Marlin_main.cpp 296 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #ifdef NEW_SPI
  76. #include "spi.h"
  77. #endif //NEW_SPI
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M92 - Set axis_steps_per_unit - same syntax as G92
  169. // M104 - Set extruder target temp
  170. // M105 - Read current temp
  171. // M106 - Fan on
  172. // M107 - Fan off
  173. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  174. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  175. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  176. // M112 - Emergency stop
  177. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  178. // M114 - Output current position to serial port
  179. // M115 - Capabilities string
  180. // M117 - display message
  181. // M119 - Output Endstop status to serial port
  182. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  183. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  184. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M140 - Set bed target temp
  187. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  188. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  189. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  190. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  191. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  192. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  193. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  194. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  195. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  196. // M206 - set additional homing offset
  197. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  198. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  199. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  200. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  201. // M220 S<factor in percent>- set speed factor override percentage
  202. // M221 S<factor in percent>- set extrude factor override percentage
  203. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  204. // M240 - Trigger a camera to take a photograph
  205. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  206. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  207. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  208. // M301 - Set PID parameters P I and D
  209. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  210. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  211. // M304 - Set bed PID parameters P I and D
  212. // M400 - Finish all moves
  213. // M401 - Lower z-probe if present
  214. // M402 - Raise z-probe if present
  215. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  216. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  217. // M406 - Turn off Filament Sensor extrusion control
  218. // M407 - Displays measured filament diameter
  219. // M500 - stores parameters in EEPROM
  220. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. // M503 - print the current settings (from memory not from EEPROM)
  223. // M509 - force language selection on next restart
  224. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. // M860 - Wait for PINDA thermistor to reach target temperature.
  228. // M861 - Set / Read PINDA temperature compensation offsets
  229. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  230. // M907 - Set digital trimpot motor current using axis codes.
  231. // M908 - Control digital trimpot directly.
  232. // M350 - Set microstepping mode.
  233. // M351 - Toggle MS1 MS2 pins directly.
  234. // M928 - Start SD logging (M928 filename.g) - ended by M29
  235. // M999 - Restart after being stopped by error
  236. //Stepper Movement Variables
  237. //===========================================================================
  238. //=============================imported variables============================
  239. //===========================================================================
  240. //===========================================================================
  241. //=============================public variables=============================
  242. //===========================================================================
  243. #ifdef SDSUPPORT
  244. CardReader card;
  245. #endif
  246. unsigned long PingTime = millis();
  247. unsigned long NcTime;
  248. union Data
  249. {
  250. byte b[2];
  251. int value;
  252. };
  253. float homing_feedrate[] = HOMING_FEEDRATE;
  254. // Currently only the extruder axis may be switched to a relative mode.
  255. // Other axes are always absolute or relative based on the common relative_mode flag.
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedmultiply=100; //100->1 200->2
  258. int saved_feedmultiply;
  259. int extrudemultiply=100; //100->1 200->2
  260. int extruder_multiply[EXTRUDERS] = {100
  261. #if EXTRUDERS > 1
  262. , 100
  263. #if EXTRUDERS > 2
  264. , 100
  265. #endif
  266. #endif
  267. };
  268. int bowden_length[4] = {385, 385, 385, 385};
  269. bool is_usb_printing = false;
  270. bool homing_flag = false;
  271. bool temp_cal_active = false;
  272. unsigned long kicktime = millis()+100000;
  273. unsigned int usb_printing_counter;
  274. int lcd_change_fil_state = 0;
  275. int feedmultiplyBckp = 100;
  276. float HotendTempBckp = 0;
  277. int fanSpeedBckp = 0;
  278. float pause_lastpos[4];
  279. unsigned long pause_time = 0;
  280. unsigned long start_pause_print = millis();
  281. unsigned long t_fan_rising_edge = millis();
  282. static LongTimer safetyTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. //unsigned char lang_selected = 0;
  287. int8_t FarmMode = 0;
  288. bool prusa_sd_card_upload = false;
  289. unsigned int status_number = 0;
  290. unsigned long total_filament_used;
  291. unsigned int heating_status;
  292. unsigned int heating_status_counter;
  293. bool custom_message;
  294. bool loading_flag = false;
  295. unsigned int custom_message_type;
  296. unsigned int custom_message_state;
  297. char snmm_filaments_used = 0;
  298. bool fan_state[2];
  299. int fan_edge_counter[2];
  300. int fan_speed[2];
  301. char dir_names[3][9];
  302. bool sortAlpha = false;
  303. bool volumetric_enabled = false;
  304. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  305. #if EXTRUDERS > 1
  306. , DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 2
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #endif
  310. #endif
  311. };
  312. float extruder_multiplier[EXTRUDERS] = {1.0
  313. #if EXTRUDERS > 1
  314. , 1.0
  315. #if EXTRUDERS > 2
  316. , 1.0
  317. #endif
  318. #endif
  319. };
  320. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  321. float add_homing[3]={0,0,0};
  322. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  323. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  324. bool axis_known_position[3] = {false, false, false};
  325. float zprobe_zoffset;
  326. // Extruder offset
  327. #if EXTRUDERS > 1
  328. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  329. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  330. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  331. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  332. #endif
  333. };
  334. #endif
  335. uint8_t active_extruder = 0;
  336. int fanSpeed=0;
  337. #ifdef FWRETRACT
  338. bool autoretract_enabled=false;
  339. bool retracted[EXTRUDERS]={false
  340. #if EXTRUDERS > 1
  341. , false
  342. #if EXTRUDERS > 2
  343. , false
  344. #endif
  345. #endif
  346. };
  347. bool retracted_swap[EXTRUDERS]={false
  348. #if EXTRUDERS > 1
  349. , false
  350. #if EXTRUDERS > 2
  351. , false
  352. #endif
  353. #endif
  354. };
  355. float retract_length = RETRACT_LENGTH;
  356. float retract_length_swap = RETRACT_LENGTH_SWAP;
  357. float retract_feedrate = RETRACT_FEEDRATE;
  358. float retract_zlift = RETRACT_ZLIFT;
  359. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  360. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  361. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  362. #endif
  363. #ifdef ULTIPANEL
  364. #ifdef PS_DEFAULT_OFF
  365. bool powersupply = false;
  366. #else
  367. bool powersupply = true;
  368. #endif
  369. #endif
  370. bool cancel_heatup = false ;
  371. #ifdef HOST_KEEPALIVE_FEATURE
  372. int busy_state = NOT_BUSY;
  373. static long prev_busy_signal_ms = -1;
  374. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  375. #else
  376. #define host_keepalive();
  377. #define KEEPALIVE_STATE(n);
  378. #endif
  379. const char errormagic[] PROGMEM = "Error:";
  380. const char echomagic[] PROGMEM = "echo:";
  381. bool no_response = false;
  382. uint8_t important_status;
  383. uint8_t saved_filament_type;
  384. // save/restore printing
  385. bool saved_printing = false;
  386. //===========================================================================
  387. //=============================Private Variables=============================
  388. //===========================================================================
  389. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  390. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  391. static float delta[3] = {0.0, 0.0, 0.0};
  392. // For tracing an arc
  393. static float offset[3] = {0.0, 0.0, 0.0};
  394. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  395. // Determines Absolute or Relative Coordinates.
  396. // Also there is bool axis_relative_modes[] per axis flag.
  397. static bool relative_mode = false;
  398. #ifndef _DISABLE_M42_M226
  399. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  400. #endif //_DISABLE_M42_M226
  401. //static float tt = 0;
  402. //static float bt = 0;
  403. //Inactivity shutdown variables
  404. static unsigned long previous_millis_cmd = 0;
  405. unsigned long max_inactive_time = 0;
  406. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  407. unsigned long starttime=0;
  408. unsigned long stoptime=0;
  409. unsigned long _usb_timer = 0;
  410. static uint8_t tmp_extruder;
  411. bool extruder_under_pressure = true;
  412. bool Stopped=false;
  413. #if NUM_SERVOS > 0
  414. Servo servos[NUM_SERVOS];
  415. #endif
  416. bool CooldownNoWait = true;
  417. bool target_direction;
  418. //Insert variables if CHDK is defined
  419. #ifdef CHDK
  420. unsigned long chdkHigh = 0;
  421. boolean chdkActive = false;
  422. #endif
  423. // save/restore printing
  424. static uint32_t saved_sdpos = 0;
  425. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  426. static float saved_pos[4] = { 0, 0, 0, 0 };
  427. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  428. static float saved_feedrate2 = 0;
  429. static uint8_t saved_active_extruder = 0;
  430. static bool saved_extruder_under_pressure = false;
  431. //===========================================================================
  432. //=============================Routines======================================
  433. //===========================================================================
  434. void get_arc_coordinates();
  435. bool setTargetedHotend(int code);
  436. void serial_echopair_P(const char *s_P, float v)
  437. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  438. void serial_echopair_P(const char *s_P, double v)
  439. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  440. void serial_echopair_P(const char *s_P, unsigned long v)
  441. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  442. #ifdef SDSUPPORT
  443. #include "SdFatUtil.h"
  444. int freeMemory() { return SdFatUtil::FreeRam(); }
  445. #else
  446. extern "C" {
  447. extern unsigned int __bss_end;
  448. extern unsigned int __heap_start;
  449. extern void *__brkval;
  450. int freeMemory() {
  451. int free_memory;
  452. if ((int)__brkval == 0)
  453. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  454. else
  455. free_memory = ((int)&free_memory) - ((int)__brkval);
  456. return free_memory;
  457. }
  458. }
  459. #endif //!SDSUPPORT
  460. void setup_killpin()
  461. {
  462. #if defined(KILL_PIN) && KILL_PIN > -1
  463. SET_INPUT(KILL_PIN);
  464. WRITE(KILL_PIN,HIGH);
  465. #endif
  466. }
  467. // Set home pin
  468. void setup_homepin(void)
  469. {
  470. #if defined(HOME_PIN) && HOME_PIN > -1
  471. SET_INPUT(HOME_PIN);
  472. WRITE(HOME_PIN,HIGH);
  473. #endif
  474. }
  475. void setup_photpin()
  476. {
  477. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  478. SET_OUTPUT(PHOTOGRAPH_PIN);
  479. WRITE(PHOTOGRAPH_PIN, LOW);
  480. #endif
  481. }
  482. void setup_powerhold()
  483. {
  484. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  485. SET_OUTPUT(SUICIDE_PIN);
  486. WRITE(SUICIDE_PIN, HIGH);
  487. #endif
  488. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  489. SET_OUTPUT(PS_ON_PIN);
  490. #if defined(PS_DEFAULT_OFF)
  491. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  492. #else
  493. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  494. #endif
  495. #endif
  496. }
  497. void suicide()
  498. {
  499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  500. SET_OUTPUT(SUICIDE_PIN);
  501. WRITE(SUICIDE_PIN, LOW);
  502. #endif
  503. }
  504. void servo_init()
  505. {
  506. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  507. servos[0].attach(SERVO0_PIN);
  508. #endif
  509. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  510. servos[1].attach(SERVO1_PIN);
  511. #endif
  512. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  513. servos[2].attach(SERVO2_PIN);
  514. #endif
  515. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  516. servos[3].attach(SERVO3_PIN);
  517. #endif
  518. #if (NUM_SERVOS >= 5)
  519. #error "TODO: enter initalisation code for more servos"
  520. #endif
  521. }
  522. static void lcd_language_menu();
  523. void stop_and_save_print_to_ram(float z_move, float e_move);
  524. void restore_print_from_ram_and_continue(float e_move);
  525. bool fans_check_enabled = true;
  526. bool filament_autoload_enabled = true;
  527. #ifdef TMC2130
  528. extern int8_t CrashDetectMenu;
  529. void crashdet_enable()
  530. {
  531. // MYSERIAL.println("crashdet_enable");
  532. tmc2130_sg_stop_on_crash = true;
  533. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  534. CrashDetectMenu = 1;
  535. }
  536. void crashdet_disable()
  537. {
  538. // MYSERIAL.println("crashdet_disable");
  539. tmc2130_sg_stop_on_crash = false;
  540. tmc2130_sg_crash = 0;
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  542. CrashDetectMenu = 0;
  543. }
  544. void crashdet_stop_and_save_print()
  545. {
  546. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  547. }
  548. void crashdet_restore_print_and_continue()
  549. {
  550. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  551. // babystep_apply();
  552. }
  553. void crashdet_stop_and_save_print2()
  554. {
  555. cli();
  556. planner_abort_hard(); //abort printing
  557. cmdqueue_reset(); //empty cmdqueue
  558. card.sdprinting = false;
  559. card.closefile();
  560. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  561. st_reset_timer();
  562. sei();
  563. }
  564. void crashdet_detected(uint8_t mask)
  565. {
  566. // printf("CRASH_DETECTED");
  567. /* while (!is_buffer_empty())
  568. {
  569. process_commands();
  570. cmdqueue_pop_front();
  571. }*/
  572. st_synchronize();
  573. lcd_update_enable(true);
  574. lcd_implementation_clear();
  575. lcd_update(2);
  576. if (mask & X_AXIS_MASK)
  577. {
  578. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  579. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  580. }
  581. if (mask & Y_AXIS_MASK)
  582. {
  583. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  584. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  585. }
  586. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  587. bool yesno = true;
  588. #else
  589. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  590. #endif
  591. lcd_update_enable(true);
  592. lcd_update(2);
  593. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  594. if (yesno)
  595. {
  596. enquecommand_P(PSTR("G28 X Y"));
  597. enquecommand_P(PSTR("CRASH_RECOVER"));
  598. }
  599. else
  600. {
  601. enquecommand_P(PSTR("CRASH_CANCEL"));
  602. }
  603. }
  604. void crashdet_recover()
  605. {
  606. crashdet_restore_print_and_continue();
  607. tmc2130_sg_stop_on_crash = true;
  608. }
  609. void crashdet_cancel()
  610. {
  611. card.sdprinting = false;
  612. card.closefile();
  613. tmc2130_sg_stop_on_crash = true;
  614. }
  615. #endif //TMC2130
  616. void failstats_reset_print()
  617. {
  618. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  619. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  620. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  621. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  622. }
  623. #ifdef MESH_BED_LEVELING
  624. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  625. #endif
  626. // Factory reset function
  627. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  628. // Level input parameter sets depth of reset
  629. // Quiet parameter masks all waitings for user interact.
  630. int er_progress = 0;
  631. void factory_reset(char level, bool quiet)
  632. {
  633. lcd_implementation_clear();
  634. int cursor_pos = 0;
  635. switch (level) {
  636. // Level 0: Language reset
  637. case 0:
  638. WRITE(BEEPER, HIGH);
  639. _delay_ms(100);
  640. WRITE(BEEPER, LOW);
  641. lcd_force_language_selection();
  642. break;
  643. //Level 1: Reset statistics
  644. case 1:
  645. WRITE(BEEPER, HIGH);
  646. _delay_ms(100);
  647. WRITE(BEEPER, LOW);
  648. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  649. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  653. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  654. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  655. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  656. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  657. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  658. lcd_menu_statistics();
  659. break;
  660. // Level 2: Prepare for shipping
  661. case 2:
  662. //lcd_printPGM(PSTR("Factory RESET"));
  663. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  664. // Force language selection at the next boot up.
  665. lcd_force_language_selection();
  666. // Force the "Follow calibration flow" message at the next boot up.
  667. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  668. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  669. farm_no = 0;
  670. //*** MaR::180501_01
  671. farm_mode = false;
  672. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  673. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  674. WRITE(BEEPER, HIGH);
  675. _delay_ms(100);
  676. WRITE(BEEPER, LOW);
  677. //_delay_ms(2000);
  678. break;
  679. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  680. case 3:
  681. lcd_printPGM(PSTR("Factory RESET"));
  682. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  683. WRITE(BEEPER, HIGH);
  684. _delay_ms(100);
  685. WRITE(BEEPER, LOW);
  686. er_progress = 0;
  687. lcd_print_at_PGM(3, 3, PSTR(" "));
  688. lcd_implementation_print_at(3, 3, er_progress);
  689. // Erase EEPROM
  690. for (int i = 0; i < 4096; i++) {
  691. eeprom_write_byte((uint8_t*)i, 0xFF);
  692. if (i % 41 == 0) {
  693. er_progress++;
  694. lcd_print_at_PGM(3, 3, PSTR(" "));
  695. lcd_implementation_print_at(3, 3, er_progress);
  696. lcd_printPGM(PSTR("%"));
  697. }
  698. }
  699. break;
  700. case 4:
  701. bowden_menu();
  702. break;
  703. default:
  704. break;
  705. }
  706. }
  707. #include "LiquidCrystal_Prusa.h"
  708. extern LiquidCrystal_Prusa lcd;
  709. FILE _lcdout = {0};
  710. int lcd_putchar(char c, FILE *stream)
  711. {
  712. lcd.write(c);
  713. return 0;
  714. }
  715. FILE _uartout = {0};
  716. int uart_putchar(char c, FILE *stream)
  717. {
  718. MYSERIAL.write(c);
  719. return 0;
  720. }
  721. void lcd_splash()
  722. {
  723. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  724. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  725. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  726. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  727. }
  728. void factory_reset()
  729. {
  730. KEEPALIVE_STATE(PAUSED_FOR_USER);
  731. if (!READ(BTN_ENC))
  732. {
  733. _delay_ms(1000);
  734. if (!READ(BTN_ENC))
  735. {
  736. lcd_implementation_clear();
  737. lcd_printPGM(PSTR("Factory RESET"));
  738. SET_OUTPUT(BEEPER);
  739. WRITE(BEEPER, HIGH);
  740. while (!READ(BTN_ENC));
  741. WRITE(BEEPER, LOW);
  742. _delay_ms(2000);
  743. char level = reset_menu();
  744. factory_reset(level, false);
  745. switch (level) {
  746. case 0: _delay_ms(0); break;
  747. case 1: _delay_ms(0); break;
  748. case 2: _delay_ms(0); break;
  749. case 3: _delay_ms(0); break;
  750. }
  751. // _delay_ms(100);
  752. /*
  753. #ifdef MESH_BED_LEVELING
  754. _delay_ms(2000);
  755. if (!READ(BTN_ENC))
  756. {
  757. WRITE(BEEPER, HIGH);
  758. _delay_ms(100);
  759. WRITE(BEEPER, LOW);
  760. _delay_ms(200);
  761. WRITE(BEEPER, HIGH);
  762. _delay_ms(100);
  763. WRITE(BEEPER, LOW);
  764. int _z = 0;
  765. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  766. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  767. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  768. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  769. }
  770. else
  771. {
  772. WRITE(BEEPER, HIGH);
  773. _delay_ms(100);
  774. WRITE(BEEPER, LOW);
  775. }
  776. #endif // mesh */
  777. }
  778. }
  779. else
  780. {
  781. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  782. }
  783. KEEPALIVE_STATE(IN_HANDLER);
  784. }
  785. void show_fw_version_warnings() {
  786. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  787. switch (FW_DEV_VERSION) {
  788. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  789. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  790. case(FW_VERSION_DEVEL):
  791. case(FW_VERSION_DEBUG):
  792. lcd_update_enable(false);
  793. lcd_implementation_clear();
  794. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  795. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  796. #else
  797. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  798. #endif
  799. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  800. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  801. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  802. lcd_wait_for_click();
  803. break;
  804. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  805. }
  806. lcd_update_enable(true);
  807. }
  808. uint8_t check_printer_version()
  809. {
  810. uint8_t version_changed = 0;
  811. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  812. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  813. if (printer_type != PRINTER_TYPE) {
  814. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  815. else version_changed |= 0b10;
  816. }
  817. if (motherboard != MOTHERBOARD) {
  818. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  819. else version_changed |= 0b01;
  820. }
  821. return version_changed;
  822. }
  823. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  824. {
  825. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  826. }
  827. #include "bootapp.h"
  828. void __test(uint8_t lang)
  829. {
  830. uint8_t cnt = lang_get_count();
  831. printf_P(PSTR("cnt=%d lang=%d\n"), cnt, lang);
  832. if ((lang < 2) || (lang > cnt)) return;
  833. cli();
  834. boot_app_magic = BOOT_APP_MAGIC;
  835. boot_app_flags = BOOT_APP_FLG_USER0;
  836. boot_reserved = lang << 4;
  837. wdt_enable(WDTO_15MS);
  838. while(1);
  839. }
  840. #ifdef W25X20CL
  841. #define W25X20CL_BLOCK 1024
  842. void upgrade_sec_lang_from_external_flash()
  843. {
  844. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  845. {
  846. uint8_t lang = boot_reserved >> 4;
  847. uint8_t state = boot_reserved & 0xf;
  848. fprintf_P(lcdout, PSTR(ESC_H(1,3) "lang=%1hhd state=%1hhx"), lang, state);
  849. delay(1000);
  850. state++;
  851. boot_reserved = state | (lang << 4);
  852. if (state < 15)
  853. {
  854. cli();
  855. wdt_enable(WDTO_15MS);
  856. while(1);
  857. }
  858. /* fprintf_P(lcdout, PSTR(ESC_2J "UPGRADE START"));
  859. delay(1000);
  860. fprintf_P(lcdout, PSTR(ESC_H(1,1) "lang=%hhd state=%hhd"), lang, state);
  861. delay(1000);*/
  862. /*
  863. lang_table_header_t header;
  864. uint32_t src_addr = 0x00000;
  865. if (lang_get_header(lang, &header, &src_addr))
  866. {
  867. uint16_t dst_addr = ((((uint16_t)&_SEC_LANG) + 0x00ff) & 0xff00); //table pointer
  868. uint16_t size = W25X20CL_BLOCK * state;
  869. src_addr += size;
  870. dst_addr += size;
  871. state++;
  872. boot_reserved = state | (lang << 4);
  873. if (size < header.size)
  874. {
  875. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,0) "Copying lang #%hhd" ESC_H(1,1) "size 0x%04x"), lang, size);
  876. size = header.size - size;
  877. if (size > W25X20CL_BLOCK) size = W25X20CL_BLOCK;
  878. // delay(1000);
  879. // cli();
  880. // wdt_enable(WDTO_15MS);
  881. // while(1);
  882. cli();
  883. w25x20cl_rd_data(src_addr, (uint8_t*)0x0800, 256);
  884. bootapp_ram2flash(0x0800, dst_addr, 256);
  885. }
  886. */
  887. /*
  888. // header.size - (4096*state);
  889. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,0) "Copying lang #%hhd" ESC_H(1,1) "state %hhd" ESC_H(1,2) "offs: %08lx" ESC_H(1,3) "remain %04x"), lang, state, offset, remain);
  890. state++;
  891. boot_reserved = state | (lang << 4);
  892. if (state < 4)
  893. {
  894. _delay_ms(1000);
  895. cli();
  896. wdt_enable(WDTO_15MS);
  897. while(1);
  898. }*/
  899. // }
  900. }
  901. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  902. }
  903. #ifdef DEBUG_W25X20CL
  904. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  905. {
  906. lang_table_header_t header;
  907. uint8_t count = 0;
  908. uint32_t addr = 0x00000;
  909. while (1)
  910. {
  911. printf_P(_n("LANGTABLE%d:"), count);
  912. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  913. if (header.magic != LANG_MAGIC)
  914. {
  915. printf_P(_n("NG!\n"));
  916. break;
  917. }
  918. printf_P(_n("OK\n"));
  919. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  920. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  921. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  922. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  923. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  924. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  925. addr += header.size;
  926. codes[count] = header.code;
  927. count ++;
  928. }
  929. return count;
  930. }
  931. void list_sec_lang_from_external_flash()
  932. {
  933. uint16_t codes[8];
  934. uint8_t count = lang_xflash_enum_codes(codes);
  935. printf_P(_n("XFlash lang count = %hhd\n"), count);
  936. }
  937. #endif //DEBUG_W25X20CL
  938. #endif //W25X20CL
  939. // "Setup" function is called by the Arduino framework on startup.
  940. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  941. // are initialized by the main() routine provided by the Arduino framework.
  942. void setup()
  943. {
  944. lcd_init();
  945. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  946. #ifdef NEW_SPI
  947. spi_init();
  948. #endif //NEW_SPI
  949. lcd_splash();
  950. if (w25x20cl_init())
  951. upgrade_sec_lang_from_external_flash();
  952. else
  953. kill(_i("External SPI flash W25X20CL not responding."));
  954. setup_killpin();
  955. setup_powerhold();
  956. //*** MaR::180501_02b
  957. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  958. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  959. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  960. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  961. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  962. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  963. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  964. if (farm_mode)
  965. {
  966. no_response = true; //we need confirmation by recieving PRUSA thx
  967. important_status = 8;
  968. prusa_statistics(8);
  969. selectedSerialPort = 1;
  970. }
  971. MYSERIAL.begin(BAUDRATE);
  972. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  973. stdout = uartout;
  974. SERIAL_PROTOCOLLNPGM("start");
  975. SERIAL_ECHO_START;
  976. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  977. #if 0
  978. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  979. for (int i = 0; i < 4096; ++i) {
  980. int b = eeprom_read_byte((unsigned char*)i);
  981. if (b != 255) {
  982. SERIAL_ECHO(i);
  983. SERIAL_ECHO(":");
  984. SERIAL_ECHO(b);
  985. SERIAL_ECHOLN("");
  986. }
  987. }
  988. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  989. #endif
  990. // Check startup - does nothing if bootloader sets MCUSR to 0
  991. byte mcu = MCUSR;
  992. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  993. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  994. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  995. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  996. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  997. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  998. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  999. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1000. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1001. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1002. MCUSR = 0;
  1003. //SERIAL_ECHORPGM(MSG_MARLIN);
  1004. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1005. #ifdef STRING_VERSION_CONFIG_H
  1006. #ifdef STRING_CONFIG_H_AUTHOR
  1007. SERIAL_ECHO_START;
  1008. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1009. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1010. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1011. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1012. SERIAL_ECHOPGM("Compiled: ");
  1013. SERIAL_ECHOLNPGM(__DATE__);
  1014. #endif
  1015. #endif
  1016. SERIAL_ECHO_START;
  1017. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1018. SERIAL_ECHO(freeMemory());
  1019. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1020. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1021. //lcd_update_enable(false); // why do we need this?? - andre
  1022. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1023. bool previous_settings_retrieved = false;
  1024. uint8_t hw_changed = check_printer_version();
  1025. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1026. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1027. }
  1028. else { //printer version was changed so use default settings
  1029. Config_ResetDefault();
  1030. }
  1031. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1032. tp_init(); // Initialize temperature loop
  1033. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1034. plan_init(); // Initialize planner;
  1035. factory_reset();
  1036. #ifdef TMC2130
  1037. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1038. if (silentMode == 0xff) silentMode = 0;
  1039. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1040. tmc2130_mode = TMC2130_MODE_NORMAL;
  1041. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1042. if (crashdet && !farm_mode)
  1043. {
  1044. crashdet_enable();
  1045. MYSERIAL.println("CrashDetect ENABLED!");
  1046. }
  1047. else
  1048. {
  1049. crashdet_disable();
  1050. MYSERIAL.println("CrashDetect DISABLED");
  1051. }
  1052. #ifdef TMC2130_LINEARITY_CORRECTION
  1053. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1054. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1055. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1056. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1057. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1058. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1059. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1060. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1061. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1062. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1063. #endif //TMC2130_LINEARITY_CORRECTION
  1064. #ifdef TMC2130_VARIABLE_RESOLUTION
  1065. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1066. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1067. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1068. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1069. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1070. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1071. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1072. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1073. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1074. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1075. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1076. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1077. #else //TMC2130_VARIABLE_RESOLUTION
  1078. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1079. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1080. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1081. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1082. #endif //TMC2130_VARIABLE_RESOLUTION
  1083. #endif //TMC2130
  1084. st_init(); // Initialize stepper, this enables interrupts!
  1085. #ifdef TMC2130
  1086. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1087. tmc2130_init();
  1088. #endif //TMC2130
  1089. setup_photpin();
  1090. servo_init();
  1091. // Reset the machine correction matrix.
  1092. // It does not make sense to load the correction matrix until the machine is homed.
  1093. world2machine_reset();
  1094. #ifdef PAT9125
  1095. fsensor_init();
  1096. #endif //PAT9125
  1097. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1098. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1099. #endif
  1100. setup_homepin();
  1101. #ifdef TMC2130
  1102. if (1) {
  1103. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1104. // try to run to zero phase before powering the Z motor.
  1105. // Move in negative direction
  1106. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1107. // Round the current micro-micro steps to micro steps.
  1108. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1109. // Until the phase counter is reset to zero.
  1110. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1111. delay(2);
  1112. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1113. delay(2);
  1114. }
  1115. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1116. }
  1117. #endif //TMC2130
  1118. #if defined(Z_AXIS_ALWAYS_ON)
  1119. enable_z();
  1120. #endif
  1121. //*** MaR::180501_02
  1122. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1123. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1124. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1125. if (farm_no == 0xFFFF) farm_no = 0;
  1126. if (farm_mode)
  1127. {
  1128. prusa_statistics(8);
  1129. }
  1130. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1131. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1132. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1133. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1134. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1135. // where all the EEPROM entries are set to 0x0ff.
  1136. // Once a firmware boots up, it forces at least a language selection, which changes
  1137. // EEPROM_LANG to number lower than 0x0ff.
  1138. // 1) Set a high power mode.
