241. previous_millis_cmd = millis();
  1242. }
  1243. #ifdef ENABLE_AUTO_BED_LEVELING
  1244. #ifdef AUTO_BED_LEVELING_GRID
  1245. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1246. {
  1247. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1248. planeNormal.debug("planeNormal");
  1249. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1250. //bedLevel.debug("bedLevel");
  1251. //plan_bed_level_matrix.debug("bed level before");
  1252. //vector_3 uncorrected_position = plan_get_position_mm();
  1253. //uncorrected_position.debug("position before");
  1254. vector_3 corrected_position = plan_get_position();
  1255. // corrected_position.debug("position after");
  1256. current_position[X_AXIS] = corrected_position.x;
  1257. current_position[Y_AXIS] = corrected_position.y;
  1258. current_position[Z_AXIS] = corrected_position.z;
  1259. // put the bed at 0 so we don't go below it.
  1260. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1261. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1262. }
  1263. #else // not AUTO_BED_LEVELING_GRID
  1264. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1265. plan_bed_level_matrix.set_to_identity();
  1266. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1267. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1268. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1269. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1270. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1271. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1272. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1273. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1274. vector_3 corrected_position = plan_get_position();
  1275. current_position[X_AXIS] = corrected_position.x;
  1276. current_position[Y_AXIS] = corrected_position.y;
  1277. current_position[Z_AXIS] = corrected_position.z;
  1278. // put the bed at 0 so we don't go below it.
  1279. current_position[Z_AXIS] = zprobe_zoffset;
  1280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1281. }
  1282. #endif // AUTO_BED_LEVELING_GRID
  1283. static void run_z_probe() {
  1284. plan_bed_level_matrix.set_to_identity();
  1285. feedrate = homing_feedrate[Z_AXIS];
  1286. // move down until you find the bed
  1287. float zPosition = -10;
  1288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1289. st_synchronize();
  1290. // we have to let the planner know where we are right now as it is not where we said to go.
  1291. zPosition = st_get_position_mm(Z_AXIS);
  1292. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1293. // move up the retract distance
  1294. zPosition += home_retract_mm(Z_AXIS);
  1295. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1296. st_synchronize();
  1297. // move back down slowly to find bed
  1298. feedrate = homing_feedrate[Z_AXIS]/4;
  1299. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1301. st_synchronize();
  1302. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1303. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1304. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1305. }
  1306. static void do_blocking_move_to(float x, float y, float z) {
  1307. float oldFeedRate = feedrate;
  1308. feedrate = homing_feedrate[Z_AXIS];
  1309. current_position[Z_AXIS] = z;
  1310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1311. st_synchronize();
  1312. feedrate = XY_TRAVEL_SPEED;
  1313. current_position[X_AXIS] = x;
  1314. current_position[Y_AXIS] = y;
  1315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1316. st_synchronize();
  1317. feedrate = oldFeedRate;
  1318. }
  1319. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1320. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1321. }
  1322. /// Probe bed height at position (x,y), returns the measured z value
  1323. static float probe_pt(float x, float y, float z_before) {
  1324. // move to right place
  1325. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1326. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1327. run_z_probe();
  1328. float measured_z = current_position[Z_AXIS];
  1329. SERIAL_PROTOCOLRPGM(MSG_BED);
  1330. SERIAL_PROTOCOLPGM(" x: ");
  1331. SERIAL_PROTOCOL(x);
  1332. SERIAL_PROTOCOLPGM(" y: ");
  1333. SERIAL_PROTOCOL(y);
  1334. SERIAL_PROTOCOLPGM(" z: ");
  1335. SERIAL_PROTOCOL(measured_z);
  1336. SERIAL_PROTOCOLPGM("\n");
  1337. return measured_z;
  1338. }
  1339. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1340. void homeaxis(int axis) {
  1341. #define HOMEAXIS_DO(LETTER) \
  1342. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1343. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1344. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1345. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1346. 0) {
  1347. int axis_home_dir = home_dir(axis);
  1348. current_position[axis] = 0;
  1349. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1350. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1351. feedrate = homing_feedrate[axis];
  1352. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1353. st_synchronize();
  1354. current_position[axis] = 0;
  1355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1358. st_synchronize();
  1359. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1360. feedrate = homing_feedrate[axis]/2 ;
  1361. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1362. st_synchronize();
  1363. axis_is_at_home(axis);
  1364. destination[axis] = current_position[axis];
  1365. feedrate = 0.0;
  1366. endstops_hit_on_purpose();
  1367. axis_known_position[axis] = true;
  1368. }
  1369. }
  1370. void home_xy()
  1371. {
  1372. set_destination_to_current();
  1373. homeaxis(X_AXIS);
  1374. homeaxis(Y_AXIS);
  1375. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1376. endstops_hit_on_purpose();
  1377. }
  1378. void refresh_cmd_timeout(void)
  1379. {
  1380. previous_millis_cmd = millis();
  1381. }
  1382. #ifdef FWRETRACT
  1383. void retract(bool retracting, bool swapretract = false) {
  1384. if(retracting && !retracted[active_extruder]) {
  1385. destination[X_AXIS]=current_position[X_AXIS];
  1386. destination[Y_AXIS]=current_position[Y_AXIS];
  1387. destination[Z_AXIS]=current_position[Z_AXIS];
  1388. destination[E_AXIS]=current_position[E_AXIS];
  1389. if (swapretract) {
  1390. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1391. } else {
  1392. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1393. }
  1394. plan_set_e_position(current_position[E_AXIS]);
  1395. float oldFeedrate = feedrate;
  1396. feedrate=retract_feedrate*60;
  1397. retracted[active_extruder]=true;
  1398. prepare_move();
  1399. current_position[Z_AXIS]-=retract_zlift;
  1400. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1401. prepare_move();
  1402. feedrate = oldFeedrate;
  1403. } else if(!retracting && retracted[active_extruder]) {
  1404. destination[X_AXIS]=current_position[X_AXIS];
  1405. destination[Y_AXIS]=current_position[Y_AXIS];
  1406. destination[Z_AXIS]=current_position[Z_AXIS];
  1407. destination[E_AXIS]=current_position[E_AXIS];
  1408. current_position[Z_AXIS]+=retract_zlift;
  1409. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1410. //prepare_move();
  1411. if (swapretract) {
  1412. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1413. } else {
  1414. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1415. }
  1416. plan_set_e_position(current_position[E_AXIS]);
  1417. float oldFeedrate = feedrate;
  1418. feedrate=retract_recover_feedrate*60;
  1419. retracted[active_extruder]=false;
  1420. prepare_move();
  1421. feedrate = oldFeedrate;
  1422. }
  1423. } //retract
  1424. #endif //FWRETRACT
  1425. void process_commands()
  1426. {
  1427. #ifdef FILAMENT_RUNOUT_SUPPORT
  1428. SET_INPUT(FR_SENS);
  1429. #endif
  1430. #ifdef CMDBUFFER_DEBUG
  1431. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1432. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1433. SERIAL_ECHOLNPGM("");
  1434. SERIAL_ECHOPGM("In cmdqueue: ");
  1435. SERIAL_ECHO(buflen);
  1436. SERIAL_ECHOLNPGM("");
  1437. #endif /* CMDBUFFER_DEBUG */
  1438. unsigned long codenum; //throw away variable
  1439. char *starpos = NULL;
  1440. #ifdef ENABLE_AUTO_BED_LEVELING
  1441. float x_tmp, y_tmp, z_tmp, real_z;
  1442. #endif
  1443. // PRUSA GCODES
  1444. if(code_seen("PRUSA")){
  1445. if(code_seen("Fir")){
  1446. SERIAL_PROTOCOLLN(FW_version);
  1447. } else if(code_seen("Rev")){
  1448. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1449. } else if(code_seen("Lang")) {
  1450. lcd_force_language_selection();
  1451. } else if(code_seen("Lz")) {
  1452. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1453. }
  1454. //else if (code_seen('Cal')) {
  1455. // lcd_calibration();
  1456. // }
  1457. }
  1458. else
  1459. if(code_seen('G'))
  1460. {
  1461. switch((int)code_value())
  1462. {
  1463. case 0: // G0 -> G1
  1464. case 1: // G1
  1465. if(Stopped == false) {
  1466. #ifdef FILAMENT_RUNOUT_SUPPORT
  1467. if(READ(FR_SENS)){
  1468. feedmultiplyBckp=feedmultiply;
  1469. float target[4];
  1470. float lastpos[4];
  1471. target[X_AXIS]=current_position[X_AXIS];
  1472. target[Y_AXIS]=current_position[Y_AXIS];
  1473. target[Z_AXIS]=current_position[Z_AXIS];
  1474. target[E_AXIS]=current_position[E_AXIS];
  1475. lastpos[X_AXIS]=current_position[X_AXIS];
  1476. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1477. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1478. lastpos[E_AXIS]=current_position[E_AXIS];
  1479. //retract by E
  1480. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1482. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1483. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1484. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1485. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1487. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1488. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1489. //finish moves
  1490. st_synchronize();
  1491. //disable extruder steppers so filament can be removed
  1492. disable_e0();
  1493. disable_e1();
  1494. disable_e2();
  1495. delay(100);
  1496. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1497. uint8_t cnt=0;
  1498. int counterBeep = 0;
  1499. lcd_wait_interact();
  1500. while(!lcd_clicked()){
  1501. cnt++;
  1502. manage_heater();
  1503. manage_inactivity(true);
  1504. //lcd_update();
  1505. if(cnt==0)
  1506. {
  1507. #if BEEPER > 0
  1508. if (counterBeep== 500){
  1509. counterBeep = 0;
  1510. }
  1511. SET_OUTPUT(BEEPER);
  1512. if (counterBeep== 0){
  1513. WRITE(BEEPER,HIGH);
  1514. }
  1515. if (counterBeep== 20){
  1516. WRITE(BEEPER,LOW);
  1517. }
  1518. counterBeep++;
  1519. #else
  1520. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1521. lcd_buzz(1000/6,100);
  1522. #else
  1523. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1524. #endif
  1525. #endif
  1526. }
  1527. }
  1528. WRITE(BEEPER,LOW);
  1529. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1530. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1531. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1532. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1533. lcd_change_fil_state = 0;
  1534. lcd_loading_filament();
  1535. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1536. lcd_change_fil_state = 0;
  1537. lcd_alright();
  1538. switch(lcd_change_fil_state){
  1539. case 2:
  1540. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1542. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1544. lcd_loading_filament();
  1545. break;
  1546. case 3:
  1547. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1549. lcd_loading_color();
  1550. break;
  1551. default:
  1552. lcd_change_success();
  1553. break;
  1554. }
  1555. }
  1556. target[E_AXIS]+= 5;
  1557. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1558. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1560. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1561. //plan_set_e_position(current_position[E_AXIS]);
  1562. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1563. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1564. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1565. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1566. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1567. plan_set_e_position(lastpos[E_AXIS]);
  1568. feedmultiply=feedmultiplyBckp;
  1569. char cmd[9];
  1570. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1571. enquecommand(cmd);
  1572. }
  1573. #endif
  1574. get_coordinates(); // For X Y Z E F
  1575. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1576. #ifdef FWRETRACT
  1577. if(autoretract_enabled)
  1578. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1579. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1580. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1581. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1582. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1583. retract(!retracted);
  1584. return;
  1585. }
  1586. }
  1587. #endif //FWRETRACT
  1588. prepare_move();
  1589. //ClearToSend();
  1590. }
  1591. break;
  1592. case 2: // G2 - CW ARC
  1593. if(Stopped == false) {
  1594. get_arc_coordinates();
  1595. prepare_arc_move(true);
  1596. }
  1597. break;
  1598. case 3: // G3 - CCW ARC
  1599. if(Stopped == false) {
  1600. get_arc_coordinates();
  1601. prepare_arc_move(false);
  1602. }
  1603. break;
  1604. case 4: // G4 dwell
  1605. LCD_MESSAGERPGM(MSG_DWELL);
  1606. codenum = 0;
  1607. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1608. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1609. st_synchronize();
  1610. codenum += millis(); // keep track of when we started waiting
  1611. previous_millis_cmd = millis();
  1612. while(millis() < codenum) {
  1613. manage_heater();
  1614. manage_inactivity();
  1615. lcd_update();
  1616. }
  1617. break;
  1618. #ifdef FWRETRACT
  1619. case 10: // G10 retract
  1620. #if EXTRUDERS > 1
  1621. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1622. retract(true,retracted_swap[active_extruder]);
  1623. #else
  1624. retract(true);
  1625. #endif
  1626. break;
  1627. case 11: // G11 retract_recover
  1628. #if EXTRUDERS > 1
  1629. retract(false,retracted_swap[active_extruder]);
  1630. #else
  1631. retract(false);
  1632. #endif
  1633. break;
  1634. #endif //FWRETRACT
  1635. case 28: //G28 Home all Axis one at a time
  1636. #ifdef ENABLE_AUTO_BED_LEVELING
  1637. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1638. #endif //ENABLE_AUTO_BED_LEVELING
  1639. // For mesh bed leveling deactivate the matrix temporarily
  1640. #ifdef MESH_BED_LEVELING
  1641. mbl.active = 0;
  1642. #endif
  1643. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1644. // the planner will not perform any adjustments in the XY plane.
