Marlin_main.cpp 299 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #define VERSION_STRING "1.0.2"
  103. #include "ultralcd.h"
  104. #include "cmdqueue.h"
  105. // Macros for bit masks
  106. #define BIT(b) (1<<(b))
  107. #define TEST(n,b) (((n)&BIT(b))!=0)
  108. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  109. //Macro for print fan speed
  110. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  111. #define PRINTING_TYPE_SD 0
  112. #define PRINTING_TYPE_USB 1
  113. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  114. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  115. //Implemented Codes
  116. //-------------------
  117. // PRUSA CODES
  118. // P F - Returns FW versions
  119. // P R - Returns revision of printer
  120. // G0 -> G1
  121. // G1 - Coordinated Movement X Y Z E
  122. // G2 - CW ARC
  123. // G3 - CCW ARC
  124. // G4 - Dwell S<seconds> or P<milliseconds>
  125. // G10 - retract filament according to settings of M207
  126. // G11 - retract recover filament according to settings of M208
  127. // G28 - Home all Axis
  128. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  129. // G30 - Single Z Probe, probes bed at current XY location.
  130. // G31 - Dock sled (Z_PROBE_SLED only)
  131. // G32 - Undock sled (Z_PROBE_SLED only)
  132. // G80 - Automatic mesh bed leveling
  133. // G81 - Print bed profile
  134. // G90 - Use Absolute Coordinates
  135. // G91 - Use Relative Coordinates
  136. // G92 - Set current position to coordinates given
  137. // M Codes
  138. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  139. // M1 - Same as M0
  140. // M17 - Enable/Power all stepper motors
  141. // M18 - Disable all stepper motors; same as M84
  142. // M20 - List SD card
  143. // M21 - Init SD card
  144. // M22 - Release SD card
  145. // M23 - Select SD file (M23 filename.g)
  146. // M24 - Start/resume SD print
  147. // M25 - Pause SD print
  148. // M26 - Set SD position in bytes (M26 S12345)
  149. // M27 - Report SD print status
  150. // M28 - Start SD write (M28 filename.g)
  151. // M29 - Stop SD write
  152. // M30 - Delete file from SD (M30 filename.g)
  153. // M31 - Output time since last M109 or SD card start to serial
  154. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  155. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  156. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  157. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  158. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  159. // M73 - Show percent done and print time remaining
  160. // M80 - Turn on Power Supply
  161. // M81 - Turn off Power Supply
  162. // M82 - Set E codes absolute (default)
  163. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  164. // M84 - Disable steppers until next move,
  165. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  166. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  167. // M92 - Set axis_steps_per_unit - same syntax as G92
  168. // M104 - Set extruder target temp
  169. // M105 - Read current temp
  170. // M106 - Fan on
  171. // M107 - Fan off
  172. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  173. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  174. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  175. // M112 - Emergency stop
  176. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  177. // M114 - Output current position to serial port
  178. // M115 - Capabilities string
  179. // M117 - display message
  180. // M119 - Output Endstop status to serial port
  181. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  182. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  183. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  184. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M140 - Set bed target temp
  186. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  187. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  188. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  189. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  190. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  191. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  192. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  193. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  194. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  195. // M206 - set additional homing offset
  196. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  197. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  198. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  199. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  200. // M220 S<factor in percent>- set speed factor override percentage
  201. // M221 S<factor in percent>- set extrude factor override percentage
  202. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  203. // M240 - Trigger a camera to take a photograph
  204. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  205. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  206. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  207. // M301 - Set PID parameters P I and D
  208. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  209. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  210. // M304 - Set bed PID parameters P I and D
  211. // M400 - Finish all moves
  212. // M401 - Lower z-probe if present
  213. // M402 - Raise z-probe if present
  214. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  215. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  216. // M406 - Turn off Filament Sensor extrusion control
  217. // M407 - Displays measured filament diameter
  218. // M500 - stores parameters in EEPROM
  219. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  220. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  221. // M503 - print the current settings (from memory not from EEPROM)
  222. // M509 - force language selection on next restart
  223. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  225. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  226. // M860 - Wait for PINDA thermistor to reach target temperature.
  227. // M861 - Set / Read PINDA temperature compensation offsets
  228. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  229. // M907 - Set digital trimpot motor current using axis codes.
  230. // M908 - Control digital trimpot directly.
  231. // M350 - Set microstepping mode.
  232. // M351 - Toggle MS1 MS2 pins directly.
  233. // M928 - Start SD logging (M928 filename.g) - ended by M29
  234. // M999 - Restart after being stopped by error
  235. //Stepper Movement Variables
  236. //===========================================================================
  237. //=============================imported variables============================
  238. //===========================================================================
  239. //===========================================================================
  240. //=============================public variables=============================
  241. //===========================================================================
  242. #ifdef SDSUPPORT
  243. CardReader card;
  244. #endif
  245. unsigned long PingTime = millis();
  246. unsigned long NcTime;
  247. union Data
  248. {
  249. byte b[2];
  250. int value;
  251. };
  252. float homing_feedrate[] = HOMING_FEEDRATE;
  253. // Currently only the extruder axis may be switched to a relative mode.
  254. // Other axes are always absolute or relative based on the common relative_mode flag.
