| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 | /*  planner.h - buffers movement commands and manages the acceleration profile plan  Part of Grbl  Copyright (c) 2009-2011 Simen Svale Skogsrud  Grbl is free software: you can redistribute it and/or modify  it under the terms of the GNU General Public License as published by  the Free Software Foundation, either version 3 of the License, or  (at your option) any later version.  Grbl is distributed in the hope that it will be useful,  but WITHOUT ANY WARRANTY; without even the implied warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the  GNU General Public License for more details.  You should have received a copy of the GNU General Public License  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.*/// This module is to be considered a sub-module of stepper.c. Please don't include // this file from any other module.#ifndef planner_h#define planner_h#include "Marlin.h"#ifdef ENABLE_AUTO_BED_LEVELING#include "vector_3.h"#endif // ENABLE_AUTO_BED_LEVELINGenum BlockFlag {    // Planner flag to recalculate trapezoids on entry junction.    // This flag has an optimization purpose only.    BLOCK_FLAG_RECALCULATE = 1,    // Planner flag for nominal speed always reached. That means, the segment is long enough, that the nominal speed    // may be reached if accelerating from a safe speed (in the regard of jerking from zero speed).    BLOCK_FLAG_NOMINAL_LENGTH = 2,    // If set, the machine will start from a halt at the start of this block,    // respecting the maximum allowed jerk.    BLOCK_FLAG_START_FROM_FULL_HALT = 4,    // If set, the stepper interrupt expects, that the number of steps to tick will be lower    // than 32767, therefore the DDA algorithm may run with 16bit resolution only.    // In addition, the stepper routine will not do any end stop checking for higher performance.    BLOCK_FLAG_DDA_LOWRES = 8,    // Block starts with Zeroed E counter    BLOCK_FLAG_E_RESET = 16,};union dda_isteps_t{  int32_t     wide;  struct {    int16_t   lo;    int16_t   hi;  };};union dda_usteps_t{  uint32_t    wide;  struct {    uint16_t  lo;    uint16_t  hi;  };};// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in // the source g-code and may never actually be reached if acceleration management is active.typedef struct {  // Fields used by the bresenham algorithm for tracing the line  // steps_x.y,z, step_event_count, acceleration_rate, direction_bits and active_extruder are set by plan_buffer_line().  dda_isteps_t steps_x, steps_y, steps_z, steps_e;  // Step count along each axis  dda_usteps_t step_event_count;            // The number of step events required to complete this block  uint32_t acceleration_rate;               // The acceleration rate used for acceleration calculation  unsigned char direction_bits;             // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)  // accelerate_until and decelerate_after are set by calculate_trapezoid_for_block() and they need to be synchronized with the stepper interrupt controller.  uint32_t accelerate_until;                // The index of the step event on which to stop acceleration  uint32_t decelerate_after;                // The index of the step event on which to start decelerating  // Fields used by the motion planner to manage acceleration//  float speed_x, speed_y, speed_z, speed_e;        // Nominal mm/sec for each axis  // The nominal speed for this block in mm/sec.  // This speed may or may not be reached due to the jerk and acceleration limits.  float nominal_speed;  // Entry speed at previous-current junction in mm/sec, respecting the acceleration and jerk limits.  // The entry speed limit of the current block equals the exit speed of the preceding block.  float entry_speed;  // Maximum allowable junction entry speed in mm/sec. This value is also a maximum exit speed of the previous block.  float max_entry_speed;  // The total travel of this block in mm  float millimeters;  // acceleration mm/sec^2  float acceleration;  // Bit flags defined by the BlockFlag enum.  uint8_t flag;  // Settings for the trapezoid generator (runs inside an interrupt handler).  // Changing the following values in the planner needs to be synchronized with the interrupt handler by disabling the interrupts.  unsigned long nominal_rate;                        // The nominal step rate for this block in step_events/sec   unsigned long initial_rate;                        // The jerk-adjusted step rate at start of block    unsigned long final_rate;                          // The minimal rate at exit  unsigned long acceleration_st;                     // acceleration steps/sec^2  //FIXME does it have to be int? Probably uint8_t would be just fine. Need to change in other places as well  int fan_speed;  volatile char busy;  // Pre-calculated division for the calculate_trapezoid_for_block() routine to run faster.  float speed_factor;#ifdef LIN_ADVANCE  bool use_advance_lead;            // Whether the current block uses LA  uint16_t advance_rate,            // Step-rate for extruder speed           max_adv_steps,           // max. advance steps to get cruising speed pressure (not always nominal_speed!)           