  1645. // Wait for the motors to stop and update the current position with the absolute values.
  1646. world2machine_revert_to_uncorrected();
  1647. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1648. // consumed during the first movements following this statement.
  1649. babystep_undo();
  1650. saved_feedrate = feedrate;
  1651. saved_feedmultiply = feedmultiply;
  1652. feedmultiply = 100;
  1653. previous_millis_cmd = millis();
  1654. enable_endstops(true);
  1655. for(int8_t i=0; i < NUM_AXIS; i++)
  1656. destination[i] = current_position[i];
  1657. feedrate = 0.0;
  1658. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1659. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1660. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1661. homeaxis(Z_AXIS);
  1662. }
  1663. #endif
  1664. #ifdef QUICK_HOME
  1665. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1666. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1667. {
  1668. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1669. int x_axis_home_dir = home_dir(X_AXIS);
  1670. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1671. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1672. feedrate = homing_feedrate[X_AXIS];
  1673. if(homing_feedrate[Y_AXIS]<feedrate)
  1674. feedrate = homing_feedrate[Y_AXIS];
  1675. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1676. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1677. } else {
  1678. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1679. }
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. axis_is_at_home(X_AXIS);
  1683. axis_is_at_home(Y_AXIS);
  1684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1685. destination[X_AXIS] = current_position[X_AXIS];
  1686. destination[Y_AXIS] = current_position[Y_AXIS];
  1687. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1688. feedrate = 0.0;
  1689. st_synchronize();
  1690. endstops_hit_on_purpose();
  1691. current_position[X_AXIS] = destination[X_AXIS];
  1692. current_position[Y_AXIS] = destination[Y_AXIS];
  1693. current_position[Z_AXIS] = destination[Z_AXIS];
  1694. }
  1695. #endif /* QUICK_HOME */
  1696. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1697. homeaxis(X_AXIS);
  1698. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1699. homeaxis(Y_AXIS);
  1700. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1701. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1702. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1703. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1704. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1705. #ifndef Z_SAFE_HOMING
  1706. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1707. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1708. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1709. feedrate = max_feedrate[Z_AXIS];
  1710. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1711. st_synchronize();
  1712. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1713. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1714. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1715. {
  1716. homeaxis(X_AXIS);
  1717. homeaxis(Y_AXIS);
  1718. }
  1719. // 1st mesh bed leveling measurement point, corrected.
  1720. world2machine_initialize();
  1721. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1722. world2machine_reset();
  1723. if (destination[Y_AXIS] < Y_MIN_POS)
  1724. destination[Y_AXIS] = Y_MIN_POS;
  1725. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1726. feedrate = homing_feedrate[Z_AXIS]/10;
  1727. current_position[Z_AXIS] = 0;
  1728. enable_endstops(false);
  1729. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1730. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1731. st_synchronize();
  1732. current_position[X_AXIS] = destination[X_AXIS];
  1733. current_position[Y_AXIS] = destination[Y_AXIS];
  1734. enable_endstops(true);
  1735. endstops_hit_on_purpose();
  1736. homeaxis(Z_AXIS);
  1737. #else // MESH_BED_LEVELING
  1738. homeaxis(Z_AXIS);
  1739. #endif // MESH_BED_LEVELING
  1740. }
  1741. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1742. if(home_all_axis) {
  1743. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1744. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1745. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1746. feedrate = XY_TRAVEL_SPEED/60;
  1747. current_position[Z_AXIS] = 0;
  1748. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1749. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1750. st_synchronize();
  1751. current_position[X_AXIS] = destination[X_AXIS];
  1752. current_position[Y_AXIS] = destination[Y_AXIS];
  1753. homeaxis(Z_AXIS);
  1754. }
  1755. // Let's see if X and Y are homed and probe is inside bed area.
  1756. if(code_seen(axis_codes[Z_AXIS])) {
  1757. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1758. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1759. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1760. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1761. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1762. current_position[Z_AXIS] = 0;
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1765. feedrate = max_feedrate[Z_AXIS];
  1766. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1767. st_synchronize();
  1768. homeaxis(Z_AXIS);
  1769. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1770. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1771. SERIAL_ECHO_START;
  1772. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1773. } else {
  1774. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1775. SERIAL_ECHO_START;
  1776. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1777. }
  1778. }
  1779. #endif // Z_SAFE_HOMING
  1780. #endif // Z_HOME_DIR < 0
  1781. if(code_seen(axis_codes[Z_AXIS])) {
  1782. if(code_value_long() != 0) {
  1783. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1784. }
  1785. }
  1786. #ifdef ENABLE_AUTO_BED_LEVELING
  1787. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1788. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1789. }
  1790. #endif
  1791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1792. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1793. enable_endstops(false);
  1794. #endif
  1795. feedrate = saved_feedrate;
  1796. feedmultiply = saved_feedmultiply;
  1797. previous_millis_cmd = millis();
  1798. endstops_hit_on_purpose();
  1799. #ifndef MESH_BED_LEVELING
  1800. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1801. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1802. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1803. lcd_adjust_z();
  1804. #endif
  1805. // Load the machine correction matrix
  1806. world2machine_initialize();
  1807. // and correct the current_position to match the transformed coordinate system.
  1808. world2machine_update_current();
  1809. #ifdef MESH_BED_LEVELING
  1810. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1811. {
  1812. }
  1813. else
  1814. {
  1815. st_synchronize();
  1816. // Push the commands to the front of the message queue in the reverse order!
  1817. // There shall be always enough space reserved for these commands.
  1818. // enquecommand_front_P((PSTR("G80")));
  1819. goto case_G80;
  1820. }
  1821. #endif
  1822. if (farm_mode) { prusa_statistics(20); };
  1823. break;
  1824. #ifdef ENABLE_AUTO_BED_LEVELING
  1825. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1826. {
  1827. #if Z_MIN_PIN == -1
  1828. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1829. #endif
  1830. // Prevent user from running a G29 without first homing in X and Y
  1831. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1832. {
  1833. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1834. SERIAL_ECHO_START;
  1835. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1836. break; // abort G29, since we don't know where we are
  1837. }
  1838. st_synchronize();
  1839. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1840. //vector_3 corrected_position = plan_get_position_mm();
  1841. //corrected_position.debug("position before G29");
  1842. plan_bed_level_matrix.set_to_identity();
  1843. vector_3 uncorrected_position = plan_get_position();
  1844. //uncorrected_position.debug("position durring G29");
  1845. current_position[X_AXIS] = uncorrected_position.x;
  1846. current_position[Y_AXIS] = uncorrected_position.y;
  1847. current_position[Z_AXIS] = uncorrected_position.z;
  1848. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1849. setup_for_endstop_move();
  1850. feedrate = homing_feedrate[Z_AXIS];
  1851. #ifdef AUTO_BED_LEVELING_GRID
  1852. // probe at the points of a lattice grid
  1853. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1854. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1855. // solve the plane equation ax + by + d = z
  1856. // A is the matrix with rows [x y 1] for all the probed points
  1857. // B is the vector of the Z positions
  1858. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1859. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1860. // "A" matrix of the linear system of equations
  1861. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1862. // "B" vector of Z points
  1863. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1864. int probePointCounter = 0;
  1865. bool zig = true;
  1866. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1867. {
  1868. int xProbe, xInc;
  1869. if (zig)
  1870. {
  1871. xProbe = LEFT_PROBE_BED_POSITION;
  1872. //xEnd = RIGHT_PROBE_BED_POSITION;
  1873. xInc = xGridSpacing;
  1874. zig = false;
  1875. } else // zag
  1876. {
  1877. xProbe = RIGHT_PROBE_BED_POSITION;
  1878. //xEnd = LEFT_PROBE_BED_POSITION;
  1879. xInc = -xGridSpacing;
  1880. zig = true;
  1881. }
  1882. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1883. {
  1884. float z_before;
  1885. if (probePointCounter == 0)
  1886. {
  1887. // raise before probing
  1888. z_before = Z_RAISE_BEFORE_PROBING;
  1889. } else
  1890. {
  1891. // raise extruder
  1892. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1893. }
  1894. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1895. eqnBVector[probePointCounter] = measured_z;
  1896. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1897. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1898. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1899. probePointCounter++;
  1900. xProbe += xInc;
  1901. }
  1902. }
  1903. clean_up_after_endstop_move();
  1904. // solve lsq problem
  1905. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1906. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1907. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1908. SERIAL_PROTOCOLPGM(" b: ");
  1909. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1910. SERIAL_PROTOCOLPGM(" d: ");
  1911. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1912. set_bed_level_equation_lsq(plane_equation_coefficients);
  1913. free(plane_equation_coefficients);
  1914. #else // AUTO_BED_LEVELING_GRID not defined
  1915. // Probe at 3 arbitrary points
  1916. // probe 1
  1917. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1918. // probe 2
  1919. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1920. // probe 3
  1921. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1922. clean_up_after_endstop_move();
  1923. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1924. #endif // AUTO_BED_LEVELING_GRID
  1925. st_synchronize();
  1926. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1927. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1928. // When the bed is uneven, this height must be corrected.
  1929. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1930. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1931. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1932. z_tmp = current_position[Z_AXIS];
  1933. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1934. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. }
  1937. break;
  1938. #ifndef Z_PROBE_SLED
  1939. case 30: // G30 Single Z Probe
  1940. {
  1941. st_synchronize();
  1942. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1943. setup_for_endstop_move();
  1944. feedrate = homing_feedrate[Z_AXIS];
  1945. run_z_probe();
  1946. SERIAL_PROTOCOLPGM(MSG_BED);
  1947. SERIAL_PROTOCOLPGM(" X: ");
  1948. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1949. SERIAL_PROTOCOLPGM(" Y: ");
  1950. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1951. SERIAL_PROTOCOLPGM(" Z: ");
  1952. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1953. SERIAL_PROTOCOLPGM("\n");
  1954. clean_up_after_endstop_move();
  1955. }
  1956. break;
  1957. #else
  1958. case 31: // dock the sled
  1959. dock_sled(true);
  1960. break;
  1961. case 32: // undock the sled
  1962. dock_sled(false);
  1963. break;
  1964. #endif // Z_PROBE_SLED
  1965. #endif // ENABLE_AUTO_BED_LEVELING
  1966. #ifdef MESH_BED_LEVELING
  1967. case 30: // G30 Single Z Probe
  1968. {
  1969. st_synchronize();
  1970. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1971. setup_for_endstop_move();
  1972. feedrate = homing_feedrate[Z_AXIS];
  1973. find_bed_induction_sensor_point_z(-10.f, 3);
  1974. SERIAL_PROTOCOLRPGM(MSG_BED);
  1975. SERIAL_PROTOCOLPGM(" X: ");
  1976. MYSERIAL.print(current_position[X_AXIS], 5);
  1977. SERIAL_PROTOCOLPGM(" Y: ");
  1978. MYSERIAL.print(current_position[Y_AXIS], 5);
  1979. SERIAL_PROTOCOLPGM(" Z: ");
  1980. MYSERIAL.print(current_position[Z_AXIS], 5);
  1981. SERIAL_PROTOCOLPGM("\n");
  1982. clean_up_after_endstop_move();
  1983. }
  1984. break;
  1985. /**
  1986. * G80: Mesh-based Z probe, probes a grid and produces a
  1987. * mesh to compensate for variable bed height
  1988. *
  1989. * The S0 report the points as below
  1990. *
  1991. * +----> X-axis
  1992. * |
  1993. * |
  1994. * v Y-axis
  1995. *
  1996. */
  1997. case 80:
  1998. case_G80:
  1999. {
  2000. // Firstly check if we know where we are
  2001. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2002. // We don't know where we are! HOME!
  2003. // Push the commands to the front of the message queue in the reverse order!
  2004. // There shall be always enough space reserved for these commands.
  2005. repeatcommand_front(); // repeat G80 with all its parameters
  2006. enquecommand_front_P((PSTR("G28 W0")));
  2007. break;
  2008. }
  2009. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2010. bool custom_message_old = custom_message;
  2011. unsigned int custom_message_type_old = custom_message_type;
  2012. unsigned int custom_message_state_old = custom_message_state;
  2013. custom_message = true;
  2014. custom_message_type = 1;
  2015. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2016. lcd_update(1);
  2017. mbl.reset();
  2018. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2019. // consumed during the first movements following this statement.
  2020. babystep_undo();
  2021. // Cycle through all points and probe them
  2022. // First move up. During this first movement, the babystepping will be reverted.
  2023. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2025. // The move to the first calibration point.
  2026. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2027. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2028. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2029. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2031. // Wait until the move is finished.
  2032. st_synchronize();
  2033. int mesh_point = 0;
  2034. int ix = 0;
  2035. int iy = 0;
  2036. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2037. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2038. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2039. bool has_z = is_bed_z_jitter_data_valid();
  2040. setup_for_endstop_move();
  2041. const char *kill_message = NULL;
  2042. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2043. // Get coords of a measuring point.