  1139. #ifdef TMC2130
  1140. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1141. tmc2130_mode = TMC2130_MODE_NORMAL;
  1142. #endif //TMC2130
  1143. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1144. }
  1145. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1146. // but this times out if a blocking dialog is shown in setup().
  1147. card.initsd();
  1148. #ifdef DEBUG_SD_SPEED_TEST
  1149. if (card.cardOK)
  1150. {
  1151. uint8_t* buff = (uint8_t*)block_buffer;
  1152. uint32_t block = 0;
  1153. uint32_t sumr = 0;
  1154. uint32_t sumw = 0;
  1155. for (int i = 0; i < 1024; i++)
  1156. {
  1157. uint32_t u = micros();
  1158. bool res = card.card.readBlock(i, buff);
  1159. u = micros() - u;
  1160. if (res)
  1161. {
  1162. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1163. sumr += u;
  1164. u = micros();
  1165. res = card.card.writeBlock(i, buff);
  1166. u = micros() - u;
  1167. if (res)
  1168. {
  1169. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1170. sumw += u;
  1171. }
  1172. else
  1173. {
  1174. printf_P(PSTR("writeBlock %4d error\n"), i);
  1175. break;
  1176. }
  1177. }
  1178. else
  1179. {
  1180. printf_P(PSTR("readBlock %4d error\n"), i);
  1181. break;
  1182. }
  1183. }
  1184. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1185. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1186. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1187. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1188. }
  1189. else
  1190. printf_P(PSTR("Card NG!\n"));
  1191. #endif //DEBUG_SD_SPEED_TEST
  1192. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1193. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1194. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1195. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1196. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1197. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1198. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1199. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1200. #ifdef SNMM
  1201. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1202. int _z = BOWDEN_LENGTH;
  1203. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1204. }
  1205. #endif
  1206. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1207. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1208. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1209. #ifdef DEBUG_W25X20CL
  1210. W25X20CL_SPI_ENTER();
  1211. uint8_t uid[8]; // 64bit unique id
  1212. w25x20cl_rd_uid(uid);
  1213. puts_P(_n("W25X20CL UID="));
  1214. for (uint8_t i = 0; i < 8; i ++)
  1215. printf_P(PSTR("%02hhx"), uid[i]);
  1216. putchar('\n');
  1217. list_sec_lang_from_external_flash();
  1218. #endif //DEBUG_W25X20CL
  1219. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1220. if (lang_selected >= LANG_NUM)
  1221. {
  1222. // lcd_mylang();
  1223. lang_selected = 0;
  1224. }
  1225. lang_select(lang_selected);
  1226. //#ifdef DEBUG_SEC_LANG
  1227. uint16_t sec_lang_code = lang_get_code(1);
  1228. printf_P(_n("SEC_LANG_CODE=0x%04x (%c%c)\n"), sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1229. // lang_print_sec_lang(uartout);
  1230. //#endif //DEBUG_SEC_LANG
  1231. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1232. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1233. temp_cal_active = false;
  1234. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1235. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1236. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1237. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1238. int16_t z_shift = 0;
  1239. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1240. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1241. temp_cal_active = false;
  1242. }
  1243. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1244. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1245. }
  1246. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1247. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1248. }
  1249. check_babystep(); //checking if Z babystep is in allowed range
  1250. #ifdef UVLO_SUPPORT
  1251. setup_uvlo_interrupt();
  1252. #endif //UVLO_SUPPORT
  1253. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1254. setup_fan_interrupt();
  1255. #endif //DEBUG_DISABLE_FANCHECK
  1256. #ifdef PAT9125
  1257. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1258. fsensor_setup_interrupt();
  1259. #endif //DEBUG_DISABLE_FSENSORCHECK
  1260. #endif //PAT9125
  1261. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1262. #ifndef DEBUG_DISABLE_STARTMSGS
  1263. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1264. show_fw_version_warnings();
  1265. switch (hw_changed) {
  1266. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1267. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1268. case(0b01):
  1269. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1270. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1271. break;
  1272. case(0b10):
  1273. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1274. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1275. break;
  1276. case(0b11):
  1277. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1278. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1279. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1280. break;
  1281. default: break; //no change, show no message
  1282. }
  1283. if (!previous_settings_retrieved) {
  1284. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1285. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1286. }
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1288. lcd_wizard(0);
  1289. }
  1290. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1291. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1292. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1293. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1294. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1295. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1296. // Show the message.
  1297. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1298. }
  1299. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1300. // Show the message.
  1301. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1302. lcd_update_enable(true);
  1303. }
  1304. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1305. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1306. lcd_update_enable(true);
  1307. }
  1308. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1309. // Show the message.
  1310. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1311. }
  1312. }
  1313. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1314. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1315. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1316. update_current_firmware_version_to_eeprom();
  1317. lcd_selftest();
  1318. }
  1319. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1320. KEEPALIVE_STATE(IN_PROCESS);
  1321. #endif //DEBUG_DISABLE_STARTMSGS
  1322. lcd_update_enable(true);
  1323. lcd_implementation_clear();
  1324. lcd_update(2);
  1325. // Store the currently running firmware into an eeprom,
  1326. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1327. update_current_firmware_version_to_eeprom();
  1328. #ifdef TMC2130
  1329. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1330. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1331. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1332. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1333. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1334. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1335. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1336. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1337. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1338. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1339. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1340. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1341. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1342. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1343. #endif //TMC2130
  1344. #ifdef UVLO_SUPPORT
  1345. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1346. /*
  1347. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1348. else {
  1349. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1350. lcd_update_enable(true);
  1351. lcd_update(2);
  1352. lcd_setstatuspgm(_T(WELCOME_MSG));
  1353. }
  1354. */
  1355. manage_heater(); // Update temperatures
  1356. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1357. MYSERIAL.println("Power panic detected!");
  1358. MYSERIAL.print("Current bed temp:");
  1359. MYSERIAL.println(degBed());
  1360. MYSERIAL.print("Saved bed temp:");
  1361. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1362. #endif
  1363. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1364. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1365. MYSERIAL.println("Automatic recovery!");
  1366. #endif
  1367. recover_print(1);
  1368. }
  1369. else{
  1370. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1371. MYSERIAL.println("Normal recovery!");
  1372. #endif
  1373. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1374. else {
  1375. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1376. lcd_update_enable(true);
  1377. lcd_update(2);
  1378. lcd_setstatuspgm(_T(WELCOME_MSG));
  1379. }
  1380. }
  1381. }
  1382. #endif //UVLO_SUPPORT
  1383. KEEPALIVE_STATE(NOT_BUSY);
  1384. #ifdef WATCHDOG
  1385. wdt_enable(WDTO_4S);
  1386. #endif //WATCHDOG
  1387. }
  1388. #ifdef PAT9125
  1389. void fsensor_init() {
  1390. int pat9125 = pat9125_init();
  1391. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1392. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1393. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1394. if (!pat9125)
  1395. {
  1396. fsensor = 0; //disable sensor
  1397. fsensor_not_responding = true;
  1398. }
  1399. else {
  1400. fsensor_not_responding = false;
  1401. }
  1402. puts_P(PSTR("FSensor "));
  1403. if (fsensor)
  1404. {
  1405. puts_P(PSTR("ENABLED\n"));
  1406. fsensor_enable();
  1407. }
  1408. else
  1409. {
  1410. puts_P(PSTR("DISABLED\n"));
  1411. fsensor_disable();
  1412. }
  1413. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1414. filament_autoload_enabled = false;
  1415. fsensor_disable();
  1416. #endif //DEBUG_DISABLE_FSENSORCHECK
  1417. }
  1418. #endif //PAT9125
  1419. void trace();
  1420. #define CHUNK_SIZE 64 // bytes
  1421. #define SAFETY_MARGIN 1
  1422. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1423. int chunkHead = 0;
  1424. int serial_read_stream() {
  1425. setTargetHotend(0, 0);
  1426. setTargetBed(0);
  1427. lcd_implementation_clear();
  1428. lcd_printPGM(PSTR(" Upload in progress"));
  1429. // first wait for how many bytes we will receive
  1430. uint32_t bytesToReceive;
  1431. // receive the four bytes
  1432. char bytesToReceiveBuffer[4];
  1433. for (int i=0; i<4; i++) {
  1434. int data;
  1435. while ((data = MYSERIAL.read()) == -1) {};
  1436. bytesToReceiveBuffer[i] = data;
  1437. }
  1438. // make it a uint32
  1439. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1440. // we're ready, notify the sender
  1441. MYSERIAL.write('+');
  1442. // lock in the routine
  1443. uint32_t receivedBytes = 0;
  1444. while (prusa_sd_card_upload) {
  1445. int i;
  1446. for (i=0; i<CHUNK_SIZE; i++) {
  1447. int data;
  1448. // check if we're not done
  1449. if (receivedBytes == bytesToReceive) {
  1450. break;
  1451. }
  1452. // read the next byte
  1453. while ((data = MYSERIAL.read()) == -1) {};
  1454. receivedBytes++;
  1455. // save it to the chunk
  1456. chunk[i] = data;
  1457. }
  1458. // write the chunk to SD
  1459. card.write_command_no_newline(&chunk[0]);
  1460. // notify the sender we're ready for more data
  1461. MYSERIAL.write('+');
  1462. // for safety
  1463. manage_heater();
  1464. // check if we're done
  1465. if(receivedBytes == bytesToReceive) {
  1466. trace(); // beep
  1467. card.closefile();
  1468. prusa_sd_card_upload = false;
  1469. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1470. return 0;
  1471. }
  1472. }
  1473. }
  1474. #ifdef HOST_KEEPALIVE_FEATURE
  1475. /**
  1476. * Output a "busy" message at regular intervals
  1477. * while the machine is not accepting commands.
  1478. */
  1479. void host_keepalive() {
  1480. if (farm_mode) return;
  1481. long ms = millis();
  1482. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1483. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1484. switch (busy_state) {
  1485. case IN_HANDLER:
  1486. case IN_PROCESS:
  1487. SERIAL_ECHO_START;
  1488. SERIAL_ECHOLNPGM("busy: processing");
  1489. break;
  1490. case PAUSED_FOR_USER:
  1491. SERIAL_ECHO_START;
  1492. SERIAL_ECHOLNPGM("busy: paused for user");
  1493. break;
  1494. case PAUSED_FOR_INPUT:
  1495. SERIAL_ECHO_START;
  1496. SERIAL_ECHOLNPGM("busy: paused for input");
  1497. break;
  1498. default:
  1499. break;
  1500. }
  1501. }
  1502. prev_busy_signal_ms = ms;
  1503. }
  1504. #endif
  1505. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1506. // Before loop(), the setup() function is called by the main() routine.
  1507. void loop()
  1508. {
  1509. KEEPALIVE_STATE(NOT_BUSY);
  1510. bool stack_integrity = true;
  1511. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1512. {
  1513. is_usb_printing = true;
  1514. usb_printing_counter--;
  1515. _usb_timer = millis();
  1516. }
  1517. if (usb_printing_counter == 0)
  1518. {
  1519. is_usb_printing = false;
  1520. }
  1521. if (prusa_sd_card_upload)
  1522. {
  1523. //we read byte-by byte
  1524. serial_read_stream();
  1525. } else
  1526. {
  1527. get_command();
  1528. #ifdef SDSUPPORT
  1529. card.checkautostart(false);
  1530. #endif
  1531. if(buflen)
  1532. {
  1533. cmdbuffer_front_already_processed = false;
  1534. #ifdef SDSUPPORT
  1535. if(card.saving)
  1536. {
  1537. // Saving a G-code file onto an SD-card is in progress.
  1538. // Saving starts with M28, saving until M29 is seen.
  1539. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1540. card.write_command(CMDBUFFER_CURRENT_STRING);
  1541. if(card.logging)
  1542. process_commands();
  1543. else
  1544. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1545. } else {
  1546. card.closefile();
  1547. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1548. }
  1549. } else {
  1550. process_commands();
  1551. }
  1552. #else
  1553. process_commands();
  1554. #endif //SDSUPPORT
  1555. if (! cmdbuffer_front_already_processed && buflen)
  1556. {
  1557. // ptr points to the start of the block currently being processed.
  1558. // The first character in the block is the block type.
  1559. char *ptr = cmdbuffer + bufindr;
  1560. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1561. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1562. union {
  1563. struct {
  1564. char lo;
  1565. char hi;
  1566. } lohi;
  1567. uint16_t value;
  1568. } sdlen;
  1569. sdlen.value = 0;
  1570. {
  1571. // This block locks the interrupts globally for 3.25 us,
  1572. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1573. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1574. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1575. cli();
  1576. // Reset the command to something, which will be ignored by the power panic routine,
  1577. // so this buffer length will not be counted twice.
  1578. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1579. // Extract the current buffer length.
  1580. sdlen.lohi.lo = *ptr ++;
  1581. sdlen.lohi.hi = *ptr;
  1582. // and pass it to the planner queue.
  1583. planner_add_sd_length(sdlen.value);
  1584. sei();
  1585. }
  1586. }
  1587. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1588. cli();
  1589. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1590. // and one for each command to previous block in the planner queue.
  1591. planner_add_sd_length(1);
  1592. sei();
  1593. }
  1594. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1595. // this block's SD card length will not be counted twice as its command type has been replaced
  1596. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1597. cmdqueue_pop_front();
  1598. }
  1599. host_keepalive();
  1600. }
  1601. }
  1602. //check heater every n milliseconds
  1603. manage_heater();
  1604. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1605. checkHitEndstops();
  1606. lcd_update();
  1607. #ifdef PAT9125
  1608. fsensor_update();
  1609. #endif //PAT9125
  1610. #ifdef TMC2130
  1611. tmc2130_check_overtemp();
  1612. if (tmc2130_sg_crash)
  1613. {
  1614. uint8_t crash = tmc2130_sg_crash;
  1615. tmc2130_sg_crash = 0;
  1616. // crashdet_stop_and_save_print();
  1617. switch (crash)
  1618. {
  1619. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1620. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1621. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1622. }
  1623. }
  1624. #endif //TMC2130
  1625. }
  1626. #define DEFINE_PGM_READ_ANY(type, reader) \
  1627. static inline type pgm_read_any(const type *p) \
  1628. { return pgm_read_##reader##_near(p); }
  1629. DEFINE_PGM_READ_ANY(float, float);
  1630. DEFINE_PGM_READ_ANY(signed char, byte);
  1631. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1632. static const PROGMEM type array##_P[3] = \
  1633. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1634. static inline type array(int axis) \
  1635. { return pgm_read_any(&array##_P[axis]); } \
  1636. type array##_ext(int axis) \
  1637. { return pgm_read_any(&array##_P[axis]); }
  1638. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1639. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1640. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1641. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1642. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1643. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1644. static void axis_is_at_home(int axis) {
  1645. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1646. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1647. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1648. }
  1649. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1650. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1651. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1652. saved_feedrate = feedrate;
  1653. saved_feedmultiply = feedmultiply;
  1654. feedmultiply = 100;
  1655. previous_millis_cmd = millis();
  1656. enable_endstops(enable_endstops_now);
  1657. }
  1658. static void clean_up_after_endstop_move() {
  1659. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1660. enable_endstops(false);
  1661. #endif
  1662. feedrate = saved_feedrate;
  1663. feedmultiply = saved_feedmultiply;
  1664. previous_millis_cmd = millis();
  1665. }
  1666. #ifdef ENABLE_AUTO_BED_LEVELING
  1667. #ifdef AUTO_BED_LEVELING_GRID
  1668. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1669. {
  1670. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1671. planeNormal.debug("planeNormal");
  1672. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1673. //bedLevel.debug("bedLevel");
  1674. //plan_bed_level_matrix.debug("bed level before");
  1675. //vector_3 uncorrected_position = plan_get_position_mm();
  1676. //uncorrected_position.debug("position before");
  1677. vector_3 corrected_position = plan_get_position();
  1678. // corrected_position.debug("position after");
  1679. current_position[X_AXIS] = corrected_position.x;
  1680. current_position[Y_AXIS] = corrected_position.y;
  1681. current_position[Z_AXIS] = corrected_position.z;
  1682. // put the bed at 0 so we don't go below it.
  1683. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1685. }
  1686. #else // not AUTO_BED_LEVELING_GRID
  1687. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1688. plan_bed_level_matrix.set_to_identity();
  1689. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1690. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1691. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1692. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1693. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1694. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1695. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1696. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1697. vector_3 corrected_position = plan_get_position();
  1698. current_position[X_AXIS] = corrected_position.x;
  1699. current_position[Y_AXIS] = corrected_position.y;
  1700. current_position[Z_AXIS] = corrected_position.z;
  1701. // put the bed at 0 so we don't go below it.
  1702. current_position[Z_AXIS] = zprobe_zoffset;
  1703. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1704. }
  1705. #endif // AUTO_BED_LEVELING_GRID
  1706. static void run_z_probe() {
  1707. plan_bed_level_matrix.set_to_identity();
  1708. feedrate = homing_feedrate[Z_AXIS];
  1709. // move down until you find the bed
  1710. float zPosition = -10;
  1711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1712. st_synchronize();
  1713. // we have to let the planner know where we are right now as it is not where we said to go.
  1714. zPosition = st_get_position_mm(Z_AXIS);
  1715. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1716. // move up the retract distance
  1717. zPosition += home_retract_mm(Z_AXIS);
  1718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1719. st_synchronize();
  1720. // move back down slowly to find bed
  1721. feedrate = homing_feedrate[Z_AXIS]/4;
  1722. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1724. st_synchronize();
  1725. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1726. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1727. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1728. }
  1729. static void do_blocking_move_to(float x, float y, float z) {
  1730. float oldFeedRate = feedrate;
  1731. feedrate = homing_feedrate[Z_AXIS];
  1732. current_position[Z_AXIS] = z;
  1733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1734. st_synchronize();
  1735. feedrate = XY_TRAVEL_SPEED;
  1736. current_position[X_AXIS] = x;
  1737. current_position[Y_AXIS] = y;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1739. st_synchronize();
  1740. feedrate = oldFeedRate;
  1741. }
  1742. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1743. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1744. }
  1745. /// Probe bed height at position (x,y), returns the measured z value
  1746. static float probe_pt(float x, float y, float z_before) {
  1747. // move to right place
  1748. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1749. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1750. run_z_probe();
  1751. float measured_z = current_position[Z_AXIS];
  1752. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1753. SERIAL_PROTOCOLPGM(" x: ");
  1754. SERIAL_PROTOCOL(x);
  1755. SERIAL_PROTOCOLPGM(" y: ");
  1756. SERIAL_PROTOCOL(y);
  1757. SERIAL_PROTOCOLPGM(" z: ");
  1758. SERIAL_PROTOCOL(measured_z);
  1759. SERIAL_PROTOCOLPGM("\n");
  1760. return measured_z;
  1761. }
  1762. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1763. #ifdef LIN_ADVANCE
  1764. /**
  1765. * M900: Set and/or Get advance K factor and WH/D ratio
  1766. *
  1767. * K<factor> Set advance K factor
  1768. * R<ratio> Set ratio directly (overrides WH/D)
  1769. * W<width> H<height> D<diam> Set ratio from WH/D
  1770. */
  1771. inline void gcode_M900() {
  1772. st_synchronize();
  1773. const float newK = code_seen('K') ? code_value_float() : -1;
  1774. if (newK >= 0) extruder_advance_k = newK;
  1775. float newR = code_seen('R') ? code_value_float() : -1;
  1776. if (newR < 0) {
  1777. const float newD = code_seen('D') ? code_value_float() : -1,
  1778. newW = code_seen('W') ? code_value_float() : -1,
  1779. newH = code_seen('H') ? code_value_float() : -1;
  1780. if (newD >= 0 && newW >= 0 && newH >= 0)
  1781. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1782. }
  1783. if (newR >= 0) advance_ed_ratio = newR;
  1784. SERIAL_ECHO_START;
  1785. SERIAL_ECHOPGM("Advance K=");
  1786. SERIAL_ECHOLN(extruder_advance_k);
  1787. SERIAL_ECHOPGM(" E/D=");
  1788. const float ratio = advance_ed_ratio;
  1789. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1790. }
  1791. #endif // LIN_ADVANCE
  1792. bool check_commands() {
  1793. bool end_command_found = false;
  1794. while (buflen)
  1795. {
  1796. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1797. if (!cmdbuffer_front_already_processed)
  1798. cmdqueue_pop_front();
  1799. cmdbuffer_front_already_processed = false;
  1800. }
  1801. return end_command_found;
  1802. }
  1803. #ifdef TMC2130
  1804. bool calibrate_z_auto()
  1805. {
  1806. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1807. lcd_implementation_clear();
  1808. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1809. bool endstops_enabled = enable_endstops(true);
  1810. int axis_up_dir = -home_dir(Z_AXIS);
  1811. tmc2130_home_enter(Z_AXIS_MASK);
  1812. current_position[Z_AXIS] = 0;
  1813. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1814. set_destination_to_current();
  1815. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1816. feedrate = homing_feedrate[Z_AXIS];
  1817. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1818. st_synchronize();
  1819. // current_position[axis] = 0;
  1820. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1821. tmc2130_home_exit();
  1822. enable_endstops(false);
  1823. current_position[Z_AXIS] = 0;
  1824. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1825. set_destination_to_current();
  1826. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1827. feedrate = homing_feedrate[Z_AXIS] / 2;
  1828. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1829. st_synchronize();
  1830. enable_endstops(endstops_enabled);
  1831. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1832. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1833. return true;
  1834. }
  1835. #endif //TMC2130
  1836. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1837. {
  1838. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1839. #define HOMEAXIS_DO(LETTER) \
  1840. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1841. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1842. {
  1843. int axis_home_dir = home_dir(axis);
  1844. feedrate = homing_feedrate[axis];
  1845. #ifdef TMC2130
  1846. tmc2130_home_enter(X_AXIS_MASK << axis);
  1847. #endif //TMC2130
  1848. // Move right a bit, so that the print head does not touch the left end position,
  1849. // and the following left movement has a chance to achieve the required velocity
  1850. // for the stall guard to work.
  1851. current_position[axis] = 0;
  1852. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1853. set_destination_to_current();
  1854. // destination[axis] = 11.f;
  1855. destination[axis] = 3.f;
  1856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1857. st_synchronize();
  1858. // Move left away from the possible collision with the collision detection disabled.
  1859. endstops_hit_on_purpose();
  1860. enable_endstops(false);
  1861. current_position[axis] = 0;
  1862. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1863. destination[axis] = - 1.;
  1864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1865. st_synchronize();
  1866. // Now continue to move up to the left end stop with the collision detection enabled.
  1867. enable_endstops(true);
  1868. destination[axis] = - 1.1 * max_length(axis);
  1869. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1870. st_synchronize();
  1871. for (uint8_t i = 0; i < cnt; i++)
  1872. {
  1873. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1874. endstops_hit_on_purpose();
  1875. enable_endstops(false);
  1876. current_position[axis] = 0;
  1877. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1878. destination[axis] = 10.f;
  1879. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1880. st_synchronize();
  1881. endstops_hit_on_purpose();
  1882. // Now move left up to the collision, this time with a repeatable velocity.
  1883. enable_endstops(true);
  1884. destination[axis] = - 11.f;
  1885. #ifdef TMC2130
  1886. feedrate = homing_feedrate[axis];
  1887. #else //TMC2130
  1888. feedrate = homing_feedrate[axis] / 2;
  1889. #endif //TMC2130
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. #ifdef TMC2130
  1893. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1894. if (pstep) pstep[i] = mscnt >> 4;
  1895. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1896. #endif //TMC2130
  1897. }
  1898. endstops_hit_on_purpose();
  1899. enable_endstops(false);
  1900. #ifdef TMC2130
  1901. uint8_t orig = tmc2130_home_origin[axis];
  1902. uint8_t back = tmc2130_home_bsteps[axis];
  1903. if (tmc2130_home_enabled && (orig <= 63))
  1904. {
  1905. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1906. if (back > 0)
  1907. tmc2130_do_steps(axis, back, 1, 1000);
  1908. }
  1909. else
  1910. tmc2130_do_steps(axis, 8, 2, 1000);
  1911. tmc2130_home_exit();
  1912. #endif //TMC2130
  1913. axis_is_at_home(axis);
  1914. axis_known_position[axis] = true;
  1915. // Move from minimum
  1916. #ifdef TMC2130
  1917. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1918. #else //TMC2130
  1919. float dist = 0.01f * 64;
  1920. #endif //TMC2130
  1921. current_position[axis] -= dist;
  1922. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1923. current_position[axis] += dist;
  1924. destination[axis] = current_position[axis];
  1925. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1926. st_synchronize();
  1927. feedrate = 0.0;
  1928. }
  1929. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1930. {
  1931. #ifdef TMC2130
  1932. FORCE_HIGH_POWER_START;
  1933. #endif
  1934. int axis_home_dir = home_dir(axis);
  1935. current_position[axis] = 0;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1938. feedrate = homing_feedrate[axis];
  1939. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1940. st_synchronize();
  1941. #ifdef TMC2130
  1942. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1943. FORCE_HIGH_POWER_END;
  1944. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1945. return;
  1946. }
  1947. #endif //TMC2130
  1948. current_position[axis] = 0;
  1949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1950. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1951. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1952. st_synchronize();
  1953. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1954. feedrate = homing_feedrate[axis]/2 ;
  1955. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1956. st_synchronize();
  1957. #ifdef TMC2130
  1958. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1959. FORCE_HIGH_POWER_END;
  1960. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1961. return;
  1962. }
  1963. #endif //TMC2130
  1964. axis_is_at_home(axis);
  1965. destination[axis] = current_position[axis];
  1966. feedrate = 0.0;
  1967. endstops_hit_on_purpose();
  1968. axis_known_position[axis] = true;
  1969. #ifdef TMC2130
  1970. FORCE_HIGH_POWER_END;
  1971. #endif
  1972. }
  1973. enable_endstops(endstops_enabled);
  1974. }
  1975. /**/
  1976. void home_xy()
  1977. {
  1978. set_destination_to_current();
  1979. homeaxis(X_AXIS);
  1980. homeaxis(Y_AXIS);
  1981. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1982. endstops_hit_on_purpose();
  1983. }
  1984. void refresh_cmd_timeout(void)
  1985. {
  1986. previous_millis_cmd = millis();
  1987. }
  1988. #ifdef FWRETRACT
  1989. void retract(bool retracting, bool swapretract = false) {
  1990. if(retracting && !retracted[active_extruder]) {
  1991. destination[X_AXIS]=current_position[X_AXIS];
  1992. destination[Y_AXIS]=current_position[Y_AXIS];
  1993. destination[Z_AXIS]=current_position[Z_AXIS];
  1994. destination[E_AXIS]=current_position[E_AXIS];
  1995. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1996. plan_set_e_position(current_position[E_AXIS]);
  1997. float oldFeedrate = feedrate;
  1998. feedrate=retract_feedrate*60;
  1999. retracted[active_extruder]=true;
  2000. prepare_move();
  2001. current_position[Z_AXIS]-=retract_zlift;
  2002. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2003. prepare_move();
  2004. feedrate = oldFeedrate;
  2005. } else if(!retracting && retracted[active_extruder]) {
  2006. destination[X_AXIS]=current_position[X_AXIS];
  2007. destination[Y_AXIS]=current_position[Y_AXIS];
  2008. destination[Z_AXIS]=current_position[Z_AXIS];
  2009. destination[E_AXIS]=current_position[E_AXIS];
  2010. current_position[Z_AXIS]+=retract_zlift;
  2011. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2012. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2013. plan_set_e_position(current_position[E_AXIS]);
  2014. float oldFeedrate = feedrate;
  2015. feedrate=retract_recover_feedrate*60;
  2016. retracted[active_extruder]=false;
  2017. prepare_move();
  2018. feedrate = oldFeedrate;
  2019. }
  2020. } //retract
  2021. #endif //FWRETRACT
  2022. void trace() {
  2023. tone(BEEPER, 440);
  2024. delay(25);
  2025. noTone(BEEPER);
  2026. delay(20);
  2027. }
  2028. /*
  2029. void ramming() {
  2030. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2031. if (current_temperature[0] < 230) {
  2032. //PLA
  2033. max_feedrate[E_AXIS] = 50;
  2034. //current_position[E_AXIS] -= 8;
  2035. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2036. //current_position[E_AXIS] += 8;
  2037. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2038. current_position[E_AXIS] += 5.4;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2040. current_position[E_AXIS] += 3.2;
  2041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2042. current_position[E_AXIS] += 3;
  2043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2044. st_synchronize();
  2045. max_feedrate[E_AXIS] = 80;
  2046. current_position[E_AXIS] -= 82;
  2047. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2048. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2049. current_position[E_AXIS] -= 20;
  2050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2051. current_position[E_AXIS] += 5;
  2052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2053. current_position[E_AXIS] += 5;
  2054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2055. current_position[E_AXIS] -= 10;
  2056. st_synchronize();
  2057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2058. current_position[E_AXIS] += 10;
  2059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2060. current_position[E_AXIS] -= 10;
  2061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2062. current_position[E_AXIS] += 10;
  2063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2064. current_position[E_AXIS] -= 10;
  2065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2066. st_synchronize();
  2067. }
  2068. else {
  2069. //ABS
  2070. max_feedrate[E_AXIS] = 50;
  2071. //current_position[E_AXIS] -= 8;
  2072. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2073. //current_position[E_AXIS] += 8;
  2074. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2075. current_position[E_AXIS] += 3.1;
  2076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2077. current_position[E_AXIS] += 3.1;
  2078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2079. current_position[E_AXIS] += 4;
  2080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2081. st_synchronize();
  2082. //current_position[X_AXIS] += 23; //delay
  2083. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2084. //current_position[X_AXIS] -= 23; //delay
  2085. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2086. delay(4700);
  2087. max_feedrate[E_AXIS] = 80;
  2088. current_position[E_AXIS] -= 92;
  2089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2090. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2091. current_position[E_AXIS] -= 5;
  2092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2093. current_position[E_AXIS] += 5;
  2094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2095. current_position[E_AXIS] -= 5;
  2096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2097. st_synchronize();
  2098. current_position[E_AXIS] += 5;
  2099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2100. current_position[E_AXIS] -= 5;
  2101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2102. current_position[E_AXIS] += 5;
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2104. current_position[E_AXIS] -= 5;
  2105. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2106. st_synchronize();
  2107. }
  2108. }
  2109. */
  2110. #ifdef TMC2130
  2111. void force_high_power_mode(bool start_high_power_section) {
  2112. uint8_t silent;
  2113. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2114. if (silent == 1) {
  2115. //we are in silent mode, set to normal mode to enable crash detection
  2116. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2117. st_synchronize();
  2118. cli();
  2119. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2120. tmc2130_init();
  2121. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2122. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2123. st_reset_timer();
  2124. sei();
  2125. }
  2126. }
  2127. #endif //TMC2130
  2128. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2129. st_synchronize();
  2130. #if 0
  2131. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2132. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2133. #endif
  2134. // Flag for the display update routine and to disable the print cancelation during homing.