  255. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  256. int feedmultiply=100; //100->1 200->2
  257. int saved_feedmultiply;
  258. int extrudemultiply=100; //100->1 200->2
  259. int extruder_multiply[EXTRUDERS] = {100
  260. #if EXTRUDERS > 1
  261. , 100
  262. #if EXTRUDERS > 2
  263. , 100
  264. #endif
  265. #endif
  266. };
  267. int bowden_length[4] = {385, 385, 385, 385};
  268. bool is_usb_printing = false;
  269. bool homing_flag = false;
  270. bool temp_cal_active = false;
  271. unsigned long kicktime = millis()+100000;
  272. unsigned int usb_printing_counter;
  273. int lcd_change_fil_state = 0;
  274. int feedmultiplyBckp = 100;
  275. float HotendTempBckp = 0;
  276. int fanSpeedBckp = 0;
  277. float pause_lastpos[4];
  278. unsigned long pause_time = 0;
  279. unsigned long start_pause_print = millis();
  280. unsigned long t_fan_rising_edge = millis();
  281. static LongTimer safetyTimer;
  282. static LongTimer crashDetTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. int8_t FarmMode = 0;
  287. bool prusa_sd_card_upload = false;
  288. unsigned int status_number = 0;
  289. unsigned long total_filament_used;
  290. unsigned int heating_status;
  291. unsigned int heating_status_counter;
  292. bool custom_message;
  293. bool loading_flag = false;
  294. unsigned int custom_message_type;
  295. unsigned int custom_message_state;
  296. char snmm_filaments_used = 0;
  297. bool fan_state[2];
  298. int fan_edge_counter[2];
  299. int fan_speed[2];
  300. char dir_names[3][9];
  301. bool sortAlpha = false;
  302. bool volumetric_enabled = false;
  303. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  304. #if EXTRUDERS > 1
  305. , DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 2
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #endif
  309. #endif
  310. };
  311. float extruder_multiplier[EXTRUDERS] = {1.0
  312. #if EXTRUDERS > 1
  313. , 1.0
  314. #if EXTRUDERS > 2
  315. , 1.0
  316. #endif
  317. #endif
  318. };
  319. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  320. //shortcuts for more readable code
  321. #define _x current_position[X_AXIS]
  322. #define _y current_position[Y_AXIS]
  323. #define _z current_position[Z_AXIS]
  324. #define _e current_position[E_AXIS]
  325. float add_homing[3]={0,0,0};
  326. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  327. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  328. bool axis_known_position[3] = {false, false, false};
  329. float zprobe_zoffset;
  330. // Extruder offset
  331. #if EXTRUDERS > 1
  332. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  333. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  334. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  335. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  336. #endif
  337. };
  338. #endif
  339. uint8_t active_extruder = 0;
  340. int fanSpeed=0;
  341. #ifdef FWRETRACT
  342. bool autoretract_enabled=false;
  343. bool retracted[EXTRUDERS]={false
  344. #if EXTRUDERS > 1
  345. , false
  346. #if EXTRUDERS > 2
  347. , false
  348. #endif
  349. #endif
  350. };
  351. bool retracted_swap[EXTRUDERS]={false
  352. #if EXTRUDERS > 1
  353. , false
  354. #if EXTRUDERS > 2
  355. , false
  356. #endif
  357. #endif
  358. };
  359. float retract_length = RETRACT_LENGTH;
  360. float retract_length_swap = RETRACT_LENGTH_SWAP;
  361. float retract_feedrate = RETRACT_FEEDRATE;
  362. float retract_zlift = RETRACT_ZLIFT;
  363. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  364. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  365. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  366. #endif
  367. #ifdef ULTIPANEL
  368. #ifdef PS_DEFAULT_OFF
  369. bool powersupply = false;
  370. #else
  371. bool powersupply = true;
  372. #endif
  373. #endif
  374. bool cancel_heatup = false ;
  375. #ifdef HOST_KEEPALIVE_FEATURE
  376. int busy_state = NOT_BUSY;
  377. static long prev_busy_signal_ms = -1;
  378. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  379. #else
  380. #define host_keepalive();
  381. #define KEEPALIVE_STATE(n);
  382. #endif
  383. const char errormagic[] PROGMEM = "Error:";
  384. const char echomagic[] PROGMEM = "echo:";
  385. bool no_response = false;
  386. uint8_t important_status;
  387. uint8_t saved_filament_type;
  388. // save/restore printing
  389. bool saved_printing = false;
  390. // storing estimated time to end of print counted by slicer
  391. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  392. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  393. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. //===========================================================================
  396. //=============================Private Variables=============================
  397. //===========================================================================
  398. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  399. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  400. static float delta[3] = {0.0, 0.0, 0.0};
  401. // For tracing an arc
  402. static float offset[3] = {0.0, 0.0, 0.0};
  403. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  404. // Determines Absolute or Relative Coordinates.
  405. // Also there is bool axis_relative_modes[] per axis flag.