  2044. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2045. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2046. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2047. float z0 = 0.f;
  2048. if (has_z && mesh_point > 0) {
  2049. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2050. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2051. #if 0
  2052. SERIAL_ECHOPGM("Bed leveling, point: ");
  2053. MYSERIAL.print(mesh_point);
  2054. SERIAL_ECHOPGM(", calibration z: ");
  2055. MYSERIAL.print(z0, 5);
  2056. SERIAL_ECHOLNPGM("");
  2057. #endif
  2058. }
  2059. // Move Z to proper distance
  2060. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2062. st_synchronize();
  2063. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2064. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2065. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2066. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2067. enable_endstops(false);
  2068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2069. st_synchronize();
  2070. // Go down until endstop is hit
  2071. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2072. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2073. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2074. break;
  2075. }
  2076. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2077. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2078. break;
  2079. }
  2080. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2081. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2082. break;
  2083. }
  2084. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2085. custom_message_state--;
  2086. mesh_point++;
  2087. lcd_update(1);
  2088. }
  2089. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2091. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2092. st_synchronize();
  2093. kill(kill_message);
  2094. }
  2095. clean_up_after_endstop_move();
  2096. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2097. babystep_apply();
  2098. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2099. for (uint8_t i = 0; i < 4; ++ i) {
  2100. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2101. long correction = 0;
  2102. if (code_seen(codes[i]))
  2103. correction = code_value_long();
  2104. else if (eeprom_bed_correction_valid) {
  2105. unsigned char *addr = (i < 2) ?
  2106. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2107. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2108. correction = eeprom_read_int8(addr);
  2109. }
  2110. if (correction == 0)
  2111. continue;
  2112. float offset = float(correction) * 0.001f;
  2113. if (fabs(offset) > 0.101f) {
  2114. SERIAL_ERROR_START;
  2115. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2116. SERIAL_ECHO(offset);
  2117. SERIAL_ECHOLNPGM(" microns");
  2118. } else {
  2119. switch (i) {
  2120. case 0:
  2121. for (uint8_t row = 0; row < 3; ++ row) {
  2122. mbl.z_values[row][1] += 0.5f * offset;
  2123. mbl.z_values[row][0] += offset;
  2124. }
  2125. break;
  2126. case 1:
  2127. for (uint8_t row = 0; row < 3; ++ row) {
  2128. mbl.z_values[row][1] += 0.5f * offset;
  2129. mbl.z_values[row][2] += offset;
  2130. }
  2131. break;
  2132. case 2:
  2133. for (uint8_t col = 0; col < 3; ++ col) {
  2134. mbl.z_values[1][col] += 0.5f * offset;
  2135. mbl.z_values[0][col] += offset;
  2136. }
  2137. break;
  2138. case 3:
  2139. for (uint8_t col = 0; col < 3; ++ col) {
  2140. mbl.z_values[1][col] += 0.5f * offset;
  2141. mbl.z_values[2][col] += offset;
  2142. }
  2143. break;
  2144. }
  2145. }
  2146. }
  2147. mbl.upsample_3x3();
  2148. mbl.active = 1;
  2149. current_position[X_AXIS] = X_MIN_POS+0.2;
  2150. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2151. current_position[Z_AXIS] = Z_MIN_POS;
  2152. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2153. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2154. st_synchronize();
  2155. // Restore custom message state
  2156. custom_message = custom_message_old;
  2157. custom_message_type = custom_message_type_old;
  2158. custom_message_state = custom_message_state_old;
  2159. lcd_update(1);
  2160. }
  2161. break;
  2162. /**
  2163. * G81: Print mesh bed leveling status and bed profile if activated
  2164. */
  2165. case 81:
  2166. if (mbl.active) {
  2167. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2168. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2169. SERIAL_PROTOCOLPGM(",");
  2170. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2171. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2172. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2173. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2174. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2175. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2176. SERIAL_PROTOCOLPGM(" ");
  2177. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2178. }
  2179. SERIAL_PROTOCOLPGM("\n");
  2180. }
  2181. }
  2182. else
  2183. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2184. break;
  2185. #if 0
  2186. /**
  2187. * G82: Single Z probe at current location
  2188. *
  2189. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2190. *
  2191. */
  2192. case 82:
  2193. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2194. setup_for_endstop_move();
  2195. find_bed_induction_sensor_point_z();
  2196. clean_up_after_endstop_move();
  2197. SERIAL_PROTOCOLPGM("Bed found at: ");
  2198. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2199. SERIAL_PROTOCOLPGM("\n");
  2200. break;
  2201. /**
  2202. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2203. */
  2204. case 83:
  2205. {
  2206. int babystepz = code_seen('S') ? code_value() : 0;
  2207. int BabyPosition = code_seen('P') ? code_value() : 0;
  2208. if (babystepz != 0) {
  2209. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2210. // Is the axis indexed starting with zero or one?
  2211. if (BabyPosition > 4) {
  2212. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2213. }else{
  2214. // Save it to the eeprom
  2215. babystepLoadZ = babystepz;
  2216. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2217. // adjust the Z
  2218. babystepsTodoZadd(babystepLoadZ);
  2219. }
  2220. }
  2221. }
  2222. break;
  2223. /**
  2224. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2225. */
  2226. case 84:
  2227. babystepsTodoZsubtract(babystepLoadZ);
  2228. // babystepLoadZ = 0;
  2229. break;
  2230. /**
  2231. * G85: Prusa3D specific: Pick best babystep
  2232. */
  2233. case 85:
  2234. lcd_pick_babystep();
  2235. break;
  2236. #endif
  2237. /**
  2238. * G86: Prusa3D specific: Disable babystep correction after home.
  2239. * This G-code will be performed at the start of a calibration script.
  2240. */
  2241. case 86:
  2242. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2243. break;
  2244. /**
  2245. * G87: Prusa3D specific: Enable babystep correction after home
  2246. * This G-code will be performed at the end of a calibration script.
  2247. */
  2248. case 87:
  2249. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2250. break;
  2251. /**
  2252. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2253. */
  2254. case 88:
  2255. break;
  2256. #endif // ENABLE_MESH_BED_LEVELING
  2257. case 90: // G90
  2258. relative_mode = false;
  2259. break;
  2260. case 91: // G91
  2261. relative_mode = true;
  2262. break;
  2263. case 92: // G92
  2264. if(!code_seen(axis_codes[E_AXIS]))
  2265. st_synchronize();
  2266. for(int8_t i=0; i < NUM_AXIS; i++) {
  2267. if(code_seen(axis_codes[i])) {
  2268. if(i == E_AXIS) {
  2269. current_position[i] = code_value();
  2270. plan_set_e_position(current_position[E_AXIS]);
  2271. }
  2272. else {
  2273. current_position[i] = code_value()+add_homing[i];
  2274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2275. }
  2276. }
  2277. }
  2278. break;
  2279. case 98:
  2280. farm_no = 21;
  2281. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2282. farm_mode = true;
  2283. break;
  2284. case 99:
  2285. farm_no = 0;
  2286. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2287. farm_mode = false;
  2288. break;
  2289. }
  2290. } // end if(code_seen('G'))
  2291. else if(code_seen('M'))
  2292. {
  2293. switch( (int)code_value() )
  2294. {
  2295. #ifdef ULTIPANEL
  2296. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2297. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2298. {
  2299. char *src = strchr_pointer + 2;
  2300. codenum = 0;
  2301. bool hasP = false, hasS = false;
  2302. if (code_seen('P')) {
  2303. codenum = code_value(); // milliseconds to wait
  2304. hasP = codenum > 0;
  2305. }
  2306. if (code_seen('S')) {
  2307. codenum = code_value() * 1000; // seconds to wait
  2308. hasS = codenum > 0;
  2309. }
  2310. starpos = strchr(src, '*');
  2311. if (starpos != NULL) *(starpos) = '\0';
  2312. while (*src == ' ') ++src;
  2313. if (!hasP && !hasS && *src != '\0') {
  2314. lcd_setstatus(src);
  2315. } else {
  2316. LCD_MESSAGERPGM(MSG_USERWAIT);
  2317. }
  2318. lcd_ignore_click();
  2319. st_synchronize();
  2320. previous_millis_cmd = millis();
  2321. if (codenum > 0){
  2322. codenum += millis(); // keep track of when we started waiting
  2323. while(millis() < codenum && !lcd_clicked()){
  2324. manage_heater();
  2325. manage_inactivity();
  2326. lcd_update();
  2327. }
  2328. lcd_ignore_click(false);
  2329. }else{
  2330. if (!lcd_detected())
  2331. break;
  2332. while(!lcd_clicked()){
  2333. manage_heater();
  2334. manage_inactivity();
  2335. lcd_update();
  2336. }
  2337. }
  2338. if (IS_SD_PRINTING)
  2339. LCD_MESSAGERPGM(MSG_RESUMING);
  2340. else
  2341. LCD_MESSAGERPGM(WELCOME_MSG);
  2342. }
  2343. break;
  2344. #endif
  2345. case 17:
  2346. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2347. enable_x();
  2348. enable_y();
  2349. enable_z();
  2350. enable_e0();
  2351. enable_e1();
  2352. enable_e2();
  2353. break;
  2354. #ifdef SDSUPPORT
  2355. case 20: // M20 - list SD card
  2356. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2357. card.ls();
  2358. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2359. break;
  2360. case 21: // M21 - init SD card
  2361. card.initsd();
  2362. break;
  2363. case 22: //M22 - release SD card
  2364. card.release();
  2365. break;
  2366. case 23: //M23 - Select file
  2367. starpos = (strchr(strchr_pointer + 4,'*'));
  2368. if(starpos!=NULL)
  2369. *(starpos)='\0';
  2370. card.openFile(strchr_pointer + 4,true);
  2371. break;
  2372. case 24: //M24 - Start SD print
  2373. card.startFileprint();
  2374. starttime=millis();
  2375. break;
  2376. case 25: //M25 - Pause SD print
  2377. card.pauseSDPrint();
  2378. break;
  2379. case 26: //M26 - Set SD index
  2380. if(card.cardOK && code_seen('S')) {
  2381. card.setIndex(code_value_long());
  2382. }
  2383. break;
  2384. case 27: //M27 - Get SD status
  2385. card.getStatus();
  2386. break;
  2387. case 28: //M28 - Start SD write
  2388. starpos = (strchr(strchr_pointer + 4,'*'));
  2389. if(starpos != NULL){
  2390. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2391. strchr_pointer = strchr(npos,' ') + 1;
  2392. *(starpos) = '\0';
  2393. }
  2394. card.openFile(strchr_pointer+4,false);
  2395. break;
  2396. case 29: //M29 - Stop SD write
  2397. //processed in write to file routine above
  2398. //card,saving = false;
  2399. break;
  2400. case 30: //M30 <filename> Delete File
  2401. if (card.cardOK){
  2402. card.closefile();
  2403. starpos = (strchr(strchr_pointer + 4,'*'));
  2404. if(starpos != NULL){
  2405. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2406. strchr_pointer = strchr(npos,' ') + 1;
  2407. *(starpos) = '\0';
  2408. }
  2409. card.removeFile(strchr_pointer + 4);
  2410. }
  2411. break;
  2412. case 32: //M32 - Select file and start SD print
  2413. {
  2414. if(card.sdprinting) {
  2415. st_synchronize();
  2416. }
  2417. starpos = (strchr(strchr_pointer + 4,'*'));
  2418. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2419. if(namestartpos==NULL)
  2420. {
  2421. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2422. }
  2423. else
  2424. namestartpos++; //to skip the '!'
  2425. if(starpos!=NULL)
  2426. *(starpos)='\0';
  2427. bool call_procedure=(code_seen('P'));
  2428. if(strchr_pointer>namestartpos)
  2429. call_procedure=false; //false alert, 'P' found within filename
  2430. if( card.cardOK )
  2431. {
  2432. card.openFile(namestartpos,true,!call_procedure);
  2433. if(code_seen('S'))
  2434. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2435. card.setIndex(code_value_long());
  2436. card.startFileprint();
  2437. if(!call_procedure)
  2438. starttime=millis(); //procedure calls count as normal print time.