  2135. homing_flag = true;
  2136. // Either all X,Y,Z codes are present, or none of them.
  2137. bool home_all_axes = home_x == home_y && home_x == home_z;
  2138. if (home_all_axes)
  2139. // No X/Y/Z code provided means to home all axes.
  2140. home_x = home_y = home_z = true;
  2141. #ifdef ENABLE_AUTO_BED_LEVELING
  2142. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2143. #endif //ENABLE_AUTO_BED_LEVELING
  2144. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2145. // the planner will not perform any adjustments in the XY plane.
  2146. // Wait for the motors to stop and update the current position with the absolute values.
  2147. world2machine_revert_to_uncorrected();
  2148. // For mesh bed leveling deactivate the matrix temporarily.
  2149. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2150. // in a single axis only.
  2151. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2152. #ifdef MESH_BED_LEVELING
  2153. uint8_t mbl_was_active = mbl.active;
  2154. mbl.active = 0;
  2155. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2156. #endif
  2157. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2158. // consumed during the first movements following this statement.
  2159. if (home_z)
  2160. babystep_undo();
  2161. saved_feedrate = feedrate;
  2162. saved_feedmultiply = feedmultiply;
  2163. feedmultiply = 100;
  2164. previous_millis_cmd = millis();
  2165. enable_endstops(true);
  2166. memcpy(destination, current_position, sizeof(destination));
  2167. feedrate = 0.0;
  2168. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2169. if(home_z)
  2170. homeaxis(Z_AXIS);
  2171. #endif
  2172. #ifdef QUICK_HOME
  2173. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2174. if(home_x && home_y) //first diagonal move
  2175. {
  2176. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2177. int x_axis_home_dir = home_dir(X_AXIS);
  2178. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2179. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2180. feedrate = homing_feedrate[X_AXIS];
  2181. if(homing_feedrate[Y_AXIS]<feedrate)
  2182. feedrate = homing_feedrate[Y_AXIS];
  2183. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2184. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2185. } else {
  2186. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2187. }
  2188. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2189. st_synchronize();
  2190. axis_is_at_home(X_AXIS);
  2191. axis_is_at_home(Y_AXIS);
  2192. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2193. destination[X_AXIS] = current_position[X_AXIS];
  2194. destination[Y_AXIS] = current_position[Y_AXIS];
  2195. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2196. feedrate = 0.0;
  2197. st_synchronize();
  2198. endstops_hit_on_purpose();
  2199. current_position[X_AXIS] = destination[X_AXIS];
  2200. current_position[Y_AXIS] = destination[Y_AXIS];
  2201. current_position[Z_AXIS] = destination[Z_AXIS];
  2202. }
  2203. #endif /* QUICK_HOME */
  2204. #ifdef TMC2130
  2205. if(home_x)
  2206. {
  2207. if (!calib)
  2208. homeaxis(X_AXIS);
  2209. else
  2210. tmc2130_home_calibrate(X_AXIS);
  2211. }
  2212. if(home_y)
  2213. {
  2214. if (!calib)
  2215. homeaxis(Y_AXIS);
  2216. else
  2217. tmc2130_home_calibrate(Y_AXIS);
  2218. }
  2219. #endif //TMC2130
  2220. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2221. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2222. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2223. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2224. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2225. #ifndef Z_SAFE_HOMING
  2226. if(home_z) {
  2227. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2228. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2229. feedrate = max_feedrate[Z_AXIS];
  2230. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2231. st_synchronize();
  2232. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2233. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2234. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2235. {
  2236. homeaxis(X_AXIS);
  2237. homeaxis(Y_AXIS);
  2238. }
  2239. // 1st mesh bed leveling measurement point, corrected.
  2240. world2machine_initialize();
  2241. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2242. world2machine_reset();
  2243. if (destination[Y_AXIS] < Y_MIN_POS)
  2244. destination[Y_AXIS] = Y_MIN_POS;
  2245. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2246. feedrate = homing_feedrate[Z_AXIS]/10;
  2247. current_position[Z_AXIS] = 0;
  2248. enable_endstops(false);
  2249. #ifdef DEBUG_BUILD
  2250. SERIAL_ECHOLNPGM("plan_set_position()");
  2251. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2252. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2253. #endif
  2254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2255. #ifdef DEBUG_BUILD
  2256. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2257. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2258. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2259. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2260. #endif
  2261. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2262. st_synchronize();
  2263. current_position[X_AXIS] = destination[X_AXIS];
  2264. current_position[Y_AXIS] = destination[Y_AXIS];
  2265. enable_endstops(true);
  2266. endstops_hit_on_purpose();
  2267. homeaxis(Z_AXIS);
  2268. #else // MESH_BED_LEVELING
  2269. homeaxis(Z_AXIS);
  2270. #endif // MESH_BED_LEVELING
  2271. }
  2272. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2273. if(home_all_axes) {
  2274. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2275. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2276. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2277. feedrate = XY_TRAVEL_SPEED/60;
  2278. current_position[Z_AXIS] = 0;
  2279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2280. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2281. st_synchronize();
  2282. current_position[X_AXIS] = destination[X_AXIS];
  2283. current_position[Y_AXIS] = destination[Y_AXIS];
  2284. homeaxis(Z_AXIS);
  2285. }
  2286. // Let's see if X and Y are homed and probe is inside bed area.
  2287. if(home_z) {
  2288. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2289. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2290. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2291. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2292. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2293. current_position[Z_AXIS] = 0;
  2294. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2295. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2296. feedrate = max_feedrate[Z_AXIS];
  2297. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2298. st_synchronize();
  2299. homeaxis(Z_AXIS);
  2300. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2301. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2302. SERIAL_ECHO_START;
  2303. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2304. } else {
  2305. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2306. SERIAL_ECHO_START;
  2307. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2308. }
  2309. }
  2310. #endif // Z_SAFE_HOMING
  2311. #endif // Z_HOME_DIR < 0
  2312. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2313. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2314. #ifdef ENABLE_AUTO_BED_LEVELING
  2315. if(home_z)
  2316. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2317. #endif
  2318. // Set the planner and stepper routine positions.
  2319. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2320. // contains the machine coordinates.
  2321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2322. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2323. enable_endstops(false);
  2324. #endif
  2325. feedrate = saved_feedrate;
  2326. feedmultiply = saved_feedmultiply;
  2327. previous_millis_cmd = millis();
  2328. endstops_hit_on_purpose();
  2329. #ifndef MESH_BED_LEVELING
  2330. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2331. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2332. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2333. lcd_adjust_z();
  2334. #endif
  2335. // Load the machine correction matrix
  2336. world2machine_initialize();
  2337. // and correct the current_position XY axes to match the transformed coordinate system.
  2338. world2machine_update_current();
  2339. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2340. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2341. {
  2342. if (! home_z && mbl_was_active) {
  2343. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2344. mbl.active = true;
  2345. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2346. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2347. }
  2348. }
  2349. else
  2350. {
  2351. st_synchronize();
  2352. homing_flag = false;
  2353. // Push the commands to the front of the message queue in the reverse order!
  2354. // There shall be always enough space reserved for these commands.
  2355. enquecommand_front_P((PSTR("G80")));
  2356. //goto case_G80;
  2357. }
  2358. #endif
  2359. if (farm_mode) { prusa_statistics(20); };
  2360. homing_flag = false;
  2361. #if 0
  2362. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2363. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2364. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2365. #endif
  2366. }
  2367. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2368. {
  2369. bool final_result = false;
  2370. #ifdef TMC2130
  2371. FORCE_HIGH_POWER_START;
  2372. #endif // TMC2130
  2373. // Only Z calibration?
  2374. if (!onlyZ)
  2375. {
  2376. setTargetBed(0);
  2377. setTargetHotend(0, 0);
  2378. setTargetHotend(0, 1);
  2379. setTargetHotend(0, 2);
  2380. adjust_bed_reset(); //reset bed level correction
  2381. }
  2382. // Disable the default update procedure of the display. We will do a modal dialog.
  2383. lcd_update_enable(false);
  2384. // Let the planner use the uncorrected coordinates.
  2385. mbl.reset();
  2386. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2387. // the planner will not perform any adjustments in the XY plane.
  2388. // Wait for the motors to stop and update the current position with the absolute values.
  2389. world2machine_revert_to_uncorrected();
  2390. // Reset the baby step value applied without moving the axes.
  2391. babystep_reset();
  2392. // Mark all axes as in a need for homing.
  2393. memset(axis_known_position, 0, sizeof(axis_known_position));
  2394. // Home in the XY plane.
  2395. //set_destination_to_current();
  2396. setup_for_endstop_move();
  2397. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2398. home_xy();
  2399. enable_endstops(false);
  2400. current_position[X_AXIS] += 5;
  2401. current_position[Y_AXIS] += 5;
  2402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2403. st_synchronize();
  2404. // Let the user move the Z axes up to the end stoppers.
  2405. #ifdef TMC2130
  2406. if (calibrate_z_auto())
  2407. {
  2408. #else //TMC2130
  2409. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2410. {
  2411. #endif //TMC2130
  2412. refresh_cmd_timeout();
  2413. #ifndef STEEL_SHEET
  2414. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2415. {
  2416. lcd_wait_for_cool_down();
  2417. }
  2418. #endif //STEEL_SHEET
  2419. if(!onlyZ)
  2420. {
  2421. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2422. #ifdef STEEL_SHEET
  2423. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2424. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2425. #endif //STEEL_SHEET
  2426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2427. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2428. KEEPALIVE_STATE(IN_HANDLER);
  2429. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2430. lcd_implementation_print_at(0, 2, 1);
  2431. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2432. }
  2433. // Move the print head close to the bed.
  2434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2435. bool endstops_enabled = enable_endstops(true);
  2436. #ifdef TMC2130
  2437. tmc2130_home_enter(Z_AXIS_MASK);
  2438. #endif //TMC2130
  2439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2440. st_synchronize();
  2441. #ifdef TMC2130
  2442. tmc2130_home_exit();
  2443. #endif //TMC2130
  2444. enable_endstops(endstops_enabled);
  2445. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2446. {
  2447. int8_t verbosity_level = 0;
  2448. if (code_seen('V'))
  2449. {
  2450. // Just 'V' without a number counts as V1.
  2451. char c = strchr_pointer[1];
  2452. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2453. }
  2454. if (onlyZ)
  2455. {
  2456. clean_up_after_endstop_move();
  2457. // Z only calibration.
  2458. // Load the machine correction matrix
  2459. world2machine_initialize();
  2460. // and correct the current_position to match the transformed coordinate system.
  2461. world2machine_update_current();
  2462. //FIXME
  2463. bool result = sample_mesh_and_store_reference();
  2464. if (result)
  2465. {
  2466. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2467. // Shipped, the nozzle height has been set already. The user can start printing now.
  2468. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2469. final_result = true;
  2470. // babystep_apply();
  2471. }
  2472. }
  2473. else
  2474. {
  2475. // Reset the baby step value and the baby step applied flag.
  2476. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2477. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2478. // Complete XYZ calibration.
  2479. uint8_t point_too_far_mask = 0;
  2480. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2481. clean_up_after_endstop_move();
  2482. // Print head up.
  2483. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2485. st_synchronize();
  2486. //#ifndef NEW_XYZCAL
  2487. if (result >= 0)
  2488. {
  2489. #ifdef HEATBED_V2
  2490. sample_z();
  2491. #else //HEATBED_V2
  2492. point_too_far_mask = 0;
  2493. // Second half: The fine adjustment.
  2494. // Let the planner use the uncorrected coordinates.
  2495. mbl.reset();
  2496. world2machine_reset();
  2497. // Home in the XY plane.
  2498. setup_for_endstop_move();
  2499. home_xy();
  2500. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2501. clean_up_after_endstop_move();
  2502. // Print head up.
  2503. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2505. st_synchronize();
  2506. // if (result >= 0) babystep_apply();
  2507. #endif //HEATBED_V2
  2508. }
  2509. //#endif //NEW_XYZCAL
  2510. lcd_update_enable(true);
  2511. lcd_update(2);
  2512. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2513. if (result >= 0)
  2514. {
  2515. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2516. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2517. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2518. final_result = true;
  2519. }
  2520. }
  2521. #ifdef TMC2130
  2522. tmc2130_home_exit();
  2523. #endif
  2524. }
  2525. else
  2526. {
  2527. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2528. final_result = false;
  2529. }
  2530. }
  2531. else
  2532. {
  2533. // Timeouted.
  2534. }
  2535. lcd_update_enable(true);
  2536. #ifdef TMC2130
  2537. FORCE_HIGH_POWER_END;
  2538. #endif // TMC2130
  2539. return final_result;
  2540. }
  2541. void gcode_M114()
  2542. {
  2543. SERIAL_PROTOCOLPGM("X:");
  2544. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2545. SERIAL_PROTOCOLPGM(" Y:");
  2546. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2547. SERIAL_PROTOCOLPGM(" Z:");
  2548. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2549. SERIAL_PROTOCOLPGM(" E:");
  2550. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2551. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2552. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2553. SERIAL_PROTOCOLPGM(" Y:");
  2554. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2555. SERIAL_PROTOCOLPGM(" Z:");
  2556. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2557. SERIAL_PROTOCOLPGM(" E:");
  2558. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2559. SERIAL_PROTOCOLLN("");
  2560. }
  2561. void gcode_M701()
  2562. {
  2563. #ifdef SNMM
  2564. extr_adj(snmm_extruder);//loads current extruder
  2565. #else
  2566. enable_z();
  2567. custom_message = true;
  2568. custom_message_type = 2;
  2569. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2570. current_position[E_AXIS] += 70;
  2571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2572. current_position[E_AXIS] += 25;
  2573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2574. st_synchronize();
  2575. tone(BEEPER, 500);
  2576. delay_keep_alive(50);
  2577. noTone(BEEPER);
  2578. if (!farm_mode && loading_flag) {
  2579. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2580. while (!clean) {
  2581. lcd_update_enable(true);
  2582. lcd_update(2);
  2583. current_position[E_AXIS] += 25;
  2584. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2585. st_synchronize();
  2586. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2587. }
  2588. }
  2589. lcd_update_enable(true);
  2590. lcd_update(2);
  2591. lcd_setstatuspgm(_T(WELCOME_MSG));
  2592. disable_z();
  2593. loading_flag = false;
  2594. custom_message = false;
  2595. custom_message_type = 0;
  2596. #endif
  2597. }
  2598. /**
  2599. * @brief Get serial number from 32U2 processor
  2600. *
  2601. * Typical format of S/N is:CZPX0917X003XC13518
  2602. *
  2603. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2604. *
  2605. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2606. * reply is transmitted to serial port 1 character by character.
  2607. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2608. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2609. * in any case.
  2610. */
  2611. static void gcode_PRUSA_SN()
  2612. {
  2613. if (farm_mode) {
  2614. selectedSerialPort = 0;
  2615. MSerial.write(";S");
  2616. int numbersRead = 0;
  2617. ShortTimer timeout;
  2618. timeout.start();
  2619. while (numbersRead < 19) {
  2620. while (MSerial.available() > 0) {
  2621. uint8_t serial_char = MSerial.read();
  2622. selectedSerialPort = 1;
  2623. MSerial.write(serial_char);
  2624. numbersRead++;
  2625. selectedSerialPort = 0;
  2626. }
  2627. if (timeout.expired(100u)) break;
  2628. }
  2629. selectedSerialPort = 1;
  2630. MSerial.write('\n');
  2631. #if 0
  2632. for (int b = 0; b < 3; b++) {
  2633. tone(BEEPER, 110);
  2634. delay(50);
  2635. noTone(BEEPER);
  2636. delay(50);
  2637. }
  2638. #endif
  2639. } else {
  2640. MYSERIAL.println("Not in farm mode.");
  2641. }
  2642. }
  2643. void process_commands()
  2644. {
  2645. if (!buflen) return; //empty command
  2646. #ifdef FILAMENT_RUNOUT_SUPPORT
  2647. SET_INPUT(FR_SENS);
  2648. #endif
  2649. #ifdef CMDBUFFER_DEBUG
  2650. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2651. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2652. SERIAL_ECHOLNPGM("");
  2653. SERIAL_ECHOPGM("In cmdqueue: ");
  2654. SERIAL_ECHO(buflen);
  2655. SERIAL_ECHOLNPGM("");
  2656. #endif /* CMDBUFFER_DEBUG */
  2657. unsigned long codenum; //throw away variable
  2658. char *starpos = NULL;
  2659. #ifdef ENABLE_AUTO_BED_LEVELING
  2660. float x_tmp, y_tmp, z_tmp, real_z;
  2661. #endif
  2662. // PRUSA GCODES
  2663. KEEPALIVE_STATE(IN_HANDLER);
  2664. #ifdef SNMM
  2665. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2666. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2667. int8_t SilentMode;
  2668. #endif
  2669. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2670. starpos = (strchr(strchr_pointer + 5, '*'));
  2671. if (starpos != NULL)
  2672. *(starpos) = '\0';
  2673. lcd_setstatus(strchr_pointer + 5);
  2674. }
  2675. #ifdef TMC2130
  2676. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2677. {
  2678. if(code_seen("CRASH_DETECTED"))
  2679. {
  2680. uint8_t mask = 0;
  2681. if (code_seen("X")) mask |= X_AXIS_MASK;
  2682. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2683. crashdet_detected(mask);
  2684. }
  2685. else if(code_seen("CRASH_RECOVER"))
  2686. crashdet_recover();
  2687. else if(code_seen("CRASH_CANCEL"))
  2688. crashdet_cancel();
  2689. }
  2690. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2691. {
  2692. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2693. {
  2694. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2695. tmc2130_set_wave(E_AXIS, 247, fac);
  2696. }
  2697. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2698. {
  2699. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2700. uint16_t res = tmc2130_get_res(E_AXIS);
  2701. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2702. }
  2703. }
  2704. #endif //TMC2130
  2705. else if(code_seen("PRUSA")){
  2706. if (code_seen("Ping")) { //PRUSA Ping
  2707. if (farm_mode) {
  2708. PingTime = millis();
  2709. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2710. }
  2711. }
  2712. else if (code_seen("PRN")) {
  2713. MYSERIAL.println(status_number);
  2714. }else if (code_seen("FAN")) {
  2715. MYSERIAL.print("E0:");
  2716. MYSERIAL.print(60*fan_speed[0]);
  2717. MYSERIAL.println(" RPM");
  2718. MYSERIAL.print("PRN0:");
  2719. MYSERIAL.print(60*fan_speed[1]);
  2720. MYSERIAL.println(" RPM");
  2721. }else if (code_seen("fn")) {
  2722. if (farm_mode) {
  2723. MYSERIAL.println(farm_no);
  2724. }
  2725. else {
  2726. MYSERIAL.println("Not in farm mode.");
  2727. }
  2728. }
  2729. else if (code_seen("thx")) {
  2730. no_response = false;
  2731. }else if (code_seen("fv")) {
  2732. // get file version
  2733. #ifdef SDSUPPORT
  2734. card.openFile(strchr_pointer + 3,true);
  2735. while (true) {
  2736. uint16_t readByte = card.get();
  2737. MYSERIAL.write(readByte);
  2738. if (readByte=='\n') {
  2739. break;
  2740. }
  2741. }
  2742. card.closefile();
  2743. #endif // SDSUPPORT
  2744. } else if (code_seen("M28")) {
  2745. trace();
  2746. prusa_sd_card_upload = true;
  2747. card.openFile(strchr_pointer+4,false);
  2748. } else if (code_seen("SN")) {
  2749. gcode_PRUSA_SN();
  2750. } else if(code_seen("Fir")){
  2751. SERIAL_PROTOCOLLN(FW_VERSION);
  2752. } else if(code_seen("Rev")){
  2753. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2754. } else if(code_seen("Lang")) {
  2755. lcd_force_language_selection();
  2756. } else if(code_seen("Lz")) {
  2757. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2758. } else if (code_seen("SERIAL LOW")) {
  2759. MYSERIAL.println("SERIAL LOW");
  2760. MYSERIAL.begin(BAUDRATE);
  2761. return;
  2762. } else if (code_seen("SERIAL HIGH")) {
  2763. MYSERIAL.println("SERIAL HIGH");
  2764. MYSERIAL.begin(1152000);
  2765. return;
  2766. } else if(code_seen("Beat")) {
  2767. // Kick farm link timer
  2768. kicktime = millis();
  2769. } else if(code_seen("FR")) {
  2770. // Factory full reset
  2771. factory_reset(0,true);
  2772. }
  2773. //else if (code_seen('Cal')) {
  2774. // lcd_calibration();
  2775. // }
  2776. }
  2777. else if (code_seen('^')) {
  2778. // nothing, this is a version line
  2779. } else if(code_seen('G'))
  2780. {
  2781. switch((int)code_value())
  2782. {
  2783. case 0: // G0 -> G1
  2784. case 1: // G1
  2785. if(Stopped == false) {
  2786. #ifdef FILAMENT_RUNOUT_SUPPORT
  2787. if(READ(FR_SENS)){
  2788. feedmultiplyBckp=feedmultiply;
  2789. float target[4];
  2790. float lastpos[4];
  2791. target[X_AXIS]=current_position[X_AXIS];
  2792. target[Y_AXIS]=current_position[Y_AXIS];
  2793. target[Z_AXIS]=current_position[Z_AXIS];
  2794. target[E_AXIS]=current_position[E_AXIS];
  2795. lastpos[X_AXIS]=current_position[X_AXIS];
  2796. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2797. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2798. lastpos[E_AXIS]=current_position[E_AXIS];
  2799. //retract by E
  2800. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2801. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2802. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2803. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2804. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2805. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2806. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2807. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2808. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2809. //finish moves
  2810. st_synchronize();
  2811. //disable extruder steppers so filament can be removed
  2812. disable_e0();
  2813. disable_e1();
  2814. disable_e2();
  2815. delay(100);
  2816. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2817. uint8_t cnt=0;
  2818. int counterBeep = 0;
  2819. lcd_wait_interact();
  2820. while(!lcd_clicked()){
  2821. cnt++;
  2822. manage_heater();
  2823. manage_inactivity(true);
  2824. //lcd_update();
  2825. if(cnt==0)
  2826. {
  2827. #if BEEPER > 0
  2828. if (counterBeep== 500){
  2829. counterBeep = 0;
  2830. }
  2831. SET_OUTPUT(BEEPER);
  2832. if (counterBeep== 0){
  2833. WRITE(BEEPER,HIGH);
  2834. }
  2835. if (counterBeep== 20){
  2836. WRITE(BEEPER,LOW);
  2837. }
  2838. counterBeep++;
  2839. #else
  2840. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2841. lcd_buzz(1000/6,100);
  2842. #else
  2843. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2844. #endif
  2845. #endif
  2846. }
  2847. }
  2848. WRITE(BEEPER,LOW);
  2849. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2850. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2851. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2852. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2853. lcd_change_fil_state = 0;
  2854. lcd_loading_filament();
  2855. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2856. lcd_change_fil_state = 0;
  2857. lcd_alright();
  2858. switch(lcd_change_fil_state){
  2859. case 2:
  2860. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2861. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2862. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2863. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2864. lcd_loading_filament();
  2865. break;
  2866. case 3:
  2867. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2868. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2869. lcd_loading_color();
  2870. break;
  2871. default:
  2872. lcd_change_success();
  2873. break;
  2874. }
  2875. }
  2876. target[E_AXIS]+= 5;
  2877. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2878. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2879. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2880. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2881. //plan_set_e_position(current_position[E_AXIS]);
  2882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2883. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2884. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2885. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2886. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2887. plan_set_e_position(lastpos[E_AXIS]);
  2888. feedmultiply=feedmultiplyBckp;
  2889. char cmd[9];
  2890. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2891. enquecommand(cmd);
  2892. }
  2893. #endif
  2894. get_coordinates(); // For X Y Z E F
  2895. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2896. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2897. }
  2898. #ifdef FWRETRACT
  2899. if(autoretract_enabled)
  2900. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2901. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2902. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2903. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2904. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2905. retract(!retracted[active_extruder]);
  2906. return;
  2907. }
  2908. }
  2909. #endif //FWRETRACT
  2910. prepare_move();
  2911. //ClearToSend();
  2912. }
  2913. break;
  2914. case 2: // G2 - CW ARC
  2915. if(Stopped == false) {
  2916. get_arc_coordinates();
  2917. prepare_arc_move(true);
  2918. }
  2919. break;
  2920. case 3: // G3 - CCW ARC
  2921. if(Stopped == false) {
  2922. get_arc_coordinates();
  2923. prepare_arc_move(false);
  2924. }
  2925. break;
  2926. case 4: // G4 dwell
  2927. codenum = 0;
  2928. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2929. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2930. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2931. st_synchronize();
  2932. codenum += millis(); // keep track of when we started waiting
  2933. previous_millis_cmd = millis();
  2934. while(millis() < codenum) {
  2935. manage_heater();
  2936. manage_inactivity();
  2937. lcd_update();
  2938. }
  2939. break;
  2940. #ifdef FWRETRACT
  2941. case 10: // G10 retract
  2942. #if EXTRUDERS > 1
  2943. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2944. retract(true,retracted_swap[active_extruder]);
  2945. #else
  2946. retract(true);
  2947. #endif
  2948. break;
  2949. case 11: // G11 retract_recover
  2950. #if EXTRUDERS > 1
  2951. retract(false,retracted_swap[active_extruder]);
  2952. #else
  2953. retract(false);
  2954. #endif
  2955. break;
  2956. #endif //FWRETRACT
  2957. case 28: //G28 Home all Axis one at a time
  2958. {
  2959. // Which axes should be homed?
  2960. bool home_x = code_seen(axis_codes[X_AXIS]);
  2961. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2962. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2963. // calibrate?
  2964. bool calib = code_seen('C');
  2965. gcode_G28(home_x, home_y, home_z, calib);
  2966. break;
  2967. }
  2968. #ifdef ENABLE_AUTO_BED_LEVELING
  2969. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2970. {
  2971. #if Z_MIN_PIN == -1
  2972. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2973. #endif
  2974. // Prevent user from running a G29 without first homing in X and Y
  2975. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2976. {
  2977. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2978. SERIAL_ECHO_START;
  2979. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2980. break; // abort G29, since we don't know where we are
  2981. }
  2982. st_synchronize();
  2983. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2984. //vector_3 corrected_position = plan_get_position_mm();
  2985. //corrected_position.debug("position before G29");
  2986. plan_bed_level_matrix.set_to_identity();
  2987. vector_3 uncorrected_position = plan_get_position();
  2988. //uncorrected_position.debug("position durring G29");
  2989. current_position[X_AXIS] = uncorrected_position.x;
  2990. current_position[Y_AXIS] = uncorrected_position.y;
  2991. current_position[Z_AXIS] = uncorrected_position.z;
  2992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2993. setup_for_endstop_move();
  2994. feedrate = homing_feedrate[Z_AXIS];
  2995. #ifdef AUTO_BED_LEVELING_GRID
  2996. // probe at the points of a lattice grid
  2997. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2998. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2999. // solve the plane equation ax + by + d = z
  3000. // A is the matrix with rows [x y 1] for all the probed points
  3001. // B is the vector of the Z positions
  3002. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3003. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3004. // "A" matrix of the linear system of equations
  3005. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3006. // "B" vector of Z points
  3007. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3008. int probePointCounter = 0;
  3009. bool zig = true;
  3010. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3011. {
  3012. int xProbe, xInc;
  3013. if (zig)
  3014. {
  3015. xProbe = LEFT_PROBE_BED_POSITION;
  3016. //xEnd = RIGHT_PROBE_BED_POSITION;
  3017. xInc = xGridSpacing;
  3018. zig = false;
  3019. } else // zag
  3020. {
  3021. xProbe = RIGHT_PROBE_BED_POSITION;
  3022. //xEnd = LEFT_PROBE_BED_POSITION;
  3023. xInc = -xGridSpacing;
  3024. zig = true;
  3025. }
  3026. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3027. {
  3028. float z_before;
  3029. if (probePointCounter == 0)
  3030. {
  3031. // raise before probing
  3032. z_before = Z_RAISE_BEFORE_PROBING;
  3033. } else
  3034. {
  3035. // raise extruder
  3036. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3037. }
  3038. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3039. eqnBVector[probePointCounter] = measured_z;
  3040. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3041. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3042. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3043. probePointCounter++;
  3044. xProbe += xInc;
  3045. }
  3046. }
  3047. clean_up_after_endstop_move();
  3048. // solve lsq problem
  3049. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3050. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3051. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3052. SERIAL_PROTOCOLPGM(" b: ");
  3053. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3054. SERIAL_PROTOCOLPGM(" d: ");
  3055. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3056. set_bed_level_equation_lsq(plane_equation_coefficients);
  3057. free(plane_equation_coefficients);
  3058. #else // AUTO_BED_LEVELING_GRID not defined
  3059. // Probe at 3 arbitrary points
  3060. // probe 1
  3061. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3062. // probe 2
  3063. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3064. // probe 3
  3065. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3066. clean_up_after_endstop_move();
  3067. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3068. #endif // AUTO_BED_LEVELING_GRID
  3069. st_synchronize();
  3070. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3071. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3072. // When the bed is uneven, this height must be corrected.
