Marlin_main.cpp 258 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. extern int8_t CrashDetectMenu;
  490. void crashdet_enable()
  491. {
  492. MYSERIAL.println("crashdet_enable");
  493. tmc2130_sg_stop_on_crash = true;
  494. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  495. CrashDetectMenu = 1;
  496. }
  497. void crashdet_disable()
  498. {
  499. MYSERIAL.println("crashdet_disable");
  500. tmc2130_sg_stop_on_crash = false;
  501. tmc2130_sg_crash = false;
  502. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  503. CrashDetectMenu = 0;
  504. }
  505. void crashdet_stop_and_save_print()
  506. {
  507. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  508. }
  509. void crashdet_restore_print_and_continue()
  510. {
  511. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  512. // babystep_apply();
  513. }
  514. void crashdet_stop_and_save_print2()
  515. {
  516. cli();
  517. planner_abort_hard(); //abort printing
  518. cmdqueue_reset(); //empty cmdqueue
  519. card.sdprinting = false;
  520. card.closefile();
  521. sei();
  522. }
  523. void crashdet_detected()
  524. {
  525. printf("CRASH_DETECTED");
  526. /* while (!is_buffer_empty())
  527. {
  528. process_commands();
  529. cmdqueue_pop_front();
  530. }*/
  531. st_synchronize();
  532. lcd_update_enable(true);
  533. lcd_implementation_clear();
  534. lcd_update(2);
  535. // Increment crash counter
  536. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  537. crash_count++;
  538. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  539. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  540. bool yesno = true;
  541. #else
  542. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  543. #endif
  544. lcd_update_enable(true);
  545. lcd_update(2);
  546. lcd_setstatuspgm(WELCOME_MSG);
  547. if (yesno)
  548. {
  549. enquecommand_P(PSTR("G28 X"));
  550. enquecommand_P(PSTR("G28 Y"));
  551. enquecommand_P(PSTR("CRASH_RECOVER"));
  552. }
  553. else
  554. {
  555. enquecommand_P(PSTR("CRASH_CANCEL"));
  556. }
  557. }
  558. void crashdet_recover()
  559. {
  560. crashdet_restore_print_and_continue();
  561. tmc2130_sg_stop_on_crash = true;
  562. }
  563. void crashdet_cancel()
  564. {
  565. card.sdprinting = false;
  566. card.closefile();
  567. tmc2130_sg_stop_on_crash = true;
  568. }
  569. #ifdef MESH_BED_LEVELING
  570. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  571. #endif
  572. // Factory reset function
  573. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  574. // Level input parameter sets depth of reset
  575. // Quiet parameter masks all waitings for user interact.
  576. int er_progress = 0;
  577. void factory_reset(char level, bool quiet)
  578. {
  579. lcd_implementation_clear();
  580. int cursor_pos = 0;
  581. switch (level) {
  582. // Level 0: Language reset
  583. case 0:
  584. WRITE(BEEPER, HIGH);
  585. _delay_ms(100);
  586. WRITE(BEEPER, LOW);
  587. lcd_force_language_selection();
  588. break;
  589. //Level 1: Reset statistics
  590. case 1:
  591. WRITE(BEEPER, HIGH);
  592. _delay_ms(100);
  593. WRITE(BEEPER, LOW);
  594. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  595. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  596. lcd_menu_statistics();
  597. break;
  598. // Level 2: Prepare for shipping
  599. case 2:
  600. //lcd_printPGM(PSTR("Factory RESET"));
  601. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  602. // Force language selection at the next boot up.
  603. lcd_force_language_selection();
  604. // Force the "Follow calibration flow" message at the next boot up.
  605. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  606. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  607. farm_no = 0;
  608. farm_mode == false;
  609. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  610. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  611. WRITE(BEEPER, HIGH);
  612. _delay_ms(100);
  613. WRITE(BEEPER, LOW);
  614. //_delay_ms(2000);
  615. break;
  616. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  617. case 3:
  618. lcd_printPGM(PSTR("Factory RESET"));
  619. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  620. WRITE(BEEPER, HIGH);
  621. _delay_ms(100);
  622. WRITE(BEEPER, LOW);
  623. er_progress = 0;
  624. lcd_print_at_PGM(3, 3, PSTR(" "));
  625. lcd_implementation_print_at(3, 3, er_progress);
  626. // Erase EEPROM
  627. for (int i = 0; i < 4096; i++) {
  628. eeprom_write_byte((uint8_t*)i, 0xFF);
  629. if (i % 41 == 0) {
  630. er_progress++;
  631. lcd_print_at_PGM(3, 3, PSTR(" "));
  632. lcd_implementation_print_at(3, 3, er_progress);
  633. lcd_printPGM(PSTR("%"));
  634. }
  635. }
  636. break;
  637. case 4:
  638. bowden_menu();
  639. break;
  640. default:
  641. break;
  642. }
  643. }
  644. #include "LiquidCrystal.h"
  645. extern LiquidCrystal lcd;
  646. FILE _lcdout = {0};
  647. int lcd_putchar(char c, FILE *stream)
  648. {
  649. lcd.write(c);
  650. return 0;
  651. }
  652. FILE _uartout = {0};
  653. int uart_putchar(char c, FILE *stream)
  654. {
  655. MYSERIAL.write(c);
  656. return 0;
  657. }
  658. void lcd_splash()
  659. {
  660. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  661. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  662. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  663. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  664. }
  665. // "Setup" function is called by the Arduino framework on startup.
  666. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  667. // are initialized by the main() routine provided by the Arduino framework.
  668. void setup()
  669. {
  670. lcd_init();
  671. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  672. lcd_splash();
  673. setup_killpin();
  674. setup_powerhold();
  675. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  676. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  677. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  678. if (farm_no == 0xFFFF) farm_no = 0;
  679. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  680. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  681. if (farm_mode)
  682. {
  683. prusa_statistics(8);
  684. selectedSerialPort = 1;
  685. }
  686. MYSERIAL.begin(BAUDRATE);
  687. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  688. stdout = uartout;
  689. SERIAL_PROTOCOLLNPGM("start");
  690. SERIAL_ECHO_START;
  691. #if 0
  692. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  693. for (int i = 0; i < 4096; ++i) {
  694. int b = eeprom_read_byte((unsigned char*)i);
  695. if (b != 255) {
  696. SERIAL_ECHO(i);
  697. SERIAL_ECHO(":");
  698. SERIAL_ECHO(b);
  699. SERIAL_ECHOLN("");
  700. }
  701. }
  702. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  703. #endif
  704. // Check startup - does nothing if bootloader sets MCUSR to 0
  705. byte mcu = MCUSR;
  706. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  707. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  708. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  709. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  710. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  711. if (mcu & 1) puts_P(MSG_POWERUP);
  712. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  713. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  714. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  715. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  716. MCUSR = 0;
  717. //SERIAL_ECHORPGM(MSG_MARLIN);
  718. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  719. #ifdef STRING_VERSION_CONFIG_H
  720. #ifdef STRING_CONFIG_H_AUTHOR
  721. SERIAL_ECHO_START;
  722. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  723. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  724. SERIAL_ECHORPGM(MSG_AUTHOR);
  725. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  726. SERIAL_ECHOPGM("Compiled: ");
  727. SERIAL_ECHOLNPGM(__DATE__);
  728. #endif
  729. #endif
  730. SERIAL_ECHO_START;
  731. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  732. SERIAL_ECHO(freeMemory());
  733. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  734. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  735. //lcd_update_enable(false); // why do we need this?? - andre
  736. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  737. Config_RetrieveSettings(EEPROM_OFFSET);
  738. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  739. tp_init(); // Initialize temperature loop
  740. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  741. plan_init(); // Initialize planner;
  742. watchdog_init();
  743. #ifdef TMC2130
  744. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  745. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  746. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  747. if (crashdet)
  748. {
  749. crashdet_enable();
  750. MYSERIAL.println("CrashDetect ENABLED!");
  751. }
  752. else
  753. {
  754. crashdet_disable();
  755. MYSERIAL.println("CrashDetect DISABLED");
  756. }
  757. #endif //TMC2130
  758. #ifdef PAT9125
  759. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  760. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  761. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  762. if (!pat9125)
  763. {
  764. fsensor = 0; //disable sensor
  765. fsensor_not_responding = true;
  766. }
  767. puts_P(PSTR("FSensor "));
  768. if (fsensor)
  769. {
  770. puts_P(PSTR("ENABLED\n"));
  771. fsensor_enable();
  772. }
  773. else
  774. {
  775. puts_P(PSTR("DISABLED\n"));
  776. fsensor_disable();
  777. }
  778. #endif //PAT9125
  779. st_init(); // Initialize stepper, this enables interrupts!
  780. setup_photpin();
  781. servo_init();
  782. // Reset the machine correction matrix.
  783. // It does not make sense to load the correction matrix until the machine is homed.
  784. world2machine_reset();
  785. KEEPALIVE_STATE(PAUSED_FOR_USER);
  786. if (!READ(BTN_ENC))
  787. {
  788. _delay_ms(1000);
  789. if (!READ(BTN_ENC))
  790. {
  791. lcd_implementation_clear();
  792. lcd_printPGM(PSTR("Factory RESET"));
  793. SET_OUTPUT(BEEPER);
  794. WRITE(BEEPER, HIGH);
  795. while (!READ(BTN_ENC));
  796. WRITE(BEEPER, LOW);
  797. _delay_ms(2000);
  798. char level = reset_menu();
  799. factory_reset(level, false);
  800. switch (level) {
  801. case 0: _delay_ms(0); break;
  802. case 1: _delay_ms(0); break;
  803. case 2: _delay_ms(0); break;
  804. case 3: _delay_ms(0); break;
  805. }
  806. // _delay_ms(100);
  807. /*
  808. #ifdef MESH_BED_LEVELING
  809. _delay_ms(2000);
  810. if (!READ(BTN_ENC))
  811. {
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. _delay_ms(200);
  816. WRITE(BEEPER, HIGH);
  817. _delay_ms(100);
  818. WRITE(BEEPER, LOW);
  819. int _z = 0;
  820. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  821. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  822. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  823. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  824. }
  825. else
  826. {
  827. WRITE(BEEPER, HIGH);
  828. _delay_ms(100);
  829. WRITE(BEEPER, LOW);
  830. }
  831. #endif // mesh */
  832. }
  833. }
  834. else
  835. {
  836. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  837. }
  838. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  839. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  840. #endif
  841. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  842. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  843. #endif
  844. #ifdef DIGIPOT_I2C
  845. digipot_i2c_init();
  846. #endif
  847. setup_homepin();
  848. if (1) {
  849. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  850. // try to run to zero phase before powering the Z motor.
  851. // Move in negative direction
  852. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  853. // Round the current micro-micro steps to micro steps.
  854. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  855. // Until the phase counter is reset to zero.
  856. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  857. delay(2);
  858. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  859. delay(2);
  860. }
  861. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  862. }
  863. #if defined(Z_AXIS_ALWAYS_ON)
  864. enable_z();
  865. #endif
  866. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  867. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  868. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  869. if (farm_no == 0xFFFF) farm_no = 0;
  870. if (farm_mode)
  871. {
  872. prusa_statistics(8);
  873. }
  874. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  875. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  876. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  877. // but this times out if a blocking dialog is shown in setup().
  878. card.initsd();
  879. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  880. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  881. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  882. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  883. // where all the EEPROM entries are set to 0x0ff.
  884. // Once a firmware boots up, it forces at least a language selection, which changes
  885. // EEPROM_LANG to number lower than 0x0ff.
  886. // 1) Set a high power mode.
  887. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  888. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  889. }
  890. #ifdef SNMM
  891. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  892. int _z = BOWDEN_LENGTH;
  893. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  894. }
  895. #endif
  896. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  897. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  898. // is being written into the EEPROM, so the update procedure will be triggered only once.
  899. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  900. if (lang_selected >= LANG_NUM){
  901. lcd_mylang();
  902. }
  903. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  904. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  905. temp_cal_active = false;
  906. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  907. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  908. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  909. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  910. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  911. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  912. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  913. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  914. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  915. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  916. temp_cal_active = true;
  917. }
  918. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  919. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  920. }
  921. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  922. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  923. }
  924. check_babystep(); //checking if Z babystep is in allowed range
  925. setup_uvlo_interrupt();
  926. setup_fan_interrupt();
  927. fsensor_setup_interrupt();
  928. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  929. #ifndef DEBUG_DISABLE_STARTMSGS
  930. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  931. lcd_wizard(0);
  932. }
  933. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  934. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  935. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  936. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  937. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  938. // Show the message.
  939. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  940. }
  941. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  942. // Show the message.
  943. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  944. lcd_update_enable(true);
  945. }
  946. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  947. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  948. lcd_update_enable(true);
  949. }
  950. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  951. // Show the message.
  952. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  953. }
  954. }
  955. KEEPALIVE_STATE(IN_PROCESS);
  956. #endif //DEBUG_DISABLE_STARTMSGS
  957. lcd_update_enable(true);
  958. lcd_implementation_clear();
  959. lcd_update(2);
  960. // Store the currently running firmware into an eeprom,
  961. // so the next time the firmware gets updated, it will know from which version it has been updated.
  962. update_current_firmware_version_to_eeprom();
  963. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  964. /*
  965. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  966. else {
  967. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  968. lcd_update_enable(true);
  969. lcd_update(2);
  970. lcd_setstatuspgm(WELCOME_MSG);
  971. }
  972. */
  973. manage_heater(); // Update temperatures
  974. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  975. MYSERIAL.println("Power panic detected!");
  976. MYSERIAL.print("Current bed temp:");
  977. MYSERIAL.println(degBed());
  978. MYSERIAL.print("Saved bed temp:");
  979. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  980. #endif
  981. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  982. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  983. MYSERIAL.println("Automatic recovery!");
  984. #endif
  985. recover_print(1);
  986. }
  987. else{
  988. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  989. MYSERIAL.println("Normal recovery!");
  990. #endif
  991. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  992. else {
  993. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  994. lcd_update_enable(true);
  995. lcd_update(2);
  996. lcd_setstatuspgm(WELCOME_MSG);
  997. }
  998. }
  999. }
  1000. KEEPALIVE_STATE(NOT_BUSY);
  1001. wdt_enable(WDTO_4S);
  1002. }
  1003. void trace();
  1004. #define CHUNK_SIZE 64 // bytes
  1005. #define SAFETY_MARGIN 1
  1006. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1007. int chunkHead = 0;
  1008. int serial_read_stream() {
  1009. setTargetHotend(0, 0);
  1010. setTargetBed(0);
  1011. lcd_implementation_clear();
  1012. lcd_printPGM(PSTR(" Upload in progress"));
  1013. // first wait for how many bytes we will receive
  1014. uint32_t bytesToReceive;
  1015. // receive the four bytes
  1016. char bytesToReceiveBuffer[4];
  1017. for (int i=0; i<4; i++) {
  1018. int data;
  1019. while ((data = MYSERIAL.read()) == -1) {};
  1020. bytesToReceiveBuffer[i] = data;
  1021. }
  1022. // make it a uint32
  1023. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1024. // we're ready, notify the sender
  1025. MYSERIAL.write('+');
  1026. // lock in the routine
  1027. uint32_t receivedBytes = 0;
  1028. while (prusa_sd_card_upload) {
  1029. int i;
  1030. for (i=0; i<CHUNK_SIZE; i++) {
  1031. int data;
  1032. // check if we're not done
  1033. if (receivedBytes == bytesToReceive) {
  1034. break;
  1035. }
  1036. // read the next byte
  1037. while ((data = MYSERIAL.read()) == -1) {};
  1038. receivedBytes++;
  1039. // save it to the chunk
  1040. chunk[i] = data;
  1041. }
  1042. // write the chunk to SD
  1043. card.write_command_no_newline(&chunk[0]);
  1044. // notify the sender we're ready for more data
  1045. MYSERIAL.write('+');
  1046. // for safety
  1047. manage_heater();
  1048. // check if we're done
  1049. if(receivedBytes == bytesToReceive) {
  1050. trace(); // beep
  1051. card.closefile();
  1052. prusa_sd_card_upload = false;
  1053. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1054. return 0;
  1055. }
  1056. }
  1057. }
  1058. #ifdef HOST_KEEPALIVE_FEATURE
  1059. /**
  1060. * Output a "busy" message at regular intervals
  1061. * while the machine is not accepting commands.
  1062. */
  1063. void host_keepalive() {
  1064. if (farm_mode) return;
  1065. long ms = millis();
  1066. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1067. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1068. switch (busy_state) {
  1069. case IN_HANDLER:
  1070. case IN_PROCESS:
  1071. SERIAL_ECHO_START;
  1072. SERIAL_ECHOLNPGM("busy: processing");
  1073. break;
  1074. case PAUSED_FOR_USER:
  1075. SERIAL_ECHO_START;
  1076. SERIAL_ECHOLNPGM("busy: paused for user");
  1077. break;
  1078. case PAUSED_FOR_INPUT:
  1079. SERIAL_ECHO_START;
  1080. SERIAL_ECHOLNPGM("busy: paused for input");
  1081. break;
  1082. default:
  1083. break;
  1084. }
  1085. }
  1086. prev_busy_signal_ms = ms;
  1087. }
  1088. #endif
  1089. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1090. // Before loop(), the setup() function is called by the main() routine.
  1091. void loop()
  1092. {
  1093. KEEPALIVE_STATE(NOT_BUSY);
  1094. bool stack_integrity = true;
  1095. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1096. {
  1097. is_usb_printing = true;
  1098. usb_printing_counter--;
  1099. _usb_timer = millis();
  1100. }
  1101. if (usb_printing_counter == 0)
  1102. {
  1103. is_usb_printing = false;
  1104. }
  1105. if (prusa_sd_card_upload)
  1106. {
  1107. //we read byte-by byte
  1108. serial_read_stream();
  1109. } else
  1110. {
  1111. get_command();
  1112. #ifdef SDSUPPORT
  1113. card.checkautostart(false);
  1114. #endif
  1115. if(buflen)
  1116. {
  1117. cmdbuffer_front_already_processed = false;
  1118. #ifdef SDSUPPORT
  1119. if(card.saving)
  1120. {
  1121. // Saving a G-code file onto an SD-card is in progress.
  1122. // Saving starts with M28, saving until M29 is seen.
  1123. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1124. card.write_command(CMDBUFFER_CURRENT_STRING);
  1125. if(card.logging)
  1126. process_commands();
  1127. else
  1128. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1129. } else {
  1130. card.closefile();
  1131. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1132. }
  1133. } else {
  1134. process_commands();
  1135. }
  1136. #else
  1137. process_commands();
  1138. #endif //SDSUPPORT
  1139. if (! cmdbuffer_front_already_processed && buflen)
  1140. {
  1141. cli();
  1142. union {
  1143. struct {
  1144. char lo;
  1145. char hi;
  1146. } lohi;
  1147. uint16_t value;
  1148. } sdlen;
  1149. sdlen.value = 0;
  1150. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1151. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1152. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1153. }
  1154. cmdqueue_pop_front();
  1155. planner_add_sd_length(sdlen.value);
  1156. sei();
  1157. }
  1158. host_keepalive();
  1159. }
  1160. }
  1161. //check heater every n milliseconds
  1162. manage_heater();
  1163. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1164. checkHitEndstops();
  1165. lcd_update();
  1166. #ifdef PAT9125
  1167. fsensor_update();
  1168. #endif //PAT9125
  1169. #ifdef TMC2130
  1170. tmc2130_check_overtemp();
  1171. if (tmc2130_sg_crash)
  1172. {
  1173. tmc2130_sg_crash = false;
  1174. // crashdet_stop_and_save_print();
  1175. enquecommand_P((PSTR("CRASH_DETECTED")));
  1176. }
  1177. #endif //TMC2130
  1178. }
  1179. #define DEFINE_PGM_READ_ANY(type, reader) \
  1180. static inline type pgm_read_any(const type *p) \
  1181. { return pgm_read_##reader##_near(p); }
  1182. DEFINE_PGM_READ_ANY(float, float);
  1183. DEFINE_PGM_READ_ANY(signed char, byte);
  1184. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1185. static const PROGMEM type array##_P[3] = \
  1186. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1187. static inline type array(int axis) \
  1188. { return pgm_read_any(&array##_P[axis]); } \
  1189. type array##_ext(int axis) \
  1190. { return pgm_read_any(&array##_P[axis]); }
  1191. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1192. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1193. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1194. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1195. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1196. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1197. static void axis_is_at_home(int axis) {
  1198. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1199. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1200. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1201. }
  1202. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1203. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1204. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1205. saved_feedrate = feedrate;
  1206. saved_feedmultiply = feedmultiply;
  1207. feedmultiply = 100;
  1208. previous_millis_cmd = millis();
  1209. enable_endstops(enable_endstops_now);
  1210. }
  1211. static void clean_up_after_endstop_move() {
  1212. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1213. enable_endstops(false);
  1214. #endif
  1215. feedrate = saved_feedrate;
  1216. feedmultiply = saved_feedmultiply;
  1217. previous_millis_cmd = millis();
  1218. }
  1219. #ifdef ENABLE_AUTO_BED_LEVELING
  1220. #ifdef AUTO_BED_LEVELING_GRID
  1221. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1222. {
  1223. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1224. planeNormal.debug("planeNormal");
  1225. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1226. //bedLevel.debug("bedLevel");
  1227. //plan_bed_level_matrix.debug("bed level before");
  1228. //vector_3 uncorrected_position = plan_get_position_mm();
  1229. //uncorrected_position.debug("position before");
  1230. vector_3 corrected_position = plan_get_position();
  1231. // corrected_position.debug("position after");
  1232. current_position[X_AXIS] = corrected_position.x;
  1233. current_position[Y_AXIS] = corrected_position.y;
  1234. current_position[Z_AXIS] = corrected_position.z;
  1235. // put the bed at 0 so we don't go below it.
  1236. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1237. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1238. }
  1239. #else // not AUTO_BED_LEVELING_GRID
  1240. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1241. plan_bed_level_matrix.set_to_identity();
  1242. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1243. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1244. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1245. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1246. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1247. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1248. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1249. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1250. vector_3 corrected_position = plan_get_position();
  1251. current_position[X_AXIS] = corrected_position.x;
  1252. current_position[Y_AXIS] = corrected_position.y;
  1253. current_position[Z_AXIS] = corrected_position.z;
  1254. // put the bed at 0 so we don't go below it.
  1255. current_position[Z_AXIS] = zprobe_zoffset;
  1256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1257. }
  1258. #endif // AUTO_BED_LEVELING_GRID
  1259. static void run_z_probe() {
  1260. plan_bed_level_matrix.set_to_identity();
  1261. feedrate = homing_feedrate[Z_AXIS];
  1262. // move down until you find the bed
  1263. float zPosition = -10;
  1264. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1265. st_synchronize();
  1266. // we have to let the planner know where we are right now as it is not where we said to go.
