Marlin_main.cpp 406 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #include "macros.h"
  49. #ifdef ENABLE_AUTO_BED_LEVELING
  50. #include "vector_3.h"
  51. #ifdef AUTO_BED_LEVELING_GRID
  52. #include "qr_solve.h"
  53. #endif
  54. #endif // ENABLE_AUTO_BED_LEVELING
  55. #ifdef MESH_BED_LEVELING
  56. #include "mesh_bed_leveling.h"
  57. #include "mesh_bed_calibration.h"
  58. #endif
  59. #include "printers.h"
  60. #include "menu.h"
  61. #include "ultralcd.h"
  62. #include "conv2str.h"
  63. #include "backlight.h"
  64. #include "planner.h"
  65. #include "stepper.h"
  66. #include "temperature.h"
  67. #include "motion_control.h"
  68. #include "cardreader.h"
  69. #include "ConfigurationStore.h"
  70. #include "language.h"
  71. #include "pins_arduino.h"
  72. #include "math.h"
  73. #include "util.h"
  74. #include "Timer.h"
  75. #include <avr/wdt.h>
  76. #include <avr/pgmspace.h>
  77. #include "Dcodes.h"
  78. #include "AutoDeplete.h"
  79. #ifndef LA_NOCOMPAT
  80. #include "la10compat.h"
  81. #endif
  82. #include "spi.h"
  83. #ifdef FILAMENT_SENSOR
  84. #include "fsensor.h"
  85. #ifdef IR_SENSOR
  86. #include "pat9125.h" // for pat9125_probe
  87. #endif
  88. #endif //FILAMENT_SENSOR
  89. #ifdef TMC2130
  90. #include "tmc2130.h"
  91. #endif //TMC2130
  92. #ifdef XFLASH
  93. #include "xflash.h"
  94. #include "optiboot_xflash.h"
  95. #endif //XFLASH
  96. #include "xflash_dump.h"
  97. #ifdef BLINKM
  98. #include "BlinkM.h"
  99. #include "Wire.h"
  100. #endif
  101. #ifdef ULTRALCD
  102. #include "ultralcd.h"
  103. #endif
  104. #if NUM_SERVOS > 0
  105. #include "Servo.h"
  106. #endif
  107. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  108. #include <SPI.h>
  109. #endif
  110. #include "mmu.h"
  111. #define VERSION_STRING "1.0.2"
  112. #include "ultralcd.h"
  113. #include "sound.h"
  114. #include "cmdqueue.h"
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  134. //used for PINDA temp calibration and pause print
  135. #define DEFAULT_RETRACTION 1
  136. #define DEFAULT_RETRACTION_MM 4 //MM
  137. float default_retraction = DEFAULT_RETRACTION;
  138. float homing_feedrate[] = HOMING_FEEDRATE;
  139. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  140. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  141. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  142. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  143. uint8_t axis_relative_modes = 0;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. uint8_t usb_printing_counter;
  158. int8_t lcd_change_fil_state = 0;
  159. unsigned long pause_time = 0;
  160. unsigned long start_pause_print = _millis();
  161. unsigned long t_fan_rising_edge = _millis();
  162. LongTimer safetyTimer;
  163. static ShortTimer crashDetTimer;
  164. //unsigned long load_filament_time;
  165. bool mesh_bed_leveling_flag = false;
  166. #ifdef PRUSA_M28
  167. bool prusa_sd_card_upload = false;
  168. #endif
  169. uint8_t status_number = 0;
  170. unsigned long total_filament_used;
  171. HeatingStatus heating_status;
  172. uint8_t heating_status_counter;
  173. bool loading_flag = false;
  174. #define XY_NO_RESTORE_FLAG (mesh_bed_leveling_flag || homing_flag)
  175. char snmm_filaments_used = 0;
  176. bool fan_state[2];
  177. int fan_edge_counter[2];
  178. int fan_speed[2];
  179. float extruder_multiplier[EXTRUDERS] = {1.0
  180. #if EXTRUDERS > 1
  181. , 1.0
  182. #if EXTRUDERS > 2
  183. , 1.0
  184. #endif
  185. #endif
  186. };
  187. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  188. //shortcuts for more readable code
  189. #define _x current_position[X_AXIS]
  190. #define _y current_position[Y_AXIS]
  191. #define _z current_position[Z_AXIS]
  192. #define _e current_position[E_AXIS]
  193. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  194. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  195. bool axis_known_position[3] = {false, false, false};
  196. // Extruder offset
  197. #if EXTRUDERS > 1
  198. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  199. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  200. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  201. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  202. #endif
  203. };
  204. #endif
  205. uint8_t active_extruder = 0;
  206. int fanSpeed=0;
  207. uint8_t newFanSpeed = 0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. const char G28W0[] PROGMEM = "G28 W0";
  240. bool no_response = false;
  241. uint8_t important_status;
  242. uint8_t saved_filament_type;
  243. // Define some coordinates outside the clamp limits (making them invalid past the parsing stage) so
  244. // that they can be used later for various logical checks
  245. #define X_COORD_INVALID (X_MIN_POS-1)
  246. #define Y_COORD_INVALID (Y_MIN_POS-1)
  247. #define SAVED_TARGET_UNSET X_COORD_INVALID
  248. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  249. // save/restore printing in case that mmu was not responding
  250. bool mmu_print_saved = false;
  251. // storing estimated time to end of print counted by slicer
  252. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  253. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  254. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  255. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  256. uint16_t print_time_to_change_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  257. uint16_t print_time_to_change_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  258. uint32_t IP_address = 0;
  259. //===========================================================================
  260. //=============================Private Variables=============================
  261. //===========================================================================
  262. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  263. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  264. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  265. // For tracing an arc
  266. static float offset[3] = {0.0, 0.0, 0.0};
  267. // Current feedrate
  268. float feedrate = 1500.0;
  269. // Feedrate for the next move
  270. static float next_feedrate;
  271. // Original feedrate saved during homing moves
  272. static float saved_feedrate;
  273. const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS; // Sensitive pin list for M42
  274. //static float tt = 0;
  275. //static float bt = 0;
  276. //Inactivity shutdown variables
  277. static LongTimer previous_millis_cmd;
  278. unsigned long max_inactive_time = 0;
  279. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  280. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  281. unsigned long starttime=0;
  282. unsigned long stoptime=0;
  283. ShortTimer _usb_timer;
  284. bool Stopped=false;
  285. #if NUM_SERVOS > 0
  286. Servo servos[NUM_SERVOS];
  287. #endif
  288. bool target_direction;
  289. //Insert variables if CHDK is defined
  290. #ifdef CHDK
  291. unsigned long chdkHigh = 0;
  292. bool chdkActive = false;
  293. #endif
  294. //! @name RAM save/restore printing
  295. //! @{
  296. bool saved_printing = false; //!< Print is paused and saved in RAM
  297. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  298. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  299. static float saved_pos[4] = { X_COORD_INVALID, 0, 0, 0 };
  300. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  301. static int saved_feedmultiply2 = 0;
  302. static uint8_t saved_active_extruder = 0;
  303. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  304. static bool saved_extruder_relative_mode = false;
  305. static int saved_fanSpeed = 0; //!< Print fan speed
  306. //! @}
  307. static int saved_feedmultiply_mm = 100;
  308. class AutoReportFeatures {
  309. union {
  310. struct {
  311. uint8_t temp : 1; //Temperature flag
  312. uint8_t fans : 1; //Fans flag
  313. uint8_t pos: 1; //Position flag
  314. uint8_t ar4 : 1; //Unused
  315. uint8_t ar5 : 1; //Unused
  316. uint8_t ar6 : 1; //Unused
  317. uint8_t ar7 : 1; //Unused
  318. } __attribute__((packed)) bits;
  319. uint8_t byte;
  320. } arFunctionsActive;
  321. uint8_t auto_report_period;
  322. public:
  323. LongTimer auto_report_timer;
  324. AutoReportFeatures():auto_report_period(0){
  325. #if defined(AUTO_REPORT)
  326. arFunctionsActive.byte = 0xff;
  327. #else
  328. arFunctionsActive.byte = 0;
  329. #endif //AUTO_REPORT
  330. }
  331. inline bool Temp()const { return arFunctionsActive.bits.temp != 0; }
  332. inline void SetTemp(uint8_t v){ arFunctionsActive.bits.temp = v; }
  333. inline bool Fans()const { return arFunctionsActive.bits.fans != 0; }
  334. inline void SetFans(uint8_t v){ arFunctionsActive.bits.fans = v; }
  335. inline bool Pos()const { return arFunctionsActive.bits.pos != 0; }
  336. inline void SetPos(uint8_t v){ arFunctionsActive.bits.pos = v; }
  337. inline void SetMask(uint8_t mask){ arFunctionsActive.byte = mask; }
  338. /// sets the autoreporting timer's period
  339. /// setting it to zero stops the timer
  340. void SetPeriod(uint8_t p){
  341. auto_report_period = p;
  342. if (auto_report_period != 0){
  343. auto_report_timer.start();
  344. } else{
  345. auto_report_timer.stop();
  346. }
  347. }
  348. inline void TimerStart() { auto_report_timer.start(); }
  349. inline bool TimerRunning()const { return auto_report_timer.running(); }
  350. inline bool TimerExpired() { return auto_report_timer.expired(auto_report_period * 1000ul); }
  351. };
  352. AutoReportFeatures autoReportFeatures;
  353. //===========================================================================
  354. //=============================Routines======================================
  355. //===========================================================================
  356. static void get_arc_coordinates();
  357. static bool setTargetedHotend(int code, uint8_t &extruder);
  358. static void print_time_remaining_init();
  359. static void wait_for_heater(long codenum, uint8_t extruder);
  360. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  361. static void gcode_M105(uint8_t extruder);
  362. #ifndef PINDA_THERMISTOR
  363. static void temp_compensation_start();
  364. static void temp_compensation_apply();
  365. #endif
  366. static uint8_t get_PRUSA_SN(char* SN);
  367. uint16_t gcode_in_progress = 0;
  368. uint16_t mcode_in_progress = 0;
  369. void serial_echopair_P(const char *s_P, float v)
  370. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  371. void serial_echopair_P(const char *s_P, double v)
  372. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, unsigned long v)
  374. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  376. {
  377. #if 0
  378. char ch=pgm_read_byte(str);
  379. while(ch)
  380. {
  381. MYSERIAL.write(ch);
  382. ch=pgm_read_byte(++str);
  383. }
  384. #else
  385. // hmm, same size as the above version, the compiler did a good job optimizing the above
  386. while( uint8_t ch = pgm_read_byte(str) ){
  387. MYSERIAL.write((char)ch);
  388. ++str;
  389. }
  390. #endif
  391. }
  392. #ifdef SDSUPPORT
  393. #include "SdFatUtil.h"
  394. int freeMemory() { return SdFatUtil::FreeRam(); }
  395. #else
  396. extern "C" {
  397. extern unsigned int __bss_end;
  398. extern unsigned int __heap_start;
  399. extern void *__brkval;
  400. int freeMemory() {
  401. int free_memory;
  402. if ((int)__brkval == 0)
  403. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  404. else
  405. free_memory = ((int)&free_memory) - ((int)__brkval);
  406. return free_memory;
  407. }
  408. }
  409. #endif //!SDSUPPORT
  410. void setup_killpin()
  411. {
  412. #if defined(KILL_PIN) && KILL_PIN > -1
  413. SET_INPUT(KILL_PIN);
  414. WRITE(KILL_PIN,HIGH);
  415. #endif
  416. }
  417. // Set home pin
  418. void setup_homepin(void)
  419. {
  420. #if defined(HOME_PIN) && HOME_PIN > -1
  421. SET_INPUT(HOME_PIN);
  422. WRITE(HOME_PIN,HIGH);
  423. #endif
  424. }
  425. void setup_photpin()
  426. {
  427. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  428. SET_OUTPUT(PHOTOGRAPH_PIN);
  429. WRITE(PHOTOGRAPH_PIN, LOW);
  430. #endif
  431. }
  432. void setup_powerhold()
  433. {
  434. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  435. SET_OUTPUT(SUICIDE_PIN);
  436. WRITE(SUICIDE_PIN, HIGH);
  437. #endif
  438. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  439. SET_OUTPUT(PS_ON_PIN);
  440. #if defined(PS_DEFAULT_OFF)
  441. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  442. #else
  443. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  444. #endif
  445. #endif
  446. }
  447. void suicide()
  448. {
  449. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  450. SET_OUTPUT(SUICIDE_PIN);
  451. WRITE(SUICIDE_PIN, LOW);
  452. #endif
  453. }
  454. void servo_init()
  455. {
  456. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  457. servos[0].attach(SERVO0_PIN);
  458. #endif
  459. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  460. servos[1].attach(SERVO1_PIN);
  461. #endif
  462. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  463. servos[2].attach(SERVO2_PIN);
  464. #endif
  465. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  466. servos[3].attach(SERVO3_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 5)
  469. #error "TODO: enter initalisation code for more servos"
  470. #endif
  471. }
  472. bool fans_check_enabled = true;
  473. #ifdef TMC2130
  474. void crashdet_stop_and_save_print()
  475. {
  476. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  477. }
  478. void crashdet_restore_print_and_continue()
  479. {
  480. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  481. // babystep_apply();
  482. }
  483. void crashdet_detected(uint8_t mask)
  484. {
  485. st_synchronize();
  486. static uint8_t crashDet_counter = 0;
  487. bool automatic_recovery_after_crash = true;
  488. if (crashDet_counter++ == 0) {
  489. crashDetTimer.start();
  490. }
  491. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  492. crashDetTimer.stop();
  493. crashDet_counter = 0;
  494. }
  495. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  496. automatic_recovery_after_crash = false;
  497. crashDetTimer.stop();
  498. crashDet_counter = 0;
  499. }
  500. else {
  501. crashDetTimer.start();
  502. }
  503. lcd_update_enable(true);
  504. lcd_clear();
  505. lcd_update(2);
  506. if (mask & X_AXIS_MASK)
  507. {
  508. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  509. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  510. }
  511. if (mask & Y_AXIS_MASK)
  512. {
  513. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  514. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  515. }
  516. lcd_update_enable(true);
  517. lcd_update(2);
  518. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  519. gcode_G28(true, true, false); //home X and Y
  520. st_synchronize();
  521. if (automatic_recovery_after_crash) {
  522. enquecommand_P(PSTR("CRASH_RECOVER"));
  523. }else{
  524. setTargetHotend(0, active_extruder);
  525. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);////MSG_CRASH_RESUME c=20 r=3
  526. lcd_update_enable(true);
  527. if (yesno)
  528. {
  529. enquecommand_P(PSTR("CRASH_RECOVER"));
  530. }
  531. else
  532. {
  533. enquecommand_P(PSTR("CRASH_CANCEL"));
  534. }
  535. }
  536. }
  537. void crashdet_recover()
  538. {
  539. crashdet_restore_print_and_continue();
  540. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  541. }
  542. void crashdet_cancel()
  543. {
  544. saved_printing = false;
  545. tmc2130_sg_stop_on_crash = true;
  546. if (saved_printing_type == PRINTING_TYPE_SD) {
  547. lcd_print_stop();
  548. }else if(saved_printing_type == PRINTING_TYPE_USB){
  549. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  550. cmdqueue_reset();
  551. }
  552. }
  553. #endif //TMC2130
  554. void failstats_reset_print()
  555. {
  556. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  557. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  558. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  559. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  560. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  561. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  562. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  563. fsensor_softfail = 0;
  564. #endif
  565. }
  566. void softReset()
  567. {
  568. cli();
  569. wdt_enable(WDTO_15MS);
  570. while(1);
  571. }
  572. #ifdef MESH_BED_LEVELING
  573. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  574. #endif
  575. static void factory_reset_stats(){
  576. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  577. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  580. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  582. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  583. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  584. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  588. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  589. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  590. }
  591. // Factory reset function
  592. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  593. // Level input parameter sets depth of reset
  594. static void factory_reset(char level)
  595. {
  596. lcd_clear();
  597. Sound_MakeCustom(100,0,false);
  598. switch (level) {
  599. case 0: // Level 0: Language reset
  600. lang_reset();
  601. break;
  602. case 1: //Level 1: Reset statistics
  603. factory_reset_stats();
  604. lcd_menu_statistics();
  605. break;
  606. case 2: // Level 2: Prepare for shipping
  607. factory_reset_stats();
  608. // FALLTHRU
  609. case 3: // Level 3: Preparation after being serviced
  610. // Force language selection at the next boot up.
  611. lang_reset();
  612. // Force the "Follow calibration flow" message at the next boot up.
  613. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  614. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 2); //run wizard
  615. farm_mode = false;
  616. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  617. #ifdef FILAMENT_SENSOR
  618. fsensor_enable();
  619. fsensor_autoload_set(true);
  620. #endif //FILAMENT_SENSOR
  621. break;
  622. case 4:
  623. menu_progressbar_init(EEPROM_TOP, PSTR("ERASING all data"));
  624. // Erase EEPROM
  625. for (uint16_t i = 0; i < EEPROM_TOP; i++) {
  626. eeprom_update_byte((uint8_t*)i, 0xFF);
  627. menu_progressbar_update(i);
  628. }
  629. menu_progressbar_finish();
  630. softReset();
  631. break;
  632. #ifdef SNMM
  633. case 5:
  634. bowden_menu();
  635. break;
  636. #endif
  637. default:
  638. break;
  639. }
  640. }
  641. extern "C" {
  642. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  643. }
  644. int uart_putchar(char c, FILE *)
  645. {
  646. MYSERIAL.write(c);
  647. return 0;
  648. }
  649. void lcd_splash()
  650. {
  651. lcd_clear(); // clears display and homes screen
  652. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  653. }
  654. void factory_reset()
  655. {
  656. KEEPALIVE_STATE(PAUSED_FOR_USER);
  657. if (!READ(BTN_ENC))
  658. {
  659. _delay_ms(1000);
  660. if (!READ(BTN_ENC))
  661. {
  662. lcd_clear();
  663. lcd_puts_P(PSTR("Factory RESET"));
  664. SET_OUTPUT(BEEPER);
  665. if(eSoundMode!=e_SOUND_MODE_SILENT)
  666. WRITE(BEEPER, HIGH);
  667. while (!READ(BTN_ENC));
  668. WRITE(BEEPER, LOW);
  669. _delay_ms(2000);
  670. char level = reset_menu();
  671. factory_reset(level);
  672. switch (level) {
  673. case 0:
  674. case 1:
  675. case 2:
  676. case 3:
  677. case 4: _delay_ms(0); break;
  678. }
  679. }
  680. }
  681. KEEPALIVE_STATE(IN_HANDLER);
  682. }
  683. void show_fw_version_warnings() {
  684. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  685. switch (FW_DEV_VERSION) {
  686. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  687. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  688. case(FW_VERSION_DEVEL):
  689. case(FW_VERSION_DEBUG):
  690. lcd_update_enable(false);
  691. lcd_clear();
  692. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  693. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  694. #else
  695. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  696. #endif
  697. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  698. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  699. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  700. lcd_wait_for_click();
  701. break;
  702. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  703. }
  704. lcd_update_enable(true);
  705. }
  706. //! @brief try to check if firmware is on right type of printer
  707. static void check_if_fw_is_on_right_printer(){
  708. #ifdef FILAMENT_SENSOR
  709. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  710. #ifdef IR_SENSOR
  711. if (pat9125_probe()){
  712. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////MSG_MK3S_FIRMWARE_ON_MK3 c=20 r=4
  713. #endif //IR_SENSOR
  714. #ifdef PAT9125
  715. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  716. const uint8_t ir_detected = !READ(IR_SENSOR_PIN);
  717. if (ir_detected){
  718. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////MSG_MK3_FIRMWARE_ON_MK3S c=20 r=4
  719. #endif //PAT9125
  720. }
  721. #endif //FILAMENT_SENSOR
  722. }
  723. uint8_t check_printer_version()
  724. {
  725. uint8_t version_changed = 0;
  726. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  727. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  728. if (printer_type != PRINTER_TYPE) {
  729. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  730. else version_changed |= 0b10;
  731. }
  732. if (motherboard != MOTHERBOARD) {
  733. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  734. else version_changed |= 0b01;
  735. }
  736. return version_changed;
  737. }
  738. #ifdef BOOTAPP
  739. #include "bootapp.h" //bootloader support
  740. #endif //BOOTAPP
  741. #if (LANG_MODE != 0) //secondary language support
  742. #ifdef XFLASH
  743. // language update from external flash
  744. #define LANGBOOT_BLOCKSIZE 0x1000u
  745. #define LANGBOOT_RAMBUFFER 0x0800
  746. void update_sec_lang_from_external_flash()
  747. {
  748. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  749. {
  750. uint8_t lang = boot_reserved >> 4;
  751. uint8_t state = boot_reserved & 0xf;
  752. lang_table_header_t header;
  753. uint32_t src_addr;
  754. if (lang_get_header(lang, &header, &src_addr))
  755. {
  756. lcd_puts_at_P(1,3,PSTR("Language update."));
  757. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  758. _delay(100);
  759. boot_reserved = (state + 1) | (lang << 4);
  760. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  761. {
  762. cli();
  763. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  764. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  765. xflash_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  766. if (state == 0)
  767. {
  768. //TODO - check header integrity
  769. }
  770. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  771. }
  772. else
  773. {
  774. //TODO - check sec lang data integrity
  775. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  776. }
  777. }
  778. }
  779. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  780. }
  781. #ifdef DEBUG_XFLASH
  782. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  783. {
  784. lang_table_header_t header;
  785. uint8_t count = 0;
  786. uint32_t addr = 0x00000;
  787. while (1)
  788. {
  789. printf_P(_n("LANGTABLE%d:"), count);
  790. xflash_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  791. if (header.magic != LANG_MAGIC)
  792. {
  793. puts_P(_n("NG!"));
  794. break;
  795. }
  796. puts_P(_n("OK"));
  797. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  798. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  799. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  800. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  801. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  802. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  803. addr += header.size;
  804. codes[count] = header.code;
  805. count ++;
  806. }
  807. return count;
  808. }
  809. void list_sec_lang_from_external_flash()
  810. {
  811. uint16_t codes[8];
  812. uint8_t count = lang_xflash_enum_codes(codes);
  813. printf_P(_n("XFlash lang count = %hhd\n"), count);
  814. }
  815. #endif //DEBUG_XFLASH
  816. #endif //XFLASH
  817. #endif //(LANG_MODE != 0)
  818. static void fw_crash_init()
  819. {
  820. #ifdef XFLASH_DUMP
  821. dump_crash_reason crash_reason;
  822. if(xfdump_check_state(&crash_reason))
  823. {
  824. // always signal to the host that a dump is available for retrieval
  825. puts_P(_N("// action:dump_available"));
  826. #ifdef EMERGENCY_DUMP
  827. if(crash_reason != dump_crash_reason::manual &&
  828. eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG) != 0xFF)
  829. {
  830. lcd_show_fullscreen_message_and_wait_P(
  831. _i("FW crash detected! "
  832. "You can continue printing. "
  833. "Debug data available for analysis. "
  834. "Contact support to submit details."));
  835. }
  836. #endif
  837. }
  838. #else //XFLASH_DUMP
  839. dump_crash_reason crash_reason = (dump_crash_reason)eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG);
  840. if(crash_reason != dump_crash_reason::manual && (uint8_t)crash_reason != 0xFF)
  841. {
  842. lcd_beeper_quick_feedback();
  843. lcd_clear();
  844. lcd_puts_P(_i("FIRMWARE CRASH!\nCrash reason:\n"));
  845. switch(crash_reason)
  846. {
  847. case dump_crash_reason::stack_error:
  848. lcd_puts_P(_i("Static memory has\nbeen overwritten"));
  849. break;
  850. case dump_crash_reason::watchdog:
  851. lcd_puts_P(_i("Watchdog timeout"));
  852. break;
  853. case dump_crash_reason::bad_isr:
  854. lcd_puts_P(_i("Bad interrupt"));
  855. break;
  856. default:
  857. lcd_print((uint8_t)crash_reason);
  858. break;
  859. }
  860. lcd_wait_for_click();
  861. }
  862. #endif //XFLASH_DUMP
  863. // prevent crash prompts to reappear once acknowledged
  864. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, 0xFF);
  865. }
  866. static void xflash_err_msg()
  867. {
  868. lcd_clear();
  869. lcd_puts_P(_n("External SPI flash\nXFLASH is not res-\nponding. Language\nswitch unavailable."));
  870. }
  871. // "Setup" function is called by the Arduino framework on startup.
  872. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  873. // are initialized by the main() routine provided by the Arduino framework.
  874. void setup()
  875. {
  876. timer2_init(); // enables functional millis
  877. mmu_init();
  878. ultralcd_init();
  879. spi_init();
  880. lcd_splash();
  881. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  882. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  883. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  884. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  885. MYSERIAL.begin(BAUDRATE);
  886. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  887. stdout = uartout;
  888. #ifdef XFLASH
  889. bool xflash_success = xflash_init();
  890. uint8_t optiboot_status = 1;
  891. if (xflash_success)
  892. {
  893. optiboot_status = optiboot_xflash_enter();
  894. #if (LANG_MODE != 0) //secondary language support
  895. update_sec_lang_from_external_flash();
  896. #endif //(LANG_MODE != 0)
  897. }
  898. else
  899. {
  900. xflash_err_msg();
  901. }
  902. #else
  903. const bool xflash_success = true;
  904. #endif //XFLASH
  905. setup_killpin();
  906. setup_powerhold();
  907. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  908. if (farm_mode == 0xFF) {
  909. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  910. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  911. } else if (farm_mode) {
  912. no_response = true; //we need confirmation by recieving PRUSA thx
  913. important_status = 8;
  914. prusa_statistics(8);
  915. #ifdef HAS_SECOND_SERIAL_PORT
  916. selectedSerialPort = 1;
  917. #endif //HAS_SECOND_SERIAL_PORT
  918. MYSERIAL.begin(BAUDRATE);
  919. #ifdef FILAMENT_SENSOR
  920. //disabled filament autoload (PFW360)
  921. fsensor_autoload_set(false);
  922. #endif //FILAMENT_SENSOR
  923. // ~ FanCheck -> on
  924. eeprom_update_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED, true);
  925. }
  926. #ifdef TMC2130
  927. if( FarmOrUserECool() ){
  928. //increased extruder current (PFW363)
  929. tmc2130_current_h[E_AXIS] = TMC2130_CURRENTS_FARM;
  930. tmc2130_current_r[E_AXIS] = TMC2130_CURRENTS_FARM;
  931. }
  932. #endif //TMC2130
  933. //Check for valid SN in EEPROM. Try to retrieve it in case it's invalid.
  934. //SN is valid only if it is NULL terminated and starts with "CZPX".
  935. {
  936. char SN[20];
  937. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  938. if (SN[19] || strncmp_P(SN, PSTR("CZPX"), 4))
  939. {
  940. if (!get_PRUSA_SN(SN))
  941. {
  942. eeprom_update_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  943. puts_P(PSTR("SN updated"));
  944. }
  945. else
  946. puts_P(PSTR("SN update failed"));
  947. }
  948. }
  949. #ifndef XFLASH
  950. SERIAL_PROTOCOLLNPGM("start");
  951. #else
  952. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  953. SERIAL_PROTOCOLLNPGM("start");
  954. #endif
  955. SERIAL_ECHO_START;
  956. puts_P(PSTR(" " FW_VERSION_FULL));
  957. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  958. #ifdef DEBUG_SEC_LANG
  959. lang_table_header_t header;
  960. uint32_t src_addr = 0x00000;
  961. if (lang_get_header(1, &header, &src_addr))
  962. {
  963. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  964. #define LT_PRINT_TEST 2
  965. // flash usage
  966. // total p.test
  967. //0 252718 t+c text code
  968. //1 253142 424 170 254
  969. //2 253040 322 164 158
  970. //3 253248 530 135 395
  971. #if (LT_PRINT_TEST==1) //not optimized printf
  972. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  973. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  974. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  975. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  976. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  977. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  978. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  979. #elif (LT_PRINT_TEST==2) //optimized printf
  980. printf_P(
  981. _n(
  982. " _src_addr = 0x%08lx\n"
  983. " _lt_magic = 0x%08lx %S\n"
  984. " _lt_size = 0x%04x (%d)\n"
  985. " _lt_count = 0x%04x (%d)\n"
  986. " _lt_chsum = 0x%04x\n"
  987. " _lt_code = 0x%04x (%c%c)\n"
  988. " _lt_resv1 = 0x%08lx\n"
  989. ),
  990. src_addr,
  991. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  992. header.size, header.size,
  993. header.count, header.count,
  994. header.checksum,
  995. header.code, header.code >> 8, header.code & 0xff,
  996. header.signature
  997. );
  998. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  999. MYSERIAL.print(" _src_addr = 0x");
  1000. MYSERIAL.println(src_addr, 16);
  1001. MYSERIAL.print(" _lt_magic = 0x");
  1002. MYSERIAL.print(header.magic, 16);
  1003. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1004. MYSERIAL.print(" _lt_size = 0x");
  1005. MYSERIAL.print(header.size, 16);
  1006. MYSERIAL.print(" (");
  1007. MYSERIAL.print(header.size, 10);
  1008. MYSERIAL.println(")");
  1009. MYSERIAL.print(" _lt_count = 0x");
  1010. MYSERIAL.print(header.count, 16);
  1011. MYSERIAL.print(" (");
  1012. MYSERIAL.print(header.count, 10);
  1013. MYSERIAL.println(")");
  1014. MYSERIAL.print(" _lt_chsum = 0x");
  1015. MYSERIAL.println(header.checksum, 16);
  1016. MYSERIAL.print(" _lt_code = 0x");
  1017. MYSERIAL.print(header.code, 16);
  1018. MYSERIAL.print(" (");
  1019. MYSERIAL.print((char)(header.code >> 8), 0);
  1020. MYSERIAL.print((char)(header.code & 0xff), 0);
  1021. MYSERIAL.println(")");
  1022. MYSERIAL.print(" _lt_resv1 = 0x");
  1023. MYSERIAL.println(header.signature, 16);
  1024. #endif //(LT_PRINT_TEST==)
  1025. #undef LT_PRINT_TEST
  1026. #if 0
  1027. xflash_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1028. for (uint16_t i = 0; i < 1024; i++)
  1029. {
  1030. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1031. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1032. if ((i % 16) == 15) putchar('\n');
  1033. }
  1034. #endif
  1035. uint16_t sum = 0;
  1036. for (uint16_t i = 0; i < header.size; i++)
  1037. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1038. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1039. sum -= header.checksum; //subtract checksum
  1040. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1041. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1042. if (sum == header.checksum)
  1043. printf_P(_n("Checksum OK\n"), sum);
  1044. else
  1045. printf_P(_n("Checksum NG\n"), sum);
  1046. }
  1047. else
  1048. puts_P(_n("lang_get_header failed!"));
  1049. #if 0
  1050. for (uint16_t i = 0; i < 1024*10; i++)
  1051. {
  1052. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1053. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1054. if ((i % 16) == 15) putchar('\n');
  1055. }
  1056. #endif
  1057. #if 0
  1058. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1059. for (int i = 0; i < 4096; ++i) {
  1060. int b = eeprom_read_byte((unsigned char*)i);
  1061. if (b != 255) {
  1062. SERIAL_ECHO(i);
  1063. SERIAL_ECHO(":");
  1064. SERIAL_ECHO(b);
  1065. SERIAL_ECHOLN("");
  1066. }
  1067. }
  1068. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1069. #endif
  1070. #endif //DEBUG_SEC_LANG
  1071. // Check startup - does nothing if bootloader sets MCUSR to 0
  1072. byte mcu = MCUSR;
  1073. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  1074. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1075. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1076. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1077. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1078. if (mcu & 1) puts_P(MSG_POWERUP);
  1079. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1080. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1081. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1082. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1083. MCUSR = 0;
  1084. //SERIAL_ECHORPGM(MSG_MARLIN);
  1085. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1086. #ifdef STRING_VERSION_CONFIG_H
  1087. #ifdef STRING_CONFIG_H_AUTHOR
  1088. SERIAL_ECHO_START;
  1089. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1090. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1091. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1092. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1093. SERIAL_ECHOPGM("Compiled: ");
  1094. SERIAL_ECHOLNPGM(__DATE__);
  1095. #endif
  1096. #endif
  1097. SERIAL_ECHO_START;
  1098. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1099. SERIAL_ECHO(freeMemory());
  1100. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1101. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1102. //lcd_update_enable(false); // why do we need this?? - andre
  1103. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1104. bool previous_settings_retrieved = false;
  1105. uint8_t hw_changed = check_printer_version();
  1106. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1107. previous_settings_retrieved = Config_RetrieveSettings();
  1108. }
  1109. else { //printer version was changed so use default settings
  1110. Config_ResetDefault();
  1111. }
  1112. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1113. tp_init(); // Initialize temperature loop
  1114. if (xflash_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1115. else
  1116. {
  1117. xflash_err_msg();
  1118. puts_P(_n("XFLASH not responding."));
  1119. }
  1120. #ifdef EXTRUDER_ALTFAN_DETECT
  1121. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1122. if (extruder_altfan_detect())
  1123. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1124. else
  1125. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1126. #endif //EXTRUDER_ALTFAN_DETECT
  1127. plan_init(); // Initialize planner;
  1128. factory_reset();
  1129. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1130. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1131. {
  1132. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1133. // where all the EEPROM entries are set to 0x0ff.
  1134. // Once a firmware boots up, it forces at least a language selection, which changes
  1135. // EEPROM_LANG to number lower than 0x0ff.
  1136. // 1) Set a high power mode.
  1137. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1138. #ifdef TMC2130
  1139. tmc2130_mode = TMC2130_MODE_NORMAL;
  1140. #endif //TMC2130
  1141. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1142. }
  1143. lcd_encoder_diff=0;
  1144. #ifdef TMC2130
  1145. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1146. if (silentMode == 0xff) silentMode = 0;
  1147. tmc2130_mode = TMC2130_MODE_NORMAL;
  1148. if (lcd_crash_detect_enabled() && !farm_mode)
  1149. {
  1150. lcd_crash_detect_enable();
  1151. puts_P(_N("CrashDetect ENABLED!"));
  1152. }
  1153. else
  1154. {
  1155. lcd_crash_detect_disable();
  1156. puts_P(_N("CrashDetect DISABLED"));
  1157. }
  1158. #ifdef TMC2130_LINEARITY_CORRECTION
  1159. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1160. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1161. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1162. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1163. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1164. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1165. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1166. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1167. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1168. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1169. #endif //TMC2130_LINEARITY_CORRECTION
  1170. #ifdef TMC2130_VARIABLE_RESOLUTION
  1171. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1172. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1173. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1174. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1175. #else //TMC2130_VARIABLE_RESOLUTION
  1176. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1177. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1178. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1179. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1180. #endif //TMC2130_VARIABLE_RESOLUTION
  1181. #endif //TMC2130
  1182. st_init(); // Initialize stepper, this enables interrupts!
  1183. #ifdef TMC2130
  1184. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1185. update_mode_profile();
  1186. tmc2130_init(TMCInitParams(false, FarmOrUserECool() ));
  1187. #endif //TMC2130
  1188. #ifdef PSU_Delta
  1189. init_force_z(); // ! important for correct Z-axis initialization
  1190. #endif // PSU_Delta
  1191. setup_photpin();
  1192. servo_init();
  1193. // Reset the machine correction matrix.
  1194. // It does not make sense to load the correction matrix until the machine is homed.
  1195. world2machine_reset();
  1196. // Initialize current_position accounting for software endstops to
  1197. // avoid unexpected initial shifts on the first move
  1198. clamp_to_software_endstops(current_position);
  1199. plan_set_position_curposXYZE();
  1200. #ifdef FILAMENT_SENSOR
  1201. fsensor_init();
  1202. #endif //FILAMENT_SENSOR
  1203. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1204. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1205. #endif
  1206. setup_homepin();
  1207. #if defined(Z_AXIS_ALWAYS_ON)
  1208. enable_z();
  1209. #endif
  1210. if (farm_mode) {
  1211. // The farm monitoring SW may accidentally expect
  1212. // 2 messages of "printer started" to consider a printer working.
  1213. prusa_statistics(8);
  1214. }
  1215. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1216. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1217. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1218. // but this times out if a blocking dialog is shown in setup().
  1219. card.initsd();
  1220. #ifdef DEBUG_SD_SPEED_TEST
  1221. if (card.cardOK)
  1222. {
  1223. uint8_t* buff = (uint8_t*)block_buffer;
  1224. uint32_t block = 0;
  1225. uint32_t sumr = 0;
  1226. uint32_t sumw = 0;
  1227. for (int i = 0; i < 1024; i++)
  1228. {
  1229. uint32_t u = _micros();
  1230. bool res = card.card.readBlock(i, buff);
  1231. u = _micros() - u;
  1232. if (res)
  1233. {
  1234. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1235. sumr += u;
  1236. u = _micros();
  1237. res = card.card.writeBlock(i, buff);
  1238. u = _micros() - u;
  1239. if (res)
  1240. {
  1241. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1242. sumw += u;
  1243. }
  1244. else
  1245. {
  1246. printf_P(PSTR("writeBlock %4d error\n"), i);
  1247. break;
  1248. }
  1249. }
  1250. else
  1251. {
  1252. printf_P(PSTR("readBlock %4d error\n"), i);
  1253. break;
  1254. }
  1255. }
  1256. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1257. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1258. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1259. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1260. }
  1261. else
  1262. printf_P(PSTR("Card NG!\n"));
  1263. #endif //DEBUG_SD_SPEED_TEST
  1264. eeprom_init();
  1265. #ifdef SNMM
  1266. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1267. int _z = BOWDEN_LENGTH;
  1268. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1269. }
  1270. #endif
  1271. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1272. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1273. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1274. #if (LANG_MODE != 0) //secondary language support
  1275. #ifdef DEBUG_XFLASH
  1276. XFLASH_SPI_ENTER();
  1277. uint8_t uid[8]; // 64bit unique id
  1278. xflash_rd_uid(uid);
  1279. puts_P(_n("XFLASH UID="));
  1280. for (uint8_t i = 0; i < 8; i ++)
  1281. printf_P(PSTR("%02x"), uid[i]);
  1282. putchar('\n');
  1283. list_sec_lang_from_external_flash();
  1284. #endif //DEBUG_XFLASH
  1285. // lang_reset();
  1286. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1287. lcd_language();
  1288. #ifdef DEBUG_SEC_LANG
  1289. uint16_t sec_lang_code = lang_get_code(1);
  1290. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1291. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1292. lang_print_sec_lang(uartout);
  1293. #endif //DEBUG_SEC_LANG
  1294. #endif //(LANG_MODE != 0)
  1295. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1296. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1297. }
  1298. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1299. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1300. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1301. int16_t z_shift = 0;
  1302. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1303. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1304. }
  1305. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1306. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1307. }
  1308. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1309. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1310. }
  1311. //mbl_mode_init();
  1312. mbl_settings_init();
  1313. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1314. if (SilentModeMenu_MMU == 255) {
  1315. SilentModeMenu_MMU = 1;
  1316. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1317. }
  1318. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1319. setup_fan_interrupt();
  1320. #endif //DEBUG_DISABLE_FANCHECK
  1321. #ifdef PAT9125
  1322. fsensor_setup_interrupt();
  1323. #endif //PAT9125
  1324. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1325. #ifndef DEBUG_DISABLE_STARTMSGS
  1326. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1327. if (!farm_mode) {
  1328. check_if_fw_is_on_right_printer();
  1329. show_fw_version_warnings();
  1330. }
  1331. switch (hw_changed) {
  1332. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1333. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1334. case(0b01):
  1335. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1336. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1337. break;
  1338. case(0b10):
  1339. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1340. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1341. break;
  1342. case(0b11):
  1343. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1344. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1345. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1346. break;
  1347. default: break; //no change, show no message
  1348. }
  1349. if (!previous_settings_retrieved) {
  1350. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=6
  1351. Config_StoreSettings();
  1352. }
  1353. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) >= 1) {
  1354. lcd_wizard(WizState::Run);
  1355. }
  1356. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1357. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1358. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1359. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1360. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1361. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1362. // Show the message.
  1363. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1364. }
  1365. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1366. // Show the message.
  1367. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1368. lcd_update_enable(true);
  1369. }
  1370. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1371. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1372. lcd_update_enable(true);
  1373. }
  1374. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1375. // Show the message.
  1376. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1377. }
  1378. }
  1379. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1380. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1381. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1382. update_current_firmware_version_to_eeprom();
  1383. lcd_selftest();
  1384. }
  1385. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1386. KEEPALIVE_STATE(IN_PROCESS);
  1387. #endif //DEBUG_DISABLE_STARTMSGS
  1388. lcd_update_enable(true);
  1389. lcd_clear();
  1390. lcd_update(2);
  1391. // Store the currently running firmware into an eeprom,
  1392. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1393. update_current_firmware_version_to_eeprom();
  1394. #ifdef TMC2130
  1395. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1396. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1397. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1398. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1399. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1400. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1401. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1402. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1403. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1404. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1405. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1406. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1407. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1408. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1409. #endif //TMC2130
  1410. // report crash failures
  1411. fw_crash_init();
  1412. #ifdef UVLO_SUPPORT
  1413. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1414. /*
  1415. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1416. else {
  1417. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1418. lcd_update_enable(true);
  1419. lcd_update(2);
  1420. lcd_setstatuspgm(MSG_WELCOME);
  1421. }
  1422. */
  1423. manage_heater(); // Update temperatures
  1424. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1425. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1426. #endif
  1427. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1428. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1429. puts_P(_N("Automatic recovery!"));
  1430. #endif
  1431. recover_print(1);
  1432. }
  1433. else{
  1434. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1435. puts_P(_N("Normal recovery!"));
  1436. #endif
  1437. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1438. else {
  1439. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1440. lcd_update_enable(true);
  1441. lcd_update(2);
  1442. lcd_setstatuspgm(MSG_WELCOME);
  1443. }
  1444. }
  1445. }
  1446. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1447. // the entire state machine initialized.