  2439. }
  2440. } break;
  2441. case 928: //M928 - Start SD write
  2442. starpos = (strchr(strchr_pointer + 5,'*'));
  2443. if(starpos != NULL){
  2444. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2445. strchr_pointer = strchr(npos,' ') + 1;
  2446. *(starpos) = '\0';
  2447. }
  2448. card.openLogFile(strchr_pointer+5);
  2449. break;
  2450. #endif //SDSUPPORT
  2451. case 31: //M31 take time since the start of the SD print or an M109 command
  2452. {
  2453. stoptime=millis();
  2454. char time[30];
  2455. unsigned long t=(stoptime-starttime)/1000;
  2456. int sec,min;
  2457. min=t/60;
  2458. sec=t%60;
  2459. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2460. SERIAL_ECHO_START;
  2461. SERIAL_ECHOLN(time);
  2462. lcd_setstatus(time);
  2463. autotempShutdown();
  2464. }
  2465. break;
  2466. case 42: //M42 -Change pin status via gcode
  2467. if (code_seen('S'))
  2468. {
  2469. int pin_status = code_value();
  2470. int pin_number = LED_PIN;
  2471. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2472. pin_number = code_value();
  2473. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2474. {
  2475. if (sensitive_pins[i] == pin_number)
  2476. {
  2477. pin_number = -1;
  2478. break;
  2479. }
  2480. }
  2481. #if defined(FAN_PIN) && FAN_PIN > -1
  2482. if (pin_number == FAN_PIN)
  2483. fanSpeed = pin_status;
  2484. #endif
  2485. if (pin_number > -1)
  2486. {
  2487. pinMode(pin_number, OUTPUT);
  2488. digitalWrite(pin_number, pin_status);
  2489. analogWrite(pin_number, pin_status);
  2490. }
  2491. }
  2492. break;
  2493. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2494. // Reset the skew and offset in both RAM and EEPROM.
  2495. reset_bed_offset_and_skew();
  2496. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2497. // the planner will not perform any adjustments in the XY plane.
  2498. // Wait for the motors to stop and update the current position with the absolute values.
  2499. world2machine_revert_to_uncorrected();
  2500. break;
  2501. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2502. {
  2503. // Disable the default update procedure of the display. We will do a modal dialog.
  2504. lcd_update_enable(false);
  2505. // Let the planner use the uncorrected coordinates.
  2506. mbl.reset();
  2507. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2508. // the planner will not perform any adjustments in the XY plane.
  2509. // Wait for the motors to stop and update the current position with the absolute values.
  2510. world2machine_revert_to_uncorrected();
  2511. // Reset the baby step value applied without moving the axes.
  2512. babystep_reset();
  2513. // Mark all axes as in a need for homing.
  2514. memset(axis_known_position, 0, sizeof(axis_known_position));
  2515. // Only Z calibration?
  2516. bool onlyZ = code_seen('Z');
  2517. // Let the user move the Z axes up to the end stoppers.
  2518. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2519. refresh_cmd_timeout();
  2520. // Move the print head close to the bed.
  2521. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2523. st_synchronize();
  2524. // Home in the XY plane.
  2525. set_destination_to_current();
  2526. setup_for_endstop_move();
  2527. home_xy();
  2528. int8_t verbosity_level = 0;
  2529. if (code_seen('V')) {
  2530. // Just 'V' without a number counts as V1.
  2531. char c = strchr_pointer[1];
  2532. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2533. }
  2534. if (onlyZ) {
  2535. clean_up_after_endstop_move();
  2536. // Z only calibration.
  2537. // Load the machine correction matrix
  2538. world2machine_initialize();
  2539. // and correct the current_position to match the transformed coordinate system.
  2540. world2machine_update_current();
  2541. //FIXME
  2542. bool result = sample_mesh_and_store_reference();
  2543. // if (result) babystep_apply();
  2544. } else {
  2545. // Complete XYZ calibration.
  2546. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2547. uint8_t point_too_far_mask = 0;
  2548. clean_up_after_endstop_move();
  2549. // Print head up.
  2550. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2552. st_synchronize();
  2553. if (result >= 0) {
  2554. // Second half: The fine adjustment.
  2555. // Let the planner use the uncorrected coordinates.
  2556. mbl.reset();
  2557. world2machine_reset();
  2558. // Home in the XY plane.
  2559. setup_for_endstop_move();
  2560. home_xy();
  2561. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2562. clean_up_after_endstop_move();
  2563. // Print head up.
  2564. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2565. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2566. st_synchronize();
  2567. // if (result >= 0) babystep_apply();
  2568. }
  2569. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2570. }
  2571. } else {
  2572. // Timeouted.
  2573. }
  2574. lcd_update_enable(true);
  2575. lcd_implementation_clear();
  2576. // lcd_return_to_status();
  2577. lcd_update();
  2578. break;
  2579. }
  2580. /*
  2581. case 46:
  2582. {
  2583. // M46: Prusa3D: Show the assigned IP address.
  2584. uint8_t ip[4];
  2585. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2586. if (hasIP) {
  2587. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2588. SERIAL_ECHO(int(ip[0]));
  2589. SERIAL_ECHOPGM(".");
  2590. SERIAL_ECHO(int(ip[1]));
  2591. SERIAL_ECHOPGM(".");
  2592. SERIAL_ECHO(int(ip[2]));
  2593. SERIAL_ECHOPGM(".");
  2594. SERIAL_ECHO(int(ip[3]));
  2595. SERIAL_ECHOLNPGM("");
  2596. } else {
  2597. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2598. }
  2599. break;
  2600. }
  2601. */
  2602. case 47:
  2603. // M47: Prusa3D: Show end stops dialog on the display.
  2604. lcd_diag_show_end_stops();
  2605. break;
  2606. #if 0
  2607. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2608. {
  2609. // Disable the default update procedure of the display. We will do a modal dialog.
  2610. lcd_update_enable(false);
  2611. // Let the planner use the uncorrected coordinates.
  2612. mbl.reset();
  2613. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2614. // the planner will not perform any adjustments in the XY plane.
  2615. // Wait for the motors to stop and update the current position with the absolute values.
  2616. world2machine_revert_to_uncorrected();
  2617. // Move the print head close to the bed.
  2618. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2620. st_synchronize();
  2621. // Home in the XY plane.
  2622. set_destination_to_current();
  2623. setup_for_endstop_move();
  2624. home_xy();
  2625. int8_t verbosity_level = 0;
  2626. if (code_seen('V')) {
  2627. // Just 'V' without a number counts as V1.
  2628. char c = strchr_pointer[1];
  2629. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2630. }
  2631. bool success = scan_bed_induction_points(verbosity_level);
  2632. clean_up_after_endstop_move();
  2633. // Print head up.
  2634. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2636. st_synchronize();
  2637. lcd_update_enable(true);
  2638. lcd_implementation_clear();
  2639. // lcd_return_to_status();
  2640. lcd_update();
  2641. break;
  2642. }
  2643. #endif
  2644. // M48 Z-Probe repeatability measurement function.
  2645. //
  2646. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2647. //
  2648. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2649. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2650. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2651. // regenerated.
  2652. //
  2653. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2654. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2655. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2656. //
  2657. #ifdef ENABLE_AUTO_BED_LEVELING
  2658. #ifdef Z_PROBE_REPEATABILITY_TEST
  2659. case 48: // M48 Z-Probe repeatability
  2660. {
  2661. #if Z_MIN_PIN == -1
  2662. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2663. #endif
  2664. double sum=0.0;
  2665. double mean=0.0;
  2666. double sigma=0.0;
  2667. double sample_set[50];
  2668. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2669. double X_current, Y_current, Z_current;
  2670. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2671. if (code_seen('V') || code_seen('v')) {
  2672. verbose_level = code_value();
  2673. if (verbose_level<0 || verbose_level>4 ) {
  2674. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2675. goto Sigma_Exit;
  2676. }
  2677. }
  2678. if (verbose_level > 0) {
  2679. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2680. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2681. }
  2682. if (code_seen('n')) {
  2683. n_samples = code_value();
  2684. if (n_samples<4 || n_samples>50 ) {
  2685. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2686. goto Sigma_Exit;
  2687. }
  2688. }
  2689. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2690. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2691. Z_current = st_get_position_mm(Z_AXIS);
  2692. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2693. ext_position = st_get_position_mm(E_AXIS);
  2694. if (code_seen('X') || code_seen('x') ) {
  2695. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2696. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2697. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2698. goto Sigma_Exit;
  2699. }
  2700. }
  2701. if (code_seen('Y') || code_seen('y') ) {
  2702. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2703. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2704. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2705. goto Sigma_Exit;
  2706. }
  2707. }
  2708. if (code_seen('L') || code_seen('l') ) {
  2709. n_legs = code_value();
  2710. if ( n_legs==1 )
  2711. n_legs = 2;
  2712. if ( n_legs<0 || n_legs>15 ) {
  2713. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2714. goto Sigma_Exit;
  2715. }
  2716. }
  2717. //
  2718. // Do all the preliminary setup work. First raise the probe.
  2719. //
  2720. st_synchronize();
  2721. plan_bed_level_matrix.set_to_identity();
  2722. plan_buffer_line( X_current, Y_current, Z_start_location,
  2723. ext_position,
  2724. homing_feedrate[Z_AXIS]/60,
  2725. active_extruder);
  2726. st_synchronize();
  2727. //
  2728. // Now get everything to the specified probe point So we can safely do a probe to
  2729. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2730. // use that as a starting point for each probe.
  2731. //
  2732. if (verbose_level > 2)
  2733. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2734. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2735. ext_position,
  2736. homing_feedrate[X_AXIS]/60,
  2737. active_extruder);
  2738. st_synchronize();
  2739. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2740. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2741. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2742. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2743. //
  2744. // OK, do the inital probe to get us close to the bed.
  2745. // Then retrace the right amount and use that in subsequent probes
  2746. //
  2747. setup_for_endstop_move();
  2748. run_z_probe();
  2749. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2750. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2751. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2752. ext_position,
  2753. homing_feedrate[X_AXIS]/60,
  2754. active_extruder);
  2755. st_synchronize();
  2756. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2757. for( n=0; n<n_samples; n++) {
  2758. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2759. if ( n_legs) {
  2760. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2761. int rotational_direction, l;
  2762. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2763. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2764. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2765. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2766. //SERIAL_ECHOPAIR(" theta: ",theta);
  2767. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2768. //SERIAL_PROTOCOLLNPGM("");
  2769. for( l=0; l<n_legs-1; l++) {
  2770. if (rotational_direction==1)
  2771. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2772. else
  2773. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2774. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2775. if ( radius<0.0 )
  2776. radius = -radius;
  2777. X_current = X_probe_location + cos(theta) * radius;
  2778. Y_current = Y_probe_location + sin(theta) * radius;
  2779. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2780. X_current = X_MIN_POS;
  2781. if ( X_current>X_MAX_POS)
  2782. X_current = X_MAX_POS;
  2783. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2784. Y_current = Y_MIN_POS;
  2785. if ( Y_current>Y_MAX_POS)
  2786. Y_current = Y_MAX_POS;
  2787. if (verbose_level>3 ) {
  2788. SERIAL_ECHOPAIR("x: ", X_current);
  2789. SERIAL_ECHOPAIR("y: ", Y_current);
  2790. SERIAL_PROTOCOLLNPGM("");
  2791. }
  2792. do_blocking_move_to( X_current, Y_current, Z_current );
  2793. }
  2794. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2795. }
  2796. setup_for_endstop_move();
  2797. run_z_probe();
  2798. sample_set[n] = current_position[Z_AXIS];
  2799. //
  2800. // Get the current mean for the data points we have so far
  2801. //
  2802. sum=0.0;
  2803. for( j=0; j<=n; j++) {
  2804. sum = sum + sample_set[j];
  2805. }
  2806. mean = sum / (double (n+1));
  2807. //
  2808. // Now, use that mean to calculate the standard deviation for the
  2809. // data points we have so far
  2810. //
  2811. sum=0.0;
  2812. for( j=0; j<=n; j++) {
  2813. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2814. }
  2815. sigma = sqrt( sum / (double (n+1)) );
  2816. if (verbose_level > 1) {
  2817. SERIAL_PROTOCOL(n+1);
  2818. SERIAL_PROTOCOL(" of ");
  2819. SERIAL_PROTOCOL(n_samples);
  2820. SERIAL_PROTOCOLPGM(" z: ");
  2821. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2822. }
  2823. if (verbose_level > 2) {
  2824. SERIAL_PROTOCOL(" mean: ");
  2825. SERIAL_PROTOCOL_F(mean,6);
  2826. SERIAL_PROTOCOL(" sigma: ");
  2827. SERIAL_PROTOCOL_F(sigma,6);
  2828. }
  2829. if (verbose_level > 0)
  2830. SERIAL_PROTOCOLPGM("\n");
  2831. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2832. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2833. st_synchronize();
  2834. }
  2835. delay(1000);
  2836. clean_up_after_endstop_move();
  2837. // enable_endstops(true);
  2838. if (verbose_level > 0) {
  2839. SERIAL_PROTOCOLPGM("Mean: ");
  2840. SERIAL_PROTOCOL_F(mean, 6);
  2841. SERIAL_PROTOCOLPGM("\n");
  2842. }
  2843. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2844. SERIAL_PROTOCOL_F(sigma, 6);
  2845. SERIAL_PROTOCOLPGM("\n\n");
  2846. Sigma_Exit:
  2847. break;
  2848. }
  2849. #endif // Z_PROBE_REPEATABILITY_TEST
  2850. #endif // ENABLE_AUTO_BED_LEVELING
  2851. case 104: // M104
  2852. if(setTargetedHotend(104)){
  2853. break;
  2854. }
  2855. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2856. setWatch();
  2857. break;
  2858. case 112: // M112 -Emergency Stop
  2859. kill();
  2860. break;
  2861. case 140: // M140 set bed temp
  2862. if (code_seen('S')) setTargetBed(code_value());
  2863. break;
  2864. case 105 : // M105
  2865. if(setTargetedHotend(105)){
  2866. break;
  2867. }
  2868. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2869. SERIAL_PROTOCOLPGM("ok T:");
  2870. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2871. SERIAL_PROTOCOLPGM(" /");
  2872. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2873. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2874. SERIAL_PROTOCOLPGM(" B:");
  2875. SERIAL_PROTOCOL_F(degBed(),1);
  2876. SERIAL_PROTOCOLPGM(" /");
  2877. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2878. #endif //TEMP_BED_PIN
  2879. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2880. SERIAL_PROTOCOLPGM(" T");
  2881. SERIAL_PROTOCOL(cur_extruder);
  2882. SERIAL_PROTOCOLPGM(":");
  2883. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2884. SERIAL_PROTOCOLPGM(" /");
  2885. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2886. }
  2887. #else
  2888. SERIAL_ERROR_START;
  2889. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2890. #endif
  2891. SERIAL_PROTOCOLPGM(" @:");
  2892. #ifdef EXTRUDER_WATTS
  2893. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2894. SERIAL_PROTOCOLPGM("W");
  2895. #else
  2896. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2897. #endif
  2898. SERIAL_PROTOCOLPGM(" B@:");
  2899. #ifdef BED_WATTS
  2900. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2901. SERIAL_PROTOCOLPGM("W");
  2902. #else
  2903. SERIAL_PROTOCOL(getHeaterPower(-1));
  2904. #endif
  2905. #ifdef SHOW_TEMP_ADC_VALUES
  2906. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2907. SERIAL_PROTOCOLPGM(" ADC B:");
  2908. SERIAL_PROTOCOL_F(degBed(),1);
  2909. SERIAL_PROTOCOLPGM("C->");
  2910. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2911. #endif
  2912. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2913. SERIAL_PROTOCOLPGM(" T");
  2914. SERIAL_PROTOCOL(cur_extruder);
  2915. SERIAL_PROTOCOLPGM(":");
  2916. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2917. SERIAL_PROTOCOLPGM("C->");
  2918. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2919. }
  2920. #endif
  2921. SERIAL_PROTOCOLLN("");
  2922. return;
  2923. break;
  2924. case 109:
  2925. {// M109 - Wait for extruder heater to reach target.