  1267. zPosition = st_get_position_mm(Z_AXIS);
  1268. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1269. // move up the retract distance
  1270. zPosition += home_retract_mm(Z_AXIS);
  1271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1272. st_synchronize();
  1273. // move back down slowly to find bed
  1274. feedrate = homing_feedrate[Z_AXIS]/4;
  1275. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1277. st_synchronize();
  1278. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1279. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1281. }
  1282. static void do_blocking_move_to(float x, float y, float z) {
  1283. float oldFeedRate = feedrate;
  1284. feedrate = homing_feedrate[Z_AXIS];
  1285. current_position[Z_AXIS] = z;
  1286. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1287. st_synchronize();
  1288. feedrate = XY_TRAVEL_SPEED;
  1289. current_position[X_AXIS] = x;
  1290. current_position[Y_AXIS] = y;
  1291. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1292. st_synchronize();
  1293. feedrate = oldFeedRate;
  1294. }
  1295. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1296. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1297. }
  1298. /// Probe bed height at position (x,y), returns the measured z value
  1299. static float probe_pt(float x, float y, float z_before) {
  1300. // move to right place
  1301. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1302. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1303. run_z_probe();
  1304. float measured_z = current_position[Z_AXIS];
  1305. SERIAL_PROTOCOLRPGM(MSG_BED);
  1306. SERIAL_PROTOCOLPGM(" x: ");
  1307. SERIAL_PROTOCOL(x);
  1308. SERIAL_PROTOCOLPGM(" y: ");
  1309. SERIAL_PROTOCOL(y);
  1310. SERIAL_PROTOCOLPGM(" z: ");
  1311. SERIAL_PROTOCOL(measured_z);
  1312. SERIAL_PROTOCOLPGM("\n");
  1313. return measured_z;
  1314. }
  1315. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1316. #ifdef LIN_ADVANCE
  1317. /**
  1318. * M900: Set and/or Get advance K factor and WH/D ratio
  1319. *
  1320. * K<factor> Set advance K factor
  1321. * R<ratio> Set ratio directly (overrides WH/D)
  1322. * W<width> H<height> D<diam> Set ratio from WH/D
  1323. */
  1324. inline void gcode_M900() {
  1325. st_synchronize();
  1326. const float newK = code_seen('K') ? code_value_float() : -1;
  1327. if (newK >= 0) extruder_advance_k = newK;
  1328. float newR = code_seen('R') ? code_value_float() : -1;
  1329. if (newR < 0) {
  1330. const float newD = code_seen('D') ? code_value_float() : -1,
  1331. newW = code_seen('W') ? code_value_float() : -1,
  1332. newH = code_seen('H') ? code_value_float() : -1;
  1333. if (newD >= 0 && newW >= 0 && newH >= 0)
  1334. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1335. }
  1336. if (newR >= 0) advance_ed_ratio = newR;
  1337. SERIAL_ECHO_START;
  1338. SERIAL_ECHOPGM("Advance K=");
  1339. SERIAL_ECHOLN(extruder_advance_k);
  1340. SERIAL_ECHOPGM(" E/D=");
  1341. const float ratio = advance_ed_ratio;
  1342. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1343. }
  1344. #endif // LIN_ADVANCE
  1345. bool check_commands() {
  1346. bool end_command_found = false;
  1347. while (buflen)
  1348. {
  1349. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1350. if (!cmdbuffer_front_already_processed)
  1351. cmdqueue_pop_front();
  1352. cmdbuffer_front_already_processed = false;
  1353. }
  1354. return end_command_found;
  1355. }
  1356. #ifdef TMC2130
  1357. bool calibrate_z_auto()
  1358. {
  1359. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1360. lcd_implementation_clear();
  1361. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1362. bool endstops_enabled = enable_endstops(true);
  1363. int axis_up_dir = -home_dir(Z_AXIS);
  1364. tmc2130_home_enter(Z_AXIS_MASK);
  1365. current_position[Z_AXIS] = 0;
  1366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1367. set_destination_to_current();
  1368. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1369. feedrate = homing_feedrate[Z_AXIS];
  1370. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1371. tmc2130_home_restart(Z_AXIS);
  1372. st_synchronize();
  1373. // current_position[axis] = 0;
  1374. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1375. tmc2130_home_exit();
  1376. enable_endstops(false);
  1377. current_position[Z_AXIS] = 0;
  1378. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1379. set_destination_to_current();
  1380. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1381. feedrate = homing_feedrate[Z_AXIS] / 2;
  1382. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1383. st_synchronize();
  1384. enable_endstops(endstops_enabled);
  1385. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1386. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1387. return true;
  1388. }
  1389. #endif //TMC2130
  1390. void homeaxis(int axis)
  1391. {
  1392. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1393. #define HOMEAXIS_DO(LETTER) \
  1394. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1395. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1396. {
  1397. int axis_home_dir = home_dir(axis);
  1398. feedrate = homing_feedrate[axis];
  1399. #ifdef TMC2130
  1400. tmc2130_home_enter(X_AXIS_MASK << axis);
  1401. #endif
  1402. // Move right a bit, so that the print head does not touch the left end position,
  1403. // and the following left movement has a chance to achieve the required velocity
  1404. // for the stall guard to work.
  1405. current_position[axis] = 0;
  1406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1407. // destination[axis] = 11.f;
  1408. destination[axis] = 3.f;
  1409. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1410. st_synchronize();
  1411. // Move left away from the possible collision with the collision detection disabled.
  1412. endstops_hit_on_purpose();
  1413. enable_endstops(false);
  1414. current_position[axis] = 0;
  1415. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1416. destination[axis] = - 1.;
  1417. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1418. st_synchronize();
  1419. // Now continue to move up to the left end stop with the collision detection enabled.
  1420. enable_endstops(true);
  1421. destination[axis] = - 1.1 * max_length(axis);
  1422. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1423. st_synchronize();
  1424. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1425. endstops_hit_on_purpose();
  1426. enable_endstops(false);
  1427. current_position[axis] = 0;
  1428. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1429. destination[axis] = 10.f;
  1430. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1431. st_synchronize();
  1432. endstops_hit_on_purpose();
  1433. // Now move left up to the collision, this time with a repeatable velocity.
  1434. enable_endstops(true);
  1435. destination[axis] = - 15.f;
  1436. feedrate = homing_feedrate[axis]/2;
  1437. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1438. st_synchronize();
  1439. axis_is_at_home(axis);
  1440. axis_known_position[axis] = true;
  1441. #ifdef TMC2130
  1442. tmc2130_home_exit();
  1443. #endif
  1444. // Move the X carriage away from the collision.
  1445. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1446. endstops_hit_on_purpose();
  1447. enable_endstops(false);
  1448. {
  1449. // Two full periods (4 full steps).
  1450. float gap = 0.32f * 2.f;
  1451. current_position[axis] -= gap;
  1452. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1453. current_position[axis] += gap;
  1454. }
  1455. destination[axis] = current_position[axis];
  1456. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1457. st_synchronize();
  1458. feedrate = 0.0;
  1459. }
  1460. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1461. {
  1462. int axis_home_dir = home_dir(axis);
  1463. current_position[axis] = 0;
  1464. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1465. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1466. feedrate = homing_feedrate[axis];
  1467. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1468. st_synchronize();
  1469. current_position[axis] = 0;
  1470. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1471. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1472. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1473. st_synchronize();
  1474. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1475. feedrate = homing_feedrate[axis]/2 ;
  1476. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1477. st_synchronize();
  1478. axis_is_at_home(axis);
  1479. destination[axis] = current_position[axis];
  1480. feedrate = 0.0;
  1481. endstops_hit_on_purpose();
  1482. axis_known_position[axis] = true;
  1483. }
  1484. enable_endstops(endstops_enabled);
  1485. }
  1486. /**/
  1487. void home_xy()
  1488. {
  1489. set_destination_to_current();
  1490. homeaxis(X_AXIS);
  1491. homeaxis(Y_AXIS);
  1492. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1493. endstops_hit_on_purpose();
  1494. }
  1495. void refresh_cmd_timeout(void)
  1496. {
  1497. previous_millis_cmd = millis();
  1498. }
  1499. #ifdef FWRETRACT
  1500. void retract(bool retracting, bool swapretract = false) {
  1501. if(retracting && !retracted[active_extruder]) {
  1502. destination[X_AXIS]=current_position[X_AXIS];
  1503. destination[Y_AXIS]=current_position[Y_AXIS];
  1504. destination[Z_AXIS]=current_position[Z_AXIS];
  1505. destination[E_AXIS]=current_position[E_AXIS];
  1506. if (swapretract) {
  1507. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1508. } else {
  1509. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1510. }
  1511. plan_set_e_position(current_position[E_AXIS]);
  1512. float oldFeedrate = feedrate;
  1513. feedrate=retract_feedrate*60;
  1514. retracted[active_extruder]=true;
  1515. prepare_move();
  1516. current_position[Z_AXIS]-=retract_zlift;
  1517. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1518. prepare_move();
  1519. feedrate = oldFeedrate;
  1520. } else if(!retracting && retracted[active_extruder]) {
  1521. destination[X_AXIS]=current_position[X_AXIS];
  1522. destination[Y_AXIS]=current_position[Y_AXIS];
  1523. destination[Z_AXIS]=current_position[Z_AXIS];
  1524. destination[E_AXIS]=current_position[E_AXIS];
  1525. current_position[Z_AXIS]+=retract_zlift;
  1526. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1527. //prepare_move();
  1528. if (swapretract) {
  1529. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1530. } else {
  1531. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1532. }
  1533. plan_set_e_position(current_position[E_AXIS]);
  1534. float oldFeedrate = feedrate;
  1535. feedrate=retract_recover_feedrate*60;
  1536. retracted[active_extruder]=false;
  1537. prepare_move();
  1538. feedrate = oldFeedrate;
  1539. }
  1540. } //retract
  1541. #endif //FWRETRACT
  1542. void trace() {
  1543. tone(BEEPER, 440);
  1544. delay(25);
  1545. noTone(BEEPER);
  1546. delay(20);
  1547. }
  1548. /*
  1549. void ramming() {
  1550. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1551. if (current_temperature[0] < 230) {
  1552. //PLA
  1553. max_feedrate[E_AXIS] = 50;
  1554. //current_position[E_AXIS] -= 8;
  1555. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1556. //current_position[E_AXIS] += 8;
  1557. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1558. current_position[E_AXIS] += 5.4;
  1559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1560. current_position[E_AXIS] += 3.2;
  1561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1562. current_position[E_AXIS] += 3;
  1563. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1564. st_synchronize();
  1565. max_feedrate[E_AXIS] = 80;
  1566. current_position[E_AXIS] -= 82;
  1567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1568. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1569. current_position[E_AXIS] -= 20;
  1570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1571. current_position[E_AXIS] += 5;
  1572. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1573. current_position[E_AXIS] += 5;
  1574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1575. current_position[E_AXIS] -= 10;
  1576. st_synchronize();
  1577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1578. current_position[E_AXIS] += 10;
  1579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1580. current_position[E_AXIS] -= 10;
  1581. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1582. current_position[E_AXIS] += 10;
  1583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1584. current_position[E_AXIS] -= 10;
  1585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1586. st_synchronize();
  1587. }
  1588. else {
  1589. //ABS
  1590. max_feedrate[E_AXIS] = 50;
  1591. //current_position[E_AXIS] -= 8;
  1592. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1593. //current_position[E_AXIS] += 8;
  1594. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1595. current_position[E_AXIS] += 3.1;
  1596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1597. current_position[E_AXIS] += 3.1;
  1598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1599. current_position[E_AXIS] += 4;
  1600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1601. st_synchronize();
  1602. //current_position[X_AXIS] += 23; //delay
  1603. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1604. //current_position[X_AXIS] -= 23; //delay
  1605. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1606. delay(4700);
  1607. max_feedrate[E_AXIS] = 80;
  1608. current_position[E_AXIS] -= 92;
  1609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1610. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1611. current_position[E_AXIS] -= 5;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1613. current_position[E_AXIS] += 5;
  1614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1615. current_position[E_AXIS] -= 5;
  1616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1617. st_synchronize();
  1618. current_position[E_AXIS] += 5;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1620. current_position[E_AXIS] -= 5;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1622. current_position[E_AXIS] += 5;
  1623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1624. current_position[E_AXIS] -= 5;
  1625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1626. st_synchronize();
  1627. }
  1628. }
  1629. */
  1630. #ifdef TMC2130
  1631. void force_high_power_mode(bool start_high_power_section) {
  1632. uint8_t silent;
  1633. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1634. if (silent == 1) {
  1635. //we are in silent mode, set to normal mode to enable crash detection
  1636. st_synchronize();
  1637. cli();
  1638. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1639. tmc2130_init();
  1640. sei();
  1641. digipot_init();
  1642. }
  1643. }
  1644. #endif //TMC2130
  1645. bool gcode_M45(bool onlyZ) {
  1646. bool final_result = false;
  1647. #ifdef TMC2130
  1648. FORCE_HIGH_POWER_START;
  1649. #endif // TMC2130
  1650. // Only Z calibration?
  1651. if (!onlyZ) {
  1652. setTargetBed(0);
  1653. setTargetHotend(0, 0);
  1654. setTargetHotend(0, 1);
  1655. setTargetHotend(0, 2);
  1656. adjust_bed_reset(); //reset bed level correction
  1657. }
  1658. // Disable the default update procedure of the display. We will do a modal dialog.
  1659. lcd_update_enable(false);
  1660. // Let the planner use the uncorrected coordinates.
  1661. mbl.reset();
  1662. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1663. // the planner will not perform any adjustments in the XY plane.
  1664. // Wait for the motors to stop and update the current position with the absolute values.
  1665. world2machine_revert_to_uncorrected();
  1666. // Reset the baby step value applied without moving the axes.
  1667. babystep_reset();
  1668. // Mark all axes as in a need for homing.
  1669. memset(axis_known_position, 0, sizeof(axis_known_position));
  1670. // Home in the XY plane.
  1671. //set_destination_to_current();
  1672. setup_for_endstop_move();
  1673. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1674. home_xy();
  1675. // Let the user move the Z axes up to the end stoppers.
  1676. #ifdef TMC2130
  1677. if (calibrate_z_auto()) {
  1678. #else //TMC2130
  1679. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1680. #endif //TMC2130
  1681. refresh_cmd_timeout();
  1682. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1683. // lcd_wait_for_cool_down();
  1684. //}
  1685. if(!onlyZ){
  1686. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1687. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1688. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1689. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1690. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1691. KEEPALIVE_STATE(IN_HANDLER);
  1692. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1693. lcd_implementation_print_at(0, 2, 1);
  1694. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1695. }
  1696. // Move the print head close to the bed.
  1697. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1699. st_synchronize();
  1700. //#ifdef TMC2130
  1701. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1702. //#endif
  1703. int8_t verbosity_level = 0;
  1704. if (code_seen('V')) {
  1705. // Just 'V' without a number counts as V1.
  1706. char c = strchr_pointer[1];
  1707. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1708. }
  1709. if (onlyZ) {
  1710. clean_up_after_endstop_move();
  1711. // Z only calibration.
  1712. // Load the machine correction matrix
  1713. world2machine_initialize();
  1714. // and correct the current_position to match the transformed coordinate system.
  1715. world2machine_update_current();
  1716. //FIXME
  1717. bool result = sample_mesh_and_store_reference();
  1718. if (result) {
  1719. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1720. // Shipped, the nozzle height has been set already. The user can start printing now.
  1721. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1722. final_result = true;
  1723. // babystep_apply();
  1724. }
  1725. }
  1726. else {
  1727. // Reset the baby step value and the baby step applied flag.
  1728. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1729. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1730. // Complete XYZ calibration.
  1731. uint8_t point_too_far_mask = 0;
  1732. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1733. clean_up_after_endstop_move();
  1734. // Print head up.
  1735. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1737. st_synchronize();
  1738. if (result >= 0) {
  1739. point_too_far_mask = 0;
  1740. // Second half: The fine adjustment.
  1741. // Let the planner use the uncorrected coordinates.
  1742. mbl.reset();
  1743. world2machine_reset();
  1744. // Home in the XY plane.
  1745. setup_for_endstop_move();
  1746. home_xy();
  1747. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1748. clean_up_after_endstop_move();
  1749. // Print head up.
  1750. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1752. st_synchronize();
  1753. // if (result >= 0) babystep_apply();
  1754. }
  1755. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1756. if (result >= 0) {
  1757. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1758. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1759. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1760. final_result = true;
  1761. }
  1762. }
  1763. #ifdef TMC2130
  1764. tmc2130_home_exit();
  1765. #endif
  1766. }
  1767. else {
  1768. // Timeouted.
  1769. }
  1770. lcd_update_enable(true);
  1771. #ifdef TMC2130
  1772. FORCE_HIGH_POWER_END;
  1773. #endif // TMC2130
  1774. return final_result;
  1775. }
  1776. void gcode_M701() {
  1777. #ifdef SNMM
  1778. extr_adj(snmm_extruder);//loads current extruder
  1779. #else
  1780. enable_z();
  1781. custom_message = true;
  1782. custom_message_type = 2;
  1783. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1784. current_position[E_AXIS] += 70;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1786. current_position[E_AXIS] += 25;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1788. st_synchronize();
  1789. if (!farm_mode && loading_flag) {
  1790. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1791. while (!clean) {
  1792. lcd_update_enable(true);
  1793. lcd_update(2);
  1794. current_position[E_AXIS] += 25;
  1795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1796. st_synchronize();
  1797. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1798. }
  1799. }
  1800. lcd_update_enable(true);
  1801. lcd_update(2);
  1802. lcd_setstatuspgm(WELCOME_MSG);
  1803. disable_z();
  1804. loading_flag = false;
  1805. custom_message = false;
  1806. custom_message_type = 0;
  1807. #endif
  1808. }
  1809. void process_commands()
  1810. {
  1811. #ifdef FILAMENT_RUNOUT_SUPPORT
  1812. SET_INPUT(FR_SENS);
  1813. #endif
  1814. #ifdef CMDBUFFER_DEBUG
  1815. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1816. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1817. SERIAL_ECHOLNPGM("");
  1818. SERIAL_ECHOPGM("In cmdqueue: ");
  1819. SERIAL_ECHO(buflen);
  1820. SERIAL_ECHOLNPGM("");
  1821. #endif /* CMDBUFFER_DEBUG */
  1822. unsigned long codenum; //throw away variable
  1823. char *starpos = NULL;
  1824. #ifdef ENABLE_AUTO_BED_LEVELING
  1825. float x_tmp, y_tmp, z_tmp, real_z;
  1826. #endif
  1827. // PRUSA GCODES
  1828. KEEPALIVE_STATE(IN_HANDLER);
  1829. #ifdef SNMM
  1830. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1831. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1832. int8_t SilentMode;
  1833. #endif
  1834. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1835. starpos = (strchr(strchr_pointer + 5, '*'));
  1836. if (starpos != NULL)
  1837. *(starpos) = '\0';
  1838. lcd_setstatus(strchr_pointer + 5);
  1839. }
  1840. else if(code_seen("CRASH_DETECTED"))
  1841. crashdet_detected();
  1842. else if(code_seen("CRASH_RECOVER"))
  1843. crashdet_recover();
  1844. else if(code_seen("CRASH_CANCEL"))
  1845. crashdet_cancel();
  1846. else if(code_seen("PRUSA")){
  1847. if (code_seen("Ping")) { //PRUSA Ping
  1848. if (farm_mode) {
  1849. PingTime = millis();
  1850. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1851. }
  1852. }
  1853. else if (code_seen("PRN")) {
  1854. MYSERIAL.println(status_number);
  1855. }else if (code_seen("FAN")) {
  1856. MYSERIAL.print("E0:");
  1857. MYSERIAL.print(60*fan_speed[0]);
  1858. MYSERIAL.println(" RPM");
  1859. MYSERIAL.print("PRN0:");
  1860. MYSERIAL.print(60*fan_speed[1]);
  1861. MYSERIAL.println(" RPM");
  1862. }else if (code_seen("fn")) {
  1863. if (farm_mode) {
  1864. MYSERIAL.println(farm_no);
  1865. }
  1866. else {
  1867. MYSERIAL.println("Not in farm mode.");
  1868. }
  1869. }else if (code_seen("fv")) {
  1870. // get file version
  1871. #ifdef SDSUPPORT
  1872. card.openFile(strchr_pointer + 3,true);
  1873. while (true) {
  1874. uint16_t readByte = card.get();
  1875. MYSERIAL.write(readByte);
  1876. if (readByte=='\n') {
  1877. break;
  1878. }
  1879. }
  1880. card.closefile();
  1881. #endif // SDSUPPORT
  1882. } else if (code_seen("M28")) {
  1883. trace();
  1884. prusa_sd_card_upload = true;
  1885. card.openFile(strchr_pointer+4,false);
  1886. } else if (code_seen("SN")) {
  1887. if (farm_mode) {
  1888. selectedSerialPort = 0;
  1889. MSerial.write(";S");
  1890. // S/N is:CZPX0917X003XC13518
  1891. int numbersRead = 0;
  1892. while (numbersRead < 19) {
  1893. while (MSerial.available() > 0) {
  1894. uint8_t serial_char = MSerial.read();
  1895. selectedSerialPort = 1;
  1896. MSerial.write(serial_char);
  1897. numbersRead++;
  1898. selectedSerialPort = 0;
  1899. }
  1900. }
  1901. selectedSerialPort = 1;
  1902. MSerial.write('\n');
  1903. /*for (int b = 0; b < 3; b++) {
  1904. tone(BEEPER, 110);
  1905. delay(50);
  1906. noTone(BEEPER);
  1907. delay(50);
  1908. }*/
  1909. } else {
  1910. MYSERIAL.println("Not in farm mode.");
  1911. }
  1912. } else if(code_seen("Fir")){
  1913. SERIAL_PROTOCOLLN(FW_version);
  1914. } else if(code_seen("Rev")){
  1915. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1916. } else if(code_seen("Lang")) {
  1917. lcd_force_language_selection();
  1918. } else if(code_seen("Lz")) {
  1919. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1920. } else if (code_seen("SERIAL LOW")) {
  1921. MYSERIAL.println("SERIAL LOW");
  1922. MYSERIAL.begin(BAUDRATE);
  1923. return;
  1924. } else if (code_seen("SERIAL HIGH")) {
  1925. MYSERIAL.println("SERIAL HIGH");
  1926. MYSERIAL.begin(1152000);
  1927. return;
  1928. } else if(code_seen("Beat")) {
  1929. // Kick farm link timer
  1930. kicktime = millis();
  1931. } else if(code_seen("FR")) {
  1932. // Factory full reset
  1933. factory_reset(0,true);
  1934. }
  1935. //else if (code_seen('Cal')) {
  1936. // lcd_calibration();
  1937. // }
  1938. }
  1939. else if (code_seen('^')) {
  1940. // nothing, this is a version line
  1941. } else if(code_seen('G'))
  1942. {
  1943. switch((int)code_value())
  1944. {
  1945. case 0: // G0 -> G1
  1946. case 1: // G1
  1947. if(Stopped == false) {
  1948. #ifdef FILAMENT_RUNOUT_SUPPORT
  1949. if(READ(FR_SENS)){
  1950. feedmultiplyBckp=feedmultiply;
  1951. float target[4];
  1952. float lastpos[4];
  1953. target[X_AXIS]=current_position[X_AXIS];
  1954. target[Y_AXIS]=current_position[Y_AXIS];
  1955. target[Z_AXIS]=current_position[Z_AXIS];
  1956. target[E_AXIS]=current_position[E_AXIS];
  1957. lastpos[X_AXIS]=current_position[X_AXIS];
  1958. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1959. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1960. lastpos[E_AXIS]=current_position[E_AXIS];
  1961. //retract by E
  1962. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1963. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1964. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1965. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1966. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1967. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1968. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1969. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1970. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1971. //finish moves
  1972. st_synchronize();
  1973. //disable extruder steppers so filament can be removed
  1974. disable_e0();
  1975. disable_e1();
  1976. disable_e2();
  1977. delay(100);
  1978. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1979. uint8_t cnt=0;
  1980. int counterBeep = 0;
  1981. lcd_wait_interact();
  1982. while(!lcd_clicked()){
  1983. cnt++;
  1984. manage_heater();
  1985. manage_inactivity(true);
  1986. //lcd_update();
  1987. if(cnt==0)
  1988. {
  1989. #if BEEPER > 0
  1990. if (counterBeep== 500){
  1991. counterBeep = 0;
  1992. }
  1993. SET_OUTPUT(BEEPER);
  1994. if (counterBeep== 0){
  1995. WRITE(BEEPER,HIGH);
  1996. }
  1997. if (counterBeep== 20){
  1998. WRITE(BEEPER,LOW);
  1999. }
  2000. counterBeep++;
  2001. #else
  2002. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2003. lcd_buzz(1000/6,100);
  2004. #else
  2005. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2006. #endif
  2007. #endif
  2008. }
  2009. }
  2010. WRITE(BEEPER,LOW);
  2011. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2012. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2013. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2014. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2015. lcd_change_fil_state = 0;
  2016. lcd_loading_filament();
  2017. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2018. lcd_change_fil_state = 0;
  2019. lcd_alright();
  2020. switch(lcd_change_fil_state){
  2021. case 2:
  2022. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2023. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2024. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2025. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2026. lcd_loading_filament();
  2027. break;
  2028. case 3:
  2029. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2030. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2031. lcd_loading_color();
  2032. break;
  2033. default:
  2034. lcd_change_success();
  2035. break;
  2036. }
  2037. }
  2038. target[E_AXIS]+= 5;
  2039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2040. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2042. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2043. //plan_set_e_position(current_position[E_AXIS]);
  2044. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2045. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2046. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2047. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2048. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2049. plan_set_e_position(lastpos[E_AXIS]);
  2050. feedmultiply=feedmultiplyBckp;
  2051. char cmd[9];
  2052. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2053. enquecommand(cmd);
  2054. }
  2055. #endif
  2056. get_coordinates(); // For X Y Z E F
  2057. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2058. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2059. }
  2060. #ifdef FWRETRACT
  2061. if(autoretract_enabled)
  2062. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2063. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2064. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2065. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2066. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2067. retract(!retracted);
  2068. return;
  2069. }
  2070. }
  2071. #endif //FWRETRACT
  2072. prepare_move();
  2073. //ClearToSend();
  2074. }
  2075. break;
  2076. case 2: // G2 - CW ARC
  2077. if(Stopped == false) {
  2078. get_arc_coordinates();
  2079. prepare_arc_move(true);
  2080. }
  2081. break;
  2082. case 3: // G3 - CCW ARC
  2083. if(Stopped == false) {
  2084. get_arc_coordinates();
  2085. prepare_arc_move(false);
  2086. }
  2087. break;
  2088. case 4: // G4 dwell
  2089. codenum = 0;
  2090. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2091. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2092. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2093. st_synchronize();
  2094. codenum += millis(); // keep track of when we started waiting
  2095. previous_millis_cmd = millis();
  2096. while(millis() < codenum) {
  2097. manage_heater();
  2098. manage_inactivity();
  2099. lcd_update();
  2100. }
  2101. break;
  2102. #ifdef FWRETRACT
  2103. case 10: // G10 retract
  2104. #if EXTRUDERS > 1
  2105. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2106. retract(true,retracted_swap[active_extruder]);
  2107. #else
  2108. retract(true);
  2109. #endif
  2110. break;
  2111. case 11: // G11 retract_recover
  2112. #if EXTRUDERS > 1
  2113. retract(false,retracted_swap[active_extruder]);
  2114. #else
  2115. retract(false);
  2116. #endif
  2117. break;
  2118. #endif //FWRETRACT
  2119. case 28: //G28 Home all Axis one at a time
  2120. {
  2121. st_synchronize();
  2122. #if 1
  2123. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2124. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2125. #endif
  2126. // Flag for the display update routine and to disable the print cancelation during homing.