  1448. setup_uvlo_interrupt();
  1449. #endif //UVLO_SUPPORT
  1450. fCheckModeInit();
  1451. fSetMmuMode(mmu_enabled);
  1452. KEEPALIVE_STATE(NOT_BUSY);
  1453. #ifdef WATCHDOG
  1454. wdt_enable(WDTO_4S);
  1455. #ifdef EMERGENCY_HANDLERS
  1456. WDTCSR |= (1 << WDIE);
  1457. #endif //EMERGENCY_HANDLERS
  1458. #endif //WATCHDOG
  1459. }
  1460. static inline void crash_and_burn(dump_crash_reason reason)
  1461. {
  1462. WRITE(BEEPER, HIGH);
  1463. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, (uint8_t)reason);
  1464. #ifdef EMERGENCY_DUMP
  1465. xfdump_full_dump_and_reset(reason);
  1466. #elif defined(EMERGENCY_SERIAL_DUMP)
  1467. if(emergency_serial_dump)
  1468. serial_dump_and_reset(reason);
  1469. #endif
  1470. softReset();
  1471. }
  1472. #ifdef EMERGENCY_HANDLERS
  1473. #ifdef WATCHDOG
  1474. ISR(WDT_vect)
  1475. {
  1476. crash_and_burn(dump_crash_reason::watchdog);
  1477. }
  1478. #endif
  1479. ISR(BADISR_vect)
  1480. {
  1481. crash_and_burn(dump_crash_reason::bad_isr);
  1482. }
  1483. #endif //EMERGENCY_HANDLERS
  1484. void stack_error() {
  1485. crash_and_burn(dump_crash_reason::stack_error);
  1486. }
  1487. #ifdef PRUSA_M28
  1488. void trace();
  1489. #define CHUNK_SIZE 64 // bytes
  1490. #define SAFETY_MARGIN 1
  1491. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1492. void serial_read_stream() {
  1493. setAllTargetHotends(0);
  1494. setTargetBed(0);
  1495. lcd_clear();
  1496. lcd_puts_P(PSTR(" Upload in progress"));
  1497. // first wait for how many bytes we will receive
  1498. uint32_t bytesToReceive;
  1499. // receive the four bytes
  1500. char bytesToReceiveBuffer[4];
  1501. for (int i=0; i<4; i++) {
  1502. int data;
  1503. while ((data = MYSERIAL.read()) == -1) {};
  1504. bytesToReceiveBuffer[i] = data;
  1505. }
  1506. // make it a uint32
  1507. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1508. // we're ready, notify the sender
  1509. MYSERIAL.write('+');
  1510. // lock in the routine
  1511. uint32_t receivedBytes = 0;
  1512. while (prusa_sd_card_upload) {
  1513. int i;
  1514. for (i=0; i<CHUNK_SIZE; i++) {
  1515. int data;
  1516. // check if we're not done
  1517. if (receivedBytes == bytesToReceive) {
  1518. break;
  1519. }
  1520. // read the next byte
  1521. while ((data = MYSERIAL.read()) == -1) {};
  1522. receivedBytes++;
  1523. // save it to the chunk
  1524. chunk[i] = data;
  1525. }
  1526. // write the chunk to SD
  1527. card.write_command_no_newline(&chunk[0]);
  1528. // notify the sender we're ready for more data
  1529. MYSERIAL.write('+');
  1530. // for safety
  1531. manage_heater();
  1532. // check if we're done
  1533. if(receivedBytes == bytesToReceive) {
  1534. trace(); // beep
  1535. card.closefile();
  1536. prusa_sd_card_upload = false;
  1537. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1538. }
  1539. }
  1540. }
  1541. #endif //PRUSA_M28
  1542. /**
  1543. * Output autoreport values according to features requested in M155
  1544. */
  1545. #if defined(AUTO_REPORT)
  1546. static void host_autoreport()
  1547. {
  1548. if (autoReportFeatures.TimerExpired())
  1549. {
  1550. if(autoReportFeatures.Temp()){
  1551. gcode_M105(active_extruder);
  1552. }
  1553. if(autoReportFeatures.Pos()){
  1554. gcode_M114();
  1555. }
  1556. #if defined(AUTO_REPORT) && (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  1557. if(autoReportFeatures.Fans()){
  1558. gcode_M123();
  1559. }
  1560. #endif //AUTO_REPORT and (FANCHECK and TACH_0 or TACH_1)
  1561. autoReportFeatures.TimerStart();
  1562. }
  1563. }
  1564. #endif //AUTO_REPORT
  1565. /**
  1566. * Output a "busy" message at regular intervals
  1567. * while the machine is not accepting commands.
  1568. */
  1569. void host_keepalive() {
  1570. #ifndef HOST_KEEPALIVE_FEATURE
  1571. return;
  1572. #endif //HOST_KEEPALIVE_FEATURE
  1573. if (farm_mode) return;
  1574. long ms = _millis();
  1575. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1576. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1577. switch (busy_state) {
  1578. case IN_HANDLER:
  1579. case IN_PROCESS:
  1580. SERIAL_ECHO_START;
  1581. SERIAL_ECHOLNPGM("busy: processing");
  1582. break;
  1583. case PAUSED_FOR_USER:
  1584. SERIAL_ECHO_START;
  1585. SERIAL_ECHOLNPGM("busy: paused for user");
  1586. break;
  1587. case PAUSED_FOR_INPUT:
  1588. SERIAL_ECHO_START;
  1589. SERIAL_ECHOLNPGM("busy: paused for input");
  1590. break;
  1591. default:
  1592. break;
  1593. }
  1594. }
  1595. prev_busy_signal_ms = ms;
  1596. }
  1597. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1598. // Before loop(), the setup() function is called by the main() routine.
  1599. void loop()
  1600. {
  1601. KEEPALIVE_STATE(NOT_BUSY);
  1602. if ((usb_printing_counter > 0) && _usb_timer.expired(1000))
  1603. {
  1604. is_usb_printing = true;
  1605. usb_printing_counter--;
  1606. _usb_timer.start(); // reset timer
  1607. }
  1608. if (usb_printing_counter == 0)
  1609. {
  1610. is_usb_printing = false;
  1611. }
  1612. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1613. {
  1614. is_usb_printing = true;
  1615. }
  1616. #ifdef FANCHECK
  1617. if (fan_check_error && isPrintPaused && !IS_SD_PRINTING) {
  1618. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1619. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1620. }
  1621. #endif
  1622. #ifdef PRUSA_M28
  1623. if (prusa_sd_card_upload)
  1624. {
  1625. //we read byte-by byte
  1626. serial_read_stream();
  1627. }
  1628. else
  1629. #endif
  1630. {
  1631. get_command();
  1632. #ifdef SDSUPPORT
  1633. card.checkautostart(false);
  1634. #endif
  1635. if(buflen)
  1636. {
  1637. cmdbuffer_front_already_processed = false;
  1638. #ifdef SDSUPPORT
  1639. if(card.saving)
  1640. {
  1641. // Saving a G-code file onto an SD-card is in progress.
  1642. // Saving starts with M28, saving until M29 is seen.
  1643. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1644. card.write_command(CMDBUFFER_CURRENT_STRING);
  1645. if(card.logging)
  1646. process_commands();
  1647. else
  1648. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1649. } else {
  1650. card.closefile();
  1651. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1652. }
  1653. } else {
  1654. process_commands();
  1655. }
  1656. #else
  1657. process_commands();
  1658. #endif //SDSUPPORT
  1659. if (! cmdbuffer_front_already_processed && buflen)
  1660. {
  1661. // ptr points to the start of the block currently being processed.
  1662. // The first character in the block is the block type.
  1663. char *ptr = cmdbuffer + bufindr;
  1664. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1665. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1666. union {
  1667. struct {
  1668. char lo;
  1669. char hi;
  1670. } lohi;
  1671. uint16_t value;
  1672. } sdlen;
  1673. sdlen.value = 0;
  1674. {
  1675. // This block locks the interrupts globally for 3.25 us,
  1676. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1677. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1678. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1679. cli();
  1680. // Reset the command to something, which will be ignored by the power panic routine,
  1681. // so this buffer length will not be counted twice.
  1682. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1683. // Extract the current buffer length.
  1684. sdlen.lohi.lo = *ptr ++;
  1685. sdlen.lohi.hi = *ptr;
  1686. // and pass it to the planner queue.
  1687. planner_add_sd_length(sdlen.value);
  1688. sei();
  1689. }
  1690. }
  1691. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1692. cli();
  1693. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1694. // and one for each command to previous block in the planner queue.
  1695. planner_add_sd_length(1);
  1696. sei();
  1697. }
  1698. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1699. // this block's SD card length will not be counted twice as its command type has been replaced
  1700. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1701. cmdqueue_pop_front();
  1702. }
  1703. host_keepalive();
  1704. }
  1705. }
  1706. //check heater every n milliseconds
  1707. manage_heater();
  1708. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1709. checkHitEndstops();
  1710. lcd_update(0);
  1711. #ifdef TMC2130
  1712. tmc2130_check_overtemp();
  1713. if (tmc2130_sg_crash)
  1714. {
  1715. uint8_t crash = tmc2130_sg_crash;
  1716. tmc2130_sg_crash = 0;
  1717. // crashdet_stop_and_save_print();
  1718. switch (crash)
  1719. {
  1720. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1721. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1722. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1723. }
  1724. }
  1725. #endif //TMC2130
  1726. mmu_loop();
  1727. }
  1728. #define DEFINE_PGM_READ_ANY(type, reader) \
  1729. static inline type pgm_read_any(const type *p) \
  1730. { return pgm_read_##reader##_near(p); }
  1731. DEFINE_PGM_READ_ANY(float, float);
  1732. DEFINE_PGM_READ_ANY(signed char, byte);
  1733. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1734. static const PROGMEM type array##_P[3] = \
  1735. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1736. static inline type array(uint8_t axis) \
  1737. { return pgm_read_any(&array##_P[axis]); } \
  1738. type array##_ext(uint8_t axis) \
  1739. { return pgm_read_any(&array##_P[axis]); }
  1740. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1741. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1742. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1743. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1744. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1745. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1746. static void axis_is_at_home(uint8_t axis) {
  1747. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1748. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1749. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1750. }
  1751. //! @return original feedmultiply
  1752. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1753. saved_feedrate = feedrate;
  1754. int l_feedmultiply = feedmultiply;
  1755. feedmultiply = 100;
  1756. previous_millis_cmd.start();
  1757. enable_endstops(enable_endstops_now);
  1758. return l_feedmultiply;
  1759. }
  1760. //! @param original_feedmultiply feedmultiply to restore
  1761. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1762. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1763. enable_endstops(false);
  1764. #endif
  1765. feedrate = saved_feedrate;
  1766. feedmultiply = original_feedmultiply;
  1767. previous_millis_cmd.start();
  1768. }
  1769. #ifdef ENABLE_AUTO_BED_LEVELING
  1770. #ifdef AUTO_BED_LEVELING_GRID
  1771. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1772. {
  1773. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1774. planeNormal.debug("planeNormal");
  1775. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1776. //bedLevel.debug("bedLevel");
  1777. //plan_bed_level_matrix.debug("bed level before");
  1778. //vector_3 uncorrected_position = plan_get_position_mm();
  1779. //uncorrected_position.debug("position before");
  1780. vector_3 corrected_position = plan_get_position();
  1781. // corrected_position.debug("position after");
  1782. current_position[X_AXIS] = corrected_position.x;
  1783. current_position[Y_AXIS] = corrected_position.y;
  1784. current_position[Z_AXIS] = corrected_position.z;
  1785. // put the bed at 0 so we don't go below it.
  1786. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1787. plan_set_position_curposXYZE();
  1788. }
  1789. #else // not AUTO_BED_LEVELING_GRID
  1790. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1791. plan_bed_level_matrix.set_to_identity();
  1792. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1793. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1794. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1795. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1796. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1797. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1798. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1799. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1800. vector_3 corrected_position = plan_get_position();
  1801. current_position[X_AXIS] = corrected_position.x;
  1802. current_position[Y_AXIS] = corrected_position.y;
  1803. current_position[Z_AXIS] = corrected_position.z;
  1804. // put the bed at 0 so we don't go below it.
  1805. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1806. plan_set_position_curposXYZE();
  1807. }
  1808. #endif // AUTO_BED_LEVELING_GRID
  1809. static void run_z_probe() {
  1810. plan_bed_level_matrix.set_to_identity();
  1811. feedrate = homing_feedrate[Z_AXIS];
  1812. // move down until you find the bed
  1813. float zPosition = -10;
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1815. st_synchronize();
  1816. // we have to let the planner know where we are right now as it is not where we said to go.
  1817. zPosition = st_get_position_mm(Z_AXIS);
  1818. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1819. // move up the retract distance
  1820. zPosition += home_retract_mm(Z_AXIS);
  1821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1822. st_synchronize();
  1823. // move back down slowly to find bed
  1824. feedrate = homing_feedrate[Z_AXIS]/4;
  1825. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1827. st_synchronize();
  1828. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1829. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1830. plan_set_position_curposXYZE();
  1831. }
  1832. static void do_blocking_move_to(float x, float y, float z) {
  1833. float oldFeedRate = feedrate;
  1834. feedrate = homing_feedrate[Z_AXIS];
  1835. current_position[Z_AXIS] = z;
  1836. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. feedrate = XY_TRAVEL_SPEED;
  1839. current_position[X_AXIS] = x;
  1840. current_position[Y_AXIS] = y;
  1841. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1842. st_synchronize();
  1843. feedrate = oldFeedRate;
  1844. }
  1845. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1846. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1847. }
  1848. /// Probe bed height at position (x,y), returns the measured z value
  1849. static float probe_pt(float x, float y, float z_before) {
  1850. // move to right place
  1851. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1852. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1853. run_z_probe();
  1854. float measured_z = current_position[Z_AXIS];
  1855. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1856. SERIAL_PROTOCOLPGM(" x: ");
  1857. SERIAL_PROTOCOL(x);
  1858. SERIAL_PROTOCOLPGM(" y: ");
  1859. SERIAL_PROTOCOL(y);
  1860. SERIAL_PROTOCOLPGM(" z: ");
  1861. SERIAL_PROTOCOL(measured_z);
  1862. SERIAL_PROTOCOLPGM("\n");
  1863. return measured_z;
  1864. }
  1865. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1866. #ifdef LIN_ADVANCE
  1867. /**
  1868. * M900: Set and/or Get advance K factor
  1869. *
  1870. * K<factor> Set advance K factor
  1871. */
  1872. inline void gcode_M900() {
  1873. float newK = code_seen('K') ? code_value_float() : -2;
  1874. #ifdef LA_NOCOMPAT
  1875. if (newK >= 0 && newK < LA_K_MAX)
  1876. extruder_advance_K = newK;
  1877. else
  1878. SERIAL_ECHOLNPGM("K out of allowed range!");
  1879. #else
  1880. if (newK == 0)
  1881. {
  1882. extruder_advance_K = 0;
  1883. la10c_reset();
  1884. }
  1885. else
  1886. {
  1887. newK = la10c_value(newK);
  1888. if (newK < 0)
  1889. SERIAL_ECHOLNPGM("K out of allowed range!");
  1890. else
  1891. extruder_advance_K = newK;
  1892. }
  1893. #endif
  1894. SERIAL_ECHO_START;
  1895. SERIAL_ECHOPGM("Advance K=");
  1896. SERIAL_ECHOLN(extruder_advance_K);
  1897. }
  1898. #endif // LIN_ADVANCE
  1899. bool check_commands() {
  1900. bool end_command_found = false;
  1901. while (buflen)
  1902. {
  1903. if ((code_seen_P(PSTR("M84"))) || (code_seen_P(PSTR("M 84")))) end_command_found = true;
  1904. if (!cmdbuffer_front_already_processed)
  1905. cmdqueue_pop_front();
  1906. cmdbuffer_front_already_processed = false;
  1907. }
  1908. return end_command_found;
  1909. }
  1910. // raise_z_above: slowly raise Z to the requested height
  1911. //
  1912. // contrarily to a simple move, this function will carefully plan a move
  1913. // when the current Z position is unknown. In such cases, stallguard is
  1914. // enabled and will prevent prolonged pushing against the Z tops
  1915. void raise_z_above(float target, bool plan)
  1916. {
  1917. if (current_position[Z_AXIS] >= target)
  1918. return;
  1919. // Z needs raising
  1920. current_position[Z_AXIS] = target;
  1921. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1922. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1923. #else
  1924. bool z_min_endstop = false;
  1925. #endif
  1926. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1927. {
  1928. // current position is known or very low, it's safe to raise Z
  1929. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1930. return;
  1931. }
  1932. // ensure Z is powered in normal mode to overcome initial load
  1933. enable_z();
  1934. st_synchronize();
  1935. // rely on crashguard to limit damage
  1936. bool z_endstop_enabled = enable_z_endstop(true);
  1937. #ifdef TMC2130
  1938. tmc2130_home_enter(Z_AXIS_MASK);
  1939. #endif //TMC2130
  1940. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1941. st_synchronize();
  1942. #ifdef TMC2130
  1943. if (endstop_z_hit_on_purpose())
  1944. {
  1945. // not necessarily exact, but will avoid further vertical moves
  1946. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1947. plan_set_position_curposXYZE();
  1948. }
  1949. tmc2130_home_exit();
  1950. #endif //TMC2130
  1951. enable_z_endstop(z_endstop_enabled);
  1952. }
  1953. #ifdef TMC2130
  1954. bool calibrate_z_auto()
  1955. {
  1956. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1957. lcd_clear();
  1958. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1959. bool endstops_enabled = enable_endstops(true);
  1960. int axis_up_dir = -home_dir(Z_AXIS);
  1961. tmc2130_home_enter(Z_AXIS_MASK);
  1962. current_position[Z_AXIS] = 0;
  1963. plan_set_position_curposXYZE();
  1964. set_destination_to_current();
  1965. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1966. feedrate = homing_feedrate[Z_AXIS];
  1967. plan_buffer_line_destinationXYZE(feedrate / 60);
  1968. st_synchronize();
  1969. // current_position[axis] = 0;
  1970. // plan_set_position_curposXYZE();
  1971. tmc2130_home_exit();
  1972. enable_endstops(false);
  1973. current_position[Z_AXIS] = 0;
  1974. plan_set_position_curposXYZE();
  1975. set_destination_to_current();
  1976. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1977. feedrate = homing_feedrate[Z_AXIS] / 2;
  1978. plan_buffer_line_destinationXYZE(feedrate / 60);
  1979. st_synchronize();
  1980. enable_endstops(endstops_enabled);
  1981. if (PRINTER_TYPE == PRINTER_MK3) {
  1982. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1983. }
  1984. else {
  1985. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1986. }
  1987. plan_set_position_curposXYZE();
  1988. return true;
  1989. }
  1990. #endif //TMC2130
  1991. #ifdef TMC2130
  1992. static void check_Z_crash(void)
  1993. {
  1994. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1995. FORCE_HIGH_POWER_END;
  1996. current_position[Z_AXIS] = 0;
  1997. plan_set_position_curposXYZE();
  1998. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1999. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  2000. st_synchronize();
  2001. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2002. }
  2003. }
  2004. #endif //TMC2130
  2005. #ifdef TMC2130
  2006. void homeaxis(uint8_t axis, uint8_t cnt, uint8_t* pstep)
  2007. #else
  2008. void homeaxis(uint8_t axis, uint8_t cnt)
  2009. #endif //TMC2130
  2010. {
  2011. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  2012. #define HOMEAXIS_DO(LETTER) \
  2013. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2014. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  2015. {
  2016. int axis_home_dir = home_dir(axis);
  2017. feedrate = homing_feedrate[axis];
  2018. #ifdef TMC2130
  2019. tmc2130_home_enter(X_AXIS_MASK << axis);
  2020. #endif //TMC2130
  2021. // Move away a bit, so that the print head does not touch the end position,
  2022. // and the following movement to endstop has a chance to achieve the required velocity
  2023. // for the stall guard to work.
  2024. current_position[axis] = 0;
  2025. plan_set_position_curposXYZE();
  2026. set_destination_to_current();
  2027. // destination[axis] = 11.f;
  2028. destination[axis] = -3.f * axis_home_dir;
  2029. plan_buffer_line_destinationXYZE(feedrate/60);
  2030. st_synchronize();
  2031. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  2032. endstops_hit_on_purpose();
  2033. enable_endstops(false);
  2034. current_position[axis] = 0;
  2035. plan_set_position_curposXYZE();
  2036. destination[axis] = 1. * axis_home_dir;
  2037. plan_buffer_line_destinationXYZE(feedrate/60);
  2038. st_synchronize();
  2039. // Now continue to move up to the left end stop with the collision detection enabled.
  2040. enable_endstops(true);
  2041. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  2042. plan_buffer_line_destinationXYZE(feedrate/60);
  2043. st_synchronize();
  2044. for (uint8_t i = 0; i < cnt; i++)
  2045. {
  2046. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  2047. endstops_hit_on_purpose();
  2048. enable_endstops(false);
  2049. current_position[axis] = 0;
  2050. plan_set_position_curposXYZE();
  2051. destination[axis] = -10.f * axis_home_dir;
  2052. plan_buffer_line_destinationXYZE(feedrate/60);
  2053. st_synchronize();
  2054. endstops_hit_on_purpose();
  2055. // Now move left up to the collision, this time with a repeatable velocity.
  2056. enable_endstops(true);
  2057. destination[axis] = 11.f * axis_home_dir;
  2058. #ifdef TMC2130
  2059. feedrate = homing_feedrate[axis];
  2060. #else //TMC2130
  2061. feedrate = homing_feedrate[axis] / 2;
  2062. #endif //TMC2130
  2063. plan_buffer_line_destinationXYZE(feedrate/60);
  2064. st_synchronize();
  2065. #ifdef TMC2130
  2066. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2067. if (pstep) pstep[i] = mscnt >> 4;
  2068. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2069. #endif //TMC2130
  2070. }
  2071. endstops_hit_on_purpose();
  2072. enable_endstops(false);
  2073. #ifdef TMC2130
  2074. uint8_t orig = tmc2130_home_origin[axis];
  2075. uint8_t back = tmc2130_home_bsteps[axis];
  2076. if (tmc2130_home_enabled && (orig <= 63))
  2077. {
  2078. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2079. if (back > 0)
  2080. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  2081. }
  2082. else
  2083. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  2084. tmc2130_home_exit();
  2085. #endif //TMC2130
  2086. axis_is_at_home(axis);
  2087. axis_known_position[axis] = true;
  2088. // Move from minimum
  2089. #ifdef TMC2130
  2090. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  2091. #else //TMC2130
  2092. float dist = - axis_home_dir * 0.01f * 64;
  2093. #endif //TMC2130
  2094. current_position[axis] -= dist;
  2095. plan_set_position_curposXYZE();
  2096. current_position[axis] += dist;
  2097. destination[axis] = current_position[axis];
  2098. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  2099. st_synchronize();
  2100. feedrate = 0.0;
  2101. }
  2102. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2103. {
  2104. #ifdef TMC2130
  2105. FORCE_HIGH_POWER_START;
  2106. #endif
  2107. int axis_home_dir = home_dir(axis);
  2108. current_position[axis] = 0;
  2109. plan_set_position_curposXYZE();
  2110. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2111. feedrate = homing_feedrate[axis];
  2112. plan_buffer_line_destinationXYZE(feedrate/60);
  2113. st_synchronize();
  2114. #ifdef TMC2130
  2115. check_Z_crash();
  2116. #endif //TMC2130
  2117. current_position[axis] = 0;
  2118. plan_set_position_curposXYZE();
  2119. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2120. plan_buffer_line_destinationXYZE(feedrate/60);
  2121. st_synchronize();
  2122. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2123. feedrate = homing_feedrate[axis]/2 ;
  2124. plan_buffer_line_destinationXYZE(feedrate/60);
  2125. st_synchronize();
  2126. #ifdef TMC2130
  2127. check_Z_crash();
  2128. #endif //TMC2130
  2129. axis_is_at_home(axis);
  2130. destination[axis] = current_position[axis];
  2131. feedrate = 0.0;
  2132. endstops_hit_on_purpose();
  2133. axis_known_position[axis] = true;
  2134. #ifdef TMC2130
  2135. FORCE_HIGH_POWER_END;
  2136. #endif
  2137. }
  2138. enable_endstops(endstops_enabled);
  2139. }
  2140. /**/
  2141. void home_xy()
  2142. {
  2143. set_destination_to_current();
  2144. homeaxis(X_AXIS);
  2145. homeaxis(Y_AXIS);
  2146. plan_set_position_curposXYZE();
  2147. endstops_hit_on_purpose();
  2148. }
  2149. void refresh_cmd_timeout(void)
  2150. {
  2151. previous_millis_cmd.start();
  2152. }
  2153. #ifdef FWRETRACT
  2154. void retract(bool retracting, bool swapretract = false) {
  2155. // Perform FW retraction, just if needed, but behave as if the move has never took place in
  2156. // order to keep E/Z coordinates unchanged. This is done by manipulating the internal planner
  2157. // position, which requires a sync
  2158. if(retracting && !retracted[active_extruder]) {
  2159. st_synchronize();
  2160. set_destination_to_current();
  2161. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2162. plan_set_e_position(current_position[E_AXIS]);
  2163. float oldFeedrate = feedrate;
  2164. feedrate=cs.retract_feedrate*60;
  2165. retracted[active_extruder]=true;
  2166. prepare_move();
  2167. if(cs.retract_zlift) {
  2168. st_synchronize();
  2169. current_position[Z_AXIS]-=cs.retract_zlift;
  2170. plan_set_position_curposXYZE();
  2171. prepare_move();
  2172. }
  2173. feedrate = oldFeedrate;
  2174. } else if(!retracting && retracted[active_extruder]) {
  2175. st_synchronize();
  2176. set_destination_to_current();
  2177. float oldFeedrate = feedrate;
  2178. feedrate=cs.retract_recover_feedrate*60;
  2179. if(cs.retract_zlift) {
  2180. current_position[Z_AXIS]+=cs.retract_zlift;
  2181. plan_set_position_curposXYZE();
  2182. prepare_move();
  2183. st_synchronize();
  2184. }
  2185. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2186. plan_set_e_position(current_position[E_AXIS]);
  2187. retracted[active_extruder]=false;
  2188. prepare_move();
  2189. feedrate = oldFeedrate;
  2190. }
  2191. } //retract
  2192. #endif //FWRETRACT
  2193. #ifdef PRUSA_M28
  2194. void trace() {
  2195. Sound_MakeCustom(25,440,true);
  2196. }
  2197. #endif
  2198. /*
  2199. void ramming() {
  2200. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2201. if (current_temperature[0] < 230) {
  2202. //PLA
  2203. max_feedrate[E_AXIS] = 50;
  2204. //current_position[E_AXIS] -= 8;
  2205. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2206. //current_position[E_AXIS] += 8;
  2207. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2208. current_position[E_AXIS] += 5.4;
  2209. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2210. current_position[E_AXIS] += 3.2;
  2211. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2212. current_position[E_AXIS] += 3;
  2213. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2214. st_synchronize();
  2215. max_feedrate[E_AXIS] = 80;
  2216. current_position[E_AXIS] -= 82;
  2217. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2218. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2219. current_position[E_AXIS] -= 20;
  2220. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2221. current_position[E_AXIS] += 5;
  2222. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2223. current_position[E_AXIS] += 5;
  2224. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2225. current_position[E_AXIS] -= 10;
  2226. st_synchronize();
  2227. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2228. current_position[E_AXIS] += 10;
  2229. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2230. current_position[E_AXIS] -= 10;
  2231. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2232. current_position[E_AXIS] += 10;
  2233. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2234. current_position[E_AXIS] -= 10;
  2235. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2236. st_synchronize();
  2237. }
  2238. else {
  2239. //ABS
  2240. max_feedrate[E_AXIS] = 50;
  2241. //current_position[E_AXIS] -= 8;
  2242. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2243. //current_position[E_AXIS] += 8;
  2244. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2245. current_position[E_AXIS] += 3.1;
  2246. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2247. current_position[E_AXIS] += 3.1;
  2248. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2249. current_position[E_AXIS] += 4;
  2250. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2251. st_synchronize();
  2252. //current_position[X_AXIS] += 23; //delay
  2253. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2254. //current_position[X_AXIS] -= 23; //delay
  2255. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2256. _delay(4700);
  2257. max_feedrate[E_AXIS] = 80;
  2258. current_position[E_AXIS] -= 92;
  2259. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2260. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2261. current_position[E_AXIS] -= 5;
  2262. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2263. current_position[E_AXIS] += 5;
  2264. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2265. current_position[E_AXIS] -= 5;
  2266. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2267. st_synchronize();
  2268. current_position[E_AXIS] += 5;
  2269. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2270. current_position[E_AXIS] -= 5;
  2271. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2272. current_position[E_AXIS] += 5;
  2273. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2274. current_position[E_AXIS] -= 5;
  2275. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2276. st_synchronize();
  2277. }
  2278. }
  2279. */
  2280. #ifdef TMC2130
  2281. void force_high_power_mode(bool start_high_power_section) {
  2282. #ifdef PSU_Delta
  2283. if (start_high_power_section == true) enable_force_z();
  2284. #endif //PSU_Delta
  2285. uint8_t silent;
  2286. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2287. if (silent == 1) {
  2288. //we are in silent mode, set to normal mode to enable crash detection
  2289. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2290. st_synchronize();
  2291. cli();
  2292. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2293. update_mode_profile();
  2294. tmc2130_init(TMCInitParams(FarmOrUserECool()));
  2295. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2296. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2297. st_reset_timer();
  2298. sei();
  2299. }
  2300. }
  2301. #endif //TMC2130
  2302. void gcode_M105(uint8_t extruder)
  2303. {
  2304. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2305. SERIAL_PROTOCOLPGM("T:");
  2306. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  2307. SERIAL_PROTOCOLPGM(" /");
  2308. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  2309. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2310. SERIAL_PROTOCOLPGM(" B:");
  2311. SERIAL_PROTOCOL_F(degBed(),1);
  2312. SERIAL_PROTOCOLPGM(" /");
  2313. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2314. #endif //TEMP_BED_PIN
  2315. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2316. SERIAL_PROTOCOLPGM(" T");
  2317. SERIAL_PROTOCOL(cur_extruder);
  2318. SERIAL_PROTOCOL(':');
  2319. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2320. SERIAL_PROTOCOLPGM(" /");
  2321. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2322. }
  2323. #else
  2324. SERIAL_ERROR_START;
  2325. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  2326. #endif
  2327. SERIAL_PROTOCOLPGM(" @:");
  2328. #ifdef EXTRUDER_WATTS
  2329. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2330. SERIAL_PROTOCOLPGM("W");
  2331. #else
  2332. SERIAL_PROTOCOL(getHeaterPower(extruder));
  2333. #endif
  2334. SERIAL_PROTOCOLPGM(" B@:");
  2335. #ifdef BED_WATTS
  2336. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2337. SERIAL_PROTOCOLPGM("W");
  2338. #else
  2339. SERIAL_PROTOCOL(getHeaterPower(-1));
  2340. #endif
  2341. #ifdef PINDA_THERMISTOR
  2342. SERIAL_PROTOCOLPGM(" P:");
  2343. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  2344. #endif //PINDA_THERMISTOR
  2345. #ifdef AMBIENT_THERMISTOR
  2346. SERIAL_PROTOCOLPGM(" A:");
  2347. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  2348. #endif //AMBIENT_THERMISTOR
  2349. #ifdef SHOW_TEMP_ADC_VALUES
  2350. {
  2351. float raw = 0.0;
  2352. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2353. SERIAL_PROTOCOLPGM(" ADC B:");
  2354. SERIAL_PROTOCOL_F(degBed(),1);
  2355. SERIAL_PROTOCOLPGM("C->");
  2356. raw = rawBedTemp();
  2357. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2358. SERIAL_PROTOCOLPGM(" Rb->");
  2359. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2360. SERIAL_PROTOCOLPGM(" Rxb->");
  2361. SERIAL_PROTOCOL_F(raw, 5);
  2362. #endif
  2363. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2364. SERIAL_PROTOCOLPGM(" T");
  2365. SERIAL_PROTOCOL(cur_extruder);
  2366. SERIAL_PROTOCOLPGM(":");
  2367. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2368. SERIAL_PROTOCOLPGM("C->");
  2369. raw = rawHotendTemp(cur_extruder);
  2370. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2371. SERIAL_PROTOCOLPGM(" Rt");
  2372. SERIAL_PROTOCOL(cur_extruder);
  2373. SERIAL_PROTOCOLPGM("->");
  2374. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2375. SERIAL_PROTOCOLPGM(" Rx");
  2376. SERIAL_PROTOCOL(cur_extruder);
  2377. SERIAL_PROTOCOLPGM("->");
  2378. SERIAL_PROTOCOL_F(raw, 5);
  2379. }
  2380. }
  2381. #endif
  2382. SERIAL_PROTOCOLLN();
  2383. }
  2384. #ifdef TMC2130
  2385. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2386. #else
  2387. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2388. #endif //TMC2130
  2389. {
  2390. // Flag for the display update routine and to disable the print cancelation during homing.
  2391. st_synchronize();
  2392. homing_flag = true;
  2393. #if 0
  2394. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2395. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2396. #endif
  2397. // Which axes should be homed?
  2398. bool home_x = home_x_axis;
  2399. bool home_y = home_y_axis;
  2400. bool home_z = home_z_axis;
  2401. // Either all X,Y,Z codes are present, or none of them.
  2402. bool home_all_axes = home_x == home_y && home_x == home_z;
  2403. if (home_all_axes)
  2404. // No X/Y/Z code provided means to home all axes.
  2405. home_x = home_y = home_z = true;
  2406. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2407. if (home_all_axes) {
  2408. raise_z_above(MESH_HOME_Z_SEARCH);
  2409. st_synchronize();
  2410. }
  2411. #ifdef ENABLE_AUTO_BED_LEVELING
  2412. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2413. #endif //ENABLE_AUTO_BED_LEVELING
  2414. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2415. // the planner will not perform any adjustments in the XY plane.
  2416. // Wait for the motors to stop and update the current position with the absolute values.
  2417. world2machine_revert_to_uncorrected();
  2418. // For mesh bed leveling deactivate the matrix temporarily.
  2419. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2420. // in a single axis only.
  2421. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2422. #ifdef MESH_BED_LEVELING
  2423. uint8_t mbl_was_active = mbl.active;
  2424. mbl.active = 0;
  2425. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2426. #endif
  2427. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2428. if (home_z)
  2429. babystep_undo();
  2430. int l_feedmultiply = setup_for_endstop_move();
  2431. set_destination_to_current();
  2432. feedrate = 0.0;
  2433. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2434. if(home_z)
  2435. homeaxis(Z_AXIS);
  2436. #endif
  2437. #ifdef QUICK_HOME
  2438. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2439. if(home_x && home_y) //first diagonal move
  2440. {
  2441. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2442. uint8_t x_axis_home_dir = home_dir(X_AXIS);
  2443. plan_set_position_curposXYZE();
  2444. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2445. feedrate = homing_feedrate[X_AXIS];
  2446. if(homing_feedrate[Y_AXIS]<feedrate)
  2447. feedrate = homing_feedrate[Y_AXIS];
  2448. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2449. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2450. } else {
  2451. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2452. }
  2453. plan_buffer_line_destinationXYZE(feedrate/60);
  2454. st_synchronize();
  2455. axis_is_at_home(X_AXIS);
  2456. axis_is_at_home(Y_AXIS);
  2457. plan_set_position_curposXYZE();
  2458. destination[X_AXIS] = current_position[X_AXIS];
  2459. destination[Y_AXIS] = current_position[Y_AXIS];
  2460. plan_buffer_line_destinationXYZE(feedrate/60);
  2461. feedrate = 0.0;
  2462. st_synchronize();
  2463. endstops_hit_on_purpose();
  2464. current_position[X_AXIS] = destination[X_AXIS];
  2465. current_position[Y_AXIS] = destination[Y_AXIS];
  2466. current_position[Z_AXIS] = destination[Z_AXIS];
  2467. }
  2468. #endif /* QUICK_HOME */
  2469. #ifdef TMC2130
  2470. if(home_x)
  2471. {
  2472. if (!calib)
  2473. homeaxis(X_AXIS);
  2474. else
  2475. tmc2130_home_calibrate(X_AXIS);
  2476. }
  2477. if(home_y)
  2478. {
  2479. if (!calib)
  2480. homeaxis(Y_AXIS);
  2481. else
  2482. tmc2130_home_calibrate(Y_AXIS);
  2483. }
  2484. #else //TMC2130
  2485. if(home_x) homeaxis(X_AXIS);
  2486. if(home_y) homeaxis(Y_AXIS);
  2487. #endif //TMC2130
  2488. if(home_x_axis && home_x_value != 0)
  2489. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2490. if(home_y_axis && home_y_value != 0)
  2491. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2492. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2493. #ifndef Z_SAFE_HOMING
  2494. if(home_z) {
  2495. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2496. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2497. st_synchronize();
  2498. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2499. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2500. raise_z_above(MESH_HOME_Z_SEARCH);
  2501. st_synchronize();
  2502. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2503. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2504. // 1st mesh bed leveling measurement point, corrected.
  2505. world2machine_initialize();
  2506. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2507. world2machine_reset();
  2508. if (destination[Y_AXIS] < Y_MIN_POS)
  2509. destination[Y_AXIS] = Y_MIN_POS;
  2510. feedrate = homing_feedrate[X_AXIS] / 20;
  2511. enable_endstops(false);
  2512. #ifdef DEBUG_BUILD
  2513. SERIAL_ECHOLNPGM("plan_set_position()");
  2514. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2515. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2516. #endif
  2517. plan_set_position_curposXYZE();
  2518. #ifdef DEBUG_BUILD
  2519. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2520. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2521. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2522. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2523. #endif
  2524. plan_buffer_line_destinationXYZE(feedrate);
  2525. st_synchronize();
  2526. current_position[X_AXIS] = destination[X_AXIS];
  2527. current_position[Y_AXIS] = destination[Y_AXIS];
  2528. enable_endstops(true);
  2529. endstops_hit_on_purpose();
  2530. homeaxis(Z_AXIS);
  2531. #else // MESH_BED_LEVELING
  2532. homeaxis(Z_AXIS);
  2533. #endif // MESH_BED_LEVELING
  2534. }
  2535. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2536. if(home_all_axes) {
  2537. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2538. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2539. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2540. feedrate = XY_TRAVEL_SPEED/60;
  2541. current_position[Z_AXIS] = 0;
  2542. plan_set_position_curposXYZE();
  2543. plan_buffer_line_destinationXYZE(feedrate);
  2544. st_synchronize();
  2545. current_position[X_AXIS] = destination[X_AXIS];
  2546. current_position[Y_AXIS] = destination[Y_AXIS];
  2547. homeaxis(Z_AXIS);
  2548. }
  2549. // Let's see if X and Y are homed and probe is inside bed area.
  2550. if(home_z) {
  2551. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2552. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2553. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2554. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2555. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2556. current_position[Z_AXIS] = 0;
  2557. plan_set_position_curposXYZE();
  2558. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2559. feedrate = max_feedrate[Z_AXIS];
  2560. plan_buffer_line_destinationXYZE(feedrate);
  2561. st_synchronize();
  2562. homeaxis(Z_AXIS);
  2563. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2564. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2565. SERIAL_ECHO_START;
  2566. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2567. } else {
  2568. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2569. SERIAL_ECHO_START;
  2570. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2571. }
  2572. }
  2573. #endif // Z_SAFE_HOMING
  2574. #endif // Z_HOME_DIR < 0
  2575. if(home_z_axis && home_z_value != 0)
  2576. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2577. #ifdef ENABLE_AUTO_BED_LEVELING
  2578. if(home_z)
  2579. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2580. #endif
  2581. // Set the planner and stepper routine positions.
  2582. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2583. // contains the machine coordinates.
  2584. plan_set_position_curposXYZE();
  2585. clean_up_after_endstop_move(l_feedmultiply);
  2586. endstops_hit_on_purpose();
  2587. #ifndef MESH_BED_LEVELING
  2588. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2589. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2590. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2591. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2592. lcd_adjust_z();
  2593. #endif
  2594. // Load the machine correction matrix
  2595. world2machine_initialize();
  2596. // and correct the current_position XY axes to match the transformed coordinate system.
  2597. world2machine_update_current();
  2598. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2599. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2600. {
  2601. if (! home_z && mbl_was_active) {
  2602. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2603. mbl.active = true;
  2604. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2605. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2606. }
  2607. }
  2608. #endif
  2609. if (farm_mode) { prusa_statistics(20); };
  2610. st_synchronize();
  2611. homing_flag = false;
  2612. #if 0
  2613. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2614. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2615. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2616. #endif
  2617. }
  2618. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2619. {
  2620. #ifdef TMC2130
  2621. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2622. #else
  2623. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2624. #endif //TMC2130
  2625. }
  2626. // G80 - Automatic mesh bed leveling
  2627. static void gcode_G80()
  2628. {
  2629. st_synchronize();
  2630. if (waiting_inside_plan_buffer_line_print_aborted)
  2631. return;
  2632. mesh_bed_leveling_flag = true;
  2633. #ifndef PINDA_THERMISTOR
  2634. static bool run = false; // thermistor-less PINDA temperature compensation is running
  2635. #endif // ndef PINDA_THERMISTOR
  2636. #ifdef SUPPORT_VERBOSITY
  2637. int8_t verbosity_level = 0;
  2638. if (code_seen('V')) {
  2639. // Just 'V' without a number counts as V1.
  2640. char c = strchr_pointer[1];
  2641. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2642. }
  2643. #endif //SUPPORT_VERBOSITY
  2644. // Firstly check if we know where we are
  2645. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2646. // We don't know where we are! HOME!
  2647. // Push the commands to the front of the message queue in the reverse order!
  2648. // There shall be always enough space reserved for these commands.