final_adv_steps;         // advance steps due to exit speed  uint8_t advance_step_loops;       // Number of stepper ticks for each advance isr  float adv_comp;                   // Precomputed E compression factor#endif  // Save/recovery state data  float gcode_start_position[NUM_AXIS]; // Start (abs mm) of the original Gcode instruction  uint16_t segment_idx;             // The index of the for loop that generates segments  uint16_t gcode_feedrate;          // Default and/or move feedrate  uint16_t sdlen;                   // Length of the Gcode instruction} block_t;#ifdef LIN_ADVANCEextern float extruder_advance_K;    // Linear-advance K factor#endif#ifdef ENABLE_AUTO_BED_LEVELING// this holds the required transform to compensate for bed levelextern matrix_3x3 plan_bed_level_matrix;#endif // #ifdef ENABLE_AUTO_BED_LEVELING// Initialize the motion plan subsystem      void plan_init();// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in // millimaters. Feed rate specifies the speed of the motion.#ifdef ENABLE_AUTO_BED_LEVELINGvoid plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);// Get the position applying the bed level matrix if enabledvector_3 plan_get_position();#else/// Extracting common call of /// plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[3], .../// saves almost 5KB./// The performance penalty is negligible, since these planned lines are usually maintenance moves with the extruder.void plan_buffer_line_curposXYZE(float feed_rate);void plan_buffer_line_destinationXYZE(float feed_rate);void plan_set_position_curposXYZE();void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_start_position = NULL, uint16_t segment_idx = 0);//void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);#endif // ENABLE_AUTO_BED_LEVELING// Set position. Used for G92 instructions.//#ifdef ENABLE_AUTO_BED_LEVELINGvoid plan_set_position(float x, float y, float z, const float &e);//#else//void plan_set_position(const float &x, const float &y, const float &z, const float &e);//#endif // ENABLE_AUTO_BED_LEVELINGvoid plan_set_z_position(const float &z);void plan_set_e_position(const float &e);// Reset the E position to zero at the start of the next segmentvoid plan_reset_next_e();inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }extern bool e_active();void check_axes_activity();// Use M203 to override by softwareextern float* max_feedrate;// Use M201 to override by softwareextern unsigned long* max_acceleration_units_per_sq_second; extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];extern long position[NUM_AXIS];#ifdef AUTOTEMP    extern bool autotemp_enabled;    extern float autotemp_max;    extern float autotemp_min;    extern float autotemp_factor;#endif// Check for BLOCK_BUFFER_SIZE requirementsstatic_assert(!(BLOCK_BUFFER_SIZE & (BLOCK_BUFFER_SIZE - 1)),              "BLOCK_BUFFER_SIZE must be a power of two");static_assert(BLOCK_BUFFER_SIZE <= (UINT8_MAX>>1),              "BLOCK_BUFFER_SIZE too large for uint8_t");extern block_t block_buffer[BLOCK_BUFFER_SIZE];            // A ring buffer for motion instfructions// Index of the next block to be pushed into the planner queue.extern volatile uint8_t block_buffer_head;// Index of the first block in the planner queue.// This is the block, which is being currently processed by the stepper routine, // or which is first to be processed by the stepper routine.extern volatile uint8_t block_buffer_tail;// Called when the current block is no longer needed. Discards the block and makes the memory// available for new blocks.    FORCE_INLINE void plan_discard_current_block()  {  if (block_buffer_head != block_buffer_tail) {    block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);    }}// Gets the current block. This is the block to be exectuted by the stepper routine.// Mark this block as busy, so its velocities and acceperations will be no more recalculated// by the planner routine.// Returns NULL if buffer emptyFORCE_INLINE block_t *plan_get_current_block() {  if (block_buffer_head == block_buffer_tail) {     return(NULL);   }  block_t *block = &block_buffer[block_buffer_tail];  block->busy = true;  return(block);}// Returns true if the buffer has a queued block, false otherwiseFORCE_INLINE bool blocks_queued() { 	return (block_buffer_head != block_buffer_tail); }//return the nr of buffered movesFORCE_INLINE uint8_t moves_planned() {    return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);}FORCE_INLINE bool planner_queue_full() {    uint8_t next_block_index = block_buffer_head;    if (++ next_block_index == BLOCK_BUFFER_SIZE)        next_block_index = 0;     return block_buffer_tail == next_block_index;}// Reset machine position from stepper countersextern void planner_reset_position();// Abort the stepper routine, clean up the block queue,// wait for the steppers to stop,// update planner's current position and the current_position of the front end.extern void planner_abort_hard();extern bool planner_aborted;#ifdef PREVENT_DANGEROUS_EXTRUDEextern int extrude_min_temp;void set_extrude_min_temp(int temp);#endifvoid reset_acceleration_rates();#endifvoid update_mode_profile();uint8_t number_of_blocks();// #define PLANNER_DIAGNOSTICS#ifdef PLANNER_DIAGNOSTICS// Diagnostic functions to display planner buffer underflow on the display.extern uint8_t planner_queue_min();// Diagnostic function: Reset the minimum planner segments.extern void planner_queue_min_reset();#endif /* PLANNER_DIAGNOSTICS */extern void planner_add_sd_length(uint16_t sdlen);extern uint16_t planner_calc_sd_length();
 |