  2926. if(setTargetedHotend(109)){
  2927. break;
  2928. }
  2929. LCD_MESSAGERPGM(MSG_HEATING);
  2930. heating_status = 1;
  2931. if (farm_mode) { prusa_statistics(1); };
  2932. #ifdef AUTOTEMP
  2933. autotemp_enabled=false;
  2934. #endif
  2935. if (code_seen('S')) {
  2936. setTargetHotend(code_value(), tmp_extruder);
  2937. CooldownNoWait = true;
  2938. } else if (code_seen('R')) {
  2939. setTargetHotend(code_value(), tmp_extruder);
  2940. CooldownNoWait = false;
  2941. }
  2942. #ifdef AUTOTEMP
  2943. if (code_seen('S')) autotemp_min=code_value();
  2944. if (code_seen('B')) autotemp_max=code_value();
  2945. if (code_seen('F'))
  2946. {
  2947. autotemp_factor=code_value();
  2948. autotemp_enabled=true;
  2949. }
  2950. #endif
  2951. setWatch();
  2952. codenum = millis();
  2953. /* See if we are heating up or cooling down */
  2954. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2955. cancel_heatup = false;
  2956. #ifdef TEMP_RESIDENCY_TIME
  2957. long residencyStart;
  2958. residencyStart = -1;
  2959. /* continue to loop until we have reached the target temp
  2960. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2961. while((!cancel_heatup)&&((residencyStart == -1) ||
  2962. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2963. #else
  2964. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2965. #endif //TEMP_RESIDENCY_TIME
  2966. if( (millis() - codenum) > 1000UL )
  2967. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2968. SERIAL_PROTOCOLPGM("T:");
  2969. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2970. SERIAL_PROTOCOLPGM(" E:");
  2971. SERIAL_PROTOCOL((int)tmp_extruder);
  2972. #ifdef TEMP_RESIDENCY_TIME
  2973. SERIAL_PROTOCOLPGM(" W:");
  2974. if(residencyStart > -1)
  2975. {
  2976. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2977. SERIAL_PROTOCOLLN( codenum );
  2978. }
  2979. else
  2980. {
  2981. SERIAL_PROTOCOLLN( "?" );
  2982. }
  2983. #else
  2984. SERIAL_PROTOCOLLN("");
  2985. #endif
  2986. codenum = millis();
  2987. }
  2988. manage_heater();
  2989. manage_inactivity();
  2990. lcd_update();
  2991. #ifdef TEMP_RESIDENCY_TIME
  2992. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2993. or when current temp falls outside the hysteresis after target temp was reached */
  2994. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2995. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2996. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2997. {
  2998. residencyStart = millis();
  2999. }
  3000. #endif //TEMP_RESIDENCY_TIME
  3001. }
  3002. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3003. heating_status = 2;
  3004. if (farm_mode) { prusa_statistics(2); };
  3005. starttime=millis();
  3006. previous_millis_cmd = millis();
  3007. }
  3008. break;
  3009. case 190: // M190 - Wait for bed heater to reach target.
  3010. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3011. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3012. heating_status = 3;
  3013. if (farm_mode) { prusa_statistics(1); };
  3014. if (code_seen('S'))
  3015. {
  3016. setTargetBed(code_value());
  3017. CooldownNoWait = true;
  3018. }
  3019. else if (code_seen('R'))
  3020. {
  3021. setTargetBed(code_value());
  3022. CooldownNoWait = false;
  3023. }
  3024. codenum = millis();
  3025. cancel_heatup = false;
  3026. target_direction = isHeatingBed(); // true if heating, false if cooling
  3027. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3028. {
  3029. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3030. {
  3031. float tt=degHotend(active_extruder);
  3032. SERIAL_PROTOCOLPGM("T:");
  3033. SERIAL_PROTOCOL(tt);
  3034. SERIAL_PROTOCOLPGM(" E:");
  3035. SERIAL_PROTOCOL((int)active_extruder);
  3036. SERIAL_PROTOCOLPGM(" B:");
  3037. SERIAL_PROTOCOL_F(degBed(),1);
  3038. SERIAL_PROTOCOLLN("");
  3039. codenum = millis();
  3040. }
  3041. manage_heater();
  3042. manage_inactivity();
  3043. lcd_update();
  3044. }
  3045. LCD_MESSAGERPGM(MSG_BED_DONE);
  3046. heating_status = 4;
  3047. previous_millis_cmd = millis();
  3048. #endif
  3049. break;
  3050. #if defined(FAN_PIN) && FAN_PIN > -1
  3051. case 106: //M106 Fan On
  3052. if (code_seen('S')){
  3053. fanSpeed=constrain(code_value(),0,255);
  3054. }
  3055. else {
  3056. fanSpeed=255;
  3057. }
  3058. break;
  3059. case 107: //M107 Fan Off
  3060. fanSpeed = 0;
  3061. break;
  3062. #endif //FAN_PIN
  3063. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3064. case 80: // M80 - Turn on Power Supply
  3065. SET_OUTPUT(PS_ON_PIN); //GND
  3066. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3067. // If you have a switch on suicide pin, this is useful
  3068. // if you want to start another print with suicide feature after
  3069. // a print without suicide...
  3070. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3071. SET_OUTPUT(SUICIDE_PIN);
  3072. WRITE(SUICIDE_PIN, HIGH);
  3073. #endif
  3074. #ifdef ULTIPANEL
  3075. powersupply = true;
  3076. LCD_MESSAGERPGM(WELCOME_MSG);
  3077. lcd_update();
  3078. #endif
  3079. break;
  3080. #endif
  3081. case 81: // M81 - Turn off Power Supply
  3082. disable_heater();
  3083. st_synchronize();
  3084. disable_e0();
  3085. disable_e1();
  3086. disable_e2();
  3087. finishAndDisableSteppers();
  3088. fanSpeed = 0;
  3089. delay(1000); // Wait a little before to switch off
  3090. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3091. st_synchronize();
  3092. suicide();
  3093. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3094. SET_OUTPUT(PS_ON_PIN);
  3095. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3096. #endif
  3097. #ifdef ULTIPANEL
  3098. powersupply = false;
  3099. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3100. /*
  3101. MACHNAME = "Prusa i3"
  3102. MSGOFF = "Vypnuto"
  3103. "Prusai3"" ""vypnuto""."
  3104. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3105. */
  3106. lcd_update();
  3107. #endif
  3108. break;
  3109. case 82:
  3110. axis_relative_modes[3] = false;
  3111. break;
  3112. case 83:
  3113. axis_relative_modes[3] = true;
  3114. break;
  3115. case 18: //compatibility
  3116. case 84: // M84
  3117. if(code_seen('S')){
  3118. stepper_inactive_time = code_value() * 1000;
  3119. }
  3120. else
  3121. {
  3122. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3123. if(all_axis)
  3124. {
  3125. st_synchronize();
  3126. disable_e0();
  3127. disable_e1();
  3128. disable_e2();
  3129. finishAndDisableSteppers();
  3130. }
  3131. else
  3132. {
  3133. st_synchronize();
  3134. if(code_seen('X')) disable_x();
  3135. if(code_seen('Y')) disable_y();
  3136. if(code_seen('Z')) disable_z();
  3137. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3138. if(code_seen('E')) {
  3139. disable_e0();
  3140. disable_e1();
  3141. disable_e2();
  3142. }
  3143. #endif
  3144. }
  3145. }
  3146. break;
  3147. case 85: // M85
  3148. if(code_seen('S')) {
  3149. max_inactive_time = code_value() * 1000;
  3150. }
  3151. break;
  3152. case 92: // M92
  3153. for(int8_t i=0; i < NUM_AXIS; i++)
  3154. {
  3155. if(code_seen(axis_codes[i]))
  3156. {
  3157. if(i == 3) { // E
  3158. float value = code_value();
  3159. if(value < 20.0) {
  3160. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3161. max_jerk[E_AXIS] *= factor;
  3162. max_feedrate[i] *= factor;
  3163. axis_steps_per_sqr_second[i] *= factor;
  3164. }
  3165. axis_steps_per_unit[i] = value;
  3166. }
  3167. else {
  3168. axis_steps_per_unit[i] = code_value();
  3169. }
  3170. }
  3171. }
  3172. break;
  3173. case 115: // M115
  3174. if (code_seen('V')) {
  3175. // Report the Prusa version number.
  3176. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3177. } else if (code_seen('U')) {
  3178. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3179. // pause the print and ask the user to upgrade the firmware.