  2649. repeatcommand_front(); // repeat G80 with all its parameters
  2650. enquecommand_front_P(G28W0);
  2651. return;
  2652. }
  2653. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  2654. if (code_seen('N')) {
  2655. nMeasPoints = code_value_uint8();
  2656. if (nMeasPoints != 7) {
  2657. nMeasPoints = 3;
  2658. }
  2659. }
  2660. else {
  2661. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  2662. }
  2663. uint8_t nProbeRetry = 3;
  2664. if (code_seen('R')) {
  2665. nProbeRetry = code_value_uint8();
  2666. if (nProbeRetry > 10) {
  2667. nProbeRetry = 10;
  2668. }
  2669. }
  2670. else {
  2671. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  2672. }
  2673. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  2674. #ifndef PINDA_THERMISTOR
  2675. if (run == false && eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true && target_temperature_bed >= 50)
  2676. {
  2677. temp_compensation_start();
  2678. run = true;
  2679. repeatcommand_front(); // repeat G80 with all its parameters
  2680. enquecommand_front_P(G28W0);
  2681. break;
  2682. }
  2683. run = false;
  2684. #endif //PINDA_THERMISTOR
  2685. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2686. CustomMsg custom_message_type_old = custom_message_type;
  2687. uint8_t custom_message_state_old = custom_message_state;
  2688. custom_message_type = CustomMsg::MeshBedLeveling;
  2689. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  2690. lcd_update(1);
  2691. mbl.reset(); //reset mesh bed leveling
  2692. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2693. babystep_undo();
  2694. // Cycle through all points and probe them
  2695. // First move up. During this first movement, the babystepping will be reverted.
  2696. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2697. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  2698. // The move to the first calibration point.
  2699. current_position[X_AXIS] = BED_X0;
  2700. current_position[Y_AXIS] = BED_Y0;
  2701. #ifdef SUPPORT_VERBOSITY
  2702. if (verbosity_level >= 1)
  2703. {
  2704. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2705. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2706. }
  2707. #else //SUPPORT_VERBOSITY
  2708. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2709. #endif //SUPPORT_VERBOSITY
  2710. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2711. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2712. // Wait until the move is finished.
  2713. st_synchronize();
  2714. if (waiting_inside_plan_buffer_line_print_aborted)
  2715. {
  2716. custom_message_type = custom_message_type_old;
  2717. custom_message_state = custom_message_state_old;
  2718. return;
  2719. }
  2720. uint8_t mesh_point = 0; //index number of calibration point
  2721. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2722. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2723. #ifdef SUPPORT_VERBOSITY
  2724. if (verbosity_level >= 1) {
  2725. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2726. }
  2727. #endif // SUPPORT_VERBOSITY
  2728. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2729. while (mesh_point != nMeasPoints * nMeasPoints) {
  2730. // Get coords of a measuring point.
  2731. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  2732. uint8_t iy = mesh_point / nMeasPoints;
  2733. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  2734. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  2735. custom_message_state--;
  2736. mesh_point++;
  2737. continue; //skip
  2738. }*/
  2739. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  2740. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  2741. {
  2742. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  2743. }
  2744. float z0 = 0.f;
  2745. if (has_z && (mesh_point > 0)) {
  2746. uint16_t z_offset_u = 0;
  2747. if (nMeasPoints == 7) {
  2748. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  2749. }
  2750. else {
  2751. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2752. }
  2753. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2754. #ifdef SUPPORT_VERBOSITY
  2755. if (verbosity_level >= 1) {
  2756. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  2757. }
  2758. #endif // SUPPORT_VERBOSITY
  2759. }
  2760. // Move Z up to MESH_HOME_Z_SEARCH.
  2761. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2762. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  2763. float init_z_bckp = current_position[Z_AXIS];
  2764. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2765. st_synchronize();
  2766. // Move to XY position of the sensor point.
  2767. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  2768. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  2769. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2770. #ifdef SUPPORT_VERBOSITY
  2771. if (verbosity_level >= 1) {
  2772. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2773. SERIAL_PROTOCOL(mesh_point);
  2774. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2775. }
  2776. #else //SUPPORT_VERBOSITY
  2777. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2778. #endif // SUPPORT_VERBOSITY
  2779. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2780. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2781. st_synchronize();
  2782. if (waiting_inside_plan_buffer_line_print_aborted)
  2783. {
  2784. custom_message_type = custom_message_type_old;
  2785. custom_message_state = custom_message_state_old;
  2786. return;
  2787. }
  2788. // Go down until endstop is hit
  2789. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2790. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2791. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2792. break;
  2793. }
  2794. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  2795. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  2796. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2797. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2798. st_synchronize();
  2799. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2800. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2801. break;
  2802. }
  2803. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2804. puts_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken."));
  2805. break;
  2806. }
  2807. }
  2808. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2809. puts_P(PSTR("Bed leveling failed. Sensor triggered too high."));
  2810. break;
  2811. }
  2812. #ifdef SUPPORT_VERBOSITY
  2813. if (verbosity_level >= 10) {
  2814. SERIAL_ECHOPGM("X: ");
  2815. MYSERIAL.print(current_position[X_AXIS], 5);
  2816. SERIAL_ECHOLNPGM("");
  2817. SERIAL_ECHOPGM("Y: ");
  2818. MYSERIAL.print(current_position[Y_AXIS], 5);
  2819. SERIAL_PROTOCOLPGM("\n");
  2820. }
  2821. #endif // SUPPORT_VERBOSITY
  2822. float offset_z = 0;
  2823. #ifdef PINDA_THERMISTOR
  2824. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2825. #endif //PINDA_THERMISTOR
  2826. // #ifdef SUPPORT_VERBOSITY
  2827. /* if (verbosity_level >= 1)
  2828. {
  2829. SERIAL_ECHOPGM("mesh bed leveling: ");
  2830. MYSERIAL.print(current_position[Z_AXIS], 5);
  2831. SERIAL_ECHOPGM(" offset: ");
  2832. MYSERIAL.print(offset_z, 5);
  2833. SERIAL_ECHOLNPGM("");
  2834. }*/
  2835. // #endif // SUPPORT_VERBOSITY
  2836. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2837. custom_message_state--;
  2838. mesh_point++;
  2839. lcd_update(1);
  2840. }
  2841. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2842. #ifdef SUPPORT_VERBOSITY
  2843. if (verbosity_level >= 20) {
  2844. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2845. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2846. MYSERIAL.print(current_position[Z_AXIS], 5);
  2847. }
  2848. #endif // SUPPORT_VERBOSITY
  2849. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2850. st_synchronize();
  2851. if (mesh_point != nMeasPoints * nMeasPoints) {
  2852. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  2853. bool bState;
  2854. do { // repeat until Z-leveling o.k.
  2855. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  2856. #ifdef TMC2130
  2857. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  2858. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  2859. #else // TMC2130
  2860. lcd_wait_for_click_delay(0); // ~ no timeout
  2861. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  2862. #endif // TMC2130
  2863. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  2864. bState=enable_z_endstop(false);
  2865. current_position[Z_AXIS] -= 1;
  2866. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2867. st_synchronize();
  2868. enable_z_endstop(true);
  2869. #ifdef TMC2130
  2870. tmc2130_home_enter(Z_AXIS_MASK);
  2871. #endif // TMC2130
  2872. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2873. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2874. st_synchronize();
  2875. #ifdef TMC2130
  2876. tmc2130_home_exit();
  2877. #endif // TMC2130
  2878. enable_z_endstop(bState);
  2879. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  2880. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  2881. custom_message_type = custom_message_type_old;
  2882. custom_message_state = custom_message_state_old;
  2883. lcd_update_enable(true); // display / status-line recovery
  2884. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  2885. repeatcommand_front(); // re-run (i.e. of "G80")
  2886. return;
  2887. }
  2888. clean_up_after_endstop_move(l_feedmultiply);
  2889. // SERIAL_ECHOLNPGM("clean up finished ");
  2890. #ifndef PINDA_THERMISTOR
  2891. if(eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2892. #endif
  2893. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2894. // SERIAL_ECHOLNPGM("babystep applied");
  2895. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2896. #ifdef SUPPORT_VERBOSITY
  2897. if (verbosity_level >= 1) {
  2898. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2899. }
  2900. #endif // SUPPORT_VERBOSITY
  2901. for (uint8_t i = 0; i < 4; ++i) {
  2902. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2903. long correction = 0;
  2904. if (code_seen(codes[i]))
  2905. correction = code_value_long();
  2906. else if (eeprom_bed_correction_valid) {
  2907. unsigned char *addr = (i < 2) ?
  2908. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2909. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2910. correction = eeprom_read_int8(addr);
  2911. }
  2912. if (correction == 0)
  2913. continue;
  2914. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  2915. SERIAL_ERROR_START;
  2916. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2917. SERIAL_ECHO(correction);
  2918. SERIAL_ECHOLNPGM(" microns");
  2919. }
  2920. else {
  2921. float offset = float(correction) * 0.001f;
  2922. switch (i) {
  2923. case 0:
  2924. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2925. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  2926. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  2927. }
  2928. }
  2929. break;
  2930. case 1:
  2931. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2932. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  2933. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  2934. }
  2935. }
  2936. break;
  2937. case 2:
  2938. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2939. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2940. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  2941. }
  2942. }
  2943. break;
  2944. case 3:
  2945. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2946. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  2947. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  2948. }
  2949. }
  2950. break;
  2951. }
  2952. }
  2953. }
  2954. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2955. if (nMeasPoints == 3) {
  2956. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2957. }
  2958. /*
  2959. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2960. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2961. SERIAL_PROTOCOLPGM(",");
  2962. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2963. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2964. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2965. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2966. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2967. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2968. SERIAL_PROTOCOLPGM(" ");
  2969. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2970. }
  2971. SERIAL_PROTOCOLPGM("\n");
  2972. }
  2973. */
  2974. if (nMeasPoints == 7 && magnet_elimination) {
  2975. mbl_interpolation(nMeasPoints);
  2976. }
  2977. /*
  2978. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2979. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2980. SERIAL_PROTOCOLPGM(",");
  2981. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2982. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2983. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2984. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2985. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2986. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2987. SERIAL_PROTOCOLPGM(" ");
  2988. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2989. }
  2990. SERIAL_PROTOCOLPGM("\n");
  2991. }
  2992. */
  2993. // SERIAL_ECHOLNPGM("Upsample finished");
  2994. mbl.active = 1; //activate mesh bed leveling
  2995. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2996. go_home_with_z_lift();
  2997. // SERIAL_ECHOLNPGM("Go home finished");
  2998. //unretract (after PINDA preheat retraction)
  2999. if ((degHotend(active_extruder) > EXTRUDE_MINTEMP) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  3000. current_position[E_AXIS] += default_retraction;
  3001. plan_buffer_line_curposXYZE(400);
  3002. }
  3003. KEEPALIVE_STATE(NOT_BUSY);
  3004. // Restore custom message state
  3005. lcd_setstatuspgm(MSG_WELCOME);
  3006. custom_message_type = custom_message_type_old;
  3007. custom_message_state = custom_message_state_old;
  3008. lcd_update(2);
  3009. st_synchronize();
  3010. mesh_bed_leveling_flag = false;
  3011. }
  3012. void adjust_bed_reset()
  3013. {
  3014. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  3015. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  3016. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  3017. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  3018. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  3019. }
  3020. //! @brief Calibrate XYZ
  3021. //! @param onlyZ if true, calibrate only Z axis
  3022. //! @param verbosity_level
  3023. //! @retval true Succeeded
  3024. //! @retval false Failed
  3025. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  3026. {
  3027. bool final_result = false;
  3028. #ifdef TMC2130
  3029. FORCE_HIGH_POWER_START;
  3030. #endif // TMC2130
  3031. FORCE_BL_ON_START;
  3032. // Only Z calibration?
  3033. if (!onlyZ)
  3034. {
  3035. setTargetBed(0);
  3036. setAllTargetHotends(0);
  3037. adjust_bed_reset(); //reset bed level correction
  3038. }
  3039. // Disable the default update procedure of the display. We will do a modal dialog.
  3040. lcd_update_enable(false);
  3041. // Let the planner use the uncorrected coordinates.
  3042. mbl.reset();
  3043. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3044. // the planner will not perform any adjustments in the XY plane.
  3045. // Wait for the motors to stop and update the current position with the absolute values.
  3046. world2machine_revert_to_uncorrected();
  3047. // Reset the baby step value applied without moving the axes.
  3048. babystep_reset();
  3049. // Mark all axes as in a need for homing.
  3050. memset(axis_known_position, 0, sizeof(axis_known_position));
  3051. // Home in the XY plane.
  3052. //set_destination_to_current();
  3053. int l_feedmultiply = setup_for_endstop_move();
  3054. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  3055. raise_z_above(MESH_HOME_Z_SEARCH);
  3056. st_synchronize();
  3057. home_xy();
  3058. enable_endstops(false);
  3059. current_position[X_AXIS] += 5;
  3060. current_position[Y_AXIS] += 5;
  3061. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3062. st_synchronize();
  3063. // Let the user move the Z axes up to the end stoppers.
  3064. #ifdef TMC2130
  3065. if (calibrate_z_auto())
  3066. {
  3067. #else //TMC2130
  3068. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  3069. {
  3070. #endif //TMC2130
  3071. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  3072. if(onlyZ){
  3073. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  3074. lcd_puts_at_P(0,3,_n("1/9"));
  3075. }else{
  3076. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  3077. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  3078. lcd_puts_at_P(0,3,_n("1/4"));
  3079. }
  3080. refresh_cmd_timeout();
  3081. #ifndef STEEL_SHEET
  3082. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  3083. {
  3084. lcd_wait_for_cool_down();
  3085. }
  3086. #endif //STEEL_SHEET
  3087. if(!onlyZ)
  3088. {
  3089. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3090. #ifdef STEEL_SHEET
  3091. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3092. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3093. #endif //STEEL_SHEET
  3094. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  3095. KEEPALIVE_STATE(IN_HANDLER);
  3096. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  3097. lcd_puts_at_P(0,3,_n("1/4"));
  3098. }
  3099. bool endstops_enabled = enable_endstops(false);
  3100. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  3101. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3102. st_synchronize();
  3103. // Move the print head close to the bed.
  3104. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3105. enable_endstops(true);
  3106. #ifdef TMC2130
  3107. tmc2130_home_enter(Z_AXIS_MASK);
  3108. #endif //TMC2130
  3109. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3110. st_synchronize();
  3111. #ifdef TMC2130
  3112. tmc2130_home_exit();
  3113. #endif //TMC2130
  3114. enable_endstops(endstops_enabled);
  3115. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  3116. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  3117. {
  3118. if (onlyZ)
  3119. {
  3120. clean_up_after_endstop_move(l_feedmultiply);
  3121. // Z only calibration.
  3122. // Load the machine correction matrix
  3123. world2machine_initialize();
  3124. // and correct the current_position to match the transformed coordinate system.
  3125. world2machine_update_current();
  3126. //FIXME
  3127. bool result = sample_mesh_and_store_reference();
  3128. if (result)
  3129. {
  3130. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3131. {
  3132. // Shipped, the nozzle height has been set already. The user can start printing now.
  3133. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3134. }
  3135. final_result = true;
  3136. // babystep_apply();
  3137. }
  3138. }
  3139. else
  3140. {
  3141. // Reset the baby step value and the baby step applied flag.
  3142. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  3143. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3144. // Complete XYZ calibration.
  3145. uint8_t point_too_far_mask = 0;
  3146. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3147. clean_up_after_endstop_move(l_feedmultiply);
  3148. // Print head up.
  3149. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3150. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3151. st_synchronize();
  3152. //#ifndef NEW_XYZCAL
  3153. if (result >= 0)
  3154. {
  3155. #ifdef HEATBED_V2
  3156. sample_z();
  3157. #else //HEATBED_V2
  3158. point_too_far_mask = 0;
  3159. // Second half: The fine adjustment.
  3160. // Let the planner use the uncorrected coordinates.
  3161. mbl.reset();
  3162. world2machine_reset();
  3163. // Home in the XY plane.
  3164. int l_feedmultiply = setup_for_endstop_move();
  3165. home_xy();
  3166. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3167. clean_up_after_endstop_move(l_feedmultiply);
  3168. // Print head up.
  3169. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3170. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3171. st_synchronize();
  3172. // if (result >= 0) babystep_apply();
  3173. #endif //HEATBED_V2
  3174. }
  3175. //#endif //NEW_XYZCAL
  3176. lcd_update_enable(true);
  3177. lcd_update(2);
  3178. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3179. if (result >= 0)
  3180. {
  3181. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3182. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3183. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  3184. final_result = true;
  3185. }
  3186. }
  3187. #ifdef TMC2130
  3188. tmc2130_home_exit();
  3189. #endif
  3190. }
  3191. else
  3192. {
  3193. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  3194. final_result = false;
  3195. }
  3196. }
  3197. else
  3198. {
  3199. // Timeouted.
  3200. }
  3201. lcd_update_enable(true);
  3202. #ifdef TMC2130
  3203. FORCE_HIGH_POWER_END;
  3204. #endif // TMC2130
  3205. FORCE_BL_ON_END;
  3206. return final_result;
  3207. }
  3208. void gcode_M114()
  3209. {
  3210. SERIAL_PROTOCOLPGM("X:");
  3211. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3212. SERIAL_PROTOCOLPGM(" Y:");
  3213. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3214. SERIAL_PROTOCOLPGM(" Z:");
  3215. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3216. SERIAL_PROTOCOLPGM(" E:");
  3217. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3218. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  3219. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  3220. SERIAL_PROTOCOLPGM(" Y:");
  3221. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  3222. SERIAL_PROTOCOLPGM(" Z:");
  3223. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  3224. SERIAL_PROTOCOLPGM(" E:");
  3225. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  3226. SERIAL_PROTOCOLLN();
  3227. }
  3228. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3229. void gcode_M123()
  3230. {
  3231. printf_P(_N("E0:%d RPM PRN1:%d RPM E0@:%u PRN1@:%d\n"), 60*fan_speed[active_extruder], 60*fan_speed[1], newFanSpeed, fanSpeed);
  3232. }
  3233. #endif //FANCHECK and TACH_0 or TACH_1
  3234. //! extracted code to compute z_shift for M600 in case of filament change operation
  3235. //! requested from fsensors.
  3236. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  3237. //! unlike the previous implementation, which was adding 25mm even when the head was
  3238. //! printing at e.g. 24mm height.
  3239. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  3240. //! the printout.
  3241. //! This function is templated to enable fast change of computation data type.
  3242. //! @return new z_shift value
  3243. template<typename T>
  3244. static T gcode_M600_filament_change_z_shift()
  3245. {
  3246. #ifdef FILAMENTCHANGE_ZADD
  3247. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  3248. // avoid floating point arithmetics when not necessary - results in shorter code
  3249. T z_shift = T(FILAMENTCHANGE_ZADD); // always move above printout
  3250. T ztmp = T( current_position[Z_AXIS] );
  3251. if((ztmp + z_shift) < T(MIN_Z_FOR_SWAP)){
  3252. z_shift = T(MIN_Z_FOR_SWAP) - ztmp; // make sure to be at least 25mm above the heat bed
  3253. }
  3254. return z_shift;
  3255. #else
  3256. return T(0);
  3257. #endif
  3258. }
  3259. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  3260. {
  3261. st_synchronize();
  3262. float lastpos[4];
  3263. if (farm_mode)
  3264. {
  3265. prusa_statistics(22);
  3266. }
  3267. //First backup current position and settings
  3268. int feedmultiplyBckp = feedmultiply;
  3269. float HotendTempBckp = degTargetHotend(active_extruder);
  3270. int fanSpeedBckp = fanSpeed;
  3271. lastpos[X_AXIS] = current_position[X_AXIS];
  3272. lastpos[Y_AXIS] = current_position[Y_AXIS];
  3273. lastpos[Z_AXIS] = current_position[Z_AXIS];
  3274. lastpos[E_AXIS] = current_position[E_AXIS];
  3275. //Retract E
  3276. current_position[E_AXIS] += e_shift;
  3277. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  3278. st_synchronize();
  3279. //Lift Z
  3280. current_position[Z_AXIS] += z_shift;
  3281. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  3282. st_synchronize();
  3283. //Move XY to side
  3284. current_position[X_AXIS] = x_position;
  3285. current_position[Y_AXIS] = y_position;
  3286. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3287. st_synchronize();
  3288. //Beep, manage nozzle heater and wait for user to start unload filament
  3289. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  3290. lcd_change_fil_state = 0;
  3291. // Unload filament
  3292. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  3293. else unload_filament(true); //unload filament for single material (used also in M702)
  3294. //finish moves
  3295. st_synchronize();
  3296. if (!mmu_enabled)
  3297. {
  3298. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3299. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  3300. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  3301. if (lcd_change_fil_state == 0)
  3302. {
  3303. lcd_clear();
  3304. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3305. current_position[X_AXIS] -= 100;
  3306. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3307. st_synchronize();
  3308. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=5
  3309. }
  3310. }
  3311. if (mmu_enabled)
  3312. {
  3313. if (!automatic) {
  3314. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  3315. mmu_M600_wait_and_beep();
  3316. if (saved_printing) {
  3317. lcd_clear();
  3318. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3319. mmu_command(MmuCmd::R0);
  3320. manage_response(false, false);
  3321. }
  3322. }
  3323. mmu_M600_load_filament(automatic, HotendTempBckp);
  3324. }
  3325. else
  3326. M600_load_filament();
  3327. if (!automatic) M600_check_state(HotendTempBckp);
  3328. lcd_update_enable(true);
  3329. //Not let's go back to print
  3330. fanSpeed = fanSpeedBckp;
  3331. //Feed a little of filament to stabilize pressure
  3332. if (!automatic)
  3333. {
  3334. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  3335. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  3336. }
  3337. //Move XY back
  3338. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  3339. FILAMENTCHANGE_XYFEED, active_extruder);
  3340. st_synchronize();
  3341. //Move Z back
  3342. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  3343. FILAMENTCHANGE_ZFEED, active_extruder);
  3344. st_synchronize();
  3345. //Set E position to original
  3346. plan_set_e_position(lastpos[E_AXIS]);
  3347. memcpy(current_position, lastpos, sizeof(lastpos));
  3348. set_destination_to_current();
  3349. //Recover feed rate
  3350. feedmultiply = feedmultiplyBckp;
  3351. char cmd[9];
  3352. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3353. enquecommand(cmd);
  3354. #ifdef IR_SENSOR
  3355. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  3356. fsensor_check_autoload();
  3357. #endif //IR_SENSOR
  3358. lcd_setstatuspgm(MSG_WELCOME);
  3359. custom_message_type = CustomMsg::Status;
  3360. }
  3361. void gcode_M701()
  3362. {
  3363. printf_P(PSTR("gcode_M701 begin\n"));
  3364. if (farm_mode)
  3365. {
  3366. prusa_statistics(22);
  3367. }
  3368. if (mmu_enabled)
  3369. {
  3370. extr_adj(tmp_extruder);//loads current extruder
  3371. mmu_extruder = tmp_extruder;
  3372. }
  3373. else
  3374. {
  3375. enable_z();
  3376. custom_message_type = CustomMsg::FilamentLoading;
  3377. #ifdef FSENSOR_QUALITY
  3378. fsensor_oq_meassure_start(40);
  3379. #endif //FSENSOR_QUALITY
  3380. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  3381. current_position[E_AXIS] += 40;
  3382. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  3383. st_synchronize();
  3384. raise_z_above(MIN_Z_FOR_LOAD, false);
  3385. current_position[E_AXIS] += 30;
  3386. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  3387. load_filament_final_feed(); //slow sequence
  3388. st_synchronize();
  3389. Sound_MakeCustom(50,500,false);
  3390. if (!farm_mode && loading_flag) {
  3391. lcd_load_filament_color_check();
  3392. }
  3393. lcd_update_enable(true);
  3394. lcd_update(2);
  3395. lcd_setstatuspgm(MSG_WELCOME);
  3396. disable_z();
  3397. loading_flag = false;
  3398. custom_message_type = CustomMsg::Status;
  3399. #ifdef FSENSOR_QUALITY
  3400. fsensor_oq_meassure_stop();
  3401. if (!fsensor_oq_result())
  3402. {
  3403. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  3404. lcd_update_enable(true);
  3405. lcd_update(2);
  3406. if (disable)
  3407. fsensor_disable();
  3408. }
  3409. #endif //FSENSOR_QUALITY
  3410. }
  3411. }
  3412. /**
  3413. * @brief Get serial number from 32U2 processor
  3414. *
  3415. * Typical format of S/N is:CZPX0917X003XC13518
  3416. *
  3417. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  3418. * reply is stored in *SN.
  3419. * Operation takes typically 23 ms. If no valid SN can be retrieved within the 250ms window, the function aborts
  3420. * and returns a general failure flag.
  3421. * The command will fail if the 32U2 processor is unpowered via USB since it is isolated from the rest of the electronics.
  3422. * In that case the value that is stored in the EEPROM should be used instead.
  3423. *
  3424. * @return 0 on success
  3425. * @return 1 on general failure
  3426. */
  3427. static uint8_t get_PRUSA_SN(char* SN)
  3428. {
  3429. uint8_t selectedSerialPort_bak = selectedSerialPort;
  3430. uint8_t rxIndex;
  3431. bool SN_valid = false;
  3432. ShortTimer timeout;
  3433. selectedSerialPort = 0;
  3434. timeout.start();
  3435. while (!SN_valid)
  3436. {
  3437. rxIndex = 0;
  3438. _delay(50);
  3439. MYSERIAL.flush(); //clear RX buffer
  3440. SERIAL_ECHOLNRPGM(PSTR(";S"));
  3441. while (rxIndex < 19)
  3442. {
  3443. if (timeout.expired(250u))
  3444. goto exit;
  3445. if (MYSERIAL.available() > 0)
  3446. {
  3447. SN[rxIndex] = MYSERIAL.read();
  3448. rxIndex++;
  3449. }
  3450. }
  3451. SN[rxIndex] = 0;
  3452. // printf_P(PSTR("SN:%s\n"), SN);
  3453. SN_valid = (strncmp_P(SN, PSTR("CZPX"), 4) == 0);
  3454. }
  3455. exit:
  3456. selectedSerialPort = selectedSerialPort_bak;
  3457. return !SN_valid;
  3458. }
  3459. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  3460. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  3461. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  3462. //! it may even interfere with other functions of the printer! You have been warned!
  3463. //! The test idea is to measure the time necessary to charge the capacitor.
  3464. //! So the algorithm is as follows:
  3465. //! 1. Set TACH_1 pin to INPUT mode and LOW
  3466. //! 2. Wait a few ms
  3467. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  3468. //! Repeat 1.-3. several times
  3469. //! Good RAMBo's times are in the range of approx. 260-320 us
  3470. //! Bad RAMBo's times are approx. 260-1200 us
  3471. //! So basically we are interested in maximum time, the minima are mostly the same.
  3472. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  3473. static void gcode_PRUSA_BadRAMBoFanTest(){
  3474. //printf_P(PSTR("Enter fan pin test\n"));
  3475. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  3476. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  3477. unsigned long tach1max = 0;
  3478. uint8_t tach1cntr = 0;
  3479. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  3480. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  3481. SET_OUTPUT(TACH_1);
  3482. WRITE(TACH_1, LOW);
  3483. _delay(20); // the delay may be lower
  3484. unsigned long tachMeasure = _micros();
  3485. cli();
  3486. SET_INPUT(TACH_1);
  3487. // just wait brutally in an endless cycle until we reach HIGH
  3488. // if this becomes a problem it may be improved to non-endless cycle
  3489. while( READ(TACH_1) == 0 ) ;
  3490. sei();
  3491. tachMeasure = _micros() - tachMeasure;
  3492. if( tach1max < tachMeasure )
  3493. tach1max = tachMeasure;
  3494. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  3495. }
  3496. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  3497. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  3498. if( tach1max > 500 ){
  3499. // bad RAMBo
  3500. SERIAL_PROTOCOLLNPGM("BAD");
  3501. } else {
  3502. SERIAL_PROTOCOLLNPGM("OK");
  3503. }
  3504. // cleanup after the test function
  3505. SET_INPUT(TACH_1);
  3506. WRITE(TACH_1, HIGH);
  3507. #endif
  3508. }
  3509. // G92 - Set current position to coordinates given
  3510. static void gcode_G92()
  3511. {
  3512. bool codes[NUM_AXIS];
  3513. float values[NUM_AXIS];
  3514. // Check which axes need to be set
  3515. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  3516. {
  3517. codes[i] = code_seen(axis_codes[i]);
  3518. if(codes[i])
  3519. values[i] = code_value();
  3520. }
  3521. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  3522. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  3523. {
  3524. // As a special optimization, when _just_ clearing the E position
  3525. // we schedule a flag asynchronously along with the next block to
  3526. // reset the starting E position instead of stopping the planner
  3527. current_position[E_AXIS] = 0;
  3528. plan_reset_next_e();
  3529. }
  3530. else
  3531. {
  3532. // In any other case we're forced to synchronize
  3533. st_synchronize();
  3534. for(uint8_t i = 0; i < 3; ++i)
  3535. {
  3536. if(codes[i])
  3537. current_position[i] = values[i] + cs.add_homing[i];
  3538. }
  3539. if(codes[E_AXIS])
  3540. current_position[E_AXIS] = values[E_AXIS];
  3541. // Set all at once
  3542. plan_set_position_curposXYZE();
  3543. }
  3544. }
  3545. #ifdef EXTENDED_CAPABILITIES_REPORT
  3546. static void cap_line(const char* name, bool ena = false) {
  3547. printf_P(PSTR("Cap:%S:%c\n"), name, (char)ena + '0');
  3548. }
  3549. static void extended_capabilities_report()
  3550. {
  3551. // AUTOREPORT_TEMP (M155)
  3552. cap_line(PSTR("AUTOREPORT_TEMP"), ENABLED(AUTO_REPORT));
  3553. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3554. // AUTOREPORT_FANS (M123)
  3555. cap_line(PSTR("AUTOREPORT_FANS"), ENABLED(AUTO_REPORT));
  3556. #endif //FANCHECK and TACH_0 or TACH_1
  3557. // AUTOREPORT_POSITION (M114)
  3558. cap_line(PSTR("AUTOREPORT_POSITION"), ENABLED(AUTO_REPORT));
  3559. // EXTENDED_M20 (support for L and T parameters)
  3560. cap_line(PSTR("EXTENDED_M20"), 1);
  3561. }
  3562. #endif //EXTENDED_CAPABILITIES_REPORT
  3563. #ifdef BACKLASH_X
  3564. extern uint8_t st_backlash_x;
  3565. #endif //BACKLASH_X
  3566. #ifdef BACKLASH_Y
  3567. extern uint8_t st_backlash_y;
  3568. #endif //BACKLASH_Y
  3569. //! \ingroup marlin_main
  3570. //! @brief Parse and process commands
  3571. //!
  3572. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  3573. //!
  3574. //!
  3575. //! Implemented Codes
  3576. //! -------------------
  3577. //!
  3578. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  3579. //!
  3580. //!@n PRUSA CODES
  3581. //!@n P F - Returns FW versions
  3582. //!@n P R - Returns revision of printer
  3583. //!
  3584. //!@n G0 -> G1
  3585. //!@n G1 - Coordinated Movement X Y Z E
  3586. //!@n G2 - CW ARC
  3587. //!@n G3 - CCW ARC
  3588. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  3589. //!@n G10 - retract filament according to settings of M207
  3590. //!@n G11 - retract recover filament according to settings of M208
  3591. //!@n G28 - Home all Axes
  3592. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  3593. //!@n G30 - Single Z Probe, probes bed at current XY location.
  3594. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  3595. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  3596. //!@n G80 - Automatic mesh bed leveling
  3597. //!@n G81 - Print bed profile
  3598. //!@n G90 - Use Absolute Coordinates
  3599. //!@n G91 - Use Relative Coordinates
  3600. //!@n G92 - Set current position to coordinates given
  3601. //!
  3602. //!@n M Codes
  3603. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  3604. //!@n M1 - Same as M0
  3605. //!@n M17 - Enable/Power all stepper motors
  3606. //!@n M18 - Disable all stepper motors; same as M84
  3607. //!@n M20 - List SD card
  3608. //!@n M21 - Init SD card
  3609. //!@n M22 - Release SD card
  3610. //!@n M23 - Select SD file (M23 filename.g)
  3611. //!@n M24 - Start/resume SD print
  3612. //!@n M25 - Pause SD print
  3613. //!@n M26 - Set SD position in bytes (M26 S12345)
  3614. //!@n M27 - Report SD print status
  3615. //!@n M28 - Start SD write (M28 filename.g)
  3616. //!@n M29 - Stop SD write
  3617. //!@n M30 - Delete file from SD (M30 filename.g)
  3618. //!@n M31 - Output time since last M109 or SD card start to serial
  3619. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3620. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3621. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3622. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3623. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3624. //!@n M73 - Show percent done and print time remaining
  3625. //!@n M80 - Turn on Power Supply
  3626. //!@n M81 - Turn off Power Supply
  3627. //!@n M82 - Set E codes absolute (default)
  3628. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3629. //!@n M84 - Disable steppers until next move,
  3630. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3631. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3632. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3633. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3634. //!@n M104 - Set extruder target temp
  3635. //!@n M105 - Read current temp
  3636. //!@n M106 - Fan on
  3637. //!@n M107 - Fan off
  3638. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3639. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3640. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3641. //!@n M112 - Emergency stop
  3642. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3643. //!@n M114 - Output current position to serial port
  3644. //!@n M115 - Capabilities string
  3645. //!@n M117 - display message
  3646. //!@n M119 - Output Endstop status to serial port
  3647. //!@n M123 - Tachometer value
  3648. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3649. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3650. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3651. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3652. //!@n M140 - Set bed target temp
  3653. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3654. //!@n M155 - Automatically send temperatures, fan speeds, position
  3655. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3656. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3657. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3658. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3659. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3660. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3661. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3662. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3663. //!@n M206 - set additional homing offset
  3664. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3665. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3666. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3667. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3668. //!@n M220 S<factor in percent>- set speed factor override percentage
  3669. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3670. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3671. //!@n M240 - Trigger a camera to take a photograph
  3672. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3673. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3674. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3675. //!@n M301 - Set PID parameters P I and D
  3676. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3677. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3678. //!@n M304 - Set bed PID parameters P I and D
  3679. //!@n M400 - Finish all moves
  3680. //!@n M401 - Lower z-probe if present
  3681. //!@n M402 - Raise z-probe if present
  3682. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3683. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3684. //!@n M406 - Turn off Filament Sensor extrusion control
  3685. //!@n M407 - Displays measured filament diameter
  3686. //!@n M500 - stores parameters in EEPROM
  3687. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3688. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3689. //!@n M503 - print the current settings (from memory not from EEPROM)
  3690. //!@n M509 - force language selection on next restart
  3691. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3692. //!@n M552 - Set IP address
  3693. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3694. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3695. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3696. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3697. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3698. //!@n M907 - Set digital trimpot motor current using axis codes.
  3699. //!@n M908 - Control digital trimpot directly.
  3700. //!@n M350 - Set microstepping mode.
  3701. //!@n M351 - Toggle MS1 MS2 pins directly.
  3702. //!
  3703. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3704. //!@n M999 - Restart after being stopped by error
  3705. //! <br><br>
  3706. /** @defgroup marlin_main Marlin main */
  3707. /** \ingroup GCodes */
  3708. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3709. /**
  3710. They are shown in order of appearance in the code.
  3711. There are reasons why some G Codes aren't in numerical order.
  3712. */
  3713. void process_commands()
  3714. {
  3715. #ifdef FANCHECK
  3716. if(fan_check_error == EFCE_DETECTED) {
  3717. fan_check_error = EFCE_REPORTED;
  3718. if (is_usb_printing)
  3719. lcd_pause_usb_print();
  3720. else
  3721. lcd_pause_print();
  3722. }
  3723. #endif
  3724. if (!buflen) return; //empty command
  3725. #ifdef FILAMENT_RUNOUT_SUPPORT
  3726. SET_INPUT(FR_SENS);
  3727. #endif
  3728. #ifdef CMDBUFFER_DEBUG
  3729. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3730. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3731. SERIAL_ECHOLNPGM("");
  3732. SERIAL_ECHOPGM("In cmdqueue: ");
  3733. SERIAL_ECHO(buflen);
  3734. SERIAL_ECHOLNPGM("");
  3735. #endif /* CMDBUFFER_DEBUG */
  3736. unsigned long codenum; //throw away variable
  3737. char *starpos = NULL;
  3738. #ifdef ENABLE_AUTO_BED_LEVELING
  3739. float x_tmp, y_tmp, z_tmp, real_z;
  3740. #endif
  3741. // PRUSA GCODES
  3742. KEEPALIVE_STATE(IN_HANDLER);
  3743. #ifdef SNMM
  3744. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3745. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3746. int8_t SilentMode;
  3747. #endif
  3748. /*!
  3749. ---------------------------------------------------------------------------------
  3750. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3751. This causes the given message to be shown in the status line on an attached LCD.
  3752. It is processed early as to allow printing messages that contain G, M, N or T.
  3753. ---------------------------------------------------------------------------------
  3754. ### Special internal commands
  3755. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3756. They are processed early as the commands are complex (strings).
  3757. These are only available on the MK3(S) as these require TMC2130 drivers:
  3758. - CRASH DETECTED
  3759. - CRASH RECOVER
  3760. - CRASH_CANCEL
  3761. - TMC_SET_WAVE
  3762. - TMC_SET_STEP
  3763. - TMC_SET_CHOP
  3764. */
  3765. if (code_seen_P(PSTR("M117"))) //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3766. {
  3767. starpos = (strchr(strchr_pointer + 5, '*'));
  3768. if (starpos != NULL)
  3769. *(starpos) = '\0';
  3770. lcd_setstatus(strchr_pointer + 5);
  3771. custom_message_type = CustomMsg::MsgUpdate;
  3772. }
  3773. /*!
  3774. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  3775. #### Usage
  3776. M0 [P<ms<] [S<sec>] [string]
  3777. M1 [P<ms>] [S<sec>] [string]
  3778. #### Parameters
  3779. - `P<ms>` - Expire time, in milliseconds
  3780. - `S<sec>` - Expire time, in seconds
  3781. - `string` - Must for M1 and optional for M0 message to display on the LCD
  3782. */
  3783. else if (code_seen_P(PSTR("M0")) || code_seen_P(PSTR("M1 "))) {// M0 and M1 - (Un)conditional stop - Wait for user button press on LCD
  3784. char *src = strchr_pointer + 2;
  3785. codenum = 0;
  3786. bool hasP = false, hasS = false;
  3787. if (code_seen('P')) {
  3788. codenum = code_value_long(); // milliseconds to wait
  3789. hasP = codenum > 0;
  3790. }
  3791. if (code_seen('S')) {
  3792. codenum = code_value_long() * 1000; // seconds to wait
  3793. hasS = codenum > 0;
  3794. }
  3795. starpos = strchr(src, '*');
  3796. if (starpos != NULL) *(starpos) = '\0';
  3797. while (*src == ' ') ++src;
  3798. custom_message_type = CustomMsg::M0Wait;
  3799. if (!hasP && !hasS && *src != '\0') {
  3800. lcd_setstatus(src);
  3801. } else {
  3802. // farmers want to abuse a bug from the previous firmware releases
  3803. // - they need to see the filename on the status screen instead of "Wait for user..."
  3804. // So we won't update the message in farm mode...
  3805. if( ! farm_mode){
  3806. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=20
  3807. } else {
  3808. custom_message_type = CustomMsg::Status; // let the lcd display the name of the printed G-code file in farm mode
  3809. }
  3810. }
  3811. lcd_ignore_click(); //call lcd_ignore_click also for else ???
  3812. st_synchronize();
  3813. previous_millis_cmd.start();
  3814. if (codenum > 0 ) {
  3815. codenum += _millis(); // keep track of when we started waiting
  3816. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3817. while(_millis() < codenum && !lcd_clicked()) {
  3818. manage_heater();
  3819. manage_inactivity(true);
  3820. lcd_update(0);
  3821. }
  3822. KEEPALIVE_STATE(IN_HANDLER);
  3823. lcd_ignore_click(false);
  3824. } else {
  3825. marlin_wait_for_click();
  3826. }
  3827. if (IS_SD_PRINTING)
  3828. custom_message_type = CustomMsg::Status;
  3829. else
  3830. LCD_MESSAGERPGM(MSG_WELCOME);
  3831. }
  3832. #ifdef TMC2130
  3833. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3834. {
  3835. // ### CRASH_DETECTED - TMC2130
  3836. // ---------------------------------
  3837. if(code_seen_P(PSTR("CRASH_DETECTED")))
  3838. {
  3839. uint8_t mask = 0;
  3840. if (code_seen('X')) mask |= X_AXIS_MASK;
  3841. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3842. crashdet_detected(mask);
  3843. }
  3844. // ### CRASH_RECOVER - TMC2130
  3845. // ----------------------------------
  3846. else if(code_seen_P(PSTR("CRASH_RECOVER")))
  3847. crashdet_recover();
  3848. // ### CRASH_CANCEL - TMC2130
  3849. // ----------------------------------
  3850. else if(code_seen_P(PSTR("CRASH_CANCEL")))
  3851. crashdet_cancel();
  3852. }
  3853. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3854. {
  3855. // ### TMC_SET_WAVE_
  3856. // --------------------
  3857. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3858. {
  3859. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3860. axis = (axis == 'E')?3:(axis - 'X');
  3861. if (axis < 4)
  3862. {
  3863. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3864. tmc2130_set_wave(axis, 247, fac);
  3865. }
  3866. }
  3867. // ### TMC_SET_STEP_
  3868. // ------------------
  3869. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3870. {
  3871. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3872. axis = (axis == 'E')?3:(axis - 'X');
  3873. if (axis < 4)
  3874. {
  3875. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3876. uint16_t res = tmc2130_get_res(axis);
  3877. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3878. }
  3879. }
  3880. // ### TMC_SET_CHOP_
  3881. // -------------------
  3882. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3883. {
  3884. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3885. axis = (axis == 'E')?3:(axis - 'X');
  3886. if (axis < 4)
  3887. {
  3888. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3889. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3890. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3891. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3892. char* str_end = 0;
  3893. if (CMDBUFFER_CURRENT_STRING[14])
  3894. {
  3895. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3896. if (str_end && *str_end)
  3897. {
  3898. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3899. if (str_end && *str_end)
  3900. {
  3901. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3902. if (str_end && *str_end)
  3903. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3904. }
  3905. }
  3906. }
  3907. tmc2130_chopper_config[axis].toff = chop0;
  3908. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3909. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3910. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3911. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3912. //printf_P(_N("TMC_SET_CHOP_%c %d %d %d %d\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3913. }
  3914. }
  3915. }
  3916. #ifdef BACKLASH_X
  3917. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3918. {
  3919. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3920. st_backlash_x = bl;
  3921. printf_P(_N("st_backlash_x = %d\n"), st_backlash_x);
  3922. }
  3923. #endif //BACKLASH_X
  3924. #ifdef BACKLASH_Y
  3925. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3926. {
  3927. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3928. st_backlash_y = bl;
  3929. printf_P(_N("st_backlash_y = %d\n"), st_backlash_y);
  3930. }
  3931. #endif //BACKLASH_Y
  3932. #endif //TMC2130
  3933. else if(code_seen_P(PSTR("PRUSA"))){
  3934. /*!