  406. static bool relative_mode = false;
  407. #ifndef _DISABLE_M42_M226
  408. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  409. #endif //_DISABLE_M42_M226
  410. //static float tt = 0;
  411. //static float bt = 0;
  412. //Inactivity shutdown variables
  413. static unsigned long previous_millis_cmd = 0;
  414. unsigned long max_inactive_time = 0;
  415. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  416. unsigned long starttime=0;
  417. unsigned long stoptime=0;
  418. unsigned long _usb_timer = 0;
  419. static uint8_t tmp_extruder;
  420. bool extruder_under_pressure = true;
  421. bool Stopped=false;
  422. #if NUM_SERVOS > 0
  423. Servo servos[NUM_SERVOS];
  424. #endif
  425. bool CooldownNoWait = true;
  426. bool target_direction;
  427. //Insert variables if CHDK is defined
  428. #ifdef CHDK
  429. unsigned long chdkHigh = 0;
  430. boolean chdkActive = false;
  431. #endif
  432. // save/restore printing
  433. static uint32_t saved_sdpos = 0;
  434. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  435. static float saved_pos[4] = { 0, 0, 0, 0 };
  436. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  437. static float saved_feedrate2 = 0;
  438. static uint8_t saved_active_extruder = 0;
  439. static bool saved_extruder_under_pressure = false;
  440. //===========================================================================
  441. //=============================Routines======================================
  442. //===========================================================================
  443. void get_arc_coordinates();
  444. bool setTargetedHotend(int code);
  445. void serial_echopair_P(const char *s_P, float v)
  446. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  447. void serial_echopair_P(const char *s_P, double v)
  448. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  449. void serial_echopair_P(const char *s_P, unsigned long v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. #ifdef SDSUPPORT
  452. #include "SdFatUtil.h"
  453. int freeMemory() { return SdFatUtil::FreeRam(); }
  454. #else
  455. extern "C" {
  456. extern unsigned int __bss_end;
  457. extern unsigned int __heap_start;
  458. extern void *__brkval;
  459. int freeMemory() {
  460. int free_memory;
  461. if ((int)__brkval == 0)
  462. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  463. else
  464. free_memory = ((int)&free_memory) - ((int)__brkval);
  465. return free_memory;
  466. }
  467. }
  468. #endif //!SDSUPPORT
  469. void setup_killpin()
  470. {
  471. #if defined(KILL_PIN) && KILL_PIN > -1
  472. SET_INPUT(KILL_PIN);
  473. WRITE(KILL_PIN,HIGH);
  474. #endif
  475. }
  476. // Set home pin
  477. void setup_homepin(void)
  478. {
  479. #if defined(HOME_PIN) && HOME_PIN > -1
  480. SET_INPUT(HOME_PIN);
  481. WRITE(HOME_PIN,HIGH);
  482. #endif
  483. }
  484. void setup_photpin()
  485. {
  486. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  487. SET_OUTPUT(PHOTOGRAPH_PIN);
  488. WRITE(PHOTOGRAPH_PIN, LOW);
  489. #endif
  490. }
  491. void setup_powerhold()
  492. {
  493. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  494. SET_OUTPUT(SUICIDE_PIN);
  495. WRITE(SUICIDE_PIN, HIGH);
  496. #endif
  497. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  498. SET_OUTPUT(PS_ON_PIN);
  499. #if defined(PS_DEFAULT_OFF)
  500. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  501. #else
  502. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  503. #endif
  504. #endif
  505. }
  506. void suicide()
  507. {
  508. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  509. SET_OUTPUT(SUICIDE_PIN);
  510. WRITE(SUICIDE_PIN, LOW);
  511. #endif
  512. }
  513. void servo_init()
  514. {
  515. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  516. servos[0].attach(SERVO0_PIN);
  517. #endif
  518. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  519. servos[1].attach(SERVO1_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  522. servos[2].attach(SERVO2_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  525. servos[3].attach(SERVO3_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 5)
  528. #error "TODO: enter initalisation code for more servos"
  529. #endif
  530. }
  531. void stop_and_save_print_to_ram(float z_move, float e_move);
  532. void restore_print_from_ram_and_continue(float e_move);
  533. bool fans_check_enabled = true;
  534. bool filament_autoload_enabled = true;
  535. #ifdef TMC2130
  536. extern int8_t CrashDetectMenu;
  537. void crashdet_enable()
  538. {
  539. tmc2130_sg_stop_on_crash = true;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  541. CrashDetectMenu = 1;
  542. }
  543. void crashdet_disable()
  544. {
  545. tmc2130_sg_stop_on_crash = false;
  546. tmc2130_sg_crash = 0;
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  548. CrashDetectMenu = 0;
  549. }
  550. void crashdet_stop_and_save_print()
  551. {
  552. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  553. }
  554. void crashdet_restore_print_and_continue()
  555. {
  556. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  557. // babystep_apply();
  558. }
  559. void crashdet_stop_and_save_print2()
  560. {
  561. cli();
  562. planner_abort_hard(); //abort printing
  563. cmdqueue_reset(); //empty cmdqueue
  564. card.sdprinting = false;
  565. card.closefile();
  566. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  567. st_reset_timer();
  568. sei();
  569. }
  570. void crashdet_detected(uint8_t mask)
  571. {
  572. // printf("CRASH_DETECTED");
  573. /* while (!is_buffer_empty())
  574. {
  575. process_commands();
  576. cmdqueue_pop_front();
  577. }*/
  578. st_synchronize();
  579. static uint8_t crashDet_counter = 0;
  580. bool automatic_recovery_after_crash = true;
  581. bool yesno;
  582. if (crashDet_counter++ == 0) {
  583. crashDetTimer.start();
  584. }
  585. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  586. crashDetTimer.stop();
  587. crashDet_counter = 0;
  588. }
  589. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  590. automatic_recovery_after_crash = false;
  591. crashDetTimer.stop();
  592. crashDet_counter = 0;
  593. }
  594. else {
  595. crashDetTimer.start();
  596. }
  597. lcd_update_enable(true);
  598. lcd_implementation_clear();
  599. lcd_update(2);
  600. if (mask & X_AXIS_MASK)
  601. {
  602. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  603. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  604. }
  605. if (mask & Y_AXIS_MASK)
  606. {
  607. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  608. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  609. }
  610. lcd_update_enable(true);
  611. lcd_update(2);
  612. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  613. gcode_G28(true, true, false, false); //home X and Y
  614. st_synchronize();
  615. if(automatic_recovery_after_crash)
  616. yesno = true;
  617. else
  618. yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  619. lcd_update_enable(true);
  620. if (yesno)
  621. {
  622. enquecommand_P(PSTR("CRASH_RECOVER"));
  623. }
  624. else
  625. {
  626. enquecommand_P(PSTR("CRASH_CANCEL"));
  627. }
  628. }
  629. void crashdet_recover()
  630. {
  631. crashdet_restore_print_and_continue();
  632. tmc2130_sg_stop_on_crash = true;
  633. }
  634. void crashdet_cancel()
  635. {
  636. tmc2130_sg_stop_on_crash = true;
  637. if (saved_printing_type == PRINTING_TYPE_SD) {
  638. lcd_print_stop();
  639. }else if(saved_printing_type == PRINTING_TYPE_USB){
  640. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  641. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  642. }
  643. }
  644. #endif //TMC2130
  645. void failstats_reset_print()
  646. {
  647. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  648. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  649. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  651. }
  652. #ifdef MESH_BED_LEVELING
  653. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  654. #endif
  655. // Factory reset function
  656. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  657. // Level input parameter sets depth of reset
  658. // Quiet parameter masks all waitings for user interact.