  3180. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3181. } else {
  3182. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3183. }
  3184. break;
  3185. case 117: // M117 display message
  3186. starpos = (strchr(strchr_pointer + 5,'*'));
  3187. if(starpos!=NULL)
  3188. *(starpos)='\0';
  3189. lcd_setstatus(strchr_pointer + 5);
  3190. break;
  3191. case 114: // M114
  3192. SERIAL_PROTOCOLPGM("X:");
  3193. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3194. SERIAL_PROTOCOLPGM(" Y:");
  3195. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3196. SERIAL_PROTOCOLPGM(" Z:");
  3197. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3198. SERIAL_PROTOCOLPGM(" E:");
  3199. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3200. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3201. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3202. SERIAL_PROTOCOLPGM(" Y:");
  3203. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3204. SERIAL_PROTOCOLPGM(" Z:");
  3205. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3206. SERIAL_PROTOCOLLN("");
  3207. break;
  3208. case 120: // M120
  3209. enable_endstops(false) ;
  3210. break;
  3211. case 121: // M121
  3212. enable_endstops(true) ;
  3213. break;
  3214. case 119: // M119
  3215. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3216. SERIAL_PROTOCOLLN("");
  3217. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3218. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3219. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3220. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3221. }else{
  3222. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3223. }
  3224. SERIAL_PROTOCOLLN("");
  3225. #endif
  3226. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3227. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3228. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3229. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3230. }else{
  3231. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3232. }
  3233. SERIAL_PROTOCOLLN("");
  3234. #endif
  3235. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3236. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3237. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3238. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3239. }else{
  3240. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3241. }
  3242. SERIAL_PROTOCOLLN("");
  3243. #endif
  3244. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3245. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3246. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3247. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3248. }else{
  3249. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3250. }
  3251. SERIAL_PROTOCOLLN("");
  3252. #endif
  3253. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3254. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3255. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3256. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3257. }else{
  3258. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3259. }
  3260. SERIAL_PROTOCOLLN("");
  3261. #endif
  3262. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3263. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3264. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3265. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3266. }else{
  3267. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3268. }
  3269. SERIAL_PROTOCOLLN("");
  3270. #endif
  3271. break;
  3272. //TODO: update for all axis, use for loop
  3273. #ifdef BLINKM
  3274. case 150: // M150
  3275. {
  3276. byte red;
  3277. byte grn;
  3278. byte blu;
  3279. if(code_seen('R')) red = code_value();
  3280. if(code_seen('U')) grn = code_value();
  3281. if(code_seen('B')) blu = code_value();
  3282. SendColors(red,grn,blu);
  3283. }
  3284. break;
  3285. #endif //BLINKM
  3286. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3287. {
  3288. tmp_extruder = active_extruder;
  3289. if(code_seen('T')) {
  3290. tmp_extruder = code_value();
  3291. if(tmp_extruder >= EXTRUDERS) {
  3292. SERIAL_ECHO_START;
  3293. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3294. break;
  3295. }
  3296. }
  3297. float area = .0;
  3298. if(code_seen('D')) {
  3299. float diameter = (float)code_value();
  3300. if (diameter == 0.0) {
  3301. // setting any extruder filament size disables volumetric on the assumption that
  3302. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3303. // for all extruders
  3304. volumetric_enabled = false;
  3305. } else {
  3306. filament_size[tmp_extruder] = (float)code_value();
  3307. // make sure all extruders have some sane value for the filament size
  3308. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3309. #if EXTRUDERS > 1
  3310. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3311. #if EXTRUDERS > 2
  3312. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3313. #endif
  3314. #endif
  3315. volumetric_enabled = true;
  3316. }
  3317. } else {
  3318. //reserved for setting filament diameter via UFID or filament measuring device
  3319. break;
  3320. }
  3321. calculate_volumetric_multipliers();
  3322. }
  3323. break;
  3324. case 201: // M201
  3325. for(int8_t i=0; i < NUM_AXIS; i++)
  3326. {
  3327. if(code_seen(axis_codes[i]))
  3328. {
  3329. max_acceleration_units_per_sq_second[i] = code_value();
  3330. }
  3331. }
  3332. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3333. reset_acceleration_rates();
  3334. break;
  3335. #if 0 // Not used for Sprinter/grbl gen6
  3336. case 202: // M202
  3337. for(int8_t i=0; i < NUM_AXIS; i++) {
  3338. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3339. }
  3340. break;
  3341. #endif
  3342. case 203: // M203 max feedrate mm/sec
  3343. for(int8_t i=0; i < NUM_AXIS; i++) {
  3344. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3345. }
  3346. break;
  3347. case 204: // M204 acclereration S normal moves T filmanent only moves
  3348. {
  3349. if(code_seen('S')) acceleration = code_value() ;
  3350. if(code_seen('T')) retract_acceleration = code_value() ;
  3351. }
  3352. break;
  3353. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3354. {
  3355. if(code_seen('S')) minimumfeedrate = code_value();
  3356. if(code_seen('T')) mintravelfeedrate = code_value();
  3357. if(code_seen('B')) minsegmenttime = code_value() ;
  3358. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3359. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3360. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3361. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3362. }
  3363. break;
  3364. case 206: // M206 additional homing offset
  3365. for(int8_t i=0; i < 3; i++)
  3366. {
  3367. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3368. }
  3369. break;
  3370. #ifdef FWRETRACT
  3371. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3372. {
  3373. if(code_seen('S'))
  3374. {
  3375. retract_length = code_value() ;
  3376. }
  3377. if(code_seen('F'))
  3378. {
  3379. retract_feedrate = code_value()/60 ;
  3380. }
  3381. if(code_seen('Z'))
  3382. {
  3383. retract_zlift = code_value() ;
  3384. }
  3385. }break;
  3386. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3387. {
  3388. if(code_seen('S'))
  3389. {
  3390. retract_recover_length = code_value() ;
  3391. }
  3392. if(code_seen('F'))
  3393. {
  3394. retract_recover_feedrate = code_value()/60 ;
  3395. }
  3396. }break;
  3397. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3398. {
  3399. if(code_seen('S'))
  3400. {
  3401. int t= code_value() ;
  3402. switch(t)
  3403. {
  3404. case 0:
  3405. {
  3406. autoretract_enabled=false;
  3407. retracted[0]=false;
  3408. #if EXTRUDERS > 1
  3409. retracted[1]=false;
  3410. #endif
  3411. #if EXTRUDERS > 2
  3412. retracted[2]=false;
  3413. #endif
  3414. }break;
  3415. case 1:
  3416. {
  3417. autoretract_enabled=true;
  3418. retracted[0]=false;
  3419. #if EXTRUDERS > 1
  3420. retracted[1]=false;
  3421. #endif
  3422. #if EXTRUDERS > 2
  3423. retracted[2]=false;
  3424. #endif
  3425. }break;
  3426. default:
  3427. SERIAL_ECHO_START;
  3428. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3429. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3430. SERIAL_ECHOLNPGM("\"");
  3431. }
  3432. }
  3433. }break;
  3434. #endif // FWRETRACT
  3435. #if EXTRUDERS > 1
  3436. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3437. {
  3438. if(setTargetedHotend(218)){
  3439. break;
  3440. }
  3441. if(code_seen('X'))
  3442. {
  3443. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3444. }
  3445. if(code_seen('Y'))
  3446. {
  3447. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3448. }
  3449. SERIAL_ECHO_START;
  3450. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3451. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3452. {
  3453. SERIAL_ECHO(" ");
  3454. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3455. SERIAL_ECHO(",");
  3456. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3457. }
  3458. SERIAL_ECHOLN("");
  3459. }break;
  3460. #endif
  3461. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3462. {
  3463. if(code_seen('S'))
  3464. {
  3465. feedmultiply = code_value() ;
  3466. }
  3467. }
  3468. break;
  3469. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3470. {
  3471. if(code_seen('S'))
  3472. {
  3473. int tmp_code = code_value();
  3474. if (code_seen('T'))
  3475. {
  3476. if(setTargetedHotend(221)){
  3477. break;
  3478. }
  3479. extruder_multiply[tmp_extruder] = tmp_code;
  3480. }
  3481. else
  3482. {
  3483. extrudemultiply = tmp_code ;
  3484. }
  3485. }
  3486. }
  3487. break;
  3488. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3489. {
  3490. if(code_seen('P')){
  3491. int pin_number = code_value(); // pin number
  3492. int pin_state = -1; // required pin state - default is inverted
  3493. if(code_seen('S')) pin_state = code_value(); // required pin state
  3494. if(pin_state >= -1 && pin_state <= 1){
  3495. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3496. {
  3497. if (sensitive_pins[i] == pin_number)
  3498. {
  3499. pin_number = -1;
  3500. break;
  3501. }
  3502. }
  3503. if (pin_number > -1)
  3504. {
  3505. int target = LOW;
  3506. st_synchronize();
  3507. pinMode(pin_number, INPUT);
  3508. switch(pin_state){
  3509. case 1:
  3510. target = HIGH;
  3511. break;
  3512. case 0:
  3513. target = LOW;
  3514. break;
  3515. case -1:
  3516. target = !digitalRead(pin_number);
  3517. break;
  3518. }
  3519. while(digitalRead(pin_number) != target){
  3520. manage_heater();
  3521. manage_inactivity();
  3522. lcd_update();
  3523. }
  3524. }
  3525. }
  3526. }
  3527. }
  3528. break;
  3529. #if NUM_SERVOS > 0
  3530. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3531. {
  3532. int servo_index = -1;
  3533. int servo_position = 0;
  3534. if (code_seen('P'))
  3535. servo_index = code_value();
  3536. if (code_seen('S')) {
  3537. servo_position = code_value();
  3538. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3539. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3540. servos[servo_index].attach(0);
  3541. #endif
  3542. servos[servo_index].write(servo_position);
  3543. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3544. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3545. servos[servo_index].detach();
  3546. #endif
  3547. }
  3548. else {
  3549. SERIAL_ECHO_START;
  3550. SERIAL_ECHO("Servo ");
  3551. SERIAL_ECHO(servo_index);
  3552. SERIAL_ECHOLN(" out of range");
  3553. }
  3554. }
  3555. else if (servo_index >= 0) {
  3556. SERIAL_PROTOCOL(MSG_OK);
  3557. SERIAL_PROTOCOL(" Servo ");
  3558. SERIAL_PROTOCOL(servo_index);
  3559. SERIAL_PROTOCOL(": ");
  3560. SERIAL_PROTOCOL(servos[servo_index].read());
  3561. SERIAL_PROTOCOLLN("");
  3562. }
  3563. }
  3564. break;
  3565. #endif // NUM_SERVOS > 0
  3566. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3567. case 300: // M300
  3568. {
  3569. int beepS = code_seen('S') ? code_value() : 110;
  3570. int beepP = code_seen('P') ? code_value() : 1000;
  3571. if (beepS > 0)
  3572. {
  3573. #if BEEPER > 0
  3574. tone(BEEPER, beepS);
  3575. delay(beepP);
  3576. noTone(BEEPER);
  3577. #elif defined(ULTRALCD)
  3578. lcd_buzz(beepS, beepP);
  3579. #elif defined(LCD_USE_I2C_BUZZER)
  3580. lcd_buzz(beepP, beepS);
  3581. #endif
  3582. }
  3583. else
  3584. {
  3585. delay(beepP);
  3586. }
  3587. }
  3588. break;
  3589. #endif // M300
  3590. #ifdef PIDTEMP
  3591. case 301: // M301
  3592. {
  3593. if(code_seen('P')) Kp = code_value();
  3594. if(code_seen('I')) Ki = scalePID_i(code_value());
  3595. if(code_seen('D')) Kd = scalePID_d(code_value());
  3596. #ifdef PID_ADD_EXTRUSION_RATE
  3597. if(code_seen('C')) Kc = code_value();
  3598. #endif
  3599. updatePID();
  3600. SERIAL_PROTOCOL(MSG_OK);
  3601. SERIAL_PROTOCOL(" p:");
  3602. SERIAL_PROTOCOL(Kp);
  3603. SERIAL_PROTOCOL(" i:");
  3604. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3605. SERIAL_PROTOCOL(" d:");
  3606. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3607. #ifdef PID_ADD_EXTRUSION_RATE
  3608. SERIAL_PROTOCOL(" c:");
  3609. //Kc does not have scaling applied above, or in resetting defaults
  3610. SERIAL_PROTOCOL(Kc);
  3611. #endif
  3612. SERIAL_PROTOCOLLN("");
  3613. }
  3614. break;
  3615. #endif //PIDTEMP
  3616. #ifdef PIDTEMPBED
  3617. case 304: // M304
  3618. {
  3619. if(code_seen('P')) bedKp = code_value();
  3620. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3621. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3622. updatePID();
  3623. SERIAL_PROTOCOL(MSG_OK);
  3624. SERIAL_PROTOCOL(" p:");
  3625. SERIAL_PROTOCOL(bedKp);
  3626. SERIAL_PROTOCOL(" i:");
  3627. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3628. SERIAL_PROTOCOL(" d:");
  3629. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3630. SERIAL_PROTOCOLLN("");
  3631. }
  3632. break;
  3633. #endif //PIDTEMP
  3634. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3635. {
  3636. #ifdef CHDK
  3637. SET_OUTPUT(CHDK);
  3638. WRITE(CHDK, HIGH);
  3639. chdkHigh = millis();
  3640. chdkActive = true;
  3641. #else
  3642. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3643. const uint8_t NUM_PULSES=16;
  3644. const float PULSE_LENGTH=0.01524;
  3645. for(int i=0; i < NUM_PULSES; i++) {
  3646. WRITE(PHOTOGRAPH_PIN, HIGH);
  3647. _delay_ms(PULSE_LENGTH);
  3648. WRITE(PHOTOGRAPH_PIN, LOW);
  3649. _delay_ms(PULSE_LENGTH);
  3650. }
  3651. delay(7.33);
  3652. for(int i=0; i < NUM_PULSES; i++) {
  3653. WRITE(PHOTOGRAPH_PIN, HIGH);
  3654. _delay_ms(PULSE_LENGTH);
  3655. WRITE(PHOTOGRAPH_PIN, LOW);
  3656. _delay_ms(PULSE_LENGTH);
  3657. }
  3658. #endif
  3659. #endif //chdk end if
  3660. }
  3661. break;
  3662. #ifdef DOGLCD
  3663. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3664. {
  3665. if (code_seen('C')) {
  3666. lcd_setcontrast( ((int)code_value())&63 );
  3667. }
  3668. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3669. SERIAL_PROTOCOL(lcd_contrast);