  3935. ---------------------------------------------------------------------------------
  3936. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3937. Set of internal PRUSA commands
  3938. #### Usage
  3939. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | FR ]
  3940. #### Parameters
  3941. - `Ping`
  3942. - `PRN` - Prints revision of the printer
  3943. - `FAN` - Prints fan details
  3944. - `fn` - Prints farm no.
  3945. - `thx`
  3946. - `uvlo`
  3947. - `MMURES` - Reset MMU
  3948. - `RESET` - (Careful!)
  3949. - `fv` - ?
  3950. - `M28`
  3951. - `SN`
  3952. - `Fir` - Prints firmware version
  3953. - `Rev`- Prints filament size, elelectronics, nozzle type
  3954. - `Lang` - Reset the language
  3955. - `Lz`
  3956. - `FR` - Full factory reset
  3957. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3958. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3959. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3960. */
  3961. if (code_seen_P(PSTR("Ping"))) { // PRUSA Ping
  3962. if (farm_mode) {
  3963. PingTime = _millis();
  3964. }
  3965. }
  3966. else if (code_seen_P(PSTR("PRN"))) { // PRUSA PRN
  3967. printf_P(_N("%u"), status_number);
  3968. } else if( code_seen_P(PSTR("FANPINTST"))){
  3969. gcode_PRUSA_BadRAMBoFanTest();
  3970. }else if (code_seen_P(PSTR("FAN"))) { // PRUSA FAN
  3971. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3972. }
  3973. else if (code_seen_P(PSTR("thx"))) // PRUSA thx
  3974. {
  3975. no_response = false;
  3976. }
  3977. else if (code_seen_P(PSTR("uvlo"))) // PRUSA uvlo
  3978. {
  3979. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3980. enquecommand_P(PSTR("M24"));
  3981. }
  3982. else if (code_seen_P(PSTR("MMURES"))) // PRUSA MMURES
  3983. {
  3984. mmu_reset();
  3985. }
  3986. else if (code_seen_P(PSTR("RESET"))) { // PRUSA RESET
  3987. #ifdef WATCHDOG
  3988. #if defined(XFLASH) && defined(BOOTAPP)
  3989. boot_app_magic = BOOT_APP_MAGIC;
  3990. boot_app_flags = BOOT_APP_FLG_RUN;
  3991. #endif //defined(XFLASH) && defined(BOOTAPP)
  3992. softReset();
  3993. #elif defined(BOOTAPP) //this is a safety precaution. This is because the new bootloader turns off the heaters, but the old one doesn't. The watchdog should be used most of the time.
  3994. asm volatile("jmp 0x3E000");
  3995. #endif
  3996. }else if (code_seen_P("fv")) { // PRUSA fv
  3997. // get file version
  3998. #ifdef SDSUPPORT
  3999. card.openFileReadFilteredGcode(strchr_pointer + 3,true);
  4000. while (true) {
  4001. uint16_t readByte = card.getFilteredGcodeChar();
  4002. MYSERIAL.write(readByte);
  4003. if (readByte=='\n') {
  4004. break;
  4005. }
  4006. }
  4007. card.closefile();
  4008. #endif // SDSUPPORT
  4009. }
  4010. #ifdef PRUSA_M28
  4011. else if (code_seen_P(PSTR("M28"))) { // PRUSA M28
  4012. trace();
  4013. prusa_sd_card_upload = true;
  4014. card.openFileWrite(strchr_pointer+4);
  4015. }
  4016. #endif //PRUSA_M28
  4017. else if (code_seen_P(PSTR("SN"))) { // PRUSA SN
  4018. char SN[20];
  4019. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  4020. if (SN[19])
  4021. puts_P(PSTR("SN invalid"));
  4022. else
  4023. puts(SN);
  4024. } else if(code_seen_P(PSTR("Fir"))){ // PRUSA Fir
  4025. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  4026. } else if(code_seen_P(PSTR("Rev"))){ // PRUSA Rev
  4027. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  4028. } else if(code_seen_P(PSTR("Lang"))) { // PRUSA Lang
  4029. lang_reset();
  4030. } else if(code_seen_P(PSTR("Lz"))) { // PRUSA Lz
  4031. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4032. } else if(code_seen_P(PSTR("FR"))) { // PRUSA FR
  4033. // Factory full reset
  4034. factory_reset(0);
  4035. } else if(code_seen_P(PSTR("MBL"))) { // PRUSA MBL
  4036. // Change the MBL status without changing the logical Z position.
  4037. if(code_seen('V')) {
  4038. bool value = code_value_short();
  4039. st_synchronize();
  4040. if(value != mbl.active) {
  4041. mbl.active = value;
  4042. // Use plan_set_z_position to reset the physical values
  4043. plan_set_z_position(current_position[Z_AXIS]);
  4044. }
  4045. }
  4046. //-//
  4047. /*
  4048. } else if(code_seen("rrr")) {
  4049. MYSERIAL.println("=== checking ===");
  4050. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  4051. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  4052. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  4053. MYSERIAL.println(farm_mode,DEC);
  4054. MYSERIAL.println(eCheckMode,DEC);
  4055. } else if(code_seen("www")) {
  4056. MYSERIAL.println("=== @ FF ===");
  4057. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  4058. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  4059. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  4060. */
  4061. } else if (code_seen_P(PSTR("nozzle"))) { // PRUSA nozzle
  4062. uint16_t nDiameter;
  4063. if(code_seen('D'))
  4064. {
  4065. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  4066. nozzle_diameter_check(nDiameter);
  4067. }
  4068. else if(code_seen_P(PSTR("set")) && farm_mode)
  4069. {
  4070. strchr_pointer++; // skip 1st char (~ 's')
  4071. strchr_pointer++; // skip 2nd char (~ 'e')
  4072. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  4073. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  4074. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  4075. }
  4076. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  4077. //-// !!! SupportMenu
  4078. /*
  4079. // musi byt PRED "PRUSA model"
  4080. } else if (code_seen("smodel")) { //! PRUSA smodel
  4081. size_t nOffset;
  4082. // ! -> "l"
  4083. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  4084. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  4085. if(*(strchr_pointer+1+nOffset))
  4086. printer_smodel_check(strchr_pointer);
  4087. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  4088. } else if (code_seen("model")) { //! PRUSA model
  4089. uint16_t nPrinterModel;
  4090. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  4091. nPrinterModel=(uint16_t)code_value_long();
  4092. if(nPrinterModel!=0)
  4093. printer_model_check(nPrinterModel);
  4094. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  4095. } else if (code_seen("version")) { //! PRUSA version
  4096. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  4097. while(*strchr_pointer==' ') // skip leading spaces
  4098. strchr_pointer++;
  4099. if(*strchr_pointer!=0)
  4100. fw_version_check(strchr_pointer);
  4101. else SERIAL_PROTOCOLLN(FW_VERSION);
  4102. } else if (code_seen("gcode")) { //! PRUSA gcode
  4103. uint16_t nGcodeLevel;
  4104. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  4105. nGcodeLevel=(uint16_t)code_value_long();
  4106. if(nGcodeLevel!=0)
  4107. gcode_level_check(nGcodeLevel);
  4108. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  4109. */
  4110. }
  4111. //else if (code_seen('Cal')) {
  4112. // lcd_calibration();
  4113. // }
  4114. }
  4115. // This prevents reading files with "^" in their names.
  4116. // Since it is unclear, if there is some usage of this construct,
  4117. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  4118. // else if (code_seen('^')) {
  4119. // // nothing, this is a version line
  4120. // }
  4121. else if(code_seen('G'))
  4122. {
  4123. gcode_in_progress = code_value_short();
  4124. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  4125. switch (gcode_in_progress)
  4126. {
  4127. /*!
  4128. ---------------------------------------------------------------------------------
  4129. # G Codes
  4130. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  4131. In Prusa Firmware G0 and G1 are the same.
  4132. #### Usage
  4133. G0 [ X | Y | Z | E | F | S ]
  4134. G1 [ X | Y | Z | E | F | S ]
  4135. #### Parameters
  4136. - `X` - The position to move to on the X axis
  4137. - `Y` - The position to move to on the Y axis
  4138. - `Z` - The position to move to on the Z axis
  4139. - `E` - The amount to extrude between the starting point and ending point
  4140. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  4141. */
  4142. case 0: // G0 -> G1
  4143. case 1: // G1
  4144. if(Stopped == false) {
  4145. #ifdef FILAMENT_RUNOUT_SUPPORT
  4146. if(READ(FR_SENS)){
  4147. int feedmultiplyBckp=feedmultiply;
  4148. float target[4];
  4149. float lastpos[4];
  4150. target[X_AXIS]=current_position[X_AXIS];
  4151. target[Y_AXIS]=current_position[Y_AXIS];
  4152. target[Z_AXIS]=current_position[Z_AXIS];
  4153. target[E_AXIS]=current_position[E_AXIS];
  4154. lastpos[X_AXIS]=current_position[X_AXIS];
  4155. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4156. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4157. lastpos[E_AXIS]=current_position[E_AXIS];
  4158. //retract by E
  4159. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4160. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4161. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4162. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  4163. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4164. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4165. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  4166. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4167. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  4168. //finish moves
  4169. st_synchronize();
  4170. //disable extruder steppers so filament can be removed
  4171. disable_e0();
  4172. disable_e1();
  4173. disable_e2();
  4174. _delay(100);
  4175. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  4176. uint8_t cnt=0;
  4177. int counterBeep = 0;
  4178. lcd_wait_interact();
  4179. while(!lcd_clicked()){
  4180. cnt++;
  4181. manage_heater();
  4182. manage_inactivity(true);
  4183. //lcd_update(0);
  4184. if(cnt==0)
  4185. {
  4186. #if BEEPER > 0
  4187. if (counterBeep== 500){
  4188. counterBeep = 0;
  4189. }
  4190. SET_OUTPUT(BEEPER);
  4191. if (counterBeep== 0){
  4192. if(eSoundMode!=e_SOUND_MODE_SILENT)
  4193. WRITE(BEEPER,HIGH);
  4194. }
  4195. if (counterBeep== 20){
  4196. WRITE(BEEPER,LOW);
  4197. }
  4198. counterBeep++;
  4199. #else
  4200. #endif
  4201. }
  4202. }
  4203. WRITE(BEEPER,LOW);
  4204. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4205. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  4206. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4207. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4208. lcd_change_fil_state = 0;
  4209. lcd_loading_filament();
  4210. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4211. lcd_change_fil_state = 0;
  4212. lcd_alright();
  4213. switch(lcd_change_fil_state){
  4214. case 2:
  4215. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4216. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  4217. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4218. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4219. lcd_loading_filament();
  4220. break;
  4221. case 3:
  4222. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4223. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4224. lcd_loading_color();
  4225. break;
  4226. default:
  4227. lcd_change_success();
  4228. break;
  4229. }
  4230. }
  4231. target[E_AXIS]+= 5;
  4232. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4233. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4234. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4235. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4236. //plan_set_e_position(current_position[E_AXIS]);
  4237. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4238. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  4239. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  4240. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4241. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  4242. plan_set_e_position(lastpos[E_AXIS]);
  4243. feedmultiply=feedmultiplyBckp;
  4244. char cmd[9];
  4245. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4246. enquecommand(cmd);
  4247. }
  4248. #endif
  4249. get_coordinates(); // For X Y Z E F
  4250. // When recovering from a previous print move, restore the originally
  4251. // calculated target position on the first USB/SD command. This accounts
  4252. // properly for relative moves
  4253. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  4254. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  4255. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  4256. {
  4257. memcpy(destination, saved_target, sizeof(destination));
  4258. saved_target[0] = SAVED_TARGET_UNSET;
  4259. }
  4260. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  4261. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  4262. }
  4263. #ifdef FWRETRACT
  4264. if(cs.autoretract_enabled) {
  4265. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  4266. float echange=destination[E_AXIS]-current_position[E_AXIS];
  4267. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  4268. st_synchronize();
  4269. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  4270. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  4271. retract(!retracted[active_extruder]);
  4272. return;
  4273. }
  4274. }
  4275. }
  4276. #endif //FWRETRACT
  4277. prepare_move();
  4278. //ClearToSend();
  4279. }
  4280. break;
  4281. /*!
  4282. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  4283. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  4284. #### Usage
  4285. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  4286. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  4287. #### Parameters
  4288. - `X` - The position to move to on the X axis
  4289. - `Y` - The position to move to on the Y axis
  4290. - `I` - The point in X space from the current X position to maintain a constant distance from
  4291. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  4292. - `E` - The amount to extrude between the starting point and ending point
  4293. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  4294. */
  4295. case 2:
  4296. if(Stopped == false) {
  4297. get_arc_coordinates();
  4298. prepare_arc_move(true);
  4299. }
  4300. break;
  4301. // -------------------------------
  4302. case 3:
  4303. if(Stopped == false) {
  4304. get_arc_coordinates();
  4305. prepare_arc_move(false);
  4306. }
  4307. break;
  4308. /*!
  4309. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  4310. Pause the machine for a period of time.
  4311. #### Usage
  4312. G4 [ P | S ]
  4313. #### Parameters
  4314. - `P` - Time to wait, in milliseconds
  4315. - `S` - Time to wait, in seconds
  4316. */
  4317. case 4:
  4318. codenum = 0;
  4319. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  4320. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  4321. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  4322. st_synchronize();
  4323. codenum += _millis(); // keep track of when we started waiting
  4324. previous_millis_cmd.start();
  4325. while(_millis() < codenum) {
  4326. manage_heater();
  4327. manage_inactivity();
  4328. lcd_update(0);
  4329. }
  4330. break;
  4331. #ifdef FWRETRACT
  4332. /*!
  4333. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  4334. Retracts filament according to settings of `M207`
  4335. */
  4336. case 10:
  4337. #if EXTRUDERS > 1
  4338. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  4339. retract(true,retracted_swap[active_extruder]);
  4340. #else
  4341. retract(true);
  4342. #endif
  4343. break;
  4344. /*!
  4345. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  4346. Unretracts/recovers filament according to settings of `M208`
  4347. */
  4348. case 11:
  4349. #if EXTRUDERS > 1
  4350. retract(false,retracted_swap[active_extruder]);
  4351. #else
  4352. retract(false);
  4353. #endif
  4354. break;
  4355. #endif //FWRETRACT
  4356. /*!
  4357. ### G21 - Sets Units to Millimters <a href="https://reprap.org/wiki/G-code#G21:_Set_Units_to_Millimeters">G21: Set Units to Millimeters</a>
  4358. Units are in millimeters. Prusa doesn't support inches.
  4359. */
  4360. case 21:
  4361. break; //Doing nothing. This is just to prevent serial UNKOWN warnings.
  4362. /*!
  4363. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  4364. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  4365. #### Usage
  4366. G28 [ X | Y | Z | W | C ]
  4367. #### Parameters
  4368. - `X` - Flag to go back to the X axis origin
  4369. - `Y` - Flag to go back to the Y axis origin
  4370. - `Z` - Flag to go back to the Z axis origin
  4371. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  4372. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  4373. */
  4374. case 28:
  4375. {
  4376. long home_x_value = 0;
  4377. long home_y_value = 0;
  4378. long home_z_value = 0;
  4379. // Which axes should be homed?
  4380. bool home_x = code_seen(axis_codes[X_AXIS]);
  4381. home_x_value = code_value_long();
  4382. bool home_y = code_seen(axis_codes[Y_AXIS]);
  4383. home_y_value = code_value_long();
  4384. bool home_z = code_seen(axis_codes[Z_AXIS]);
  4385. home_z_value = code_value_long();
  4386. bool without_mbl = code_seen('W');
  4387. // calibrate?
  4388. #ifdef TMC2130
  4389. bool calib = code_seen('C');
  4390. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  4391. #else
  4392. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  4393. #endif //TMC2130
  4394. if ((home_x || home_y || without_mbl || home_z) == false) {
  4395. gcode_G80();
  4396. }
  4397. break;
  4398. }
  4399. #ifdef ENABLE_AUTO_BED_LEVELING
  4400. /*!
  4401. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  4402. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4403. See `G81`
  4404. */
  4405. case 29:
  4406. {
  4407. #if Z_MIN_PIN == -1
  4408. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  4409. #endif
  4410. // Prevent user from running a G29 without first homing in X and Y
  4411. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  4412. {
  4413. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  4414. SERIAL_ECHO_START;
  4415. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  4416. break; // abort G29, since we don't know where we are
  4417. }
  4418. st_synchronize();
  4419. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  4420. //vector_3 corrected_position = plan_get_position_mm();
  4421. //corrected_position.debug("position before G29");
  4422. plan_bed_level_matrix.set_to_identity();
  4423. vector_3 uncorrected_position = plan_get_position();
  4424. //uncorrected_position.debug("position durring G29");
  4425. current_position[X_AXIS] = uncorrected_position.x;
  4426. current_position[Y_AXIS] = uncorrected_position.y;
  4427. current_position[Z_AXIS] = uncorrected_position.z;
  4428. plan_set_position_curposXYZE();
  4429. int l_feedmultiply = setup_for_endstop_move();
  4430. feedrate = homing_feedrate[Z_AXIS];
  4431. #ifdef AUTO_BED_LEVELING_GRID
  4432. // probe at the points of a lattice grid
  4433. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4434. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4435. // solve the plane equation ax + by + d = z
  4436. // A is the matrix with rows [x y 1] for all the probed points
  4437. // B is the vector of the Z positions
  4438. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4439. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4440. // "A" matrix of the linear system of equations
  4441. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  4442. // "B" vector of Z points
  4443. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  4444. int probePointCounter = 0;
  4445. bool zig = true;
  4446. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  4447. {
  4448. int xProbe, xInc;
  4449. if (zig)
  4450. {
  4451. xProbe = LEFT_PROBE_BED_POSITION;
  4452. //xEnd = RIGHT_PROBE_BED_POSITION;
  4453. xInc = xGridSpacing;
  4454. zig = false;
  4455. } else // zag
  4456. {
  4457. xProbe = RIGHT_PROBE_BED_POSITION;
  4458. //xEnd = LEFT_PROBE_BED_POSITION;
  4459. xInc = -xGridSpacing;
  4460. zig = true;
  4461. }
  4462. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  4463. {
  4464. float z_before;
  4465. if (probePointCounter == 0)
  4466. {
  4467. // raise before probing
  4468. z_before = Z_RAISE_BEFORE_PROBING;
  4469. } else
  4470. {
  4471. // raise extruder
  4472. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  4473. }
  4474. float measured_z = probe_pt(xProbe, yProbe, z_before);
  4475. eqnBVector[probePointCounter] = measured_z;
  4476. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  4477. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  4478. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  4479. probePointCounter++;
  4480. xProbe += xInc;
  4481. }
  4482. }
  4483. clean_up_after_endstop_move(l_feedmultiply);
  4484. // solve lsq problem
  4485. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  4486. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4487. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  4488. SERIAL_PROTOCOLPGM(" b: ");
  4489. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  4490. SERIAL_PROTOCOLPGM(" d: ");
  4491. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  4492. set_bed_level_equation_lsq(plane_equation_coefficients);
  4493. free(plane_equation_coefficients);
  4494. #else // AUTO_BED_LEVELING_GRID not defined
  4495. // Probe at 3 arbitrary points
  4496. // probe 1
  4497. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  4498. // probe 2
  4499. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4500. // probe 3
  4501. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4502. clean_up_after_endstop_move(l_feedmultiply);
  4503. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  4504. #endif // AUTO_BED_LEVELING_GRID
  4505. st_synchronize();
  4506. // The following code correct the Z height difference from z-probe position and hotend tip position.
  4507. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  4508. // When the bed is uneven, this height must be corrected.
  4509. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  4510. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  4511. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4512. z_tmp = current_position[Z_AXIS];
  4513. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  4514. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  4515. plan_set_position_curposXYZE();
  4516. }
  4517. break;
  4518. #ifndef Z_PROBE_SLED
  4519. /*!
  4520. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4521. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4522. */
  4523. case 30:
  4524. {
  4525. st_synchronize();
  4526. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4527. int l_feedmultiply = setup_for_endstop_move();
  4528. feedrate = homing_feedrate[Z_AXIS];
  4529. run_z_probe();
  4530. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  4531. SERIAL_PROTOCOLPGM(" X: ");
  4532. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4533. SERIAL_PROTOCOLPGM(" Y: ");
  4534. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4535. SERIAL_PROTOCOLPGM(" Z: ");
  4536. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4537. SERIAL_PROTOCOLPGM("\n");
  4538. clean_up_after_endstop_move(l_feedmultiply);
  4539. }
  4540. break;
  4541. #else
  4542. /*!
  4543. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  4544. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4545. */
  4546. case 31:
  4547. dock_sled(true);
  4548. break;
  4549. /*!
  4550. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4551. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4552. */
  4553. case 32:
  4554. dock_sled(false);
  4555. break;
  4556. #endif // Z_PROBE_SLED
  4557. #endif // ENABLE_AUTO_BED_LEVELING
  4558. #ifdef MESH_BED_LEVELING
  4559. /*!
  4560. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4561. Sensor must be over the bed.
  4562. The maximum travel distance before an error is triggered is 10mm.
  4563. */
  4564. case 30:
  4565. {
  4566. st_synchronize();
  4567. homing_flag = true;
  4568. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4569. int l_feedmultiply = setup_for_endstop_move();
  4570. feedrate = homing_feedrate[Z_AXIS];
  4571. find_bed_induction_sensor_point_z(-10.f, 3);
  4572. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  4573. clean_up_after_endstop_move(l_feedmultiply);
  4574. homing_flag = false;
  4575. }
  4576. break;
  4577. /*!
  4578. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  4579. Show/print PINDA temperature interpolating.
  4580. */
  4581. case 75:
  4582. {
  4583. for (uint8_t i = 40; i <= 110; i++)
  4584. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  4585. }
  4586. break;
  4587. /*!
  4588. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  4589. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  4590. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  4591. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  4592. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  4593. If PINDA_THERMISTOR and SUPERPINDA_SUPPORT is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  4594. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  4595. #### Example
  4596. ```
  4597. G76
  4598. echo PINDA probe calibration start
  4599. echo start temperature: 35.0°
  4600. echo ...
  4601. echo PINDA temperature -- Z shift (mm): 0.---
  4602. ```
  4603. */
  4604. case 76:
  4605. {
  4606. #ifdef PINDA_THERMISTOR
  4607. if (!has_temperature_compensation())
  4608. {
  4609. SERIAL_ECHOLNPGM("No PINDA thermistor");
  4610. break;
  4611. }
  4612. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  4613. //we need to know accurate position of first calibration point
  4614. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  4615. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  4616. break;
  4617. }
  4618. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  4619. {
  4620. // We don't know where we are! HOME!
  4621. // Push the commands to the front of the message queue in the reverse order!
  4622. // There shall be always enough space reserved for these commands.
  4623. repeatcommand_front(); // repeat G76 with all its parameters
  4624. enquecommand_front_P(G28W0);
  4625. break;
  4626. }
  4627. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  4628. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  4629. if (result)
  4630. {
  4631. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4632. plan_buffer_line_curposXYZE(3000 / 60);
  4633. current_position[Z_AXIS] = 50;
  4634. current_position[Y_AXIS] = 180;
  4635. plan_buffer_line_curposXYZE(3000 / 60);
  4636. st_synchronize();
  4637. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  4638. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4639. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4640. plan_buffer_line_curposXYZE(3000 / 60);
  4641. st_synchronize();
  4642. gcode_G28(false, false, true);
  4643. }
  4644. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  4645. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  4646. current_position[Z_AXIS] = 100;
  4647. plan_buffer_line_curposXYZE(3000 / 60);
  4648. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  4649. lcd_temp_cal_show_result(false);
  4650. break;
  4651. }
  4652. }
  4653. st_synchronize();
  4654. homing_flag = true; // keep homing on to avoid babystepping while the LCD is enabled
  4655. lcd_update_enable(true);
  4656. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  4657. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  4658. float zero_z;
  4659. int z_shift = 0; //unit: steps
  4660. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  4661. if (start_temp < 35) start_temp = 35;
  4662. if (start_temp < current_temperature_pinda) start_temp += 5;
  4663. printf_P(_N("start temperature: %.1f\n"), start_temp);
  4664. // setTargetHotend(200, 0);
  4665. setTargetBed(70 + (start_temp - 30));
  4666. custom_message_type = CustomMsg::TempCal;
  4667. custom_message_state = 1;
  4668. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4669. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4670. plan_buffer_line_curposXYZE(3000 / 60);
  4671. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4672. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4673. plan_buffer_line_curposXYZE(3000 / 60);
  4674. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4675. plan_buffer_line_curposXYZE(3000 / 60);
  4676. st_synchronize();
  4677. while (current_temperature_pinda < start_temp)
  4678. {
  4679. delay_keep_alive(1000);
  4680. serialecho_temperatures();
  4681. }
  4682. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4683. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4684. plan_buffer_line_curposXYZE(3000 / 60);
  4685. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4686. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4687. plan_buffer_line_curposXYZE(3000 / 60);
  4688. st_synchronize();
  4689. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4690. if (find_z_result == false) {
  4691. lcd_temp_cal_show_result(find_z_result);
  4692. homing_flag = false;
  4693. break;
  4694. }
  4695. zero_z = current_position[Z_AXIS];
  4696. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4697. int i = -1; for (; i < 5; i++)
  4698. {
  4699. float temp = (40 + i * 5);
  4700. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4701. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4702. if (start_temp <= temp) break;
  4703. }
  4704. for (i++; i < 5; i++)
  4705. {
  4706. float temp = (40 + i * 5);
  4707. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4708. custom_message_state = i + 2;
  4709. setTargetBed(50 + 10 * (temp - 30) / 5);
  4710. // setTargetHotend(255, 0);
  4711. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4712. plan_buffer_line_curposXYZE(3000 / 60);
  4713. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4714. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4715. plan_buffer_line_curposXYZE(3000 / 60);
  4716. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4717. plan_buffer_line_curposXYZE(3000 / 60);
  4718. st_synchronize();
  4719. while (current_temperature_pinda < temp)
  4720. {
  4721. delay_keep_alive(1000);
  4722. serialecho_temperatures();
  4723. }
  4724. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4725. plan_buffer_line_curposXYZE(3000 / 60);
  4726. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4727. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4728. plan_buffer_line_curposXYZE(3000 / 60);
  4729. st_synchronize();
  4730. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4731. if (find_z_result == false) {
  4732. lcd_temp_cal_show_result(find_z_result);
  4733. break;
  4734. }
  4735. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4736. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4737. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4738. }
  4739. lcd_temp_cal_show_result(true);
  4740. homing_flag = false;
  4741. #else //PINDA_THERMISTOR
  4742. setTargetBed(PINDA_MIN_T);
  4743. float zero_z;
  4744. int z_shift = 0; //unit: steps
  4745. int t_c; // temperature
  4746. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4747. // We don't know where we are! HOME!
  4748. // Push the commands to the front of the message queue in the reverse order!
  4749. // There shall be always enough space reserved for these commands.
  4750. repeatcommand_front(); // repeat G76 with all its parameters
  4751. enquecommand_front_P(G28W0);
  4752. break;
  4753. }
  4754. puts_P(_N("PINDA probe calibration start"));
  4755. custom_message_type = CustomMsg::TempCal;
  4756. custom_message_state = 1;
  4757. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4758. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4759. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4760. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4761. plan_buffer_line_curposXYZE(3000 / 60);
  4762. st_synchronize();
  4763. while (fabs(degBed() - PINDA_MIN_T) > 1) {
  4764. delay_keep_alive(1000);
  4765. serialecho_temperatures();
  4766. }
  4767. //enquecommand_P(PSTR("M190 S50"));
  4768. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4769. delay_keep_alive(1000);
  4770. serialecho_temperatures();
  4771. }
  4772. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4773. current_position[Z_AXIS] = 5;
  4774. plan_buffer_line_curposXYZE(3000 / 60);
  4775. current_position[X_AXIS] = BED_X0;
  4776. current_position[Y_AXIS] = BED_Y0;
  4777. plan_buffer_line_curposXYZE(3000 / 60);
  4778. st_synchronize();
  4779. find_bed_induction_sensor_point_z(-1.f);
  4780. zero_z = current_position[Z_AXIS];
  4781. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4782. for (int i = 0; i<5; i++) {
  4783. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4784. custom_message_state = i + 2;
  4785. t_c = 60 + i * 10;
  4786. setTargetBed(t_c);
  4787. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4788. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4789. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4790. plan_buffer_line_curposXYZE(3000 / 60);
  4791. st_synchronize();
  4792. while (degBed() < t_c) {
  4793. delay_keep_alive(1000);
  4794. serialecho_temperatures();
  4795. }
  4796. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4797. delay_keep_alive(1000);
  4798. serialecho_temperatures();
  4799. }
  4800. current_position[Z_AXIS] = 5;
  4801. plan_buffer_line_curposXYZE(3000 / 60);
  4802. current_position[X_AXIS] = BED_X0;
  4803. current_position[Y_AXIS] = BED_Y0;
  4804. plan_buffer_line_curposXYZE(3000 / 60);
  4805. st_synchronize();
  4806. find_bed_induction_sensor_point_z(-1.f);
  4807. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4808. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4809. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4810. }
  4811. custom_message_type = CustomMsg::Status;
  4812. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4813. puts_P(_N("Temperature calibration done."));
  4814. disable_x();
  4815. disable_y();
  4816. disable_z();
  4817. disable_e0();
  4818. disable_e1();
  4819. disable_e2();
  4820. setTargetBed(0); //set bed target temperature back to 0
  4821. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4822. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4823. lcd_update_enable(true);
  4824. lcd_update(2);
  4825. #endif //PINDA_THERMISTOR
  4826. }
  4827. break;
  4828. /*!
  4829. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4830. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4831. #### Usage
  4832. G80 [ N | R | V | L | R | F | B ]
  4833. #### Parameters
  4834. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4835. - `R` - Probe retries. Default 3 max. 10
  4836. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4837. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4838. #### Additional Parameters
  4839. - `L` - Left Bed Level correct value in um.
  4840. - `R` - Right Bed Level correct value in um.
  4841. - `F` - Front Bed Level correct value in um.
  4842. - `B` - Back Bed Level correct value in um.
  4843. */
  4844. /*
  4845. * Probes a grid and produces a mesh to compensate for variable bed height
  4846. * The S0 report the points as below
  4847. * +----> X-axis
  4848. * |
  4849. * |
  4850. * v Y-axis
  4851. */
  4852. case 80: {
  4853. #ifdef MK1BP
  4854. break;
  4855. #endif //MK1BP
  4856. gcode_G80();
  4857. }
  4858. break;
  4859. /*!
  4860. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4861. Prints mesh bed leveling status and bed profile if activated.
  4862. */
  4863. case 81:
  4864. if (mbl.active) {
  4865. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4866. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4867. SERIAL_PROTOCOL(',');
  4868. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4869. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4870. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4871. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4872. for (uint8_t y = MESH_NUM_Y_POINTS; y-- > 0;) {
  4873. for (uint8_t x = 0; x < MESH_NUM_X_POINTS; x++) {
  4874. SERIAL_PROTOCOLPGM(" ");
  4875. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4876. }
  4877. SERIAL_PROTOCOLLN();
  4878. }
  4879. }
  4880. else
  4881. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4882. break;
  4883. #if 0
  4884. /*!
  4885. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4886. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4887. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4888. */
  4889. case 82:
  4890. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4891. int l_feedmultiply = setup_for_endstop_move();
  4892. find_bed_induction_sensor_point_z();
  4893. clean_up_after_endstop_move(l_feedmultiply);
  4894. SERIAL_PROTOCOLPGM("Bed found at: ");
  4895. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4896. SERIAL_PROTOCOLPGM("\n");
  4897. break;
  4898. /*!
  4899. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4900. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4901. */
  4902. case 83:
  4903. {
  4904. int babystepz = code_seen('S') ? code_value() : 0;
  4905. int BabyPosition = code_seen('P') ? code_value() : 0;
  4906. if (babystepz != 0) {
  4907. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4908. // Is the axis indexed starting with zero or one?
  4909. if (BabyPosition > 4) {
  4910. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4911. }else{
  4912. // Save it to the eeprom
  4913. babystepLoadZ = babystepz;
  4914. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4915. // adjust the Z
  4916. babystepsTodoZadd(babystepLoadZ);
  4917. }
  4918. }
  4919. }
  4920. break;
  4921. /*!
  4922. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4923. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4924. */
  4925. case 84:
  4926. babystepsTodoZsubtract(babystepLoadZ);
  4927. // babystepLoadZ = 0;
  4928. break;
  4929. /*!
  4930. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4931. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4932. */
  4933. case 85:
  4934. lcd_pick_babystep();
  4935. break;
  4936. #endif
  4937. /*!
  4938. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4939. This G-code will be performed at the start of a calibration script.
  4940. (Prusa3D specific)
  4941. */
  4942. case 86:
  4943. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4944. break;
  4945. /*!
  4946. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4947. This G-code will be performed at the end of a calibration script.
  4948. (Prusa3D specific)
  4949. */
  4950. case 87:
  4951. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4952. break;
  4953. /*!
  4954. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4955. Currently has no effect.
  4956. */
  4957. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4958. case 88:
  4959. break;
  4960. #endif // ENABLE_MESH_BED_LEVELING
  4961. /*!
  4962. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4963. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4964. */
  4965. case 90: {
  4966. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4967. }
  4968. break;
  4969. /*!
  4970. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4971. All coordinates from now on are relative to the last position. E axis is left intact.
  4972. */
  4973. case 91: {
  4974. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4975. }
  4976. break;
  4977. /*!
  4978. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4979. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4980. If a parameter is omitted, that axis will not be affected.
  4981. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4982. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4983. #### Usage
  4984. G92 [ X | Y | Z | E ]
  4985. #### Parameters
  4986. - `X` - new X axis position
  4987. - `Y` - new Y axis position
  4988. - `Z` - new Z axis position
  4989. - `E` - new extruder position
  4990. */
  4991. case 92: {
  4992. gcode_G92();
  4993. }
  4994. break;
  4995. /*!
  4996. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4997. Enable Prusa-specific Farm functions and g-code.
  4998. See Internal Prusa commands.
  4999. */
  5000. case 98:
  5001. farm_mode = 1;
  5002. PingTime = _millis();
  5003. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  5004. SilentModeMenu = SILENT_MODE_OFF;
  5005. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  5006. fCheckModeInit(); // alternatively invoke printer reset
  5007. break;
  5008. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  5009. Disables Prusa-specific Farm functions and g-code.
  5010. */
  5011. case 99:
  5012. farm_mode = 0;
  5013. lcd_printer_connected();
  5014. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  5015. lcd_update(2);
  5016. fCheckModeInit(); // alternatively invoke printer reset
  5017. break;
  5018. default:
  5019. printf_P(MSG_UNKNOWN_CODE, 'G', cmdbuffer + bufindr + CMDHDRSIZE);
  5020. }
  5021. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  5022. gcode_in_progress = 0;
  5023. } // end if(code_seen('G'))
  5024. /*!
  5025. ### End of G-Codes
  5026. */
  5027. /*!
  5028. ---------------------------------------------------------------------------------
  5029. # M Commands
  5030. */
  5031. else if(code_seen('M'))
  5032. {
  5033. int index;
  5034. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5035. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  5036. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  5037. printf_P(PSTR("Invalid M code: %s\n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5038. } else
  5039. {
  5040. mcode_in_progress = code_value_short();
  5041. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  5042. switch(mcode_in_progress)
  5043. {
  5044. /*!
  5045. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  5046. */
  5047. case 17:
  5048. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=20
  5049. enable_x();
  5050. enable_y();
  5051. enable_z();
  5052. enable_e0();
  5053. enable_e1();
  5054. enable_e2();
  5055. break;
  5056. #ifdef SDSUPPORT
  5057. /*!
  5058. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  5059. #### Usage
  5060. M20 [ L | T ]
  5061. #### Parameters
  5062. - `T` - Report timestamps as well. The value is one uint32_t encoded as hex. Requires host software parsing (Cap:EXTENDED_M20).
  5063. - `L` - Reports long filenames instead of just short filenames. Requires host software parsing (Cap:EXTENDED_M20).
  5064. */
  5065. case 20:
  5066. KEEPALIVE_STATE(NOT_BUSY); // do not send busy messages during listing. Inhibits the output of manage_heater()
  5067. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  5068. card.ls(CardReader::ls_param(code_seen('L'), code_seen('T')));
  5069. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  5070. break;
  5071. /*!
  5072. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  5073. */
  5074. case 21:
  5075. card.initsd();
  5076. break;
  5077. /*!
  5078. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  5079. */
  5080. case 22:
  5081. card.release();
  5082. break;
  5083. /*!
  5084. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  5085. #### Usage
  5086. M23 [filename]
  5087. */
  5088. case 23:
  5089. starpos = (strchr(strchr_pointer + 4,'*'));
  5090. if(starpos!=NULL)
  5091. *(starpos)='\0';
  5092. card.openFileReadFilteredGcode(strchr_pointer + 4, true);
  5093. break;
  5094. /*!
  5095. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  5096. */
  5097. case 24:
  5098. if (isPrintPaused)
  5099. lcd_resume_print();
  5100. else
  5101. {
  5102. if (!card.get_sdpos())
  5103. {
  5104. // A new print has started from scratch, reset stats
  5105. failstats_reset_print();
  5106. #ifndef LA_NOCOMPAT
  5107. la10c_reset();
  5108. #endif
  5109. }
  5110. card.startFileprint();
  5111. starttime=_millis();
  5112. }
  5113. break;
  5114. /*!
  5115. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  5116. Set position in SD card file to index in bytes.
  5117. This command is expected to be called after M23 and before M24.
  5118. Otherwise effect of this command is undefined.
  5119. #### Usage
  5120. M26 [ S ]
  5121. #### Parameters
  5122. - `S` - Index in bytes
  5123. */
  5124. case 26:
  5125. if(card.cardOK && code_seen('S')) {
  5126. long index = code_value_long();
  5127. card.setIndex(index);
  5128. // We don't disable interrupt during update of sdpos_atomic
  5129. // as we expect, that SD card print is not active in this moment
  5130. sdpos_atomic = index;
  5131. }
  5132. break;
  5133. /*!
  5134. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  5135. #### Usage
  5136. M27 [ P ]
  5137. #### Parameters
  5138. - `P` - Show full SFN path instead of LFN only.
  5139. */
  5140. case 27:
  5141. card.getStatus(code_seen('P'));
  5142. break;
  5143. /*!
  5144. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  5145. */
  5146. case 28:
  5147. starpos = (strchr(strchr_pointer + 4,'*'));
  5148. if(starpos != NULL){
  5149. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5150. strchr_pointer = strchr(npos,' ') + 1;
  5151. *(starpos) = '\0';
  5152. }
  5153. card.openFileWrite(strchr_pointer+4);
  5154. break;
  5155. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  5156. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  5157. */
  5158. case 29:
  5159. //processed in write to file routine above
  5160. //card,saving = false;
  5161. break;
  5162. /*!
  5163. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  5164. #### Usage
  5165. M30 [filename]
  5166. */
  5167. case 30:
  5168. if (card.cardOK){
  5169. card.closefile();
  5170. starpos = (strchr(strchr_pointer + 4,'*'));
  5171. if(starpos != NULL){
  5172. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5173. strchr_pointer = strchr(npos,' ') + 1;
  5174. *(starpos) = '\0';
  5175. }
  5176. card.removeFile(strchr_pointer + 4);
  5177. }
  5178. break;
  5179. /*!
  5180. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  5181. @todo What are the parameters P and S for in M32?
  5182. */
  5183. case 32:
  5184. {
  5185. if(card.sdprinting) {
  5186. st_synchronize();
  5187. }
  5188. starpos = (strchr(strchr_pointer + 4,'*'));
  5189. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  5190. if(namestartpos==NULL)
  5191. {
  5192. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  5193. }
  5194. else
  5195. namestartpos++; //to skip the '!'
  5196. if(starpos!=NULL)
  5197. *(starpos)='\0';
  5198. bool call_procedure=(code_seen('P'));
  5199. if(strchr_pointer>namestartpos)
  5200. call_procedure=false; //false alert, 'P' found within filename
  5201. if( card.cardOK )
  5202. {
  5203. card.openFileReadFilteredGcode(namestartpos,!call_procedure);
  5204. if(code_seen('S'))
  5205. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  5206. card.setIndex(code_value_long());
  5207. card.startFileprint();
  5208. if(!call_procedure)
  5209. {
  5210. if(!card.get_sdpos())
  5211. {
  5212. // A new print has started from scratch, reset stats
  5213. failstats_reset_print();
  5214. #ifndef LA_NOCOMPAT
  5215. la10c_reset();
  5216. #endif
  5217. }
  5218. starttime=_millis(); // procedure calls count as normal print time.
  5219. }
  5220. }
  5221. } break;
  5222. /*!
  5223. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  5224. #### Usage
  5225. M928 [filename]
  5226. */
  5227. case 928:
  5228. starpos = (strchr(strchr_pointer + 5,'*'));
  5229. if(starpos != NULL){
  5230. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5231. strchr_pointer = strchr(npos,' ') + 1;
  5232. *(starpos) = '\0';
  5233. }
  5234. card.openLogFile(strchr_pointer+5);
  5235. break;
  5236. #endif //SDSUPPORT
  5237. /*!