  3073. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3074. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3075. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3076. z_tmp = current_position[Z_AXIS];
  3077. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3078. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3079. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3080. }
  3081. break;
  3082. #ifndef Z_PROBE_SLED
  3083. case 30: // G30 Single Z Probe
  3084. {
  3085. st_synchronize();
  3086. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3087. setup_for_endstop_move();
  3088. feedrate = homing_feedrate[Z_AXIS];
  3089. run_z_probe();
  3090. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3091. SERIAL_PROTOCOLPGM(" X: ");
  3092. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3093. SERIAL_PROTOCOLPGM(" Y: ");
  3094. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3095. SERIAL_PROTOCOLPGM(" Z: ");
  3096. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3097. SERIAL_PROTOCOLPGM("\n");
  3098. clean_up_after_endstop_move();
  3099. }
  3100. break;
  3101. #else
  3102. case 31: // dock the sled
  3103. dock_sled(true);
  3104. break;
  3105. case 32: // undock the sled
  3106. dock_sled(false);
  3107. break;
  3108. #endif // Z_PROBE_SLED
  3109. #endif // ENABLE_AUTO_BED_LEVELING
  3110. #ifdef MESH_BED_LEVELING
  3111. case 30: // G30 Single Z Probe
  3112. {
  3113. st_synchronize();
  3114. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3115. setup_for_endstop_move();
  3116. feedrate = homing_feedrate[Z_AXIS];
  3117. find_bed_induction_sensor_point_z(-10.f, 3);
  3118. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3119. SERIAL_PROTOCOLPGM(" X: ");
  3120. MYSERIAL.print(current_position[X_AXIS], 5);
  3121. SERIAL_PROTOCOLPGM(" Y: ");
  3122. MYSERIAL.print(current_position[Y_AXIS], 5);
  3123. SERIAL_PROTOCOLPGM(" Z: ");
  3124. MYSERIAL.print(current_position[Z_AXIS], 5);
  3125. SERIAL_PROTOCOLPGM("\n");
  3126. clean_up_after_endstop_move();
  3127. }
  3128. break;
  3129. case 75:
  3130. {
  3131. for (int i = 40; i <= 110; i++) {
  3132. MYSERIAL.print(i);
  3133. MYSERIAL.print(" ");
  3134. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3135. }
  3136. }
  3137. break;
  3138. case 76: //PINDA probe temperature calibration
  3139. {
  3140. #ifdef PINDA_THERMISTOR
  3141. if (true)
  3142. {
  3143. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3144. //we need to know accurate position of first calibration point
  3145. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3146. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3147. break;
  3148. }
  3149. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3150. {
  3151. // We don't know where we are! HOME!
  3152. // Push the commands to the front of the message queue in the reverse order!
  3153. // There shall be always enough space reserved for these commands.
  3154. repeatcommand_front(); // repeat G76 with all its parameters
  3155. enquecommand_front_P((PSTR("G28 W0")));
  3156. break;
  3157. }
  3158. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3159. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3160. if (result)
  3161. {
  3162. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3164. current_position[Z_AXIS] = 50;
  3165. current_position[Y_AXIS] = 180;
  3166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3167. st_synchronize();
  3168. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3169. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3170. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3172. st_synchronize();
  3173. gcode_G28(false, false, true, false);
  3174. }
  3175. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3176. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3177. current_position[Z_AXIS] = 100;
  3178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3179. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3180. lcd_temp_cal_show_result(false);
  3181. break;
  3182. }
  3183. }
  3184. lcd_update_enable(true);
  3185. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3186. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3187. float zero_z;
  3188. int z_shift = 0; //unit: steps
  3189. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3190. if (start_temp < 35) start_temp = 35;
  3191. if (start_temp < current_temperature_pinda) start_temp += 5;
  3192. SERIAL_ECHOPGM("start temperature: ");
  3193. MYSERIAL.println(start_temp);
  3194. // setTargetHotend(200, 0);
  3195. setTargetBed(70 + (start_temp - 30));
  3196. custom_message = true;
  3197. custom_message_type = 4;
  3198. custom_message_state = 1;
  3199. custom_message = _T(MSG_TEMP_CALIBRATION);
  3200. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3202. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3203. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3205. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3207. st_synchronize();
  3208. while (current_temperature_pinda < start_temp)
  3209. {
  3210. delay_keep_alive(1000);
  3211. serialecho_temperatures();
  3212. }
  3213. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3214. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3216. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3217. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3219. st_synchronize();
  3220. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3221. if (find_z_result == false) {
  3222. lcd_temp_cal_show_result(find_z_result);
  3223. break;
  3224. }
  3225. zero_z = current_position[Z_AXIS];
  3226. //current_position[Z_AXIS]
  3227. SERIAL_ECHOLNPGM("");
  3228. SERIAL_ECHOPGM("ZERO: ");
  3229. MYSERIAL.print(current_position[Z_AXIS]);
  3230. SERIAL_ECHOLNPGM("");
  3231. int i = -1; for (; i < 5; i++)
  3232. {
  3233. float temp = (40 + i * 5);
  3234. SERIAL_ECHOPGM("Step: ");
  3235. MYSERIAL.print(i + 2);
  3236. SERIAL_ECHOLNPGM("/6 (skipped)");
  3237. SERIAL_ECHOPGM("PINDA temperature: ");
  3238. MYSERIAL.print((40 + i*5));
  3239. SERIAL_ECHOPGM(" Z shift (mm):");
  3240. MYSERIAL.print(0);
  3241. SERIAL_ECHOLNPGM("");
  3242. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3243. if (start_temp <= temp) break;
  3244. }
  3245. for (i++; i < 5; i++)
  3246. {
  3247. float temp = (40 + i * 5);
  3248. SERIAL_ECHOPGM("Step: ");
  3249. MYSERIAL.print(i + 2);
  3250. SERIAL_ECHOLNPGM("/6");
  3251. custom_message_state = i + 2;
  3252. setTargetBed(50 + 10 * (temp - 30) / 5);
  3253. // setTargetHotend(255, 0);
  3254. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3255. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3256. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3257. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3258. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3259. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3260. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3261. st_synchronize();
  3262. while (current_temperature_pinda < temp)
  3263. {
  3264. delay_keep_alive(1000);
  3265. serialecho_temperatures();
  3266. }
  3267. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3269. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3270. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3272. st_synchronize();
  3273. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3274. if (find_z_result == false) {
  3275. lcd_temp_cal_show_result(find_z_result);
  3276. break;
  3277. }
  3278. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3279. SERIAL_ECHOLNPGM("");
  3280. SERIAL_ECHOPGM("PINDA temperature: ");
  3281. MYSERIAL.print(current_temperature_pinda);
  3282. SERIAL_ECHOPGM(" Z shift (mm):");
  3283. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3284. SERIAL_ECHOLNPGM("");
  3285. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3286. }
  3287. lcd_temp_cal_show_result(true);
  3288. break;
  3289. }
  3290. #endif //PINDA_THERMISTOR
  3291. setTargetBed(PINDA_MIN_T);
  3292. float zero_z;
  3293. int z_shift = 0; //unit: steps
  3294. int t_c; // temperature
  3295. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3296. // We don't know where we are! HOME!
  3297. // Push the commands to the front of the message queue in the reverse order!
  3298. // There shall be always enough space reserved for these commands.
  3299. repeatcommand_front(); // repeat G76 with all its parameters
  3300. enquecommand_front_P((PSTR("G28 W0")));
  3301. break;
  3302. }
  3303. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3304. custom_message = true;
  3305. custom_message_type = 4;
  3306. custom_message_state = 1;
  3307. custom_message = _T(MSG_TEMP_CALIBRATION);
  3308. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3309. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3310. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3311. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3312. st_synchronize();
  3313. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3314. delay_keep_alive(1000);
  3315. serialecho_temperatures();
  3316. }
  3317. //enquecommand_P(PSTR("M190 S50"));
  3318. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3319. delay_keep_alive(1000);
  3320. serialecho_temperatures();
  3321. }
  3322. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3323. current_position[Z_AXIS] = 5;
  3324. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3325. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3326. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3327. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3328. st_synchronize();
  3329. find_bed_induction_sensor_point_z(-1.f);
  3330. zero_z = current_position[Z_AXIS];
  3331. //current_position[Z_AXIS]
  3332. SERIAL_ECHOLNPGM("");
  3333. SERIAL_ECHOPGM("ZERO: ");
  3334. MYSERIAL.print(current_position[Z_AXIS]);
  3335. SERIAL_ECHOLNPGM("");
  3336. for (int i = 0; i<5; i++) {
  3337. SERIAL_ECHOPGM("Step: ");
  3338. MYSERIAL.print(i+2);
  3339. SERIAL_ECHOLNPGM("/6");
  3340. custom_message_state = i + 2;
  3341. t_c = 60 + i * 10;
  3342. setTargetBed(t_c);
  3343. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3344. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3345. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3347. st_synchronize();
  3348. while (degBed() < t_c) {
  3349. delay_keep_alive(1000);
  3350. serialecho_temperatures();
  3351. }
  3352. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3353. delay_keep_alive(1000);
  3354. serialecho_temperatures();
  3355. }
  3356. current_position[Z_AXIS] = 5;
  3357. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3358. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3359. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3361. st_synchronize();
  3362. find_bed_induction_sensor_point_z(-1.f);
  3363. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3364. SERIAL_ECHOLNPGM("");
  3365. SERIAL_ECHOPGM("Temperature: ");
  3366. MYSERIAL.print(t_c);
  3367. SERIAL_ECHOPGM(" Z shift (mm):");
  3368. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3369. SERIAL_ECHOLNPGM("");
  3370. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3371. }
  3372. custom_message_type = 0;
  3373. custom_message = false;
  3374. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3375. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3376. disable_x();
  3377. disable_y();
  3378. disable_z();
  3379. disable_e0();
  3380. disable_e1();
  3381. disable_e2();
  3382. setTargetBed(0); //set bed target temperature back to 0
  3383. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3384. temp_cal_active = true;
  3385. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3386. lcd_update_enable(true);
  3387. lcd_update(2);
  3388. }
  3389. break;
  3390. #ifdef DIS
  3391. case 77:
  3392. {
  3393. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3394. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3395. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3396. float dimension_x = 40;
  3397. float dimension_y = 40;
  3398. int points_x = 40;
  3399. int points_y = 40;
  3400. float offset_x = 74;
  3401. float offset_y = 33;
  3402. if (code_seen('X')) dimension_x = code_value();
  3403. if (code_seen('Y')) dimension_y = code_value();
  3404. if (code_seen('XP')) points_x = code_value();
  3405. if (code_seen('YP')) points_y = code_value();
  3406. if (code_seen('XO')) offset_x = code_value();
  3407. if (code_seen('YO')) offset_y = code_value();
  3408. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3409. } break;
  3410. #endif
  3411. case 79: {
  3412. for (int i = 255; i > 0; i = i - 5) {
  3413. fanSpeed = i;
  3414. //delay_keep_alive(2000);
  3415. for (int j = 0; j < 100; j++) {
  3416. delay_keep_alive(100);
  3417. }
  3418. fan_speed[1];
  3419. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3420. }
  3421. }break;
  3422. /**
  3423. * G80: Mesh-based Z probe, probes a grid and produces a
  3424. * mesh to compensate for variable bed height
  3425. *
  3426. * The S0 report the points as below
  3427. *
  3428. * +----> X-axis
  3429. * |
  3430. * |
  3431. * v Y-axis
  3432. *
  3433. */
  3434. case 80:
  3435. #ifdef MK1BP
  3436. break;
  3437. #endif //MK1BP
  3438. case_G80:
  3439. {
  3440. mesh_bed_leveling_flag = true;
  3441. int8_t verbosity_level = 0;
  3442. static bool run = false;
  3443. if (code_seen('V')) {
  3444. // Just 'V' without a number counts as V1.
  3445. char c = strchr_pointer[1];
  3446. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3447. }
  3448. // Firstly check if we know where we are
  3449. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3450. // We don't know where we are! HOME!
  3451. // Push the commands to the front of the message queue in the reverse order!
  3452. // There shall be always enough space reserved for these commands.
  3453. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3454. repeatcommand_front(); // repeat G80 with all its parameters
  3455. enquecommand_front_P((PSTR("G28 W0")));
  3456. }
  3457. else {
  3458. mesh_bed_leveling_flag = false;
  3459. }
  3460. break;
  3461. }
  3462. bool temp_comp_start = true;
  3463. #ifdef PINDA_THERMISTOR
  3464. temp_comp_start = false;
  3465. #endif //PINDA_THERMISTOR
  3466. if (temp_comp_start)
  3467. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3468. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3469. temp_compensation_start();
  3470. run = true;
  3471. repeatcommand_front(); // repeat G80 with all its parameters
  3472. enquecommand_front_P((PSTR("G28 W0")));
  3473. }
  3474. else {
  3475. mesh_bed_leveling_flag = false;
  3476. }
  3477. break;
  3478. }
  3479. run = false;
  3480. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3481. mesh_bed_leveling_flag = false;
  3482. break;
  3483. }
  3484. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3485. bool custom_message_old = custom_message;
  3486. unsigned int custom_message_type_old = custom_message_type;
  3487. unsigned int custom_message_state_old = custom_message_state;
  3488. custom_message = true;
  3489. custom_message_type = 1;
  3490. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3491. lcd_update(1);
  3492. mbl.reset(); //reset mesh bed leveling
  3493. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3494. // consumed during the first movements following this statement.
  3495. babystep_undo();
  3496. // Cycle through all points and probe them
  3497. // First move up. During this first movement, the babystepping will be reverted.
  3498. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3500. // The move to the first calibration point.
  3501. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3502. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3503. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3504. #ifdef SUPPORT_VERBOSITY
  3505. if (verbosity_level >= 1) {
  3506. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3507. }
  3508. #endif //SUPPORT_VERBOSITY
  3509. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3511. // Wait until the move is finished.
  3512. st_synchronize();
  3513. int mesh_point = 0; //index number of calibration point
  3514. int ix = 0;
  3515. int iy = 0;
  3516. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3517. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3518. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3519. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3520. #ifdef SUPPORT_VERBOSITY
  3521. if (verbosity_level >= 1) {
  3522. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3523. }
  3524. #endif // SUPPORT_VERBOSITY
  3525. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3526. const char *kill_message = NULL;
  3527. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3528. // Get coords of a measuring point.
  3529. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3530. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3531. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3532. float z0 = 0.f;
  3533. if (has_z && mesh_point > 0) {
  3534. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3535. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3536. //#if 0
  3537. #ifdef SUPPORT_VERBOSITY
  3538. if (verbosity_level >= 1) {
  3539. SERIAL_ECHOLNPGM("");
  3540. SERIAL_ECHOPGM("Bed leveling, point: ");
  3541. MYSERIAL.print(mesh_point);
  3542. SERIAL_ECHOPGM(", calibration z: ");
  3543. MYSERIAL.print(z0, 5);
  3544. SERIAL_ECHOLNPGM("");
  3545. }
  3546. #endif // SUPPORT_VERBOSITY
  3547. //#endif
  3548. }
  3549. // Move Z up to MESH_HOME_Z_SEARCH.
  3550. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3552. st_synchronize();
  3553. // Move to XY position of the sensor point.
  3554. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3555. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3556. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3557. #ifdef SUPPORT_VERBOSITY
  3558. if (verbosity_level >= 1) {
  3559. SERIAL_PROTOCOL(mesh_point);
  3560. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3561. }
  3562. #endif // SUPPORT_VERBOSITY
  3563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3564. st_synchronize();
  3565. // Go down until endstop is hit
  3566. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3567. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3568. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3569. break;
  3570. }
  3571. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3572. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3573. break;
  3574. }
  3575. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3576. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3577. break;
  3578. }
  3579. #ifdef SUPPORT_VERBOSITY
  3580. if (verbosity_level >= 10) {
  3581. SERIAL_ECHOPGM("X: ");
  3582. MYSERIAL.print(current_position[X_AXIS], 5);
  3583. SERIAL_ECHOLNPGM("");
  3584. SERIAL_ECHOPGM("Y: ");
  3585. MYSERIAL.print(current_position[Y_AXIS], 5);
  3586. SERIAL_PROTOCOLPGM("\n");
  3587. }
  3588. #endif // SUPPORT_VERBOSITY
  3589. float offset_z = 0;
  3590. #ifdef PINDA_THERMISTOR
  3591. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3592. #endif //PINDA_THERMISTOR
  3593. // #ifdef SUPPORT_VERBOSITY
  3594. /* if (verbosity_level >= 1)
  3595. {
  3596. SERIAL_ECHOPGM("mesh bed leveling: ");
  3597. MYSERIAL.print(current_position[Z_AXIS], 5);
  3598. SERIAL_ECHOPGM(" offset: ");
  3599. MYSERIAL.print(offset_z, 5);
  3600. SERIAL_ECHOLNPGM("");
  3601. }*/
  3602. // #endif // SUPPORT_VERBOSITY
  3603. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3604. custom_message_state--;
  3605. mesh_point++;
  3606. lcd_update(1);
  3607. }
  3608. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3609. #ifdef SUPPORT_VERBOSITY
  3610. if (verbosity_level >= 20) {
  3611. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3612. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3613. MYSERIAL.print(current_position[Z_AXIS], 5);
  3614. }
  3615. #endif // SUPPORT_VERBOSITY
  3616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3617. st_synchronize();
  3618. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3619. kill(kill_message);
  3620. SERIAL_ECHOLNPGM("killed");
  3621. }
  3622. clean_up_after_endstop_move();
  3623. // SERIAL_ECHOLNPGM("clean up finished ");
  3624. bool apply_temp_comp = true;
  3625. #ifdef PINDA_THERMISTOR
  3626. apply_temp_comp = false;
  3627. #endif
  3628. if (apply_temp_comp)
  3629. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3630. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3631. // SERIAL_ECHOLNPGM("babystep applied");
  3632. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3633. #ifdef SUPPORT_VERBOSITY
  3634. if (verbosity_level >= 1) {
  3635. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3636. }
  3637. #endif // SUPPORT_VERBOSITY
  3638. for (uint8_t i = 0; i < 4; ++i) {
  3639. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3640. long correction = 0;
  3641. if (code_seen(codes[i]))
  3642. correction = code_value_long();
  3643. else if (eeprom_bed_correction_valid) {
  3644. unsigned char *addr = (i < 2) ?
  3645. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3646. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3647. correction = eeprom_read_int8(addr);
  3648. }
  3649. if (correction == 0)
  3650. continue;
  3651. float offset = float(correction) * 0.001f;
  3652. if (fabs(offset) > 0.101f) {
  3653. SERIAL_ERROR_START;
  3654. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3655. SERIAL_ECHO(offset);
  3656. SERIAL_ECHOLNPGM(" microns");
  3657. }
  3658. else {
  3659. switch (i) {
  3660. case 0:
  3661. for (uint8_t row = 0; row < 3; ++row) {
  3662. mbl.z_values[row][1] += 0.5f * offset;
  3663. mbl.z_values[row][0] += offset;
  3664. }
  3665. break;
  3666. case 1:
  3667. for (uint8_t row = 0; row < 3; ++row) {
  3668. mbl.z_values[row][1] += 0.5f * offset;
  3669. mbl.z_values[row][2] += offset;
  3670. }
  3671. break;
  3672. case 2:
  3673. for (uint8_t col = 0; col < 3; ++col) {
  3674. mbl.z_values[1][col] += 0.5f * offset;
  3675. mbl.z_values[0][col] += offset;
  3676. }
  3677. break;
  3678. case 3:
  3679. for (uint8_t col = 0; col < 3; ++col) {
  3680. mbl.z_values[1][col] += 0.5f * offset;
  3681. mbl.z_values[2][col] += offset;
  3682. }
  3683. break;
  3684. }
  3685. }
  3686. }
  3687. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3688. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3689. // SERIAL_ECHOLNPGM("Upsample finished");
  3690. mbl.active = 1; //activate mesh bed leveling
  3691. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3692. go_home_with_z_lift();
  3693. // SERIAL_ECHOLNPGM("Go home finished");
  3694. //unretract (after PINDA preheat retraction)
  3695. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3696. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3698. }
  3699. KEEPALIVE_STATE(NOT_BUSY);
  3700. // Restore custom message state
  3701. custom_message = custom_message_old;
  3702. custom_message_type = custom_message_type_old;
  3703. custom_message_state = custom_message_state_old;
  3704. mesh_bed_leveling_flag = false;
  3705. mesh_bed_run_from_menu = false;
  3706. lcd_update(2);
  3707. }
  3708. break;
  3709. /**
  3710. * G81: Print mesh bed leveling status and bed profile if activated
  3711. */
  3712. case 81:
  3713. if (mbl.active) {
  3714. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3715. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3716. SERIAL_PROTOCOLPGM(",");
  3717. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3718. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3719. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3720. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3721. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3722. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3723. SERIAL_PROTOCOLPGM(" ");
  3724. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3725. }
  3726. SERIAL_PROTOCOLPGM("\n");
  3727. }
  3728. }
  3729. else
  3730. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3731. break;
  3732. #if 0
  3733. /**
  3734. * G82: Single Z probe at current location
  3735. *
  3736. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3737. *
  3738. */
  3739. case 82:
  3740. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3741. setup_for_endstop_move();
  3742. find_bed_induction_sensor_point_z();
  3743. clean_up_after_endstop_move();
  3744. SERIAL_PROTOCOLPGM("Bed found at: ");
  3745. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3746. SERIAL_PROTOCOLPGM("\n");
  3747. break;
  3748. /**
  3749. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3750. */
  3751. case 83:
  3752. {
  3753. int babystepz = code_seen('S') ? code_value() : 0;
  3754. int BabyPosition = code_seen('P') ? code_value() : 0;
  3755. if (babystepz != 0) {
  3756. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3757. // Is the axis indexed starting with zero or one?
  3758. if (BabyPosition > 4) {
  3759. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3760. }else{
  3761. // Save it to the eeprom
  3762. babystepLoadZ = babystepz;
  3763. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3764. // adjust the Z
  3765. babystepsTodoZadd(babystepLoadZ);
  3766. }
  3767. }
  3768. }
  3769. break;
  3770. /**
  3771. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3772. */
  3773. case 84:
  3774. babystepsTodoZsubtract(babystepLoadZ);
  3775. // babystepLoadZ = 0;
  3776. break;
  3777. /**
  3778. * G85: Prusa3D specific: Pick best babystep
  3779. */
  3780. case 85:
  3781. lcd_pick_babystep();
  3782. break;
  3783. #endif
  3784. /**
  3785. * G86: Prusa3D specific: Disable babystep correction after home.
  3786. * This G-code will be performed at the start of a calibration script.
  3787. */
  3788. case 86:
  3789. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3790. break;
  3791. /**
  3792. * G87: Prusa3D specific: Enable babystep correction after home
  3793. * This G-code will be performed at the end of a calibration script.
  3794. */
  3795. case 87:
  3796. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3797. break;
  3798. /**
  3799. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3800. */
  3801. case 88:
  3802. break;
  3803. #endif // ENABLE_MESH_BED_LEVELING
  3804. case 90: // G90
  3805. relative_mode = false;
  3806. break;
  3807. case 91: // G91
  3808. relative_mode = true;
  3809. break;
  3810. case 92: // G92
  3811. if(!code_seen(axis_codes[E_AXIS]))
  3812. st_synchronize();
  3813. for(int8_t i=0; i < NUM_AXIS; i++) {
  3814. if(code_seen(axis_codes[i])) {
  3815. if(i == E_AXIS) {
  3816. current_position[i] = code_value();
  3817. plan_set_e_position(current_position[E_AXIS]);
  3818. }
  3819. else {
  3820. current_position[i] = code_value()+add_homing[i];
  3821. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3822. }
  3823. }
  3824. }
  3825. break;
  3826. case 98: // G98 (activate farm mode)
  3827. farm_mode = 1;
  3828. PingTime = millis();
  3829. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3830. SilentModeMenu = SILENT_MODE_OFF;
  3831. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3832. break;
  3833. case 99: // G99 (deactivate farm mode)
  3834. farm_mode = 0;
  3835. lcd_printer_connected();
  3836. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3837. lcd_update(2);
  3838. break;
  3839. default:
  3840. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3841. }
  3842. } // end if(code_seen('G'))
  3843. else if(code_seen('M'))
  3844. {
  3845. int index;
  3846. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3847. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3848. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3849. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3850. } else
  3851. switch((int)code_value())
  3852. {
  3853. #ifdef ULTIPANEL
  3854. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3855. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3856. {
  3857. char *src = strchr_pointer + 2;
  3858. codenum = 0;
  3859. bool hasP = false, hasS = false;
  3860. if (code_seen('P')) {
  3861. codenum = code_value(); // milliseconds to wait
  3862. hasP = codenum > 0;
  3863. }
  3864. if (code_seen('S')) {
  3865. codenum = code_value() * 1000; // seconds to wait
  3866. hasS = codenum > 0;
  3867. }
  3868. starpos = strchr(src, '*');
  3869. if (starpos != NULL) *(starpos) = '\0';
  3870. while (*src == ' ') ++src;
  3871. if (!hasP && !hasS && *src != '\0') {
  3872. lcd_setstatus(src);
  3873. } else {
  3874. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3875. }
  3876. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3877. st_synchronize();
  3878. previous_millis_cmd = millis();
  3879. if (codenum > 0){
  3880. codenum += millis(); // keep track of when we started waiting
  3881. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3882. while(millis() < codenum && !lcd_clicked()){
  3883. manage_heater();
  3884. manage_inactivity(true);
  3885. lcd_update();
  3886. }
  3887. KEEPALIVE_STATE(IN_HANDLER);
  3888. lcd_ignore_click(false);
  3889. }else{
  3890. if (!lcd_detected())
  3891. break;
  3892. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3893. while(!lcd_clicked()){
  3894. manage_heater();
  3895. manage_inactivity(true);
  3896. lcd_update();
  3897. }
  3898. KEEPALIVE_STATE(IN_HANDLER);
  3899. }
  3900. if (IS_SD_PRINTING)
  3901. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3902. else
  3903. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3904. }
  3905. break;
  3906. #endif
  3907. case 17:
  3908. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3909. enable_x();
  3910. enable_y();
  3911. enable_z();
  3912. enable_e0();
  3913. enable_e1();
  3914. enable_e2();
  3915. break;
  3916. #ifdef SDSUPPORT
  3917. case 20: // M20 - list SD card
  3918. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3919. card.ls();
  3920. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3921. break;
  3922. case 21: // M21 - init SD card
  3923. card.initsd();
  3924. break;
  3925. case 22: //M22 - release SD card
  3926. card.release();
  3927. break;
  3928. case 23: //M23 - Select file
  3929. starpos = (strchr(strchr_pointer + 4,'*'));
  3930. if(starpos!=NULL)
  3931. *(starpos)='\0';
  3932. card.openFile(strchr_pointer + 4,true);
  3933. break;
  3934. case 24: //M24 - Start SD print
  3935. if (!card.paused)
  3936. failstats_reset_print();
  3937. card.startFileprint();
  3938. starttime=millis();
  3939. break;
  3940. case 25: //M25 - Pause SD print
  3941. card.pauseSDPrint();
  3942. break;
  3943. case 26: //M26 - Set SD index
  3944. if(card.cardOK && code_seen('S')) {
  3945. card.setIndex(code_value_long());
  3946. }
  3947. break;
  3948. case 27: //M27 - Get SD status
  3949. card.getStatus();
  3950. break;
  3951. case 28: //M28 - Start SD write
  3952. starpos = (strchr(strchr_pointer + 4,'*'));
  3953. if(starpos != NULL){
  3954. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3955. strchr_pointer = strchr(npos,' ') + 1;
  3956. *(starpos) = '\0';
  3957. }
  3958. card.openFile(strchr_pointer+4,false);
  3959. break;
  3960. case 29: //M29 - Stop SD write
  3961. //processed in write to file routine above
  3962. //card,saving = false;
  3963. break;
  3964. case 30: //M30 <filename> Delete File
  3965. if (card.cardOK){
  3966. card.closefile();
  3967. starpos = (strchr(strchr_pointer + 4,'*'));
  3968. if(starpos != NULL){
  3969. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3970. strchr_pointer = strchr(npos,' ') + 1;
  3971. *(starpos) = '\0';
  3972. }
  3973. card.removeFile(strchr_pointer + 4);
  3974. }
  3975. break;
  3976. case 32: //M32 - Select file and start SD print
  3977. {
  3978. if(card.sdprinting) {
  3979. st_synchronize();
  3980. }
  3981. starpos = (strchr(strchr_pointer + 4,'*'));
  3982. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3983. if(namestartpos==NULL)
  3984. {
  3985. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3986. }
  3987. else
  3988. namestartpos++; //to skip the '!'