  659. int er_progress = 0;
  660. void factory_reset(char level, bool quiet)
  661. {
  662. lcd_implementation_clear();
  663. int cursor_pos = 0;
  664. switch (level) {
  665. // Level 0: Language reset
  666. case 0:
  667. WRITE(BEEPER, HIGH);
  668. _delay_ms(100);
  669. WRITE(BEEPER, LOW);
  670. lang_reset();
  671. break;
  672. //Level 1: Reset statistics
  673. case 1:
  674. WRITE(BEEPER, HIGH);
  675. _delay_ms(100);
  676. WRITE(BEEPER, LOW);
  677. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  678. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  679. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  680. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  681. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  682. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  683. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  684. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  685. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  686. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  687. lcd_menu_statistics();
  688. break;
  689. // Level 2: Prepare for shipping
  690. case 2:
  691. //lcd_printPGM(PSTR("Factory RESET"));
  692. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  693. // Force language selection at the next boot up.
  694. lang_reset();
  695. // Force the "Follow calibration flow" message at the next boot up.
  696. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  697. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  698. farm_no = 0;
  699. farm_mode = false;
  700. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  701. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  702. WRITE(BEEPER, HIGH);
  703. _delay_ms(100);
  704. WRITE(BEEPER, LOW);
  705. //_delay_ms(2000);
  706. break;
  707. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  708. case 3:
  709. lcd_printPGM(PSTR("Factory RESET"));
  710. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  711. WRITE(BEEPER, HIGH);
  712. _delay_ms(100);
  713. WRITE(BEEPER, LOW);
  714. er_progress = 0;
  715. lcd_print_at_PGM(3, 3, PSTR(" "));
  716. lcd_implementation_print_at(3, 3, er_progress);
  717. // Erase EEPROM
  718. for (int i = 0; i < 4096; i++) {
  719. eeprom_write_byte((uint8_t*)i, 0xFF);
  720. if (i % 41 == 0) {
  721. er_progress++;
  722. lcd_print_at_PGM(3, 3, PSTR(" "));
  723. lcd_implementation_print_at(3, 3, er_progress);
  724. lcd_printPGM(PSTR("%"));
  725. }
  726. }
  727. break;
  728. case 4:
  729. bowden_menu();
  730. break;
  731. default:
  732. break;
  733. }
  734. }
  735. #include "LiquidCrystal_Prusa.h"
  736. extern LiquidCrystal_Prusa lcd;
  737. FILE _lcdout = {0};
  738. int lcd_putchar(char c, FILE *stream)
  739. {
  740. lcd.write(c);
  741. return 0;
  742. }
  743. FILE _uartout = {0};
  744. int uart_putchar(char c, FILE *stream)
  745. {
  746. MYSERIAL.write(c);
  747. return 0;
  748. }
  749. void lcd_splash()
  750. {
  751. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  752. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  753. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  754. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  755. }
  756. void factory_reset()
  757. {
  758. KEEPALIVE_STATE(PAUSED_FOR_USER);
  759. if (!READ(BTN_ENC))
  760. {
  761. _delay_ms(1000);
  762. if (!READ(BTN_ENC))
  763. {
  764. lcd_implementation_clear();
  765. lcd_printPGM(PSTR("Factory RESET"));
  766. SET_OUTPUT(BEEPER);
  767. WRITE(BEEPER, HIGH);
  768. while (!READ(BTN_ENC));
  769. WRITE(BEEPER, LOW);
  770. _delay_ms(2000);
  771. char level = reset_menu();
  772. factory_reset(level, false);
  773. switch (level) {
  774. case 0: _delay_ms(0); break;
  775. case 1: _delay_ms(0); break;
  776. case 2: _delay_ms(0); break;
  777. case 3: _delay_ms(0); break;
  778. }
  779. // _delay_ms(100);
  780. /*
  781. #ifdef MESH_BED_LEVELING
  782. _delay_ms(2000);
  783. if (!READ(BTN_ENC))
  784. {
  785. WRITE(BEEPER, HIGH);
  786. _delay_ms(100);
  787. WRITE(BEEPER, LOW);
  788. _delay_ms(200);
  789. WRITE(BEEPER, HIGH);
  790. _delay_ms(100);
  791. WRITE(BEEPER, LOW);
  792. int _z = 0;
  793. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  794. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  795. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  796. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  797. }
  798. else
  799. {
  800. WRITE(BEEPER, HIGH);
  801. _delay_ms(100);
  802. WRITE(BEEPER, LOW);
  803. }
  804. #endif // mesh */
  805. }