  2127. homing_flag = true;
  2128. // Which axes should be homed?
  2129. bool home_x = code_seen(axis_codes[X_AXIS]);
  2130. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2131. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2132. // Either all X,Y,Z codes are present, or none of them.
  2133. bool home_all_axes = home_x == home_y && home_x == home_z;
  2134. if (home_all_axes)
  2135. // No X/Y/Z code provided means to home all axes.
  2136. home_x = home_y = home_z = true;
  2137. #ifdef ENABLE_AUTO_BED_LEVELING
  2138. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2139. #endif //ENABLE_AUTO_BED_LEVELING
  2140. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2141. // the planner will not perform any adjustments in the XY plane.
  2142. // Wait for the motors to stop and update the current position with the absolute values.
  2143. world2machine_revert_to_uncorrected();
  2144. // For mesh bed leveling deactivate the matrix temporarily.
  2145. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2146. // in a single axis only.
  2147. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2148. #ifdef MESH_BED_LEVELING
  2149. uint8_t mbl_was_active = mbl.active;
  2150. mbl.active = 0;
  2151. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2152. #endif
  2153. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2154. // consumed during the first movements following this statement.
  2155. if (home_z)
  2156. babystep_undo();
  2157. saved_feedrate = feedrate;
  2158. saved_feedmultiply = feedmultiply;
  2159. feedmultiply = 100;
  2160. previous_millis_cmd = millis();
  2161. enable_endstops(true);
  2162. memcpy(destination, current_position, sizeof(destination));
  2163. feedrate = 0.0;
  2164. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2165. if(home_z)
  2166. homeaxis(Z_AXIS);
  2167. #endif
  2168. #ifdef QUICK_HOME
  2169. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2170. if(home_x && home_y) //first diagonal move
  2171. {
  2172. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2173. int x_axis_home_dir = home_dir(X_AXIS);
  2174. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2175. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2176. feedrate = homing_feedrate[X_AXIS];
  2177. if(homing_feedrate[Y_AXIS]<feedrate)
  2178. feedrate = homing_feedrate[Y_AXIS];
  2179. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2180. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2181. } else {
  2182. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2183. }
  2184. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2185. st_synchronize();
  2186. axis_is_at_home(X_AXIS);
  2187. axis_is_at_home(Y_AXIS);
  2188. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2189. destination[X_AXIS] = current_position[X_AXIS];
  2190. destination[Y_AXIS] = current_position[Y_AXIS];
  2191. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2192. feedrate = 0.0;
  2193. st_synchronize();
  2194. endstops_hit_on_purpose();
  2195. current_position[X_AXIS] = destination[X_AXIS];
  2196. current_position[Y_AXIS] = destination[Y_AXIS];
  2197. current_position[Z_AXIS] = destination[Z_AXIS];
  2198. }
  2199. #endif /* QUICK_HOME */
  2200. if(home_x)
  2201. homeaxis(X_AXIS);
  2202. if(home_y)
  2203. homeaxis(Y_AXIS);
  2204. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2205. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2206. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2207. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2208. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2209. #ifndef Z_SAFE_HOMING
  2210. if(home_z) {
  2211. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2212. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2213. feedrate = max_feedrate[Z_AXIS];
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2215. st_synchronize();
  2216. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2217. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2218. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2219. {
  2220. homeaxis(X_AXIS);
  2221. homeaxis(Y_AXIS);
  2222. }
  2223. // 1st mesh bed leveling measurement point, corrected.
  2224. world2machine_initialize();
  2225. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2226. world2machine_reset();
  2227. if (destination[Y_AXIS] < Y_MIN_POS)
  2228. destination[Y_AXIS] = Y_MIN_POS;
  2229. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2230. feedrate = homing_feedrate[Z_AXIS]/10;
  2231. current_position[Z_AXIS] = 0;
  2232. enable_endstops(false);
  2233. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2234. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2235. st_synchronize();
  2236. current_position[X_AXIS] = destination[X_AXIS];
  2237. current_position[Y_AXIS] = destination[Y_AXIS];
  2238. enable_endstops(true);
  2239. endstops_hit_on_purpose();
  2240. homeaxis(Z_AXIS);
  2241. #else // MESH_BED_LEVELING
  2242. homeaxis(Z_AXIS);
  2243. #endif // MESH_BED_LEVELING
  2244. }
  2245. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2246. if(home_all_axes) {
  2247. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2248. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2249. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2250. feedrate = XY_TRAVEL_SPEED/60;
  2251. current_position[Z_AXIS] = 0;
  2252. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2253. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2254. st_synchronize();
  2255. current_position[X_AXIS] = destination[X_AXIS];
  2256. current_position[Y_AXIS] = destination[Y_AXIS];
  2257. homeaxis(Z_AXIS);
  2258. }
  2259. // Let's see if X and Y are homed and probe is inside bed area.
  2260. if(home_z) {
  2261. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2262. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2263. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2264. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2265. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2266. current_position[Z_AXIS] = 0;
  2267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2268. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2269. feedrate = max_feedrate[Z_AXIS];
  2270. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2271. st_synchronize();
  2272. homeaxis(Z_AXIS);
  2273. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2274. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2275. SERIAL_ECHO_START;
  2276. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2277. } else {
  2278. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2279. SERIAL_ECHO_START;
  2280. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2281. }
  2282. }
  2283. #endif // Z_SAFE_HOMING
  2284. #endif // Z_HOME_DIR < 0
  2285. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2286. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2287. #ifdef ENABLE_AUTO_BED_LEVELING
  2288. if(home_z)
  2289. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2290. #endif
  2291. // Set the planner and stepper routine positions.
  2292. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2293. // contains the machine coordinates.
  2294. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2295. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2296. enable_endstops(false);
  2297. #endif
  2298. feedrate = saved_feedrate;
  2299. feedmultiply = saved_feedmultiply;
  2300. previous_millis_cmd = millis();
  2301. endstops_hit_on_purpose();
  2302. #ifndef MESH_BED_LEVELING
  2303. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2304. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2305. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2306. lcd_adjust_z();
  2307. #endif
  2308. // Load the machine correction matrix
  2309. world2machine_initialize();
  2310. // and correct the current_position XY axes to match the transformed coordinate system.
  2311. world2machine_update_current();
  2312. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2313. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2314. {
  2315. if (! home_z && mbl_was_active) {
  2316. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2317. mbl.active = true;
  2318. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2319. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2320. }
  2321. }
  2322. else
  2323. {
  2324. st_synchronize();
  2325. homing_flag = false;
  2326. // Push the commands to the front of the message queue in the reverse order!
  2327. // There shall be always enough space reserved for these commands.
  2328. // enquecommand_front_P((PSTR("G80")));
  2329. goto case_G80;
  2330. }
  2331. #endif
  2332. if (farm_mode) { prusa_statistics(20); };
  2333. homing_flag = false;
  2334. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2335. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2336. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2337. break;
  2338. }
  2339. #ifdef ENABLE_AUTO_BED_LEVELING
  2340. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2341. {
  2342. #if Z_MIN_PIN == -1
  2343. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2344. #endif
  2345. // Prevent user from running a G29 without first homing in X and Y
  2346. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2347. {
  2348. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2349. SERIAL_ECHO_START;
  2350. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2351. break; // abort G29, since we don't know where we are
  2352. }
  2353. st_synchronize();
  2354. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2355. //vector_3 corrected_position = plan_get_position_mm();
  2356. //corrected_position.debug("position before G29");
  2357. plan_bed_level_matrix.set_to_identity();
  2358. vector_3 uncorrected_position = plan_get_position();
  2359. //uncorrected_position.debug("position durring G29");
  2360. current_position[X_AXIS] = uncorrected_position.x;
  2361. current_position[Y_AXIS] = uncorrected_position.y;
  2362. current_position[Z_AXIS] = uncorrected_position.z;
  2363. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2364. setup_for_endstop_move();
  2365. feedrate = homing_feedrate[Z_AXIS];
  2366. #ifdef AUTO_BED_LEVELING_GRID
  2367. // probe at the points of a lattice grid
  2368. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2369. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2370. // solve the plane equation ax + by + d = z
  2371. // A is the matrix with rows [x y 1] for all the probed points
  2372. // B is the vector of the Z positions
  2373. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2374. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2375. // "A" matrix of the linear system of equations
  2376. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2377. // "B" vector of Z points
  2378. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2379. int probePointCounter = 0;
  2380. bool zig = true;
  2381. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2382. {
  2383. int xProbe, xInc;
  2384. if (zig)
  2385. {
  2386. xProbe = LEFT_PROBE_BED_POSITION;
  2387. //xEnd = RIGHT_PROBE_BED_POSITION;
  2388. xInc = xGridSpacing;
  2389. zig = false;
  2390. } else // zag
  2391. {
  2392. xProbe = RIGHT_PROBE_BED_POSITION;
  2393. //xEnd = LEFT_PROBE_BED_POSITION;
  2394. xInc = -xGridSpacing;
  2395. zig = true;
  2396. }
  2397. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2398. {
  2399. float z_before;
  2400. if (probePointCounter == 0)
  2401. {
  2402. // raise before probing
  2403. z_before = Z_RAISE_BEFORE_PROBING;
  2404. } else
  2405. {
  2406. // raise extruder
  2407. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2408. }
  2409. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2410. eqnBVector[probePointCounter] = measured_z;
  2411. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2412. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2413. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2414. probePointCounter++;
  2415. xProbe += xInc;
  2416. }
  2417. }
  2418. clean_up_after_endstop_move();
  2419. // solve lsq problem
  2420. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2421. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2422. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2423. SERIAL_PROTOCOLPGM(" b: ");
  2424. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2425. SERIAL_PROTOCOLPGM(" d: ");
  2426. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2427. set_bed_level_equation_lsq(plane_equation_coefficients);
  2428. free(plane_equation_coefficients);
  2429. #else // AUTO_BED_LEVELING_GRID not defined
  2430. // Probe at 3 arbitrary points
  2431. // probe 1
  2432. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2433. // probe 2
  2434. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2435. // probe 3
  2436. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2437. clean_up_after_endstop_move();
  2438. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2439. #endif // AUTO_BED_LEVELING_GRID
  2440. st_synchronize();
  2441. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2442. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2443. // When the bed is uneven, this height must be corrected.
  2444. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2445. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2446. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2447. z_tmp = current_position[Z_AXIS];
  2448. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2449. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2450. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2451. }
  2452. break;
  2453. #ifndef Z_PROBE_SLED
  2454. case 30: // G30 Single Z Probe
  2455. {
  2456. st_synchronize();
  2457. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2458. setup_for_endstop_move();
  2459. feedrate = homing_feedrate[Z_AXIS];
  2460. run_z_probe();
  2461. SERIAL_PROTOCOLPGM(MSG_BED);
  2462. SERIAL_PROTOCOLPGM(" X: ");
  2463. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2464. SERIAL_PROTOCOLPGM(" Y: ");
  2465. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2466. SERIAL_PROTOCOLPGM(" Z: ");
  2467. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2468. SERIAL_PROTOCOLPGM("\n");
  2469. clean_up_after_endstop_move();
  2470. }
  2471. break;
  2472. #else
  2473. case 31: // dock the sled
  2474. dock_sled(true);
  2475. break;
  2476. case 32: // undock the sled
  2477. dock_sled(false);
  2478. break;
  2479. #endif // Z_PROBE_SLED
  2480. #endif // ENABLE_AUTO_BED_LEVELING
  2481. #ifdef MESH_BED_LEVELING
  2482. case 30: // G30 Single Z Probe
  2483. {
  2484. st_synchronize();
  2485. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2486. setup_for_endstop_move();
  2487. feedrate = homing_feedrate[Z_AXIS];
  2488. find_bed_induction_sensor_point_z(-10.f, 3);
  2489. SERIAL_PROTOCOLRPGM(MSG_BED);
  2490. SERIAL_PROTOCOLPGM(" X: ");
  2491. MYSERIAL.print(current_position[X_AXIS], 5);
  2492. SERIAL_PROTOCOLPGM(" Y: ");
  2493. MYSERIAL.print(current_position[Y_AXIS], 5);
  2494. SERIAL_PROTOCOLPGM(" Z: ");
  2495. MYSERIAL.print(current_position[Z_AXIS], 5);
  2496. SERIAL_PROTOCOLPGM("\n");
  2497. clean_up_after_endstop_move();
  2498. }
  2499. break;
  2500. case 75:
  2501. {
  2502. for (int i = 40; i <= 110; i++) {
  2503. MYSERIAL.print(i);
  2504. MYSERIAL.print(" ");
  2505. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2506. }
  2507. }
  2508. break;
  2509. case 76: //PINDA probe temperature calibration
  2510. {
  2511. #ifdef PINDA_THERMISTOR
  2512. if (true)
  2513. {
  2514. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2515. // We don't know where we are! HOME!
  2516. // Push the commands to the front of the message queue in the reverse order!
  2517. // There shall be always enough space reserved for these commands.
  2518. repeatcommand_front(); // repeat G76 with all its parameters
  2519. enquecommand_front_P((PSTR("G28 W0")));
  2520. break;
  2521. }
  2522. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2523. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2524. float zero_z;
  2525. int z_shift = 0; //unit: steps
  2526. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2527. if (start_temp < 35) start_temp = 35;
  2528. if (start_temp < current_temperature_pinda) start_temp += 5;
  2529. SERIAL_ECHOPGM("start temperature: ");
  2530. MYSERIAL.println(start_temp);
  2531. // setTargetHotend(200, 0);
  2532. setTargetBed(70 + (start_temp - 30));
  2533. custom_message = true;
  2534. custom_message_type = 4;
  2535. custom_message_state = 1;
  2536. custom_message = MSG_TEMP_CALIBRATION;
  2537. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2538. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2539. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2541. st_synchronize();
  2542. while (current_temperature_pinda < start_temp)
  2543. {
  2544. delay_keep_alive(1000);
  2545. serialecho_temperatures();
  2546. }
  2547. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2548. current_position[Z_AXIS] = 5;
  2549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2550. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2551. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2553. st_synchronize();
  2554. find_bed_induction_sensor_point_z(-1.f);
  2555. zero_z = current_position[Z_AXIS];
  2556. //current_position[Z_AXIS]
  2557. SERIAL_ECHOLNPGM("");
  2558. SERIAL_ECHOPGM("ZERO: ");
  2559. MYSERIAL.print(current_position[Z_AXIS]);
  2560. SERIAL_ECHOLNPGM("");
  2561. int i = -1; for (; i < 5; i++)
  2562. {
  2563. float temp = (40 + i * 5);
  2564. SERIAL_ECHOPGM("Step: ");
  2565. MYSERIAL.print(i + 2);
  2566. SERIAL_ECHOLNPGM("/6 (skipped)");
  2567. SERIAL_ECHOPGM("PINDA temperature: ");
  2568. MYSERIAL.print((40 + i*5));
  2569. SERIAL_ECHOPGM(" Z shift (mm):");
  2570. MYSERIAL.print(0);
  2571. SERIAL_ECHOLNPGM("");
  2572. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2573. if (start_temp <= temp) break;
  2574. }
  2575. for (i++; i < 5; i++)
  2576. {
  2577. float temp = (40 + i * 5);
  2578. SERIAL_ECHOPGM("Step: ");
  2579. MYSERIAL.print(i + 2);
  2580. SERIAL_ECHOLNPGM("/6");
  2581. custom_message_state = i + 2;
  2582. setTargetBed(50 + 10 * (temp - 30) / 5);
  2583. // setTargetHotend(255, 0);
  2584. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2585. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2586. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2588. st_synchronize();
  2589. while (current_temperature_pinda < temp)
  2590. {
  2591. delay_keep_alive(1000);
  2592. serialecho_temperatures();
  2593. }
  2594. current_position[Z_AXIS] = 5;
  2595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2596. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2597. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2599. st_synchronize();
  2600. find_bed_induction_sensor_point_z(-1.f);
  2601. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2602. SERIAL_ECHOLNPGM("");
  2603. SERIAL_ECHOPGM("PINDA temperature: ");
  2604. MYSERIAL.print(current_temperature_pinda);
  2605. SERIAL_ECHOPGM(" Z shift (mm):");
  2606. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2607. SERIAL_ECHOLNPGM("");
  2608. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2609. }
  2610. custom_message_type = 0;
  2611. custom_message = false;
  2612. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2613. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2614. disable_x();
  2615. disable_y();
  2616. disable_z();
  2617. disable_e0();
  2618. disable_e1();
  2619. disable_e2();
  2620. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2621. lcd_update_enable(true);
  2622. lcd_update(2);
  2623. setTargetBed(0); //set bed target temperature back to 0
  2624. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2625. break;
  2626. }
  2627. #endif //PINDA_THERMISTOR
  2628. setTargetBed(PINDA_MIN_T);
  2629. float zero_z;
  2630. int z_shift = 0; //unit: steps
  2631. int t_c; // temperature
  2632. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2633. // We don't know where we are! HOME!
  2634. // Push the commands to the front of the message queue in the reverse order!
  2635. // There shall be always enough space reserved for these commands.
  2636. repeatcommand_front(); // repeat G76 with all its parameters
  2637. enquecommand_front_P((PSTR("G28 W0")));
  2638. break;
  2639. }
  2640. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2641. custom_message = true;
  2642. custom_message_type = 4;
  2643. custom_message_state = 1;
  2644. custom_message = MSG_TEMP_CALIBRATION;
  2645. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2646. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2647. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2649. st_synchronize();
  2650. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2651. delay_keep_alive(1000);
  2652. serialecho_temperatures();
  2653. }
  2654. //enquecommand_P(PSTR("M190 S50"));
  2655. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2656. delay_keep_alive(1000);
  2657. serialecho_temperatures();
  2658. }
  2659. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2660. current_position[Z_AXIS] = 5;
  2661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2662. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2663. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2665. st_synchronize();
  2666. find_bed_induction_sensor_point_z(-1.f);
  2667. zero_z = current_position[Z_AXIS];
  2668. //current_position[Z_AXIS]
  2669. SERIAL_ECHOLNPGM("");
  2670. SERIAL_ECHOPGM("ZERO: ");
  2671. MYSERIAL.print(current_position[Z_AXIS]);
  2672. SERIAL_ECHOLNPGM("");
  2673. for (int i = 0; i<5; i++) {
  2674. SERIAL_ECHOPGM("Step: ");
  2675. MYSERIAL.print(i+2);
  2676. SERIAL_ECHOLNPGM("/6");
  2677. custom_message_state = i + 2;
  2678. t_c = 60 + i * 10;
  2679. setTargetBed(t_c);
  2680. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2681. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2682. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2684. st_synchronize();
  2685. while (degBed() < t_c) {
  2686. delay_keep_alive(1000);
  2687. serialecho_temperatures();
  2688. }
  2689. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2690. delay_keep_alive(1000);
  2691. serialecho_temperatures();
  2692. }
  2693. current_position[Z_AXIS] = 5;
  2694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2695. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2696. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2698. st_synchronize();
  2699. find_bed_induction_sensor_point_z(-1.f);
  2700. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2701. SERIAL_ECHOLNPGM("");
  2702. SERIAL_ECHOPGM("Temperature: ");
  2703. MYSERIAL.print(t_c);
  2704. SERIAL_ECHOPGM(" Z shift (mm):");
  2705. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2706. SERIAL_ECHOLNPGM("");
  2707. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2708. }
  2709. custom_message_type = 0;
  2710. custom_message = false;
  2711. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2712. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2713. disable_x();
  2714. disable_y();
  2715. disable_z();
  2716. disable_e0();
  2717. disable_e1();
  2718. disable_e2();
  2719. setTargetBed(0); //set bed target temperature back to 0
  2720. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2721. lcd_update_enable(true);
  2722. lcd_update(2);
  2723. }
  2724. break;
  2725. #ifdef DIS
  2726. case 77:
  2727. {
  2728. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2729. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2730. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2731. float dimension_x = 40;
  2732. float dimension_y = 40;
  2733. int points_x = 40;
  2734. int points_y = 40;
  2735. float offset_x = 74;
  2736. float offset_y = 33;
  2737. if (code_seen('X')) dimension_x = code_value();
  2738. if (code_seen('Y')) dimension_y = code_value();
  2739. if (code_seen('XP')) points_x = code_value();
  2740. if (code_seen('YP')) points_y = code_value();
  2741. if (code_seen('XO')) offset_x = code_value();
  2742. if (code_seen('YO')) offset_y = code_value();
  2743. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2744. } break;
  2745. #endif
  2746. case 79: {
  2747. for (int i = 255; i > 0; i = i - 5) {
  2748. fanSpeed = i;
  2749. //delay_keep_alive(2000);
  2750. for (int j = 0; j < 100; j++) {
  2751. delay_keep_alive(100);
  2752. }
  2753. fan_speed[1];
  2754. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2755. }
  2756. }break;
  2757. /**
  2758. * G80: Mesh-based Z probe, probes a grid and produces a
  2759. * mesh to compensate for variable bed height
  2760. *
  2761. * The S0 report the points as below
  2762. *
  2763. * +----> X-axis
  2764. * |
  2765. * |
  2766. * v Y-axis
  2767. *
  2768. */
  2769. case 80:
  2770. #ifdef MK1BP
  2771. break;
  2772. #endif //MK1BP
  2773. case_G80:
  2774. {
  2775. mesh_bed_leveling_flag = true;
  2776. int8_t verbosity_level = 0;
  2777. static bool run = false;
  2778. if (code_seen('V')) {
  2779. // Just 'V' without a number counts as V1.
  2780. char c = strchr_pointer[1];
  2781. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2782. }
  2783. // Firstly check if we know where we are
  2784. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2785. // We don't know where we are! HOME!
  2786. // Push the commands to the front of the message queue in the reverse order!
  2787. // There shall be always enough space reserved for these commands.
  2788. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2789. repeatcommand_front(); // repeat G80 with all its parameters
  2790. enquecommand_front_P((PSTR("G28 W0")));
  2791. }
  2792. else {
  2793. mesh_bed_leveling_flag = false;
  2794. }
  2795. break;
  2796. }
  2797. bool temp_comp_start = true;
  2798. #ifdef PINDA_THERMISTOR
  2799. temp_comp_start = false;
  2800. #endif //PINDA_THERMISTOR
  2801. if (temp_comp_start)
  2802. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2803. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2804. temp_compensation_start();
  2805. run = true;
  2806. repeatcommand_front(); // repeat G80 with all its parameters
  2807. enquecommand_front_P((PSTR("G28 W0")));
  2808. }
  2809. else {
  2810. mesh_bed_leveling_flag = false;
  2811. }
  2812. break;
  2813. }
  2814. run = false;
  2815. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2816. mesh_bed_leveling_flag = false;
  2817. break;
  2818. }
  2819. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2820. bool custom_message_old = custom_message;
  2821. unsigned int custom_message_type_old = custom_message_type;
  2822. unsigned int custom_message_state_old = custom_message_state;
  2823. custom_message = true;
  2824. custom_message_type = 1;
  2825. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2826. lcd_update(1);
  2827. mbl.reset(); //reset mesh bed leveling
  2828. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2829. // consumed during the first movements following this statement.