  3989. if(starpos!=NULL)
  3990. *(starpos)='\0';
  3991. bool call_procedure=(code_seen('P'));
  3992. if(strchr_pointer>namestartpos)
  3993. call_procedure=false; //false alert, 'P' found within filename
  3994. if( card.cardOK )
  3995. {
  3996. card.openFile(namestartpos,true,!call_procedure);
  3997. if(code_seen('S'))
  3998. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3999. card.setIndex(code_value_long());
  4000. card.startFileprint();
  4001. if(!call_procedure)
  4002. starttime=millis(); //procedure calls count as normal print time.
  4003. }
  4004. } break;
  4005. case 928: //M928 - Start SD write
  4006. starpos = (strchr(strchr_pointer + 5,'*'));
  4007. if(starpos != NULL){
  4008. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4009. strchr_pointer = strchr(npos,' ') + 1;
  4010. *(starpos) = '\0';
  4011. }
  4012. card.openLogFile(strchr_pointer+5);
  4013. break;
  4014. #endif //SDSUPPORT
  4015. case 31: //M31 take time since the start of the SD print or an M109 command
  4016. {
  4017. stoptime=millis();
  4018. char time[30];
  4019. unsigned long t=(stoptime-starttime)/1000;
  4020. int sec,min;
  4021. min=t/60;
  4022. sec=t%60;
  4023. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4024. SERIAL_ECHO_START;
  4025. SERIAL_ECHOLN(time);
  4026. lcd_setstatus(time);
  4027. autotempShutdown();
  4028. }
  4029. break;
  4030. #ifndef _DISABLE_M42_M226
  4031. case 42: //M42 -Change pin status via gcode
  4032. if (code_seen('S'))
  4033. {
  4034. int pin_status = code_value();
  4035. int pin_number = LED_PIN;
  4036. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4037. pin_number = code_value();
  4038. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4039. {
  4040. if (sensitive_pins[i] == pin_number)
  4041. {
  4042. pin_number = -1;
  4043. break;
  4044. }
  4045. }
  4046. #if defined(FAN_PIN) && FAN_PIN > -1
  4047. if (pin_number == FAN_PIN)
  4048. fanSpeed = pin_status;
  4049. #endif
  4050. if (pin_number > -1)
  4051. {
  4052. pinMode(pin_number, OUTPUT);
  4053. digitalWrite(pin_number, pin_status);
  4054. analogWrite(pin_number, pin_status);
  4055. }
  4056. }
  4057. break;
  4058. #endif //_DISABLE_M42_M226
  4059. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4060. // Reset the baby step value and the baby step applied flag.
  4061. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4062. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4063. // Reset the skew and offset in both RAM and EEPROM.
  4064. reset_bed_offset_and_skew();
  4065. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4066. // the planner will not perform any adjustments in the XY plane.
  4067. // Wait for the motors to stop and update the current position with the absolute values.
  4068. world2machine_revert_to_uncorrected();
  4069. break;
  4070. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4071. {
  4072. int8_t verbosity_level = 0;
  4073. bool only_Z = code_seen('Z');
  4074. #ifdef SUPPORT_VERBOSITY
  4075. if (code_seen('V'))
  4076. {
  4077. // Just 'V' without a number counts as V1.
  4078. char c = strchr_pointer[1];
  4079. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4080. }
  4081. #endif //SUPPORT_VERBOSITY
  4082. gcode_M45(only_Z, verbosity_level);
  4083. }
  4084. break;
  4085. /*
  4086. case 46:
  4087. {
  4088. // M46: Prusa3D: Show the assigned IP address.
  4089. uint8_t ip[4];
  4090. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4091. if (hasIP) {
  4092. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4093. SERIAL_ECHO(int(ip[0]));
  4094. SERIAL_ECHOPGM(".");
  4095. SERIAL_ECHO(int(ip[1]));
  4096. SERIAL_ECHOPGM(".");
  4097. SERIAL_ECHO(int(ip[2]));
  4098. SERIAL_ECHOPGM(".");
  4099. SERIAL_ECHO(int(ip[3]));
  4100. SERIAL_ECHOLNPGM("");
  4101. } else {
  4102. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4103. }
  4104. break;
  4105. }
  4106. */
  4107. case 47:
  4108. // M47: Prusa3D: Show end stops dialog on the display.
  4109. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4110. lcd_diag_show_end_stops();
  4111. KEEPALIVE_STATE(IN_HANDLER);
  4112. break;
  4113. #if 0
  4114. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4115. {
  4116. // Disable the default update procedure of the display. We will do a modal dialog.
  4117. lcd_update_enable(false);
  4118. // Let the planner use the uncorrected coordinates.
  4119. mbl.reset();
  4120. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4121. // the planner will not perform any adjustments in the XY plane.
  4122. // Wait for the motors to stop and update the current position with the absolute values.
  4123. world2machine_revert_to_uncorrected();
  4124. // Move the print head close to the bed.
  4125. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4127. st_synchronize();
  4128. // Home in the XY plane.
  4129. set_destination_to_current();
  4130. setup_for_endstop_move();
  4131. home_xy();
  4132. int8_t verbosity_level = 0;
  4133. if (code_seen('V')) {
  4134. // Just 'V' without a number counts as V1.
  4135. char c = strchr_pointer[1];
  4136. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4137. }
  4138. bool success = scan_bed_induction_points(verbosity_level);
  4139. clean_up_after_endstop_move();
  4140. // Print head up.
  4141. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4143. st_synchronize();
  4144. lcd_update_enable(true);
  4145. break;
  4146. }
  4147. #endif
  4148. // M48 Z-Probe repeatability measurement function.
  4149. //
  4150. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4151. //
  4152. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4153. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4154. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4155. // regenerated.
  4156. //
  4157. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4158. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4159. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4160. //
  4161. #ifdef ENABLE_AUTO_BED_LEVELING
  4162. #ifdef Z_PROBE_REPEATABILITY_TEST
  4163. case 48: // M48 Z-Probe repeatability
  4164. {
  4165. #if Z_MIN_PIN == -1
  4166. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4167. #endif
  4168. double sum=0.0;
  4169. double mean=0.0;
  4170. double sigma=0.0;
  4171. double sample_set[50];
  4172. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4173. double X_current, Y_current, Z_current;
  4174. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4175. if (code_seen('V') || code_seen('v')) {
  4176. verbose_level = code_value();
  4177. if (verbose_level<0 || verbose_level>4 ) {
  4178. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4179. goto Sigma_Exit;
  4180. }
  4181. }
  4182. if (verbose_level > 0) {
  4183. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4184. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4185. }
  4186. if (code_seen('n')) {
  4187. n_samples = code_value();
  4188. if (n_samples<4 || n_samples>50 ) {
  4189. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4190. goto Sigma_Exit;
  4191. }
  4192. }
  4193. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4194. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4195. Z_current = st_get_position_mm(Z_AXIS);
  4196. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4197. ext_position = st_get_position_mm(E_AXIS);
  4198. if (code_seen('X') || code_seen('x') ) {
  4199. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4200. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4201. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4202. goto Sigma_Exit;
  4203. }
  4204. }
  4205. if (code_seen('Y') || code_seen('y') ) {
  4206. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4207. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4208. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4209. goto Sigma_Exit;
  4210. }
  4211. }
  4212. if (code_seen('L') || code_seen('l') ) {
  4213. n_legs = code_value();
  4214. if ( n_legs==1 )
  4215. n_legs = 2;
  4216. if ( n_legs<0 || n_legs>15 ) {
  4217. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4218. goto Sigma_Exit;
  4219. }
  4220. }
  4221. //
  4222. // Do all the preliminary setup work. First raise the probe.
  4223. //
  4224. st_synchronize();
  4225. plan_bed_level_matrix.set_to_identity();
  4226. plan_buffer_line( X_current, Y_current, Z_start_location,
  4227. ext_position,
  4228. homing_feedrate[Z_AXIS]/60,
  4229. active_extruder);
  4230. st_synchronize();
  4231. //
  4232. // Now get everything to the specified probe point So we can safely do a probe to
  4233. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4234. // use that as a starting point for each probe.
  4235. //
  4236. if (verbose_level > 2)
  4237. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4238. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4239. ext_position,
  4240. homing_feedrate[X_AXIS]/60,
  4241. active_extruder);
  4242. st_synchronize();
  4243. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4244. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4245. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4246. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4247. //
  4248. // OK, do the inital probe to get us close to the bed.
  4249. // Then retrace the right amount and use that in subsequent probes
  4250. //
  4251. setup_for_endstop_move();
  4252. run_z_probe();
  4253. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4254. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4255. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4256. ext_position,
  4257. homing_feedrate[X_AXIS]/60,
  4258. active_extruder);
  4259. st_synchronize();
  4260. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4261. for( n=0; n<n_samples; n++) {
  4262. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4263. if ( n_legs) {
  4264. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4265. int rotational_direction, l;
  4266. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4267. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4268. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4269. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4270. //SERIAL_ECHOPAIR(" theta: ",theta);
  4271. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4272. //SERIAL_PROTOCOLLNPGM("");
  4273. for( l=0; l<n_legs-1; l++) {
  4274. if (rotational_direction==1)
  4275. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4276. else
  4277. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4278. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4279. if ( radius<0.0 )
  4280. radius = -radius;
  4281. X_current = X_probe_location + cos(theta) * radius;
  4282. Y_current = Y_probe_location + sin(theta) * radius;
  4283. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4284. X_current = X_MIN_POS;
  4285. if ( X_current>X_MAX_POS)
  4286. X_current = X_MAX_POS;
  4287. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4288. Y_current = Y_MIN_POS;
  4289. if ( Y_current>Y_MAX_POS)
  4290. Y_current = Y_MAX_POS;
  4291. if (verbose_level>3 ) {
  4292. SERIAL_ECHOPAIR("x: ", X_current);
  4293. SERIAL_ECHOPAIR("y: ", Y_current);
  4294. SERIAL_PROTOCOLLNPGM("");
  4295. }
  4296. do_blocking_move_to( X_current, Y_current, Z_current );
  4297. }
  4298. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4299. }
  4300. setup_for_endstop_move();
  4301. run_z_probe();
  4302. sample_set[n] = current_position[Z_AXIS];
  4303. //
  4304. // Get the current mean for the data points we have so far
  4305. //
  4306. sum=0.0;
  4307. for( j=0; j<=n; j++) {
  4308. sum = sum + sample_set[j];
  4309. }
  4310. mean = sum / (double (n+1));
  4311. //
  4312. // Now, use that mean to calculate the standard deviation for the
  4313. // data points we have so far
  4314. //
  4315. sum=0.0;
  4316. for( j=0; j<=n; j++) {
  4317. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4318. }
  4319. sigma = sqrt( sum / (double (n+1)) );
  4320. if (verbose_level > 1) {
  4321. SERIAL_PROTOCOL(n+1);
  4322. SERIAL_PROTOCOL(" of ");
  4323. SERIAL_PROTOCOL(n_samples);
  4324. SERIAL_PROTOCOLPGM(" z: ");
  4325. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4326. }
  4327. if (verbose_level > 2) {
  4328. SERIAL_PROTOCOL(" mean: ");
  4329. SERIAL_PROTOCOL_F(mean,6);
  4330. SERIAL_PROTOCOL(" sigma: ");
  4331. SERIAL_PROTOCOL_F(sigma,6);
  4332. }
  4333. if (verbose_level > 0)
  4334. SERIAL_PROTOCOLPGM("\n");
  4335. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4336. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4337. st_synchronize();
  4338. }
  4339. delay(1000);
  4340. clean_up_after_endstop_move();
  4341. // enable_endstops(true);
  4342. if (verbose_level > 0) {
  4343. SERIAL_PROTOCOLPGM("Mean: ");
  4344. SERIAL_PROTOCOL_F(mean, 6);
  4345. SERIAL_PROTOCOLPGM("\n");
  4346. }
  4347. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4348. SERIAL_PROTOCOL_F(sigma, 6);
  4349. SERIAL_PROTOCOLPGM("\n\n");
  4350. Sigma_Exit:
  4351. break;
  4352. }
  4353. #endif // Z_PROBE_REPEATABILITY_TEST
  4354. #endif // ENABLE_AUTO_BED_LEVELING
  4355. case 104: // M104
  4356. if(setTargetedHotend(104)){
  4357. break;
  4358. }
  4359. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4360. setWatch();
  4361. break;
  4362. case 112: // M112 -Emergency Stop
  4363. kill(_n(""), 3);
  4364. break;
  4365. case 140: // M140 set bed temp
  4366. if (code_seen('S')) setTargetBed(code_value());
  4367. break;
  4368. case 105 : // M105
  4369. if(setTargetedHotend(105)){
  4370. break;
  4371. }
  4372. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4373. SERIAL_PROTOCOLPGM("ok T:");
  4374. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4375. SERIAL_PROTOCOLPGM(" /");
  4376. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4377. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4378. SERIAL_PROTOCOLPGM(" B:");
  4379. SERIAL_PROTOCOL_F(degBed(),1);
  4380. SERIAL_PROTOCOLPGM(" /");
  4381. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4382. #endif //TEMP_BED_PIN
  4383. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4384. SERIAL_PROTOCOLPGM(" T");
  4385. SERIAL_PROTOCOL(cur_extruder);
  4386. SERIAL_PROTOCOLPGM(":");
  4387. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4388. SERIAL_PROTOCOLPGM(" /");
  4389. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4390. }
  4391. #else
  4392. SERIAL_ERROR_START;
  4393. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4394. #endif
  4395. SERIAL_PROTOCOLPGM(" @:");
  4396. #ifdef EXTRUDER_WATTS
  4397. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4398. SERIAL_PROTOCOLPGM("W");
  4399. #else
  4400. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4401. #endif
  4402. SERIAL_PROTOCOLPGM(" B@:");
  4403. #ifdef BED_WATTS
  4404. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4405. SERIAL_PROTOCOLPGM("W");
  4406. #else
  4407. SERIAL_PROTOCOL(getHeaterPower(-1));
  4408. #endif
  4409. #ifdef PINDA_THERMISTOR
  4410. SERIAL_PROTOCOLPGM(" P:");
  4411. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4412. #endif //PINDA_THERMISTOR
  4413. #ifdef AMBIENT_THERMISTOR
  4414. SERIAL_PROTOCOLPGM(" A:");
  4415. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4416. #endif //AMBIENT_THERMISTOR
  4417. #ifdef SHOW_TEMP_ADC_VALUES
  4418. {float raw = 0.0;
  4419. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4420. SERIAL_PROTOCOLPGM(" ADC B:");
  4421. SERIAL_PROTOCOL_F(degBed(),1);
  4422. SERIAL_PROTOCOLPGM("C->");
  4423. raw = rawBedTemp();
  4424. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4425. SERIAL_PROTOCOLPGM(" Rb->");
  4426. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4427. SERIAL_PROTOCOLPGM(" Rxb->");
  4428. SERIAL_PROTOCOL_F(raw, 5);
  4429. #endif
  4430. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4431. SERIAL_PROTOCOLPGM(" T");
  4432. SERIAL_PROTOCOL(cur_extruder);
  4433. SERIAL_PROTOCOLPGM(":");
  4434. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4435. SERIAL_PROTOCOLPGM("C->");
  4436. raw = rawHotendTemp(cur_extruder);
  4437. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4438. SERIAL_PROTOCOLPGM(" Rt");
  4439. SERIAL_PROTOCOL(cur_extruder);
  4440. SERIAL_PROTOCOLPGM("->");
  4441. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4442. SERIAL_PROTOCOLPGM(" Rx");
  4443. SERIAL_PROTOCOL(cur_extruder);
  4444. SERIAL_PROTOCOLPGM("->");
  4445. SERIAL_PROTOCOL_F(raw, 5);
  4446. }}
  4447. #endif
  4448. SERIAL_PROTOCOLLN("");
  4449. KEEPALIVE_STATE(NOT_BUSY);
  4450. return;
  4451. break;
  4452. case 109:
  4453. {// M109 - Wait for extruder heater to reach target.
  4454. if(setTargetedHotend(109)){
  4455. break;
  4456. }
  4457. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4458. heating_status = 1;
  4459. if (farm_mode) { prusa_statistics(1); };
  4460. #ifdef AUTOTEMP
  4461. autotemp_enabled=false;
  4462. #endif
  4463. if (code_seen('S')) {
  4464. setTargetHotend(code_value(), tmp_extruder);
  4465. CooldownNoWait = true;
  4466. } else if (code_seen('R')) {
  4467. setTargetHotend(code_value(), tmp_extruder);
  4468. CooldownNoWait = false;
  4469. }
  4470. #ifdef AUTOTEMP
  4471. if (code_seen('S')) autotemp_min=code_value();
  4472. if (code_seen('B')) autotemp_max=code_value();
  4473. if (code_seen('F'))
  4474. {
  4475. autotemp_factor=code_value();
  4476. autotemp_enabled=true;
  4477. }
  4478. #endif
  4479. setWatch();
  4480. codenum = millis();
  4481. /* See if we are heating up or cooling down */
  4482. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4483. KEEPALIVE_STATE(NOT_BUSY);
  4484. cancel_heatup = false;
  4485. wait_for_heater(codenum); //loops until target temperature is reached
  4486. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4487. KEEPALIVE_STATE(IN_HANDLER);
  4488. heating_status = 2;
  4489. if (farm_mode) { prusa_statistics(2); };
  4490. //starttime=millis();
  4491. previous_millis_cmd = millis();
  4492. }
  4493. break;
  4494. case 190: // M190 - Wait for bed heater to reach target.
  4495. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4496. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4497. heating_status = 3;
  4498. if (farm_mode) { prusa_statistics(1); };
  4499. if (code_seen('S'))
  4500. {
  4501. setTargetBed(code_value());
  4502. CooldownNoWait = true;
  4503. }
  4504. else if (code_seen('R'))
  4505. {
  4506. setTargetBed(code_value());
  4507. CooldownNoWait = false;
  4508. }
  4509. codenum = millis();
  4510. cancel_heatup = false;
  4511. target_direction = isHeatingBed(); // true if heating, false if cooling
  4512. KEEPALIVE_STATE(NOT_BUSY);
  4513. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4514. {
  4515. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4516. {
  4517. if (!farm_mode) {
  4518. float tt = degHotend(active_extruder);
  4519. SERIAL_PROTOCOLPGM("T:");
  4520. SERIAL_PROTOCOL(tt);
  4521. SERIAL_PROTOCOLPGM(" E:");
  4522. SERIAL_PROTOCOL((int)active_extruder);
  4523. SERIAL_PROTOCOLPGM(" B:");
  4524. SERIAL_PROTOCOL_F(degBed(), 1);
  4525. SERIAL_PROTOCOLLN("");
  4526. }
  4527. codenum = millis();
  4528. }
  4529. manage_heater();
  4530. manage_inactivity();
  4531. lcd_update();
  4532. }
  4533. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4534. KEEPALIVE_STATE(IN_HANDLER);
  4535. heating_status = 4;
  4536. previous_millis_cmd = millis();
  4537. #endif
  4538. break;
  4539. #if defined(FAN_PIN) && FAN_PIN > -1
  4540. case 106: //M106 Fan On
  4541. if (code_seen('S')){
  4542. fanSpeed=constrain(code_value(),0,255);
  4543. }
  4544. else {
  4545. fanSpeed=255;
  4546. }
  4547. break;
  4548. case 107: //M107 Fan Off
  4549. fanSpeed = 0;
  4550. break;
  4551. #endif //FAN_PIN
  4552. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4553. case 80: // M80 - Turn on Power Supply
  4554. SET_OUTPUT(PS_ON_PIN); //GND
  4555. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4556. // If you have a switch on suicide pin, this is useful
  4557. // if you want to start another print with suicide feature after
  4558. // a print without suicide...
  4559. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4560. SET_OUTPUT(SUICIDE_PIN);
  4561. WRITE(SUICIDE_PIN, HIGH);
  4562. #endif
  4563. #ifdef ULTIPANEL
  4564. powersupply = true;
  4565. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4566. lcd_update();
  4567. #endif
  4568. break;
  4569. #endif
  4570. case 81: // M81 - Turn off Power Supply
  4571. disable_heater();
  4572. st_synchronize();
  4573. disable_e0();
  4574. disable_e1();
  4575. disable_e2();
  4576. finishAndDisableSteppers();
  4577. fanSpeed = 0;
  4578. delay(1000); // Wait a little before to switch off
  4579. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4580. st_synchronize();
  4581. suicide();
  4582. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4583. SET_OUTPUT(PS_ON_PIN);
  4584. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4585. #endif
  4586. #ifdef ULTIPANEL
  4587. powersupply = false;
  4588. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4589. /*
  4590. MACHNAME = "Prusa i3"
  4591. MSGOFF = "Vypnuto"
  4592. "Prusai3"" ""vypnuto""."
  4593. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4594. */
  4595. lcd_update();
  4596. #endif
  4597. break;
  4598. case 82:
  4599. axis_relative_modes[3] = false;
  4600. break;
  4601. case 83:
  4602. axis_relative_modes[3] = true;
  4603. break;
  4604. case 18: //compatibility
  4605. case 84: // M84
  4606. if(code_seen('S')){
  4607. stepper_inactive_time = code_value() * 1000;
  4608. }
  4609. else
  4610. {
  4611. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4612. if(all_axis)
  4613. {
  4614. st_synchronize();
  4615. disable_e0();
  4616. disable_e1();
  4617. disable_e2();
  4618. finishAndDisableSteppers();
  4619. }
  4620. else
  4621. {
  4622. st_synchronize();
  4623. if (code_seen('X')) disable_x();
  4624. if (code_seen('Y')) disable_y();
  4625. if (code_seen('Z')) disable_z();
  4626. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4627. if (code_seen('E')) {
  4628. disable_e0();
  4629. disable_e1();
  4630. disable_e2();
  4631. }
  4632. #endif
  4633. }
  4634. }
  4635. snmm_filaments_used = 0;
  4636. break;
  4637. case 85: // M85
  4638. if(code_seen('S')) {
  4639. max_inactive_time = code_value() * 1000;
  4640. }
  4641. break;
  4642. case 92: // M92
  4643. for(int8_t i=0; i < NUM_AXIS; i++)
  4644. {
  4645. if(code_seen(axis_codes[i]))
  4646. {
  4647. if(i == 3) { // E
  4648. float value = code_value();
  4649. if(value < 20.0) {
  4650. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4651. max_jerk[E_AXIS] *= factor;
  4652. max_feedrate[i] *= factor;
  4653. axis_steps_per_sqr_second[i] *= factor;
  4654. }
  4655. axis_steps_per_unit[i] = value;
  4656. }
  4657. else {
  4658. axis_steps_per_unit[i] = code_value();
  4659. }
  4660. }
  4661. }
  4662. break;
  4663. case 110: // M110 - reset line pos
  4664. if (code_seen('N'))
  4665. gcode_LastN = code_value_long();
  4666. break;
  4667. #ifdef HOST_KEEPALIVE_FEATURE
  4668. case 113: // M113 - Get or set Host Keepalive interval
  4669. if (code_seen('S')) {
  4670. host_keepalive_interval = (uint8_t)code_value_short();
  4671. // NOMORE(host_keepalive_interval, 60);
  4672. }
  4673. else {
  4674. SERIAL_ECHO_START;
  4675. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4676. SERIAL_PROTOCOLLN("");
  4677. }
  4678. break;
  4679. #endif
  4680. case 115: // M115
  4681. if (code_seen('V')) {
  4682. // Report the Prusa version number.
  4683. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4684. } else if (code_seen('U')) {
  4685. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4686. // pause the print and ask the user to upgrade the firmware.