  806. }
  807. else
  808. {
  809. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  810. }
  811. KEEPALIVE_STATE(IN_HANDLER);
  812. }
  813. void show_fw_version_warnings() {
  814. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  815. switch (FW_DEV_VERSION) {
  816. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  817. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  818. case(FW_VERSION_DEVEL):
  819. case(FW_VERSION_DEBUG):
  820. lcd_update_enable(false);
  821. lcd_implementation_clear();
  822. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  823. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  824. #else
  825. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  826. #endif
  827. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  828. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  829. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  830. lcd_wait_for_click();
  831. break;
  832. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  833. }
  834. lcd_update_enable(true);
  835. }
  836. uint8_t check_printer_version()
  837. {
  838. uint8_t version_changed = 0;
  839. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  840. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  841. if (printer_type != PRINTER_TYPE) {
  842. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  843. else version_changed |= 0b10;
  844. }
  845. if (motherboard != MOTHERBOARD) {
  846. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  847. else version_changed |= 0b01;
  848. }
  849. return version_changed;
  850. }
  851. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  852. {
  853. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  854. }
  855. #if (LANG_MODE != 0) //secondary language support
  856. #ifdef W25X20CL
  857. #include "bootapp.h" //bootloader support
  858. // language update from external flash
  859. #define LANGBOOT_BLOCKSIZE 0x1000
  860. #define LANGBOOT_RAMBUFFER 0x0800
  861. void update_sec_lang_from_external_flash()
  862. {
  863. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  864. {
  865. uint8_t lang = boot_reserved >> 4;
  866. uint8_t state = boot_reserved & 0xf;
  867. lang_table_header_t header;
  868. uint32_t src_addr;
  869. if (lang_get_header(lang, &header, &src_addr))
  870. {
  871. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  872. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  873. delay(100);
  874. boot_reserved = (state + 1) | (lang << 4);
  875. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  876. {
  877. cli();
  878. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  879. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  880. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  881. if (state == 0)
  882. {
  883. //TODO - check header integrity
  884. }
  885. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  886. }
  887. else
  888. {
  889. //TODO - check sec lang data integrity
  890. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  891. }
  892. }
  893. }
  894. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  895. }
  896. #ifdef DEBUG_W25X20CL
  897. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  898. {
  899. lang_table_header_t header;
  900. uint8_t count = 0;
  901. uint32_t addr = 0x00000;
  902. while (1)
  903. {
  904. printf_P(_n("LANGTABLE%d:"), count);
  905. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  906. if (header.magic != LANG_MAGIC)
  907. {
  908. printf_P(_n("NG!\n"));
  909. break;
  910. }
  911. printf_P(_n("OK\n"));
  912. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  913. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  914. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  915. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  916. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  917. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  918. addr += header.size;
  919. codes[count] = header.code;
  920. count ++;
  921. }
  922. return count;
  923. }
  924. void list_sec_lang_from_external_flash()
  925. {
  926. uint16_t codes[8];
  927. uint8_t count = lang_xflash_enum_codes(codes);
  928. printf_P(_n("XFlash lang count = %hhd\n"), count);
  929. }
  930. #endif //DEBUG_W25X20CL
  931. #endif //W25X20CL
  932. #endif //(LANG_MODE != 0)
  933. // "Setup" function is called by the Arduino framework on startup.
  934. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  935. // are initialized by the main() routine provided by the Arduino framework.