  2830. babystep_undo();
  2831. // Cycle through all points and probe them
  2832. // First move up. During this first movement, the babystepping will be reverted.
  2833. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2835. // The move to the first calibration point.
  2836. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2837. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2838. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2839. #ifdef SUPPORT_VERBOSITY
  2840. if (verbosity_level >= 1) {
  2841. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2842. }
  2843. #endif //SUPPORT_VERBOSITY
  2844. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2846. // Wait until the move is finished.
  2847. st_synchronize();
  2848. int mesh_point = 0; //index number of calibration point
  2849. int ix = 0;
  2850. int iy = 0;
  2851. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2852. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2853. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2854. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2855. #ifdef SUPPORT_VERBOSITY
  2856. if (verbosity_level >= 1) {
  2857. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2858. }
  2859. #endif // SUPPORT_VERBOSITY
  2860. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2861. const char *kill_message = NULL;
  2862. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2863. // Get coords of a measuring point.
  2864. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2865. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2866. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2867. float z0 = 0.f;
  2868. if (has_z && mesh_point > 0) {
  2869. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2870. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2871. //#if 0
  2872. #ifdef SUPPORT_VERBOSITY
  2873. if (verbosity_level >= 1) {
  2874. SERIAL_ECHOLNPGM("");
  2875. SERIAL_ECHOPGM("Bed leveling, point: ");
  2876. MYSERIAL.print(mesh_point);
  2877. SERIAL_ECHOPGM(", calibration z: ");
  2878. MYSERIAL.print(z0, 5);
  2879. SERIAL_ECHOLNPGM("");
  2880. }
  2881. #endif // SUPPORT_VERBOSITY
  2882. //#endif
  2883. }
  2884. // Move Z up to MESH_HOME_Z_SEARCH.
  2885. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2886. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2887. st_synchronize();
  2888. // Move to XY position of the sensor point.
  2889. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2890. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2891. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2892. #ifdef SUPPORT_VERBOSITY
  2893. if (verbosity_level >= 1) {
  2894. SERIAL_PROTOCOL(mesh_point);
  2895. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2896. }
  2897. #endif // SUPPORT_VERBOSITY
  2898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2899. st_synchronize();
  2900. // Go down until endstop is hit
  2901. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2902. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2903. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2904. break;
  2905. }
  2906. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2907. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2908. break;
  2909. }
  2910. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2911. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2912. break;
  2913. }
  2914. #ifdef SUPPORT_VERBOSITY
  2915. if (verbosity_level >= 10) {
  2916. SERIAL_ECHOPGM("X: ");
  2917. MYSERIAL.print(current_position[X_AXIS], 5);
  2918. SERIAL_ECHOLNPGM("");
  2919. SERIAL_ECHOPGM("Y: ");
  2920. MYSERIAL.print(current_position[Y_AXIS], 5);
  2921. SERIAL_PROTOCOLPGM("\n");
  2922. }
  2923. #endif // SUPPORT_VERBOSITY
  2924. float offset_z = 0;
  2925. #ifdef PINDA_THERMISTOR
  2926. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2927. #endif //PINDA_THERMISTOR
  2928. // #ifdef SUPPORT_VERBOSITY
  2929. // if (verbosity_level >= 1)
  2930. {
  2931. SERIAL_ECHOPGM("mesh bed leveling: ");
  2932. MYSERIAL.print(current_position[Z_AXIS], 5);
  2933. SERIAL_ECHOPGM(" offset: ");
  2934. MYSERIAL.print(offset_z, 5);
  2935. SERIAL_ECHOLNPGM("");
  2936. }
  2937. // #endif // SUPPORT_VERBOSITY
  2938. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2939. custom_message_state--;
  2940. mesh_point++;
  2941. lcd_update(1);
  2942. }
  2943. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2944. #ifdef SUPPORT_VERBOSITY
  2945. if (verbosity_level >= 20) {
  2946. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2947. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2948. MYSERIAL.print(current_position[Z_AXIS], 5);
  2949. }
  2950. #endif // SUPPORT_VERBOSITY
  2951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2952. st_synchronize();
  2953. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2954. kill(kill_message);
  2955. SERIAL_ECHOLNPGM("killed");
  2956. }
  2957. clean_up_after_endstop_move();
  2958. SERIAL_ECHOLNPGM("clean up finished ");
  2959. bool apply_temp_comp = true;
  2960. #ifdef PINDA_THERMISTOR
  2961. apply_temp_comp = false;
  2962. #endif
  2963. if (apply_temp_comp)
  2964. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2965. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2966. SERIAL_ECHOLNPGM("babystep applied");
  2967. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2968. #ifdef SUPPORT_VERBOSITY
  2969. if (verbosity_level >= 1) {
  2970. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2971. }
  2972. #endif // SUPPORT_VERBOSITY
  2973. for (uint8_t i = 0; i < 4; ++i) {
  2974. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2975. long correction = 0;
  2976. if (code_seen(codes[i]))
  2977. correction = code_value_long();
  2978. else if (eeprom_bed_correction_valid) {
  2979. unsigned char *addr = (i < 2) ?
  2980. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2981. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2982. correction = eeprom_read_int8(addr);
  2983. }
  2984. if (correction == 0)
  2985. continue;
  2986. float offset = float(correction) * 0.001f;
  2987. if (fabs(offset) > 0.101f) {
  2988. SERIAL_ERROR_START;
  2989. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2990. SERIAL_ECHO(offset);
  2991. SERIAL_ECHOLNPGM(" microns");
  2992. }
  2993. else {
  2994. switch (i) {
  2995. case 0:
  2996. for (uint8_t row = 0; row < 3; ++row) {
  2997. mbl.z_values[row][1] += 0.5f * offset;
  2998. mbl.z_values[row][0] += offset;
  2999. }
  3000. break;
  3001. case 1:
  3002. for (uint8_t row = 0; row < 3; ++row) {
  3003. mbl.z_values[row][1] += 0.5f * offset;
  3004. mbl.z_values[row][2] += offset;
  3005. }
  3006. break;
  3007. case 2:
  3008. for (uint8_t col = 0; col < 3; ++col) {
  3009. mbl.z_values[1][col] += 0.5f * offset;
  3010. mbl.z_values[0][col] += offset;
  3011. }
  3012. break;
  3013. case 3:
  3014. for (uint8_t col = 0; col < 3; ++col) {
  3015. mbl.z_values[1][col] += 0.5f * offset;
  3016. mbl.z_values[2][col] += offset;
  3017. }
  3018. break;
  3019. }
  3020. }
  3021. }
  3022. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3023. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3024. SERIAL_ECHOLNPGM("Upsample finished");
  3025. mbl.active = 1; //activate mesh bed leveling
  3026. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3027. go_home_with_z_lift();
  3028. SERIAL_ECHOLNPGM("Go home finished");
  3029. //unretract (after PINDA preheat retraction)
  3030. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3031. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3033. }
  3034. KEEPALIVE_STATE(NOT_BUSY);
  3035. // Restore custom message state
  3036. custom_message = custom_message_old;
  3037. custom_message_type = custom_message_type_old;
  3038. custom_message_state = custom_message_state_old;
  3039. mesh_bed_leveling_flag = false;
  3040. mesh_bed_run_from_menu = false;
  3041. lcd_update(2);
  3042. }
  3043. break;
  3044. /**
  3045. * G81: Print mesh bed leveling status and bed profile if activated
  3046. */
  3047. case 81:
  3048. if (mbl.active) {
  3049. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3050. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3051. SERIAL_PROTOCOLPGM(",");
  3052. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3053. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3054. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3055. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3056. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3057. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3058. SERIAL_PROTOCOLPGM(" ");
  3059. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3060. }
  3061. SERIAL_PROTOCOLPGM("\n");
  3062. }
  3063. }
  3064. else
  3065. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3066. break;
  3067. #if 0
  3068. /**
  3069. * G82: Single Z probe at current location
  3070. *
  3071. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3072. *
  3073. */
  3074. case 82:
  3075. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3076. setup_for_endstop_move();
  3077. find_bed_induction_sensor_point_z();
  3078. clean_up_after_endstop_move();
  3079. SERIAL_PROTOCOLPGM("Bed found at: ");
  3080. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3081. SERIAL_PROTOCOLPGM("\n");
  3082. break;
  3083. /**
  3084. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3085. */
  3086. case 83:
  3087. {
  3088. int babystepz = code_seen('S') ? code_value() : 0;
  3089. int BabyPosition = code_seen('P') ? code_value() : 0;
  3090. if (babystepz != 0) {
  3091. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3092. // Is the axis indexed starting with zero or one?
  3093. if (BabyPosition > 4) {
  3094. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3095. }else{
  3096. // Save it to the eeprom
  3097. babystepLoadZ = babystepz;
  3098. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3099. // adjust the Z
  3100. babystepsTodoZadd(babystepLoadZ);
  3101. }
  3102. }
  3103. }
  3104. break;
  3105. /**
  3106. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3107. */
  3108. case 84:
  3109. babystepsTodoZsubtract(babystepLoadZ);
  3110. // babystepLoadZ = 0;
  3111. break;
  3112. /**
  3113. * G85: Prusa3D specific: Pick best babystep
  3114. */
  3115. case 85:
  3116. lcd_pick_babystep();
  3117. break;
  3118. #endif
  3119. /**
  3120. * G86: Prusa3D specific: Disable babystep correction after home.
  3121. * This G-code will be performed at the start of a calibration script.
  3122. */
  3123. case 86:
  3124. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3125. break;
  3126. /**
  3127. * G87: Prusa3D specific: Enable babystep correction after home
  3128. * This G-code will be performed at the end of a calibration script.
  3129. */
  3130. case 87:
  3131. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3132. break;
  3133. /**
  3134. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3135. */
  3136. case 88:
  3137. break;
  3138. #endif // ENABLE_MESH_BED_LEVELING
  3139. case 90: // G90
  3140. relative_mode = false;
  3141. break;
  3142. case 91: // G91
  3143. relative_mode = true;
  3144. break;
  3145. case 92: // G92
  3146. if(!code_seen(axis_codes[E_AXIS]))
  3147. st_synchronize();
  3148. for(int8_t i=0; i < NUM_AXIS; i++) {
  3149. if(code_seen(axis_codes[i])) {
  3150. if(i == E_AXIS) {
  3151. current_position[i] = code_value();
  3152. plan_set_e_position(current_position[E_AXIS]);
  3153. }
  3154. else {
  3155. current_position[i] = code_value()+add_homing[i];
  3156. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3157. }
  3158. }
  3159. }
  3160. break;
  3161. case 98: //activate farm mode
  3162. farm_mode = 1;
  3163. PingTime = millis();
  3164. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3165. break;
  3166. case 99: //deactivate farm mode
  3167. farm_mode = 0;
  3168. lcd_printer_connected();
  3169. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3170. lcd_update(2);
  3171. break;
  3172. }
  3173. } // end if(code_seen('G'))
  3174. else if(code_seen('M'))
  3175. {
  3176. int index;
  3177. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3178. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3179. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3180. SERIAL_ECHOLNPGM("Invalid M code");
  3181. } else
  3182. switch((int)code_value())
  3183. {
  3184. #ifdef ULTIPANEL
  3185. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3186. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3187. {
  3188. char *src = strchr_pointer + 2;
  3189. codenum = 0;
  3190. bool hasP = false, hasS = false;
  3191. if (code_seen('P')) {
  3192. codenum = code_value(); // milliseconds to wait
  3193. hasP = codenum > 0;
  3194. }
  3195. if (code_seen('S')) {
  3196. codenum = code_value() * 1000; // seconds to wait
  3197. hasS = codenum > 0;
  3198. }
  3199. starpos = strchr(src, '*');
  3200. if (starpos != NULL) *(starpos) = '\0';
  3201. while (*src == ' ') ++src;
  3202. if (!hasP && !hasS && *src != '\0') {
  3203. lcd_setstatus(src);
  3204. } else {
  3205. LCD_MESSAGERPGM(MSG_USERWAIT);
  3206. }
  3207. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3208. st_synchronize();
  3209. previous_millis_cmd = millis();
  3210. if (codenum > 0){
  3211. codenum += millis(); // keep track of when we started waiting
  3212. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3213. while(millis() < codenum && !lcd_clicked()){
  3214. manage_heater();
  3215. manage_inactivity(true);
  3216. lcd_update();
  3217. }
  3218. KEEPALIVE_STATE(IN_HANDLER);
  3219. lcd_ignore_click(false);
  3220. }else{
  3221. if (!lcd_detected())
  3222. break;
  3223. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3224. while(!lcd_clicked()){
  3225. manage_heater();
  3226. manage_inactivity(true);
  3227. lcd_update();
  3228. }
  3229. KEEPALIVE_STATE(IN_HANDLER);
  3230. }
  3231. if (IS_SD_PRINTING)
  3232. LCD_MESSAGERPGM(MSG_RESUMING);
  3233. else
  3234. LCD_MESSAGERPGM(WELCOME_MSG);
  3235. }
  3236. break;
  3237. #endif
  3238. case 17:
  3239. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3240. enable_x();
  3241. enable_y();
  3242. enable_z();
  3243. enable_e0();
  3244. enable_e1();
  3245. enable_e2();
  3246. break;
  3247. #ifdef SDSUPPORT
  3248. case 20: // M20 - list SD card
  3249. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3250. card.ls();
  3251. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3252. break;
  3253. case 21: // M21 - init SD card
  3254. card.initsd();
  3255. break;
  3256. case 22: //M22 - release SD card
  3257. card.release();
  3258. break;
  3259. case 23: //M23 - Select file
  3260. starpos = (strchr(strchr_pointer + 4,'*'));
  3261. if(starpos!=NULL)
  3262. *(starpos)='\0';
  3263. card.openFile(strchr_pointer + 4,true);
  3264. break;
  3265. case 24: //M24 - Start SD print
  3266. card.startFileprint();
  3267. starttime=millis();
  3268. break;
  3269. case 25: //M25 - Pause SD print
  3270. card.pauseSDPrint();
  3271. break;
  3272. case 26: //M26 - Set SD index
  3273. if(card.cardOK && code_seen('S')) {
  3274. card.setIndex(code_value_long());
  3275. }
  3276. break;
  3277. case 27: //M27 - Get SD status
  3278. card.getStatus();
  3279. break;
  3280. case 28: //M28 - Start SD write
  3281. starpos = (strchr(strchr_pointer + 4,'*'));
  3282. if(starpos != NULL){
  3283. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3284. strchr_pointer = strchr(npos,' ') + 1;
  3285. *(starpos) = '\0';
  3286. }
  3287. card.openFile(strchr_pointer+4,false);
  3288. break;
  3289. case 29: //M29 - Stop SD write
  3290. //processed in write to file routine above
  3291. //card,saving = false;
  3292. break;
  3293. case 30: //M30 <filename> Delete File
  3294. if (card.cardOK){
  3295. card.closefile();
  3296. starpos = (strchr(strchr_pointer + 4,'*'));
  3297. if(starpos != NULL){
  3298. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3299. strchr_pointer = strchr(npos,' ') + 1;
  3300. *(starpos) = '\0';
  3301. }
  3302. card.removeFile(strchr_pointer + 4);
  3303. }
  3304. break;
  3305. case 32: //M32 - Select file and start SD print
  3306. {
  3307. if(card.sdprinting) {
  3308. st_synchronize();
  3309. }
  3310. starpos = (strchr(strchr_pointer + 4,'*'));
  3311. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3312. if(namestartpos==NULL)
  3313. {
  3314. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3315. }
  3316. else
  3317. namestartpos++; //to skip the '!'
  3318. if(starpos!=NULL)
  3319. *(starpos)='\0';
  3320. bool call_procedure=(code_seen('P'));
  3321. if(strchr_pointer>namestartpos)
  3322. call_procedure=false; //false alert, 'P' found within filename
  3323. if( card.cardOK )
  3324. {
  3325. card.openFile(namestartpos,true,!call_procedure);
  3326. if(code_seen('S'))
  3327. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3328. card.setIndex(code_value_long());
  3329. card.startFileprint();
  3330. if(!call_procedure)
  3331. starttime=millis(); //procedure calls count as normal print time.
  3332. }
  3333. } break;
  3334. case 928: //M928 - Start SD write
  3335. starpos = (strchr(strchr_pointer + 5,'*'));
  3336. if(starpos != NULL){
  3337. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3338. strchr_pointer = strchr(npos,' ') + 1;
  3339. *(starpos) = '\0';
  3340. }
  3341. card.openLogFile(strchr_pointer+5);
  3342. break;
  3343. #endif //SDSUPPORT
  3344. case 31: //M31 take time since the start of the SD print or an M109 command
  3345. {
  3346. stoptime=millis();
  3347. char time[30];
  3348. unsigned long t=(stoptime-starttime)/1000;
  3349. int sec,min;
  3350. min=t/60;
  3351. sec=t%60;
  3352. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3353. SERIAL_ECHO_START;
  3354. SERIAL_ECHOLN(time);
  3355. lcd_setstatus(time);
  3356. autotempShutdown();
  3357. }
  3358. break;
  3359. #ifndef _DISABLE_M42_M226
  3360. case 42: //M42 -Change pin status via gcode
  3361. if (code_seen('S'))
  3362. {
  3363. int pin_status = code_value();
  3364. int pin_number = LED_PIN;
  3365. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3366. pin_number = code_value();
  3367. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3368. {
  3369. if (sensitive_pins[i] == pin_number)
  3370. {
  3371. pin_number = -1;
  3372. break;
  3373. }
  3374. }
  3375. #if defined(FAN_PIN) && FAN_PIN > -1
  3376. if (pin_number == FAN_PIN)
  3377. fanSpeed = pin_status;
  3378. #endif
  3379. if (pin_number > -1)
  3380. {
  3381. pinMode(pin_number, OUTPUT);
  3382. digitalWrite(pin_number, pin_status);
  3383. analogWrite(pin_number, pin_status);
  3384. }
  3385. }
  3386. break;
  3387. #endif //_DISABLE_M42_M226
  3388. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3389. // Reset the baby step value and the baby step applied flag.
  3390. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3391. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3392. // Reset the skew and offset in both RAM and EEPROM.
  3393. reset_bed_offset_and_skew();
  3394. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3395. // the planner will not perform any adjustments in the XY plane.
  3396. // Wait for the motors to stop and update the current position with the absolute values.
  3397. world2machine_revert_to_uncorrected();
  3398. break;
  3399. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3400. {
  3401. bool only_Z = code_seen('Z');
  3402. gcode_M45(only_Z);
  3403. }
  3404. break;
  3405. /*
  3406. case 46:
  3407. {
  3408. // M46: Prusa3D: Show the assigned IP address.
  3409. uint8_t ip[4];
  3410. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3411. if (hasIP) {
  3412. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3413. SERIAL_ECHO(int(ip[0]));
  3414. SERIAL_ECHOPGM(".");
  3415. SERIAL_ECHO(int(ip[1]));
  3416. SERIAL_ECHOPGM(".");
  3417. SERIAL_ECHO(int(ip[2]));
  3418. SERIAL_ECHOPGM(".");
  3419. SERIAL_ECHO(int(ip[3]));
  3420. SERIAL_ECHOLNPGM("");
  3421. } else {
  3422. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3423. }
  3424. break;
  3425. }
  3426. */
  3427. case 47:
  3428. // M47: Prusa3D: Show end stops dialog on the display.
  3429. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3430. lcd_diag_show_end_stops();
  3431. KEEPALIVE_STATE(IN_HANDLER);
  3432. break;
  3433. #if 0
  3434. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3435. {
  3436. // Disable the default update procedure of the display. We will do a modal dialog.
  3437. lcd_update_enable(false);
  3438. // Let the planner use the uncorrected coordinates.
  3439. mbl.reset();
  3440. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3441. // the planner will not perform any adjustments in the XY plane.
  3442. // Wait for the motors to stop and update the current position with the absolute values.
  3443. world2machine_revert_to_uncorrected();
  3444. // Move the print head close to the bed.
  3445. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3447. st_synchronize();
  3448. // Home in the XY plane.
  3449. set_destination_to_current();
  3450. setup_for_endstop_move();
  3451. home_xy();
  3452. int8_t verbosity_level = 0;
  3453. if (code_seen('V')) {
  3454. // Just 'V' without a number counts as V1.
  3455. char c = strchr_pointer[1];
  3456. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3457. }
  3458. bool success = scan_bed_induction_points(verbosity_level);
  3459. clean_up_after_endstop_move();
  3460. // Print head up.
  3461. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3463. st_synchronize();
  3464. lcd_update_enable(true);
  3465. break;
  3466. }
  3467. #endif
  3468. // M48 Z-Probe repeatability measurement function.
  3469. //
  3470. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3471. //
  3472. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3473. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3474. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3475. // regenerated.
  3476. //
  3477. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3478. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3479. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3480. //
  3481. #ifdef ENABLE_AUTO_BED_LEVELING
  3482. #ifdef Z_PROBE_REPEATABILITY_TEST
  3483. case 48: // M48 Z-Probe repeatability
  3484. {
  3485. #if Z_MIN_PIN == -1
  3486. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3487. #endif
  3488. double sum=0.0;
  3489. double mean=0.0;
  3490. double sigma=0.0;
  3491. double sample_set[50];
  3492. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3493. double X_current, Y_current, Z_current;
  3494. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3495. if (code_seen('V') || code_seen('v')) {
  3496. verbose_level = code_value();
  3497. if (verbose_level<0 || verbose_level>4 ) {
  3498. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3499. goto Sigma_Exit;
  3500. }
  3501. }
  3502. if (verbose_level > 0) {
  3503. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3504. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3505. }
  3506. if (code_seen('n')) {
  3507. n_samples = code_value();
  3508. if (n_samples<4 || n_samples>50 ) {
  3509. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3510. goto Sigma_Exit;
  3511. }
  3512. }
  3513. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3514. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3515. Z_current = st_get_position_mm(Z_AXIS);
  3516. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3517. ext_position = st_get_position_mm(E_AXIS);
  3518. if (code_seen('X') || code_seen('x') ) {
  3519. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3520. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3521. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3522. goto Sigma_Exit;
  3523. }
  3524. }
  3525. if (code_seen('Y') || code_seen('y') ) {
  3526. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3527. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3528. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3529. goto Sigma_Exit;
  3530. }
  3531. }
  3532. if (code_seen('L') || code_seen('l') ) {
  3533. n_legs = code_value();
  3534. if ( n_legs==1 )
  3535. n_legs = 2;
  3536. if ( n_legs<0 || n_legs>15 ) {
  3537. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3538. goto Sigma_Exit;
  3539. }
  3540. }
  3541. //
  3542. // Do all the preliminary setup work. First raise the probe.
  3543. //
  3544. st_synchronize();
  3545. plan_bed_level_matrix.set_to_identity();
  3546. plan_buffer_line( X_current, Y_current, Z_start_location,
  3547. ext_position,
  3548. homing_feedrate[Z_AXIS]/60,
  3549. active_extruder);
  3550. st_synchronize();
  3551. //
  3552. // Now get everything to the specified probe point So we can safely do a probe to
  3553. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3554. // use that as a starting point for each probe.
  3555. //
  3556. if (verbose_level > 2)
  3557. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3558. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3559. ext_position,
  3560. homing_feedrate[X_AXIS]/60,
  3561. active_extruder);
  3562. st_synchronize();
  3563. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3564. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3565. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3566. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3567. //
  3568. // OK, do the inital probe to get us close to the bed.