  4687. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4688. } else {
  4689. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4690. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4691. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4692. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4693. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4694. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4695. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4696. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4697. SERIAL_ECHOPGM(" UUID:");
  4698. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4699. }
  4700. break;
  4701. /* case 117: // M117 display message
  4702. starpos = (strchr(strchr_pointer + 5,'*'));
  4703. if(starpos!=NULL)
  4704. *(starpos)='\0';
  4705. lcd_setstatus(strchr_pointer + 5);
  4706. break;*/
  4707. case 114: // M114
  4708. gcode_M114();
  4709. break;
  4710. case 120: // M120
  4711. enable_endstops(false) ;
  4712. break;
  4713. case 121: // M121
  4714. enable_endstops(true) ;
  4715. break;
  4716. case 119: // M119
  4717. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4718. SERIAL_PROTOCOLLN("");
  4719. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4720. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4721. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4722. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4723. }else{
  4724. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4725. }
  4726. SERIAL_PROTOCOLLN("");
  4727. #endif
  4728. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4729. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4730. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4731. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4732. }else{
  4733. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4734. }
  4735. SERIAL_PROTOCOLLN("");
  4736. #endif
  4737. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4738. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4739. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4740. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4741. }else{
  4742. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4743. }
  4744. SERIAL_PROTOCOLLN("");
  4745. #endif
  4746. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4747. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4748. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4749. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4750. }else{
  4751. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4752. }
  4753. SERIAL_PROTOCOLLN("");
  4754. #endif
  4755. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4756. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4757. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4758. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4759. }else{
  4760. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4761. }
  4762. SERIAL_PROTOCOLLN("");
  4763. #endif
  4764. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4765. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4766. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4767. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4768. }else{
  4769. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4770. }
  4771. SERIAL_PROTOCOLLN("");
  4772. #endif
  4773. break;
  4774. //TODO: update for all axis, use for loop
  4775. #ifdef BLINKM
  4776. case 150: // M150
  4777. {
  4778. byte red;
  4779. byte grn;
  4780. byte blu;
  4781. if(code_seen('R')) red = code_value();
  4782. if(code_seen('U')) grn = code_value();
  4783. if(code_seen('B')) blu = code_value();
  4784. SendColors(red,grn,blu);
  4785. }
  4786. break;
  4787. #endif //BLINKM
  4788. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4789. {
  4790. tmp_extruder = active_extruder;
  4791. if(code_seen('T')) {
  4792. tmp_extruder = code_value();
  4793. if(tmp_extruder >= EXTRUDERS) {
  4794. SERIAL_ECHO_START;
  4795. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4796. break;
  4797. }
  4798. }
  4799. float area = .0;
  4800. if(code_seen('D')) {
  4801. float diameter = (float)code_value();
  4802. if (diameter == 0.0) {
  4803. // setting any extruder filament size disables volumetric on the assumption that
  4804. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4805. // for all extruders
  4806. volumetric_enabled = false;
  4807. } else {
  4808. filament_size[tmp_extruder] = (float)code_value();
  4809. // make sure all extruders have some sane value for the filament size
  4810. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4811. #if EXTRUDERS > 1
  4812. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4813. #if EXTRUDERS > 2
  4814. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4815. #endif
  4816. #endif
  4817. volumetric_enabled = true;
  4818. }
  4819. } else {
  4820. //reserved for setting filament diameter via UFID or filament measuring device
  4821. break;
  4822. }
  4823. calculate_extruder_multipliers();
  4824. }
  4825. break;
  4826. case 201: // M201
  4827. for(int8_t i=0; i < NUM_AXIS; i++)
  4828. {
  4829. if(code_seen(axis_codes[i]))
  4830. {
  4831. max_acceleration_units_per_sq_second[i] = code_value();
  4832. }
  4833. }
  4834. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4835. reset_acceleration_rates();
  4836. break;
  4837. #if 0 // Not used for Sprinter/grbl gen6
  4838. case 202: // M202
  4839. for(int8_t i=0; i < NUM_AXIS; i++) {
  4840. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4841. }
  4842. break;
  4843. #endif
  4844. case 203: // M203 max feedrate mm/sec
  4845. for(int8_t i=0; i < NUM_AXIS; i++) {
  4846. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4847. }
  4848. break;
  4849. case 204: // M204 acclereration S normal moves T filmanent only moves
  4850. {
  4851. if(code_seen('S')) acceleration = code_value() ;
  4852. if(code_seen('T')) retract_acceleration = code_value() ;
  4853. }
  4854. break;
  4855. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4856. {
  4857. if(code_seen('S')) minimumfeedrate = code_value();
  4858. if(code_seen('T')) mintravelfeedrate = code_value();
  4859. if(code_seen('B')) minsegmenttime = code_value() ;
  4860. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4861. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4862. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4863. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4864. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4865. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4866. }
  4867. break;
  4868. case 206: // M206 additional homing offset
  4869. for(int8_t i=0; i < 3; i++)
  4870. {
  4871. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4872. }
  4873. break;
  4874. #ifdef FWRETRACT
  4875. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4876. {
  4877. if(code_seen('S'))
  4878. {
  4879. retract_length = code_value() ;
  4880. }
  4881. if(code_seen('F'))
  4882. {
  4883. retract_feedrate = code_value()/60 ;
  4884. }
  4885. if(code_seen('Z'))
  4886. {
  4887. retract_zlift = code_value() ;
  4888. }
  4889. }break;
  4890. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4891. {
  4892. if(code_seen('S'))
  4893. {
  4894. retract_recover_length = code_value() ;
  4895. }
  4896. if(code_seen('F'))
  4897. {
  4898. retract_recover_feedrate = code_value()/60 ;
  4899. }
  4900. }break;
  4901. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4902. {
  4903. if(code_seen('S'))
  4904. {
  4905. int t= code_value() ;
  4906. switch(t)
  4907. {
  4908. case 0:
  4909. {
  4910. autoretract_enabled=false;
  4911. retracted[0]=false;
  4912. #if EXTRUDERS > 1
  4913. retracted[1]=false;
  4914. #endif
  4915. #if EXTRUDERS > 2
  4916. retracted[2]=false;
  4917. #endif
  4918. }break;
  4919. case 1:
  4920. {
  4921. autoretract_enabled=true;
  4922. retracted[0]=false;
  4923. #if EXTRUDERS > 1
  4924. retracted[1]=false;
  4925. #endif
  4926. #if EXTRUDERS > 2
  4927. retracted[2]=false;
  4928. #endif
  4929. }break;
  4930. default:
  4931. SERIAL_ECHO_START;
  4932. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4933. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4934. SERIAL_ECHOLNPGM("\"(1)");
  4935. }
  4936. }
  4937. }break;
  4938. #endif // FWRETRACT
  4939. #if EXTRUDERS > 1
  4940. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4941. {
  4942. if(setTargetedHotend(218)){
  4943. break;
  4944. }
  4945. if(code_seen('X'))
  4946. {
  4947. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4948. }
  4949. if(code_seen('Y'))
  4950. {
  4951. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4952. }
  4953. SERIAL_ECHO_START;
  4954. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4955. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4956. {
  4957. SERIAL_ECHO(" ");
  4958. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4959. SERIAL_ECHO(",");
  4960. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4961. }
  4962. SERIAL_ECHOLN("");
  4963. }break;
  4964. #endif
  4965. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4966. {
  4967. if(code_seen('S'))
  4968. {
  4969. feedmultiply = code_value() ;
  4970. }
  4971. }
  4972. break;
  4973. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4974. {
  4975. if(code_seen('S'))
  4976. {
  4977. int tmp_code = code_value();
  4978. if (code_seen('T'))
  4979. {
  4980. if(setTargetedHotend(221)){
  4981. break;
  4982. }
  4983. extruder_multiply[tmp_extruder] = tmp_code;
  4984. }
  4985. else
  4986. {
  4987. extrudemultiply = tmp_code ;
  4988. }
  4989. }
  4990. calculate_extruder_multipliers();
  4991. }
  4992. break;
  4993. #ifndef _DISABLE_M42_M226
  4994. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4995. {
  4996. if(code_seen('P')){
  4997. int pin_number = code_value(); // pin number
  4998. int pin_state = -1; // required pin state - default is inverted
  4999. if(code_seen('S')) pin_state = code_value(); // required pin state
  5000. if(pin_state >= -1 && pin_state <= 1){
  5001. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5002. {
  5003. if (sensitive_pins[i] == pin_number)
  5004. {
  5005. pin_number = -1;
  5006. break;
  5007. }
  5008. }
  5009. if (pin_number > -1)
  5010. {
  5011. int target = LOW;
  5012. st_synchronize();
  5013. pinMode(pin_number, INPUT);
  5014. switch(pin_state){
  5015. case 1:
  5016. target = HIGH;
  5017. break;
  5018. case 0:
  5019. target = LOW;
  5020. break;
  5021. case -1:
  5022. target = !digitalRead(pin_number);
  5023. break;
  5024. }
  5025. while(digitalRead(pin_number) != target){
  5026. manage_heater();
  5027. manage_inactivity();
  5028. lcd_update();
  5029. }
  5030. }
  5031. }
  5032. }
  5033. }
  5034. break;
  5035. #endif //_DISABLE_M42_M226
  5036. #if NUM_SERVOS > 0
  5037. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5038. {
  5039. int servo_index = -1;
  5040. int servo_position = 0;
  5041. if (code_seen('P'))
  5042. servo_index = code_value();
  5043. if (code_seen('S')) {
  5044. servo_position = code_value();
  5045. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5046. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5047. servos[servo_index].attach(0);
  5048. #endif
  5049. servos[servo_index].write(servo_position);
  5050. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5051. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5052. servos[servo_index].detach();
  5053. #endif
  5054. }
  5055. else {
  5056. SERIAL_ECHO_START;
  5057. SERIAL_ECHO("Servo ");
  5058. SERIAL_ECHO(servo_index);
  5059. SERIAL_ECHOLN(" out of range");
  5060. }
  5061. }
  5062. else if (servo_index >= 0) {
  5063. SERIAL_PROTOCOL(_T(MSG_OK));
  5064. SERIAL_PROTOCOL(" Servo ");
  5065. SERIAL_PROTOCOL(servo_index);
  5066. SERIAL_PROTOCOL(": ");
  5067. SERIAL_PROTOCOL(servos[servo_index].read());
  5068. SERIAL_PROTOCOLLN("");
  5069. }
  5070. }
  5071. break;
  5072. #endif // NUM_SERVOS > 0
  5073. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5074. case 300: // M300
  5075. {
  5076. int beepS = code_seen('S') ? code_value() : 110;
  5077. int beepP = code_seen('P') ? code_value() : 1000;
  5078. if (beepS > 0)
  5079. {
  5080. #if BEEPER > 0
  5081. tone(BEEPER, beepS);
  5082. delay(beepP);
  5083. noTone(BEEPER);
  5084. #elif defined(ULTRALCD)
  5085. lcd_buzz(beepS, beepP);
  5086. #elif defined(LCD_USE_I2C_BUZZER)
  5087. lcd_buzz(beepP, beepS);
  5088. #endif
  5089. }
  5090. else
  5091. {
  5092. delay(beepP);
  5093. }
  5094. }
  5095. break;
  5096. #endif // M300
  5097. #ifdef PIDTEMP
  5098. case 301: // M301
  5099. {
  5100. if(code_seen('P')) Kp = code_value();
  5101. if(code_seen('I')) Ki = scalePID_i(code_value());
  5102. if(code_seen('D')) Kd = scalePID_d(code_value());
  5103. #ifdef PID_ADD_EXTRUSION_RATE
  5104. if(code_seen('C')) Kc = code_value();
  5105. #endif
  5106. updatePID();
  5107. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5108. SERIAL_PROTOCOL(" p:");
  5109. SERIAL_PROTOCOL(Kp);
  5110. SERIAL_PROTOCOL(" i:");
  5111. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5112. SERIAL_PROTOCOL(" d:");
  5113. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5114. #ifdef PID_ADD_EXTRUSION_RATE
  5115. SERIAL_PROTOCOL(" c:");
  5116. //Kc does not have scaling applied above, or in resetting defaults
  5117. SERIAL_PROTOCOL(Kc);
  5118. #endif
  5119. SERIAL_PROTOCOLLN("");
  5120. }
  5121. break;
  5122. #endif //PIDTEMP
  5123. #ifdef PIDTEMPBED
  5124. case 304: // M304
  5125. {
  5126. if(code_seen('P')) bedKp = code_value();
  5127. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5128. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5129. updatePID();
  5130. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5131. SERIAL_PROTOCOL(" p:");
  5132. SERIAL_PROTOCOL(bedKp);
  5133. SERIAL_PROTOCOL(" i:");
  5134. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5135. SERIAL_PROTOCOL(" d:");
  5136. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5137. SERIAL_PROTOCOLLN("");
  5138. }
  5139. break;
  5140. #endif //PIDTEMP
  5141. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5142. {
  5143. #ifdef CHDK
  5144. SET_OUTPUT(CHDK);
  5145. WRITE(CHDK, HIGH);
  5146. chdkHigh = millis();
  5147. chdkActive = true;
  5148. #else
  5149. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5150. const uint8_t NUM_PULSES=16;
  5151. const float PULSE_LENGTH=0.01524;
  5152. for(int i=0; i < NUM_PULSES; i++) {
  5153. WRITE(PHOTOGRAPH_PIN, HIGH);
  5154. _delay_ms(PULSE_LENGTH);
  5155. WRITE(PHOTOGRAPH_PIN, LOW);
  5156. _delay_ms(PULSE_LENGTH);
  5157. }
  5158. delay(7.33);
  5159. for(int i=0; i < NUM_PULSES; i++) {
  5160. WRITE(PHOTOGRAPH_PIN, HIGH);
  5161. _delay_ms(PULSE_LENGTH);
  5162. WRITE(PHOTOGRAPH_PIN, LOW);
  5163. _delay_ms(PULSE_LENGTH);
  5164. }
  5165. #endif
  5166. #endif //chdk end if
  5167. }
  5168. break;
  5169. #ifdef DOGLCD
  5170. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5171. {
  5172. if (code_seen('C')) {
  5173. lcd_setcontrast( ((int)code_value())&63 );
  5174. }
  5175. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5176. SERIAL_PROTOCOL(lcd_contrast);
  5177. SERIAL_PROTOCOLLN("");
  5178. }
  5179. break;
  5180. #endif
  5181. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5182. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5183. {
  5184. float temp = .0;
  5185. if (code_seen('S')) temp=code_value();
  5186. set_extrude_min_temp(temp);
  5187. }
  5188. break;
  5189. #endif
  5190. case 303: // M303 PID autotune
  5191. {
  5192. float temp = 150.0;
  5193. int e=0;
  5194. int c=5;
  5195. if (code_seen('E')) e=code_value();
  5196. if (e<0)
  5197. temp=70;
  5198. if (code_seen('S')) temp=code_value();
  5199. if (code_seen('C')) c=code_value();
  5200. PID_autotune(temp, e, c);
  5201. }
  5202. break;
  5203. case 400: // M400 finish all moves
  5204. {
  5205. st_synchronize();
  5206. }
  5207. break;
  5208. case 500: // M500 Store settings in EEPROM
  5209. {
  5210. Config_StoreSettings(EEPROM_OFFSET);
  5211. }
  5212. break;
  5213. case 501: // M501 Read settings from EEPROM
  5214. {
  5215. Config_RetrieveSettings(EEPROM_OFFSET);
  5216. }
  5217. break;
  5218. case 502: // M502 Revert to default settings
  5219. {
  5220. Config_ResetDefault();
  5221. }
  5222. break;
  5223. case 503: // M503 print settings currently in memory
  5224. {
  5225. Config_PrintSettings();
  5226. }
  5227. break;
  5228. case 509: //M509 Force language selection
  5229. {
  5230. lcd_force_language_selection();
  5231. SERIAL_ECHO_START;
  5232. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5233. }
  5234. break;
  5235. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5236. case 540:
  5237. {
  5238. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5239. }
  5240. break;
  5241. #endif
  5242. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5243. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5244. {
  5245. float value;
  5246. if (code_seen('Z'))
  5247. {
  5248. value = code_value();
  5249. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5250. {
  5251. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5252. SERIAL_ECHO_START;
  5253. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5254. SERIAL_PROTOCOLLN("");
  5255. }
  5256. else
  5257. {
  5258. SERIAL_ECHO_START;
  5259. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5260. SERIAL_ECHORPGM(MSG_Z_MIN);
  5261. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5262. SERIAL_ECHORPGM(MSG_Z_MAX);
  5263. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5264. SERIAL_PROTOCOLLN("");
  5265. }
  5266. }
  5267. else
  5268. {
  5269. SERIAL_ECHO_START;
  5270. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5271. SERIAL_ECHO(-zprobe_zoffset);
  5272. SERIAL_PROTOCOLLN("");
  5273. }
  5274. break;
  5275. }
  5276. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5277. #ifdef FILAMENTCHANGEENABLE
  5278. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5279. {
  5280. #ifdef PAT9125
  5281. bool old_fsensor_enabled = fsensor_enabled;
  5282. fsensor_enabled = false; //temporary solution for unexpected restarting
  5283. #endif //PAT9125
  5284. st_synchronize();
  5285. float target[4];
  5286. float lastpos[4];
  5287. if (farm_mode)
  5288. {
  5289. prusa_statistics(22);
  5290. }
  5291. feedmultiplyBckp=feedmultiply;
  5292. int8_t TooLowZ = 0;
  5293. float HotendTempBckp = degTargetHotend(active_extruder);
  5294. int fanSpeedBckp = fanSpeed;
  5295. target[X_AXIS]=current_position[X_AXIS];
  5296. target[Y_AXIS]=current_position[Y_AXIS];
  5297. target[Z_AXIS]=current_position[Z_AXIS];
  5298. target[E_AXIS]=current_position[E_AXIS];
  5299. lastpos[X_AXIS]=current_position[X_AXIS];
  5300. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5301. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5302. lastpos[E_AXIS]=current_position[E_AXIS];
  5303. //Restract extruder
  5304. if(code_seen('E'))
  5305. {
  5306. target[E_AXIS]+= code_value();
  5307. }
  5308. else
  5309. {
  5310. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5311. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5312. #endif
  5313. }
  5314. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5315. //Lift Z
  5316. if(code_seen('Z'))
  5317. {
  5318. target[Z_AXIS]+= code_value();
  5319. }
  5320. else
  5321. {
  5322. #ifdef FILAMENTCHANGE_ZADD
  5323. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5324. if(target[Z_AXIS] < 10){
  5325. target[Z_AXIS]+= 10 ;
  5326. TooLowZ = 1;
  5327. }else{
  5328. TooLowZ = 0;
  5329. }
  5330. #endif
  5331. }
  5332. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5333. //Move XY to side
  5334. if(code_seen('X'))
  5335. {
  5336. target[X_AXIS]+= code_value();
  5337. }
  5338. else
  5339. {
  5340. #ifdef FILAMENTCHANGE_XPOS
  5341. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5342. #endif
  5343. }
  5344. if(code_seen('Y'))
  5345. {
  5346. target[Y_AXIS]= code_value();
  5347. }
  5348. else
  5349. {
  5350. #ifdef FILAMENTCHANGE_YPOS
  5351. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5352. #endif
  5353. }
  5354. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5355. st_synchronize();
  5356. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5357. uint8_t cnt = 0;
  5358. int counterBeep = 0;
  5359. fanSpeed = 0;
  5360. unsigned long waiting_start_time = millis();
  5361. uint8_t wait_for_user_state = 0;
  5362. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5363. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5364. //cnt++;
  5365. manage_heater();
  5366. manage_inactivity(true);
  5367. /*#ifdef SNMM
  5368. target[E_AXIS] += 0.002;
  5369. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5370. #endif // SNMM*/
  5371. //if (cnt == 0)
  5372. {
  5373. #if BEEPER > 0
  5374. if (counterBeep == 500) {
  5375. counterBeep = 0;
  5376. }
  5377. SET_OUTPUT(BEEPER);
  5378. if (counterBeep == 0) {
  5379. WRITE(BEEPER, HIGH);
  5380. }
  5381. if (counterBeep == 20) {
  5382. WRITE(BEEPER, LOW);
  5383. }
  5384. counterBeep++;
  5385. #else
  5386. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5387. lcd_buzz(1000 / 6, 100);
  5388. #else
  5389. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5390. #endif
  5391. #endif
  5392. }
  5393. switch (wait_for_user_state) {
  5394. case 0:
  5395. delay_keep_alive(4);
  5396. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5397. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5398. wait_for_user_state = 1;
  5399. setTargetHotend(0, 0);
  5400. setTargetHotend(0, 1);
  5401. setTargetHotend(0, 2);
  5402. st_synchronize();
  5403. disable_e0();
  5404. disable_e1();
  5405. disable_e2();
  5406. }
  5407. break;
  5408. case 1:
  5409. delay_keep_alive(4);
  5410. if (lcd_clicked()) {
  5411. setTargetHotend(HotendTempBckp, active_extruder);
  5412. lcd_wait_for_heater();
  5413. wait_for_user_state = 2;
  5414. }
  5415. break;
  5416. case 2:
  5417. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5418. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5419. waiting_start_time = millis();
  5420. wait_for_user_state = 0;
  5421. }
  5422. else {
  5423. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5424. lcd.setCursor(1, 4);
  5425. lcd.print(ftostr3(degHotend(active_extruder)));
  5426. }
  5427. break;
  5428. }
  5429. }
  5430. WRITE(BEEPER, LOW);
  5431. lcd_change_fil_state = 0;
  5432. // Unload filament
  5433. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5434. KEEPALIVE_STATE(IN_HANDLER);
  5435. custom_message = true;
  5436. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5437. if (code_seen('L'))
  5438. {
  5439. target[E_AXIS] += code_value();
  5440. }
  5441. else
  5442. {
  5443. #ifdef SNMM
  5444. #else
  5445. #ifdef FILAMENTCHANGE_FINALRETRACT
  5446. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5447. #endif
  5448. #endif // SNMM
  5449. }
  5450. #ifdef SNMM
  5451. target[E_AXIS] += 12;
  5452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5453. target[E_AXIS] += 6;
  5454. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5455. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5456. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5457. st_synchronize();
  5458. target[E_AXIS] += (FIL_COOLING);
  5459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5460. target[E_AXIS] += (FIL_COOLING*-1);
  5461. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5462. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5464. st_synchronize();
  5465. #else
  5466. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5467. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5468. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5469. st_synchronize();
  5470. #ifdef TMC2130
  5471. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5472. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5473. #else
  5474. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5475. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5476. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5477. #endif //TMC2130
  5478. target[E_AXIS] -= 45;
  5479. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5480. st_synchronize();
  5481. target[E_AXIS] -= 15;
  5482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5483. st_synchronize();
  5484. target[E_AXIS] -= 20;
  5485. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5486. st_synchronize();
  5487. #ifdef TMC2130
  5488. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5489. #else
  5490. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5491. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5492. else st_current_set(2, tmp_motor_loud[2]);
  5493. #endif //TMC2130
  5494. #endif // SNMM
  5495. //finish moves
  5496. st_synchronize();
  5497. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5498. //disable extruder steppers so filament can be removed
  5499. disable_e0();
  5500. disable_e1();
  5501. disable_e2();
  5502. delay(100);
  5503. WRITE(BEEPER, HIGH);
  5504. counterBeep = 0;
  5505. while(!lcd_clicked() && (counterBeep < 50)) {
  5506. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5507. delay_keep_alive(100);
  5508. counterBeep++;
  5509. }
  5510. WRITE(BEEPER, LOW);
  5511. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5512. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5513. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5514. //lcd_return_to_status();
  5515. lcd_update_enable(true);
  5516. //Wait for user to insert filament
  5517. lcd_wait_interact();
  5518. //load_filament_time = millis();
  5519. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5520. #ifdef PAT9125
  5521. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5522. #endif //PAT9125
  5523. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5524. while(!lcd_clicked())
  5525. {
  5526. manage_heater();
  5527. manage_inactivity(true);
  5528. #ifdef PAT9125
  5529. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5530. {
  5531. tone(BEEPER, 1000);
  5532. delay_keep_alive(50);
  5533. noTone(BEEPER);
  5534. break;
  5535. }
  5536. #endif //PAT9125
  5537. /*#ifdef SNMM
  5538. target[E_AXIS] += 0.002;
  5539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5540. #endif // SNMM*/
  5541. }
  5542. #ifdef PAT9125
  5543. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5544. #endif //PAT9125
  5545. //WRITE(BEEPER, LOW);
  5546. KEEPALIVE_STATE(IN_HANDLER);
  5547. #ifdef SNMM
  5548. display_loading();
  5549. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5550. do {
  5551. target[E_AXIS] += 0.002;
  5552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5553. delay_keep_alive(2);
  5554. } while (!lcd_clicked());
  5555. KEEPALIVE_STATE(IN_HANDLER);
  5556. /*if (millis() - load_filament_time > 2) {
  5557. load_filament_time = millis();
  5558. target[E_AXIS] += 0.001;
  5559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5560. }*/
  5561. //Filament inserted
  5562. //Feed the filament to the end of nozzle quickly
  5563. st_synchronize();
  5564. target[E_AXIS] += bowden_length[snmm_extruder];
  5565. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5566. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5567. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5568. target[E_AXIS] += 40;
  5569. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5570. target[E_AXIS] += 10;
  5571. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5572. #else
  5573. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5574. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5575. #endif // SNMM
  5576. //Extrude some filament
  5577. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5578. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5579. //Wait for user to check the state
  5580. lcd_change_fil_state = 0;
  5581. lcd_loading_filament();
  5582. tone(BEEPER, 500);
  5583. delay_keep_alive(50);
  5584. noTone(BEEPER);
  5585. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5586. lcd_change_fil_state = 0;
  5587. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5588. lcd_alright();
  5589. KEEPALIVE_STATE(IN_HANDLER);
  5590. switch(lcd_change_fil_state){
  5591. // Filament failed to load so load it again
  5592. case 2:
  5593. #ifdef SNMM
  5594. display_loading();
  5595. do {
  5596. target[E_AXIS] += 0.002;
  5597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5598. delay_keep_alive(2);
  5599. } while (!lcd_clicked());
  5600. st_synchronize();
  5601. target[E_AXIS] += bowden_length[snmm_extruder];
  5602. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5603. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5605. target[E_AXIS] += 40;
  5606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5607. target[E_AXIS] += 10;
  5608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5609. #else
  5610. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5612. #endif
  5613. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5614. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5615. lcd_loading_filament();
  5616. break;
  5617. // Filament loaded properly but color is not clear
  5618. case 3:
  5619. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5620. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5621. lcd_loading_color();
  5622. break;
  5623. // Everything good
  5624. default:
  5625. lcd_change_success();
  5626. lcd_update_enable(true);
  5627. break;
  5628. }
  5629. }
  5630. //Not let's go back to print
  5631. fanSpeed = fanSpeedBckp;
  5632. //Feed a little of filament to stabilize pressure
  5633. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5634. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5635. //Retract
  5636. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5638. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5639. //Move XY back
  5640. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5641. //Move Z back
  5642. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5643. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5644. //Unretract
  5645. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5646. //Set E position to original
  5647. plan_set_e_position(lastpos[E_AXIS]);
  5648. //Recover feed rate
  5649. feedmultiply=feedmultiplyBckp;
  5650. char cmd[9];
  5651. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5652. enquecommand(cmd);
  5653. lcd_setstatuspgm(_T(WELCOME_MSG));
  5654. custom_message = false;
  5655. custom_message_type = 0;
  5656. #ifdef PAT9125
  5657. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5658. if (fsensor_M600)
  5659. {
  5660. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5661. st_synchronize();
  5662. while (!is_buffer_empty())
  5663. {
  5664. process_commands();
  5665. cmdqueue_pop_front();
  5666. }
  5667. fsensor_enable();
  5668. fsensor_restore_print_and_continue();
  5669. }
  5670. #endif //PAT9125
  5671. }
  5672. break;
  5673. #endif //FILAMENTCHANGEENABLE
  5674. case 601: {
  5675. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5676. }
  5677. break;
  5678. case 602: {
  5679. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5680. }
  5681. break;
  5682. #ifdef PINDA_THERMISTOR
  5683. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5684. {
  5685. int set_target_pinda = 0;
  5686. if (code_seen('S')) {
  5687. set_target_pinda = code_value();
  5688. }
  5689. else {
  5690. break;
  5691. }
  5692. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5693. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5694. SERIAL_PROTOCOL(set_target_pinda);
  5695. SERIAL_PROTOCOLLN("");
  5696. codenum = millis();
  5697. cancel_heatup = false;
  5698. bool is_pinda_cooling = false;
  5699. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5700. is_pinda_cooling = true;
  5701. }
  5702. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5703. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5704. {
  5705. SERIAL_PROTOCOLPGM("P:");
  5706. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5707. SERIAL_PROTOCOLPGM("/");
  5708. SERIAL_PROTOCOL(set_target_pinda);
  5709. SERIAL_PROTOCOLLN("");
  5710. codenum = millis();
  5711. }
  5712. manage_heater();
  5713. manage_inactivity();
  5714. lcd_update();
  5715. }
  5716. LCD_MESSAGERPGM(_T(MSG_OK));
  5717. break;
  5718. }
  5719. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5720. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5721. uint8_t cal_status = calibration_status_pinda();
  5722. int16_t usteps = 0;
  5723. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5724. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5725. for (uint8_t i = 0; i < 6; i++)
  5726. {
  5727. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5728. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5729. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5730. SERIAL_PROTOCOLPGM(", ");
  5731. SERIAL_PROTOCOL(35 + (i * 5));
  5732. SERIAL_PROTOCOLPGM(", ");
  5733. SERIAL_PROTOCOL(usteps);
  5734. SERIAL_PROTOCOLPGM(", ");
  5735. SERIAL_PROTOCOL(mm * 1000);
  5736. SERIAL_PROTOCOLLN("");
  5737. }
  5738. }
  5739. else if (code_seen('!')) { // ! - Set factory default values
  5740. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5741. int16_t z_shift = 8; //40C - 20um - 8usteps
  5742. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5743. z_shift = 24; //45C - 60um - 24usteps
  5744. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5745. z_shift = 48; //50C - 120um - 48usteps
  5746. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5747. z_shift = 80; //55C - 200um - 80usteps
  5748. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5749. z_shift = 120; //60C - 300um - 120usteps
  5750. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5751. SERIAL_PROTOCOLLN("factory restored");
  5752. }
  5753. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5754. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5755. int16_t z_shift = 0;
  5756. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5757. SERIAL_PROTOCOLLN("zerorized");
  5758. }
  5759. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5760. int16_t usteps = code_value();
  5761. if (code_seen('I')) {
  5762. byte index = code_value();
  5763. if ((index >= 0) && (index < 5)) {
  5764. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5765. SERIAL_PROTOCOLLN("OK");
  5766. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5767. for (uint8_t i = 0; i < 6; i++)
  5768. {
  5769. usteps = 0;
  5770. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5771. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5772. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5773. SERIAL_PROTOCOLPGM(", ");
  5774. SERIAL_PROTOCOL(35 + (i * 5));
  5775. SERIAL_PROTOCOLPGM(", ");
  5776. SERIAL_PROTOCOL(usteps);
  5777. SERIAL_PROTOCOLPGM(", ");
  5778. SERIAL_PROTOCOL(mm * 1000);
  5779. SERIAL_PROTOCOLLN("");
  5780. }
  5781. }
  5782. }
  5783. }
  5784. else {
  5785. SERIAL_PROTOCOLPGM("no valid command");
  5786. }
  5787. break;
  5788. #endif //PINDA_THERMISTOR
  5789. #ifdef LIN_ADVANCE
  5790. case 900: // M900: Set LIN_ADVANCE options.
  5791. gcode_M900();
  5792. break;
  5793. #endif
  5794. case 907: // M907 Set digital trimpot motor current using axis codes.
  5795. {
  5796. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5797. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5798. if(code_seen('B')) st_current_set(4,code_value());
  5799. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5800. #endif
  5801. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5802. if(code_seen('X')) st_current_set(0, code_value());
  5803. #endif
  5804. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5805. if(code_seen('Z')) st_current_set(1, code_value());
  5806. #endif
  5807. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5808. if(code_seen('E')) st_current_set(2, code_value());
  5809. #endif
  5810. }
  5811. break;
  5812. case 908: // M908 Control digital trimpot directly.