  5238. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  5239. */
  5240. case 31: //M31 take time since the start of the SD print or an M109 command
  5241. {
  5242. stoptime=_millis();
  5243. char time[30];
  5244. unsigned long t=(stoptime-starttime)/1000;
  5245. int sec,min;
  5246. min=t/60;
  5247. sec=t%60;
  5248. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  5249. SERIAL_ECHO_START;
  5250. SERIAL_ECHOLN(time);
  5251. lcd_setstatus(time);
  5252. autotempShutdown();
  5253. }
  5254. break;
  5255. /*!
  5256. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  5257. #### Usage
  5258. M42 [ P | S ]
  5259. #### Parameters
  5260. - `P` - Pin number.
  5261. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  5262. */
  5263. case 42:
  5264. if (code_seen('S'))
  5265. {
  5266. uint8_t pin_status = code_value_uint8();
  5267. int8_t pin_number = LED_PIN;
  5268. if (code_seen('P'))
  5269. pin_number = code_value_uint8();
  5270. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  5271. {
  5272. if ((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number)
  5273. {
  5274. pin_number = -1;
  5275. break;
  5276. }
  5277. }
  5278. #if defined(FAN_PIN) && FAN_PIN > -1
  5279. if (pin_number == FAN_PIN)
  5280. fanSpeed = pin_status;
  5281. #endif
  5282. if (pin_number > -1)
  5283. {
  5284. pinMode(pin_number, OUTPUT);
  5285. digitalWrite(pin_number, pin_status);
  5286. analogWrite(pin_number, pin_status);
  5287. }
  5288. }
  5289. break;
  5290. /*!
  5291. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5292. */
  5293. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5294. // Reset the baby step value and the baby step applied flag.
  5295. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5296. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5297. // Reset the skew and offset in both RAM and EEPROM.
  5298. reset_bed_offset_and_skew();
  5299. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5300. // the planner will not perform any adjustments in the XY plane.
  5301. // Wait for the motors to stop and update the current position with the absolute values.
  5302. world2machine_revert_to_uncorrected();
  5303. break;
  5304. /*!
  5305. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5306. #### Usage
  5307. M45 [ V ]
  5308. #### Parameters
  5309. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5310. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5311. */
  5312. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5313. {
  5314. int8_t verbosity_level = 0;
  5315. bool only_Z = code_seen('Z');
  5316. #ifdef SUPPORT_VERBOSITY
  5317. if (code_seen('V'))
  5318. {
  5319. // Just 'V' without a number counts as V1.
  5320. char c = strchr_pointer[1];
  5321. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5322. }
  5323. #endif //SUPPORT_VERBOSITY
  5324. gcode_M45(only_Z, verbosity_level);
  5325. }
  5326. break;
  5327. /*!
  5328. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5329. */
  5330. case 46:
  5331. {
  5332. // M46: Prusa3D: Show the assigned IP address.
  5333. if (card.ToshibaFlashAir_isEnabled()) {
  5334. uint8_t ip[4];
  5335. if (card.ToshibaFlashAir_GetIP(ip)) {
  5336. // SERIAL_PROTOCOLPGM("Toshiba FlashAir current IP: ");
  5337. SERIAL_PROTOCOL(uint8_t(ip[0]));
  5338. SERIAL_PROTOCOL('.');
  5339. SERIAL_PROTOCOL(uint8_t(ip[1]));
  5340. SERIAL_PROTOCOL('.');
  5341. SERIAL_PROTOCOL(uint8_t(ip[2]));
  5342. SERIAL_PROTOCOL('.');
  5343. SERIAL_PROTOCOL(uint8_t(ip[3]));
  5344. SERIAL_PROTOCOLLN();
  5345. } else {
  5346. SERIAL_PROTOCOLPGM("?Toshiba FlashAir GetIP failed\n");
  5347. }
  5348. } else {
  5349. SERIAL_PROTOCOLLNPGM("n/a");
  5350. }
  5351. break;
  5352. }
  5353. /*!
  5354. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5355. */
  5356. case 47:
  5357. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5358. lcd_diag_show_end_stops();
  5359. KEEPALIVE_STATE(IN_HANDLER);
  5360. break;
  5361. #if 0
  5362. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5363. {
  5364. // Disable the default update procedure of the display. We will do a modal dialog.
  5365. lcd_update_enable(false);
  5366. // Let the planner use the uncorrected coordinates.
  5367. mbl.reset();
  5368. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5369. // the planner will not perform any adjustments in the XY plane.
  5370. // Wait for the motors to stop and update the current position with the absolute values.
  5371. world2machine_revert_to_uncorrected();
  5372. // Move the print head close to the bed.
  5373. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5375. st_synchronize();
  5376. // Home in the XY plane.
  5377. set_destination_to_current();
  5378. int l_feedmultiply = setup_for_endstop_move();
  5379. home_xy();
  5380. int8_t verbosity_level = 0;
  5381. if (code_seen('V')) {
  5382. // Just 'V' without a number counts as V1.
  5383. char c = strchr_pointer[1];
  5384. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5385. }
  5386. bool success = scan_bed_induction_points(verbosity_level);
  5387. clean_up_after_endstop_move(l_feedmultiply);
  5388. // Print head up.
  5389. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5390. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5391. st_synchronize();
  5392. lcd_update_enable(true);
  5393. break;
  5394. }
  5395. #endif
  5396. #ifdef ENABLE_AUTO_BED_LEVELING
  5397. #ifdef Z_PROBE_REPEATABILITY_TEST
  5398. /*!
  5399. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5400. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5401. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5402. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5403. #### Usage
  5404. M48 [ n | X | Y | V | L ]
  5405. #### Parameters
  5406. - `n` - Number of samples. Valid values 4-50
  5407. - `X` - X position for samples
  5408. - `Y` - Y position for samples
  5409. - `V` - Verbose level. Valid values 1-4
  5410. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5411. */
  5412. case 48: // M48 Z-Probe repeatability
  5413. {
  5414. #if Z_MIN_PIN == -1
  5415. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5416. #endif
  5417. double sum=0.0;
  5418. double mean=0.0;
  5419. double sigma=0.0;
  5420. double sample_set[50];
  5421. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5422. double X_current, Y_current, Z_current;
  5423. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5424. if (code_seen('V') || code_seen('v')) {
  5425. verbose_level = code_value();
  5426. if (verbose_level<0 || verbose_level>4 ) {
  5427. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5428. goto Sigma_Exit;
  5429. }
  5430. }
  5431. if (verbose_level > 0) {
  5432. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5433. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5434. }
  5435. if (code_seen('n')) {
  5436. n_samples = code_value();
  5437. if (n_samples<4 || n_samples>50 ) {
  5438. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5439. goto Sigma_Exit;
  5440. }
  5441. }
  5442. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5443. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5444. Z_current = st_get_position_mm(Z_AXIS);
  5445. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5446. ext_position = st_get_position_mm(E_AXIS);
  5447. if (code_seen('X') || code_seen('x') ) {
  5448. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5449. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5450. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5451. goto Sigma_Exit;
  5452. }
  5453. }
  5454. if (code_seen('Y') || code_seen('y') ) {
  5455. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5456. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5457. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5458. goto Sigma_Exit;
  5459. }
  5460. }
  5461. if (code_seen('L') || code_seen('l') ) {
  5462. n_legs = code_value();
  5463. if ( n_legs==1 )
  5464. n_legs = 2;
  5465. if ( n_legs<0 || n_legs>15 ) {
  5466. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5467. goto Sigma_Exit;
  5468. }
  5469. }
  5470. //
  5471. // Do all the preliminary setup work. First raise the probe.
  5472. //
  5473. st_synchronize();
  5474. plan_bed_level_matrix.set_to_identity();
  5475. plan_buffer_line( X_current, Y_current, Z_start_location,
  5476. ext_position,
  5477. homing_feedrate[Z_AXIS]/60,
  5478. active_extruder);
  5479. st_synchronize();
  5480. //
  5481. // Now get everything to the specified probe point So we can safely do a probe to
  5482. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5483. // use that as a starting point for each probe.
  5484. //
  5485. if (verbose_level > 2)
  5486. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5487. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5488. ext_position,
  5489. homing_feedrate[X_AXIS]/60,
  5490. active_extruder);
  5491. st_synchronize();
  5492. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5493. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5494. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5495. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5496. //
  5497. // OK, do the inital probe to get us close to the bed.
  5498. // Then retrace the right amount and use that in subsequent probes
  5499. //
  5500. int l_feedmultiply = setup_for_endstop_move();
  5501. run_z_probe();
  5502. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5503. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5504. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5505. ext_position,
  5506. homing_feedrate[X_AXIS]/60,
  5507. active_extruder);
  5508. st_synchronize();
  5509. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5510. for( n=0; n<n_samples; n++) {
  5511. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5512. if ( n_legs) {
  5513. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5514. int rotational_direction, l;
  5515. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5516. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5517. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5518. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5519. //SERIAL_ECHOPAIR(" theta: ",theta);
  5520. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5521. //SERIAL_PROTOCOLLNPGM("");
  5522. for( l=0; l<n_legs-1; l++) {
  5523. if (rotational_direction==1)
  5524. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5525. else
  5526. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5527. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5528. if ( radius<0.0 )
  5529. radius = -radius;
  5530. X_current = X_probe_location + cos(theta) * radius;
  5531. Y_current = Y_probe_location + sin(theta) * radius;
  5532. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5533. X_current = X_MIN_POS;
  5534. if ( X_current>X_MAX_POS)
  5535. X_current = X_MAX_POS;
  5536. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5537. Y_current = Y_MIN_POS;
  5538. if ( Y_current>Y_MAX_POS)
  5539. Y_current = Y_MAX_POS;
  5540. if (verbose_level>3 ) {
  5541. SERIAL_ECHOPAIR("x: ", X_current);
  5542. SERIAL_ECHOPAIR("y: ", Y_current);
  5543. SERIAL_PROTOCOLLNPGM("");
  5544. }
  5545. do_blocking_move_to( X_current, Y_current, Z_current );
  5546. }
  5547. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5548. }
  5549. int l_feedmultiply = setup_for_endstop_move();
  5550. run_z_probe();
  5551. sample_set[n] = current_position[Z_AXIS];
  5552. //
  5553. // Get the current mean for the data points we have so far
  5554. //
  5555. sum=0.0;
  5556. for( j=0; j<=n; j++) {
  5557. sum = sum + sample_set[j];
  5558. }
  5559. mean = sum / (double (n+1));
  5560. //
  5561. // Now, use that mean to calculate the standard deviation for the
  5562. // data points we have so far
  5563. //
  5564. sum=0.0;
  5565. for( j=0; j<=n; j++) {
  5566. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5567. }
  5568. sigma = sqrt( sum / (double (n+1)) );
  5569. if (verbose_level > 1) {
  5570. SERIAL_PROTOCOL(n+1);
  5571. SERIAL_PROTOCOL(" of ");
  5572. SERIAL_PROTOCOL(n_samples);
  5573. SERIAL_PROTOCOLPGM(" z: ");
  5574. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5575. }
  5576. if (verbose_level > 2) {
  5577. SERIAL_PROTOCOL(" mean: ");
  5578. SERIAL_PROTOCOL_F(mean,6);
  5579. SERIAL_PROTOCOL(" sigma: ");
  5580. SERIAL_PROTOCOL_F(sigma,6);
  5581. }
  5582. if (verbose_level > 0)
  5583. SERIAL_PROTOCOLPGM("\n");
  5584. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5585. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5586. st_synchronize();
  5587. }
  5588. _delay(1000);
  5589. clean_up_after_endstop_move(l_feedmultiply);
  5590. // enable_endstops(true);
  5591. if (verbose_level > 0) {
  5592. SERIAL_PROTOCOLPGM("Mean: ");
  5593. SERIAL_PROTOCOL_F(mean, 6);
  5594. SERIAL_PROTOCOLPGM("\n");
  5595. }
  5596. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5597. SERIAL_PROTOCOL_F(sigma, 6);
  5598. SERIAL_PROTOCOLPGM("\n\n");
  5599. Sigma_Exit:
  5600. break;
  5601. }
  5602. #endif // Z_PROBE_REPEATABILITY_TEST
  5603. #endif // ENABLE_AUTO_BED_LEVELING
  5604. /*!
  5605. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5606. #### Usage
  5607. M73 [ P | R | Q | S | C | D ]
  5608. #### Parameters
  5609. - `P` - Percent in normal mode
  5610. - `R` - Time remaining in normal mode
  5611. - `Q` - Percent in silent mode
  5612. - `S` - Time in silent mode
  5613. - `C` - Time to change/pause/user interaction in normal mode
  5614. - `D` - Time to change/pause/user interaction in silent mode
  5615. */
  5616. case 73: //M73 show percent done, time remaining and time to change/pause
  5617. {
  5618. if(code_seen('P')) print_percent_done_normal = code_value_uint8();
  5619. if(code_seen('R')) print_time_remaining_normal = code_value();
  5620. if(code_seen('Q')) print_percent_done_silent = code_value_uint8();
  5621. if(code_seen('S')) print_time_remaining_silent = code_value();
  5622. if(code_seen('C')){
  5623. float print_time_to_change_normal_f = code_value_float();
  5624. print_time_to_change_normal = ( print_time_to_change_normal_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_normal_f;
  5625. }
  5626. if(code_seen('D')){
  5627. float print_time_to_change_silent_f = code_value_float();
  5628. print_time_to_change_silent = ( print_time_to_change_silent_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_silent_f;
  5629. }
  5630. {
  5631. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %hhd; print time remaining in mins: %d; Change in mins: %d\n");
  5632. printf_P(_msg_mode_done_remain, _N("NORMAL"), int8_t(print_percent_done_normal), print_time_remaining_normal, print_time_to_change_normal);
  5633. printf_P(_msg_mode_done_remain, _N("SILENT"), int8_t(print_percent_done_silent), print_time_remaining_silent, print_time_to_change_silent);
  5634. }
  5635. break;
  5636. }
  5637. /*!
  5638. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5639. #### Usage
  5640. M104 [ S ]
  5641. #### Parameters
  5642. - `S` - Target temperature
  5643. */
  5644. case 104: // M104
  5645. {
  5646. uint8_t extruder;
  5647. if(setTargetedHotend(104,extruder)){
  5648. break;
  5649. }
  5650. if (code_seen('S'))
  5651. {
  5652. setTargetHotendSafe(code_value(), extruder);
  5653. }
  5654. break;
  5655. }
  5656. /*!
  5657. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5658. It is processed much earlier as to bypass the cmdqueue.
  5659. */
  5660. case 112:
  5661. kill(MSG_M112_KILL, 3);
  5662. break;
  5663. /*!
  5664. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5665. #### Usage
  5666. M140 [ S ]
  5667. #### Parameters
  5668. - `S` - Target temperature
  5669. */
  5670. case 140:
  5671. if (code_seen('S')) setTargetBed(code_value());
  5672. break;
  5673. /*!
  5674. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5675. Prints temperatures:
  5676. - `T:` - Hotend (actual / target)
  5677. - `B:` - Bed (actual / target)
  5678. - `Tx:` - x Tool (actual / target)
  5679. - `@:` - Hotend power
  5680. - `B@:` - Bed power
  5681. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5682. - `A:` - Ambient actual (only MK3/s)
  5683. _Example:_
  5684. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5685. */
  5686. case 105:
  5687. {
  5688. uint8_t extruder;
  5689. if(setTargetedHotend(105, extruder)){
  5690. break;
  5691. }
  5692. SERIAL_PROTOCOLPGM("ok ");
  5693. gcode_M105(extruder);
  5694. cmdqueue_pop_front(); //prevent an ok after the command since this command uses an ok at the beginning.
  5695. cmdbuffer_front_already_processed = true;
  5696. break;
  5697. }
  5698. #if defined(AUTO_REPORT)
  5699. /*!
  5700. ### M155 - Automatically send status <a href="https://reprap.org/wiki/G-code#M155:_Automatically_send_temperatures">M155: Automatically send temperatures</a>
  5701. #### Usage
  5702. M155 [ S ] [ C ]
  5703. #### Parameters
  5704. - `S` - Set autoreporting interval in seconds. 0 to disable. Maximum: 255
  5705. - `C` - Activate auto-report function (bit mask). Default is temperature.
  5706. bit 0 = Auto-report temperatures
  5707. bit 1 = Auto-report fans
  5708. bit 2 = Auto-report position
  5709. bit 3 = free
  5710. bit 4 = free
  5711. bit 5 = free
  5712. bit 6 = free
  5713. bit 7 = free
  5714. */
  5715. case 155:
  5716. {
  5717. if (code_seen('S')){
  5718. autoReportFeatures.SetPeriod( code_value_uint8() );
  5719. }
  5720. if (code_seen('C')){
  5721. autoReportFeatures.SetMask(code_value_uint8());
  5722. } else{
  5723. autoReportFeatures.SetMask(1); //Backwards compability to host systems like Octoprint to send only temp if paramerter `C`isn't used.
  5724. }
  5725. }
  5726. break;
  5727. #endif //AUTO_REPORT
  5728. /*!
  5729. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5730. #### Usage
  5731. M104 [ B | R | S ]
  5732. #### Parameters (not mandatory)
  5733. - `S` - Set extruder temperature
  5734. - `R` - Set extruder temperature
  5735. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5736. Parameters S and R are treated identically.
  5737. Command always waits for both cool down and heat up.
  5738. If no parameters are supplied waits for previously set extruder temperature.
  5739. */
  5740. case 109:
  5741. {
  5742. uint8_t extruder;
  5743. if(setTargetedHotend(109, extruder)){
  5744. break;
  5745. }
  5746. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5747. heating_status = HeatingStatus::EXTRUDER_HEATING;
  5748. if (farm_mode) { prusa_statistics(1); };
  5749. #ifdef AUTOTEMP
  5750. autotemp_enabled=false;
  5751. #endif
  5752. if (code_seen('S')) {
  5753. setTargetHotendSafe(code_value(), extruder);
  5754. } else if (code_seen('R')) {
  5755. setTargetHotendSafe(code_value(), extruder);
  5756. }
  5757. #ifdef AUTOTEMP
  5758. if (code_seen('S')) autotemp_min=code_value();
  5759. if (code_seen('B')) autotemp_max=code_value();
  5760. if (code_seen('F'))
  5761. {
  5762. autotemp_factor=code_value();
  5763. autotemp_enabled=true;
  5764. }
  5765. #endif
  5766. codenum = _millis();
  5767. /* See if we are heating up or cooling down */
  5768. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5769. KEEPALIVE_STATE(NOT_BUSY);
  5770. cancel_heatup = false;
  5771. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5772. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5773. KEEPALIVE_STATE(IN_HANDLER);
  5774. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  5775. if (farm_mode) { prusa_statistics(2); };
  5776. //starttime=_millis();
  5777. previous_millis_cmd.start();
  5778. }
  5779. break;
  5780. /*!
  5781. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5782. #### Usage
  5783. M190 [ R | S ]
  5784. #### Parameters (not mandatory)
  5785. - `S` - Set extruder temperature and wait for heating
  5786. - `R` - Set extruder temperature and wait for heating or cooling
  5787. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5788. */
  5789. case 190:
  5790. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5791. {
  5792. bool CooldownNoWait = false;
  5793. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5794. heating_status = HeatingStatus::BED_HEATING;
  5795. if (farm_mode) { prusa_statistics(1); };
  5796. if (code_seen('S'))
  5797. {
  5798. setTargetBed(code_value());
  5799. CooldownNoWait = true;
  5800. }
  5801. else if (code_seen('R'))
  5802. {
  5803. setTargetBed(code_value());
  5804. }
  5805. codenum = _millis();
  5806. cancel_heatup = false;
  5807. target_direction = isHeatingBed(); // true if heating, false if cooling
  5808. KEEPALIVE_STATE(NOT_BUSY);
  5809. while ( (!cancel_heatup) && (target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false))) )
  5810. {
  5811. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5812. {
  5813. if (!farm_mode) {
  5814. float tt = degHotend(active_extruder);
  5815. SERIAL_PROTOCOLPGM("T:");
  5816. SERIAL_PROTOCOL(tt);
  5817. SERIAL_PROTOCOLPGM(" E:");
  5818. SERIAL_PROTOCOL((int)active_extruder);
  5819. SERIAL_PROTOCOLPGM(" B:");
  5820. SERIAL_PROTOCOL_F(degBed(), 1);
  5821. SERIAL_PROTOCOLLN();
  5822. }
  5823. codenum = _millis();
  5824. }
  5825. manage_heater();
  5826. manage_inactivity();
  5827. lcd_update(0);
  5828. }
  5829. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5830. KEEPALIVE_STATE(IN_HANDLER);
  5831. heating_status = HeatingStatus::BED_HEATING_COMPLETE;
  5832. previous_millis_cmd.start();
  5833. }
  5834. #endif
  5835. break;
  5836. #if defined(FAN_PIN) && FAN_PIN > -1
  5837. /*!
  5838. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5839. #### Usage
  5840. M106 [ S ]
  5841. #### Parameters
  5842. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5843. */
  5844. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5845. if (code_seen('S')){
  5846. fanSpeed = code_value_uint8();
  5847. }
  5848. else {
  5849. fanSpeed = 255;
  5850. }
  5851. break;
  5852. /*!
  5853. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5854. */
  5855. case 107:
  5856. fanSpeed = 0;
  5857. break;
  5858. #endif //FAN_PIN
  5859. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5860. /*!
  5861. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5862. Only works if the firmware is compiled with PS_ON_PIN defined.
  5863. */
  5864. case 80:
  5865. SET_OUTPUT(PS_ON_PIN); //GND
  5866. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5867. // If you have a switch on suicide pin, this is useful
  5868. // if you want to start another print with suicide feature after
  5869. // a print without suicide...
  5870. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5871. SET_OUTPUT(SUICIDE_PIN);
  5872. WRITE(SUICIDE_PIN, HIGH);
  5873. #endif
  5874. powersupply = true;
  5875. LCD_MESSAGERPGM(MSG_WELCOME);
  5876. lcd_update(0);
  5877. break;
  5878. /*!
  5879. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5880. Only works if the firmware is compiled with PS_ON_PIN defined.
  5881. */
  5882. case 81:
  5883. disable_heater();
  5884. st_synchronize();
  5885. disable_e0();
  5886. disable_e1();
  5887. disable_e2();
  5888. finishAndDisableSteppers();
  5889. fanSpeed = 0;
  5890. _delay(1000); // Wait a little before to switch off
  5891. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5892. st_synchronize();
  5893. suicide();
  5894. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5895. SET_OUTPUT(PS_ON_PIN);
  5896. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5897. #endif
  5898. powersupply = false;
  5899. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5900. lcd_update(0);
  5901. break;
  5902. #endif
  5903. /*!
  5904. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5905. Makes the extruder interpret extrusion as absolute positions.
  5906. */
  5907. case 82:
  5908. axis_relative_modes &= ~E_AXIS_MASK;
  5909. break;
  5910. /*!
  5911. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5912. Makes the extruder interpret extrusion values as relative positions.
  5913. */
  5914. case 83:
  5915. axis_relative_modes |= E_AXIS_MASK;
  5916. break;
  5917. /*!
  5918. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5919. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5920. This command can be used without any additional parameters. In that case all steppers are disabled.
  5921. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5922. M84 [ S | X | Y | Z | E ]
  5923. - `S` - Seconds
  5924. - `X` - X axis
  5925. - `Y` - Y axis
  5926. - `Z` - Z axis
  5927. - `E` - Extruder
  5928. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5929. Equal to M84 (compatibility)
  5930. */
  5931. case 18: //compatibility
  5932. case 84: // M84
  5933. if(code_seen('S')){
  5934. stepper_inactive_time = code_value() * 1000;
  5935. }
  5936. else
  5937. {
  5938. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5939. if(all_axis)
  5940. {
  5941. st_synchronize();
  5942. disable_e0();
  5943. disable_e1();
  5944. disable_e2();
  5945. finishAndDisableSteppers();
  5946. }
  5947. else
  5948. {
  5949. st_synchronize();
  5950. if (code_seen('X')) disable_x();
  5951. if (code_seen('Y')) disable_y();
  5952. if (code_seen('Z')) disable_z();
  5953. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5954. if (code_seen('E')) {
  5955. disable_e0();
  5956. disable_e1();
  5957. disable_e2();
  5958. }
  5959. #endif
  5960. }
  5961. }
  5962. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5963. print_time_remaining_init();
  5964. snmm_filaments_used = 0;
  5965. break;
  5966. /*!
  5967. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5968. #### Usage
  5969. M85 [ S ]
  5970. #### Parameters
  5971. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5972. */
  5973. case 85: // M85
  5974. if(code_seen('S')) {
  5975. max_inactive_time = code_value() * 1000;
  5976. }
  5977. break;
  5978. #ifdef SAFETYTIMER
  5979. /*!
  5980. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5981. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5982. #### Usage
  5983. M86 [ S ]
  5984. #### Parameters
  5985. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5986. */
  5987. case 86:
  5988. if (code_seen('S')) {
  5989. safetytimer_inactive_time = code_value() * 1000;
  5990. safetyTimer.start();
  5991. }
  5992. break;
  5993. #endif
  5994. /*!
  5995. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5996. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5997. #### Usage
  5998. M92 [ X | Y | Z | E ]
  5999. #### Parameters
  6000. - `X` - Steps per unit for the X drive
  6001. - `Y` - Steps per unit for the Y drive
  6002. - `Z` - Steps per unit for the Z drive
  6003. - `E` - Steps per unit for the extruder drive
  6004. */
  6005. case 92:
  6006. for(int8_t i=0; i < NUM_AXIS; i++)
  6007. {
  6008. if(code_seen(axis_codes[i]))
  6009. {
  6010. if(i == E_AXIS) { // E
  6011. float value = code_value();
  6012. if(value < 20.0) {
  6013. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  6014. cs.max_jerk[E_AXIS] *= factor;
  6015. max_feedrate[i] *= factor;
  6016. axis_steps_per_sqr_second[i] *= factor;
  6017. }
  6018. cs.axis_steps_per_unit[i] = value;
  6019. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  6020. fsensor_set_axis_steps_per_unit(value);
  6021. #endif
  6022. }
  6023. else {
  6024. cs.axis_steps_per_unit[i] = code_value();
  6025. }
  6026. }
  6027. }
  6028. break;
  6029. /*!
  6030. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  6031. Sets the line number in G-code
  6032. #### Usage
  6033. M110 [ N ]
  6034. #### Parameters
  6035. - `N` - Line number
  6036. */
  6037. case 110:
  6038. if (code_seen('N'))
  6039. gcode_LastN = code_value_long();
  6040. break;
  6041. /*!
  6042. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  6043. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  6044. #### Usage
  6045. M113 [ S ]
  6046. #### Parameters
  6047. - `S` - Seconds. Default is 2 seconds between "busy" messages
  6048. */
  6049. case 113:
  6050. if (code_seen('S')) {
  6051. host_keepalive_interval = code_value_uint8();
  6052. // NOMORE(host_keepalive_interval, 60);
  6053. }
  6054. else {
  6055. SERIAL_ECHO_START;
  6056. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6057. SERIAL_PROTOCOLLN();
  6058. }
  6059. break;
  6060. /*!
  6061. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  6062. Print the firmware info and capabilities
  6063. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  6064. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  6065. _Examples:_
  6066. `M115` results:
  6067. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  6068. `M115 V` results:
  6069. `3.8.1`
  6070. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  6071. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  6072. #### Usage
  6073. M115 [ V | U ]
  6074. #### Parameters
  6075. - V - Report current installed firmware version
  6076. - U - Firmware version provided by G-code to be compared to current one.
  6077. */
  6078. case 115: // M115
  6079. if (code_seen('V')) {
  6080. // Report the Prusa version number.
  6081. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  6082. } else if (code_seen('U')) {
  6083. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  6084. // pause the print for 30s and ask the user to upgrade the firmware.
  6085. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  6086. } else {
  6087. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  6088. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  6089. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  6090. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  6091. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  6092. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  6093. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  6094. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  6095. SERIAL_ECHOPGM(" UUID:");
  6096. SERIAL_ECHOLNPGM(MACHINE_UUID);
  6097. #ifdef EXTENDED_CAPABILITIES_REPORT
  6098. extended_capabilities_report();
  6099. #endif //EXTENDED_CAPABILITIES_REPORT
  6100. }
  6101. break;
  6102. /*!
  6103. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  6104. */
  6105. case 114:
  6106. gcode_M114();
  6107. break;
  6108. /*
  6109. M117 moved up to get the high priority
  6110. case 117: // M117 display message
  6111. starpos = (strchr(strchr_pointer + 5,'*'));
  6112. if(starpos!=NULL)
  6113. *(starpos)='\0';
  6114. lcd_setstatus(strchr_pointer + 5);
  6115. break;*/
  6116. #ifdef M120_M121_ENABLED
  6117. /*!
  6118. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  6119. */
  6120. case 120:
  6121. enable_endstops(true) ;
  6122. break;
  6123. /*!
  6124. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  6125. */
  6126. case 121:
  6127. enable_endstops(false) ;
  6128. break;
  6129. #endif //M120_M121_ENABLED
  6130. /*!
  6131. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  6132. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  6133. */
  6134. case 119:
  6135. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  6136. SERIAL_PROTOCOLLN();
  6137. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  6138. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  6139. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  6140. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6141. }else{
  6142. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6143. }
  6144. SERIAL_PROTOCOLLN();
  6145. #endif
  6146. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  6147. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  6148. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  6149. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6150. }else{
  6151. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6152. }
  6153. SERIAL_PROTOCOLLN();
  6154. #endif
  6155. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  6156. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  6157. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  6158. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6159. }else{
  6160. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6161. }
  6162. SERIAL_PROTOCOLLN();
  6163. #endif
  6164. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  6165. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  6166. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  6167. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6168. }else{
  6169. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6170. }
  6171. SERIAL_PROTOCOLLN();
  6172. #endif
  6173. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  6174. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  6175. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  6176. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6177. }else{
  6178. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6179. }
  6180. SERIAL_PROTOCOLLN();
  6181. #endif
  6182. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  6183. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  6184. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  6185. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6186. }else{
  6187. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6188. }
  6189. SERIAL_PROTOCOLLN();
  6190. #endif
  6191. break;
  6192. //!@todo update for all axes, use for loop
  6193. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  6194. /*!
  6195. ### M123 - Tachometer value <a href="https://www.reprap.org/wiki/G-code#M123:_Tachometer_value_.28RepRap_.26_Prusa.29">M123: Tachometer value</a>
  6196. This command is used to report fan speeds and fan pwm values.
  6197. #### Usage
  6198. M123
  6199. - E0: - Hotend fan speed in RPM
  6200. - PRN1: - Part cooling fans speed in RPM
  6201. - E0@: - Hotend fan PWM value
  6202. - PRN1@: -Part cooling fan PWM value
  6203. _Example:_
  6204. E0:3240 RPM PRN1:4560 RPM E0@:255 PRN1@:255
  6205. */
  6206. case 123:
  6207. gcode_M123();
  6208. break;
  6209. #endif //FANCHECK and TACH_0 and TACH_1
  6210. #ifdef BLINKM
  6211. /*!
  6212. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  6213. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  6214. #### Usage
  6215. M150 [ R | U | B ]
  6216. #### Parameters
  6217. - `R` - Red color value
  6218. - `U` - Green color value. It is NOT `G`!
  6219. - `B` - Blue color value
  6220. */
  6221. case 150:
  6222. {
  6223. byte red;
  6224. byte grn;
  6225. byte blu;
  6226. if(code_seen('R')) red = code_value();
  6227. if(code_seen('U')) grn = code_value();
  6228. if(code_seen('B')) blu = code_value();
  6229. SendColors(red,grn,blu);
  6230. }
  6231. break;
  6232. #endif //BLINKM
  6233. /*!
  6234. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  6235. #### Usage
  6236. M200 [ D | T ]
  6237. #### Parameters
  6238. - `D` - Diameter in mm
  6239. - `T` - Number of extruder (MMUs)
  6240. */
  6241. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6242. {
  6243. uint8_t extruder = active_extruder;
  6244. if(code_seen('T')) {
  6245. extruder = code_value_uint8();
  6246. if(extruder >= EXTRUDERS) {
  6247. SERIAL_ECHO_START;
  6248. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  6249. break;
  6250. }
  6251. }
  6252. if(code_seen('D')) {
  6253. float diameter = code_value();
  6254. if (diameter == 0.0) {
  6255. // setting any extruder filament size disables volumetric on the assumption that
  6256. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6257. // for all extruders
  6258. cs.volumetric_enabled = false;
  6259. } else {
  6260. cs.filament_size[extruder] = code_value();
  6261. // make sure all extruders have some sane value for the filament size
  6262. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6263. #if EXTRUDERS > 1
  6264. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6265. #if EXTRUDERS > 2
  6266. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6267. #endif
  6268. #endif
  6269. cs.volumetric_enabled = true;
  6270. }
  6271. } else {
  6272. //reserved for setting filament diameter via UFID or filament measuring device
  6273. break;
  6274. }
  6275. calculate_extruder_multipliers();
  6276. }
  6277. break;
  6278. /*!
  6279. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  6280. For each axis individually.
  6281. */
  6282. case 201:
  6283. for (int8_t i = 0; i < NUM_AXIS; i++)
  6284. {
  6285. if (code_seen(axis_codes[i]))
  6286. {
  6287. unsigned long val = code_value();
  6288. #ifdef TMC2130
  6289. unsigned long val_silent = val;
  6290. if ((i == X_AXIS) || (i == Y_AXIS))
  6291. {
  6292. if (val > NORMAL_MAX_ACCEL_XY)
  6293. val = NORMAL_MAX_ACCEL_XY;
  6294. if (val_silent > SILENT_MAX_ACCEL_XY)
  6295. val_silent = SILENT_MAX_ACCEL_XY;
  6296. }
  6297. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6298. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6299. #else //TMC2130
  6300. max_acceleration_units_per_sq_second[i] = val;
  6301. #endif //TMC2130
  6302. }
  6303. }
  6304. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6305. reset_acceleration_rates();
  6306. break;
  6307. #if 0 // Not used for Sprinter/grbl gen6
  6308. case 202: // M202
  6309. for(int8_t i=0; i < NUM_AXIS; i++) {
  6310. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6311. }
  6312. break;
  6313. #endif
  6314. /*!
  6315. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6316. For each axis individually.
  6317. */
  6318. case 203: // M203 max feedrate mm/sec
  6319. for (uint8_t i = 0; i < NUM_AXIS; i++)
  6320. {
  6321. if (code_seen(axis_codes[i]))
  6322. {
  6323. float val = code_value();
  6324. #ifdef TMC2130
  6325. float val_silent = val;
  6326. if ((i == X_AXIS) || (i == Y_AXIS))
  6327. {
  6328. if (val > NORMAL_MAX_FEEDRATE_XY)
  6329. val = NORMAL_MAX_FEEDRATE_XY;
  6330. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6331. val_silent = SILENT_MAX_FEEDRATE_XY;
  6332. }
  6333. cs.max_feedrate_normal[i] = val;
  6334. cs.max_feedrate_silent[i] = val_silent;
  6335. #else //TMC2130
  6336. max_feedrate[i] = val;
  6337. #endif //TMC2130
  6338. }
  6339. }
  6340. break;
  6341. /*!
  6342. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6343. #### Old format:
  6344. ##### Usage
  6345. M204 [ S | T ]
  6346. ##### Parameters
  6347. - `S` - normal moves
  6348. - `T` - filmanent only moves
  6349. #### New format:
  6350. ##### Usage
  6351. M204 [ P | R | T ]
  6352. ##### Parameters
  6353. - `P` - printing moves
  6354. - `R` - filmanent only moves
  6355. - `T` - travel moves (as of now T is ignored)
  6356. */
  6357. case 204:
  6358. {
  6359. if(code_seen('S')) {
  6360. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6361. // and it is also generated by Slic3r to control acceleration per extrusion type
  6362. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6363. cs.acceleration = cs.travel_acceleration = code_value();
  6364. // Interpret the T value as retract acceleration in the old Marlin format.
  6365. if(code_seen('T'))
  6366. cs.retract_acceleration = code_value();
  6367. } else {
  6368. // New acceleration format, compatible with the upstream Marlin.
  6369. if(code_seen('P'))
  6370. cs.acceleration = code_value();
  6371. if(code_seen('R'))
  6372. cs.retract_acceleration = code_value();
  6373. if(code_seen('T'))
  6374. cs.travel_acceleration = code_value();
  6375. }
  6376. }
  6377. break;
  6378. /*!
  6379. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6380. Set some advanced settings related to movement.
  6381. #### Usage
  6382. M205 [ S | T | B | X | Y | Z | E ]
  6383. #### Parameters
  6384. - `S` - Minimum feedrate for print moves (unit/s)
  6385. - `T` - Minimum feedrate for travel moves (units/s)
  6386. - `B` - Minimum segment time (us)
  6387. - `X` - Maximum X jerk (units/s)
  6388. - `Y` - Maximum Y jerk (units/s)
  6389. - `Z` - Maximum Z jerk (units/s)
  6390. - `E` - Maximum E jerk (units/s)
  6391. */
  6392. case 205:
  6393. {
  6394. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6395. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6396. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6397. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6398. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6399. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6400. if(code_seen('E'))
  6401. {
  6402. float e = code_value();
  6403. #ifndef LA_NOCOMPAT
  6404. e = la10c_jerk(e);
  6405. #endif
  6406. cs.max_jerk[E_AXIS] = e;
  6407. }
  6408. }
  6409. break;
  6410. /*!
  6411. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6412. #### Usage
  6413. M206 [ X | Y | Z ]
  6414. #### Parameters
  6415. - `X` - X axis offset
  6416. - `Y` - Y axis offset
  6417. - `Z` - Z axis offset
  6418. */
  6419. case 206:
  6420. for(uint8_t i=0; i < 3; i++)
  6421. {
  6422. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6423. }
  6424. break;
  6425. #ifdef FWRETRACT
  6426. /*!
  6427. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6428. #### Usage
  6429. M207 [ S | F | Z ]
  6430. #### Parameters
  6431. - `S` - positive length to retract, in mm
  6432. - `F` - retraction feedrate, in mm/min
  6433. - `Z` - additional zlift/hop
  6434. */
  6435. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6436. {
  6437. if(code_seen('S'))
  6438. {
  6439. cs.retract_length = code_value() ;
  6440. }
  6441. if(code_seen('F'))
  6442. {
  6443. cs.retract_feedrate = code_value()/60 ;
  6444. }
  6445. if(code_seen('Z'))
  6446. {
  6447. cs.retract_zlift = code_value() ;
  6448. }
  6449. }break;
  6450. /*!
  6451. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6452. #### Usage
  6453. M208 [ S | F ]
  6454. #### Parameters
  6455. - `S` - positive length surplus to the M207 Snnn, in mm
  6456. - `F` - feedrate, in mm/sec
  6457. */
  6458. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6459. {
  6460. if(code_seen('S'))
  6461. {
  6462. cs.retract_recover_length = code_value() ;
  6463. }
  6464. if(code_seen('F'))
  6465. {
  6466. cs.retract_recover_feedrate = code_value()/60 ;
  6467. }
  6468. }break;
  6469. /*!
  6470. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6471. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6472. #### Usage
  6473. M209 [ S ]
  6474. #### Parameters
  6475. - `S` - 1=true or 0=false
  6476. */
  6477. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6478. {
  6479. if(code_seen('S'))
  6480. {
  6481. switch(code_value_uint8())
  6482. {
  6483. case 0:
  6484. {
  6485. cs.autoretract_enabled=false;
  6486. retracted[0]=false;
  6487. #if EXTRUDERS > 1
  6488. retracted[1]=false;
  6489. #endif
  6490. #if EXTRUDERS > 2
  6491. retracted[2]=false;
  6492. #endif
  6493. }break;
  6494. case 1:
  6495. {
  6496. cs.autoretract_enabled=true;
  6497. retracted[0]=false;
  6498. #if EXTRUDERS > 1
  6499. retracted[1]=false;
  6500. #endif
  6501. #if EXTRUDERS > 2
  6502. retracted[2]=false;
  6503. #endif
  6504. }break;
  6505. default:
  6506. SERIAL_ECHO_START;
  6507. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6508. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6509. SERIAL_ECHOLNPGM("\"(1)");
  6510. }
  6511. }
  6512. }break;
  6513. #endif // FWRETRACT
  6514. #if EXTRUDERS > 1
  6515. /*!
  6516. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6517. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6518. #### Usage
  6519. M218 [ X | Y ]
  6520. #### Parameters
  6521. - `X` - X offset
  6522. - `Y` - Y offset
  6523. */
  6524. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6525. {
  6526. uint8_t extruder;
  6527. if(setTargetedHotend(218, extruder)){
  6528. break;
  6529. }
  6530. if(code_seen('X'))
  6531. {
  6532. extruder_offset[X_AXIS][extruder] = code_value();
  6533. }
  6534. if(code_seen('Y'))
  6535. {
  6536. extruder_offset[Y_AXIS][extruder] = code_value();
  6537. }
  6538. SERIAL_ECHO_START;
  6539. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6540. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6541. {
  6542. SERIAL_ECHO(" ");
  6543. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6544. SERIAL_ECHO(",");
  6545. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6546. }
  6547. SERIAL_ECHOLN("");
  6548. }break;
  6549. #endif
  6550. /*!
  6551. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6552. #### Usage
  6553. M220 [ B | S | R ]
  6554. #### Parameters
  6555. - `B` - Backup current speed factor
  6556. - `S` - Speed factor override percentage (0..100 or higher)
  6557. - `R` - Restore previous speed factor
  6558. */
  6559. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6560. {
  6561. bool codesWereSeen = false;
  6562. if (code_seen('B')) //backup current speed factor
  6563. {
  6564. saved_feedmultiply_mm = feedmultiply;
  6565. codesWereSeen = true;
  6566. }
  6567. if (code_seen('S'))
  6568. {
  6569. feedmultiply = code_value_short();
  6570. codesWereSeen = true;
  6571. }
  6572. if (code_seen('R')) //restore previous feedmultiply
  6573. {
  6574. feedmultiply = saved_feedmultiply_mm;
  6575. codesWereSeen = true;
  6576. }
  6577. if (!codesWereSeen)
  6578. {
  6579. printf_P(PSTR("%i%%\n"), feedmultiply);
  6580. }
  6581. }
  6582. break;
  6583. /*!