  936. void setup()
  937. {
  938. lcd_init();
  939. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  940. spi_init();
  941. lcd_splash();
  942. #if (LANG_MODE != 0) //secondary language support
  943. #ifdef W25X20CL
  944. if (w25x20cl_init())
  945. update_sec_lang_from_external_flash();
  946. else
  947. kill(_i("External SPI flash W25X20CL not responding."));
  948. #endif //W25X20CL
  949. #endif //(LANG_MODE != 0)
  950. setup_killpin();
  951. setup_powerhold();
  952. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  953. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  954. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  955. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  956. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  957. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  958. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  959. if (farm_mode)
  960. {
  961. no_response = true; //we need confirmation by recieving PRUSA thx
  962. important_status = 8;
  963. prusa_statistics(8);
  964. selectedSerialPort = 1;
  965. }
  966. MYSERIAL.begin(BAUDRATE);
  967. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  968. stdout = uartout;
  969. SERIAL_PROTOCOLLNPGM("start");
  970. SERIAL_ECHO_START;
  971. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  972. #ifdef DEBUG_SEC_LANG
  973. lang_table_header_t header;
  974. uint32_t src_addr = 0x00000;
  975. if (lang_get_header(3, &header, &src_addr))
  976. {
  977. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  978. #define LT_PRINT_TEST 2
  979. // flash usage
  980. // total p.test
  981. //0 252718 t+c text code
  982. //1 253142 424 170 254
  983. //2 253040 322 164 158
  984. //3 253248 530 135 395
  985. #if (LT_PRINT_TEST==1) //not optimized printf
  986. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  987. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  988. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  989. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  990. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  991. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  992. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  993. #elif (LT_PRINT_TEST==2) //optimized printf
  994. printf_P(
  995. _n(
  996. " _src_addr = 0x%08lx\n"
  997. " _lt_magic = 0x%08lx %S\n"
  998. " _lt_size = 0x%04x (%d)\n"
  999. " _lt_count = 0x%04x (%d)\n"
  1000. " _lt_chsum = 0x%04x\n"
  1001. " _lt_code = 0x%04x (%c%c)\n"
  1002. " _lt_resv1 = 0x%08lx\n"
  1003. ),
  1004. src_addr,
  1005. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1006. header.size, header.size,
  1007. header.count, header.count,
  1008. header.checksum,
  1009. header.code, header.code >> 8, header.code & 0xff,
  1010. header.reserved1
  1011. );
  1012. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1013. MYSERIAL.print(" _src_addr = 0x");
  1014. MYSERIAL.println(src_addr, 16);
  1015. MYSERIAL.print(" _lt_magic = 0x");
  1016. MYSERIAL.print(header.magic, 16);
  1017. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1018. MYSERIAL.print(" _lt_size = 0x");
  1019. MYSERIAL.print(header.size, 16);
  1020. MYSERIAL.print(" (");
  1021. MYSERIAL.print(header.size, 10);
  1022. MYSERIAL.println(")");
  1023. MYSERIAL.print(" _lt_count = 0x");
  1024. MYSERIAL.print(header.count, 16);
  1025. MYSERIAL.print(" (");
  1026. MYSERIAL.print(header.count, 10);
  1027. MYSERIAL.println(")");
  1028. MYSERIAL.print(" _lt_chsum = 0x");
  1029. MYSERIAL.println(header.checksum, 16);
  1030. MYSERIAL.print(" _lt_code = 0x");
  1031. MYSERIAL.print(header.code, 16);
  1032. MYSERIAL.print(" (");
  1033. MYSERIAL.print((char)(header.code >> 8), 0);
  1034. MYSERIAL.print((char)(header.code & 0xff), 0);
  1035. MYSERIAL.println(")");
  1036. MYSERIAL.print(" _lt_resv1 = 0x");
  1037. MYSERIAL.println(header.reserved1, 16);
  1038. #endif //(LT_PRINT_TEST==)
  1039. #undef LT_PRINT_TEST
  1040. #if 0
  1041. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1042. for (uint16_t i = 0; i < 1024; i++)
  1043. {
  1044. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1045. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1046. if ((i % 16) == 15) putchar('\n');
  1047. }
  1048. #endif
  1049. #if 1
  1050. for (uint16_t i = 0; i < 1024*10; i++)
  1051. {
  1052. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1053. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1054. if ((i % 16) == 15) putchar('\n');
  1055. }
  1056. #endif
  1057. }
  1058. else
  1059. printf_P(_n("lang_get_header failed!\n"));
  1060. #if 0
  1061. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1062. for (int i = 0; i < 4096; ++i) {
  1063. int b = eeprom_read_byte((unsigned char*)i);
  1064. if (b != 255) {
  1065. SERIAL_ECHO(i);
  1066. SERIAL_ECHO(":");
  1067. SERIAL_ECHO(b);
  1068. SERIAL_ECHOLN("");
  1069. }
  1070. }
  1071. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1072. #endif
  1073. #endif //DEBUG_SEC_LANG
  1074. // Check startup - does nothing if bootloader sets MCUSR to 0
  1075. byte mcu = MCUSR;
  1076. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1077. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1078. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1079. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1080. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1081. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1082. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1083. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1084. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1085. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1086. MCUSR = 0;
  1087. //SERIAL_ECHORPGM(MSG_MARLIN);
  1088. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1089. #ifdef STRING_VERSION_CONFIG_H
  1090. #ifdef STRING_CONFIG_H_AUTHOR
  1091. SERIAL_ECHO_START;
  1092. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1093. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1094. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1095. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1096. SERIAL_ECHOPGM("Compiled: ");
  1097. SERIAL_ECHOLNPGM(__DATE__);
  1098. #endif
  1099. #endif
  1100. SERIAL_ECHO_START;
  1101. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1102. SERIAL_ECHO(freeMemory());
  1103. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1104. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1105. //lcd_update_enable(false); // why do we need this?? - andre
  1106. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1107. bool previous_settings_retrieved = false;
  1108. uint8_t hw_changed = check_printer_version();
  1109. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1110. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1111. }
  1112. else { //printer version was changed so use default settings
  1113. Config_ResetDefault();
  1114. }
  1115. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1116. tp_init(); // Initialize temperature loop
  1117. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1118. plan_init(); // Initialize planner;
  1119. factory_reset();
  1120. #ifdef TMC2130
  1121. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1122. if (silentMode == 0xff) silentMode = 0;
  1123. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1124. tmc2130_mode = TMC2130_MODE_NORMAL;
  1125. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1126. if (crashdet && !farm_mode)
  1127. {
  1128. crashdet_enable();
  1129. puts_P(_N("CrashDetect ENABLED!"));
  1130. }
  1131. else
  1132. {
  1133. crashdet_disable();
  1134. puts_P(_N("CrashDetect DISABLED"));
  1135. }
  1136. #ifdef TMC2130_LINEARITY_CORRECTION
  1137. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1138. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1139. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1140. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1141. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1142. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1143. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1144. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1145. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1146. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1147. #endif //TMC2130_LINEARITY_CORRECTION
  1148. #ifdef TMC2130_VARIABLE_RESOLUTION
  1149. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1150. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1151. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1152. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1153. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1154. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1155. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1156. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1157. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1158. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1159. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1160. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1161. #else //TMC2130_VARIABLE_RESOLUTION
  1162. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1163. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1164. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1165. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1166. #endif //TMC2130_VARIABLE_RESOLUTION
  1167. #endif //TMC2130
  1168. st_init(); // Initialize stepper, this enables interrupts!
