| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 | /* *  Created by Joachim on 16/04/2019. *  Adapted from donated nonius code. * *  Distributed under the Boost Software License, Version 1.0. (See accompanying *  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ // Run and analyse one benchmark#ifndef TWOBLUECUBES_CATCH_DETAIL_ANALYSE_HPP_INCLUDED#define TWOBLUECUBES_CATCH_DETAIL_ANALYSE_HPP_INCLUDED#include "../catch_clock.hpp"#include "../catch_sample_analysis.hpp"#include "catch_stats.hpp"#include <algorithm>#include <iterator>#include <vector>namespace Catch {    namespace Benchmark {        namespace Detail {            template <typename Duration, typename Iterator>            SampleAnalysis<Duration> analyse(const IConfig &cfg, Environment<Duration>, Iterator first, Iterator last) {                if (!cfg.benchmarkNoAnalysis()) {                    std::vector<double> samples;                    samples.reserve(last - first);                    std::transform(first, last, std::back_inserter(samples), [](Duration d) { return d.count(); });                    auto analysis = Catch::Benchmark::Detail::analyse_samples(cfg.benchmarkConfidenceInterval(), cfg.benchmarkResamples(), samples.begin(), samples.end());                    auto outliers = Catch::Benchmark::Detail::classify_outliers(samples.begin(), samples.end());                    auto wrap_estimate = [](Estimate<double> e) {                        return Estimate<Duration> {                            Duration(e.point),                                Duration(e.lower_bound),                                Duration(e.upper_bound),                                e.confidence_interval,                        };                    };                    std::vector<Duration> samples2;                    samples2.reserve(samples.size());                    std::transform(samples.begin(), samples.end(), std::back_inserter(samples2), [](double d) { return Duration(d); });                    return {                        std::move(samples2),                        wrap_estimate(analysis.mean),                        wrap_estimate(analysis.standard_deviation),                        outliers,                        analysis.outlier_variance,                    };                } else {                    std::vector<Duration> samples;                     samples.reserve(last - first);                    Duration mean = Duration(0);                    int i = 0;                    for (auto it = first; it < last; ++it, ++i) {                        samples.push_back(Duration(*it));                        mean += Duration(*it);                    }                    mean /= i;                    return {                        std::move(samples),                        Estimate<Duration>{mean, mean, mean, 0.0},                        Estimate<Duration>{Duration(0), Duration(0), Duration(0), 0.0},                        OutlierClassification{},                        0.0                    };                }            }        } // namespace Detail    } // namespace Benchmark} // namespace Catch#endif // TWOBLUECUBES_CATCH_DETAIL_ANALYSE_HPP_INCLUDED
 |