  3569. // Then retrace the right amount and use that in subsequent probes
  3570. //
  3571. setup_for_endstop_move();
  3572. run_z_probe();
  3573. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3574. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3575. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3576. ext_position,
  3577. homing_feedrate[X_AXIS]/60,
  3578. active_extruder);
  3579. st_synchronize();
  3580. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3581. for( n=0; n<n_samples; n++) {
  3582. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3583. if ( n_legs) {
  3584. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3585. int rotational_direction, l;
  3586. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3587. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3588. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3589. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3590. //SERIAL_ECHOPAIR(" theta: ",theta);
  3591. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3592. //SERIAL_PROTOCOLLNPGM("");
  3593. for( l=0; l<n_legs-1; l++) {
  3594. if (rotational_direction==1)
  3595. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3596. else
  3597. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3598. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3599. if ( radius<0.0 )
  3600. radius = -radius;
  3601. X_current = X_probe_location + cos(theta) * radius;
  3602. Y_current = Y_probe_location + sin(theta) * radius;
  3603. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3604. X_current = X_MIN_POS;
  3605. if ( X_current>X_MAX_POS)
  3606. X_current = X_MAX_POS;
  3607. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3608. Y_current = Y_MIN_POS;
  3609. if ( Y_current>Y_MAX_POS)
  3610. Y_current = Y_MAX_POS;
  3611. if (verbose_level>3 ) {
  3612. SERIAL_ECHOPAIR("x: ", X_current);
  3613. SERIAL_ECHOPAIR("y: ", Y_current);
  3614. SERIAL_PROTOCOLLNPGM("");
  3615. }
  3616. do_blocking_move_to( X_current, Y_current, Z_current );
  3617. }
  3618. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3619. }
  3620. setup_for_endstop_move();
  3621. run_z_probe();
  3622. sample_set[n] = current_position[Z_AXIS];
  3623. //
  3624. // Get the current mean for the data points we have so far
  3625. //
  3626. sum=0.0;
  3627. for( j=0; j<=n; j++) {
  3628. sum = sum + sample_set[j];
  3629. }
  3630. mean = sum / (double (n+1));
  3631. //
  3632. // Now, use that mean to calculate the standard deviation for the
  3633. // data points we have so far
  3634. //
  3635. sum=0.0;
  3636. for( j=0; j<=n; j++) {
  3637. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3638. }
  3639. sigma = sqrt( sum / (double (n+1)) );
  3640. if (verbose_level > 1) {
  3641. SERIAL_PROTOCOL(n+1);
  3642. SERIAL_PROTOCOL(" of ");
  3643. SERIAL_PROTOCOL(n_samples);
  3644. SERIAL_PROTOCOLPGM(" z: ");
  3645. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3646. }
  3647. if (verbose_level > 2) {
  3648. SERIAL_PROTOCOL(" mean: ");
  3649. SERIAL_PROTOCOL_F(mean,6);
  3650. SERIAL_PROTOCOL(" sigma: ");
  3651. SERIAL_PROTOCOL_F(sigma,6);
  3652. }
  3653. if (verbose_level > 0)
  3654. SERIAL_PROTOCOLPGM("\n");
  3655. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3656. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3657. st_synchronize();
  3658. }
  3659. delay(1000);
  3660. clean_up_after_endstop_move();
  3661. // enable_endstops(true);
  3662. if (verbose_level > 0) {
  3663. SERIAL_PROTOCOLPGM("Mean: ");
  3664. SERIAL_PROTOCOL_F(mean, 6);
  3665. SERIAL_PROTOCOLPGM("\n");
  3666. }
  3667. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3668. SERIAL_PROTOCOL_F(sigma, 6);
  3669. SERIAL_PROTOCOLPGM("\n\n");
  3670. Sigma_Exit:
  3671. break;
  3672. }
  3673. #endif // Z_PROBE_REPEATABILITY_TEST
  3674. #endif // ENABLE_AUTO_BED_LEVELING
  3675. case 104: // M104
  3676. if(setTargetedHotend(104)){
  3677. break;
  3678. }
  3679. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3680. setWatch();
  3681. break;
  3682. case 112: // M112 -Emergency Stop
  3683. kill("", 3);
  3684. break;
  3685. case 140: // M140 set bed temp
  3686. if (code_seen('S')) setTargetBed(code_value());
  3687. break;
  3688. case 105 : // M105
  3689. if(setTargetedHotend(105)){
  3690. break;
  3691. }
  3692. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3693. SERIAL_PROTOCOLPGM("ok T:");
  3694. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3695. SERIAL_PROTOCOLPGM(" /");
  3696. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3697. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3698. SERIAL_PROTOCOLPGM(" B:");
  3699. SERIAL_PROTOCOL_F(degBed(),1);
  3700. SERIAL_PROTOCOLPGM(" /");
  3701. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3702. #endif //TEMP_BED_PIN
  3703. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3704. SERIAL_PROTOCOLPGM(" T");
  3705. SERIAL_PROTOCOL(cur_extruder);
  3706. SERIAL_PROTOCOLPGM(":");
  3707. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3708. SERIAL_PROTOCOLPGM(" /");
  3709. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3710. }
  3711. #else
  3712. SERIAL_ERROR_START;
  3713. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3714. #endif
  3715. SERIAL_PROTOCOLPGM(" @:");
  3716. #ifdef EXTRUDER_WATTS
  3717. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3718. SERIAL_PROTOCOLPGM("W");
  3719. #else
  3720. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3721. #endif
  3722. SERIAL_PROTOCOLPGM(" B@:");
  3723. #ifdef BED_WATTS
  3724. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3725. SERIAL_PROTOCOLPGM("W");
  3726. #else
  3727. SERIAL_PROTOCOL(getHeaterPower(-1));
  3728. #endif
  3729. #ifdef PINDA_THERMISTOR
  3730. SERIAL_PROTOCOLPGM(" P:");
  3731. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3732. #endif //PINDA_THERMISTOR
  3733. #ifdef AMBIENT_THERMISTOR
  3734. SERIAL_PROTOCOLPGM(" A:");
  3735. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3736. #endif //AMBIENT_THERMISTOR
  3737. #ifdef SHOW_TEMP_ADC_VALUES
  3738. {float raw = 0.0;
  3739. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3740. SERIAL_PROTOCOLPGM(" ADC B:");
  3741. SERIAL_PROTOCOL_F(degBed(),1);
  3742. SERIAL_PROTOCOLPGM("C->");
  3743. raw = rawBedTemp();
  3744. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3745. SERIAL_PROTOCOLPGM(" Rb->");
  3746. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3747. SERIAL_PROTOCOLPGM(" Rxb->");
  3748. SERIAL_PROTOCOL_F(raw, 5);
  3749. #endif
  3750. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3751. SERIAL_PROTOCOLPGM(" T");
  3752. SERIAL_PROTOCOL(cur_extruder);
  3753. SERIAL_PROTOCOLPGM(":");
  3754. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3755. SERIAL_PROTOCOLPGM("C->");
  3756. raw = rawHotendTemp(cur_extruder);
  3757. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3758. SERIAL_PROTOCOLPGM(" Rt");
  3759. SERIAL_PROTOCOL(cur_extruder);
  3760. SERIAL_PROTOCOLPGM("->");
  3761. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3762. SERIAL_PROTOCOLPGM(" Rx");
  3763. SERIAL_PROTOCOL(cur_extruder);
  3764. SERIAL_PROTOCOLPGM("->");
  3765. SERIAL_PROTOCOL_F(raw, 5);
  3766. }}
  3767. #endif
  3768. SERIAL_PROTOCOLLN("");
  3769. KEEPALIVE_STATE(NOT_BUSY);
  3770. return;
  3771. break;
  3772. case 109:
  3773. {// M109 - Wait for extruder heater to reach target.
  3774. if(setTargetedHotend(109)){
  3775. break;
  3776. }
  3777. LCD_MESSAGERPGM(MSG_HEATING);
  3778. heating_status = 1;
  3779. if (farm_mode) { prusa_statistics(1); };
  3780. #ifdef AUTOTEMP
  3781. autotemp_enabled=false;
  3782. #endif
  3783. if (code_seen('S')) {
  3784. setTargetHotend(code_value(), tmp_extruder);
  3785. CooldownNoWait = true;
  3786. } else if (code_seen('R')) {
  3787. setTargetHotend(code_value(), tmp_extruder);
  3788. CooldownNoWait = false;
  3789. }
  3790. #ifdef AUTOTEMP
  3791. if (code_seen('S')) autotemp_min=code_value();
  3792. if (code_seen('B')) autotemp_max=code_value();
  3793. if (code_seen('F'))
  3794. {
  3795. autotemp_factor=code_value();
  3796. autotemp_enabled=true;
  3797. }
  3798. #endif
  3799. setWatch();
  3800. codenum = millis();
  3801. /* See if we are heating up or cooling down */
  3802. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3803. KEEPALIVE_STATE(NOT_BUSY);
  3804. cancel_heatup = false;
  3805. wait_for_heater(codenum); //loops until target temperature is reached
  3806. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3807. KEEPALIVE_STATE(IN_HANDLER);
  3808. heating_status = 2;
  3809. if (farm_mode) { prusa_statistics(2); };
  3810. //starttime=millis();
  3811. previous_millis_cmd = millis();
  3812. }
  3813. break;
  3814. case 190: // M190 - Wait for bed heater to reach target.
  3815. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3816. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3817. heating_status = 3;
  3818. if (farm_mode) { prusa_statistics(1); };
  3819. if (code_seen('S'))
  3820. {
  3821. setTargetBed(code_value());
  3822. CooldownNoWait = true;
  3823. }
  3824. else if (code_seen('R'))
  3825. {
  3826. setTargetBed(code_value());
  3827. CooldownNoWait = false;
  3828. }
  3829. codenum = millis();
  3830. cancel_heatup = false;
  3831. target_direction = isHeatingBed(); // true if heating, false if cooling
  3832. KEEPALIVE_STATE(NOT_BUSY);
  3833. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3834. {
  3835. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3836. {
  3837. if (!farm_mode) {
  3838. float tt = degHotend(active_extruder);
  3839. SERIAL_PROTOCOLPGM("T:");
  3840. SERIAL_PROTOCOL(tt);
  3841. SERIAL_PROTOCOLPGM(" E:");
  3842. SERIAL_PROTOCOL((int)active_extruder);
  3843. SERIAL_PROTOCOLPGM(" B:");
  3844. SERIAL_PROTOCOL_F(degBed(), 1);
  3845. SERIAL_PROTOCOLLN("");
  3846. }
  3847. codenum = millis();
  3848. }
  3849. manage_heater();
  3850. manage_inactivity();
  3851. lcd_update();
  3852. }
  3853. LCD_MESSAGERPGM(MSG_BED_DONE);
  3854. KEEPALIVE_STATE(IN_HANDLER);
  3855. heating_status = 4;
  3856. previous_millis_cmd = millis();
  3857. #endif
  3858. break;
  3859. #if defined(FAN_PIN) && FAN_PIN > -1
  3860. case 106: //M106 Fan On
  3861. if (code_seen('S')){
  3862. fanSpeed=constrain(code_value(),0,255);
  3863. }
  3864. else {
  3865. fanSpeed=255;
  3866. }
  3867. break;
  3868. case 107: //M107 Fan Off
  3869. fanSpeed = 0;
  3870. break;
  3871. #endif //FAN_PIN
  3872. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3873. case 80: // M80 - Turn on Power Supply
  3874. SET_OUTPUT(PS_ON_PIN); //GND
  3875. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3876. // If you have a switch on suicide pin, this is useful
  3877. // if you want to start another print with suicide feature after
  3878. // a print without suicide...
  3879. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3880. SET_OUTPUT(SUICIDE_PIN);
  3881. WRITE(SUICIDE_PIN, HIGH);
  3882. #endif
  3883. #ifdef ULTIPANEL
  3884. powersupply = true;
  3885. LCD_MESSAGERPGM(WELCOME_MSG);
  3886. lcd_update();
  3887. #endif
  3888. break;
  3889. #endif
  3890. case 81: // M81 - Turn off Power Supply
  3891. disable_heater();
  3892. st_synchronize();
  3893. disable_e0();
  3894. disable_e1();
  3895. disable_e2();
  3896. finishAndDisableSteppers();
  3897. fanSpeed = 0;
  3898. delay(1000); // Wait a little before to switch off
  3899. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3900. st_synchronize();
  3901. suicide();
  3902. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3903. SET_OUTPUT(PS_ON_PIN);
  3904. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3905. #endif
  3906. #ifdef ULTIPANEL
  3907. powersupply = false;
  3908. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3909. /*
  3910. MACHNAME = "Prusa i3"
  3911. MSGOFF = "Vypnuto"
  3912. "Prusai3"" ""vypnuto""."
  3913. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3914. */
  3915. lcd_update();
  3916. #endif
  3917. break;
  3918. case 82:
  3919. axis_relative_modes[3] = false;
  3920. break;
  3921. case 83:
  3922. axis_relative_modes[3] = true;
  3923. break;
  3924. case 18: //compatibility
  3925. case 84: // M84
  3926. if(code_seen('S')){
  3927. stepper_inactive_time = code_value() * 1000;
  3928. }
  3929. else
  3930. {
  3931. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3932. if(all_axis)
  3933. {
  3934. st_synchronize();
  3935. disable_e0();
  3936. disable_e1();
  3937. disable_e2();
  3938. finishAndDisableSteppers();
  3939. }
  3940. else
  3941. {
  3942. st_synchronize();
  3943. if (code_seen('X')) disable_x();
  3944. if (code_seen('Y')) disable_y();
  3945. if (code_seen('Z')) disable_z();
  3946. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3947. if (code_seen('E')) {
  3948. disable_e0();
  3949. disable_e1();
  3950. disable_e2();
  3951. }
  3952. #endif
  3953. }
  3954. }
  3955. snmm_filaments_used = 0;
  3956. break;
  3957. case 85: // M85
  3958. if(code_seen('S')) {
  3959. max_inactive_time = code_value() * 1000;
  3960. }
  3961. break;
  3962. case 92: // M92
  3963. for(int8_t i=0; i < NUM_AXIS; i++)
  3964. {
  3965. if(code_seen(axis_codes[i]))
  3966. {
  3967. if(i == 3) { // E
  3968. float value = code_value();
  3969. if(value < 20.0) {
  3970. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3971. max_jerk[E_AXIS] *= factor;
  3972. max_feedrate[i] *= factor;
  3973. axis_steps_per_sqr_second[i] *= factor;
  3974. }
  3975. axis_steps_per_unit[i] = value;
  3976. }
  3977. else {
  3978. axis_steps_per_unit[i] = code_value();
  3979. }
  3980. }
  3981. }
  3982. break;
  3983. #ifdef HOST_KEEPALIVE_FEATURE
  3984. case 113: // M113 - Get or set Host Keepalive interval
  3985. if (code_seen('S')) {
  3986. host_keepalive_interval = (uint8_t)code_value_short();
  3987. // NOMORE(host_keepalive_interval, 60);
  3988. }
  3989. else {
  3990. SERIAL_ECHO_START;
  3991. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3992. SERIAL_PROTOCOLLN("");
  3993. }
  3994. break;
  3995. #endif
  3996. case 115: // M115
  3997. if (code_seen('V')) {
  3998. // Report the Prusa version number.
  3999. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4000. } else if (code_seen('U')) {
  4001. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4002. // pause the print and ask the user to upgrade the firmware.
  4003. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4004. } else {
  4005. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4006. }
  4007. break;
  4008. /* case 117: // M117 display message
  4009. starpos = (strchr(strchr_pointer + 5,'*'));
  4010. if(starpos!=NULL)
  4011. *(starpos)='\0';
  4012. lcd_setstatus(strchr_pointer + 5);
  4013. break;*/
  4014. case 114: // M114
  4015. SERIAL_PROTOCOLPGM("X:");
  4016. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4017. SERIAL_PROTOCOLPGM(" Y:");
  4018. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4019. SERIAL_PROTOCOLPGM(" Z:");
  4020. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4021. SERIAL_PROTOCOLPGM(" E:");
  4022. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4023. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4024. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4025. SERIAL_PROTOCOLPGM(" Y:");
  4026. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4027. SERIAL_PROTOCOLPGM(" Z:");
  4028. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4029. SERIAL_PROTOCOLPGM(" E:");
  4030. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4031. SERIAL_PROTOCOLLN("");
  4032. break;
  4033. case 120: // M120
  4034. enable_endstops(false) ;
  4035. break;
  4036. case 121: // M121
  4037. enable_endstops(true) ;
  4038. break;
  4039. case 119: // M119
  4040. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4041. SERIAL_PROTOCOLLN("");
  4042. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4043. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4044. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4045. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4046. }else{
  4047. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4048. }
  4049. SERIAL_PROTOCOLLN("");
  4050. #endif
  4051. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4052. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4053. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4054. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4055. }else{
  4056. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4057. }
  4058. SERIAL_PROTOCOLLN("");
  4059. #endif
  4060. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4061. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4062. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4063. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4064. }else{
  4065. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4066. }
  4067. SERIAL_PROTOCOLLN("");
  4068. #endif
  4069. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4070. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4071. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4072. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4073. }else{
  4074. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4075. }
  4076. SERIAL_PROTOCOLLN("");
  4077. #endif
  4078. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4079. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4080. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4081. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4082. }else{
  4083. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4084. }
  4085. SERIAL_PROTOCOLLN("");
  4086. #endif
  4087. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4088. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4089. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4090. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4091. }else{
  4092. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4093. }
  4094. SERIAL_PROTOCOLLN("");
  4095. #endif
  4096. break;
  4097. //TODO: update for all axis, use for loop
  4098. #ifdef BLINKM
  4099. case 150: // M150
  4100. {
  4101. byte red;
  4102. byte grn;
  4103. byte blu;
  4104. if(code_seen('R')) red = code_value();
  4105. if(code_seen('U')) grn = code_value();
  4106. if(code_seen('B')) blu = code_value();
  4107. SendColors(red,grn,blu);
  4108. }
  4109. break;
  4110. #endif //BLINKM
  4111. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4112. {
  4113. tmp_extruder = active_extruder;
  4114. if(code_seen('T')) {
  4115. tmp_extruder = code_value();
  4116. if(tmp_extruder >= EXTRUDERS) {
  4117. SERIAL_ECHO_START;
  4118. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4119. break;
  4120. }
  4121. }
  4122. float area = .0;
  4123. if(code_seen('D')) {
  4124. float diameter = (float)code_value();
  4125. if (diameter == 0.0) {
  4126. // setting any extruder filament size disables volumetric on the assumption that
  4127. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4128. // for all extruders
  4129. volumetric_enabled = false;
  4130. } else {
  4131. filament_size[tmp_extruder] = (float)code_value();
  4132. // make sure all extruders have some sane value for the filament size
  4133. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4134. #if EXTRUDERS > 1
  4135. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4136. #if EXTRUDERS > 2
  4137. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4138. #endif
  4139. #endif
  4140. volumetric_enabled = true;
  4141. }
  4142. } else {
  4143. //reserved for setting filament diameter via UFID or filament measuring device
  4144. break;
  4145. }
  4146. calculate_volumetric_multipliers();
  4147. }
  4148. break;
  4149. case 201: // M201
  4150. for(int8_t i=0; i < NUM_AXIS; i++)
  4151. {
  4152. if(code_seen(axis_codes[i]))
  4153. {
  4154. max_acceleration_units_per_sq_second[i] = code_value();
  4155. }
  4156. }
  4157. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4158. reset_acceleration_rates();
  4159. break;
  4160. #if 0 // Not used for Sprinter/grbl gen6
  4161. case 202: // M202
  4162. for(int8_t i=0; i < NUM_AXIS; i++) {
  4163. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4164. }
  4165. break;
  4166. #endif
  4167. case 203: // M203 max feedrate mm/sec
  4168. for(int8_t i=0; i < NUM_AXIS; i++) {
  4169. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4170. }
  4171. break;
  4172. case 204: // M204 acclereration S normal moves T filmanent only moves
  4173. {
  4174. if(code_seen('S')) acceleration = code_value() ;
  4175. if(code_seen('T')) retract_acceleration = code_value() ;
  4176. }
  4177. break;
  4178. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4179. {
  4180. if(code_seen('S')) minimumfeedrate = code_value();
  4181. if(code_seen('T')) mintravelfeedrate = code_value();
  4182. if(code_seen('B')) minsegmenttime = code_value() ;
  4183. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4184. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4185. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4186. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4187. }
  4188. break;
  4189. case 206: // M206 additional homing offset
  4190. for(int8_t i=0; i < 3; i++)
  4191. {
  4192. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4193. }
  4194. break;
  4195. #ifdef FWRETRACT
  4196. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4197. {
  4198. if(code_seen('S'))
  4199. {
  4200. retract_length = code_value() ;
  4201. }
  4202. if(code_seen('F'))
  4203. {
  4204. retract_feedrate = code_value()/60 ;
  4205. }
  4206. if(code_seen('Z'))
  4207. {
  4208. retract_zlift = code_value() ;
  4209. }
  4210. }break;
  4211. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4212. {
  4213. if(code_seen('S'))
  4214. {
  4215. retract_recover_length = code_value() ;
  4216. }
  4217. if(code_seen('F'))
  4218. {
  4219. retract_recover_feedrate = code_value()/60 ;
  4220. }
  4221. }break;
  4222. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4223. {
  4224. if(code_seen('S'))
  4225. {
  4226. int t= code_value() ;
  4227. switch(t)
  4228. {
  4229. case 0:
  4230. {
  4231. autoretract_enabled=false;
  4232. retracted[0]=false;
  4233. #if EXTRUDERS > 1
  4234. retracted[1]=false;
  4235. #endif
  4236. #if EXTRUDERS > 2
  4237. retracted[2]=false;
  4238. #endif
  4239. }break;
  4240. case 1:
  4241. {
  4242. autoretract_enabled=true;
  4243. retracted[0]=false;
  4244. #if EXTRUDERS > 1
  4245. retracted[1]=false;
  4246. #endif
  4247. #if EXTRUDERS > 2
  4248. retracted[2]=false;
  4249. #endif
  4250. }break;
  4251. default:
  4252. SERIAL_ECHO_START;
  4253. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4254. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4255. SERIAL_ECHOLNPGM("\"(1)");
  4256. }
  4257. }
  4258. }break;
  4259. #endif // FWRETRACT
  4260. #if EXTRUDERS > 1
  4261. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4262. {
  4263. if(setTargetedHotend(218)){
  4264. break;
  4265. }
  4266. if(code_seen('X'))
  4267. {
  4268. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4269. }
  4270. if(code_seen('Y'))
  4271. {
  4272. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4273. }
  4274. SERIAL_ECHO_START;
  4275. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4276. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4277. {
  4278. SERIAL_ECHO(" ");
  4279. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4280. SERIAL_ECHO(",");
  4281. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4282. }
  4283. SERIAL_ECHOLN("");
  4284. }break;
  4285. #endif
  4286. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4287. {
  4288. if(code_seen('S'))
  4289. {
  4290. feedmultiply = code_value() ;
  4291. }
  4292. }
  4293. break;
  4294. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4295. {
  4296. if(code_seen('S'))
  4297. {
  4298. int tmp_code = code_value();
  4299. if (code_seen('T'))
  4300. {
  4301. if(setTargetedHotend(221)){
  4302. break;
  4303. }
  4304. extruder_multiply[tmp_extruder] = tmp_code;
  4305. }
  4306. else
  4307. {
  4308. extrudemultiply = tmp_code ;
  4309. }
  4310. }
  4311. }
  4312. break;
  4313. #ifndef _DISABLE_M42_M226
  4314. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4315. {
  4316. if(code_seen('P')){
  4317. int pin_number = code_value(); // pin number
  4318. int pin_state = -1; // required pin state - default is inverted
  4319. if(code_seen('S')) pin_state = code_value(); // required pin state
  4320. if(pin_state >= -1 && pin_state <= 1){
  4321. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4322. {
  4323. if (sensitive_pins[i] == pin_number)
  4324. {
  4325. pin_number = -1;
  4326. break;
  4327. }
  4328. }
  4329. if (pin_number > -1)
  4330. {
  4331. int target = LOW;
  4332. st_synchronize();
  4333. pinMode(pin_number, INPUT);
  4334. switch(pin_state){
  4335. case 1:
  4336. target = HIGH;
  4337. break;
  4338. case 0:
  4339. target = LOW;
  4340. break;
  4341. case -1:
  4342. target = !digitalRead(pin_number);
  4343. break;
  4344. }
  4345. while(digitalRead(pin_number) != target){
  4346. manage_heater();
  4347. manage_inactivity();
  4348. lcd_update();
  4349. }
  4350. }
  4351. }
  4352. }
  4353. }
  4354. break;
  4355. #endif //_DISABLE_M42_M226
  4356. #if NUM_SERVOS > 0
  4357. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4358. {
  4359. int servo_index = -1;
  4360. int servo_position = 0;
  4361. if (code_seen('P'))
  4362. servo_index = code_value();
  4363. if (code_seen('S')) {
  4364. servo_position = code_value();
  4365. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4366. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4367. servos[servo_index].attach(0);
  4368. #endif
  4369. servos[servo_index].write(servo_position);
  4370. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4371. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4372. servos[servo_index].detach();
  4373. #endif
  4374. }
  4375. else {
  4376. SERIAL_ECHO_START;
  4377. SERIAL_ECHO("Servo ");
  4378. SERIAL_ECHO(servo_index);
  4379. SERIAL_ECHOLN(" out of range");
  4380. }
  4381. }
  4382. else if (servo_index >= 0) {
  4383. SERIAL_PROTOCOL(MSG_OK);
  4384. SERIAL_PROTOCOL(" Servo ");
  4385. SERIAL_PROTOCOL(servo_index);
  4386. SERIAL_PROTOCOL(": ");
  4387. SERIAL_PROTOCOL(servos[servo_index].read());
  4388. SERIAL_PROTOCOLLN("");
  4389. }
  4390. }
  4391. break;
  4392. #endif // NUM_SERVOS > 0
  4393. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4394. case 300: // M300
  4395. {
  4396. int beepS = code_seen('S') ? code_value() : 110;
  4397. int beepP = code_seen('P') ? code_value() : 1000;
  4398. if (beepS > 0)
  4399. {
  4400. #if BEEPER > 0
  4401. tone(BEEPER, beepS);
  4402. delay(beepP);
  4403. noTone(BEEPER);
  4404. #elif defined(ULTRALCD)
  4405. lcd_buzz(beepS, beepP);
  4406. #elif defined(LCD_USE_I2C_BUZZER)
  4407. lcd_buzz(beepP, beepS);
  4408. #endif
  4409. }
  4410. else
  4411. {
  4412. delay(beepP);
  4413. }
  4414. }
  4415. break;
  4416. #endif // M300
  4417. #ifdef PIDTEMP
  4418. case 301: // M301
  4419. {
  4420. if(code_seen('P')) Kp = code_value();
  4421. if(code_seen('I')) Ki = scalePID_i(code_value());
  4422. if(code_seen('D')) Kd = scalePID_d(code_value());
  4423. #ifdef PID_ADD_EXTRUSION_RATE
  4424. if(code_seen('C')) Kc = code_value();
  4425. #endif
  4426. updatePID();
  4427. SERIAL_PROTOCOLRPGM(MSG_OK);
  4428. SERIAL_PROTOCOL(" p:");
  4429. SERIAL_PROTOCOL(Kp);
  4430. SERIAL_PROTOCOL(" i:");
  4431. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4432. SERIAL_PROTOCOL(" d:");
  4433. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4434. #ifdef PID_ADD_EXTRUSION_RATE
  4435. SERIAL_PROTOCOL(" c:");
  4436. //Kc does not have scaling applied above, or in resetting defaults
  4437. SERIAL_PROTOCOL(Kc);
  4438. #endif