  6584. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6585. #### Usage
  6586. M221 [ S | T ]
  6587. #### Parameters
  6588. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6589. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6590. */
  6591. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6592. {
  6593. if (code_seen('S'))
  6594. {
  6595. int tmp_code = code_value_short();
  6596. if (code_seen('T'))
  6597. {
  6598. uint8_t extruder;
  6599. if (setTargetedHotend(221, extruder))
  6600. break;
  6601. extruder_multiply[extruder] = tmp_code;
  6602. }
  6603. else
  6604. {
  6605. extrudemultiply = tmp_code ;
  6606. }
  6607. }
  6608. else
  6609. {
  6610. printf_P(PSTR("%i%%\n"), extrudemultiply);
  6611. }
  6612. calculate_extruder_multipliers();
  6613. }
  6614. break;
  6615. /*!
  6616. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6617. Wait until the specified pin reaches the state required
  6618. #### Usage
  6619. M226 [ P | S ]
  6620. #### Parameters
  6621. - `P` - pin number
  6622. - `S` - pin state
  6623. */
  6624. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6625. {
  6626. if(code_seen('P')){
  6627. int pin_number = code_value_short(); // pin number
  6628. int pin_state = -1; // required pin state - default is inverted
  6629. if(code_seen('S')) pin_state = code_value_short(); // required pin state
  6630. if(pin_state >= -1 && pin_state <= 1){
  6631. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  6632. {
  6633. if (((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number))
  6634. {
  6635. pin_number = -1;
  6636. break;
  6637. }
  6638. }
  6639. if (pin_number > -1)
  6640. {
  6641. int target = LOW;
  6642. st_synchronize();
  6643. pinMode(pin_number, INPUT);
  6644. switch(pin_state){
  6645. case 1:
  6646. target = HIGH;
  6647. break;
  6648. case 0:
  6649. target = LOW;
  6650. break;
  6651. case -1:
  6652. target = !digitalRead(pin_number);
  6653. break;
  6654. }
  6655. while(digitalRead(pin_number) != target){
  6656. manage_heater();
  6657. manage_inactivity();
  6658. lcd_update(0);
  6659. }
  6660. }
  6661. }
  6662. }
  6663. }
  6664. break;
  6665. #if NUM_SERVOS > 0
  6666. /*!
  6667. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6668. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6669. #### Usage
  6670. M280 [ P | S ]
  6671. #### Parameters
  6672. - `P` - Servo index (id)
  6673. - `S` - Target position
  6674. */
  6675. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6676. {
  6677. int servo_index = -1;
  6678. int servo_position = 0;
  6679. if (code_seen('P'))
  6680. servo_index = code_value();
  6681. if (code_seen('S')) {
  6682. servo_position = code_value();
  6683. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6684. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6685. servos[servo_index].attach(0);
  6686. #endif
  6687. servos[servo_index].write(servo_position);
  6688. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6689. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6690. servos[servo_index].detach();
  6691. #endif
  6692. }
  6693. else {
  6694. SERIAL_ECHO_START;
  6695. SERIAL_ECHO("Servo ");
  6696. SERIAL_ECHO(servo_index);
  6697. SERIAL_ECHOLN(" out of range");
  6698. }
  6699. }
  6700. else if (servo_index >= 0) {
  6701. SERIAL_PROTOCOL(MSG_OK);
  6702. SERIAL_PROTOCOL(" Servo ");
  6703. SERIAL_PROTOCOL(servo_index);
  6704. SERIAL_PROTOCOL(": ");
  6705. SERIAL_PROTOCOL(servos[servo_index].read());
  6706. SERIAL_PROTOCOLLN();
  6707. }
  6708. }
  6709. break;
  6710. #endif // NUM_SERVOS > 0
  6711. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6712. /*!
  6713. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6714. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6715. #### Usage
  6716. M300 [ S | P ]
  6717. #### Parameters
  6718. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6719. - `P` - duration in milliseconds
  6720. */
  6721. case 300: // M300
  6722. {
  6723. uint16_t beepS = code_seen('S') ? code_value() : 110;
  6724. uint16_t beepP = code_seen('P') ? code_value() : 1000;
  6725. if (beepS > 0)
  6726. {
  6727. #if BEEPER > 0
  6728. Sound_MakeCustom(beepP,beepS,false);
  6729. #endif
  6730. }
  6731. else
  6732. {
  6733. _delay(beepP);
  6734. }
  6735. }
  6736. break;
  6737. #endif // M300
  6738. #ifdef PIDTEMP
  6739. /*!
  6740. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6741. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6742. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6743. #### Usage
  6744. M301 [ P | I | D | C ]
  6745. #### Parameters
  6746. - `P` - proportional (Kp)
  6747. - `I` - integral (Ki)
  6748. - `D` - derivative (Kd)
  6749. - `C` - heating power=Kc*(e_speed0)
  6750. */
  6751. case 301:
  6752. {
  6753. if(code_seen('P')) cs.Kp = code_value();
  6754. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6755. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6756. #ifdef PID_ADD_EXTRUSION_RATE
  6757. if(code_seen('C')) Kc = code_value();
  6758. #endif
  6759. updatePID();
  6760. SERIAL_PROTOCOLRPGM(MSG_OK);
  6761. SERIAL_PROTOCOL(" p:");
  6762. SERIAL_PROTOCOL(cs.Kp);
  6763. SERIAL_PROTOCOL(" i:");
  6764. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6765. SERIAL_PROTOCOL(" d:");
  6766. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6767. #ifdef PID_ADD_EXTRUSION_RATE
  6768. SERIAL_PROTOCOL(" c:");
  6769. //Kc does not have scaling applied above, or in resetting defaults
  6770. SERIAL_PROTOCOL(Kc);
  6771. #endif
  6772. SERIAL_PROTOCOLLN();
  6773. }
  6774. break;
  6775. #endif //PIDTEMP
  6776. #ifdef PIDTEMPBED
  6777. /*!
  6778. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6779. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6780. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6781. #### Usage
  6782. M304 [ P | I | D ]
  6783. #### Parameters
  6784. - `P` - proportional (Kp)
  6785. - `I` - integral (Ki)
  6786. - `D` - derivative (Kd)
  6787. */
  6788. case 304:
  6789. {
  6790. if(code_seen('P')) cs.bedKp = code_value();
  6791. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6792. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6793. updatePID();
  6794. SERIAL_PROTOCOLRPGM(MSG_OK);
  6795. SERIAL_PROTOCOL(" p:");
  6796. SERIAL_PROTOCOL(cs.bedKp);
  6797. SERIAL_PROTOCOL(" i:");
  6798. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6799. SERIAL_PROTOCOL(" d:");
  6800. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6801. SERIAL_PROTOCOLLN();
  6802. }
  6803. break;
  6804. #endif //PIDTEMP
  6805. /*!
  6806. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6807. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6808. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6809. */
  6810. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6811. {
  6812. #ifdef CHDK
  6813. SET_OUTPUT(CHDK);
  6814. WRITE(CHDK, HIGH);
  6815. chdkHigh = _millis();
  6816. chdkActive = true;
  6817. #else
  6818. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6819. const uint8_t NUM_PULSES=16;
  6820. const float PULSE_LENGTH=0.01524;
  6821. for(int i=0; i < NUM_PULSES; i++) {
  6822. WRITE(PHOTOGRAPH_PIN, HIGH);
  6823. _delay_ms(PULSE_LENGTH);
  6824. WRITE(PHOTOGRAPH_PIN, LOW);
  6825. _delay_ms(PULSE_LENGTH);
  6826. }
  6827. _delay(7.33);
  6828. for(int i=0; i < NUM_PULSES; i++) {
  6829. WRITE(PHOTOGRAPH_PIN, HIGH);
  6830. _delay_ms(PULSE_LENGTH);
  6831. WRITE(PHOTOGRAPH_PIN, LOW);
  6832. _delay_ms(PULSE_LENGTH);
  6833. }
  6834. #endif
  6835. #endif //chdk end if
  6836. }
  6837. break;
  6838. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6839. /*!
  6840. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6841. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6842. #### Usage
  6843. M302 [ S ]
  6844. #### Parameters
  6845. - `S` - Cold extrude minimum temperature
  6846. */
  6847. case 302:
  6848. {
  6849. float temp = .0;
  6850. if (code_seen('S')) temp=code_value();
  6851. set_extrude_min_temp(temp);
  6852. }
  6853. break;
  6854. #endif
  6855. /*!
  6856. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6857. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6858. #### Usage
  6859. M303 [ E | S | C ]
  6860. #### Parameters
  6861. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6862. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6863. - `C` - Cycles, default `5`
  6864. */
  6865. case 303:
  6866. {
  6867. float temp = 150.0;
  6868. int e = 0;
  6869. int c = 5;
  6870. if (code_seen('E')) e = code_value_short();
  6871. if (e < 0)
  6872. temp = 70;
  6873. if (code_seen('S')) temp = code_value();
  6874. if (code_seen('C')) c = code_value_short();
  6875. PID_autotune(temp, e, c);
  6876. }
  6877. break;
  6878. /*!
  6879. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6880. Finishes all current moves and and thus clears the buffer.
  6881. Equivalent to `G4` with no parameters.
  6882. */
  6883. case 400:
  6884. {
  6885. st_synchronize();
  6886. }
  6887. break;
  6888. /*!
  6889. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6890. Currently three different materials are needed (default, flex and PVA).
  6891. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6892. #### Usage
  6893. M403 [ E | F ]
  6894. #### Parameters
  6895. - `E` - Extruder number. 0-indexed.
  6896. - `F` - Filament type
  6897. */
  6898. case 403:
  6899. {
  6900. // currently three different materials are needed (default, flex and PVA)
  6901. // add storing this information for different load/unload profiles etc. in the future
  6902. // firmware does not wait for "ok" from mmu
  6903. if (mmu_enabled)
  6904. {
  6905. uint8_t extruder = 255;
  6906. uint8_t filament = FILAMENT_UNDEFINED;
  6907. if(code_seen('E')) extruder = code_value_uint8();
  6908. if(code_seen('F')) filament = code_value_uint8();
  6909. mmu_set_filament_type(extruder, filament);
  6910. }
  6911. }
  6912. break;
  6913. /*!
  6914. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6915. Save current parameters to EEPROM.
  6916. */
  6917. case 500:
  6918. {
  6919. Config_StoreSettings();
  6920. }
  6921. break;
  6922. /*!
  6923. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6924. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6925. */
  6926. case 501:
  6927. {
  6928. Config_RetrieveSettings();
  6929. }
  6930. break;
  6931. /*!
  6932. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6933. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6934. */
  6935. case 502:
  6936. {
  6937. Config_ResetDefault();
  6938. }
  6939. break;
  6940. /*!
  6941. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6942. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6943. */
  6944. case 503:
  6945. {
  6946. Config_PrintSettings();
  6947. }
  6948. break;
  6949. /*!
  6950. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6951. Resets the language to English.
  6952. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6953. */
  6954. case 509:
  6955. {
  6956. lang_reset();
  6957. SERIAL_ECHO_START;
  6958. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6959. }
  6960. break;
  6961. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6962. /*!
  6963. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6964. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6965. #### Usage
  6966. M540 [ S ]
  6967. #### Parameters
  6968. - `S` - disabled=0, enabled=1
  6969. */
  6970. case 540:
  6971. {
  6972. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6973. }
  6974. break;
  6975. #endif
  6976. /*!
  6977. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6978. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6979. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6980. #### Usage
  6981. M851 [ Z ]
  6982. #### Parameters
  6983. - `Z` - Z offset probe to nozzle.
  6984. */
  6985. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6986. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6987. {
  6988. float value;
  6989. if (code_seen('Z'))
  6990. {
  6991. value = code_value();
  6992. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6993. {
  6994. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6995. SERIAL_ECHO_START;
  6996. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6997. SERIAL_PROTOCOLLN();
  6998. }
  6999. else
  7000. {
  7001. SERIAL_ECHO_START;
  7002. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  7003. SERIAL_ECHORPGM(MSG_Z_MIN);
  7004. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  7005. SERIAL_ECHORPGM(MSG_Z_MAX);
  7006. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  7007. SERIAL_PROTOCOLLN();
  7008. }
  7009. }
  7010. else
  7011. {
  7012. SERIAL_ECHO_START;
  7013. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  7014. SERIAL_ECHO(-cs.zprobe_zoffset);
  7015. SERIAL_PROTOCOLLN();
  7016. }
  7017. break;
  7018. }
  7019. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  7020. /*!
  7021. ### M552 - Set IP address <a href="https://reprap.org/wiki/G-code#M552:_Set_IP_address.2C_enable.2Fdisable_network_interface">M552: Set IP address, enable/disable network interface"</a>
  7022. Sets the printer IP address that is shown in the support menu. Designed to be used with the help of host software.
  7023. If P is not specified nothing happens.
  7024. If the structure of the IP address is invalid, 0.0.0.0 is assumed and nothing is shown on the screen in the Support menu.
  7025. #### Usage
  7026. M552 [ P<IP_address> ]
  7027. #### Parameters
  7028. - `P` - The IP address in xxx.xxx.xxx.xxx format. Eg: P192.168.1.14
  7029. */
  7030. case 552:
  7031. {
  7032. if (code_seen('P'))
  7033. {
  7034. uint8_t valCnt = 0;
  7035. IP_address = 0;
  7036. do
  7037. {
  7038. *strchr_pointer = '*';
  7039. ((uint8_t*)&IP_address)[valCnt] = code_value_short();
  7040. valCnt++;
  7041. } while ((valCnt < 4) && code_seen('.'));
  7042. if (valCnt != 4)
  7043. IP_address = 0;
  7044. }
  7045. } break;
  7046. #ifdef FILAMENTCHANGEENABLE
  7047. /*!
  7048. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  7049. Initiates Filament change, it is also used during Filament Runout Sensor process.
  7050. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  7051. #### Usage
  7052. M600 [ X | Y | Z | E | L | AUTO ]
  7053. - `X` - X position, default 211
  7054. - `Y` - Y position, default 0
  7055. - `Z` - relative lift Z, default 2.
  7056. - `E` - initial retract, default -2
  7057. - `L` - later retract distance for removal, default -80
  7058. - `AUTO` - Automatically (only with MMU)
  7059. */
  7060. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  7061. {
  7062. st_synchronize();
  7063. float x_position = current_position[X_AXIS];
  7064. float y_position = current_position[Y_AXIS];
  7065. float z_shift = 0; // is it necessary to be a float?
  7066. float e_shift_init = 0;
  7067. float e_shift_late = 0;
  7068. bool automatic = false;
  7069. //Retract extruder
  7070. if(code_seen('E'))
  7071. {
  7072. e_shift_init = code_value();
  7073. }
  7074. else
  7075. {
  7076. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  7077. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  7078. #endif
  7079. }
  7080. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  7081. if (code_seen('L'))
  7082. {
  7083. e_shift_late = code_value();
  7084. }
  7085. else
  7086. {
  7087. #ifdef FILAMENTCHANGE_FINALRETRACT
  7088. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  7089. #endif
  7090. }
  7091. //Lift Z
  7092. if(code_seen('Z'))
  7093. {
  7094. z_shift = code_value();
  7095. }
  7096. else
  7097. {
  7098. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  7099. }
  7100. //Move XY to side
  7101. if(code_seen('X'))
  7102. {
  7103. x_position = code_value();
  7104. }
  7105. else
  7106. {
  7107. #ifdef FILAMENTCHANGE_XPOS
  7108. x_position = FILAMENTCHANGE_XPOS;
  7109. #endif
  7110. }
  7111. if(code_seen('Y'))
  7112. {
  7113. y_position = code_value();
  7114. }
  7115. else
  7116. {
  7117. #ifdef FILAMENTCHANGE_YPOS
  7118. y_position = FILAMENTCHANGE_YPOS ;
  7119. #endif
  7120. }
  7121. if (mmu_enabled && code_seen_P(PSTR("AUTO")))
  7122. automatic = true;
  7123. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  7124. }
  7125. break;
  7126. #endif //FILAMENTCHANGEENABLE
  7127. /*!
  7128. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  7129. */
  7130. /*!
  7131. ### M125 - Pause print (TODO: not implemented)
  7132. */
  7133. /*!
  7134. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  7135. */
  7136. case 25:
  7137. case 601:
  7138. {
  7139. if (!isPrintPaused) {
  7140. st_synchronize();
  7141. ClearToSend(); //send OK even before the command finishes executing because we want to make sure it is not skipped because of cmdqueue_pop_front();
  7142. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  7143. lcd_pause_print();
  7144. }
  7145. }
  7146. break;
  7147. /*!
  7148. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  7149. */
  7150. case 602:
  7151. {
  7152. if (isPrintPaused) lcd_resume_print();
  7153. }
  7154. break;
  7155. /*!
  7156. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  7157. */
  7158. case 603: {
  7159. lcd_print_stop();
  7160. }
  7161. break;
  7162. #ifdef PINDA_THERMISTOR
  7163. /*!
  7164. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  7165. Wait for PINDA thermistor to reach target temperature
  7166. #### Usage
  7167. M860 [ S ]
  7168. #### Parameters
  7169. - `S` - Target temperature
  7170. */
  7171. case 860:
  7172. {
  7173. int set_target_pinda = 0;
  7174. if (code_seen('S')) {
  7175. set_target_pinda = code_value_short();
  7176. }
  7177. else {
  7178. break;
  7179. }
  7180. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  7181. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  7182. SERIAL_PROTOCOL(set_target_pinda);
  7183. SERIAL_PROTOCOLLN();
  7184. codenum = _millis();
  7185. cancel_heatup = false;
  7186. bool is_pinda_cooling = false;
  7187. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  7188. is_pinda_cooling = true;
  7189. }
  7190. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  7191. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  7192. {
  7193. SERIAL_PROTOCOLPGM("P:");
  7194. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  7195. SERIAL_PROTOCOL('/');
  7196. SERIAL_PROTOCOLLN(set_target_pinda);
  7197. codenum = _millis();
  7198. }
  7199. manage_heater();
  7200. manage_inactivity();
  7201. lcd_update(0);
  7202. }
  7203. LCD_MESSAGERPGM(MSG_OK);
  7204. break;
  7205. }
  7206. /*!
  7207. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  7208. Set compensation ustep value `S` for compensation table index `I`.
  7209. #### Usage
  7210. M861 [ ? | ! | Z | S | I ]
  7211. #### Parameters
  7212. - `?` - Print current EEPROM offset values
  7213. - `!` - Set factory default values
  7214. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7215. - `S` - Microsteps
  7216. - `I` - Table index
  7217. */
  7218. case 861:
  7219. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  7220. uint8_t cal_status = calibration_status_pinda();
  7221. int16_t usteps = 0;
  7222. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  7223. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  7224. for (uint8_t i = 0; i < 6; i++)
  7225. {
  7226. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  7227. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7228. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7229. SERIAL_PROTOCOLPGM(", ");
  7230. SERIAL_PROTOCOL(35 + (i * 5));
  7231. SERIAL_PROTOCOLPGM(", ");
  7232. SERIAL_PROTOCOL(usteps);
  7233. SERIAL_PROTOCOLPGM(", ");
  7234. SERIAL_PROTOCOL(mm * 1000);
  7235. SERIAL_PROTOCOLLN();
  7236. }
  7237. }
  7238. else if (code_seen('!')) { // ! - Set factory default values
  7239. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7240. int16_t z_shift = 8; //40C - 20um - 8usteps
  7241. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  7242. z_shift = 24; //45C - 60um - 24usteps
  7243. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  7244. z_shift = 48; //50C - 120um - 48usteps
  7245. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  7246. z_shift = 80; //55C - 200um - 80usteps
  7247. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  7248. z_shift = 120; //60C - 300um - 120usteps
  7249. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  7250. SERIAL_PROTOCOLLN("factory restored");
  7251. }
  7252. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7253. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7254. int16_t z_shift = 0;
  7255. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  7256. SERIAL_PROTOCOLLN("zerorized");
  7257. }
  7258. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  7259. int16_t usteps = code_value_short();
  7260. if (code_seen('I')) {
  7261. uint8_t index = code_value_uint8();
  7262. if (index < 5) {
  7263. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  7264. SERIAL_PROTOCOLLN("OK");
  7265. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  7266. for (uint8_t i = 0; i < 6; i++)
  7267. {
  7268. usteps = 0;
  7269. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  7270. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7271. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7272. SERIAL_PROTOCOLPGM(", ");
  7273. SERIAL_PROTOCOL(35 + (i * 5));
  7274. SERIAL_PROTOCOLPGM(", ");
  7275. SERIAL_PROTOCOL(usteps);
  7276. SERIAL_PROTOCOLPGM(", ");
  7277. SERIAL_PROTOCOL(mm * 1000);
  7278. SERIAL_PROTOCOLLN();
  7279. }
  7280. }
  7281. }
  7282. }
  7283. else {
  7284. SERIAL_PROTOCOLPGM("no valid command");
  7285. }
  7286. break;
  7287. #endif //PINDA_THERMISTOR
  7288. /*!
  7289. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7290. Checks the parameters of the printer and gcode and performs compatibility check
  7291. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7292. - M862.2 { P<model_code> | Q }
  7293. - M862.3 { P"<model_name>" | Q }
  7294. - M862.4 { P<fw_version> | Q }
  7295. - M862.5 { P<gcode_level> | Q }
  7296. When run with P<> argument, the check is performed against the input value.
  7297. When run with Q argument, the current value is shown.
  7298. M862.3 accepts text identifiers of printer types too.
  7299. The syntax of M862.3 is (note the quotes around the type):
  7300. M862.3 P "MK3S"
  7301. Accepted printer type identifiers and their numeric counterparts:
  7302. - MK1 (100)
  7303. - MK2 (200)
  7304. - MK2MM (201)
  7305. - MK2S (202)
  7306. - MK2SMM (203)
  7307. - MK2.5 (250)
  7308. - MK2.5MMU2 (20250)
  7309. - MK2.5S (252)
  7310. - MK2.5SMMU2S (20252)
  7311. - MK3 (300)
  7312. - MK3MMU2 (20300)
  7313. - MK3S (302)
  7314. - MK3SMMU2S (20302)
  7315. */
  7316. case 862: // M862: print checking
  7317. float nDummy;
  7318. uint8_t nCommand;
  7319. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7320. switch((ClPrintChecking)nCommand)
  7321. {
  7322. case ClPrintChecking::_Nozzle: // ~ .1
  7323. uint16_t nDiameter;
  7324. if(code_seen('P'))
  7325. {
  7326. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7327. nozzle_diameter_check(nDiameter);
  7328. }
  7329. /*
  7330. else if(code_seen('S')&&farm_mode)
  7331. {
  7332. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7333. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7334. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7335. }
  7336. */
  7337. else if(code_seen('Q'))
  7338. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7339. break;
  7340. case ClPrintChecking::_Model: // ~ .2
  7341. if(code_seen('P'))
  7342. {
  7343. uint16_t nPrinterModel;
  7344. nPrinterModel=(uint16_t)code_value_long();
  7345. printer_model_check(nPrinterModel);
  7346. }
  7347. else if(code_seen('Q'))
  7348. SERIAL_PROTOCOLLN(nPrinterType);
  7349. break;
  7350. case ClPrintChecking::_Smodel: // ~ .3
  7351. if(code_seen('P'))
  7352. printer_smodel_check(strchr_pointer);
  7353. else if(code_seen('Q'))
  7354. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7355. break;
  7356. case ClPrintChecking::_Version: // ~ .4
  7357. if(code_seen('P'))
  7358. fw_version_check(++strchr_pointer);
  7359. else if(code_seen('Q'))
  7360. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  7361. break;
  7362. case ClPrintChecking::_Gcode: // ~ .5
  7363. if(code_seen('P'))
  7364. {
  7365. uint16_t nGcodeLevel;
  7366. nGcodeLevel=(uint16_t)code_value_long();
  7367. gcode_level_check(nGcodeLevel);
  7368. }
  7369. else if(code_seen('Q'))
  7370. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7371. break;
  7372. }
  7373. break;
  7374. #ifdef LIN_ADVANCE
  7375. /*!
  7376. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7377. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7378. #### Usage
  7379. M900 [ K | R | W | H | D]
  7380. #### Parameters
  7381. - `K` - Advance K factor
  7382. - `R` - Set ratio directly (overrides WH/D)
  7383. - `W` - Width
  7384. - `H` - Height
  7385. - `D` - Diameter Set ratio from WH/D
  7386. */
  7387. case 900:
  7388. gcode_M900();
  7389. break;
  7390. #endif
  7391. /*!
  7392. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7393. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7394. M907 has no effect when the experimental Extruder motor current scaling mode is active (that applies to farm printing as well)
  7395. #### Usage
  7396. M907 [ X | Y | Z | E | B | S ]
  7397. #### Parameters
  7398. - `X` - X motor driver
  7399. - `Y` - Y motor driver
  7400. - `Z` - Z motor driver
  7401. - `E` - Extruder motor driver
  7402. - `B` - Second Extruder motor driver
  7403. - `S` - All motors
  7404. */
  7405. case 907:
  7406. {
  7407. #ifdef TMC2130
  7408. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7409. for (uint_least8_t i = 0; i < NUM_AXIS; i++){
  7410. if(code_seen(axis_codes[i])){
  7411. if( i == E_AXIS && FarmOrUserECool() ){
  7412. SERIAL_ECHORPGM(eMotorCurrentScalingEnabled);
  7413. SERIAL_ECHOLNPGM(", M907 E ignored");
  7414. continue;
  7415. }
  7416. long cur_mA = code_value_long();
  7417. uint8_t val = tmc2130_cur2val(cur_mA);
  7418. tmc2130_set_current_h(i, val);
  7419. tmc2130_set_current_r(i, val);
  7420. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7421. }
  7422. }
  7423. #else //TMC2130
  7424. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7425. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7426. if(code_seen('B')) st_current_set(4,code_value());
  7427. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7428. #endif
  7429. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7430. if(code_seen('X')) st_current_set(0, code_value());
  7431. #endif
  7432. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7433. if(code_seen('Z')) st_current_set(1, code_value());
  7434. #endif
  7435. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7436. if(code_seen('E')) st_current_set(2, code_value());
  7437. #endif
  7438. #endif //TMC2130
  7439. }
  7440. break;
  7441. /*!
  7442. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7443. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7444. #### Usage
  7445. M908 [ P | S ]
  7446. #### Parameters
  7447. - `P` - channel
  7448. - `S` - current
  7449. */
  7450. case 908:
  7451. {
  7452. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7453. uint8_t channel,current;
  7454. if(code_seen('P')) channel=code_value();
  7455. if(code_seen('S')) current=code_value();
  7456. digitalPotWrite(channel, current);
  7457. #endif
  7458. }
  7459. break;
  7460. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7461. /*!
  7462. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7463. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7464. */
  7465. case 910:
  7466. {
  7467. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7468. }
  7469. break;
  7470. /*!
  7471. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7472. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7473. #### Usage
  7474. M911 [ X | Y | Z | E ]
  7475. #### Parameters
  7476. - `X` - X stepper driver holding current value
  7477. - `Y` - Y stepper driver holding current value
  7478. - `Z` - Z stepper driver holding current value
  7479. - `E` - Extruder stepper driver holding current value
  7480. */
  7481. case 911:
  7482. {
  7483. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7484. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7485. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7486. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7487. }
  7488. break;
  7489. /*!
  7490. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7491. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7492. #### Usage
  7493. M912 [ X | Y | Z | E ]
  7494. #### Parameters
  7495. - `X` - X stepper driver running current value
  7496. - `Y` - Y stepper driver running current value
  7497. - `Z` - Z stepper driver running current value
  7498. - `E` - Extruder stepper driver running current value
  7499. */
  7500. case 912:
  7501. {
  7502. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7503. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7504. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7505. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7506. }
  7507. break;
  7508. /*!
  7509. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7510. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7511. Shows TMC2130 currents.
  7512. */
  7513. case 913:
  7514. {
  7515. tmc2130_print_currents();
  7516. }
  7517. break;
  7518. /*!
  7519. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7520. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7521. */
  7522. case 914:
  7523. {
  7524. tmc2130_mode = TMC2130_MODE_NORMAL;
  7525. update_mode_profile();
  7526. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7527. }
  7528. break;
  7529. /*!
  7530. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7531. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7532. */
  7533. case 915:
  7534. {
  7535. tmc2130_mode = TMC2130_MODE_SILENT;
  7536. update_mode_profile();
  7537. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7538. }
  7539. break;
  7540. /*!
  7541. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7542. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7543. #### Usage
  7544. M916 [ X | Y | Z | E ]
  7545. #### Parameters
  7546. - `X` - X stepper driver stallguard sensitivity threshold value
  7547. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7548. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7549. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7550. */
  7551. case 916:
  7552. {
  7553. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7554. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7555. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7556. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7557. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7558. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7559. }
  7560. break;
  7561. /*!
  7562. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7563. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7564. #### Usage
  7565. M917 [ X | Y | Z | E ]
  7566. #### Parameters
  7567. - `X` - X stepper driver PWM amplitude offset value
  7568. - `Y` - Y stepper driver PWM amplitude offset value
  7569. - `Z` - Z stepper driver PWM amplitude offset value
  7570. - `E` - Extruder stepper driver PWM amplitude offset value
  7571. */
  7572. case 917:
  7573. {
  7574. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7575. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7576. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7577. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7578. }
  7579. break;
  7580. /*!
  7581. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7582. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7583. #### Usage
  7584. M918 [ X | Y | Z | E ]
  7585. #### Parameters
  7586. - `X` - X stepper driver PWM amplitude gradient value
  7587. - `Y` - Y stepper driver PWM amplitude gradient value
  7588. - `Z` - Z stepper driver PWM amplitude gradient value
  7589. - `E` - Extruder stepper driver PWM amplitude gradient value
  7590. */
  7591. case 918:
  7592. {
  7593. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7594. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7595. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7596. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7597. }
  7598. break;
  7599. #endif //TMC2130_SERVICE_CODES_M910_M918
  7600. /*!
  7601. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7602. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7603. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7604. #### Usage
  7605. M350 [ X | Y | Z | E | B | S ]
  7606. #### Parameters
  7607. - `X` - X new resolution
  7608. - `Y` - Y new resolution
  7609. - `Z` - Z new resolution
  7610. - `E` - E new resolution
  7611. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7612. - `B` - Second extruder new resolution
  7613. - `S` - All axes new resolution
  7614. */
  7615. case 350:
  7616. {
  7617. #ifdef TMC2130
  7618. for (uint_least8_t i=0; i<NUM_AXIS; i++)
  7619. {
  7620. if(code_seen(axis_codes[i]))
  7621. {
  7622. uint16_t res_new = code_value();
  7623. #ifdef ALLOW_ALL_MRES
  7624. bool res_valid = res_new > 0 && res_new <= 256 && !(res_new & (res_new - 1)); // must be a power of two
  7625. #else
  7626. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7627. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7628. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7629. #endif
  7630. if (res_valid)
  7631. {
  7632. st_synchronize();
  7633. uint16_t res = tmc2130_get_res(i);
  7634. tmc2130_set_res(i, res_new);
  7635. cs.axis_ustep_resolution[i] = res_new;
  7636. if (res_new > res)
  7637. {
  7638. uint16_t fac = (res_new / res);
  7639. cs.axis_steps_per_unit[i] *= fac;
  7640. position[i] *= fac;
  7641. }
  7642. else
  7643. {
  7644. uint16_t fac = (res / res_new);
  7645. cs.axis_steps_per_unit[i] /= fac;
  7646. position[i] /= fac;
  7647. }
  7648. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7649. if (i == E_AXIS)
  7650. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7651. #endif
  7652. }
  7653. }
  7654. }
  7655. #else //TMC2130
  7656. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7657. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7658. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7659. if(code_seen('B')) microstep_mode(4,code_value());
  7660. microstep_readings();
  7661. #endif
  7662. #endif //TMC2130
  7663. }
  7664. break;
  7665. /*!
  7666. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7667. Toggle MS1 MS2 pins directly.
  7668. #### Usage
  7669. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7670. #### Parameters
  7671. - `X` - Update X axis
  7672. - `Y` - Update Y axis
  7673. - `Z` - Update Z axis
  7674. - `E` - Update E axis
  7675. - `S` - which MSx pin to toggle
  7676. - `B` - new pin value
  7677. */
  7678. case 351:
  7679. {
  7680. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7681. if(code_seen('S')) switch((int)code_value())
  7682. {
  7683. case 1:
  7684. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7685. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7686. break;
  7687. case 2:
  7688. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7689. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7690. break;
  7691. }
  7692. microstep_readings();
  7693. #endif
  7694. }
  7695. break;
  7696. /*!
  7697. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7698. */
  7699. case 701:
  7700. {
  7701. if (mmu_enabled && code_seen('E'))
  7702. tmp_extruder = code_value_uint8();
  7703. gcode_M701();
  7704. }
  7705. break;
  7706. /*!
  7707. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7708. #### Usage
  7709. M702 [ U | C ]
  7710. #### Parameters
  7711. - `U` - Unload all filaments used in current print
  7712. - `C` - Unload just current filament
  7713. - without any parameters unload all filaments
  7714. */
  7715. case 702:
  7716. {
  7717. #ifdef SNMM
  7718. if (code_seen('U'))
  7719. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7720. else if (code_seen('C'))
  7721. extr_unload(); //! if "C" unload just current filament
  7722. else
  7723. extr_unload_all(); //! otherwise unload all filaments
  7724. #else
  7725. if (code_seen('C')) {
  7726. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7727. }
  7728. else {
  7729. if(mmu_enabled) extr_unload(); //! unload current filament
  7730. else unload_filament();
  7731. }
  7732. #endif //SNMM
  7733. }
  7734. break;
  7735. /*!
  7736. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7737. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7738. */
  7739. case 999:
  7740. Stopped = false;
  7741. lcd_reset_alert_level();
  7742. gcode_LastN = Stopped_gcode_LastN;
  7743. FlushSerialRequestResend();
  7744. break;
  7745. /*!
  7746. #### End of M-Commands
  7747. */
  7748. default:
  7749. printf_P(MSG_UNKNOWN_CODE, 'M', cmdbuffer + bufindr + CMDHDRSIZE);
  7750. }
  7751. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7752. mcode_in_progress = 0;
  7753. }
  7754. }
  7755. // end if(code_seen('M')) (end of M codes)
  7756. /*!
  7757. -----------------------------------------------------------------------------------------
  7758. # T Codes
  7759. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7760. #### For MMU_V2:
  7761. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7762. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7763. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7764. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7765. */
  7766. else if(code_seen('T'))
  7767. {
  7768. static const char duplicate_Tcode_ignored[] PROGMEM = "Duplicate T-code ignored.";
  7769. int index;
  7770. bool load_to_nozzle = false;
  7771. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7772. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7773. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7774. SERIAL_ECHOLNPGM("Invalid T code.");
  7775. }
  7776. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7777. if (mmu_enabled)
  7778. {
  7779. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7780. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7781. {
  7782. puts_P(duplicate_Tcode_ignored);
  7783. }
  7784. else
  7785. {
  7786. st_synchronize();
  7787. mmu_command(MmuCmd::T0 + tmp_extruder);
  7788. manage_response(true, true, MMU_TCODE_MOVE);
  7789. }
  7790. }
  7791. }
  7792. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7793. if (mmu_enabled)
  7794. {
  7795. st_synchronize();
  7796. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7797. mmu_extruder = tmp_extruder; //filament change is finished
  7798. mmu_load_to_nozzle();
  7799. }
  7800. }
  7801. else {
  7802. if (*(strchr_pointer + index) == '?')
  7803. {
  7804. if(mmu_enabled)
  7805. {
  7806. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7807. load_to_nozzle = true;
  7808. } else
  7809. {
  7810. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7811. }
  7812. }
  7813. else {
  7814. tmp_extruder = code_value();
  7815. if (mmu_enabled && lcd_autoDepleteEnabled())
  7816. {
  7817. tmp_extruder = ad_getAlternative(tmp_extruder);
  7818. }
  7819. }
  7820. st_synchronize();
  7821. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7822. if (mmu_enabled)
  7823. {
  7824. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7825. {
  7826. puts_P(duplicate_Tcode_ignored);
  7827. }
  7828. else
  7829. {
  7830. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7831. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7832. {
  7833. mmu_command(MmuCmd::K0 + tmp_extruder);
  7834. manage_response(true, true, MMU_UNLOAD_MOVE);
  7835. }
  7836. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7837. mmu_command(MmuCmd::T0 + tmp_extruder);
  7838. manage_response(true, true, MMU_TCODE_MOVE);
  7839. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7840. mmu_extruder = tmp_extruder; //filament change is finished
  7841. if (load_to_nozzle)// for single material usage with mmu
  7842. {
  7843. mmu_load_to_nozzle();
  7844. }
  7845. }
  7846. }
  7847. else
  7848. {
  7849. #ifdef SNMM
  7850. mmu_extruder = tmp_extruder;
  7851. _delay(100);
  7852. disable_e0();
  7853. disable_e1();
  7854. disable_e2();
  7855. SET_OUTPUT(E_MUX0_PIN);
  7856. SET_OUTPUT(E_MUX1_PIN);
  7857. _delay(100);
  7858. SERIAL_ECHO_START;
  7859. SERIAL_ECHO("T:");
  7860. SERIAL_ECHOLN((int)tmp_extruder);
  7861. switch (tmp_extruder) {
  7862. case 1:
  7863. WRITE(E_MUX0_PIN, HIGH);
  7864. WRITE(E_MUX1_PIN, LOW);
  7865. break;
  7866. case 2:
  7867. WRITE(E_MUX0_PIN, LOW);
  7868. WRITE(E_MUX1_PIN, HIGH);
  7869. break;
  7870. case 3:
  7871. WRITE(E_MUX0_PIN, HIGH);
  7872. WRITE(E_MUX1_PIN, HIGH);
  7873. break;
  7874. default:
  7875. WRITE(E_MUX0_PIN, LOW);
  7876. WRITE(E_MUX1_PIN, LOW);
  7877. break;
  7878. }
  7879. _delay(100);
  7880. #else //SNMM
  7881. if (tmp_extruder >= EXTRUDERS) {
  7882. SERIAL_ECHO_START;
  7883. SERIAL_ECHO('T');
  7884. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7885. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7886. }
  7887. else {
  7888. #if EXTRUDERS > 1
  7889. bool make_move = false;
  7890. #endif
  7891. if (code_seen('F')) {
  7892. #if EXTRUDERS > 1
  7893. make_move = true;
  7894. #endif
  7895. next_feedrate = code_value();
  7896. if (next_feedrate > 0.0) {
  7897. feedrate = next_feedrate;
  7898. }
  7899. }
  7900. #if EXTRUDERS > 1
  7901. if (tmp_extruder != active_extruder) {
  7902. // Save current position to return to after applying extruder offset
  7903. set_destination_to_current();
  7904. // Offset extruder (only by XY)
  7905. int i;
  7906. for (i = 0; i < 2; i++) {
  7907. current_position[i] = current_position[i] -
  7908. extruder_offset[i][active_extruder] +
  7909. extruder_offset[i][tmp_extruder];
  7910. }
  7911. // Set the new active extruder and position
  7912. active_extruder = tmp_extruder;
  7913. plan_set_position_curposXYZE();
  7914. // Move to the old position if 'F' was in the parameters
  7915. if (make_move && Stopped == false) {
  7916. prepare_move();
  7917. }
  7918. }
  7919. #endif
  7920. SERIAL_ECHO_START;
  7921. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7922. SERIAL_PROTOCOLLN((int)active_extruder);
  7923. }
  7924. #endif //SNMM
  7925. }
  7926. }
  7927. } // end if(code_seen('T')) (end of T codes)
  7928. /*!
  7929. #### End of T-Codes
  7930. */
  7931. /**
  7932. *---------------------------------------------------------------------------------
  7933. *# D codes
  7934. */
  7935. else if (code_seen('D')) // D codes (debug)
  7936. {
  7937. switch(code_value_short())
  7938. {
  7939. /*!
  7940. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7941. */
  7942. case -1:
  7943. dcode__1(); break;
  7944. #ifdef DEBUG_DCODES
  7945. /*!
  7946. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7947. #### Usage
  7948. D0 [ B ]
  7949. #### Parameters
  7950. - `B` - Bootloader
  7951. */
  7952. case 0:
  7953. dcode_0(); break;
  7954. /*!
  7955. *
  7956. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7957. D1
  7958. *
  7959. */
  7960. case 1:
  7961. dcode_1(); break;
  7962. #endif
  7963. #if defined DEBUG_DCODE2 || defined DEBUG_DCODES
  7964. /*!
  7965. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7966. This command can be used without any additional parameters. It will read the entire RAM.
  7967. #### Usage
  7968. D2 [ A | C | X ]
  7969. #### Parameters
  7970. - `A` - Address (x0000-x1fff)
  7971. - `C` - Count (1-8192)
  7972. - `X` - Data
  7973. #### Notes
  7974. - The hex address needs to be lowercase without the 0 before the x
  7975. - Count is decimal
  7976. - The hex data needs to be lowercase
  7977. */
  7978. case 2:
  7979. dcode_2(); break;
  7980. #endif //DEBUG_DCODES
  7981. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7982. /*!
  7983. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7984. This command can be used without any additional parameters. It will read the entire eeprom.
  7985. #### Usage
  7986. D3 [ A | C | X ]
  7987. #### Parameters
  7988. - `A` - Address (x0000-x0fff)
  7989. - `C` - Count (1-4096)
  7990. - `X` - Data (hex)
  7991. #### Notes
  7992. - The hex address needs to be lowercase without the 0 before the x
  7993. - Count is decimal
  7994. - The hex data needs to be lowercase
  7995. */
  7996. case 3:
  7997. dcode_3(); break;
  7998. #endif //DEBUG_DCODE3
  7999. #ifdef DEBUG_DCODES
  8000. /*!
  8001. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  8002. To read the digital value of a pin you need only to define the pin number.