  1169. #ifdef TMC2130
  1170. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1171. tmc2130_init();
  1172. #endif //TMC2130
  1173. setup_photpin();
  1174. servo_init();
  1175. // Reset the machine correction matrix.
  1176. // It does not make sense to load the correction matrix until the machine is homed.
  1177. world2machine_reset();
  1178. #ifdef PAT9125
  1179. fsensor_init();
  1180. #endif //PAT9125
  1181. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1182. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1183. #endif
  1184. setup_homepin();
  1185. #ifdef TMC2130
  1186. if (1) {
  1187. // try to run to zero phase before powering the Z motor.
  1188. // Move in negative direction
  1189. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1190. // Round the current micro-micro steps to micro steps.
  1191. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1192. // Until the phase counter is reset to zero.
  1193. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1194. delay(2);
  1195. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1196. delay(2);
  1197. }
  1198. }
  1199. #endif //TMC2130
  1200. #if defined(Z_AXIS_ALWAYS_ON)
  1201. enable_z();
  1202. #endif
  1203. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1204. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1205. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1206. if (farm_no == 0xFFFF) farm_no = 0;
  1207. if (farm_mode)
  1208. {
  1209. prusa_statistics(8);
  1210. }
  1211. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1212. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1213. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1214. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1215. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1216. // where all the EEPROM entries are set to 0x0ff.
  1217. // Once a firmware boots up, it forces at least a language selection, which changes
  1218. // EEPROM_LANG to number lower than 0x0ff.
  1219. // 1) Set a high power mode.
  1220. #ifdef TMC2130
  1221. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1222. tmc2130_mode = TMC2130_MODE_NORMAL;
  1223. #endif //TMC2130
  1224. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1225. }
  1226. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1227. // but this times out if a blocking dialog is shown in setup().
  1228. card.initsd();
  1229. #ifdef DEBUG_SD_SPEED_TEST
  1230. if (card.cardOK)
  1231. {
  1232. uint8_t* buff = (uint8_t*)block_buffer;
  1233. uint32_t block = 0;
  1234. uint32_t sumr = 0;
  1235. uint32_t sumw = 0;
  1236. for (int i = 0; i < 1024; i++)
  1237. {
  1238. uint32_t u = micros();
  1239. bool res = card.card.readBlock(i, buff);
  1240. u = micros() - u;
  1241. if (res)
  1242. {
  1243. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1244. sumr += u;
  1245. u = micros();
  1246. res = card.card.writeBlock(i, buff);
  1247. u = micros() - u;
  1248. if (res)
  1249. {
  1250. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1251. sumw += u;
  1252. }
  1253. else
  1254. {
  1255. printf_P(PSTR("writeBlock %4d error\n"), i);
  1256. break;
  1257. }
  1258. }
  1259. else
  1260. {
  1261. printf_P(PSTR("readBlock %4d error\n"), i);
  1262. break;
  1263. }
  1264. }
  1265. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1266. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1267. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1268. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1269. }
  1270. else
  1271. printf_P(PSTR("Card NG!\n"));
  1272. #endif //DEBUG_SD_SPEED_TEST
  1273. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1274. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1275. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1276. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1277. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1278. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1279. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1280. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1281. #ifdef SNMM
  1282. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1283. int _z = BOWDEN_LENGTH;
  1284. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1285. }
  1286. #endif
  1287. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1288. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1289. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1290. #if (LANG_MODE != 0) //secondary language support
  1291. #ifdef DEBUG_W25X20CL
  1292. W25X20CL_SPI_ENTER();
  1293. uint8_t uid[8]; // 64bit unique id
  1294. w25x20cl_rd_uid(uid);
  1295. puts_P(_n("W25X20CL UID="));
  1296. for (uint8_t i = 0; i < 8; i ++)
  1297. printf_P(PSTR("%02hhx"), uid[i]);
  1298. putchar('\n');
  1299. list_sec_lang_from_external_flash();
  1300. #endif //DEBUG_W25X20CL
  1301. // lang_reset();
  1302. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1303. lcd_language();
  1304. #ifdef DEBUG_SEC_LANG
  1305. uint16_t sec_lang_code = lang_get_code(1);
  1306. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1307. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1308. // lang_print_sec_lang(uartout);
  1309. #endif //DEBUG_SEC_LANG
  1310. #endif //(LANG_MODE != 0)
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1312. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1313. temp_cal_active = false;
  1314. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1315. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1316. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1317. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1318. int16_t z_shift = 0;
  1319. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1320. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1321. temp_cal_active = false;
  1322. }
  1323. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1324. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1325. }
  1326. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1327. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1328. }
  1329. check_babystep(); //checking if Z babystep is in allowed range
  1330. #ifdef UVLO_SUPPORT
  1331. setup_uvlo_interrupt();
  1332. #endif //UVLO_SUPPORT
  1333. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1334. setup_fan_interrupt();
  1335. #endif //DEBUG_DISABLE_FANCHECK
  1336. #ifdef PAT9125
  1337. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1338. fsensor_setup_interrupt();
  1339. #endif //DEBUG_DISABLE_FSENSORCHECK
  1340. #endif //PAT9125
  1341. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1342. #ifndef DEBUG_DISABLE_STARTMSGS
  1343. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1344. show_fw_version_warnings();
  1345. switch (hw_changed) {
  1346. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1347. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1348. case(0b01):
  1349. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1350. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1351. break;
  1352. case(0b10):
  1353. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1354. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1355. break;
  1356. case(0b11):
  1357. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1358. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1359. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1360. break;
  1361. default: break; //no change, show no message
  1362. }
  1363. if (!previous_settings_retrieved) {
  1364. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1365. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1366. }
  1367. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1368. lcd_wizard(0);
  1369. }
  1370. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1371. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1372. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1373. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1374. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1375. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1376. // Show the message.