  4439. SERIAL_PROTOCOLLN("");
  4440. }
  4441. break;
  4442. #endif //PIDTEMP
  4443. #ifdef PIDTEMPBED
  4444. case 304: // M304
  4445. {
  4446. if(code_seen('P')) bedKp = code_value();
  4447. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4448. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4449. updatePID();
  4450. SERIAL_PROTOCOLRPGM(MSG_OK);
  4451. SERIAL_PROTOCOL(" p:");
  4452. SERIAL_PROTOCOL(bedKp);
  4453. SERIAL_PROTOCOL(" i:");
  4454. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4455. SERIAL_PROTOCOL(" d:");
  4456. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4457. SERIAL_PROTOCOLLN("");
  4458. }
  4459. break;
  4460. #endif //PIDTEMP
  4461. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4462. {
  4463. #ifdef CHDK
  4464. SET_OUTPUT(CHDK);
  4465. WRITE(CHDK, HIGH);
  4466. chdkHigh = millis();
  4467. chdkActive = true;
  4468. #else
  4469. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4470. const uint8_t NUM_PULSES=16;
  4471. const float PULSE_LENGTH=0.01524;
  4472. for(int i=0; i < NUM_PULSES; i++) {
  4473. WRITE(PHOTOGRAPH_PIN, HIGH);
  4474. _delay_ms(PULSE_LENGTH);
  4475. WRITE(PHOTOGRAPH_PIN, LOW);
  4476. _delay_ms(PULSE_LENGTH);
  4477. }
  4478. delay(7.33);
  4479. for(int i=0; i < NUM_PULSES; i++) {
  4480. WRITE(PHOTOGRAPH_PIN, HIGH);
  4481. _delay_ms(PULSE_LENGTH);
  4482. WRITE(PHOTOGRAPH_PIN, LOW);
  4483. _delay_ms(PULSE_LENGTH);
  4484. }
  4485. #endif
  4486. #endif //chdk end if
  4487. }
  4488. break;
  4489. #ifdef DOGLCD
  4490. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4491. {
  4492. if (code_seen('C')) {
  4493. lcd_setcontrast( ((int)code_value())&63 );
  4494. }
  4495. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4496. SERIAL_PROTOCOL(lcd_contrast);
  4497. SERIAL_PROTOCOLLN("");
  4498. }
  4499. break;
  4500. #endif
  4501. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4502. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4503. {
  4504. float temp = .0;
  4505. if (code_seen('S')) temp=code_value();
  4506. set_extrude_min_temp(temp);
  4507. }
  4508. break;
  4509. #endif
  4510. case 303: // M303 PID autotune
  4511. {
  4512. float temp = 150.0;
  4513. int e=0;
  4514. int c=5;
  4515. if (code_seen('E')) e=code_value();
  4516. if (e<0)
  4517. temp=70;
  4518. if (code_seen('S')) temp=code_value();
  4519. if (code_seen('C')) c=code_value();
  4520. PID_autotune(temp, e, c);
  4521. }
  4522. break;
  4523. case 400: // M400 finish all moves
  4524. {
  4525. st_synchronize();
  4526. }
  4527. break;
  4528. #ifdef FILAMENT_SENSOR
  4529. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4530. {
  4531. #if (FILWIDTH_PIN > -1)
  4532. if(code_seen('N')) filament_width_nominal=code_value();
  4533. else{
  4534. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4535. SERIAL_PROTOCOLLN(filament_width_nominal);
  4536. }
  4537. #endif
  4538. }
  4539. break;
  4540. case 405: //M405 Turn on filament sensor for control
  4541. {
  4542. if(code_seen('D')) meas_delay_cm=code_value();
  4543. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4544. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4545. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4546. {
  4547. int temp_ratio = widthFil_to_size_ratio();
  4548. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4549. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4550. }
  4551. delay_index1=0;
  4552. delay_index2=0;
  4553. }
  4554. filament_sensor = true ;
  4555. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4556. //SERIAL_PROTOCOL(filament_width_meas);
  4557. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4558. //SERIAL_PROTOCOL(extrudemultiply);
  4559. }
  4560. break;
  4561. case 406: //M406 Turn off filament sensor for control
  4562. {
  4563. filament_sensor = false ;
  4564. }
  4565. break;
  4566. case 407: //M407 Display measured filament diameter
  4567. {
  4568. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4569. SERIAL_PROTOCOLLN(filament_width_meas);
  4570. }
  4571. break;
  4572. #endif
  4573. case 500: // M500 Store settings in EEPROM
  4574. {
  4575. Config_StoreSettings(EEPROM_OFFSET);
  4576. }
  4577. break;
  4578. case 501: // M501 Read settings from EEPROM
  4579. {
  4580. Config_RetrieveSettings(EEPROM_OFFSET);
  4581. }
  4582. break;
  4583. case 502: // M502 Revert to default settings
  4584. {
  4585. Config_ResetDefault();
  4586. }
  4587. break;
  4588. case 503: // M503 print settings currently in memory
  4589. {
  4590. Config_PrintSettings();
  4591. }
  4592. break;
  4593. case 509: //M509 Force language selection
  4594. {
  4595. lcd_force_language_selection();
  4596. SERIAL_ECHO_START;
  4597. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4598. }
  4599. break;
  4600. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4601. case 540:
  4602. {
  4603. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4604. }
  4605. break;
  4606. #endif
  4607. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4608. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4609. {
  4610. float value;
  4611. if (code_seen('Z'))
  4612. {
  4613. value = code_value();
  4614. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4615. {
  4616. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4617. SERIAL_ECHO_START;
  4618. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4619. SERIAL_PROTOCOLLN("");
  4620. }
  4621. else
  4622. {
  4623. SERIAL_ECHO_START;
  4624. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4625. SERIAL_ECHORPGM(MSG_Z_MIN);
  4626. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4627. SERIAL_ECHORPGM(MSG_Z_MAX);
  4628. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4629. SERIAL_PROTOCOLLN("");
  4630. }
  4631. }
  4632. else
  4633. {
  4634. SERIAL_ECHO_START;
  4635. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4636. SERIAL_ECHO(-zprobe_zoffset);
  4637. SERIAL_PROTOCOLLN("");
  4638. }
  4639. break;
  4640. }
  4641. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4642. #ifdef FILAMENTCHANGEENABLE
  4643. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4644. {
  4645. MYSERIAL.println("!!!!M600!!!!");
  4646. bool old_fsensor_enabled = fsensor_enabled;
  4647. fsensor_enabled = false; //temporary solution for unexpected restarting
  4648. st_synchronize();
  4649. float target[4];
  4650. float lastpos[4];
  4651. if (farm_mode)
  4652. {
  4653. prusa_statistics(22);
  4654. }
  4655. feedmultiplyBckp=feedmultiply;
  4656. int8_t TooLowZ = 0;
  4657. target[X_AXIS]=current_position[X_AXIS];
  4658. target[Y_AXIS]=current_position[Y_AXIS];
  4659. target[Z_AXIS]=current_position[Z_AXIS];
  4660. target[E_AXIS]=current_position[E_AXIS];
  4661. lastpos[X_AXIS]=current_position[X_AXIS];
  4662. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4663. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4664. lastpos[E_AXIS]=current_position[E_AXIS];
  4665. //Restract extruder
  4666. if(code_seen('E'))
  4667. {
  4668. target[E_AXIS]+= code_value();
  4669. }
  4670. else
  4671. {
  4672. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4673. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4674. #endif
  4675. }
  4676. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4677. //Lift Z
  4678. if(code_seen('Z'))
  4679. {
  4680. target[Z_AXIS]+= code_value();
  4681. }
  4682. else
  4683. {
  4684. #ifdef FILAMENTCHANGE_ZADD
  4685. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4686. if(target[Z_AXIS] < 10){
  4687. target[Z_AXIS]+= 10 ;
  4688. TooLowZ = 1;
  4689. }else{
  4690. TooLowZ = 0;
  4691. }
  4692. #endif
  4693. }
  4694. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4695. //Move XY to side
  4696. if(code_seen('X'))
  4697. {
  4698. target[X_AXIS]+= code_value();
  4699. }
  4700. else
  4701. {
  4702. #ifdef FILAMENTCHANGE_XPOS
  4703. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4704. #endif
  4705. }
  4706. if(code_seen('Y'))
  4707. {
  4708. target[Y_AXIS]= code_value();
  4709. }
  4710. else
  4711. {
  4712. #ifdef FILAMENTCHANGE_YPOS
  4713. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4714. #endif
  4715. }
  4716. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4717. st_synchronize();
  4718. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4719. uint8_t cnt = 0;
  4720. int counterBeep = 0;
  4721. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4722. while (!lcd_clicked()) {
  4723. cnt++;
  4724. manage_heater();
  4725. manage_inactivity(true);
  4726. /*#ifdef SNMM
  4727. target[E_AXIS] += 0.002;
  4728. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4729. #endif // SNMM*/
  4730. if (cnt == 0)
  4731. {
  4732. #if BEEPER > 0
  4733. if (counterBeep == 500) {
  4734. counterBeep = 0;
  4735. }
  4736. SET_OUTPUT(BEEPER);
  4737. if (counterBeep == 0) {
  4738. WRITE(BEEPER, HIGH);
  4739. }
  4740. if (counterBeep == 20) {
  4741. WRITE(BEEPER, LOW);
  4742. }
  4743. counterBeep++;
  4744. #else
  4745. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4746. lcd_buzz(1000 / 6, 100);
  4747. #else
  4748. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4749. #endif
  4750. #endif
  4751. }
  4752. }
  4753. WRITE(BEEPER, LOW);
  4754. lcd_change_fil_state = 0;
  4755. while (lcd_change_fil_state == 0) {
  4756. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4757. KEEPALIVE_STATE(IN_HANDLER);
  4758. custom_message = true;
  4759. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4760. // Unload filament
  4761. if (code_seen('L'))
  4762. {
  4763. target[E_AXIS] += code_value();
  4764. }
  4765. else
  4766. {
  4767. #ifdef SNMM
  4768. #else
  4769. #ifdef FILAMENTCHANGE_FINALRETRACT
  4770. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4771. #endif
  4772. #endif // SNMM
  4773. }
  4774. #ifdef SNMM
  4775. target[E_AXIS] += 12;
  4776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4777. target[E_AXIS] += 6;
  4778. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4779. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4780. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4781. st_synchronize();
  4782. target[E_AXIS] += (FIL_COOLING);
  4783. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4784. target[E_AXIS] += (FIL_COOLING*-1);
  4785. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4786. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4787. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4788. st_synchronize();
  4789. #else
  4790. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4791. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4792. #endif // SNMM
  4793. //finish moves
  4794. st_synchronize();
  4795. //disable extruder steppers so filament can be removed
  4796. disable_e0();
  4797. disable_e1();
  4798. disable_e2();
  4799. delay(100);
  4800. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4801. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4802. //lcd_return_to_status();
  4803. lcd_update_enable(true);
  4804. }
  4805. //Wait for user to insert filament
  4806. lcd_wait_interact();
  4807. //load_filament_time = millis();
  4808. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4809. pat9125_update_y(); //update sensor
  4810. uint16_t y_old = pat9125_y; //save current y value
  4811. uint8_t change_cnt = 0; //reset number of changes counter
  4812. while(!lcd_clicked())
  4813. {
  4814. manage_heater();
  4815. manage_inactivity(true);
  4816. pat9125_update_y(); //update sensor
  4817. if (y_old != pat9125_y) //? y value is different
  4818. {
  4819. if ((y_old - pat9125_y) > 0) //? delta-y value is positive (inserting)
  4820. change_cnt++; //increment change counter
  4821. y_old = pat9125_y; //save current value
  4822. if (change_cnt > 20) break; //number of positive changes > 20, start loading
  4823. }
  4824. /*#ifdef SNMM
  4825. target[E_AXIS] += 0.002;
  4826. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4827. #endif // SNMM*/
  4828. }
  4829. //WRITE(BEEPER, LOW);
  4830. KEEPALIVE_STATE(IN_HANDLER);
  4831. #ifdef SNMM
  4832. display_loading();
  4833. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4834. do {
  4835. target[E_AXIS] += 0.002;
  4836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4837. delay_keep_alive(2);
  4838. } while (!lcd_clicked());
  4839. KEEPALIVE_STATE(IN_HANDLER);
  4840. /*if (millis() - load_filament_time > 2) {
  4841. load_filament_time = millis();
  4842. target[E_AXIS] += 0.001;
  4843. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4844. }*/
  4845. //Filament inserted
  4846. //Feed the filament to the end of nozzle quickly
  4847. st_synchronize();
  4848. target[E_AXIS] += bowden_length[snmm_extruder];
  4849. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4850. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4851. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4852. target[E_AXIS] += 40;
  4853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4854. target[E_AXIS] += 10;
  4855. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4856. #else
  4857. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4858. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4859. #endif // SNMM
  4860. //Extrude some filament
  4861. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4862. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4863. //Wait for user to check the state
  4864. lcd_change_fil_state = 0;
  4865. lcd_loading_filament();
  4866. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4867. lcd_change_fil_state = 0;
  4868. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4869. lcd_alright();
  4870. KEEPALIVE_STATE(IN_HANDLER);
  4871. switch(lcd_change_fil_state){
  4872. // Filament failed to load so load it again
  4873. case 2:
  4874. #ifdef SNMM
  4875. display_loading();
  4876. do {
  4877. target[E_AXIS] += 0.002;
  4878. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4879. delay_keep_alive(2);
  4880. } while (!lcd_clicked());
  4881. st_synchronize();
  4882. target[E_AXIS] += bowden_length[snmm_extruder];
  4883. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4884. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4886. target[E_AXIS] += 40;
  4887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4888. target[E_AXIS] += 10;
  4889. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4890. #else
  4891. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4892. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4893. #endif
  4894. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4895. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4896. lcd_loading_filament();
  4897. break;
  4898. // Filament loaded properly but color is not clear
  4899. case 3:
  4900. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4901. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4902. lcd_loading_color();
  4903. break;
  4904. // Everything good
  4905. default:
  4906. lcd_change_success();
  4907. lcd_update_enable(true);
  4908. break;
  4909. }
  4910. }
  4911. //Not let's go back to print
  4912. //Feed a little of filament to stabilize pressure
  4913. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4914. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4915. //Retract
  4916. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4917. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4918. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4919. //Move XY back
  4920. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4921. //Move Z back
  4922. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4923. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4924. //Unretract
  4925. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4926. //Set E position to original
  4927. plan_set_e_position(lastpos[E_AXIS]);
  4928. //Recover feed rate
  4929. feedmultiply=feedmultiplyBckp;
  4930. char cmd[9];
  4931. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4932. enquecommand(cmd);
  4933. lcd_setstatuspgm(WELCOME_MSG);
  4934. custom_message = false;
  4935. custom_message_type = 0;
  4936. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  4937. #ifdef PAT9125
  4938. if (fsensor_M600)
  4939. {
  4940. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4941. st_synchronize();
  4942. while (!is_buffer_empty())
  4943. {
  4944. process_commands();
  4945. cmdqueue_pop_front();
  4946. }
  4947. fsensor_enable();
  4948. fsensor_restore_print_and_continue();
  4949. }
  4950. #endif //PAT9125
  4951. }
  4952. break;
  4953. #endif //FILAMENTCHANGEENABLE
  4954. case 601: {
  4955. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4956. }
  4957. break;
  4958. case 602: {
  4959. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4960. }
  4961. break;
  4962. #ifdef LIN_ADVANCE
  4963. case 900: // M900: Set LIN_ADVANCE options.
  4964. gcode_M900();
  4965. break;
  4966. #endif
  4967. case 907: // M907 Set digital trimpot motor current using axis codes.
  4968. {
  4969. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4970. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4971. if(code_seen('B')) digipot_current(4,code_value());
  4972. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4973. #endif
  4974. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4975. if(code_seen('X')) digipot_current(0, code_value());
  4976. #endif
  4977. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4978. if(code_seen('Z')) digipot_current(1, code_value());
  4979. #endif
  4980. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4981. if(code_seen('E')) digipot_current(2, code_value());
  4982. #endif
  4983. #ifdef DIGIPOT_I2C
  4984. // this one uses actual amps in floating point
  4985. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4986. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4987. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4988. #endif
  4989. }
  4990. break;
  4991. case 908: // M908 Control digital trimpot directly.
  4992. {
  4993. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4994. uint8_t channel,current;
  4995. if(code_seen('P')) channel=code_value();
  4996. if(code_seen('S')) current=code_value();
  4997. digitalPotWrite(channel, current);
  4998. #endif
  4999. }
  5000. break;
  5001. case 910: // M910 TMC2130 init
  5002. {
  5003. tmc2130_init();
  5004. }
  5005. break;
  5006. case 911: // M911 Set TMC2130 holding currents
  5007. {
  5008. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5009. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5010. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5011. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5012. }
  5013. break;
  5014. case 912: // M912 Set TMC2130 running currents
  5015. {
  5016. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5017. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5018. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5019. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5020. }
  5021. break;
  5022. case 913: // M913 Print TMC2130 currents
  5023. {
  5024. tmc2130_print_currents();
  5025. }
  5026. break;
  5027. case 914: // M914 Set normal mode
  5028. {
  5029. tmc2130_mode = TMC2130_MODE_NORMAL;
  5030. tmc2130_init();
  5031. }
  5032. break;
  5033. case 915: // M915 Set silent mode
  5034. {
  5035. tmc2130_mode = TMC2130_MODE_SILENT;
  5036. tmc2130_init();
  5037. }
  5038. break;
  5039. case 916: // M916 Set sg_thrs
  5040. {
  5041. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5042. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5043. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5044. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5045. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5046. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5047. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5048. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5049. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5050. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5051. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5052. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5053. }
  5054. break;
  5055. case 917: // M917 Set TMC2130 pwm_ampl
  5056. {
  5057. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5058. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5059. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5060. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5061. }
  5062. break;
  5063. case 918: // M918 Set TMC2130 pwm_grad
  5064. {
  5065. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5066. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5067. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5068. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5069. }
  5070. break;
  5071. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5072. {
  5073. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5074. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5075. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5076. if(code_seen('B')) microstep_mode(4,code_value());
  5077. microstep_readings();
  5078. #endif
  5079. }
  5080. break;
  5081. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5082. {
  5083. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5084. if(code_seen('S')) switch((int)code_value())
  5085. {
  5086. case 1:
  5087. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5088. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5089. break;
  5090. case 2:
  5091. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5092. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5093. break;
  5094. }
  5095. microstep_readings();
  5096. #endif
  5097. }
  5098. break;
  5099. case 701: //M701: load filament
  5100. {
  5101. gcode_M701();
  5102. }
  5103. break;
  5104. case 702:
  5105. {
  5106. #ifdef SNMM
  5107. if (code_seen('U')) {
  5108. extr_unload_used(); //unload all filaments which were used in current print
  5109. }
  5110. else if (code_seen('C')) {
  5111. extr_unload(); //unload just current filament
  5112. }
  5113. else {
  5114. extr_unload_all(); //unload all filaments
  5115. }
  5116. #else
  5117. bool old_fsensor_enabled = fsensor_enabled;
  5118. fsensor_enabled = false;
  5119. custom_message = true;
  5120. custom_message_type = 2;
  5121. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5122. // extr_unload2();
  5123. current_position[E_AXIS] -= 80;
  5124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5125. st_synchronize();
  5126. lcd_setstatuspgm(WELCOME_MSG);
  5127. custom_message = false;
  5128. custom_message_type = 0;
  5129. fsensor_enabled = old_fsensor_enabled;
  5130. #endif
  5131. }
  5132. break;
  5133. case 999: // M999: Restart after being stopped
  5134. Stopped = false;
  5135. lcd_reset_alert_level();
  5136. gcode_LastN = Stopped_gcode_LastN;
  5137. FlushSerialRequestResend();
  5138. break;
  5139. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5140. }
  5141. } // end if(code_seen('M')) (end of M codes)
  5142. else if(code_seen('T'))
  5143. {
  5144. int index;
  5145. st_synchronize();
  5146. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5147. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5148. SERIAL_ECHOLNPGM("Invalid T code.");
  5149. }
  5150. else {
  5151. if (*(strchr_pointer + index) == '?') {
  5152. tmp_extruder = choose_extruder_menu();
  5153. }
  5154. else {
  5155. tmp_extruder = code_value();
  5156. }
  5157. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5158. #ifdef SNMM
  5159. #ifdef LIN_ADVANCE
  5160. if (snmm_extruder != tmp_extruder)
  5161. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5162. #endif
  5163. snmm_extruder = tmp_extruder;
  5164. delay(100);
  5165. disable_e0();
  5166. disable_e1();
  5167. disable_e2();
  5168. pinMode(E_MUX0_PIN, OUTPUT);
  5169. pinMode(E_MUX1_PIN, OUTPUT);
  5170. pinMode(E_MUX2_PIN, OUTPUT);
  5171. delay(100);
  5172. SERIAL_ECHO_START;
  5173. SERIAL_ECHO("T:");
  5174. SERIAL_ECHOLN((int)tmp_extruder);
  5175. switch (tmp_extruder) {
  5176. case 1:
  5177. WRITE(E_MUX0_PIN, HIGH);
  5178. WRITE(E_MUX1_PIN, LOW);
  5179. WRITE(E_MUX2_PIN, LOW);
  5180. break;
  5181. case 2:
  5182. WRITE(E_MUX0_PIN, LOW);
  5183. WRITE(E_MUX1_PIN, HIGH);
  5184. WRITE(E_MUX2_PIN, LOW);
  5185. break;
  5186. case 3:
  5187. WRITE(E_MUX0_PIN, HIGH);
  5188. WRITE(E_MUX1_PIN, HIGH);
  5189. WRITE(E_MUX2_PIN, LOW);
  5190. break;
  5191. default:
  5192. WRITE(E_MUX0_PIN, LOW);
  5193. WRITE(E_MUX1_PIN, LOW);
  5194. WRITE(E_MUX2_PIN, LOW);
  5195. break;
  5196. }
  5197. delay(100);
  5198. #else
  5199. if (tmp_extruder >= EXTRUDERS) {
  5200. SERIAL_ECHO_START;
  5201. SERIAL_ECHOPGM("T");
  5202. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5203. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5204. }
  5205. else {
  5206. boolean make_move = false;
  5207. if (code_seen('F')) {
  5208. make_move = true;
  5209. next_feedrate = code_value();
  5210. if (next_feedrate > 0.0) {
  5211. feedrate = next_feedrate;
  5212. }
  5213. }
  5214. #if EXTRUDERS > 1
  5215. if (tmp_extruder != active_extruder) {
  5216. // Save current position to return to after applying extruder offset
  5217. memcpy(destination, current_position, sizeof(destination));
  5218. // Offset extruder (only by XY)
  5219. int i;
  5220. for (i = 0; i < 2; i++) {
  5221. current_position[i] = current_position[i] -
  5222. extruder_offset[i][active_extruder] +
  5223. extruder_offset[i][tmp_extruder];
  5224. }
  5225. // Set the new active extruder and position
  5226. active_extruder = tmp_extruder;
  5227. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5228. // Move to the old position if 'F' was in the parameters
  5229. if (make_move && Stopped == false) {
  5230. prepare_move();
  5231. }
  5232. }
  5233. #endif
  5234. SERIAL_ECHO_START;
  5235. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5236. SERIAL_PROTOCOLLN((int)active_extruder);
  5237. }
  5238. #endif
  5239. }
  5240. } // end if(code_seen('T')) (end of T codes)
  5241. #ifdef DEBUG_DCODES
  5242. else if (code_seen('D')) // D codes (debug)
  5243. {
  5244. switch((int)code_value())
  5245. {
  5246. case -1: // D-1 - Endless loop
  5247. dcode__1(); break;
  5248. case 0: // D0 - Reset
  5249. dcode_0(); break;
  5250. case 1: // D1 - Clear EEPROM
  5251. dcode_1(); break;
  5252. case 2: // D2 - Read/Write RAM
  5253. dcode_2(); break;
  5254. case 3: // D3 - Read/Write EEPROM
  5255. dcode_3(); break;
  5256. case 4: // D4 - Read/Write PIN
  5257. dcode_4(); break;
  5258. case 5: // D5 - Read/Write FLASH
  5259. // dcode_5(); break;
  5260. break;
  5261. case 6: // D6 - Read/Write external FLASH
  5262. dcode_6(); break;
  5263. case 7: // D7 - Read/Write Bootloader
  5264. dcode_7(); break;
  5265. case 8: // D8 - Read/Write PINDA
  5266. dcode_8(); break;
  5267. case 10: // D10 - XYZ calibration = OK
  5268. dcode_10(); break;
  5269. case 12: //D12 - Reset failstat counters
  5270. dcode_12(); break;
  5271. case 2130: // D9125 - TMC2130
  5272. dcode_2130(); break;
  5273. case 9125: // D9125 - PAT9125
  5274. dcode_9125(); break;
  5275. }
  5276. }
  5277. #endif //DEBUG_DCODES
  5278. else
  5279. {
  5280. SERIAL_ECHO_START;
  5281. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5282. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5283. SERIAL_ECHOLNPGM("\"(2)");
  5284. }
  5285. KEEPALIVE_STATE(NOT_BUSY);
  5286. ClearToSend();
  5287. }
  5288. void FlushSerialRequestResend()
  5289. {
  5290. //char cmdbuffer[bufindr][100]="Resend:";
  5291. MYSERIAL.flush();
  5292. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5293. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5294. ClearToSend();
  5295. }
  5296. // Confirm the execution of a command, if sent from a serial line.