  5813. {
  5814. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5815. uint8_t channel,current;
  5816. if(code_seen('P')) channel=code_value();
  5817. if(code_seen('S')) current=code_value();
  5818. digitalPotWrite(channel, current);
  5819. #endif
  5820. }
  5821. break;
  5822. #ifdef TMC2130
  5823. case 910: // M910 TMC2130 init
  5824. {
  5825. tmc2130_init();
  5826. }
  5827. break;
  5828. case 911: // M911 Set TMC2130 holding currents
  5829. {
  5830. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5831. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5832. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5833. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5834. }
  5835. break;
  5836. case 912: // M912 Set TMC2130 running currents
  5837. {
  5838. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5839. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5840. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5841. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5842. }
  5843. break;
  5844. case 913: // M913 Print TMC2130 currents
  5845. {
  5846. tmc2130_print_currents();
  5847. }
  5848. break;
  5849. case 914: // M914 Set normal mode
  5850. {
  5851. tmc2130_mode = TMC2130_MODE_NORMAL;
  5852. tmc2130_init();
  5853. }
  5854. break;
  5855. case 915: // M915 Set silent mode
  5856. {
  5857. tmc2130_mode = TMC2130_MODE_SILENT;
  5858. tmc2130_init();
  5859. }
  5860. break;
  5861. case 916: // M916 Set sg_thrs
  5862. {
  5863. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5864. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5865. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5866. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5867. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5868. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5869. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5870. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5871. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5872. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5873. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5874. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5875. }
  5876. break;
  5877. case 917: // M917 Set TMC2130 pwm_ampl
  5878. {
  5879. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5880. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5881. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5882. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5883. }
  5884. break;
  5885. case 918: // M918 Set TMC2130 pwm_grad
  5886. {
  5887. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5888. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5889. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5890. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5891. }
  5892. break;
  5893. #endif //TMC2130
  5894. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5895. {
  5896. #ifdef TMC2130
  5897. if(code_seen('E'))
  5898. {
  5899. uint16_t res_new = code_value();
  5900. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5901. {
  5902. st_synchronize();
  5903. uint8_t axis = E_AXIS;
  5904. uint16_t res = tmc2130_get_res(axis);
  5905. tmc2130_set_res(axis, res_new);
  5906. if (res_new > res)
  5907. {
  5908. uint16_t fac = (res_new / res);
  5909. axis_steps_per_unit[axis] *= fac;
  5910. position[E_AXIS] *= fac;
  5911. }
  5912. else
  5913. {
  5914. uint16_t fac = (res / res_new);
  5915. axis_steps_per_unit[axis] /= fac;
  5916. position[E_AXIS] /= fac;
  5917. }
  5918. }
  5919. }
  5920. #else //TMC2130
  5921. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5922. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5923. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5924. if(code_seen('B')) microstep_mode(4,code_value());
  5925. microstep_readings();
  5926. #endif
  5927. #endif //TMC2130
  5928. }
  5929. break;
  5930. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5931. {
  5932. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5933. if(code_seen('S')) switch((int)code_value())
  5934. {
  5935. case 1:
  5936. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5937. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5938. break;
  5939. case 2:
  5940. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5941. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5942. break;
  5943. }
  5944. microstep_readings();
  5945. #endif
  5946. }
  5947. break;
  5948. case 701: //M701: load filament
  5949. {
  5950. gcode_M701();
  5951. }
  5952. break;
  5953. case 702:
  5954. {
  5955. #ifdef SNMM
  5956. if (code_seen('U')) {
  5957. extr_unload_used(); //unload all filaments which were used in current print
  5958. }
  5959. else if (code_seen('C')) {
  5960. extr_unload(); //unload just current filament
  5961. }
  5962. else {
  5963. extr_unload_all(); //unload all filaments
  5964. }
  5965. #else
  5966. #ifdef PAT9125
  5967. bool old_fsensor_enabled = fsensor_enabled;
  5968. fsensor_enabled = false;
  5969. #endif //PAT9125
  5970. custom_message = true;
  5971. custom_message_type = 2;
  5972. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5973. // extr_unload2();
  5974. current_position[E_AXIS] -= 45;
  5975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5976. st_synchronize();
  5977. current_position[E_AXIS] -= 15;
  5978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5979. st_synchronize();
  5980. current_position[E_AXIS] -= 20;
  5981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5982. st_synchronize();
  5983. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5984. //disable extruder steppers so filament can be removed
  5985. disable_e0();
  5986. disable_e1();
  5987. disable_e2();
  5988. delay(100);
  5989. WRITE(BEEPER, HIGH);
  5990. uint8_t counterBeep = 0;
  5991. while (!lcd_clicked() && (counterBeep < 50)) {
  5992. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5993. delay_keep_alive(100);
  5994. counterBeep++;
  5995. }
  5996. WRITE(BEEPER, LOW);
  5997. st_synchronize();
  5998. while (lcd_clicked()) delay_keep_alive(100);
  5999. lcd_update_enable(true);
  6000. lcd_setstatuspgm(_T(WELCOME_MSG));
  6001. custom_message = false;
  6002. custom_message_type = 0;
  6003. #ifdef PAT9125
  6004. fsensor_enabled = old_fsensor_enabled;
  6005. #endif //PAT9125
  6006. #endif
  6007. }
  6008. break;
  6009. case 999: // M999: Restart after being stopped
  6010. Stopped = false;
  6011. lcd_reset_alert_level();
  6012. gcode_LastN = Stopped_gcode_LastN;
  6013. FlushSerialRequestResend();
  6014. break;
  6015. default:
  6016. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6017. }
  6018. } // end if(code_seen('M')) (end of M codes)
  6019. else if(code_seen('T'))
  6020. {
  6021. int index;
  6022. st_synchronize();
  6023. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6024. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6025. SERIAL_ECHOLNPGM("Invalid T code.");
  6026. }
  6027. else {
  6028. if (*(strchr_pointer + index) == '?') {
  6029. tmp_extruder = choose_extruder_menu();
  6030. }
  6031. else {
  6032. tmp_extruder = code_value();
  6033. }
  6034. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6035. #ifdef SNMM
  6036. #ifdef LIN_ADVANCE
  6037. if (snmm_extruder != tmp_extruder)
  6038. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6039. #endif
  6040. snmm_extruder = tmp_extruder;
  6041. delay(100);
  6042. disable_e0();
  6043. disable_e1();
  6044. disable_e2();
  6045. pinMode(E_MUX0_PIN, OUTPUT);
  6046. pinMode(E_MUX1_PIN, OUTPUT);
  6047. delay(100);
  6048. SERIAL_ECHO_START;
  6049. SERIAL_ECHO("T:");
  6050. SERIAL_ECHOLN((int)tmp_extruder);
  6051. switch (tmp_extruder) {
  6052. case 1:
  6053. WRITE(E_MUX0_PIN, HIGH);
  6054. WRITE(E_MUX1_PIN, LOW);
  6055. break;
  6056. case 2:
  6057. WRITE(E_MUX0_PIN, LOW);
  6058. WRITE(E_MUX1_PIN, HIGH);
  6059. break;
  6060. case 3:
  6061. WRITE(E_MUX0_PIN, HIGH);
  6062. WRITE(E_MUX1_PIN, HIGH);
  6063. break;
  6064. default:
  6065. WRITE(E_MUX0_PIN, LOW);
  6066. WRITE(E_MUX1_PIN, LOW);
  6067. break;
  6068. }
  6069. delay(100);
  6070. #else
  6071. if (tmp_extruder >= EXTRUDERS) {
  6072. SERIAL_ECHO_START;
  6073. SERIAL_ECHOPGM("T");
  6074. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6075. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6076. }
  6077. else {
  6078. boolean make_move = false;
  6079. if (code_seen('F')) {
  6080. make_move = true;
  6081. next_feedrate = code_value();
  6082. if (next_feedrate > 0.0) {
  6083. feedrate = next_feedrate;
  6084. }
  6085. }
  6086. #if EXTRUDERS > 1
  6087. if (tmp_extruder != active_extruder) {
  6088. // Save current position to return to after applying extruder offset
  6089. memcpy(destination, current_position, sizeof(destination));
  6090. // Offset extruder (only by XY)
  6091. int i;
  6092. for (i = 0; i < 2; i++) {
  6093. current_position[i] = current_position[i] -
  6094. extruder_offset[i][active_extruder] +
  6095. extruder_offset[i][tmp_extruder];
  6096. }
  6097. // Set the new active extruder and position
  6098. active_extruder = tmp_extruder;
  6099. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6100. // Move to the old position if 'F' was in the parameters
  6101. if (make_move && Stopped == false) {
  6102. prepare_move();
  6103. }
  6104. }
  6105. #endif
  6106. SERIAL_ECHO_START;
  6107. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6108. SERIAL_PROTOCOLLN((int)active_extruder);
  6109. }
  6110. #endif
  6111. }
  6112. } // end if(code_seen('T')) (end of T codes)
  6113. #ifdef DEBUG_DCODES
  6114. else if (code_seen('D')) // D codes (debug)
  6115. {
  6116. switch((int)code_value())
  6117. {
  6118. case -1: // D-1 - Endless loop
  6119. dcode__1(); break;
  6120. case 0: // D0 - Reset
  6121. dcode_0(); break;
  6122. case 1: // D1 - Clear EEPROM
  6123. dcode_1(); break;
  6124. case 2: // D2 - Read/Write RAM
  6125. dcode_2(); break;
  6126. case 3: // D3 - Read/Write EEPROM
  6127. dcode_3(); break;
  6128. case 4: // D4 - Read/Write PIN
  6129. dcode_4(); break;
  6130. case 5: // D5 - Read/Write FLASH
  6131. // dcode_5(); break;
  6132. break;
  6133. case 6: // D6 - Read/Write external FLASH
  6134. dcode_6(); break;
  6135. case 7: // D7 - Read/Write Bootloader
  6136. dcode_7(); break;
  6137. case 8: // D8 - Read/Write PINDA
  6138. dcode_8(); break;
  6139. case 9: // D9 - Read/Write ADC
  6140. dcode_9(); break;
  6141. case 10: // D10 - XYZ calibration = OK
  6142. dcode_10(); break;
  6143. #ifdef TMC2130
  6144. case 2130: // D9125 - TMC2130
  6145. dcode_2130(); break;
  6146. #endif //TMC2130
  6147. #ifdef PAT9125
  6148. case 9125: // D9125 - PAT9125
  6149. dcode_9125(); break;
  6150. #endif //PAT9125
  6151. }
  6152. }
  6153. #endif //DEBUG_DCODES
  6154. else
  6155. {
  6156. SERIAL_ECHO_START;
  6157. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6158. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6159. SERIAL_ECHOLNPGM("\"(2)");
  6160. }
  6161. KEEPALIVE_STATE(NOT_BUSY);
  6162. ClearToSend();
  6163. }
  6164. void FlushSerialRequestResend()
  6165. {
  6166. //char cmdbuffer[bufindr][100]="Resend:";
  6167. MYSERIAL.flush();
  6168. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6169. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6170. previous_millis_cmd = millis();
  6171. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6172. }
  6173. // Confirm the execution of a command, if sent from a serial line.
  6174. // Execution of a command from a SD card will not be confirmed.
  6175. void ClearToSend()
  6176. {
  6177. previous_millis_cmd = millis();
  6178. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6179. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6180. }
  6181. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6182. void update_currents() {
  6183. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6184. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6185. float tmp_motor[3];
  6186. //SERIAL_ECHOLNPGM("Currents updated: ");
  6187. if (destination[Z_AXIS] < Z_SILENT) {
  6188. //SERIAL_ECHOLNPGM("LOW");
  6189. for (uint8_t i = 0; i < 3; i++) {
  6190. st_current_set(i, current_low[i]);
  6191. /*MYSERIAL.print(int(i));
  6192. SERIAL_ECHOPGM(": ");
  6193. MYSERIAL.println(current_low[i]);*/
  6194. }
  6195. }
  6196. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6197. //SERIAL_ECHOLNPGM("HIGH");
  6198. for (uint8_t i = 0; i < 3; i++) {
  6199. st_current_set(i, current_high[i]);
  6200. /*MYSERIAL.print(int(i));
  6201. SERIAL_ECHOPGM(": ");
  6202. MYSERIAL.println(current_high[i]);*/
  6203. }
  6204. }
  6205. else {
  6206. for (uint8_t i = 0; i < 3; i++) {
  6207. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6208. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6209. st_current_set(i, tmp_motor[i]);
  6210. /*MYSERIAL.print(int(i));
  6211. SERIAL_ECHOPGM(": ");
  6212. MYSERIAL.println(tmp_motor[i]);*/
  6213. }
  6214. }
  6215. }
  6216. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6217. void get_coordinates()
  6218. {
  6219. bool seen[4]={false,false,false,false};
  6220. for(int8_t i=0; i < NUM_AXIS; i++) {
  6221. if(code_seen(axis_codes[i]))
  6222. {
  6223. bool relative = axis_relative_modes[i] || relative_mode;
  6224. destination[i] = (float)code_value();
  6225. if (i == E_AXIS) {
  6226. float emult = extruder_multiplier[active_extruder];
  6227. if (emult != 1.) {
  6228. if (! relative) {
  6229. destination[i] -= current_position[i];
  6230. relative = true;
  6231. }
  6232. destination[i] *= emult;
  6233. }
  6234. }
  6235. if (relative)
  6236. destination[i] += current_position[i];
  6237. seen[i]=true;
  6238. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6239. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6240. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6241. }
  6242. else destination[i] = current_position[i]; //Are these else lines really needed?
  6243. }
  6244. if(code_seen('F')) {
  6245. next_feedrate = code_value();
  6246. #ifdef MAX_SILENT_FEEDRATE
  6247. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6248. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6249. #endif //MAX_SILENT_FEEDRATE
  6250. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6251. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6252. {
  6253. // float e_max_speed =
  6254. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6255. }
  6256. }
  6257. }
  6258. void get_arc_coordinates()
  6259. {
  6260. #ifdef SF_ARC_FIX
  6261. bool relative_mode_backup = relative_mode;
  6262. relative_mode = true;
  6263. #endif
  6264. get_coordinates();
  6265. #ifdef SF_ARC_FIX
  6266. relative_mode=relative_mode_backup;
  6267. #endif
  6268. if(code_seen('I')) {
  6269. offset[0] = code_value();
  6270. }
  6271. else {
  6272. offset[0] = 0.0;
  6273. }
  6274. if(code_seen('J')) {
  6275. offset[1] = code_value();
  6276. }
  6277. else {
  6278. offset[1] = 0.0;
  6279. }
  6280. }
  6281. void clamp_to_software_endstops(float target[3])
  6282. {
  6283. #ifdef DEBUG_DISABLE_SWLIMITS
  6284. return;
  6285. #endif //DEBUG_DISABLE_SWLIMITS
  6286. world2machine_clamp(target[0], target[1]);
  6287. // Clamp the Z coordinate.
  6288. if (min_software_endstops) {
  6289. float negative_z_offset = 0;
  6290. #ifdef ENABLE_AUTO_BED_LEVELING
  6291. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6292. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6293. #endif
  6294. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6295. }
  6296. if (max_software_endstops) {
  6297. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6298. }
  6299. }
  6300. #ifdef MESH_BED_LEVELING
  6301. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6302. float dx = x - current_position[X_AXIS];
  6303. float dy = y - current_position[Y_AXIS];
  6304. float dz = z - current_position[Z_AXIS];
  6305. int n_segments = 0;
  6306. if (mbl.active) {
  6307. float len = abs(dx) + abs(dy);
  6308. if (len > 0)
  6309. // Split to 3cm segments or shorter.
  6310. n_segments = int(ceil(len / 30.f));
  6311. }
  6312. if (n_segments > 1) {
  6313. float de = e - current_position[E_AXIS];
  6314. for (int i = 1; i < n_segments; ++ i) {
  6315. float t = float(i) / float(n_segments);
  6316. plan_buffer_line(
  6317. current_position[X_AXIS] + t * dx,
  6318. current_position[Y_AXIS] + t * dy,
  6319. current_position[Z_AXIS] + t * dz,
  6320. current_position[E_AXIS] + t * de,
  6321. feed_rate, extruder);
  6322. }
  6323. }
  6324. // The rest of the path.
  6325. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6326. current_position[X_AXIS] = x;
  6327. current_position[Y_AXIS] = y;
  6328. current_position[Z_AXIS] = z;
  6329. current_position[E_AXIS] = e;
  6330. }
  6331. #endif // MESH_BED_LEVELING
  6332. void prepare_move()
  6333. {
  6334. clamp_to_software_endstops(destination);
  6335. previous_millis_cmd = millis();
  6336. // Do not use feedmultiply for E or Z only moves
  6337. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6338. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6339. }
  6340. else {
  6341. #ifdef MESH_BED_LEVELING
  6342. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6343. #else
  6344. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6345. #endif
  6346. }
  6347. for(int8_t i=0; i < NUM_AXIS; i++) {
  6348. current_position[i] = destination[i];
  6349. }
  6350. }
  6351. void prepare_arc_move(char isclockwise) {
  6352. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6353. // Trace the arc
  6354. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6355. // As far as the parser is concerned, the position is now == target. In reality the
  6356. // motion control system might still be processing the action and the real tool position
  6357. // in any intermediate location.
  6358. for(int8_t i=0; i < NUM_AXIS; i++) {
  6359. current_position[i] = destination[i];
  6360. }
  6361. previous_millis_cmd = millis();
  6362. }
  6363. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6364. #if defined(FAN_PIN)
  6365. #if CONTROLLERFAN_PIN == FAN_PIN
  6366. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6367. #endif
  6368. #endif
  6369. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6370. unsigned long lastMotorCheck = 0;
  6371. void controllerFan()
  6372. {
  6373. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6374. {
  6375. lastMotorCheck = millis();
  6376. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6377. #if EXTRUDERS > 2
  6378. || !READ(E2_ENABLE_PIN)
  6379. #endif
  6380. #if EXTRUDER > 1
  6381. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6382. || !READ(X2_ENABLE_PIN)
  6383. #endif
  6384. || !READ(E1_ENABLE_PIN)
  6385. #endif
  6386. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6387. {
  6388. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6389. }
  6390. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6391. {
  6392. digitalWrite(CONTROLLERFAN_PIN, 0);
  6393. analogWrite(CONTROLLERFAN_PIN, 0);
  6394. }
  6395. else
  6396. {
  6397. // allows digital or PWM fan output to be used (see M42 handling)
  6398. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6399. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6400. }
  6401. }
  6402. }
  6403. #endif
  6404. #ifdef TEMP_STAT_LEDS
  6405. static bool blue_led = false;
  6406. static bool red_led = false;
  6407. static uint32_t stat_update = 0;
  6408. void handle_status_leds(void) {
  6409. float max_temp = 0.0;
  6410. if(millis() > stat_update) {
  6411. stat_update += 500; // Update every 0.5s
  6412. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6413. max_temp = max(max_temp, degHotend(cur_extruder));
  6414. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6415. }
  6416. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6417. max_temp = max(max_temp, degTargetBed());
  6418. max_temp = max(max_temp, degBed());
  6419. #endif
  6420. if((max_temp > 55.0) && (red_led == false)) {
  6421. digitalWrite(STAT_LED_RED, 1);
  6422. digitalWrite(STAT_LED_BLUE, 0);
  6423. red_led = true;
  6424. blue_led = false;
  6425. }
  6426. if((max_temp < 54.0) && (blue_led == false)) {
  6427. digitalWrite(STAT_LED_RED, 0);
  6428. digitalWrite(STAT_LED_BLUE, 1);
  6429. red_led = false;
  6430. blue_led = true;
  6431. }
  6432. }
  6433. }
  6434. #endif
  6435. #ifdef SAFETYTIMER
  6436. /**
  6437. * @brief Turn off heating after 30 minutes of inactivity
  6438. *
  6439. * Full screen blocking notification message is shown after heater turning off.
  6440. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6441. * damage print.
  6442. */
  6443. static void handleSafetyTimer()
  6444. {
  6445. #if (EXTRUDERS > 1)
  6446. #error Implemented only for one extruder.
  6447. #endif //(EXTRUDERS > 1)
  6448. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6449. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6450. {
  6451. safetyTimer.stop();
  6452. }
  6453. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6454. {
  6455. safetyTimer.start();
  6456. }
  6457. else if (safetyTimer.expired(1800000ul)) //30 min
  6458. {
  6459. setTargetBed(0);
  6460. setTargetHotend(0, 0);
  6461. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6462. }
  6463. }
  6464. #endif //SAFETYTIMER
  6465. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6466. {
  6467. #ifdef PAT9125
  6468. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6469. {
  6470. if (fsensor_autoload_enabled)
  6471. {
  6472. if (fsensor_check_autoload())
  6473. {
  6474. if (degHotend0() > EXTRUDE_MINTEMP)
  6475. {
  6476. fsensor_autoload_check_stop();
  6477. tone(BEEPER, 1000);
  6478. delay_keep_alive(50);
  6479. noTone(BEEPER);
  6480. loading_flag = true;
  6481. enquecommand_front_P((PSTR("M701")));
  6482. }
  6483. else
  6484. {
  6485. lcd_update_enable(false);
  6486. lcd_implementation_clear();
  6487. lcd.setCursor(0, 0);
  6488. lcd_printPGM(_T(MSG_ERROR));
  6489. lcd.setCursor(0, 2);
  6490. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6491. delay(2000);
  6492. lcd_implementation_clear();
  6493. lcd_update_enable(true);
  6494. }
  6495. }
  6496. }
  6497. else
  6498. fsensor_autoload_check_start();
  6499. }
  6500. else
  6501. if (fsensor_autoload_enabled)
  6502. fsensor_autoload_check_stop();
  6503. #endif //PAT9125
  6504. #ifdef SAFETYTIMER
  6505. handleSafetyTimer();
  6506. #endif //SAFETYTIMER
  6507. #if defined(KILL_PIN) && KILL_PIN > -1
  6508. static int killCount = 0; // make the inactivity button a bit less responsive
  6509. const int KILL_DELAY = 10000;
  6510. #endif
  6511. if(buflen < (BUFSIZE-1)){
  6512. get_command();
  6513. }
  6514. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6515. if(max_inactive_time)
  6516. kill(_n(""), 4);
  6517. if(stepper_inactive_time) {
  6518. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6519. {
  6520. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6521. disable_x();
  6522. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6523. disable_y();
  6524. disable_z();
  6525. disable_e0();
  6526. disable_e1();
  6527. disable_e2();
  6528. }
  6529. }
  6530. }
  6531. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6532. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6533. {
  6534. chdkActive = false;
  6535. WRITE(CHDK, LOW);
  6536. }
  6537. #endif
  6538. #if defined(KILL_PIN) && KILL_PIN > -1
  6539. // Check if the kill button was pressed and wait just in case it was an accidental
  6540. // key kill key press
  6541. // -------------------------------------------------------------------------------
  6542. if( 0 == READ(KILL_PIN) )
  6543. {
  6544. killCount++;
  6545. }
  6546. else if (killCount > 0)
  6547. {
  6548. killCount--;
  6549. }
  6550. // Exceeded threshold and we can confirm that it was not accidental
  6551. // KILL the machine
  6552. // ----------------------------------------------------------------
  6553. if ( killCount >= KILL_DELAY)
  6554. {
  6555. kill("", 5);
  6556. }
  6557. #endif
  6558. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6559. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6560. #endif
  6561. #ifdef EXTRUDER_RUNOUT_PREVENT
  6562. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6563. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6564. {
  6565. bool oldstatus=READ(E0_ENABLE_PIN);
  6566. enable_e0();
  6567. float oldepos=current_position[E_AXIS];
  6568. float oldedes=destination[E_AXIS];
  6569. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6570. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6571. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6572. current_position[E_AXIS]=oldepos;
  6573. destination[E_AXIS]=oldedes;
  6574. plan_set_e_position(oldepos);
  6575. previous_millis_cmd=millis();
  6576. st_synchronize();
  6577. WRITE(E0_ENABLE_PIN,oldstatus);
  6578. }
  6579. #endif
  6580. #ifdef TEMP_STAT_LEDS
  6581. handle_status_leds();
  6582. #endif
  6583. check_axes_activity();
  6584. }
  6585. void kill(const char *full_screen_message, unsigned char id)
  6586. {
  6587. SERIAL_ECHOPGM("KILL: ");
  6588. MYSERIAL.println(int(id));
  6589. //return;
  6590. cli(); // Stop interrupts
  6591. disable_heater();
  6592. disable_x();
  6593. // SERIAL_ECHOLNPGM("kill - disable Y");
  6594. disable_y();
  6595. disable_z();
  6596. disable_e0();
  6597. disable_e1();
  6598. disable_e2();
  6599. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6600. pinMode(PS_ON_PIN,INPUT);
  6601. #endif
  6602. SERIAL_ERROR_START;
  6603. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6604. if (full_screen_message != NULL) {
  6605. SERIAL_ERRORLNRPGM(full_screen_message);
  6606. lcd_display_message_fullscreen_P(full_screen_message);
  6607. } else {
  6608. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6609. }
  6610. // FMC small patch to update the LCD before ending
  6611. sei(); // enable interrupts
  6612. for ( int i=5; i--; lcd_update())
  6613. {
  6614. delay(200);
  6615. }
  6616. cli(); // disable interrupts
  6617. suicide();
  6618. while(1)
  6619. {
  6620. #ifdef WATCHDOG
  6621. wdt_reset();
  6622. #endif //WATCHDOG
  6623. /* Intentionally left empty */
  6624. } // Wait for reset
  6625. }
  6626. void Stop()
  6627. {
  6628. disable_heater();
  6629. if(Stopped == false) {
  6630. Stopped = true;
  6631. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6632. SERIAL_ERROR_START;
  6633. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6634. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6635. }
  6636. }
  6637. bool IsStopped() { return Stopped; };
  6638. #ifdef FAST_PWM_FAN
  6639. void setPwmFrequency(uint8_t pin, int val)
  6640. {
  6641. val &= 0x07;
  6642. switch(digitalPinToTimer(pin))
  6643. {
  6644. #if defined(TCCR0A)
  6645. case TIMER0A:
  6646. case TIMER0B:
  6647. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6648. // TCCR0B |= val;
  6649. break;
  6650. #endif
  6651. #if defined(TCCR1A)
  6652. case TIMER1A:
  6653. case TIMER1B:
  6654. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6655. // TCCR1B |= val;
  6656. break;
  6657. #endif
  6658. #if defined(TCCR2)
  6659. case TIMER2:
  6660. case TIMER2:
  6661. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6662. TCCR2 |= val;
  6663. break;
  6664. #endif
  6665. #if defined(TCCR2A)
  6666. case TIMER2A:
  6667. case TIMER2B:
  6668. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6669. TCCR2B |= val;
  6670. break;
  6671. #endif
  6672. #if defined(TCCR3A)
  6673. case TIMER3A:
  6674. case TIMER3B:
  6675. case TIMER3C:
  6676. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6677. TCCR3B |= val;
  6678. break;
  6679. #endif
  6680. #if defined(TCCR4A)
  6681. case TIMER4A:
  6682. case TIMER4B:
  6683. case TIMER4C:
  6684. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6685. TCCR4B |= val;
  6686. break;
  6687. #endif
  6688. #if defined(TCCR5A)
  6689. case TIMER5A:
  6690. case TIMER5B:
  6691. case TIMER5C:
  6692. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6693. TCCR5B |= val;
  6694. break;
  6695. #endif
  6696. }
  6697. }
  6698. #endif //FAST_PWM_FAN
  6699. bool setTargetedHotend(int code){
  6700. tmp_extruder = active_extruder;
  6701. if(code_seen('T')) {
  6702. tmp_extruder = code_value();
  6703. if(tmp_extruder >= EXTRUDERS) {
  6704. SERIAL_ECHO_START;
  6705. switch(code){
  6706. case 104:
  6707. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6708. break;
  6709. case 105:
  6710. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6711. break;
  6712. case 109:
  6713. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6714. break;
  6715. case 218:
  6716. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6717. break;
  6718. case 221:
  6719. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6720. break;
  6721. }
  6722. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6723. return true;
  6724. }
  6725. }
  6726. return false;
  6727. }
  6728. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6729. {
  6730. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6731. {
  6732. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6733. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6734. }
  6735. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6736. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6737. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6738. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6739. total_filament_used = 0;
  6740. }
  6741. float calculate_extruder_multiplier(float diameter) {
  6742. float out = 1.f;
  6743. if (volumetric_enabled && diameter > 0.f) {
  6744. float area = M_PI * diameter * diameter * 0.25;
  6745. out = 1.f / area;
  6746. }
  6747. if (extrudemultiply != 100)
  6748. out *= float(extrudemultiply) * 0.01f;
  6749. return out;
  6750. }
  6751. void calculate_extruder_multipliers() {
  6752. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6753. #if EXTRUDERS > 1
  6754. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6755. #if EXTRUDERS > 2
  6756. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6757. #endif
  6758. #endif
  6759. }
  6760. void delay_keep_alive(unsigned int ms)
  6761. {
  6762. for (;;) {
  6763. manage_heater();
  6764. // Manage inactivity, but don't disable steppers on timeout.