  8003. #### Usage
  8004. D4 [ P | F | V ]
  8005. #### Parameters
  8006. - `P` - Pin (0-255)
  8007. - `F` - Function in/out (0/1)
  8008. - `V` - Value (0/1)
  8009. */
  8010. case 4:
  8011. dcode_4(); break;
  8012. #endif //DEBUG_DCODES
  8013. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  8014. /*!
  8015. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  8016. This command can be used without any additional parameters. It will read the 1kb FLASH.
  8017. #### Usage
  8018. D5 [ A | C | X | E ]
  8019. #### Parameters
  8020. - `A` - Address (x00000-x3ffff)
  8021. - `C` - Count (1-8192)
  8022. - `X` - Data (hex)
  8023. - `E` - Erase
  8024. #### Notes
  8025. - The hex address needs to be lowercase without the 0 before the x
  8026. - Count is decimal
  8027. - The hex data needs to be lowercase
  8028. */
  8029. case 5:
  8030. dcode_5(); break;
  8031. #endif //DEBUG_DCODE5
  8032. #if defined DEBUG_DCODE6 || defined DEBUG_DCODES
  8033. /*!
  8034. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  8035. Reserved
  8036. */
  8037. case 6:
  8038. dcode_6(); break;
  8039. #endif
  8040. #ifdef DEBUG_DCODES
  8041. /*!
  8042. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  8043. Reserved
  8044. */
  8045. case 7:
  8046. dcode_7(); break;
  8047. /*!
  8048. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  8049. #### Usage
  8050. D8 [ ? | ! | P | Z ]
  8051. #### Parameters
  8052. - `?` - Read PINDA temperature shift values
  8053. - `!` - Reset PINDA temperature shift values to default
  8054. - `P` - Pinda temperature [C]
  8055. - `Z` - Z Offset [mm]
  8056. */
  8057. case 8:
  8058. dcode_8(); break;
  8059. /*!
  8060. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  8061. #### Usage
  8062. D9 [ I | V ]
  8063. #### Parameters
  8064. - `I` - ADC channel index
  8065. - `0` - Heater 0 temperature
  8066. - `1` - Heater 1 temperature
  8067. - `2` - Bed temperature
  8068. - `3` - PINDA temperature
  8069. - `4` - PWR voltage
  8070. - `5` - Ambient temperature
  8071. - `6` - BED voltage
  8072. - `V` Value to be written as simulated
  8073. */
  8074. case 9:
  8075. dcode_9(); break;
  8076. /*!
  8077. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  8078. */
  8079. case 10:
  8080. dcode_10(); break;
  8081. /*!
  8082. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  8083. Writes the current time in the log file.
  8084. */
  8085. #endif //DEBUG_DCODES
  8086. #ifdef XFLASH_DUMP
  8087. /*!
  8088. ### D20 - Generate an offline crash dump <a href="https://reprap.org/wiki/G-code#D20:_Generate_an_offline_crash_dump">D20: Generate an offline crash dump</a>
  8089. Generate a crash dump for later retrival.
  8090. #### Usage
  8091. D20 [E]
  8092. ### Parameters
  8093. - `E` - Perform an emergency crash dump (resets the printer).
  8094. ### Notes
  8095. - A crash dump can be later recovered with D21, or cleared with D22.
  8096. - An emergency crash dump includes register data, but will cause the printer to reset after the dump
  8097. is completed.
  8098. */
  8099. case 20: {
  8100. dcode_20();
  8101. break;
  8102. };
  8103. /*!
  8104. ### D21 - Print crash dump to serial <a href="https://reprap.org/wiki/G-code#D21:_Print_crash_dump_to_serial">D21: Print crash dump to serial</a>
  8105. Output the complete crash dump (if present) to the serial.
  8106. #### Usage
  8107. D21
  8108. ### Notes
  8109. - The starting address can vary between builds, but it's always at the beginning of the data section.
  8110. */
  8111. case 21: {
  8112. dcode_21();
  8113. break;
  8114. };
  8115. /*!
  8116. ### D22 - Clear crash dump state <a href="https://reprap.org/wiki/G-code#D22:_Clear_crash_dump_state">D22: Clear crash dump state</a>
  8117. Clear an existing internal crash dump.
  8118. #### Usage
  8119. D22
  8120. */
  8121. case 22: {
  8122. dcode_22();
  8123. break;
  8124. };
  8125. #endif //XFLASH_DUMP
  8126. #ifdef EMERGENCY_SERIAL_DUMP
  8127. /*!
  8128. ### D23 - Request emergency dump on serial <a href="https://reprap.org/wiki/G-code#D23:_Request_emergency_dump_on_serial">D23: Request emergency dump on serial</a>
  8129. On boards without offline dump support, request online dumps to the serial port on firmware faults.
  8130. When online dumps are enabled, the FW will dump memory on the serial before resetting.
  8131. #### Usage
  8132. D23 [E] [R]
  8133. #### Parameters
  8134. - `E` - Perform an emergency crash dump (resets the printer).
  8135. - `R` - Disable online dumps.
  8136. */
  8137. case 23: {
  8138. dcode_23();
  8139. break;
  8140. };
  8141. #endif
  8142. #ifdef HEATBED_ANALYSIS
  8143. /*!
  8144. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  8145. This command will log data to SD card file "mesh.txt".
  8146. #### Usage
  8147. D80 [ E | F | G | H | I | J ]
  8148. #### Parameters
  8149. - `E` - Dimension X (default 40)
  8150. - `F` - Dimention Y (default 40)
  8151. - `G` - Points X (default 40)
  8152. - `H` - Points Y (default 40)
  8153. - `I` - Offset X (default 74)
  8154. - `J` - Offset Y (default 34)
  8155. */
  8156. case 80:
  8157. dcode_80(); break;
  8158. /*!
  8159. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  8160. This command will log data to SD card file "wldsd.txt".
  8161. #### Usage
  8162. D81 [ E | F | G | H | I | J ]
  8163. #### Parameters
  8164. - `E` - Dimension X (default 40)
  8165. - `F` - Dimention Y (default 40)
  8166. - `G` - Points X (default 40)
  8167. - `H` - Points Y (default 40)
  8168. - `I` - Offset X (default 74)
  8169. - `J` - Offset Y (default 34)
  8170. */
  8171. case 81:
  8172. dcode_81(); break;
  8173. #endif //HEATBED_ANALYSIS
  8174. #ifdef DEBUG_DCODES
  8175. /*!
  8176. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  8177. */
  8178. case 106:
  8179. dcode_106(); break;
  8180. #ifdef TMC2130
  8181. /*!
  8182. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  8183. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  8184. #### Usage
  8185. D2130 [ Axis | Command | Subcommand | Value ]
  8186. #### Parameters
  8187. - Axis
  8188. - `X` - X stepper driver
  8189. - `Y` - Y stepper driver
  8190. - `Z` - Z stepper driver
  8191. - `E` - Extruder stepper driver
  8192. - Commands
  8193. - `0` - Current off
  8194. - `1` - Current on
  8195. - `+` - Single step
  8196. - `-` - Single step oposite direction
  8197. - `NNN` - Value sereval steps
  8198. - `?` - Read register
  8199. - Subcommands for read register
  8200. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  8201. - `step` - Step
  8202. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  8203. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  8204. - `wave` - Microstep linearity compensation curve
  8205. - `!` - Set register
  8206. - Subcommands for set register
  8207. - `mres` - Micro step resolution
  8208. - `step` - Step
  8209. - `wave` - Microstep linearity compensation curve
  8210. - Values for set register
  8211. - `0, 180 --> 250` - Off
  8212. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  8213. - `@` - Home calibrate axis
  8214. Examples:
  8215. D2130E?wave
  8216. Print extruder microstep linearity compensation curve
  8217. D2130E!wave0
  8218. Disable extruder linearity compensation curve, (sine curve is used)
  8219. D2130E!wave220
  8220. (sin(x))^1.1 extruder microstep compensation curve used
  8221. Notes:
  8222. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  8223. *
  8224. */
  8225. case 2130:
  8226. dcode_2130(); break;
  8227. #endif //TMC2130
  8228. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  8229. /*!
  8230. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  8231. #### Usage
  8232. D9125 [ ? | ! | R | X | Y | L ]
  8233. #### Parameters
  8234. - `?` - Print values
  8235. - `!` - Print values
  8236. - `R` - Resolution. Not active in code
  8237. - `X` - X values
  8238. - `Y` - Y values
  8239. - `L` - Activate filament sensor log
  8240. */
  8241. case 9125:
  8242. dcode_9125(); break;
  8243. #endif //FILAMENT_SENSOR
  8244. #endif //DEBUG_DCODES
  8245. default:
  8246. printf_P(MSG_UNKNOWN_CODE, 'D', cmdbuffer + bufindr + CMDHDRSIZE);
  8247. }
  8248. }
  8249. else
  8250. {
  8251. SERIAL_ECHO_START;
  8252. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  8253. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  8254. SERIAL_ECHOLNPGM("\"(2)");
  8255. }
  8256. KEEPALIVE_STATE(NOT_BUSY);
  8257. ClearToSend();
  8258. }
  8259. /*!
  8260. #### End of D-Codes
  8261. */
  8262. /** @defgroup GCodes G-Code List
  8263. */
  8264. // ---------------------------------------------------
  8265. void FlushSerialRequestResend()
  8266. {
  8267. //char cmdbuffer[bufindr][100]="Resend:";
  8268. MYSERIAL.flush();
  8269. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  8270. }
  8271. // Confirm the execution of a command, if sent from a serial line.
  8272. // Execution of a command from a SD card will not be confirmed.
  8273. void ClearToSend()
  8274. {
  8275. previous_millis_cmd.start();
  8276. if (buflen && ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  8277. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  8278. }
  8279. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8280. void update_currents() {
  8281. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  8282. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  8283. float tmp_motor[3];
  8284. //SERIAL_ECHOLNPGM("Currents updated: ");
  8285. if (destination[Z_AXIS] < Z_SILENT) {
  8286. //SERIAL_ECHOLNPGM("LOW");
  8287. for (uint8_t i = 0; i < 3; i++) {
  8288. st_current_set(i, current_low[i]);
  8289. /*MYSERIAL.print(int(i));
  8290. SERIAL_ECHOPGM(": ");
  8291. MYSERIAL.println(current_low[i]);*/
  8292. }
  8293. }
  8294. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  8295. //SERIAL_ECHOLNPGM("HIGH");
  8296. for (uint8_t i = 0; i < 3; i++) {
  8297. st_current_set(i, current_high[i]);
  8298. /*MYSERIAL.print(int(i));
  8299. SERIAL_ECHOPGM(": ");
  8300. MYSERIAL.println(current_high[i]);*/
  8301. }
  8302. }
  8303. else {
  8304. for (uint8_t i = 0; i < 3; i++) {
  8305. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  8306. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  8307. st_current_set(i, tmp_motor[i]);
  8308. /*MYSERIAL.print(int(i));
  8309. SERIAL_ECHOPGM(": ");
  8310. MYSERIAL.println(tmp_motor[i]);*/
  8311. }
  8312. }
  8313. }
  8314. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8315. void get_coordinates()
  8316. {
  8317. bool seen[4]={false,false,false,false};
  8318. for(int8_t i=0; i < NUM_AXIS; i++) {
  8319. if(code_seen(axis_codes[i]))
  8320. {
  8321. bool relative = axis_relative_modes & (1 << i);
  8322. destination[i] = code_value();
  8323. if (i == E_AXIS) {
  8324. float emult = extruder_multiplier[active_extruder];
  8325. if (emult != 1.) {
  8326. if (! relative) {
  8327. destination[i] -= current_position[i];
  8328. relative = true;
  8329. }
  8330. destination[i] *= emult;
  8331. }
  8332. }
  8333. if (relative)
  8334. destination[i] += current_position[i];
  8335. seen[i]=true;
  8336. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8337. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  8338. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8339. }
  8340. else destination[i] = current_position[i]; //Are these else lines really needed?
  8341. }
  8342. if(code_seen('F')) {
  8343. next_feedrate = code_value();
  8344. #ifdef MAX_SILENT_FEEDRATE
  8345. if (tmc2130_mode == TMC2130_MODE_SILENT)
  8346. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  8347. #endif //MAX_SILENT_FEEDRATE
  8348. if(next_feedrate > 0.0) feedrate = next_feedrate;
  8349. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  8350. {
  8351. // float e_max_speed =
  8352. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  8353. }
  8354. }
  8355. }
  8356. void get_arc_coordinates()
  8357. {
  8358. #ifdef SF_ARC_FIX
  8359. bool relative_mode_backup = relative_mode;
  8360. relative_mode = true;
  8361. #endif
  8362. get_coordinates();
  8363. #ifdef SF_ARC_FIX
  8364. relative_mode=relative_mode_backup;
  8365. #endif
  8366. if(code_seen('I')) {
  8367. offset[0] = code_value();
  8368. }
  8369. else {
  8370. offset[0] = 0.0;
  8371. }
  8372. if(code_seen('J')) {
  8373. offset[1] = code_value();
  8374. }
  8375. else {
  8376. offset[1] = 0.0;
  8377. }
  8378. }
  8379. void clamp_to_software_endstops(float target[3])
  8380. {
  8381. #ifdef DEBUG_DISABLE_SWLIMITS
  8382. return;
  8383. #endif //DEBUG_DISABLE_SWLIMITS
  8384. world2machine_clamp(target[0], target[1]);
  8385. // Clamp the Z coordinate.
  8386. if (min_software_endstops) {
  8387. float negative_z_offset = 0;
  8388. #ifdef ENABLE_AUTO_BED_LEVELING
  8389. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8390. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8391. #endif
  8392. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8393. }
  8394. if (max_software_endstops) {
  8395. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8396. }
  8397. }
  8398. #ifdef MESH_BED_LEVELING
  8399. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8400. float dx = x - current_position[X_AXIS];
  8401. float dy = y - current_position[Y_AXIS];
  8402. int n_segments = 0;
  8403. if (mbl.active) {
  8404. float len = fabs(dx) + fabs(dy);
  8405. if (len > 0)
  8406. // Split to 3cm segments or shorter.
  8407. n_segments = int(ceil(len / 30.f));
  8408. }
  8409. if (n_segments > 1) {
  8410. // In a multi-segment move explicitly set the final target in the plan
  8411. // as the move will be recalculated in it's entirety
  8412. float gcode_target[NUM_AXIS];
  8413. gcode_target[X_AXIS] = x;
  8414. gcode_target[Y_AXIS] = y;
  8415. gcode_target[Z_AXIS] = z;
  8416. gcode_target[E_AXIS] = e;
  8417. float dz = z - current_position[Z_AXIS];
  8418. float de = e - current_position[E_AXIS];
  8419. for (int i = 1; i < n_segments; ++ i) {
  8420. float t = float(i) / float(n_segments);
  8421. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8422. current_position[Y_AXIS] + t * dy,
  8423. current_position[Z_AXIS] + t * dz,
  8424. current_position[E_AXIS] + t * de,
  8425. feed_rate, extruder, gcode_target);
  8426. if (waiting_inside_plan_buffer_line_print_aborted)
  8427. return;
  8428. }
  8429. }
  8430. // The rest of the path.
  8431. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8432. }
  8433. #endif // MESH_BED_LEVELING
  8434. void prepare_move()
  8435. {
  8436. clamp_to_software_endstops(destination);
  8437. previous_millis_cmd.start();
  8438. // Do not use feedmultiply for E or Z only moves
  8439. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8440. plan_buffer_line_destinationXYZE(feedrate/60);
  8441. }
  8442. else {
  8443. #ifdef MESH_BED_LEVELING
  8444. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8445. #else
  8446. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8447. #endif
  8448. }
  8449. set_current_to_destination();
  8450. }
  8451. void prepare_arc_move(bool isclockwise) {
  8452. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8453. // Trace the arc
  8454. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  8455. // As far as the parser is concerned, the position is now == target. In reality the
  8456. // motion control system might still be processing the action and the real tool position
  8457. // in any intermediate location.
  8458. set_current_to_destination();
  8459. previous_millis_cmd.start();
  8460. }
  8461. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8462. #if defined(FAN_PIN)
  8463. #if CONTROLLERFAN_PIN == FAN_PIN
  8464. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8465. #endif
  8466. #endif
  8467. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8468. unsigned long lastMotorCheck = 0;
  8469. void controllerFan()
  8470. {
  8471. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8472. {
  8473. lastMotorCheck = _millis();
  8474. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8475. #if EXTRUDERS > 2
  8476. || !READ(E2_ENABLE_PIN)
  8477. #endif
  8478. #if EXTRUDER > 1
  8479. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8480. || !READ(X2_ENABLE_PIN)
  8481. #endif
  8482. || !READ(E1_ENABLE_PIN)
  8483. #endif
  8484. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8485. {
  8486. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8487. }
  8488. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8489. {
  8490. digitalWrite(CONTROLLERFAN_PIN, 0);
  8491. analogWrite(CONTROLLERFAN_PIN, 0);
  8492. }
  8493. else
  8494. {
  8495. // allows digital or PWM fan output to be used (see M42 handling)
  8496. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8497. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8498. }
  8499. }
  8500. }
  8501. #endif
  8502. #ifdef SAFETYTIMER
  8503. /**
  8504. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8505. *
  8506. * Full screen blocking notification message is shown after heater turning off.
  8507. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8508. * damage print.
  8509. *
  8510. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8511. */
  8512. static void handleSafetyTimer()
  8513. {
  8514. #if (EXTRUDERS > 1)
  8515. #error Implemented only for one extruder.
  8516. #endif //(EXTRUDERS > 1)
  8517. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8518. {
  8519. safetyTimer.stop();
  8520. }
  8521. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8522. {
  8523. safetyTimer.start();
  8524. }
  8525. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8526. {
  8527. setTargetBed(0);
  8528. setAllTargetHotends(0);
  8529. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=20 r=4
  8530. }
  8531. }
  8532. #endif //SAFETYTIMER
  8533. #ifdef IR_SENSOR_ANALOG
  8534. #define FS_CHECK_COUNT 16
  8535. /// Switching mechanism of the fsensor type.
  8536. /// Called from 2 spots which have a very similar behavior
  8537. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8538. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8539. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8540. bool bTemp = (!CHECK_ALL_HEATERS);
  8541. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8542. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8543. bTemp = bTemp && fsensor_enabled;
  8544. if (bTemp) {
  8545. nFSCheckCount++;
  8546. if (nFSCheckCount > FS_CHECK_COUNT) {
  8547. nFSCheckCount = 0; // not necessary
  8548. oFsensorPCB = switchTo;
  8549. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8550. printf_IRSensorAnalogBoardChange();
  8551. lcd_setstatuspgm(statusLineTxt_P);
  8552. }
  8553. } else {
  8554. nFSCheckCount = 0;
  8555. }
  8556. }
  8557. #endif
  8558. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8559. {
  8560. #ifdef FILAMENT_SENSOR
  8561. bool bInhibitFlag = false;
  8562. #ifdef IR_SENSOR_ANALOG
  8563. static uint16_t nFSCheckCount=0;
  8564. #endif // IR_SENSOR_ANALOG
  8565. if (mmu_enabled == false)
  8566. {
  8567. //-// if (mcode_in_progress != 600) //M600 not in progress
  8568. if (!PRINTER_ACTIVE) bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); //Block Filament sensor actions if PRINTER is not active and Support::SensorInfo menu active
  8569. #ifdef IR_SENSOR_ANALOG
  8570. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Block Filament sensor actions if Settings::HWsetup::FSdetect menu active
  8571. #endif // IR_SENSOR_ANALOG
  8572. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag) && (menu_menu != lcd_move_e)) //M600 not in progress, preHeat @ autoLoad menu not active
  8573. {
  8574. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8575. {
  8576. #ifdef IR_SENSOR_ANALOG
  8577. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8578. // detect min-max, some long term sliding window for filtration may be added
  8579. // avoiding floating point operations, thus computing in raw
  8580. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8581. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8582. #if 0 // Start: IR Sensor debug info
  8583. { // debug print
  8584. static uint16_t lastVolt = ~0U;
  8585. if( current_voltage_raw_IR != lastVolt ){
  8586. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8587. lastVolt = current_voltage_raw_IR;
  8588. }
  8589. }
  8590. #endif // End: IR Sensor debug info
  8591. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8592. //! to be detected as the new fsensor
  8593. //! We can either fake it by extending the detection window to a looooong time
  8594. //! or do some other countermeasures
  8595. //! what we want to detect:
  8596. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8597. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8598. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8599. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8600. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8601. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8602. ){
  8603. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////MSG_FS_V_04_OR_NEWER c=18
  8604. }
  8605. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8606. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8607. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8608. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8609. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8610. ){
  8611. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////MSG_FS_V_03_OR_OLDER c=18
  8612. }
  8613. #endif // IR_SENSOR_ANALOG
  8614. if (fsensor_check_autoload())
  8615. {
  8616. #ifdef PAT9125
  8617. fsensor_autoload_check_stop();
  8618. #endif //PAT9125
  8619. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8620. if(0)
  8621. {
  8622. Sound_MakeCustom(50,1000,false);
  8623. loading_flag = true;
  8624. enquecommand_front_P((PSTR("M701")));
  8625. }
  8626. else
  8627. {
  8628. /*
  8629. lcd_update_enable(false);
  8630. show_preheat_nozzle_warning();
  8631. lcd_update_enable(true);
  8632. */
  8633. eFilamentAction=FilamentAction::AutoLoad;
  8634. bFilamentFirstRun=false;
  8635. if(target_temperature[0]>=EXTRUDE_MINTEMP){
  8636. bFilamentPreheatState=true;
  8637. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8638. menu_submenu(mFilamentItemForce);
  8639. } else {
  8640. menu_submenu(lcd_generic_preheat_menu);
  8641. lcd_timeoutToStatus.start();
  8642. }
  8643. }
  8644. }
  8645. }
  8646. else
  8647. {
  8648. #ifdef PAT9125
  8649. fsensor_autoload_check_stop();
  8650. #endif //PAT9125
  8651. if (fsensor_enabled && !saved_printing)
  8652. fsensor_update();
  8653. }
  8654. }
  8655. }
  8656. #endif //FILAMENT_SENSOR
  8657. #ifdef SAFETYTIMER
  8658. handleSafetyTimer();
  8659. #endif //SAFETYTIMER
  8660. #if defined(KILL_PIN) && KILL_PIN > -1
  8661. static int killCount = 0; // make the inactivity button a bit less responsive
  8662. const int KILL_DELAY = 10000;
  8663. #endif
  8664. if(buflen < (BUFSIZE-1)){
  8665. get_command();
  8666. }
  8667. if(previous_millis_cmd.expired(max_inactive_time))
  8668. if(max_inactive_time)
  8669. kill(_n("Inactivity Shutdown"), 4);
  8670. if(stepper_inactive_time) {
  8671. if(previous_millis_cmd.expired(stepper_inactive_time))
  8672. {
  8673. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8674. disable_x();
  8675. disable_y();
  8676. disable_z();
  8677. disable_e0();
  8678. disable_e1();
  8679. disable_e2();
  8680. }
  8681. }
  8682. }
  8683. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8684. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8685. {
  8686. chdkActive = false;
  8687. WRITE(CHDK, LOW);
  8688. }
  8689. #endif
  8690. #if defined(KILL_PIN) && KILL_PIN > -1
  8691. // Check if the kill button was pressed and wait just in case it was an accidental
  8692. // key kill key press
  8693. // -------------------------------------------------------------------------------
  8694. if( 0 == READ(KILL_PIN) )
  8695. {
  8696. killCount++;
  8697. }
  8698. else if (killCount > 0)
  8699. {
  8700. killCount--;
  8701. }
  8702. // Exceeded threshold and we can confirm that it was not accidental
  8703. // KILL the machine
  8704. // ----------------------------------------------------------------
  8705. if ( killCount >= KILL_DELAY)
  8706. {
  8707. kill(NULL, 5);
  8708. }
  8709. #endif
  8710. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8711. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8712. #endif
  8713. #ifdef EXTRUDER_RUNOUT_PREVENT
  8714. if(previous_millis_cmd.expired(EXTRUDER_RUNOUT_SECONDS*1000))
  8715. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8716. {
  8717. bool oldstatus=READ(E0_ENABLE_PIN);
  8718. enable_e0();
  8719. float oldepos=current_position[E_AXIS];
  8720. float oldedes=destination[E_AXIS];
  8721. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8722. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8723. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8724. current_position[E_AXIS]=oldepos;
  8725. destination[E_AXIS]=oldedes;
  8726. plan_set_e_position(oldepos);
  8727. previous_millis_cmd.start();
  8728. st_synchronize();
  8729. WRITE(E0_ENABLE_PIN,oldstatus);
  8730. }
  8731. #endif
  8732. check_axes_activity();
  8733. mmu_loop();
  8734. // handle longpress
  8735. if(lcd_longpress_trigger)
  8736. {
  8737. // long press is not possible in modal mode, wait until ready
  8738. if (lcd_longpress_func && lcd_update_enabled)
  8739. {
  8740. lcd_longpress_func();
  8741. lcd_longpress_trigger = 0;
  8742. }
  8743. }
  8744. #if defined(AUTO_REPORT)
  8745. host_autoreport();
  8746. #endif //AUTO_REPORT
  8747. host_keepalive();
  8748. }
  8749. void kill(const char *full_screen_message, unsigned char id)
  8750. {
  8751. printf_P(_N("KILL: %d\n"), id);
  8752. //return;
  8753. cli(); // Stop interrupts
  8754. disable_heater();
  8755. disable_x();
  8756. // SERIAL_ECHOLNPGM("kill - disable Y");
  8757. disable_y();
  8758. poweroff_z();
  8759. disable_e0();
  8760. disable_e1();
  8761. disable_e2();
  8762. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8763. pinMode(PS_ON_PIN,INPUT);
  8764. #endif
  8765. SERIAL_ERROR_START;
  8766. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8767. if (full_screen_message != NULL) {
  8768. SERIAL_ERRORLNRPGM(full_screen_message);
  8769. lcd_display_message_fullscreen_P(full_screen_message);
  8770. } else {
  8771. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8772. }
  8773. // FMC small patch to update the LCD before ending
  8774. sei(); // enable interrupts
  8775. for ( int i=5; i--; lcd_update(0))
  8776. {
  8777. _delay(200);
  8778. }
  8779. cli(); // disable interrupts
  8780. suicide();
  8781. while(1)
  8782. {
  8783. #ifdef WATCHDOG
  8784. wdt_reset();
  8785. #endif //WATCHDOG
  8786. /* Intentionally left empty */
  8787. } // Wait for reset
  8788. }
  8789. void UnconditionalStop()
  8790. {
  8791. CRITICAL_SECTION_START;
  8792. // Disable all heaters and unroll the temperature wait loop stack
  8793. disable_heater();
  8794. cancel_heatup = true;
  8795. // Clear any saved printing state
  8796. cancel_saved_printing();
  8797. // Abort the planner
  8798. planner_abort_hard();
  8799. // Reset the queue
  8800. cmdqueue_reset();
  8801. cmdqueue_serial_disabled = false;
  8802. // Reset the sd status
  8803. card.sdprinting = false;
  8804. card.closefile();
  8805. st_reset_timer();
  8806. CRITICAL_SECTION_END;
  8807. }
  8808. // Stop: Emergency stop used by overtemp functions which allows recovery
  8809. //
  8810. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8811. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8812. // manually started from scratch with the LCD.
  8813. //
  8814. // Note that the current instruction is completely discarded, so resuming from Stop()
  8815. // will introduce either over/under extrusion on the current segment, and will not
  8816. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8817. // the addition of disabling the headers) could allow true recovery in the future.
  8818. void Stop()
  8819. {
  8820. // Keep disabling heaters
  8821. disable_heater();
  8822. // Call the regular stop function if that's the first time during a new print
  8823. if(Stopped == false) {
  8824. Stopped = true;
  8825. lcd_print_stop();
  8826. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8827. // Eventually report the stopped status (though this is usually overridden by a
  8828. // higher-priority alert status message)
  8829. SERIAL_ERROR_START;
  8830. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8831. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8832. }
  8833. // Return to the status screen to stop any pending menu action which could have been
  8834. // started by the user while stuck in the Stopped state. This also ensures the NEW
  8835. // error is immediately shown.
  8836. if (menu_menu != lcd_status_screen)
  8837. lcd_return_to_status();
  8838. }
  8839. bool IsStopped() { return Stopped; };
  8840. void finishAndDisableSteppers()
  8841. {
  8842. st_synchronize();
  8843. disable_x();
  8844. disable_y();
  8845. disable_z();
  8846. disable_e0();
  8847. disable_e1();
  8848. disable_e2();
  8849. #ifndef LA_NOCOMPAT
  8850. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8851. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8852. // state for the next print.
  8853. la10c_reset();
  8854. #endif
  8855. }
  8856. #ifdef FAST_PWM_FAN
  8857. void setPwmFrequency(uint8_t pin, int val)
  8858. {
  8859. val &= 0x07;
  8860. switch(digitalPinToTimer(pin))
  8861. {
  8862. #if defined(TCCR0A)
  8863. case TIMER0A:
  8864. case TIMER0B:
  8865. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8866. // TCCR0B |= val;
  8867. break;
  8868. #endif
  8869. #if defined(TCCR1A)
  8870. case TIMER1A:
  8871. case TIMER1B:
  8872. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8873. // TCCR1B |= val;
  8874. break;
  8875. #endif
  8876. #if defined(TCCR2)
  8877. case TIMER2:
  8878. case TIMER2:
  8879. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8880. TCCR2 |= val;
  8881. break;
  8882. #endif
  8883. #if defined(TCCR2A)
  8884. case TIMER2A:
  8885. case TIMER2B:
  8886. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8887. TCCR2B |= val;
  8888. break;
  8889. #endif
  8890. #if defined(TCCR3A)
  8891. case TIMER3A:
  8892. case TIMER3B:
  8893. case TIMER3C:
  8894. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8895. TCCR3B |= val;
  8896. break;
  8897. #endif
  8898. #if defined(TCCR4A)
  8899. case TIMER4A:
  8900. case TIMER4B:
  8901. case TIMER4C:
  8902. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8903. TCCR4B |= val;
  8904. break;
  8905. #endif
  8906. #if defined(TCCR5A)
  8907. case TIMER5A:
  8908. case TIMER5B:
  8909. case TIMER5C:
  8910. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8911. TCCR5B |= val;
  8912. break;
  8913. #endif
  8914. }
  8915. }
  8916. #endif //FAST_PWM_FAN
  8917. //! @brief Get and validate extruder number
  8918. //!
  8919. //! If it is not specified, active_extruder is returned in parameter extruder.
  8920. //! @param [in] code M code number
  8921. //! @param [out] extruder
  8922. //! @return error
  8923. //! @retval true Invalid extruder specified in T code
  8924. //! @retval false Valid extruder specified in T code, or not specifiead
  8925. bool setTargetedHotend(int code, uint8_t &extruder)
  8926. {
  8927. extruder = active_extruder;
  8928. if(code_seen('T')) {
  8929. extruder = code_value_uint8();
  8930. if(extruder >= EXTRUDERS) {
  8931. SERIAL_ECHO_START;
  8932. switch(code){
  8933. case 104:
  8934. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8935. break;
  8936. case 105:
  8937. SERIAL_ECHORPGM(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8938. break;
  8939. case 109:
  8940. SERIAL_ECHORPGM(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8941. break;
  8942. case 218:
  8943. SERIAL_ECHORPGM(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8944. break;
  8945. case 221:
  8946. SERIAL_ECHORPGM(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8947. break;
  8948. }
  8949. SERIAL_PROTOCOLLN((int)extruder);
  8950. return true;
  8951. }
  8952. }
  8953. return false;
  8954. }
  8955. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8956. {
  8957. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8958. {
  8959. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8960. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8961. }
  8962. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8963. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8964. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8965. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8966. total_filament_used = 0;
  8967. }
  8968. float calculate_extruder_multiplier(float diameter) {
  8969. float out = 1.f;
  8970. if (cs.volumetric_enabled && diameter > 0.f) {
  8971. float area = M_PI * diameter * diameter * 0.25;
  8972. out = 1.f / area;
  8973. }
  8974. if (extrudemultiply != 100)
  8975. out *= float(extrudemultiply) * 0.01f;
  8976. return out;
  8977. }
  8978. void calculate_extruder_multipliers() {
  8979. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8980. #if EXTRUDERS > 1
  8981. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8982. #if EXTRUDERS > 2
  8983. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8984. #endif
  8985. #endif
  8986. }
  8987. void delay_keep_alive(unsigned int ms)
  8988. {
  8989. for (;;) {
  8990. manage_heater();
  8991. // Manage inactivity, but don't disable steppers on timeout.
  8992. manage_inactivity(true);
  8993. lcd_update(0);
  8994. if (ms == 0)
  8995. break;
  8996. else if (ms >= 50) {
  8997. _delay(50);
  8998. ms -= 50;
  8999. } else {
  9000. _delay(ms);
  9001. ms = 0;
  9002. }
  9003. }
  9004. }
  9005. static void wait_for_heater(long codenum, uint8_t extruder) {
  9006. if (!degTargetHotend(extruder))
  9007. return;
  9008. #ifdef TEMP_RESIDENCY_TIME
  9009. long residencyStart;
  9010. residencyStart = -1;
  9011. /* continue to loop until we have reached the target temp
  9012. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  9013. cancel_heatup = false;
  9014. while ((!cancel_heatup) && ((residencyStart == -1) ||
  9015. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  9016. #else
  9017. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  9018. #endif //TEMP_RESIDENCY_TIME
  9019. if ((_millis() - codenum) > 1000UL)
  9020. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  9021. if (!farm_mode) {
  9022. SERIAL_PROTOCOLPGM("T:");
  9023. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  9024. SERIAL_PROTOCOLPGM(" E:");
  9025. SERIAL_PROTOCOL((int)extruder);
  9026. #ifdef TEMP_RESIDENCY_TIME
  9027. SERIAL_PROTOCOLPGM(" W:");
  9028. if (residencyStart > -1)
  9029. {
  9030. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  9031. SERIAL_PROTOCOLLN(codenum);
  9032. }
  9033. else
  9034. {
  9035. SERIAL_PROTOCOLLN('?');
  9036. }
  9037. }
  9038. #else
  9039. SERIAL_PROTOCOLLN();
  9040. #endif
  9041. codenum = _millis();
  9042. }
  9043. manage_heater();
  9044. manage_inactivity(true); //do not disable steppers
  9045. lcd_update(0);
  9046. #ifdef TEMP_RESIDENCY_TIME
  9047. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  9048. or when current temp falls outside the hysteresis after target temp was reached */
  9049. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  9050. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  9051. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  9052. {
  9053. residencyStart = _millis();
  9054. }
  9055. #endif //TEMP_RESIDENCY_TIME
  9056. }
  9057. }
  9058. void check_babystep()
  9059. {
  9060. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  9061. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  9062. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  9063. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  9064. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  9065. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  9066. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  9067. babystep_z);
  9068. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  9069. lcd_update_enable(true);
  9070. }
  9071. }
  9072. #ifdef HEATBED_ANALYSIS
  9073. void d_setup()
  9074. {
  9075. pinMode(D_DATACLOCK, INPUT_PULLUP);
  9076. pinMode(D_DATA, INPUT_PULLUP);
  9077. pinMode(D_REQUIRE, OUTPUT);
  9078. digitalWrite(D_REQUIRE, HIGH);
  9079. }
  9080. float d_ReadData()
  9081. {
  9082. int digit[13];
  9083. String mergeOutput;
  9084. float output;
  9085. digitalWrite(D_REQUIRE, HIGH);
  9086. for (int i = 0; i<13; i++)
  9087. {
  9088. for (int j = 0; j < 4; j++)
  9089. {
  9090. while (digitalRead(D_DATACLOCK) == LOW) {}
  9091. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9092. bitWrite(digit[i], j, digitalRead(D_DATA));
  9093. }
  9094. }
  9095. digitalWrite(D_REQUIRE, LOW);
  9096. mergeOutput = "";
  9097. output = 0;
  9098. for (int r = 5; r <= 10; r++) //Merge digits
  9099. {
  9100. mergeOutput += digit[r];
  9101. }
  9102. output = mergeOutput.toFloat();
  9103. if (digit[4] == 8) //Handle sign
  9104. {
  9105. output *= -1;
  9106. }
  9107. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9108. {
  9109. output /= 10;
  9110. }
  9111. return output;
  9112. }
  9113. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  9114. int t1 = 0;
  9115. int t_delay = 0;
  9116. int digit[13];
  9117. int m;
  9118. char str[3];
  9119. //String mergeOutput;
  9120. char mergeOutput[15];
  9121. float output;
  9122. int mesh_point = 0; //index number of calibration point
  9123. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  9124. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  9125. float mesh_home_z_search = 4;
  9126. float measure_z_height = 0.2f;
  9127. float row[x_points_num];
  9128. int ix = 0;
  9129. int iy = 0;
  9130. const char* filename_wldsd = "mesh.txt";
  9131. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  9132. char numb_wldsd[8]; // (" -A.BCD" + null)
  9133. #ifdef MICROMETER_LOGGING
  9134. d_setup();
  9135. #endif //MICROMETER_LOGGING
  9136. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  9137. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  9138. unsigned int custom_message_type_old = custom_message_type;
  9139. unsigned int custom_message_state_old = custom_message_state;
  9140. custom_message_type = CustomMsg::MeshBedLeveling;
  9141. custom_message_state = (x_points_num * y_points_num) + 10;
  9142. lcd_update(1);
  9143. //mbl.reset();
  9144. babystep_undo();
  9145. card.openFile(filename_wldsd, false);
  9146. /*destination[Z_AXIS] = mesh_home_z_search;
  9147. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  9148. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  9149. for(int8_t i=0; i < NUM_AXIS; i++) {
  9150. current_position[i] = destination[i];
  9151. }
  9152. st_synchronize();
  9153. */
  9154. destination[Z_AXIS] = measure_z_height;
  9155. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  9156. for(int8_t i=0; i < NUM_AXIS; i++) {
  9157. current_position[i] = destination[i];
  9158. }
  9159. st_synchronize();
  9160. /*int l_feedmultiply = */setup_for_endstop_move(false);
  9161. SERIAL_PROTOCOLPGM("Num X,Y: ");
  9162. SERIAL_PROTOCOL(x_points_num);
  9163. SERIAL_PROTOCOLPGM(",");
  9164. SERIAL_PROTOCOL(y_points_num);
  9165. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9166. SERIAL_PROTOCOL(mesh_home_z_search);
  9167. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9168. SERIAL_PROTOCOL(x_dimension);
  9169. SERIAL_PROTOCOLPGM(",");
  9170. SERIAL_PROTOCOL(y_dimension);
  9171. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9172. while (mesh_point != x_points_num * y_points_num) {
  9173. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9174. iy = mesh_point / x_points_num;
  9175. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9176. float z0 = 0.f;
  9177. /*destination[Z_AXIS] = mesh_home_z_search;
  9178. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  9179. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  9180. for(int8_t i=0; i < NUM_AXIS; i++) {
  9181. current_position[i] = destination[i];
  9182. }
  9183. st_synchronize();*/
  9184. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9185. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9186. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  9187. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  9188. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  9189. set_current_to_destination();
  9190. st_synchronize();
  9191. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9192. delay_keep_alive(1000);
  9193. #ifdef MICROMETER_LOGGING
  9194. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9195. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9196. //strcat(data_wldsd, numb_wldsd);
  9197. //MYSERIAL.println(data_wldsd);
  9198. //delay(1000);
  9199. //delay(3000);
  9200. //t1 = millis();
  9201. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9202. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9203. memset(digit, 0, sizeof(digit));
  9204. //cli();
  9205. digitalWrite(D_REQUIRE, LOW);
  9206. for (int i = 0; i<13; i++)
  9207. {
  9208. //t1 = millis();
  9209. for (int j = 0; j < 4; j++)
  9210. {
  9211. while (digitalRead(D_DATACLOCK) == LOW) {}
  9212. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9213. //printf_P(PSTR("Done %d\n"), j);
  9214. bitWrite(digit[i], j, digitalRead(D_DATA));
  9215. }
  9216. //t_delay = (millis() - t1);
  9217. //SERIAL_PROTOCOLPGM(" ");
  9218. //SERIAL_PROTOCOL_F(t_delay, 5);
  9219. //SERIAL_PROTOCOLPGM(" ");
  9220. }
  9221. //sei();
  9222. digitalWrite(D_REQUIRE, HIGH);
  9223. mergeOutput[0] = '\0';
  9224. output = 0;
  9225. for (int r = 5; r <= 10; r++) //Merge digits
  9226. {
  9227. sprintf(str, "%d", digit[r]);
  9228. strcat(mergeOutput, str);
  9229. }
  9230. output = atof(mergeOutput);
  9231. if (digit[4] == 8) //Handle sign
  9232. {
  9233. output *= -1;
  9234. }
  9235. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9236. {
  9237. output *= 0.1;
  9238. }
  9239. //output = d_ReadData();
  9240. //row[ix] = current_position[Z_AXIS];
  9241. //row[ix] = d_ReadData();
  9242. row[ix] = output;
  9243. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9244. memset(data_wldsd, 0, sizeof(data_wldsd));
  9245. for (int i = 0; i < x_points_num; i++) {
  9246. SERIAL_PROTOCOLPGM(" ");
  9247. SERIAL_PROTOCOL_F(row[i], 5);
  9248. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9249. dtostrf(row[i], 7, 3, numb_wldsd);
  9250. strcat(data_wldsd, numb_wldsd);
  9251. }
  9252. card.write_command(data_wldsd);
  9253. SERIAL_PROTOCOLPGM("\n");
  9254. }
  9255. custom_message_state--;
  9256. mesh_point++;
  9257. lcd_update(1);
  9258. }
  9259. #endif //MICROMETER_LOGGING
  9260. card.closefile();
  9261. //clean_up_after_endstop_move(l_feedmultiply);
  9262. }
  9263. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  9264. int t1 = 0;
  9265. int t_delay = 0;
  9266. int digit[13];
  9267. int m;
  9268. char str[3];
  9269. //String mergeOutput;
  9270. char mergeOutput[15];
  9271. float output;
  9272. int mesh_point = 0; //index number of calibration point
  9273. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  9274. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  9275. float mesh_home_z_search = 4;
  9276. float row[x_points_num];
  9277. int ix = 0;
  9278. int iy = 0;
  9279. const char* filename_wldsd = "wldsd.txt";
  9280. char data_wldsd[70];
  9281. char numb_wldsd[10];
  9282. d_setup();
  9283. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  9284. // We don't know where we are! HOME!