  3670. SERIAL_PROTOCOLLN("");
  3671. }
  3672. break;
  3673. #endif
  3674. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3675. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3676. {
  3677. float temp = .0;
  3678. if (code_seen('S')) temp=code_value();
  3679. set_extrude_min_temp(temp);
  3680. }
  3681. break;
  3682. #endif
  3683. case 303: // M303 PID autotune
  3684. {
  3685. float temp = 150.0;
  3686. int e=0;
  3687. int c=5;
  3688. if (code_seen('E')) e=code_value();
  3689. if (e<0)
  3690. temp=70;
  3691. if (code_seen('S')) temp=code_value();
  3692. if (code_seen('C')) c=code_value();
  3693. PID_autotune(temp, e, c);
  3694. }
  3695. break;
  3696. case 400: // M400 finish all moves
  3697. {
  3698. st_synchronize();
  3699. }
  3700. break;
  3701. #ifdef FILAMENT_SENSOR
  3702. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3703. {
  3704. #if (FILWIDTH_PIN > -1)
  3705. if(code_seen('N')) filament_width_nominal=code_value();
  3706. else{
  3707. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3708. SERIAL_PROTOCOLLN(filament_width_nominal);
  3709. }
  3710. #endif
  3711. }
  3712. break;
  3713. case 405: //M405 Turn on filament sensor for control
  3714. {
  3715. if(code_seen('D')) meas_delay_cm=code_value();
  3716. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3717. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3718. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3719. {
  3720. int temp_ratio = widthFil_to_size_ratio();
  3721. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3722. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3723. }
  3724. delay_index1=0;
  3725. delay_index2=0;
  3726. }
  3727. filament_sensor = true ;
  3728. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3729. //SERIAL_PROTOCOL(filament_width_meas);
  3730. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3731. //SERIAL_PROTOCOL(extrudemultiply);
  3732. }
  3733. break;
  3734. case 406: //M406 Turn off filament sensor for control
  3735. {
  3736. filament_sensor = false ;
  3737. }
  3738. break;
  3739. case 407: //M407 Display measured filament diameter
  3740. {
  3741. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3742. SERIAL_PROTOCOLLN(filament_width_meas);
  3743. }
  3744. break;
  3745. #endif
  3746. case 500: // M500 Store settings in EEPROM
  3747. {
  3748. Config_StoreSettings();
  3749. }
  3750. break;
  3751. case 501: // M501 Read settings from EEPROM
  3752. {
  3753. Config_RetrieveSettings();
  3754. }
  3755. break;
  3756. case 502: // M502 Revert to default settings
  3757. {
  3758. Config_ResetDefault();
  3759. }
  3760. break;
  3761. case 503: // M503 print settings currently in memory
  3762. {
  3763. Config_PrintSettings();
  3764. }
  3765. break;
  3766. case 509: //M509 Force language selection
  3767. {
  3768. lcd_force_language_selection();
  3769. SERIAL_ECHO_START;
  3770. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3771. }
  3772. break;
  3773. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3774. case 540:
  3775. {
  3776. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3777. }
  3778. break;
  3779. #endif
  3780. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3781. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3782. {
  3783. float value;
  3784. if (code_seen('Z'))
  3785. {
  3786. value = code_value();
  3787. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3788. {
  3789. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3790. SERIAL_ECHO_START;
  3791. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3792. SERIAL_PROTOCOLLN("");
  3793. }
  3794. else
  3795. {
  3796. SERIAL_ECHO_START;
  3797. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3798. SERIAL_ECHORPGM(MSG_Z_MIN);
  3799. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3800. SERIAL_ECHORPGM(MSG_Z_MAX);
  3801. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3802. SERIAL_PROTOCOLLN("");
  3803. }
  3804. }
  3805. else
  3806. {
  3807. SERIAL_ECHO_START;
  3808. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3809. SERIAL_ECHO(-zprobe_zoffset);
  3810. SERIAL_PROTOCOLLN("");
  3811. }
  3812. break;
  3813. }
  3814. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3815. #ifdef FILAMENTCHANGEENABLE
  3816. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3817. {
  3818. st_synchronize();
  3819. if (farm_mode)
  3820. {
  3821. prusa_statistics(22);
  3822. }
  3823. feedmultiplyBckp=feedmultiply;
  3824. int8_t TooLowZ = 0;
  3825. float target[4];
  3826. float lastpos[4];
  3827. target[X_AXIS]=current_position[X_AXIS];
  3828. target[Y_AXIS]=current_position[Y_AXIS];
  3829. target[Z_AXIS]=current_position[Z_AXIS];
  3830. target[E_AXIS]=current_position[E_AXIS];
  3831. lastpos[X_AXIS]=current_position[X_AXIS];
  3832. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3833. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3834. lastpos[E_AXIS]=current_position[E_AXIS];
  3835. //Restract extruder
  3836. if(code_seen('E'))
  3837. {
  3838. target[E_AXIS]+= code_value();
  3839. }
  3840. else
  3841. {
  3842. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3843. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3844. #endif
  3845. }
  3846. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3847. //Lift Z
  3848. if(code_seen('Z'))
  3849. {
  3850. target[Z_AXIS]+= code_value();
  3851. }
  3852. else
  3853. {
  3854. #ifdef FILAMENTCHANGE_ZADD
  3855. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3856. if(target[Z_AXIS] < 10){
  3857. target[Z_AXIS]+= 10 ;
  3858. TooLowZ = 1;
  3859. }else{
  3860. TooLowZ = 0;
  3861. }
  3862. #endif
  3863. }
  3864. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3865. //Move XY to side
  3866. if(code_seen('X'))
  3867. {
  3868. target[X_AXIS]+= code_value();
  3869. }
  3870. else
  3871. {
  3872. #ifdef FILAMENTCHANGE_XPOS
  3873. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3874. #endif
  3875. }
  3876. if(code_seen('Y'))
  3877. {
  3878. target[Y_AXIS]= code_value();
  3879. }
  3880. else
  3881. {
  3882. #ifdef FILAMENTCHANGE_YPOS
  3883. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3884. #endif
  3885. }
  3886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3887. // Unload filament
  3888. if(code_seen('L'))
  3889. {
  3890. target[E_AXIS]+= code_value();
  3891. }
  3892. else
  3893. {
  3894. #ifdef FILAMENTCHANGE_FINALRETRACT
  3895. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3896. #endif
  3897. }
  3898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3899. //finish moves
  3900. st_synchronize();
  3901. //disable extruder steppers so filament can be removed
  3902. disable_e0();
  3903. disable_e1();
  3904. disable_e2();
  3905. delay(100);
  3906. //Wait for user to insert filament
  3907. uint8_t cnt=0;
  3908. int counterBeep = 0;
  3909. lcd_wait_interact();
  3910. while(!lcd_clicked()){
  3911. cnt++;
  3912. manage_heater();
  3913. manage_inactivity(true);
  3914. if(cnt==0)
  3915. {
  3916. #if BEEPER > 0
  3917. if (counterBeep== 500){
  3918. counterBeep = 0;
  3919. }
  3920. SET_OUTPUT(BEEPER);
  3921. if (counterBeep== 0){
  3922. WRITE(BEEPER,HIGH);
  3923. }
  3924. if (counterBeep== 20){
  3925. WRITE(BEEPER,LOW);
  3926. }
  3927. counterBeep++;
  3928. #else
  3929. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3930. lcd_buzz(1000/6,100);
  3931. #else
  3932. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3933. #endif
  3934. #endif
  3935. }
  3936. }
  3937. //Filament inserted
  3938. WRITE(BEEPER,LOW);
  3939. //Feed the filament to the end of nozzle quickly
  3940. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3941. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3942. //Extrude some filament
  3943. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3944. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3945. //Wait for user to check the state
  3946. lcd_change_fil_state = 0;
  3947. lcd_loading_filament();
  3948. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3949. lcd_change_fil_state = 0;
  3950. lcd_alright();
  3951. switch(lcd_change_fil_state){
  3952. // Filament failed to load so load it again
  3953. case 2:
  3954. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3955. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3956. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3957. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3958. lcd_loading_filament();
  3959. break;
  3960. // Filament loaded properly but color is not clear
  3961. case 3:
  3962. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3963. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3964. lcd_loading_color();
  3965. break;
  3966. // Everything good
  3967. default:
  3968. lcd_change_success();
  3969. break;
  3970. }
  3971. }
  3972. //Not let's go back to print
  3973. //Feed a little of filament to stabilize pressure
  3974. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3975. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3976. //Retract
  3977. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3978. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3979. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3980. //Move XY back
  3981. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3982. //Move Z back
  3983. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3984. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3985. //Unretract
  3986. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3987. //Set E position to original
  3988. plan_set_e_position(lastpos[E_AXIS]);
  3989. //Recover feed rate
  3990. feedmultiply=feedmultiplyBckp;
  3991. char cmd[9];
  3992. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3993. enquecommand(cmd);
  3994. }
  3995. break;
  3996. #endif //FILAMENTCHANGEENABLE
  3997. case 907: // M907 Set digital trimpot motor current using axis codes.
  3998. {
  3999. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4000. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4001. if(code_seen('B')) digipot_current(4,code_value());
  4002. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4003. #endif
  4004. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4005. if(code_seen('X')) digipot_current(0, code_value());
  4006. #endif
  4007. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4008. if(code_seen('Z')) digipot_current(1, code_value());
  4009. #endif
  4010. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4011. if(code_seen('E')) digipot_current(2, code_value());
  4012. #endif
  4013. #ifdef DIGIPOT_I2C
  4014. // this one uses actual amps in floating point
  4015. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4016. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4017. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4018. #endif
  4019. }
  4020. break;
  4021. case 908: // M908 Control digital trimpot directly.
  4022. {
  4023. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4024. uint8_t channel,current;
  4025. if(code_seen('P')) channel=code_value();
  4026. if(code_seen('S')) current=code_value();
  4027. digitalPotWrite(channel, current);
  4028. #endif
  4029. }
  4030. break;
  4031. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4032. {
  4033. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4034. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4035. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4036. if(code_seen('B')) microstep_mode(4,code_value());
  4037. microstep_readings();
  4038. #endif
  4039. }
  4040. break;
  4041. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4042. {
  4043. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4044. if(code_seen('S')) switch((int)code_value())
  4045. {
  4046. case 1:
  4047. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4048. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4049. break;
  4050. case 2:
  4051. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4052. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4053. break;
  4054. }
  4055. microstep_readings();
  4056. #endif
  4057. }
  4058. break;
  4059. case 999: // M999: Restart after being stopped
  4060. Stopped = false;
  4061. lcd_reset_alert_level();
  4062. gcode_LastN = Stopped_gcode_LastN;
  4063. FlushSerialRequestResend();
  4064. break;
  4065. }
  4066. } // end if(code_seen('M')) (end of M codes)
  4067. else if(code_seen('T'))
  4068. {
  4069. tmp_extruder = code_value();
  4070. if(tmp_extruder >= EXTRUDERS) {
  4071. SERIAL_ECHO_START;
  4072. SERIAL_ECHO("T");
  4073. SERIAL_ECHO(tmp_extruder);
  4074. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4075. }
  4076. else {
  4077. boolean make_move = false;
  4078. if(code_seen('F')) {
  4079. make_move = true;
  4080. next_feedrate = code_value();
  4081. if(next_feedrate > 0.0) {
  4082. feedrate = next_feedrate;
  4083. }
  4084. }
  4085. #if EXTRUDERS > 1
  4086. if(tmp_extruder != active_extruder) {
  4087. // Save current position to return to after applying extruder offset
  4088. memcpy(destination, current_position, sizeof(destination));
  4089. // Offset extruder (only by XY)
  4090. int i;
  4091. for(i = 0; i < 2; i++) {
  4092. current_position[i] = current_position[i] -
  4093. extruder_offset[i][active_extruder] +
  4094. extruder_offset[i][tmp_extruder];
  4095. }
  4096. // Set the new active extruder and position
  4097. active_extruder = tmp_extruder;
  4098. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4099. // Move to the old position if 'F' was in the parameters
  4100. if(make_move && Stopped == false) {
  4101. prepare_move();
  4102. }
  4103. }
  4104. #endif
  4105. SERIAL_ECHO_START;
  4106. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4107. SERIAL_PROTOCOLLN((int)active_extruder);
  4108. }
  4109. } // end if(code_seen('T')) (end of T codes)
  4110. else
  4111. {
  4112. SERIAL_ECHO_START;
  4113. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4114. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4115. SERIAL_ECHOLNPGM("\"");
  4116. }
  4117. ClearToSend();
  4118. }
  4119. void FlushSerialRequestResend()
  4120. {
  4121. //char cmdbuffer[bufindr][100]="Resend:";
  4122. MYSERIAL.flush();
  4123. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4124. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4125. ClearToSend();
  4126. }
  4127. // Confirm the execution of a command, if sent from a serial line.
  4128. // Execution of a command from a SD card will not be confirmed.
  4129. void ClearToSend()
  4130. {
  4131. previous_millis_cmd = millis();
  4132. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4133. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4134. }
  4135. void get_coordinates()
  4136. {
  4137. bool seen[4]={false,false,false,false};
  4138. for(int8_t i=0; i < NUM_AXIS; i++) {
  4139. if(code_seen(axis_codes[i]))
  4140. {
  4141. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4142. seen[i]=true;
  4143. }
  4144. else destination[i] = current_position[i]; //Are these else lines really needed?