  5297. // Execution of a command from a SD card will not be confirmed.
  5298. void ClearToSend()
  5299. {
  5300. previous_millis_cmd = millis();
  5301. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5302. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5303. }
  5304. void get_coordinates()
  5305. {
  5306. bool seen[4]={false,false,false,false};
  5307. for(int8_t i=0; i < NUM_AXIS; i++) {
  5308. if(code_seen(axis_codes[i]))
  5309. {
  5310. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5311. seen[i]=true;
  5312. }
  5313. else destination[i] = current_position[i]; //Are these else lines really needed?
  5314. }
  5315. if(code_seen('F')) {
  5316. next_feedrate = code_value();
  5317. #ifdef MAX_SILENT_FEEDRATE
  5318. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5319. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5320. #endif //MAX_SILENT_FEEDRATE
  5321. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5322. }
  5323. }
  5324. void get_arc_coordinates()
  5325. {
  5326. #ifdef SF_ARC_FIX
  5327. bool relative_mode_backup = relative_mode;
  5328. relative_mode = true;
  5329. #endif
  5330. get_coordinates();
  5331. #ifdef SF_ARC_FIX
  5332. relative_mode=relative_mode_backup;
  5333. #endif
  5334. if(code_seen('I')) {
  5335. offset[0] = code_value();
  5336. }
  5337. else {
  5338. offset[0] = 0.0;
  5339. }
  5340. if(code_seen('J')) {
  5341. offset[1] = code_value();
  5342. }
  5343. else {
  5344. offset[1] = 0.0;
  5345. }
  5346. }
  5347. void clamp_to_software_endstops(float target[3])
  5348. {
  5349. #ifdef DEBUG_DISABLE_SWLIMITS
  5350. return;
  5351. #endif //DEBUG_DISABLE_SWLIMITS
  5352. world2machine_clamp(target[0], target[1]);
  5353. // Clamp the Z coordinate.
  5354. if (min_software_endstops) {
  5355. float negative_z_offset = 0;
  5356. #ifdef ENABLE_AUTO_BED_LEVELING
  5357. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5358. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5359. #endif
  5360. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5361. }
  5362. if (max_software_endstops) {
  5363. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5364. }
  5365. }
  5366. #ifdef MESH_BED_LEVELING
  5367. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5368. float dx = x - current_position[X_AXIS];
  5369. float dy = y - current_position[Y_AXIS];
  5370. float dz = z - current_position[Z_AXIS];
  5371. int n_segments = 0;
  5372. if (mbl.active) {
  5373. float len = abs(dx) + abs(dy);
  5374. if (len > 0)
  5375. // Split to 3cm segments or shorter.
  5376. n_segments = int(ceil(len / 30.f));
  5377. }
  5378. if (n_segments > 1) {
  5379. float de = e - current_position[E_AXIS];
  5380. for (int i = 1; i < n_segments; ++ i) {
  5381. float t = float(i) / float(n_segments);
  5382. plan_buffer_line(
  5383. current_position[X_AXIS] + t * dx,
  5384. current_position[Y_AXIS] + t * dy,
  5385. current_position[Z_AXIS] + t * dz,
  5386. current_position[E_AXIS] + t * de,
  5387. feed_rate, extruder);
  5388. }
  5389. }
  5390. // The rest of the path.
  5391. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5392. current_position[X_AXIS] = x;
  5393. current_position[Y_AXIS] = y;
  5394. current_position[Z_AXIS] = z;
  5395. current_position[E_AXIS] = e;
  5396. }
  5397. #endif // MESH_BED_LEVELING
  5398. void prepare_move()
  5399. {
  5400. clamp_to_software_endstops(destination);
  5401. previous_millis_cmd = millis();
  5402. // Do not use feedmultiply for E or Z only moves
  5403. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5404. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5405. }
  5406. else {
  5407. #ifdef MESH_BED_LEVELING
  5408. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5409. #else
  5410. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5411. #endif
  5412. }
  5413. for(int8_t i=0; i < NUM_AXIS; i++) {
  5414. current_position[i] = destination[i];
  5415. }
  5416. }
  5417. void prepare_arc_move(char isclockwise) {
  5418. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5419. // Trace the arc
  5420. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5421. // As far as the parser is concerned, the position is now == target. In reality the
  5422. // motion control system might still be processing the action and the real tool position
  5423. // in any intermediate location.
  5424. for(int8_t i=0; i < NUM_AXIS; i++) {
  5425. current_position[i] = destination[i];
  5426. }
  5427. previous_millis_cmd = millis();
  5428. }
  5429. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5430. #if defined(FAN_PIN)
  5431. #if CONTROLLERFAN_PIN == FAN_PIN
  5432. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5433. #endif
  5434. #endif
  5435. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5436. unsigned long lastMotorCheck = 0;
  5437. void controllerFan()
  5438. {
  5439. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5440. {
  5441. lastMotorCheck = millis();
  5442. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5443. #if EXTRUDERS > 2
  5444. || !READ(E2_ENABLE_PIN)
  5445. #endif
  5446. #if EXTRUDER > 1
  5447. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5448. || !READ(X2_ENABLE_PIN)
  5449. #endif
  5450. || !READ(E1_ENABLE_PIN)
  5451. #endif
  5452. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5453. {
  5454. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5455. }
  5456. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5457. {
  5458. digitalWrite(CONTROLLERFAN_PIN, 0);
  5459. analogWrite(CONTROLLERFAN_PIN, 0);
  5460. }
  5461. else
  5462. {
  5463. // allows digital or PWM fan output to be used (see M42 handling)
  5464. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5465. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5466. }
  5467. }
  5468. }
  5469. #endif
  5470. #ifdef TEMP_STAT_LEDS
  5471. static bool blue_led = false;
  5472. static bool red_led = false;
  5473. static uint32_t stat_update = 0;
  5474. void handle_status_leds(void) {
  5475. float max_temp = 0.0;
  5476. if(millis() > stat_update) {
  5477. stat_update += 500; // Update every 0.5s
  5478. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5479. max_temp = max(max_temp, degHotend(cur_extruder));
  5480. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5481. }
  5482. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5483. max_temp = max(max_temp, degTargetBed());
  5484. max_temp = max(max_temp, degBed());
  5485. #endif
  5486. if((max_temp > 55.0) && (red_led == false)) {
  5487. digitalWrite(STAT_LED_RED, 1);
  5488. digitalWrite(STAT_LED_BLUE, 0);
  5489. red_led = true;
  5490. blue_led = false;
  5491. }
  5492. if((max_temp < 54.0) && (blue_led == false)) {
  5493. digitalWrite(STAT_LED_RED, 0);
  5494. digitalWrite(STAT_LED_BLUE, 1);
  5495. red_led = false;
  5496. blue_led = true;
  5497. }
  5498. }
  5499. }
  5500. #endif
  5501. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5502. {
  5503. #if defined(KILL_PIN) && KILL_PIN > -1
  5504. static int killCount = 0; // make the inactivity button a bit less responsive
  5505. const int KILL_DELAY = 10000;
  5506. #endif
  5507. if(buflen < (BUFSIZE-1)){
  5508. get_command();
  5509. }
  5510. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5511. if(max_inactive_time)
  5512. kill("", 4);
  5513. if(stepper_inactive_time) {
  5514. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5515. {
  5516. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5517. disable_x();
  5518. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5519. disable_y();
  5520. disable_z();
  5521. disable_e0();
  5522. disable_e1();
  5523. disable_e2();
  5524. }
  5525. }
  5526. }
  5527. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5528. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5529. {
  5530. chdkActive = false;
  5531. WRITE(CHDK, LOW);
  5532. }
  5533. #endif
  5534. #if defined(KILL_PIN) && KILL_PIN > -1
  5535. // Check if the kill button was pressed and wait just in case it was an accidental
  5536. // key kill key press
  5537. // -------------------------------------------------------------------------------
  5538. if( 0 == READ(KILL_PIN) )
  5539. {
  5540. killCount++;
  5541. }
  5542. else if (killCount > 0)
  5543. {
  5544. killCount--;
  5545. }
  5546. // Exceeded threshold and we can confirm that it was not accidental
  5547. // KILL the machine
  5548. // ----------------------------------------------------------------
  5549. if ( killCount >= KILL_DELAY)
  5550. {
  5551. kill("", 5);
  5552. }
  5553. #endif
  5554. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5555. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5556. #endif
  5557. #ifdef EXTRUDER_RUNOUT_PREVENT
  5558. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5559. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5560. {
  5561. bool oldstatus=READ(E0_ENABLE_PIN);
  5562. enable_e0();
  5563. float oldepos=current_position[E_AXIS];
  5564. float oldedes=destination[E_AXIS];
  5565. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5566. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5567. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5568. current_position[E_AXIS]=oldepos;
  5569. destination[E_AXIS]=oldedes;
  5570. plan_set_e_position(oldepos);
  5571. previous_millis_cmd=millis();
  5572. st_synchronize();
  5573. WRITE(E0_ENABLE_PIN,oldstatus);
  5574. }
  5575. #endif
  5576. #ifdef TEMP_STAT_LEDS
  5577. handle_status_leds();
  5578. #endif
  5579. check_axes_activity();
  5580. }
  5581. void kill(const char *full_screen_message, unsigned char id)
  5582. {
  5583. SERIAL_ECHOPGM("KILL: ");
  5584. MYSERIAL.println(int(id));
  5585. //return;
  5586. cli(); // Stop interrupts
  5587. disable_heater();
  5588. disable_x();
  5589. // SERIAL_ECHOLNPGM("kill - disable Y");
  5590. disable_y();
  5591. disable_z();
  5592. disable_e0();
  5593. disable_e1();
  5594. disable_e2();
  5595. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5596. pinMode(PS_ON_PIN,INPUT);
  5597. #endif
  5598. SERIAL_ERROR_START;
  5599. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5600. if (full_screen_message != NULL) {
  5601. SERIAL_ERRORLNRPGM(full_screen_message);
  5602. lcd_display_message_fullscreen_P(full_screen_message);
  5603. } else {
  5604. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5605. }
  5606. // FMC small patch to update the LCD before ending
  5607. sei(); // enable interrupts
  5608. for ( int i=5; i--; lcd_update())
  5609. {
  5610. delay(200);
  5611. }
  5612. cli(); // disable interrupts
  5613. suicide();
  5614. while(1)
  5615. {
  5616. wdt_reset();
  5617. /* Intentionally left empty */
  5618. } // Wait for reset
  5619. }
  5620. void Stop()
  5621. {
  5622. disable_heater();
  5623. if(Stopped == false) {
  5624. Stopped = true;
  5625. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5626. SERIAL_ERROR_START;
  5627. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5628. LCD_MESSAGERPGM(MSG_STOPPED);
  5629. }
  5630. }
  5631. bool IsStopped() { return Stopped; };
  5632. #ifdef FAST_PWM_FAN
  5633. void setPwmFrequency(uint8_t pin, int val)
  5634. {
  5635. val &= 0x07;
  5636. switch(digitalPinToTimer(pin))
  5637. {
  5638. #if defined(TCCR0A)
  5639. case TIMER0A:
  5640. case TIMER0B:
  5641. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5642. // TCCR0B |= val;
  5643. break;
  5644. #endif
  5645. #if defined(TCCR1A)
  5646. case TIMER1A:
  5647. case TIMER1B:
  5648. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5649. // TCCR1B |= val;
  5650. break;
  5651. #endif
  5652. #if defined(TCCR2)
  5653. case TIMER2:
  5654. case TIMER2:
  5655. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5656. TCCR2 |= val;
  5657. break;
  5658. #endif
  5659. #if defined(TCCR2A)
  5660. case TIMER2A:
  5661. case TIMER2B:
  5662. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5663. TCCR2B |= val;
  5664. break;
  5665. #endif
  5666. #if defined(TCCR3A)
  5667. case TIMER3A:
  5668. case TIMER3B:
  5669. case TIMER3C:
  5670. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5671. TCCR3B |= val;
  5672. break;
  5673. #endif
  5674. #if defined(TCCR4A)
  5675. case TIMER4A:
  5676. case TIMER4B:
  5677. case TIMER4C:
  5678. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5679. TCCR4B |= val;
  5680. break;
  5681. #endif
  5682. #if defined(TCCR5A)
  5683. case TIMER5A:
  5684. case TIMER5B:
  5685. case TIMER5C:
  5686. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5687. TCCR5B |= val;
  5688. break;
  5689. #endif
  5690. }
  5691. }
  5692. #endif //FAST_PWM_FAN
  5693. bool setTargetedHotend(int code){
  5694. tmp_extruder = active_extruder;
  5695. if(code_seen('T')) {
  5696. tmp_extruder = code_value();
  5697. if(tmp_extruder >= EXTRUDERS) {
  5698. SERIAL_ECHO_START;
  5699. switch(code){
  5700. case 104:
  5701. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5702. break;
  5703. case 105:
  5704. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5705. break;
  5706. case 109:
  5707. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5708. break;
  5709. case 218:
  5710. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5711. break;
  5712. case 221:
  5713. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5714. break;
  5715. }
  5716. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5717. return true;
  5718. }
  5719. }
  5720. return false;
  5721. }
  5722. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5723. {
  5724. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5725. {
  5726. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5727. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5728. }
  5729. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5730. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5731. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5732. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5733. total_filament_used = 0;
  5734. }
  5735. float calculate_volumetric_multiplier(float diameter) {
  5736. float area = .0;
  5737. float radius = .0;
  5738. radius = diameter * .5;
  5739. if (! volumetric_enabled || radius == 0) {
  5740. area = 1;
  5741. }
  5742. else {
  5743. area = M_PI * pow(radius, 2);
  5744. }
  5745. return 1.0 / area;
  5746. }
  5747. void calculate_volumetric_multipliers() {
  5748. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5749. #if EXTRUDERS > 1
  5750. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5751. #if EXTRUDERS > 2
  5752. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5753. #endif
  5754. #endif
  5755. }
  5756. void delay_keep_alive(unsigned int ms)
  5757. {
  5758. for (;;) {
  5759. manage_heater();
  5760. // Manage inactivity, but don't disable steppers on timeout.
  5761. manage_inactivity(true);
  5762. lcd_update();
  5763. if (ms == 0)
  5764. break;
  5765. else if (ms >= 50) {
  5766. delay(50);
  5767. ms -= 50;
  5768. } else {
  5769. delay(ms);
  5770. ms = 0;
  5771. }
  5772. }
  5773. }
  5774. void wait_for_heater(long codenum) {
  5775. #ifdef TEMP_RESIDENCY_TIME
  5776. long residencyStart;
  5777. residencyStart = -1;
  5778. /* continue to loop until we have reached the target temp
  5779. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5780. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5781. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5782. #else
  5783. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5784. #endif //TEMP_RESIDENCY_TIME
  5785. if ((millis() - codenum) > 1000UL)
  5786. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5787. if (!farm_mode) {
  5788. SERIAL_PROTOCOLPGM("T:");
  5789. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5790. SERIAL_PROTOCOLPGM(" E:");
  5791. SERIAL_PROTOCOL((int)tmp_extruder);
  5792. #ifdef TEMP_RESIDENCY_TIME
  5793. SERIAL_PROTOCOLPGM(" W:");
  5794. if (residencyStart > -1)
  5795. {
  5796. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5797. SERIAL_PROTOCOLLN(codenum);
  5798. }
  5799. else
  5800. {
  5801. SERIAL_PROTOCOLLN("?");
  5802. }
  5803. }
  5804. #else
  5805. SERIAL_PROTOCOLLN("");
  5806. #endif
  5807. codenum = millis();
  5808. }
  5809. manage_heater();
  5810. manage_inactivity();
  5811. lcd_update();
  5812. #ifdef TEMP_RESIDENCY_TIME
  5813. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5814. or when current temp falls outside the hysteresis after target temp was reached */
  5815. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5816. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5817. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5818. {
  5819. residencyStart = millis();
  5820. }
  5821. #endif //TEMP_RESIDENCY_TIME
  5822. }
  5823. }
  5824. void check_babystep() {
  5825. int babystep_z;
  5826. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5827. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5828. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5829. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5830. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5831. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5832. lcd_update_enable(true);
  5833. }
  5834. }
  5835. #ifdef DIS
  5836. void d_setup()
  5837. {
  5838. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5839. pinMode(D_DATA, INPUT_PULLUP);
  5840. pinMode(D_REQUIRE, OUTPUT);
  5841. digitalWrite(D_REQUIRE, HIGH);
  5842. }
  5843. float d_ReadData()
  5844. {
  5845. int digit[13];
  5846. String mergeOutput;
  5847. float output;
  5848. digitalWrite(D_REQUIRE, HIGH);
  5849. for (int i = 0; i<13; i++)
  5850. {
  5851. for (int j = 0; j < 4; j++)
  5852. {
  5853. while (digitalRead(D_DATACLOCK) == LOW) {}
  5854. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5855. bitWrite(digit[i], j, digitalRead(D_DATA));
  5856. }
  5857. }
  5858. digitalWrite(D_REQUIRE, LOW);
  5859. mergeOutput = "";
  5860. output = 0;
  5861. for (int r = 5; r <= 10; r++) //Merge digits
  5862. {
  5863. mergeOutput += digit[r];
  5864. }
  5865. output = mergeOutput.toFloat();
  5866. if (digit[4] == 8) //Handle sign
  5867. {
  5868. output *= -1;
  5869. }
  5870. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5871. {
  5872. output /= 10;
  5873. }
  5874. return output;
  5875. }
  5876. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5877. int t1 = 0;
  5878. int t_delay = 0;
  5879. int digit[13];
  5880. int m;
  5881. char str[3];
  5882. //String mergeOutput;
  5883. char mergeOutput[15];
  5884. float output;
  5885. int mesh_point = 0; //index number of calibration point
  5886. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5887. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5888. float mesh_home_z_search = 4;
  5889. float row[x_points_num];
  5890. int ix = 0;
  5891. int iy = 0;
  5892. char* filename_wldsd = "wldsd.txt";
  5893. char data_wldsd[70];
  5894. char numb_wldsd[10];
  5895. d_setup();
  5896. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5897. // We don't know where we are! HOME!
  5898. // Push the commands to the front of the message queue in the reverse order!
  5899. // There shall be always enough space reserved for these commands.