  9285. // Push the commands to the front of the message queue in the reverse order!
  9286. // There shall be always enough space reserved for these commands.
  9287. repeatcommand_front(); // repeat G80 with all its parameters
  9288. enquecommand_front_P(G28W0);
  9289. enquecommand_front_P((PSTR("G1 Z5")));
  9290. return;
  9291. }
  9292. unsigned int custom_message_type_old = custom_message_type;
  9293. unsigned int custom_message_state_old = custom_message_state;
  9294. custom_message_type = CustomMsg::MeshBedLeveling;
  9295. custom_message_state = (x_points_num * y_points_num) + 10;
  9296. lcd_update(1);
  9297. mbl.reset();
  9298. babystep_undo();
  9299. card.openFile(filename_wldsd, false);
  9300. current_position[Z_AXIS] = mesh_home_z_search;
  9301. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  9302. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  9303. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  9304. int l_feedmultiply = setup_for_endstop_move(false);
  9305. SERIAL_PROTOCOLPGM("Num X,Y: ");
  9306. SERIAL_PROTOCOL(x_points_num);
  9307. SERIAL_PROTOCOLPGM(",");
  9308. SERIAL_PROTOCOL(y_points_num);
  9309. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9310. SERIAL_PROTOCOL(mesh_home_z_search);
  9311. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9312. SERIAL_PROTOCOL(x_dimension);
  9313. SERIAL_PROTOCOLPGM(",");
  9314. SERIAL_PROTOCOL(y_dimension);
  9315. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9316. while (mesh_point != x_points_num * y_points_num) {
  9317. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9318. iy = mesh_point / x_points_num;
  9319. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9320. float z0 = 0.f;
  9321. current_position[Z_AXIS] = mesh_home_z_search;
  9322. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  9323. st_synchronize();
  9324. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9325. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9326. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  9327. st_synchronize();
  9328. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  9329. break;
  9330. card.closefile();
  9331. }
  9332. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9333. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9334. //strcat(data_wldsd, numb_wldsd);
  9335. //MYSERIAL.println(data_wldsd);
  9336. //_delay(1000);
  9337. //_delay(3000);
  9338. //t1 = _millis();
  9339. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9340. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9341. memset(digit, 0, sizeof(digit));
  9342. //cli();
  9343. digitalWrite(D_REQUIRE, LOW);
  9344. for (int i = 0; i<13; i++)
  9345. {
  9346. //t1 = _millis();
  9347. for (int j = 0; j < 4; j++)
  9348. {
  9349. while (digitalRead(D_DATACLOCK) == LOW) {}
  9350. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9351. bitWrite(digit[i], j, digitalRead(D_DATA));
  9352. }
  9353. //t_delay = (_millis() - t1);
  9354. //SERIAL_PROTOCOLPGM(" ");
  9355. //SERIAL_PROTOCOL_F(t_delay, 5);
  9356. //SERIAL_PROTOCOLPGM(" ");
  9357. }
  9358. //sei();
  9359. digitalWrite(D_REQUIRE, HIGH);
  9360. mergeOutput[0] = '\0';
  9361. output = 0;
  9362. for (int r = 5; r <= 10; r++) //Merge digits
  9363. {
  9364. sprintf(str, "%d", digit[r]);
  9365. strcat(mergeOutput, str);
  9366. }
  9367. output = atof(mergeOutput);
  9368. if (digit[4] == 8) //Handle sign
  9369. {
  9370. output *= -1;
  9371. }
  9372. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9373. {
  9374. output *= 0.1;
  9375. }
  9376. //output = d_ReadData();
  9377. //row[ix] = current_position[Z_AXIS];
  9378. memset(data_wldsd, 0, sizeof(data_wldsd));
  9379. for (int i = 0; i <3; i++) {
  9380. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9381. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9382. strcat(data_wldsd, numb_wldsd);
  9383. strcat(data_wldsd, ";");
  9384. }
  9385. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9386. dtostrf(output, 8, 5, numb_wldsd);
  9387. strcat(data_wldsd, numb_wldsd);
  9388. //strcat(data_wldsd, ";");
  9389. card.write_command(data_wldsd);
  9390. //row[ix] = d_ReadData();
  9391. row[ix] = output; // current_position[Z_AXIS];
  9392. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9393. for (int i = 0; i < x_points_num; i++) {
  9394. SERIAL_PROTOCOLPGM(" ");
  9395. SERIAL_PROTOCOL_F(row[i], 5);
  9396. }
  9397. SERIAL_PROTOCOLPGM("\n");
  9398. }
  9399. custom_message_state--;
  9400. mesh_point++;
  9401. lcd_update(1);
  9402. }
  9403. card.closefile();
  9404. clean_up_after_endstop_move(l_feedmultiply);
  9405. }
  9406. #endif //HEATBED_ANALYSIS
  9407. #ifndef PINDA_THERMISTOR
  9408. static void temp_compensation_start() {
  9409. custom_message_type = CustomMsg::TempCompPreheat;
  9410. custom_message_state = PINDA_HEAT_T + 1;
  9411. lcd_update(2);
  9412. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  9413. current_position[E_AXIS] -= default_retraction;
  9414. }
  9415. plan_buffer_line_curposXYZE(400, active_extruder);
  9416. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9417. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9418. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9419. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9420. st_synchronize();
  9421. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9422. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9423. delay_keep_alive(1000);
  9424. custom_message_state = PINDA_HEAT_T - i;
  9425. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9426. else lcd_update(1);
  9427. }
  9428. custom_message_type = CustomMsg::Status;
  9429. custom_message_state = 0;
  9430. }
  9431. static void temp_compensation_apply() {
  9432. int i_add;
  9433. int z_shift = 0;
  9434. float z_shift_mm;
  9435. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9436. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9437. i_add = (target_temperature_bed - 60) / 10;
  9438. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  9439. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9440. }else {
  9441. //interpolation
  9442. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9443. }
  9444. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9445. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9446. st_synchronize();
  9447. plan_set_z_position(current_position[Z_AXIS]);
  9448. }
  9449. else {
  9450. //we have no temp compensation data
  9451. }
  9452. }
  9453. #endif //ndef PINDA_THERMISTOR
  9454. float temp_comp_interpolation(float inp_temperature) {
  9455. //cubic spline interpolation
  9456. int n, i, j;
  9457. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9458. int shift[10];
  9459. int temp_C[10];
  9460. n = 6; //number of measured points
  9461. shift[0] = 0;
  9462. for (i = 0; i < n; i++) {
  9463. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  9464. temp_C[i] = 50 + i * 10; //temperature in C
  9465. #ifdef PINDA_THERMISTOR
  9466. constexpr int start_compensating_temp = 35;
  9467. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9468. #ifdef SUPERPINDA_SUPPORT
  9469. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9470. #endif //SUPERPINDA_SUPPORT
  9471. #else
  9472. temp_C[i] = 50 + i * 10; //temperature in C
  9473. #endif
  9474. x[i] = (float)temp_C[i];
  9475. f[i] = (float)shift[i];
  9476. }
  9477. if (inp_temperature < x[0]) return 0;
  9478. for (i = n - 1; i>0; i--) {
  9479. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9480. h[i - 1] = x[i] - x[i - 1];
  9481. }
  9482. //*********** formation of h, s , f matrix **************
  9483. for (i = 1; i<n - 1; i++) {
  9484. m[i][i] = 2 * (h[i - 1] + h[i]);
  9485. if (i != 1) {
  9486. m[i][i - 1] = h[i - 1];
  9487. m[i - 1][i] = h[i - 1];
  9488. }
  9489. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9490. }
  9491. //*********** forward elimination **************
  9492. for (i = 1; i<n - 2; i++) {
  9493. temp = (m[i + 1][i] / m[i][i]);
  9494. for (j = 1; j <= n - 1; j++)
  9495. m[i + 1][j] -= temp*m[i][j];
  9496. }
  9497. //*********** backward substitution *********
  9498. for (i = n - 2; i>0; i--) {
  9499. sum = 0;
  9500. for (j = i; j <= n - 2; j++)
  9501. sum += m[i][j] * s[j];
  9502. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9503. }
  9504. for (i = 0; i<n - 1; i++)
  9505. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9506. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9507. b = s[i] / 2;
  9508. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9509. d = f[i];
  9510. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9511. }
  9512. return sum;
  9513. }
  9514. #ifdef PINDA_THERMISTOR
  9515. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9516. {
  9517. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9518. if (!calibration_status_pinda()) return 0;
  9519. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9520. }
  9521. #endif //PINDA_THERMISTOR
  9522. void long_pause() //long pause print
  9523. {
  9524. st_synchronize();
  9525. start_pause_print = _millis();
  9526. // Stop heaters
  9527. setAllTargetHotends(0);
  9528. //lift z
  9529. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9530. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  9531. plan_buffer_line_curposXYZE(15);
  9532. //Move XY to side
  9533. current_position[X_AXIS] = X_PAUSE_POS;
  9534. current_position[Y_AXIS] = Y_PAUSE_POS;
  9535. plan_buffer_line_curposXYZE(50);
  9536. // Turn off the print fan
  9537. fanSpeed = 0;
  9538. }
  9539. void serialecho_temperatures() {
  9540. float tt = degHotend(active_extruder);
  9541. SERIAL_PROTOCOLPGM("T:");
  9542. SERIAL_PROTOCOL(tt);
  9543. SERIAL_PROTOCOLPGM(" E:");
  9544. SERIAL_PROTOCOL((int)active_extruder);
  9545. SERIAL_PROTOCOLPGM(" B:");
  9546. SERIAL_PROTOCOL_F(degBed(), 1);
  9547. SERIAL_PROTOCOLLN();
  9548. }
  9549. #ifdef UVLO_SUPPORT
  9550. void uvlo_drain_reset()
  9551. {
  9552. // burn all that residual power
  9553. wdt_enable(WDTO_1S);
  9554. WRITE(BEEPER,HIGH);
  9555. lcd_clear();
  9556. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9557. while(1);
  9558. }
  9559. void uvlo_()
  9560. {
  9561. unsigned long time_start = _millis();
  9562. bool sd_print = card.sdprinting;
  9563. // Conserve power as soon as possible.
  9564. #ifdef LCD_BL_PIN
  9565. backlightMode = BACKLIGHT_MODE_DIM;
  9566. backlightLevel_LOW = 0;
  9567. backlight_update();
  9568. #endif //LCD_BL_PIN
  9569. disable_x();
  9570. disable_y();
  9571. #ifdef TMC2130
  9572. tmc2130_set_current_h(Z_AXIS, 20);
  9573. tmc2130_set_current_r(Z_AXIS, 20);
  9574. tmc2130_set_current_h(E_AXIS, 20);
  9575. tmc2130_set_current_r(E_AXIS, 20);
  9576. #endif //TMC2130
  9577. // Stop all heaters
  9578. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9579. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9580. setAllTargetHotends(0);
  9581. setTargetBed(0);
  9582. // Calculate the file position, from which to resume this print.
  9583. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9584. {
  9585. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9586. sd_position -= sdlen_planner;
  9587. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9588. sd_position -= sdlen_cmdqueue;
  9589. if (sd_position < 0) sd_position = 0;
  9590. }
  9591. // save the global state at planning time
  9592. bool pos_invalid = XY_NO_RESTORE_FLAG;
  9593. uint16_t feedrate_bckp;
  9594. if (current_block && !pos_invalid)
  9595. {
  9596. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9597. feedrate_bckp = current_block->gcode_feedrate;
  9598. }
  9599. else
  9600. {
  9601. saved_target[0] = SAVED_TARGET_UNSET;
  9602. feedrate_bckp = feedrate;
  9603. }
  9604. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9605. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9606. // get the physical Z for further manipulation.
  9607. bool mbl_was_active = mbl.active;
  9608. mbl.active = false;
  9609. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9610. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9611. // are in action.
  9612. planner_abort_hard();
  9613. // Store the print logical Z position, which we need to recover (a slight error here would be
  9614. // recovered on the next Gcode instruction, while a physical location error would not)
  9615. float logical_z = current_position[Z_AXIS];
  9616. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9617. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9618. // Store the print E position before we lose track
  9619. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9620. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9621. // Clean the input command queue, inhibit serial processing using saved_printing
  9622. cmdqueue_reset();
  9623. card.sdprinting = false;
  9624. saved_printing = true;
  9625. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9626. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9627. sei();
  9628. // Retract
  9629. current_position[E_AXIS] -= default_retraction;
  9630. plan_buffer_line_curposXYZE(95);
  9631. st_synchronize();
  9632. disable_e0();
  9633. // Read out the current Z motor microstep counter to move the axis up towards
  9634. // a full step before powering off. NOTE: we need to ensure to schedule more
  9635. // than "dropsegments" steps in order to move (this is always the case here
  9636. // due to UVLO_Z_AXIS_SHIFT being used)
  9637. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9638. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9639. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9640. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9641. + UVLO_Z_AXIS_SHIFT;
  9642. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9643. st_synchronize();
  9644. poweroff_z();
  9645. // Write the file position.
  9646. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9647. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9648. for (uint8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9649. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9650. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9651. // Scale the z value to 1u resolution.
  9652. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9653. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9654. }
  9655. // Write the _final_ Z position and motor microstep counter (unused).
  9656. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9657. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9658. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9659. // Store the current position.
  9660. if (pos_invalid)
  9661. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), X_COORD_INVALID);
  9662. else
  9663. {
  9664. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9665. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9666. }
  9667. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9668. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9669. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9670. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9671. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9672. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9673. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9674. #if EXTRUDERS > 1
  9675. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9676. #if EXTRUDERS > 2
  9677. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9678. #endif
  9679. #endif
  9680. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9681. eeprom_update_float((float*)(EEPROM_UVLO_ACCELL), cs.acceleration);
  9682. eeprom_update_float((float*)(EEPROM_UVLO_RETRACT_ACCELL), cs.retract_acceleration);
  9683. eeprom_update_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL), cs.travel_acceleration);
  9684. // Store the saved target
  9685. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9686. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9687. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9688. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9689. #ifdef LIN_ADVANCE
  9690. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9691. #endif
  9692. // Finaly store the "power outage" flag.
  9693. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9694. // Increment power failure counter
  9695. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9696. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9697. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9698. WRITE(BEEPER,HIGH);
  9699. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9700. poweron_z();
  9701. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9702. plan_buffer_line_curposXYZE(500);
  9703. st_synchronize();
  9704. wdt_enable(WDTO_1S);
  9705. while(1);
  9706. }
  9707. void uvlo_tiny()
  9708. {
  9709. unsigned long time_start = _millis();
  9710. // Conserve power as soon as possible.
  9711. disable_x();
  9712. disable_y();
  9713. disable_e0();
  9714. #ifdef TMC2130
  9715. tmc2130_set_current_h(Z_AXIS, 20);
  9716. tmc2130_set_current_r(Z_AXIS, 20);
  9717. #endif //TMC2130
  9718. // Stop all heaters
  9719. setAllTargetHotends(0);
  9720. setTargetBed(0);
  9721. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9722. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9723. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9724. // Disable MBL (if not already) to work with physical coordinates.
  9725. mbl.active = false;
  9726. planner_abort_hard();
  9727. // Allow for small roundoffs to be ignored
  9728. if(fabs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9729. {
  9730. // Clean the input command queue, inhibit serial processing using saved_printing
  9731. cmdqueue_reset();
  9732. card.sdprinting = false;
  9733. saved_printing = true;
  9734. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9735. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9736. sei();
  9737. // The axis was moved: adjust Z as done on a regular UVLO.
  9738. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9739. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9740. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9741. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9742. + UVLO_TINY_Z_AXIS_SHIFT;
  9743. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9744. st_synchronize();
  9745. poweroff_z();
  9746. // Update Z position
  9747. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9748. // Update the _final_ Z motor microstep counter (unused).
  9749. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9750. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9751. }
  9752. // Update the the "power outage" flag.
  9753. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9754. // Increment power failure counter
  9755. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9756. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9757. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9758. uvlo_drain_reset();
  9759. }
  9760. #endif //UVLO_SUPPORT
  9761. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9762. void setup_fan_interrupt() {
  9763. //INT7
  9764. DDRE &= ~(1 << 7); //input pin
  9765. PORTE &= ~(1 << 7); //no internal pull-up
  9766. //start with sensing rising edge
  9767. EICRB &= ~(1 << 6);
  9768. EICRB |= (1 << 7);
  9769. //enable INT7 interrupt
  9770. EIMSK |= (1 << 7);
  9771. }
  9772. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9773. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9774. ISR(INT7_vect) {
  9775. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9776. #ifdef FAN_SOFT_PWM
  9777. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9778. #else //FAN_SOFT_PWM
  9779. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9780. #endif //FAN_SOFT_PWM
  9781. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9782. t_fan_rising_edge = millis_nc();
  9783. }
  9784. else { //interrupt was triggered by falling edge
  9785. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9786. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9787. }
  9788. }
  9789. EICRB ^= (1 << 6); //change edge
  9790. }
  9791. #endif
  9792. #ifdef UVLO_SUPPORT
  9793. void setup_uvlo_interrupt() {
  9794. DDRE &= ~(1 << 4); //input pin
  9795. PORTE &= ~(1 << 4); //no internal pull-up
  9796. // sensing falling edge
  9797. EICRB |= (1 << 0);
  9798. EICRB &= ~(1 << 1);
  9799. // enable INT4 interrupt
  9800. EIMSK |= (1 << 4);
  9801. // check if power was lost before we armed the interrupt
  9802. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9803. {
  9804. SERIAL_ECHOLNPGM("INT4");
  9805. uvlo_drain_reset();
  9806. }
  9807. }
  9808. ISR(INT4_vect) {
  9809. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9810. SERIAL_ECHOLNPGM("INT4");
  9811. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9812. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9813. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9814. }
  9815. void recover_print(uint8_t automatic) {
  9816. char cmd[30];
  9817. lcd_update_enable(true);
  9818. lcd_update(2);
  9819. lcd_setstatuspgm(_i("Recovering print"));////MSG_RECOVERING_PRINT c=20
  9820. // Recover position, temperatures and extrude_multipliers
  9821. bool mbl_was_active = recover_machine_state_after_power_panic();
  9822. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9823. // and second also so one may remove the excess priming material.
  9824. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9825. {
  9826. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9827. enquecommand(cmd);
  9828. }
  9829. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9830. // transformation status. G28 will not touch Z when MBL is off.
  9831. enquecommand_P(PSTR("G28 X Y"));
  9832. // Set the target bed and nozzle temperatures and wait.
  9833. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9834. enquecommand(cmd);
  9835. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9836. enquecommand(cmd);
  9837. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9838. enquecommand(cmd);
  9839. enquecommand_P(PSTR("M83")); //E axis relative mode
  9840. // If not automatically recoreverd (long power loss)
  9841. if(automatic == 0){
  9842. //Extrude some filament to stabilize the pressure
  9843. enquecommand_P(PSTR("G1 E5 F120"));
  9844. // Retract to be consistent with a short pause
  9845. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9846. enquecommand(cmd);
  9847. }
  9848. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9849. // Restart the print.
  9850. restore_print_from_eeprom(mbl_was_active);
  9851. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9852. }
  9853. bool recover_machine_state_after_power_panic()
  9854. {
  9855. // 1) Preset some dummy values for the XY axes
  9856. current_position[X_AXIS] = 0;
  9857. current_position[Y_AXIS] = 0;
  9858. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9859. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9860. bool mbl_was_active = false;
  9861. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9862. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9863. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9864. // Scale the z value to 10u resolution.
  9865. int16_t v;
  9866. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9867. if (v != 0)
  9868. mbl_was_active = true;
  9869. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9870. }
  9871. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9872. // The current position after power panic is moved to the next closest 0th full step.
  9873. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9874. // Recover last E axis position
  9875. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9876. // 3) Initialize the logical to physical coordinate system transformation.
  9877. world2machine_initialize();
  9878. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9879. // print_mesh_bed_leveling_table();
  9880. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9881. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9882. babystep_load();
  9883. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9884. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9885. clamp_to_software_endstops(current_position);
  9886. set_destination_to_current();
  9887. plan_set_position_curposXYZE();
  9888. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9889. print_world_coordinates();
  9890. // 6) Power up the Z motors, mark their positions as known.
  9891. axis_known_position[Z_AXIS] = true;
  9892. enable_z();
  9893. // 7) Recover the target temperatures.
  9894. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9895. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9896. // 8) Recover extruder multipilers
  9897. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9898. #if EXTRUDERS > 1
  9899. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9900. #if EXTRUDERS > 2
  9901. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9902. #endif
  9903. #endif
  9904. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9905. // 9) Recover the saved target
  9906. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9907. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9908. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9909. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9910. #ifdef LIN_ADVANCE
  9911. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9912. #endif
  9913. return mbl_was_active;
  9914. }
  9915. void restore_print_from_eeprom(bool mbl_was_active) {
  9916. int feedrate_rec;
  9917. int feedmultiply_rec;
  9918. uint8_t fan_speed_rec;
  9919. char cmd[48];
  9920. char filename[13];
  9921. uint8_t depth = 0;
  9922. char dir_name[9];
  9923. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9924. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9925. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9926. SERIAL_ECHOPGM("Feedrate:");
  9927. MYSERIAL.print(feedrate_rec);
  9928. SERIAL_ECHOPGM(", feedmultiply:");
  9929. MYSERIAL.println(feedmultiply_rec);
  9930. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9931. MYSERIAL.println(int(depth));
  9932. for (uint8_t i = 0; i < depth; i++) {
  9933. for (uint8_t j = 0; j < 8; j++) {
  9934. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9935. }
  9936. dir_name[8] = '\0';
  9937. MYSERIAL.println(dir_name);
  9938. // strcpy(card.dir_names[i], dir_name);
  9939. card.chdir(dir_name, false);
  9940. }
  9941. for (uint8_t i = 0; i < 8; i++) {
  9942. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9943. }
  9944. filename[8] = '\0';
  9945. MYSERIAL.print(filename);
  9946. strcat_P(filename, PSTR(".gco"));
  9947. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9948. enquecommand(cmd);
  9949. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9950. SERIAL_ECHOPGM("Position read from eeprom:");
  9951. MYSERIAL.println(position);
  9952. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9953. // without shifting Z along the way. This requires performing the move without mbl.
  9954. float pos_x = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  9955. float pos_y = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  9956. if (pos_x != X_COORD_INVALID)
  9957. {
  9958. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"), pos_x, pos_y);
  9959. enquecommand(cmd);
  9960. }
  9961. // Enable MBL and switch to logical positioning
  9962. if (mbl_was_active)
  9963. enquecommand_P(PSTR("PRUSA MBL V1"));
  9964. // Move the Z axis down to the print, in logical coordinates.
  9965. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9966. enquecommand(cmd);
  9967. // Restore acceleration settings
  9968. float acceleration = eeprom_read_float((float*)(EEPROM_UVLO_ACCELL));
  9969. float retract_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_RETRACT_ACCELL));
  9970. float travel_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL));
  9971. sprintf_P(cmd, PSTR("M204 P%f R%f T%f"), acceleration, retract_acceleration, travel_acceleration);
  9972. enquecommand(cmd);
  9973. // Unretract.
  9974. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9975. enquecommand(cmd);
  9976. // Recover final E axis position and mode
  9977. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9978. sprintf_P(cmd, PSTR("G92 E"));
  9979. dtostrf(pos_e, 6, 3, cmd + strlen(cmd));
  9980. enquecommand(cmd);
  9981. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9982. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9983. // Set the feedrates saved at the power panic.
  9984. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9985. enquecommand(cmd);
  9986. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9987. enquecommand(cmd);
  9988. // Set the fan speed saved at the power panic.
  9989. strcpy_P(cmd, PSTR("M106 S"));
  9990. strcat(cmd, itostr3(int(fan_speed_rec)));
  9991. enquecommand(cmd);
  9992. // Set a position in the file.
  9993. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9994. enquecommand(cmd);
  9995. enquecommand_P(PSTR("G4 S0"));
  9996. enquecommand_P(PSTR("PRUSA uvlo"));
  9997. }
  9998. #endif //UVLO_SUPPORT
  9999. //! @brief Immediately stop print moves
  10000. //!
  10001. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  10002. //! If printing from sd card, position in file is saved.
  10003. //! If printing from USB, line number is saved.
  10004. //!
  10005. //! @param z_move
  10006. //! @param e_move
  10007. void stop_and_save_print_to_ram(float z_move, float e_move)
  10008. {
  10009. if (saved_printing) return;
  10010. #if 0
  10011. unsigned char nplanner_blocks;
  10012. #endif
  10013. unsigned char nlines;
  10014. uint16_t sdlen_planner;
  10015. uint16_t sdlen_cmdqueue;
  10016. cli();
  10017. if (card.sdprinting) {
  10018. #if 0
  10019. nplanner_blocks = number_of_blocks();
  10020. #endif
  10021. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  10022. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  10023. saved_sdpos -= sdlen_planner;
  10024. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  10025. saved_sdpos -= sdlen_cmdqueue;
  10026. saved_printing_type = PRINTING_TYPE_SD;
  10027. }
  10028. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  10029. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  10030. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  10031. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  10032. saved_sdpos -= nlines;
  10033. saved_sdpos -= buflen; //number of blocks in cmd buffer
  10034. saved_printing_type = PRINTING_TYPE_USB;
  10035. }
  10036. else {
  10037. saved_printing_type = PRINTING_TYPE_NONE;
  10038. //not sd printing nor usb printing
  10039. }
  10040. #if 0
  10041. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  10042. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  10043. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  10044. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  10045. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  10046. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  10047. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  10048. {
  10049. card.setIndex(saved_sdpos);
  10050. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  10051. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  10052. MYSERIAL.print(char(card.get()));
  10053. SERIAL_ECHOLNPGM("Content of command buffer: ");
  10054. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  10055. MYSERIAL.print(char(card.get()));
  10056. SERIAL_ECHOLNPGM("End of command buffer");
  10057. }
  10058. {
  10059. // Print the content of the planner buffer, line by line:
  10060. card.setIndex(saved_sdpos);
  10061. int8_t iline = 0;
  10062. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  10063. SERIAL_ECHOPGM("Planner line (from file): ");
  10064. MYSERIAL.print(int(iline), DEC);
  10065. SERIAL_ECHOPGM(", length: ");
  10066. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  10067. SERIAL_ECHOPGM(", steps: (");
  10068. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  10069. SERIAL_ECHOPGM(",");
  10070. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  10071. SERIAL_ECHOPGM(",");
  10072. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  10073. SERIAL_ECHOPGM(",");
  10074. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  10075. SERIAL_ECHOPGM("), events: ");
  10076. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  10077. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  10078. MYSERIAL.print(char(card.get()));
  10079. }
  10080. }
  10081. {
  10082. // Print the content of the command buffer, line by line:
  10083. int8_t iline = 0;
  10084. union {
  10085. struct {
  10086. char lo;
  10087. char hi;
  10088. } lohi;
  10089. uint16_t value;
  10090. } sdlen_single;
  10091. int _bufindr = bufindr;
  10092. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  10093. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  10094. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  10095. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  10096. }
  10097. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  10098. MYSERIAL.print(int(iline), DEC);
  10099. SERIAL_ECHOPGM(", type: ");
  10100. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  10101. SERIAL_ECHOPGM(", len: ");
  10102. MYSERIAL.println(sdlen_single.value, DEC);
  10103. // Print the content of the buffer line.
  10104. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  10105. SERIAL_ECHOPGM("Buffer line (from file): ");
  10106. MYSERIAL.println(int(iline), DEC);
  10107. for (; sdlen_single.value > 0; -- sdlen_single.value)
  10108. MYSERIAL.print(char(card.get()));
  10109. if (-- _buflen == 0)
  10110. break;
  10111. // First skip the current command ID and iterate up to the end of the string.
  10112. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  10113. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  10114. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  10115. // If the end of the buffer was empty,
  10116. if (_bufindr == sizeof(cmdbuffer)) {
  10117. // skip to the start and find the nonzero command.
  10118. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  10119. }
  10120. }
  10121. }
  10122. #endif
  10123. // save the global state at planning time
  10124. bool pos_invalid = XY_NO_RESTORE_FLAG;
  10125. if (current_block && !pos_invalid)
  10126. {
  10127. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  10128. saved_feedrate2 = current_block->gcode_feedrate;
  10129. }
  10130. else
  10131. {
  10132. saved_target[0] = SAVED_TARGET_UNSET;
  10133. saved_feedrate2 = feedrate;
  10134. }
  10135. planner_abort_hard(); //abort printing
  10136. memcpy(saved_pos, current_position, sizeof(saved_pos));
  10137. if (pos_invalid) saved_pos[X_AXIS] = X_COORD_INVALID;
  10138. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  10139. saved_active_extruder = active_extruder; //save active_extruder
  10140. saved_extruder_temperature = degTargetHotend(active_extruder);
  10141. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  10142. saved_fanSpeed = fanSpeed;
  10143. cmdqueue_reset(); //empty cmdqueue
  10144. card.sdprinting = false;
  10145. // card.closefile();
  10146. saved_printing = true;
  10147. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  10148. st_reset_timer();
  10149. sei();
  10150. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  10151. #if 1
  10152. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  10153. // the caller can continue processing. This is used during powerpanic to save the state as we
  10154. // move away from the print.
  10155. char buf[48];
  10156. if(e_move)
  10157. {
  10158. // First unretract (relative extrusion)
  10159. if(!saved_extruder_relative_mode){
  10160. enquecommand(PSTR("M83"), true);
  10161. }
  10162. //retract 45mm/s
  10163. // A single sprintf may not be faster, but is definitely 20B shorter
  10164. // than a sequence of commands building the string piece by piece
  10165. // A snprintf would have been a safer call, but since it is not used
  10166. // in the whole program, its implementation would bring more bytes to the total size
  10167. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  10168. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  10169. enquecommand(buf, false);
  10170. }
  10171. if(z_move)
  10172. {
  10173. // Then lift Z axis
  10174. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  10175. enquecommand(buf, false);
  10176. }
  10177. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  10178. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  10179. repeatcommand_front();
  10180. #else
  10181. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  10182. st_synchronize(); //wait moving
  10183. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10184. set_destination_to_current();
  10185. #endif
  10186. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  10187. }
  10188. }
  10189. //! @brief Restore print from ram
  10190. //!
  10191. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  10192. //! print fan speed, waits for extruder temperature restore, then restores
  10193. //! position and continues print moves.
  10194. //!
  10195. //! Internally lcd_update() is called by wait_for_heater().
  10196. //!
  10197. //! @param e_move
  10198. void restore_print_from_ram_and_continue(float e_move)
  10199. {
  10200. if (!saved_printing) return;
  10201. #ifdef FANCHECK
  10202. // Do not allow resume printing if fans are still not ok
  10203. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  10204. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  10205. #endif
  10206. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  10207. // current_position[axis] = st_get_position_mm(axis);
  10208. active_extruder = saved_active_extruder; //restore active_extruder
  10209. fanSpeed = saved_fanSpeed;
  10210. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  10211. {
  10212. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  10213. heating_status = HeatingStatus::EXTRUDER_HEATING;
  10214. wait_for_heater(_millis(), saved_active_extruder);
  10215. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  10216. }
  10217. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  10218. float e = saved_pos[E_AXIS] - e_move;
  10219. plan_set_e_position(e);
  10220. #ifdef FANCHECK
  10221. fans_check_enabled = false;
  10222. #endif
  10223. // do not restore XY for commands that do not require that
  10224. if (saved_pos[X_AXIS] == X_COORD_INVALID)
  10225. {
  10226. saved_pos[X_AXIS] = current_position[X_AXIS];
  10227. saved_pos[Y_AXIS] = current_position[Y_AXIS];
  10228. }
  10229. //first move print head in XY to the saved position:
  10230. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10231. //then move Z
  10232. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10233. //and finaly unretract (35mm/s)
  10234. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  10235. st_synchronize();
  10236. #ifdef FANCHECK
  10237. fans_check_enabled = true;
  10238. #endif
  10239. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  10240. feedrate = saved_feedrate2;
  10241. feedmultiply = saved_feedmultiply2;
  10242. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10243. set_destination_to_current();
  10244. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  10245. card.setIndex(saved_sdpos);
  10246. sdpos_atomic = saved_sdpos;
  10247. card.sdprinting = true;
  10248. }
  10249. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  10250. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  10251. serial_count = 0;
  10252. FlushSerialRequestResend();
  10253. }
  10254. else {
  10255. //not sd printing nor usb printing
  10256. }
  10257. lcd_setstatuspgm(MSG_WELCOME);
  10258. saved_printing_type = PRINTING_TYPE_NONE;
  10259. saved_printing = false;
  10260. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  10261. }
  10262. // Cancel the state related to a currently saved print
  10263. void cancel_saved_printing()
  10264. {
  10265. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  10266. saved_target[0] = SAVED_TARGET_UNSET;
  10267. saved_printing_type = PRINTING_TYPE_NONE;
  10268. saved_printing = false;
  10269. }
  10270. void print_world_coordinates()
  10271. {
  10272. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  10273. }
  10274. void print_physical_coordinates()
  10275. {
  10276. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  10277. }
  10278. void print_mesh_bed_leveling_table()
  10279. {
  10280. SERIAL_ECHOPGM("mesh bed leveling: ");
  10281. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  10282. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  10283. MYSERIAL.print(mbl.z_values[y][x], 3);
  10284. SERIAL_ECHO(' ');
  10285. }
  10286. SERIAL_ECHOLN();
  10287. }
  10288. uint8_t calc_percent_done()
  10289. {
  10290. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  10291. uint8_t percent_done = 0;
  10292. #ifdef TMC2130
  10293. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100)
  10294. {
  10295. percent_done = print_percent_done_normal;
  10296. }
  10297. else if (print_percent_done_silent <= 100)
  10298. {
  10299. percent_done = print_percent_done_silent;
  10300. }
  10301. #else
  10302. if (print_percent_done_normal <= 100)
  10303. {
  10304. percent_done = print_percent_done_normal;
  10305. }
  10306. #endif //TMC2130
  10307. else
  10308. {
  10309. percent_done = card.percentDone();
  10310. }
  10311. return percent_done;
  10312. }
  10313. static void print_time_remaining_init()
  10314. {
  10315. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  10316. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  10317. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  10318. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  10319. print_time_to_change_normal = PRINT_TIME_REMAINING_INIT;
  10320. print_time_to_change_silent = PRINT_TIME_REMAINING_INIT;
  10321. }
  10322. void load_filament_final_feed()
  10323. {
  10324. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  10325. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  10326. }
  10327. //! @brief Wait for user to check the state
  10328. //! @par nozzle_temp nozzle temperature to load filament
  10329. void M600_check_state(float nozzle_temp)
  10330. {
  10331. lcd_change_fil_state = 0;
  10332. while (lcd_change_fil_state != 1)
  10333. {
  10334. lcd_change_fil_state = 0;
  10335. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10336. lcd_alright();
  10337. KEEPALIVE_STATE(IN_HANDLER);
  10338. switch(lcd_change_fil_state)
  10339. {
  10340. // Filament failed to load so load it again
  10341. case 2:
  10342. if (mmu_enabled)
  10343. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  10344. else
  10345. M600_load_filament_movements();
  10346. break;
  10347. // Filament loaded properly but color is not clear
  10348. case 3:
  10349. st_synchronize();
  10350. load_filament_final_feed();
  10351. lcd_loading_color();
  10352. st_synchronize();
  10353. break;
  10354. // Everything good
  10355. default:
  10356. lcd_change_success();
  10357. break;
  10358. }
  10359. }
  10360. }
  10361. //! @brief Wait for user action
  10362. //!
  10363. //! Beep, manage nozzle heater and wait for user to start unload filament
  10364. //! If times out, active extruder temperature is set to 0.
  10365. //!
  10366. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  10367. void M600_wait_for_user(float HotendTempBckp) {
  10368. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10369. int counterBeep = 0;
  10370. unsigned long waiting_start_time = _millis();
  10371. uint8_t wait_for_user_state = 0;
  10372. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10373. bool bFirst=true;
  10374. while (!(wait_for_user_state == 0 && lcd_clicked())){
  10375. manage_heater();
  10376. manage_inactivity(true);
  10377. #if BEEPER > 0
  10378. if (counterBeep == 500) {
  10379. counterBeep = 0;
  10380. }
  10381. SET_OUTPUT(BEEPER);
  10382. if (counterBeep == 0) {
  10383. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10384. {
  10385. bFirst=false;
  10386. WRITE(BEEPER, HIGH);
  10387. }
  10388. }
  10389. if (counterBeep == 20) {
  10390. WRITE(BEEPER, LOW);
  10391. }
  10392. counterBeep++;
  10393. #endif //BEEPER > 0
  10394. switch (wait_for_user_state) {
  10395. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10396. delay_keep_alive(4);
  10397. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10398. lcd_display_message_fullscreen_P(_i("Press the knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10399. wait_for_user_state = 1;
  10400. setAllTargetHotends(0);
  10401. st_synchronize();
  10402. disable_e0();
  10403. disable_e1();
  10404. disable_e2();
  10405. }
  10406. break;
  10407. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10408. delay_keep_alive(4);
  10409. if (lcd_clicked()) {
  10410. setTargetHotend(HotendTempBckp, active_extruder);
  10411. lcd_wait_for_heater();
  10412. wait_for_user_state = 2;
  10413. }
  10414. break;
  10415. case 2: //waiting for nozzle to reach target temperature
  10416. if (fabs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10417. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10418. waiting_start_time = _millis();
  10419. wait_for_user_state = 0;
  10420. }
  10421. else {
  10422. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10423. lcd_set_cursor(1, 4);
  10424. lcd_print(ftostr3(degHotend(active_extruder)));
  10425. }
  10426. break;
  10427. }
  10428. }
  10429. WRITE(BEEPER, LOW);
  10430. }
  10431. void M600_load_filament_movements()
  10432. {
  10433. #ifdef SNMM
  10434. display_loading();
  10435. do
  10436. {
  10437. current_position[E_AXIS] += 0.002;
  10438. plan_buffer_line_curposXYZE(500, active_extruder);
  10439. delay_keep_alive(2);
  10440. }
  10441. while (!lcd_clicked());
  10442. st_synchronize();
  10443. current_position[E_AXIS] += bowden_length[mmu_extruder];
  10444. plan_buffer_line_curposXYZE(3000, active_extruder);
  10445. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  10446. plan_buffer_line_curposXYZE(1400, active_extruder);
  10447. current_position[E_AXIS] += 40;
  10448. plan_buffer_line_curposXYZE(400, active_extruder);
  10449. current_position[E_AXIS] += 10;
  10450. plan_buffer_line_curposXYZE(50, active_extruder);
  10451. #else
  10452. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  10453. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10454. #endif
  10455. load_filament_final_feed();
  10456. lcd_loading_filament();
  10457. st_synchronize();
  10458. }
  10459. void M600_load_filament() {
  10460. //load filament for single material and SNMM
  10461. lcd_wait_interact();
  10462. //load_filament_time = _millis();
  10463. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10464. #ifdef PAT9125
  10465. fsensor_autoload_check_start();
  10466. #endif //PAT9125
  10467. while(!lcd_clicked())
  10468. {
  10469. manage_heater();
  10470. manage_inactivity(true);
  10471. #ifdef FILAMENT_SENSOR
  10472. if (fsensor_check_autoload())
  10473. {
  10474. Sound_MakeCustom(50,1000,false);
  10475. break;
  10476. }
  10477. #endif //FILAMENT_SENSOR
  10478. }
  10479. #ifdef PAT9125
  10480. fsensor_autoload_check_stop();
  10481. #endif //PAT9125
  10482. KEEPALIVE_STATE(IN_HANDLER);
  10483. #ifdef FSENSOR_QUALITY
  10484. fsensor_oq_meassure_start(70);
  10485. #endif //FSENSOR_QUALITY
  10486. M600_load_filament_movements();
  10487. Sound_MakeCustom(50,1000,false);
  10488. #ifdef FSENSOR_QUALITY
  10489. fsensor_oq_meassure_stop();
  10490. if (!fsensor_oq_result())
  10491. {
  10492. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10493. lcd_update_enable(true);
  10494. lcd_update(2);
  10495. if (disable)
  10496. fsensor_disable();
  10497. }
  10498. #endif //FSENSOR_QUALITY
  10499. lcd_update_enable(false);
  10500. }
  10501. //! @brief Wait for click
  10502. //!
  10503. //! Set
  10504. void marlin_wait_for_click()
  10505. {
  10506. int8_t busy_state_backup = busy_state;
  10507. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10508. lcd_consume_click();
  10509. while(!lcd_clicked())
  10510. {
  10511. manage_heater();
  10512. manage_inactivity(true);
  10513. lcd_update(0);
  10514. }
  10515. KEEPALIVE_STATE(busy_state_backup);
  10516. }
  10517. #define FIL_LOAD_LENGTH 60
  10518. #ifdef PSU_Delta
  10519. bool bEnableForce_z;
  10520. void init_force_z()
  10521. {
  10522. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10523. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10524. disable_force_z();
  10525. }
  10526. void check_force_z()
  10527. {
  10528. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10529. init_force_z(); // causes enforced switching into disable-state
  10530. }
  10531. void disable_force_z()
  10532. {
  10533. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10534. bEnableForce_z=false;
  10535. // switching to silent mode
  10536. #ifdef TMC2130
  10537. tmc2130_mode=TMC2130_MODE_SILENT;
  10538. update_mode_profile();
  10539. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10540. #endif // TMC2130
  10541. }
  10542. void enable_force_z()
  10543. {
  10544. if(bEnableForce_z)
  10545. return; // motor already enabled (may be ;-p )
  10546. bEnableForce_z=true;
  10547. // mode recovering
  10548. #ifdef TMC2130
  10549. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10550. update_mode_profile();
  10551. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10552. #endif // TMC2130
  10553. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10554. }
  10555. #endif // PSU_Delta