  4145. }
  4146. if(code_seen('F')) {
  4147. next_feedrate = code_value();
  4148. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4149. }
  4150. }
  4151. void get_arc_coordinates()
  4152. {
  4153. #ifdef SF_ARC_FIX
  4154. bool relative_mode_backup = relative_mode;
  4155. relative_mode = true;
  4156. #endif
  4157. get_coordinates();
  4158. #ifdef SF_ARC_FIX
  4159. relative_mode=relative_mode_backup;
  4160. #endif
  4161. if(code_seen('I')) {
  4162. offset[0] = code_value();
  4163. }
  4164. else {
  4165. offset[0] = 0.0;
  4166. }
  4167. if(code_seen('J')) {
  4168. offset[1] = code_value();
  4169. }
  4170. else {
  4171. offset[1] = 0.0;
  4172. }
  4173. }
  4174. void clamp_to_software_endstops(float target[3])
  4175. {
  4176. world2machine_clamp(target[0], target[1]);
  4177. // Clamp the Z coordinate.
  4178. if (min_software_endstops) {
  4179. float negative_z_offset = 0;
  4180. #ifdef ENABLE_AUTO_BED_LEVELING
  4181. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4182. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4183. #endif
  4184. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4185. }
  4186. if (max_software_endstops) {
  4187. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4188. }
  4189. }
  4190. #ifdef MESH_BED_LEVELING
  4191. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4192. float dx = x - current_position[X_AXIS];
  4193. float dy = y - current_position[Y_AXIS];
  4194. float dz = z - current_position[Z_AXIS];
  4195. int n_segments = 0;
  4196. if (mbl.active) {
  4197. float len = abs(dx) + abs(dy);
  4198. if (len > 0)
  4199. // Split to 3cm segments or shorter.
  4200. n_segments = int(ceil(len / 30.f));
  4201. }
  4202. if (n_segments > 1) {
  4203. float de = e - current_position[E_AXIS];
  4204. for (int i = 1; i < n_segments; ++ i) {
  4205. float t = float(i) / float(n_segments);
  4206. plan_buffer_line(
  4207. current_position[X_AXIS] + t * dx,
  4208. current_position[Y_AXIS] + t * dy,
  4209. current_position[Z_AXIS] + t * dz,
  4210. current_position[E_AXIS] + t * de,
  4211. feed_rate, extruder);
  4212. }
  4213. }
  4214. // The rest of the path.
  4215. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4216. current_position[X_AXIS] = x;
  4217. current_position[Y_AXIS] = y;
  4218. current_position[Z_AXIS] = z;
  4219. current_position[E_AXIS] = e;
  4220. }
  4221. #endif // MESH_BED_LEVELING
  4222. void prepare_move()
  4223. {
  4224. clamp_to_software_endstops(destination);
  4225. previous_millis_cmd = millis();
  4226. // Do not use feedmultiply for E or Z only moves
  4227. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4228. #ifdef MESH_BED_LEVELING
  4229. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4230. #else
  4231. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4232. #endif
  4233. }
  4234. else {
  4235. #ifdef MESH_BED_LEVELING
  4236. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4237. #else
  4238. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4239. #endif
  4240. }
  4241. for(int8_t i=0; i < NUM_AXIS; i++) {
  4242. current_position[i] = destination[i];
  4243. }
  4244. }
  4245. void prepare_arc_move(char isclockwise) {
  4246. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4247. // Trace the arc
  4248. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4249. // As far as the parser is concerned, the position is now == target. In reality the
  4250. // motion control system might still be processing the action and the real tool position
  4251. // in any intermediate location.
  4252. for(int8_t i=0; i < NUM_AXIS; i++) {
  4253. current_position[i] = destination[i];
  4254. }
  4255. previous_millis_cmd = millis();
  4256. }
  4257. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4258. #if defined(FAN_PIN)
  4259. #if CONTROLLERFAN_PIN == FAN_PIN
  4260. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4261. #endif
  4262. #endif
  4263. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4264. unsigned long lastMotorCheck = 0;
  4265. void controllerFan()
  4266. {
  4267. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4268. {
  4269. lastMotorCheck = millis();
  4270. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4271. #if EXTRUDERS > 2
  4272. || !READ(E2_ENABLE_PIN)
  4273. #endif
  4274. #if EXTRUDER > 1
  4275. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4276. || !READ(X2_ENABLE_PIN)
  4277. #endif
  4278. || !READ(E1_ENABLE_PIN)
  4279. #endif
  4280. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4281. {
  4282. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4283. }
  4284. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4285. {
  4286. digitalWrite(CONTROLLERFAN_PIN, 0);
  4287. analogWrite(CONTROLLERFAN_PIN, 0);
  4288. }
  4289. else
  4290. {
  4291. // allows digital or PWM fan output to be used (see M42 handling)
  4292. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4293. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4294. }
  4295. }
  4296. }
  4297. #endif
  4298. #ifdef TEMP_STAT_LEDS
  4299. static bool blue_led = false;
  4300. static bool red_led = false;
  4301. static uint32_t stat_update = 0;
  4302. void handle_status_leds(void) {
  4303. float max_temp = 0.0;
  4304. if(millis() > stat_update) {
  4305. stat_update += 500; // Update every 0.5s
  4306. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4307. max_temp = max(max_temp, degHotend(cur_extruder));
  4308. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4309. }
  4310. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4311. max_temp = max(max_temp, degTargetBed());
  4312. max_temp = max(max_temp, degBed());
  4313. #endif
  4314. if((max_temp > 55.0) && (red_led == false)) {
  4315. digitalWrite(STAT_LED_RED, 1);
  4316. digitalWrite(STAT_LED_BLUE, 0);
  4317. red_led = true;
  4318. blue_led = false;
  4319. }
  4320. if((max_temp < 54.0) && (blue_led == false)) {
  4321. digitalWrite(STAT_LED_RED, 0);
  4322. digitalWrite(STAT_LED_BLUE, 1);
  4323. red_led = false;
  4324. blue_led = true;
  4325. }
  4326. }
  4327. }
  4328. #endif
  4329. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4330. {
  4331. #if defined(KILL_PIN) && KILL_PIN > -1
  4332. static int killCount = 0; // make the inactivity button a bit less responsive
  4333. const int KILL_DELAY = 10000;
  4334. #endif
  4335. if(buflen < (BUFSIZE-1)){
  4336. get_command();
  4337. }
  4338. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4339. if(max_inactive_time)
  4340. kill();
  4341. if(stepper_inactive_time) {
  4342. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4343. {
  4344. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4345. disable_x();
  4346. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4347. disable_y();
  4348. disable_z();
  4349. disable_e0();
  4350. disable_e1();
  4351. disable_e2();
  4352. }
  4353. }
  4354. }
  4355. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4356. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4357. {
  4358. chdkActive = false;
  4359. WRITE(CHDK, LOW);
  4360. }
  4361. #endif
  4362. #if defined(KILL_PIN) && KILL_PIN > -1
  4363. // Check if the kill button was pressed and wait just in case it was an accidental
  4364. // key kill key press
  4365. // -------------------------------------------------------------------------------
  4366. if( 0 == READ(KILL_PIN) )
  4367. {
  4368. killCount++;
  4369. }
  4370. else if (killCount > 0)
  4371. {
  4372. killCount--;
  4373. }
  4374. // Exceeded threshold and we can confirm that it was not accidental
  4375. // KILL the machine
  4376. // ----------------------------------------------------------------
  4377. if ( killCount >= KILL_DELAY)
  4378. {
  4379. kill();
  4380. }
  4381. #endif
  4382. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4383. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4384. #endif
  4385. #ifdef EXTRUDER_RUNOUT_PREVENT
  4386. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4387. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4388. {
  4389. bool oldstatus=READ(E0_ENABLE_PIN);
  4390. enable_e0();
  4391. float oldepos=current_position[E_AXIS];
  4392. float oldedes=destination[E_AXIS];
  4393. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4394. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4395. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4396. current_position[E_AXIS]=oldepos;
  4397. destination[E_AXIS]=oldedes;
  4398. plan_set_e_position(oldepos);
  4399. previous_millis_cmd=millis();
  4400. st_synchronize();
  4401. WRITE(E0_ENABLE_PIN,oldstatus);
  4402. }
  4403. #endif
  4404. #ifdef TEMP_STAT_LEDS
  4405. handle_status_leds();
  4406. #endif
  4407. check_axes_activity();
  4408. }
  4409. void kill(const char *full_screen_message)
  4410. {
  4411. cli(); // Stop interrupts
  4412. disable_heater();
  4413. disable_x();
  4414. // SERIAL_ECHOLNPGM("kill - disable Y");
  4415. disable_y();
  4416. disable_z();
  4417. disable_e0();
  4418. disable_e1();
  4419. disable_e2();
  4420. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4421. pinMode(PS_ON_PIN,INPUT);
  4422. #endif
  4423. SERIAL_ERROR_START;
  4424. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4425. if (full_screen_message != NULL) {
  4426. SERIAL_ERRORLNRPGM(full_screen_message);
  4427. lcd_display_message_fullscreen_P(full_screen_message);
  4428. } else {
  4429. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4430. }
  4431. // FMC small patch to update the LCD before ending
  4432. sei(); // enable interrupts
  4433. for ( int i=5; i--; lcd_update())
  4434. {
  4435. delay(200);
  4436. }
  4437. cli(); // disable interrupts
  4438. suicide();
  4439. while(1) { /* Intentionally left empty */ } // Wait for reset
  4440. }
  4441. void Stop()
  4442. {
  4443. disable_heater();
  4444. if(Stopped == false) {
  4445. Stopped = true;
  4446. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4447. SERIAL_ERROR_START;
  4448. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4449. LCD_MESSAGERPGM(MSG_STOPPED);
  4450. }
  4451. }
  4452. bool IsStopped() { return Stopped; };
  4453. #ifdef FAST_PWM_FAN
  4454. void setPwmFrequency(uint8_t pin, int val)
  4455. {
  4456. val &= 0x07;
  4457. switch(digitalPinToTimer(pin))
  4458. {
  4459. #if defined(TCCR0A)
  4460. case TIMER0A:
  4461. case TIMER0B:
  4462. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4463. // TCCR0B |= val;
  4464. break;
  4465. #endif
  4466. #if defined(TCCR1A)
  4467. case TIMER1A:
  4468. case TIMER1B:
  4469. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4470. // TCCR1B |= val;
  4471. break;
  4472. #endif
  4473. #if defined(TCCR2)
  4474. case TIMER2:
  4475. case TIMER2:
  4476. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4477. TCCR2 |= val;
  4478. break;
  4479. #endif
  4480. #if defined(TCCR2A)
  4481. case TIMER2A:
  4482. case TIMER2B:
  4483. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4484. TCCR2B |= val;
  4485. break;
  4486. #endif
  4487. #if defined(TCCR3A)
  4488. case TIMER3A:
  4489. case TIMER3B:
  4490. case TIMER3C:
  4491. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4492. TCCR3B |= val;
  4493. break;
  4494. #endif
  4495. #if defined(TCCR4A)
  4496. case TIMER4A:
  4497. case TIMER4B:
  4498. case TIMER4C:
  4499. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4500. TCCR4B |= val;
  4501. break;
  4502. #endif
  4503. #if defined(TCCR5A)
  4504. case TIMER5A:
  4505. case TIMER5B:
  4506. case TIMER5C:
  4507. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4508. TCCR5B |= val;
  4509. break;
  4510. #endif
  4511. }
  4512. }
  4513. #endif //FAST_PWM_FAN
  4514. bool setTargetedHotend(int code){
  4515. tmp_extruder = active_extruder;
  4516. if(code_seen('T')) {
  4517. tmp_extruder = code_value();
  4518. if(tmp_extruder >= EXTRUDERS) {
  4519. SERIAL_ECHO_START;
  4520. switch(code){
  4521. case 104:
  4522. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4523. break;
  4524. case 105:
  4525. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4526. break;
  4527. case 109:
  4528. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4529. break;
  4530. case 218:
  4531. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4532. break;
  4533. case 221:
  4534. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4535. break;
  4536. }
  4537. SERIAL_ECHOLN(tmp_extruder);
  4538. return true;
  4539. }
  4540. }
  4541. return false;
  4542. }
  4543. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4544. {
  4545. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4546. {
  4547. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4548. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4549. }
  4550. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4551. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4552. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4553. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4554. total_filament_used = 0;
  4555. }
  4556. float calculate_volumetric_multiplier(float diameter) {
  4557. float area = .0;
  4558. float radius = .0;
  4559. radius = diameter * .5;
  4560. if (! volumetric_enabled || radius == 0) {
  4561. area = 1;
  4562. }
  4563. else {
  4564. area = M_PI * pow(radius, 2);
  4565. }
  4566. return 1.0 / area;
  4567. }
  4568. void calculate_volumetric_multipliers() {
  4569. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4570. #if EXTRUDERS > 1
  4571. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4572. #if EXTRUDERS > 2
  4573. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4574. #endif
  4575. #endif
  4576. }
  4577. void delay_keep_alive(int ms)
  4578. {
  4579. for (;;) {
  4580. manage_heater();
  4581. // Manage inactivity, but don't disable steppers on timeout.
  4582. manage_inactivity(true);
  4583. lcd_update();
  4584. if (ms == 0)
  4585. break;
  4586. else if (ms >= 50) {
  4587. delay(50);
  4588. ms -= 50;
  4589. } else {
  4590. delay(ms);
  4591. ms = 0;
  4592. }
  4593. }
  4594. }