  6765. manage_inactivity(true);
  6766. lcd_update();
  6767. if (ms == 0)
  6768. break;
  6769. else if (ms >= 50) {
  6770. delay(50);
  6771. ms -= 50;
  6772. } else {
  6773. delay(ms);
  6774. ms = 0;
  6775. }
  6776. }
  6777. }
  6778. void wait_for_heater(long codenum) {
  6779. #ifdef TEMP_RESIDENCY_TIME
  6780. long residencyStart;
  6781. residencyStart = -1;
  6782. /* continue to loop until we have reached the target temp
  6783. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6784. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6785. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6786. #else
  6787. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6788. #endif //TEMP_RESIDENCY_TIME
  6789. if ((millis() - codenum) > 1000UL)
  6790. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6791. if (!farm_mode) {
  6792. SERIAL_PROTOCOLPGM("T:");
  6793. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6794. SERIAL_PROTOCOLPGM(" E:");
  6795. SERIAL_PROTOCOL((int)tmp_extruder);
  6796. #ifdef TEMP_RESIDENCY_TIME
  6797. SERIAL_PROTOCOLPGM(" W:");
  6798. if (residencyStart > -1)
  6799. {
  6800. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6801. SERIAL_PROTOCOLLN(codenum);
  6802. }
  6803. else
  6804. {
  6805. SERIAL_PROTOCOLLN("?");
  6806. }
  6807. }
  6808. #else
  6809. SERIAL_PROTOCOLLN("");
  6810. #endif
  6811. codenum = millis();
  6812. }
  6813. manage_heater();
  6814. manage_inactivity();
  6815. lcd_update();
  6816. #ifdef TEMP_RESIDENCY_TIME
  6817. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6818. or when current temp falls outside the hysteresis after target temp was reached */
  6819. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6820. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6821. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6822. {
  6823. residencyStart = millis();
  6824. }
  6825. #endif //TEMP_RESIDENCY_TIME
  6826. }
  6827. }
  6828. void check_babystep() {
  6829. int babystep_z;
  6830. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6831. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6832. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6833. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6834. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6835. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6836. lcd_update_enable(true);
  6837. }
  6838. }
  6839. #ifdef DIS
  6840. void d_setup()
  6841. {
  6842. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6843. pinMode(D_DATA, INPUT_PULLUP);
  6844. pinMode(D_REQUIRE, OUTPUT);
  6845. digitalWrite(D_REQUIRE, HIGH);
  6846. }
  6847. float d_ReadData()
  6848. {
  6849. int digit[13];
  6850. String mergeOutput;
  6851. float output;
  6852. digitalWrite(D_REQUIRE, HIGH);
  6853. for (int i = 0; i<13; i++)
  6854. {
  6855. for (int j = 0; j < 4; j++)
  6856. {
  6857. while (digitalRead(D_DATACLOCK) == LOW) {}
  6858. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6859. bitWrite(digit[i], j, digitalRead(D_DATA));
  6860. }
  6861. }
  6862. digitalWrite(D_REQUIRE, LOW);
  6863. mergeOutput = "";
  6864. output = 0;
  6865. for (int r = 5; r <= 10; r++) //Merge digits
  6866. {
  6867. mergeOutput += digit[r];
  6868. }
  6869. output = mergeOutput.toFloat();
  6870. if (digit[4] == 8) //Handle sign
  6871. {
  6872. output *= -1;
  6873. }
  6874. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6875. {
  6876. output /= 10;
  6877. }
  6878. return output;
  6879. }
  6880. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6881. int t1 = 0;
  6882. int t_delay = 0;
  6883. int digit[13];
  6884. int m;
  6885. char str[3];
  6886. //String mergeOutput;
  6887. char mergeOutput[15];
  6888. float output;
  6889. int mesh_point = 0; //index number of calibration point
  6890. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6891. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6892. float mesh_home_z_search = 4;
  6893. float row[x_points_num];
  6894. int ix = 0;
  6895. int iy = 0;
  6896. char* filename_wldsd = "wldsd.txt";
  6897. char data_wldsd[70];
  6898. char numb_wldsd[10];
  6899. d_setup();
  6900. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6901. // We don't know where we are! HOME!
  6902. // Push the commands to the front of the message queue in the reverse order!
  6903. // There shall be always enough space reserved for these commands.
  6904. repeatcommand_front(); // repeat G80 with all its parameters
  6905. enquecommand_front_P((PSTR("G28 W0")));
  6906. enquecommand_front_P((PSTR("G1 Z5")));
  6907. return;
  6908. }
  6909. bool custom_message_old = custom_message;
  6910. unsigned int custom_message_type_old = custom_message_type;
  6911. unsigned int custom_message_state_old = custom_message_state;
  6912. custom_message = true;
  6913. custom_message_type = 1;
  6914. custom_message_state = (x_points_num * y_points_num) + 10;
  6915. lcd_update(1);
  6916. mbl.reset();
  6917. babystep_undo();
  6918. card.openFile(filename_wldsd, false);
  6919. current_position[Z_AXIS] = mesh_home_z_search;
  6920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6921. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6922. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6923. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6924. setup_for_endstop_move(false);
  6925. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6926. SERIAL_PROTOCOL(x_points_num);
  6927. SERIAL_PROTOCOLPGM(",");
  6928. SERIAL_PROTOCOL(y_points_num);
  6929. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6930. SERIAL_PROTOCOL(mesh_home_z_search);
  6931. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6932. SERIAL_PROTOCOL(x_dimension);
  6933. SERIAL_PROTOCOLPGM(",");
  6934. SERIAL_PROTOCOL(y_dimension);
  6935. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6936. while (mesh_point != x_points_num * y_points_num) {
  6937. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6938. iy = mesh_point / x_points_num;
  6939. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6940. float z0 = 0.f;
  6941. current_position[Z_AXIS] = mesh_home_z_search;
  6942. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6943. st_synchronize();
  6944. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6945. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6946. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6947. st_synchronize();
  6948. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6949. break;
  6950. card.closefile();
  6951. }
  6952. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6953. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6954. //strcat(data_wldsd, numb_wldsd);
  6955. //MYSERIAL.println(data_wldsd);
  6956. //delay(1000);
  6957. //delay(3000);
  6958. //t1 = millis();
  6959. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6960. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6961. memset(digit, 0, sizeof(digit));
  6962. //cli();
  6963. digitalWrite(D_REQUIRE, LOW);
  6964. for (int i = 0; i<13; i++)
  6965. {
  6966. //t1 = millis();
  6967. for (int j = 0; j < 4; j++)
  6968. {
  6969. while (digitalRead(D_DATACLOCK) == LOW) {}
  6970. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6971. bitWrite(digit[i], j, digitalRead(D_DATA));
  6972. }
  6973. //t_delay = (millis() - t1);
  6974. //SERIAL_PROTOCOLPGM(" ");
  6975. //SERIAL_PROTOCOL_F(t_delay, 5);
  6976. //SERIAL_PROTOCOLPGM(" ");
  6977. }
  6978. //sei();
  6979. digitalWrite(D_REQUIRE, HIGH);
  6980. mergeOutput[0] = '\0';
  6981. output = 0;
  6982. for (int r = 5; r <= 10; r++) //Merge digits
  6983. {
  6984. sprintf(str, "%d", digit[r]);
  6985. strcat(mergeOutput, str);
  6986. }
  6987. output = atof(mergeOutput);
  6988. if (digit[4] == 8) //Handle sign
  6989. {
  6990. output *= -1;
  6991. }
  6992. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6993. {
  6994. output *= 0.1;
  6995. }
  6996. //output = d_ReadData();
  6997. //row[ix] = current_position[Z_AXIS];
  6998. memset(data_wldsd, 0, sizeof(data_wldsd));
  6999. for (int i = 0; i <3; i++) {
  7000. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7001. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7002. strcat(data_wldsd, numb_wldsd);
  7003. strcat(data_wldsd, ";");
  7004. }
  7005. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7006. dtostrf(output, 8, 5, numb_wldsd);
  7007. strcat(data_wldsd, numb_wldsd);
  7008. //strcat(data_wldsd, ";");
  7009. card.write_command(data_wldsd);
  7010. //row[ix] = d_ReadData();
  7011. row[ix] = output; // current_position[Z_AXIS];
  7012. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7013. for (int i = 0; i < x_points_num; i++) {
  7014. SERIAL_PROTOCOLPGM(" ");
  7015. SERIAL_PROTOCOL_F(row[i], 5);
  7016. }
  7017. SERIAL_PROTOCOLPGM("\n");
  7018. }
  7019. custom_message_state--;
  7020. mesh_point++;
  7021. lcd_update(1);
  7022. }
  7023. card.closefile();
  7024. }
  7025. #endif
  7026. void temp_compensation_start() {
  7027. custom_message = true;
  7028. custom_message_type = 5;
  7029. custom_message_state = PINDA_HEAT_T + 1;
  7030. lcd_update(2);
  7031. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7032. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7033. }
  7034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7035. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7036. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7037. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7039. st_synchronize();
  7040. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7041. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7042. delay_keep_alive(1000);
  7043. custom_message_state = PINDA_HEAT_T - i;
  7044. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7045. else lcd_update(1);
  7046. }
  7047. custom_message_type = 0;
  7048. custom_message_state = 0;
  7049. custom_message = false;
  7050. }
  7051. void temp_compensation_apply() {
  7052. int i_add;
  7053. int compensation_value;
  7054. int z_shift = 0;
  7055. float z_shift_mm;
  7056. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7057. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7058. i_add = (target_temperature_bed - 60) / 10;
  7059. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7060. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7061. }else {
  7062. //interpolation
  7063. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7064. }
  7065. SERIAL_PROTOCOLPGM("\n");
  7066. SERIAL_PROTOCOLPGM("Z shift applied:");
  7067. MYSERIAL.print(z_shift_mm);
  7068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7069. st_synchronize();
  7070. plan_set_z_position(current_position[Z_AXIS]);
  7071. }
  7072. else {
  7073. //we have no temp compensation data
  7074. }
  7075. }
  7076. float temp_comp_interpolation(float inp_temperature) {
  7077. //cubic spline interpolation
  7078. int n, i, j, k;
  7079. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7080. int shift[10];
  7081. int temp_C[10];
  7082. n = 6; //number of measured points
  7083. shift[0] = 0;
  7084. for (i = 0; i < n; i++) {
  7085. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7086. temp_C[i] = 50 + i * 10; //temperature in C
  7087. #ifdef PINDA_THERMISTOR
  7088. temp_C[i] = 35 + i * 5; //temperature in C
  7089. #else
  7090. temp_C[i] = 50 + i * 10; //temperature in C
  7091. #endif
  7092. x[i] = (float)temp_C[i];
  7093. f[i] = (float)shift[i];
  7094. }
  7095. if (inp_temperature < x[0]) return 0;
  7096. for (i = n - 1; i>0; i--) {
  7097. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7098. h[i - 1] = x[i] - x[i - 1];
  7099. }
  7100. //*********** formation of h, s , f matrix **************
  7101. for (i = 1; i<n - 1; i++) {
  7102. m[i][i] = 2 * (h[i - 1] + h[i]);
  7103. if (i != 1) {
  7104. m[i][i - 1] = h[i - 1];
  7105. m[i - 1][i] = h[i - 1];
  7106. }
  7107. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7108. }
  7109. //*********** forward elimination **************
  7110. for (i = 1; i<n - 2; i++) {
  7111. temp = (m[i + 1][i] / m[i][i]);
  7112. for (j = 1; j <= n - 1; j++)
  7113. m[i + 1][j] -= temp*m[i][j];
  7114. }
  7115. //*********** backward substitution *********
  7116. for (i = n - 2; i>0; i--) {
  7117. sum = 0;
  7118. for (j = i; j <= n - 2; j++)
  7119. sum += m[i][j] * s[j];
  7120. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7121. }
  7122. for (i = 0; i<n - 1; i++)
  7123. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7124. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7125. b = s[i] / 2;
  7126. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7127. d = f[i];
  7128. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7129. }
  7130. return sum;
  7131. }
  7132. #ifdef PINDA_THERMISTOR
  7133. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7134. {
  7135. if (!temp_cal_active) return 0;
  7136. if (!calibration_status_pinda()) return 0;
  7137. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7138. }
  7139. #endif //PINDA_THERMISTOR
  7140. void long_pause() //long pause print
  7141. {
  7142. st_synchronize();
  7143. //save currently set parameters to global variables
  7144. saved_feedmultiply = feedmultiply;
  7145. HotendTempBckp = degTargetHotend(active_extruder);
  7146. fanSpeedBckp = fanSpeed;
  7147. start_pause_print = millis();
  7148. //save position
  7149. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7150. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7151. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7152. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7153. //retract
  7154. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7156. //lift z
  7157. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7158. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7160. //set nozzle target temperature to 0
  7161. setTargetHotend(0, 0);
  7162. setTargetHotend(0, 1);
  7163. setTargetHotend(0, 2);
  7164. //Move XY to side
  7165. current_position[X_AXIS] = X_PAUSE_POS;
  7166. current_position[Y_AXIS] = Y_PAUSE_POS;
  7167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7168. // Turn off the print fan
  7169. fanSpeed = 0;
  7170. st_synchronize();
  7171. }
  7172. void serialecho_temperatures() {
  7173. float tt = degHotend(active_extruder);
  7174. SERIAL_PROTOCOLPGM("T:");
  7175. SERIAL_PROTOCOL(tt);
  7176. SERIAL_PROTOCOLPGM(" E:");
  7177. SERIAL_PROTOCOL((int)active_extruder);
  7178. SERIAL_PROTOCOLPGM(" B:");
  7179. SERIAL_PROTOCOL_F(degBed(), 1);
  7180. SERIAL_PROTOCOLLN("");
  7181. }
  7182. extern uint32_t sdpos_atomic;
  7183. #ifdef UVLO_SUPPORT
  7184. void uvlo_()
  7185. {
  7186. unsigned long time_start = millis();
  7187. bool sd_print = card.sdprinting;
  7188. // Conserve power as soon as possible.
  7189. disable_x();
  7190. disable_y();
  7191. #ifdef TMC2130
  7192. tmc2130_set_current_h(Z_AXIS, 20);
  7193. tmc2130_set_current_r(Z_AXIS, 20);
  7194. tmc2130_set_current_h(E_AXIS, 20);
  7195. tmc2130_set_current_r(E_AXIS, 20);
  7196. #endif //TMC2130
  7197. // Indicate that the interrupt has been triggered.
  7198. // SERIAL_ECHOLNPGM("UVLO");
  7199. // Read out the current Z motor microstep counter. This will be later used
  7200. // for reaching the zero full step before powering off.
  7201. uint16_t z_microsteps = 0;
  7202. #ifdef TMC2130
  7203. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7204. #endif //TMC2130
  7205. // Calculate the file position, from which to resume this print.
  7206. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7207. {
  7208. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7209. sd_position -= sdlen_planner;
  7210. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7211. sd_position -= sdlen_cmdqueue;
  7212. if (sd_position < 0) sd_position = 0;
  7213. }
  7214. // Backup the feedrate in mm/min.
  7215. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7216. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7217. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7218. // are in action.
  7219. planner_abort_hard();
  7220. // Store the current extruder position.
  7221. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7222. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7223. // Clean the input command queue.
  7224. cmdqueue_reset();
  7225. card.sdprinting = false;
  7226. // card.closefile();
  7227. // Enable stepper driver interrupt to move Z axis.
  7228. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7229. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7230. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7231. sei();
  7232. plan_buffer_line(
  7233. current_position[X_AXIS],
  7234. current_position[Y_AXIS],
  7235. current_position[Z_AXIS],
  7236. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7237. 95, active_extruder);
  7238. st_synchronize();
  7239. disable_e0();
  7240. plan_buffer_line(
  7241. current_position[X_AXIS],
  7242. current_position[Y_AXIS],
  7243. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7244. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7245. 40, active_extruder);
  7246. st_synchronize();
  7247. disable_e0();
  7248. plan_buffer_line(
  7249. current_position[X_AXIS],
  7250. current_position[Y_AXIS],
  7251. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7252. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7253. 40, active_extruder);
  7254. st_synchronize();
  7255. disable_e0();
  7256. disable_z();
  7257. // Move Z up to the next 0th full step.
  7258. // Write the file position.
  7259. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7260. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7261. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7262. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7263. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7264. // Scale the z value to 1u resolution.
  7265. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7266. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7267. }
  7268. // Read out the current Z motor microstep counter. This will be later used
  7269. // for reaching the zero full step before powering off.
  7270. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7271. // Store the current position.
  7272. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7273. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7274. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7275. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7276. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7277. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7278. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7279. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7280. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7281. #if EXTRUDERS > 1
  7282. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7283. #if EXTRUDERS > 2
  7284. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7285. #endif
  7286. #endif
  7287. // Finaly store the "power outage" flag.
  7288. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7289. st_synchronize();
  7290. SERIAL_ECHOPGM("stps");
  7291. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7292. disable_z();
  7293. // Increment power failure counter
  7294. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7295. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7296. SERIAL_ECHOLNPGM("UVLO - end");
  7297. MYSERIAL.println(millis() - time_start);
  7298. #if 0
  7299. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7300. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7302. st_synchronize();
  7303. #endif
  7304. cli();
  7305. volatile unsigned int ppcount = 0;
  7306. SET_OUTPUT(BEEPER);
  7307. WRITE(BEEPER, HIGH);
  7308. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7309. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7310. }
  7311. WRITE(BEEPER, LOW);
  7312. while(1){
  7313. #if 1
  7314. WRITE(BEEPER, LOW);
  7315. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7316. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7317. }
  7318. #endif
  7319. };
  7320. }
  7321. #endif //UVLO_SUPPORT
  7322. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7323. void setup_fan_interrupt() {
  7324. //INT7
  7325. DDRE &= ~(1 << 7); //input pin
  7326. PORTE &= ~(1 << 7); //no internal pull-up
  7327. //start with sensing rising edge
  7328. EICRB &= ~(1 << 6);
  7329. EICRB |= (1 << 7);
  7330. //enable INT7 interrupt
  7331. EIMSK |= (1 << 7);
  7332. }
  7333. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7334. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7335. ISR(INT7_vect) {
  7336. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7337. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7338. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7339. t_fan_rising_edge = millis_nc();
  7340. }
  7341. else { //interrupt was triggered by falling edge
  7342. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7343. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7344. }
  7345. }
  7346. EICRB ^= (1 << 6); //change edge
  7347. }
  7348. #endif
  7349. #ifdef UVLO_SUPPORT
  7350. void setup_uvlo_interrupt() {
  7351. DDRE &= ~(1 << 4); //input pin
  7352. PORTE &= ~(1 << 4); //no internal pull-up
  7353. //sensing falling edge
  7354. EICRB |= (1 << 0);
  7355. EICRB &= ~(1 << 1);
  7356. //enable INT4 interrupt
  7357. EIMSK |= (1 << 4);
  7358. }
  7359. ISR(INT4_vect) {
  7360. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7361. SERIAL_ECHOLNPGM("INT4");
  7362. if (IS_SD_PRINTING) uvlo_();
  7363. }
  7364. void recover_print(uint8_t automatic) {
  7365. char cmd[30];
  7366. lcd_update_enable(true);
  7367. lcd_update(2);
  7368. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7369. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7370. // Lift the print head, so one may remove the excess priming material.
  7371. if (current_position[Z_AXIS] < 25)
  7372. enquecommand_P(PSTR("G1 Z25 F800"));
  7373. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7374. enquecommand_P(PSTR("G28 X Y"));
  7375. // Set the target bed and nozzle temperatures and wait.
  7376. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7377. enquecommand(cmd);
  7378. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7379. enquecommand(cmd);
  7380. enquecommand_P(PSTR("M83")); //E axis relative mode
  7381. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7382. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7383. if(automatic == 0){
  7384. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7385. }
  7386. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7387. // Mark the power panic status as inactive.
  7388. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7389. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7390. delay_keep_alive(1000);
  7391. }*/
  7392. SERIAL_ECHOPGM("After waiting for temp:");
  7393. SERIAL_ECHOPGM("Current position X_AXIS:");
  7394. MYSERIAL.println(current_position[X_AXIS]);
  7395. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7396. MYSERIAL.println(current_position[Y_AXIS]);
  7397. // Restart the print.
  7398. restore_print_from_eeprom();
  7399. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7400. MYSERIAL.print(current_position[Z_AXIS]);
  7401. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7402. MYSERIAL.print(current_position[E_AXIS]);
  7403. }
  7404. void recover_machine_state_after_power_panic()
  7405. {
  7406. char cmd[30];
  7407. // 1) Recover the logical cordinates at the time of the power panic.
  7408. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7409. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7410. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7411. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7412. // The current position after power panic is moved to the next closest 0th full step.
  7413. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7414. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7415. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7416. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7417. sprintf_P(cmd, PSTR("G92 E"));
  7418. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7419. enquecommand(cmd);
  7420. }
  7421. memcpy(destination, current_position, sizeof(destination));
  7422. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7423. print_world_coordinates();
  7424. // 2) Initialize the logical to physical coordinate system transformation.
  7425. world2machine_initialize();
  7426. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7427. mbl.active = false;
  7428. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7429. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7430. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7431. // Scale the z value to 10u resolution.
  7432. int16_t v;
  7433. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7434. if (v != 0)
  7435. mbl.active = true;
  7436. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7437. }
  7438. if (mbl.active)
  7439. mbl.upsample_3x3();
  7440. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7441. // print_mesh_bed_leveling_table();
  7442. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7443. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7444. babystep_load();
  7445. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7446. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7447. // 6) Power up the motors, mark their positions as known.
  7448. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7449. axis_known_position[X_AXIS] = true; enable_x();
  7450. axis_known_position[Y_AXIS] = true; enable_y();
  7451. axis_known_position[Z_AXIS] = true; enable_z();
  7452. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7453. print_physical_coordinates();
  7454. // 7) Recover the target temperatures.
  7455. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7456. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7457. // 8) Recover extruder multipilers
  7458. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7459. #if EXTRUDERS > 1
  7460. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7461. #if EXTRUDERS > 2
  7462. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7463. #endif
  7464. #endif
  7465. }
  7466. void restore_print_from_eeprom() {
  7467. float x_rec, y_rec, z_pos;
  7468. int feedrate_rec;
  7469. uint8_t fan_speed_rec;
  7470. char cmd[30];
  7471. char* c;
  7472. char filename[13];
  7473. uint8_t depth = 0;
  7474. char dir_name[9];
  7475. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7476. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7477. SERIAL_ECHOPGM("Feedrate:");
  7478. MYSERIAL.println(feedrate_rec);
  7479. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7480. MYSERIAL.println(int(depth));
  7481. for (int i = 0; i < depth; i++) {
  7482. for (int j = 0; j < 8; j++) {
  7483. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7484. }
  7485. dir_name[8] = '\0';
  7486. MYSERIAL.println(dir_name);
  7487. card.chdir(dir_name);
  7488. }
  7489. for (int i = 0; i < 8; i++) {
  7490. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7491. }
  7492. filename[8] = '\0';
  7493. MYSERIAL.print(filename);
  7494. strcat_P(filename, PSTR(".gco"));
  7495. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7496. for (c = &cmd[4]; *c; c++)
  7497. *c = tolower(*c);
  7498. enquecommand(cmd);
  7499. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7500. SERIAL_ECHOPGM("Position read from eeprom:");
  7501. MYSERIAL.println(position);
  7502. // E axis relative mode.
  7503. enquecommand_P(PSTR("M83"));
  7504. // Move to the XY print position in logical coordinates, where the print has been killed.
  7505. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7506. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7507. strcat_P(cmd, PSTR(" F2000"));
  7508. enquecommand(cmd);
  7509. // Move the Z axis down to the print, in logical coordinates.
  7510. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7511. enquecommand(cmd);
  7512. // Unretract.
  7513. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7514. // Set the feedrate saved at the power panic.
  7515. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7516. enquecommand(cmd);
  7517. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7518. {
  7519. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7520. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7521. }
  7522. // Set the fan speed saved at the power panic.
  7523. strcpy_P(cmd, PSTR("M106 S"));
  7524. strcat(cmd, itostr3(int(fan_speed_rec)));
  7525. enquecommand(cmd);
  7526. // Set a position in the file.
  7527. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7528. enquecommand(cmd);
  7529. // Start SD print.
  7530. enquecommand_P(PSTR("M24"));
  7531. }
  7532. #endif //UVLO_SUPPORT
  7533. ////////////////////////////////////////////////////////////////////////////////
  7534. // save/restore printing
  7535. void stop_and_save_print_to_ram(float z_move, float e_move)
  7536. {
  7537. if (saved_printing) return;
  7538. unsigned char nplanner_blocks;
  7539. unsigned char nlines;
  7540. uint16_t sdlen_planner;
  7541. uint16_t sdlen_cmdqueue;
  7542. cli();
  7543. if (card.sdprinting) {
  7544. nplanner_blocks = number_of_blocks();
  7545. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7546. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7547. saved_sdpos -= sdlen_planner;
  7548. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7549. saved_sdpos -= sdlen_cmdqueue;
  7550. saved_printing_type = PRINTING_TYPE_SD;
  7551. }
  7552. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7553. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7554. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7555. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7556. saved_sdpos -= nlines;
  7557. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7558. saved_printing_type = PRINTING_TYPE_USB;
  7559. }
  7560. else {
  7561. //not sd printing nor usb printing
  7562. }
  7563. #if 0
  7564. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7565. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7566. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7567. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7568. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7569. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7570. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7571. {
  7572. card.setIndex(saved_sdpos);
  7573. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7574. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7575. MYSERIAL.print(char(card.get()));
  7576. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7577. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7578. MYSERIAL.print(char(card.get()));
  7579. SERIAL_ECHOLNPGM("End of command buffer");
  7580. }
  7581. {
  7582. // Print the content of the planner buffer, line by line:
  7583. card.setIndex(saved_sdpos);
  7584. int8_t iline = 0;
  7585. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7586. SERIAL_ECHOPGM("Planner line (from file): ");
  7587. MYSERIAL.print(int(iline), DEC);
  7588. SERIAL_ECHOPGM(", length: ");
  7589. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7590. SERIAL_ECHOPGM(", steps: (");
  7591. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7592. SERIAL_ECHOPGM(",");
  7593. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7594. SERIAL_ECHOPGM(",");
  7595. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7596. SERIAL_ECHOPGM(",");
  7597. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7598. SERIAL_ECHOPGM("), events: ");
  7599. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7600. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7601. MYSERIAL.print(char(card.get()));
  7602. }
  7603. }
  7604. {
  7605. // Print the content of the command buffer, line by line:
  7606. int8_t iline = 0;
  7607. union {
  7608. struct {
  7609. char lo;
  7610. char hi;
  7611. } lohi;
  7612. uint16_t value;
  7613. } sdlen_single;
  7614. int _bufindr = bufindr;
  7615. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7616. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7617. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7618. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7619. }
  7620. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7621. MYSERIAL.print(int(iline), DEC);
  7622. SERIAL_ECHOPGM(", type: ");
  7623. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7624. SERIAL_ECHOPGM(", len: ");
  7625. MYSERIAL.println(sdlen_single.value, DEC);
  7626. // Print the content of the buffer line.
  7627. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7628. SERIAL_ECHOPGM("Buffer line (from file): ");
  7629. MYSERIAL.print(int(iline), DEC);
  7630. MYSERIAL.println(int(iline), DEC);
  7631. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7632. MYSERIAL.print(char(card.get()));
  7633. if (-- _buflen == 0)
  7634. break;
  7635. // First skip the current command ID and iterate up to the end of the string.
  7636. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7637. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7638. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7639. // If the end of the buffer was empty,
  7640. if (_bufindr == sizeof(cmdbuffer)) {
  7641. // skip to the start and find the nonzero command.
  7642. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7643. }
  7644. }
  7645. }
  7646. #endif
  7647. #if 0
  7648. saved_feedrate2 = feedrate; //save feedrate
  7649. #else
  7650. // Try to deduce the feedrate from the first block of the planner.
  7651. // Speed is in mm/min.
  7652. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7653. #endif
  7654. planner_abort_hard(); //abort printing
  7655. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7656. saved_active_extruder = active_extruder; //save active_extruder
  7657. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7658. cmdqueue_reset(); //empty cmdqueue
  7659. card.sdprinting = false;
  7660. // card.closefile();
  7661. saved_printing = true;
  7662. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7663. st_reset_timer();
  7664. sei();
  7665. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7666. #if 1
  7667. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7668. char buf[48];
  7669. // First unretract (relative extrusion)
  7670. strcpy_P(buf, PSTR("G1 E"));
  7671. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7672. strcat_P(buf, PSTR(" F"));
  7673. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7674. enquecommand(buf, false);
  7675. // Then lift Z axis
  7676. strcpy_P(buf, PSTR("G1 Z"));
  7677. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7678. strcat_P(buf, PSTR(" F"));
  7679. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7680. // At this point the command queue is empty.
  7681. enquecommand(buf, false);
  7682. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7683. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7684. repeatcommand_front();
  7685. #else
  7686. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7687. st_synchronize(); //wait moving
  7688. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7689. memcpy(destination, current_position, sizeof(destination));
  7690. #endif
  7691. }
  7692. }
  7693. void restore_print_from_ram_and_continue(float e_move)
  7694. {
  7695. if (!saved_printing) return;
  7696. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7697. // current_position[axis] = st_get_position_mm(axis);
  7698. active_extruder = saved_active_extruder; //restore active_extruder
  7699. feedrate = saved_feedrate2; //restore feedrate
  7700. float e = saved_pos[E_AXIS] - e_move;
  7701. plan_set_e_position(e);
  7702. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7703. st_synchronize();
  7704. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7705. memcpy(destination, current_position, sizeof(destination));
  7706. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7707. card.setIndex(saved_sdpos);
  7708. sdpos_atomic = saved_sdpos;
  7709. card.sdprinting = true;
  7710. }
  7711. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7712. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7713. FlushSerialRequestResend();
  7714. }
  7715. else {
  7716. //not sd printing nor usb printing
  7717. }
  7718. saved_printing = false;
  7719. }
  7720. void print_world_coordinates()
  7721. {
  7722. SERIAL_ECHOPGM("world coordinates: (");
  7723. MYSERIAL.print(current_position[X_AXIS], 3);
  7724. SERIAL_ECHOPGM(", ");
  7725. MYSERIAL.print(current_position[Y_AXIS], 3);
  7726. SERIAL_ECHOPGM(", ");
  7727. MYSERIAL.print(current_position[Z_AXIS], 3);
  7728. SERIAL_ECHOLNPGM(")");
  7729. }
  7730. void print_physical_coordinates()
  7731. {
  7732. SERIAL_ECHOPGM("physical coordinates: (");
  7733. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7734. SERIAL_ECHOPGM(", ");
  7735. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7736. SERIAL_ECHOPGM(", ");
  7737. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7738. SERIAL_ECHOLNPGM(")");
  7739. }
  7740. void print_mesh_bed_leveling_table()
  7741. {
  7742. SERIAL_ECHOPGM("mesh bed leveling: ");
  7743. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7744. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7745. MYSERIAL.print(mbl.z_values[y][x], 3);
  7746. SERIAL_ECHOPGM(" ");
  7747. }
  7748. SERIAL_ECHOLNPGM("");
  7749. }
  7750. #define FIL_LOAD_LENGTH 60