  5900. repeatcommand_front(); // repeat G80 with all its parameters
  5901. enquecommand_front_P((PSTR("G28 W0")));
  5902. enquecommand_front_P((PSTR("G1 Z5")));
  5903. return;
  5904. }
  5905. bool custom_message_old = custom_message;
  5906. unsigned int custom_message_type_old = custom_message_type;
  5907. unsigned int custom_message_state_old = custom_message_state;
  5908. custom_message = true;
  5909. custom_message_type = 1;
  5910. custom_message_state = (x_points_num * y_points_num) + 10;
  5911. lcd_update(1);
  5912. mbl.reset();
  5913. babystep_undo();
  5914. card.openFile(filename_wldsd, false);
  5915. current_position[Z_AXIS] = mesh_home_z_search;
  5916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5917. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5918. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5919. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5920. setup_for_endstop_move(false);
  5921. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5922. SERIAL_PROTOCOL(x_points_num);
  5923. SERIAL_PROTOCOLPGM(",");
  5924. SERIAL_PROTOCOL(y_points_num);
  5925. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5926. SERIAL_PROTOCOL(mesh_home_z_search);
  5927. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5928. SERIAL_PROTOCOL(x_dimension);
  5929. SERIAL_PROTOCOLPGM(",");
  5930. SERIAL_PROTOCOL(y_dimension);
  5931. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5932. while (mesh_point != x_points_num * y_points_num) {
  5933. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5934. iy = mesh_point / x_points_num;
  5935. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5936. float z0 = 0.f;
  5937. current_position[Z_AXIS] = mesh_home_z_search;
  5938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5939. st_synchronize();
  5940. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5941. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5942. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5943. st_synchronize();
  5944. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5945. break;
  5946. card.closefile();
  5947. }
  5948. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5949. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5950. //strcat(data_wldsd, numb_wldsd);
  5951. //MYSERIAL.println(data_wldsd);
  5952. //delay(1000);
  5953. //delay(3000);
  5954. //t1 = millis();
  5955. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5956. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5957. memset(digit, 0, sizeof(digit));
  5958. //cli();
  5959. digitalWrite(D_REQUIRE, LOW);
  5960. for (int i = 0; i<13; i++)
  5961. {
  5962. //t1 = millis();
  5963. for (int j = 0; j < 4; j++)
  5964. {
  5965. while (digitalRead(D_DATACLOCK) == LOW) {}
  5966. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5967. bitWrite(digit[i], j, digitalRead(D_DATA));
  5968. }
  5969. //t_delay = (millis() - t1);
  5970. //SERIAL_PROTOCOLPGM(" ");
  5971. //SERIAL_PROTOCOL_F(t_delay, 5);
  5972. //SERIAL_PROTOCOLPGM(" ");
  5973. }
  5974. //sei();
  5975. digitalWrite(D_REQUIRE, HIGH);
  5976. mergeOutput[0] = '\0';
  5977. output = 0;
  5978. for (int r = 5; r <= 10; r++) //Merge digits
  5979. {
  5980. sprintf(str, "%d", digit[r]);
  5981. strcat(mergeOutput, str);
  5982. }
  5983. output = atof(mergeOutput);
  5984. if (digit[4] == 8) //Handle sign
  5985. {
  5986. output *= -1;
  5987. }
  5988. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5989. {
  5990. output *= 0.1;
  5991. }
  5992. //output = d_ReadData();
  5993. //row[ix] = current_position[Z_AXIS];
  5994. memset(data_wldsd, 0, sizeof(data_wldsd));
  5995. for (int i = 0; i <3; i++) {
  5996. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5997. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5998. strcat(data_wldsd, numb_wldsd);
  5999. strcat(data_wldsd, ";");
  6000. }
  6001. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6002. dtostrf(output, 8, 5, numb_wldsd);
  6003. strcat(data_wldsd, numb_wldsd);
  6004. //strcat(data_wldsd, ";");
  6005. card.write_command(data_wldsd);
  6006. //row[ix] = d_ReadData();
  6007. row[ix] = output; // current_position[Z_AXIS];
  6008. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6009. for (int i = 0; i < x_points_num; i++) {
  6010. SERIAL_PROTOCOLPGM(" ");
  6011. SERIAL_PROTOCOL_F(row[i], 5);
  6012. }
  6013. SERIAL_PROTOCOLPGM("\n");
  6014. }
  6015. custom_message_state--;
  6016. mesh_point++;
  6017. lcd_update(1);
  6018. }
  6019. card.closefile();
  6020. }
  6021. #endif
  6022. void temp_compensation_start() {
  6023. custom_message = true;
  6024. custom_message_type = 5;
  6025. custom_message_state = PINDA_HEAT_T + 1;
  6026. lcd_update(2);
  6027. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6028. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6029. }
  6030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6031. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6032. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6033. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6035. st_synchronize();
  6036. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6037. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6038. delay_keep_alive(1000);
  6039. custom_message_state = PINDA_HEAT_T - i;
  6040. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6041. else lcd_update(1);
  6042. }
  6043. custom_message_type = 0;
  6044. custom_message_state = 0;
  6045. custom_message = false;
  6046. }
  6047. void temp_compensation_apply() {
  6048. int i_add;
  6049. int compensation_value;
  6050. int z_shift = 0;
  6051. float z_shift_mm;
  6052. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6053. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6054. i_add = (target_temperature_bed - 60) / 10;
  6055. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6056. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6057. }else {
  6058. //interpolation
  6059. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6060. }
  6061. SERIAL_PROTOCOLPGM("\n");
  6062. SERIAL_PROTOCOLPGM("Z shift applied:");
  6063. MYSERIAL.print(z_shift_mm);
  6064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6065. st_synchronize();
  6066. plan_set_z_position(current_position[Z_AXIS]);
  6067. }
  6068. else {
  6069. //we have no temp compensation data
  6070. }
  6071. }
  6072. float temp_comp_interpolation(float inp_temperature) {
  6073. //cubic spline interpolation
  6074. int n, i, j, k;
  6075. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6076. int shift[10];
  6077. int temp_C[10];
  6078. n = 6; //number of measured points
  6079. shift[0] = 0;
  6080. for (i = 0; i < n; i++) {
  6081. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6082. temp_C[i] = 50 + i * 10; //temperature in C
  6083. #ifdef PINDA_THERMISTOR
  6084. temp_C[i] = 35 + i * 5; //temperature in C
  6085. #else
  6086. temp_C[i] = 50 + i * 10; //temperature in C
  6087. #endif
  6088. x[i] = (float)temp_C[i];
  6089. f[i] = (float)shift[i];
  6090. }
  6091. if (inp_temperature < x[0]) return 0;
  6092. for (i = n - 1; i>0; i--) {
  6093. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6094. h[i - 1] = x[i] - x[i - 1];
  6095. }
  6096. //*********** formation of h, s , f matrix **************
  6097. for (i = 1; i<n - 1; i++) {
  6098. m[i][i] = 2 * (h[i - 1] + h[i]);
  6099. if (i != 1) {
  6100. m[i][i - 1] = h[i - 1];
  6101. m[i - 1][i] = h[i - 1];
  6102. }
  6103. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6104. }
  6105. //*********** forward elimination **************
  6106. for (i = 1; i<n - 2; i++) {
  6107. temp = (m[i + 1][i] / m[i][i]);
  6108. for (j = 1; j <= n - 1; j++)
  6109. m[i + 1][j] -= temp*m[i][j];
  6110. }
  6111. //*********** backward substitution *********
  6112. for (i = n - 2; i>0; i--) {
  6113. sum = 0;
  6114. for (j = i; j <= n - 2; j++)
  6115. sum += m[i][j] * s[j];
  6116. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6117. }
  6118. for (i = 0; i<n - 1; i++)
  6119. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6120. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6121. b = s[i] / 2;
  6122. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6123. d = f[i];
  6124. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6125. }
  6126. return sum;
  6127. }
  6128. #ifdef PINDA_THERMISTOR
  6129. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6130. {
  6131. if (!temp_cal_active) return 0;
  6132. if (!calibration_status_pinda()) return 0;
  6133. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6134. }
  6135. #endif //PINDA_THERMISTOR
  6136. void long_pause() //long pause print
  6137. {
  6138. st_synchronize();
  6139. //save currently set parameters to global variables
  6140. saved_feedmultiply = feedmultiply;
  6141. HotendTempBckp = degTargetHotend(active_extruder);
  6142. fanSpeedBckp = fanSpeed;
  6143. start_pause_print = millis();
  6144. //save position
  6145. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6146. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6147. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6148. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6149. //retract
  6150. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6152. //lift z
  6153. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6154. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6156. //set nozzle target temperature to 0
  6157. setTargetHotend(0, 0);
  6158. setTargetHotend(0, 1);
  6159. setTargetHotend(0, 2);
  6160. //Move XY to side
  6161. current_position[X_AXIS] = X_PAUSE_POS;
  6162. current_position[Y_AXIS] = Y_PAUSE_POS;
  6163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6164. // Turn off the print fan
  6165. fanSpeed = 0;
  6166. st_synchronize();
  6167. }
  6168. void serialecho_temperatures() {
  6169. float tt = degHotend(active_extruder);
  6170. SERIAL_PROTOCOLPGM("T:");
  6171. SERIAL_PROTOCOL(tt);
  6172. SERIAL_PROTOCOLPGM(" E:");
  6173. SERIAL_PROTOCOL((int)active_extruder);
  6174. SERIAL_PROTOCOLPGM(" B:");
  6175. SERIAL_PROTOCOL_F(degBed(), 1);
  6176. SERIAL_PROTOCOLLN("");
  6177. }
  6178. extern uint32_t sdpos_atomic;
  6179. void uvlo_()
  6180. {
  6181. unsigned long time_start = millis();
  6182. bool sd_print = card.sdprinting;
  6183. // Conserve power as soon as possible.
  6184. disable_x();
  6185. disable_y();
  6186. tmc2130_set_current_h(Z_AXIS, 12);
  6187. tmc2130_set_current_r(Z_AXIS, 12);
  6188. tmc2130_set_current_h(E_AXIS, 20);
  6189. tmc2130_set_current_r(E_AXIS, 20);
  6190. // Indicate that the interrupt has been triggered.
  6191. SERIAL_ECHOLNPGM("UVLO");
  6192. // Read out the current Z motor microstep counter. This will be later used
  6193. // for reaching the zero full step before powering off.
  6194. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6195. // Calculate the file position, from which to resume this print.
  6196. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6197. {
  6198. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6199. sd_position -= sdlen_planner;
  6200. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6201. sd_position -= sdlen_cmdqueue;
  6202. if (sd_position < 0) sd_position = 0;
  6203. }
  6204. // Backup the feedrate in mm/min.
  6205. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6206. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6207. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6208. // are in action.
  6209. planner_abort_hard();
  6210. // Store the current extruder position.
  6211. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6212. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6213. // Clean the input command queue.
  6214. cmdqueue_reset();
  6215. card.sdprinting = false;
  6216. // card.closefile();
  6217. // Enable stepper driver interrupt to move Z axis.
  6218. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6219. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6220. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6221. sei();
  6222. plan_buffer_line(
  6223. current_position[X_AXIS],
  6224. current_position[Y_AXIS],
  6225. current_position[Z_AXIS],
  6226. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6227. 400, active_extruder);
  6228. plan_buffer_line(
  6229. current_position[X_AXIS],
  6230. current_position[Y_AXIS],
  6231. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6232. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6233. 40, active_extruder);
  6234. // Move Z up to the next 0th full step.
  6235. // Write the file position.
  6236. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6237. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6238. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6239. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6240. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6241. // Scale the z value to 1u resolution.
  6242. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6243. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6244. }
  6245. // Read out the current Z motor microstep counter. This will be later used
  6246. // for reaching the zero full step before powering off.
  6247. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6248. // Store the current position.
  6249. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6250. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6251. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6252. // Store the current feed rate, temperatures and fan speed.
  6253. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6254. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6255. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6256. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6257. // Finaly store the "power outage" flag.
  6258. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6259. st_synchronize();
  6260. SERIAL_ECHOPGM("stps");
  6261. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6262. #if 0
  6263. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6264. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6265. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6266. st_synchronize();
  6267. #endif
  6268. disable_z();
  6269. // Increment power failure counter
  6270. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6271. power_count++;
  6272. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6273. SERIAL_ECHOLNPGM("UVLO - end");
  6274. MYSERIAL.println(millis() - time_start);
  6275. cli();
  6276. while(1);
  6277. }
  6278. void setup_fan_interrupt() {
  6279. //INT7
  6280. DDRE &= ~(1 << 7); //input pin
  6281. PORTE &= ~(1 << 7); //no internal pull-up
  6282. //start with sensing rising edge
  6283. EICRB &= ~(1 << 6);
  6284. EICRB |= (1 << 7);
  6285. //enable INT7 interrupt
  6286. EIMSK |= (1 << 7);
  6287. }
  6288. ISR(INT7_vect) {
  6289. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6290. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6291. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6292. t_fan_rising_edge = millis();
  6293. }
  6294. else { //interrupt was triggered by falling edge
  6295. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6296. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6297. }
  6298. }
  6299. EICRB ^= (1 << 6); //change edge
  6300. }
  6301. void setup_uvlo_interrupt() {
  6302. DDRE &= ~(1 << 4); //input pin
  6303. PORTE &= ~(1 << 4); //no internal pull-up
  6304. //sensing falling edge
  6305. EICRB |= (1 << 0);
  6306. EICRB &= ~(1 << 1);
  6307. //enable INT4 interrupt
  6308. EIMSK |= (1 << 4);
  6309. }
  6310. ISR(INT4_vect) {
  6311. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6312. SERIAL_ECHOLNPGM("INT4");
  6313. if (IS_SD_PRINTING) uvlo_();
  6314. }
  6315. void recover_print(uint8_t automatic) {
  6316. char cmd[30];
  6317. lcd_update_enable(true);
  6318. lcd_update(2);
  6319. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6320. recover_machine_state_after_power_panic();
  6321. // Set the target bed and nozzle temperatures.
  6322. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6323. enquecommand(cmd);
  6324. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6325. enquecommand(cmd);
  6326. // Lift the print head, so one may remove the excess priming material.
  6327. if (current_position[Z_AXIS] < 25)
  6328. enquecommand_P(PSTR("G1 Z25 F800"));
  6329. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6330. enquecommand_P(PSTR("G28 X Y"));
  6331. // Set the target bed and nozzle temperatures and wait.
  6332. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6333. enquecommand(cmd);
  6334. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6335. enquecommand(cmd);
  6336. enquecommand_P(PSTR("M83")); //E axis relative mode
  6337. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6338. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6339. if(automatic == 0){
  6340. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6341. }
  6342. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6343. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6344. {
  6345. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6346. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6347. // current_position[E_AXIS] = extruder_abs_pos;
  6348. // plan_set_e_position(extruder_abs_pos);
  6349. sprintf_P(cmd, PSTR("G92 E"));
  6350. dtostrf(extruder_abs_pos, 6, 3, cmd + strlen(cmd));
  6351. enquecommand(cmd);
  6352. }
  6353. // Mark the power panic status as inactive.
  6354. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6355. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6356. delay_keep_alive(1000);
  6357. }*/
  6358. SERIAL_ECHOPGM("After waiting for temp:");
  6359. SERIAL_ECHOPGM("Current position X_AXIS:");
  6360. MYSERIAL.println(current_position[X_AXIS]);
  6361. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6362. MYSERIAL.println(current_position[Y_AXIS]);
  6363. // Restart the print.
  6364. restore_print_from_eeprom();
  6365. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6366. MYSERIAL.print(current_position[Z_AXIS]);
  6367. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6368. MYSERIAL.print(current_position[E_AXIS]);
  6369. }
  6370. void recover_machine_state_after_power_panic()
  6371. {
  6372. // 1) Recover the logical cordinates at the time of the power panic.
  6373. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6374. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6375. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6376. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6377. // The current position after power panic is moved to the next closest 0th full step.
  6378. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6379. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6380. memcpy(destination, current_position, sizeof(destination));
  6381. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6382. print_world_coordinates();
  6383. // 2) Initialize the logical to physical coordinate system transformation.
  6384. world2machine_initialize();
  6385. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6386. mbl.active = false;
  6387. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6388. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6389. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6390. // Scale the z value to 10u resolution.
  6391. int16_t v;
  6392. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6393. if (v != 0)
  6394. mbl.active = true;
  6395. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6396. }
  6397. if (mbl.active)
  6398. mbl.upsample_3x3();
  6399. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6400. print_mesh_bed_leveling_table();
  6401. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6402. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6403. babystep_load();
  6404. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6406. // 6) Power up the motors, mark their positions as known.
  6407. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6408. axis_known_position[X_AXIS] = true; enable_x();
  6409. axis_known_position[Y_AXIS] = true; enable_y();
  6410. axis_known_position[Z_AXIS] = true; enable_z();
  6411. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6412. print_physical_coordinates();
  6413. // 7) Recover the target temperatures.
  6414. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6415. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6416. }
  6417. void restore_print_from_eeprom() {
  6418. float x_rec, y_rec, z_pos;
  6419. int feedrate_rec;
  6420. uint8_t fan_speed_rec;
  6421. char cmd[30];
  6422. char* c;
  6423. char filename[13];
  6424. uint8_t depth = 0;
  6425. char dir_name[9];
  6426. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6427. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6428. SERIAL_ECHOPGM("Feedrate:");
  6429. MYSERIAL.println(feedrate_rec);
  6430. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6431. MYSERIAL.println(int(depth));
  6432. for (int i = 0; i < depth; i++) {
  6433. for (int j = 0; j < 8; j++) {
  6434. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6435. }
  6436. dir_name[8] = '\0';
  6437. MYSERIAL.println(dir_name);
  6438. card.chdir(dir_name);
  6439. }
  6440. for (int i = 0; i < 8; i++) {
  6441. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6442. }
  6443. filename[8] = '\0';
  6444. MYSERIAL.print(filename);
  6445. strcat_P(filename, PSTR(".gco"));
  6446. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6447. for (c = &cmd[4]; *c; c++)
  6448. *c = tolower(*c);
  6449. enquecommand(cmd);
  6450. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6451. SERIAL_ECHOPGM("Position read from eeprom:");
  6452. MYSERIAL.println(position);
  6453. // E axis relative mode.
  6454. enquecommand_P(PSTR("M83"));
  6455. // Move to the XY print position in logical coordinates, where the print has been killed.
  6456. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6457. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6458. strcat_P(cmd, PSTR(" F2000"));
  6459. enquecommand(cmd);
  6460. // Move the Z axis down to the print, in logical coordinates.
  6461. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6462. enquecommand(cmd);
  6463. // Unretract.
  6464. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6465. // Set the feedrate saved at the power panic.
  6466. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6467. enquecommand(cmd);
  6468. // Set the fan speed saved at the power panic.
  6469. strcpy_P(cmd, PSTR("M106 S"));
  6470. strcat(cmd, itostr3(int(fan_speed_rec)));
  6471. enquecommand(cmd);
  6472. // Set a position in the file.
  6473. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6474. enquecommand(cmd);
  6475. // Start SD print.
  6476. enquecommand_P(PSTR("M24"));
  6477. }
  6478. ////////////////////////////////////////////////////////////////////////////////
  6479. // new save/restore printing
  6480. //extern uint32_t sdpos_atomic;
  6481. bool saved_printing = false;
  6482. uint32_t saved_sdpos = 0;
  6483. float saved_pos[4] = {0, 0, 0, 0};
  6484. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6485. float saved_feedrate2 = 0;
  6486. uint8_t saved_active_extruder = 0;
  6487. bool saved_extruder_under_pressure = false;
  6488. void stop_and_save_print_to_ram(float z_move, float e_move)
  6489. {
  6490. if (saved_printing) return;
  6491. cli();
  6492. unsigned char nplanner_blocks = number_of_blocks();
  6493. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6494. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6495. saved_sdpos -= sdlen_planner;
  6496. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6497. saved_sdpos -= sdlen_cmdqueue;
  6498. #if 0
  6499. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6500. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6501. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6502. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6503. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6504. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6505. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6506. {
  6507. card.setIndex(saved_sdpos);
  6508. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6509. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6510. MYSERIAL.print(char(card.get()));
  6511. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6512. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6513. MYSERIAL.print(char(card.get()));
  6514. SERIAL_ECHOLNPGM("End of command buffer");
  6515. }
  6516. {
  6517. // Print the content of the planner buffer, line by line:
  6518. card.setIndex(saved_sdpos);
  6519. int8_t iline = 0;
  6520. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6521. SERIAL_ECHOPGM("Planner line (from file): ");
  6522. MYSERIAL.print(int(iline), DEC);
  6523. SERIAL_ECHOPGM(", length: ");
  6524. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6525. SERIAL_ECHOPGM(", steps: (");
  6526. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6527. SERIAL_ECHOPGM(",");
  6528. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6529. SERIAL_ECHOPGM(",");
  6530. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6531. SERIAL_ECHOPGM(",");
  6532. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6533. SERIAL_ECHOPGM("), events: ");
  6534. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6535. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6536. MYSERIAL.print(char(card.get()));
  6537. }
  6538. }
  6539. {
  6540. // Print the content of the command buffer, line by line:
  6541. int8_t iline = 0;
  6542. union {
  6543. struct {
  6544. char lo;
  6545. char hi;
  6546. } lohi;
  6547. uint16_t value;
  6548. } sdlen_single;
  6549. int _bufindr = bufindr;
  6550. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6551. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6552. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6553. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6554. }
  6555. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6556. MYSERIAL.print(int(iline), DEC);
  6557. SERIAL_ECHOPGM(", type: ");
  6558. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6559. SERIAL_ECHOPGM(", len: ");
  6560. MYSERIAL.println(sdlen_single.value, DEC);
  6561. // Print the content of the buffer line.
  6562. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6563. SERIAL_ECHOPGM("Buffer line (from file): ");
  6564. MYSERIAL.print(int(iline), DEC);
  6565. MYSERIAL.println(int(iline), DEC);
  6566. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6567. MYSERIAL.print(char(card.get()));
  6568. if (-- _buflen == 0)
  6569. break;
  6570. // First skip the current command ID and iterate up to the end of the string.
  6571. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6572. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6573. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6574. // If the end of the buffer was empty,
  6575. if (_bufindr == sizeof(cmdbuffer)) {
  6576. // skip to the start and find the nonzero command.
  6577. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6578. }
  6579. }
  6580. }
  6581. #endif
  6582. #if 0
  6583. saved_feedrate2 = feedrate; //save feedrate
  6584. #else
  6585. // Try to deduce the feedrate from the first block of the planner.
  6586. // Speed is in mm/min.
  6587. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6588. #endif
  6589. planner_abort_hard(); //abort printing
  6590. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6591. saved_active_extruder = active_extruder; //save active_extruder
  6592. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6593. cmdqueue_reset(); //empty cmdqueue
  6594. card.sdprinting = false;
  6595. // card.closefile();
  6596. saved_printing = true;
  6597. sei();
  6598. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6599. #if 1
  6600. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6601. char buf[48];
  6602. strcpy_P(buf, PSTR("G1 Z"));
  6603. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6604. strcat_P(buf, PSTR(" E"));
  6605. // Relative extrusion
  6606. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6607. strcat_P(buf, PSTR(" F"));
  6608. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6609. // At this point the command queue is empty.
  6610. enquecommand(buf, false);
  6611. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6612. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6613. repeatcommand_front();
  6614. #else
  6615. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6616. st_synchronize(); //wait moving
  6617. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6618. memcpy(destination, current_position, sizeof(destination));
  6619. #endif
  6620. }
  6621. }
  6622. void restore_print_from_ram_and_continue(float e_move)
  6623. {
  6624. if (!saved_printing) return;
  6625. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6626. // current_position[axis] = st_get_position_mm(axis);
  6627. active_extruder = saved_active_extruder; //restore active_extruder
  6628. feedrate = saved_feedrate2; //restore feedrate
  6629. float e = saved_pos[E_AXIS] - e_move;
  6630. plan_set_e_position(e);
  6631. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6632. st_synchronize();
  6633. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6634. memcpy(destination, current_position, sizeof(destination));
  6635. card.setIndex(saved_sdpos);
  6636. sdpos_atomic = saved_sdpos;
  6637. card.sdprinting = true;
  6638. saved_printing = false;
  6639. }
  6640. void print_world_coordinates()
  6641. {
  6642. SERIAL_ECHOPGM("world coordinates: (");
  6643. MYSERIAL.print(current_position[X_AXIS], 3);
  6644. SERIAL_ECHOPGM(", ");
  6645. MYSERIAL.print(current_position[Y_AXIS], 3);
  6646. SERIAL_ECHOPGM(", ");
  6647. MYSERIAL.print(current_position[Z_AXIS], 3);
  6648. SERIAL_ECHOLNPGM(")");
  6649. }
  6650. void print_physical_coordinates()
  6651. {
  6652. SERIAL_ECHOPGM("physical coordinates: (");
  6653. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6654. SERIAL_ECHOPGM(", ");
  6655. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6656. SERIAL_ECHOPGM(", ");
  6657. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6658. SERIAL_ECHOLNPGM(")");
  6659. }
  6660. void print_mesh_bed_leveling_table()
  6661. {
  6662. SERIAL_ECHOPGM("mesh bed leveling: ");
  6663. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6664. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6665. MYSERIAL.print(mbl.z_values[y][x], 3);
  6666. SERIAL_ECHOPGM(" ");
  6667. }
  6668. SERIAL_ECHOLNPGM("");
  6669. }
  6670. #define FIL_LOAD_LENGTH 60
  6671. void extr_unload2() { //unloads filament
  6672. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6673. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6674. // int8_t SilentMode;
  6675. uint8_t snmm_extruder = 0;
  6676. if (degHotend0() > EXTRUDE_MINTEMP) {
  6677. lcd_implementation_clear();
  6678. lcd_display_message_fullscreen_P(PSTR(""));
  6679. max_feedrate[E_AXIS] = 50;
  6680. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6681. // lcd.print(" ");
  6682. // lcd.print(snmm_extruder + 1);
  6683. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6684. if (current_position[Z_AXIS] < 15) {
  6685. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6687. }
  6688. current_position[E_AXIS] += 10; //extrusion
  6689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6690. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6691. if (current_temperature[0] < 230) { //PLA & all other filaments
  6692. current_position[E_AXIS] += 5.4;
  6693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6694. current_position[E_AXIS] += 3.2;
  6695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6696. current_position[E_AXIS] += 3;
  6697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6698. }
  6699. else { //ABS
  6700. current_position[E_AXIS] += 3.1;
  6701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6702. current_position[E_AXIS] += 3.1;
  6703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6704. current_position[E_AXIS] += 4;
  6705. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6706. /*current_position[X_AXIS] += 23; //delay
  6707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6708. current_position[X_AXIS] -= 23; //delay
  6709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6710. delay_keep_alive(4700);
  6711. }
  6712. max_feedrate[E_AXIS] = 80;
  6713. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6715. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6717. st_synchronize();
  6718. //digipot_init();
  6719. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6720. // else digipot_current(2, tmp_motor_loud[2]);
  6721. lcd_update_enable(true);
  6722. // lcd_return_to_status();
  6723. max_feedrate[E_AXIS] = 50;
  6724. }
  6725. else {
  6726. lcd_implementation_clear();
  6727. lcd.setCursor(0, 0);
  6728. lcd_printPGM(MSG_ERROR);
  6729. lcd.setCursor(0, 2);
  6730. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6731. delay(2000);
  6732. lcd_implementation_clear();
  6733. }
  6734. // lcd_return_to_status();
  6735. }