  1377. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1378. }
  1379. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1380. // Show the message.
  1381. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1382. lcd_update_enable(true);
  1383. }
  1384. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1385. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1386. lcd_update_enable(true);
  1387. }
  1388. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1389. // Show the message.
  1390. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1391. }
  1392. }
  1393. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1394. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1395. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1396. update_current_firmware_version_to_eeprom();
  1397. lcd_selftest();
  1398. }
  1399. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1400. KEEPALIVE_STATE(IN_PROCESS);
  1401. #endif //DEBUG_DISABLE_STARTMSGS
  1402. lcd_update_enable(true);
  1403. lcd_implementation_clear();
  1404. lcd_update(2);
  1405. // Store the currently running firmware into an eeprom,
  1406. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1407. update_current_firmware_version_to_eeprom();
  1408. #ifdef TMC2130
  1409. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1410. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1411. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1412. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1413. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1414. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1415. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1416. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1417. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1418. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1419. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1420. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1421. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1422. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1423. #endif //TMC2130
  1424. #ifdef UVLO_SUPPORT
  1425. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1426. /*
  1427. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1428. else {
  1429. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1430. lcd_update_enable(true);
  1431. lcd_update(2);
  1432. lcd_setstatuspgm(_T(WELCOME_MSG));
  1433. }
  1434. */
  1435. manage_heater(); // Update temperatures
  1436. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1437. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1438. #endif
  1439. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1440. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1441. puts_P(_N("Automatic recovery!"));
  1442. #endif
  1443. recover_print(1);
  1444. }
  1445. else{
  1446. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1447. puts_P(_N("Normal recovery!"));
  1448. #endif
  1449. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1450. else {
  1451. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1452. lcd_update_enable(true);
  1453. lcd_update(2);
  1454. lcd_setstatuspgm(_T(WELCOME_MSG));
  1455. }
  1456. }
  1457. }
  1458. #endif //UVLO_SUPPORT
  1459. KEEPALIVE_STATE(NOT_BUSY);
  1460. #ifdef WATCHDOG
  1461. wdt_enable(WDTO_4S);
  1462. #endif //WATCHDOG
  1463. }
  1464. #ifdef PAT9125
  1465. void fsensor_init() {
  1466. int pat9125 = pat9125_init();
  1467. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1468. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1469. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1470. if (!pat9125)
  1471. {
  1472. fsensor = 0; //disable sensor
  1473. fsensor_not_responding = true;
  1474. }
  1475. else {
  1476. fsensor_not_responding = false;
  1477. }
  1478. puts_P(PSTR("FSensor "));
  1479. if (fsensor)
  1480. {
  1481. puts_P(PSTR("ENABLED\n"));
  1482. fsensor_enable();
  1483. }
  1484. else
  1485. {
  1486. puts_P(PSTR("DISABLED\n"));
  1487. fsensor_disable();
  1488. }
  1489. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1490. filament_autoload_enabled = false;
  1491. fsensor_disable();
  1492. #endif //DEBUG_DISABLE_FSENSORCHECK
  1493. }
  1494. #endif //PAT9125
  1495. void trace();
  1496. #define CHUNK_SIZE 64 // bytes
  1497. #define SAFETY_MARGIN 1
  1498. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1499. int chunkHead = 0;
  1500. int serial_read_stream() {
  1501. setTargetHotend(0, 0);
  1502. setTargetBed(0);
  1503. lcd_implementation_clear();
  1504. lcd_printPGM(PSTR(" Upload in progress"));
  1505. // first wait for how many bytes we will receive
  1506. uint32_t bytesToReceive;
  1507. // receive the four bytes
  1508. char bytesToReceiveBuffer[4];
  1509. for (int i=0; i<4; i++) {
  1510. int data;
  1511. while ((data = MYSERIAL.read()) == -1) {};
  1512. bytesToReceiveBuffer[i] = data;
  1513. }
  1514. // make it a uint32
  1515. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1516. // we're ready, notify the sender
  1517. MYSERIAL.write('+');
  1518. // lock in the routine
  1519. uint32_t receivedBytes = 0;
  1520. while (prusa_sd_card_upload) {
  1521. int i;
  1522. for (i=0; i<CHUNK_SIZE; i++) {
  1523. int data;
  1524. // check if we're not done
  1525. if (receivedBytes == bytesToReceive) {
  1526. break;
  1527. }
  1528. // read the next byte
  1529. while ((data = MYSERIAL.read()) == -1) {};
  1530. receivedBytes++;
  1531. // save it to the chunk
  1532. chunk[i] = data;
  1533. }
  1534. // write the chunk to SD
  1535. card.write_command_no_newline(&chunk[0]);
  1536. // notify the sender we're ready for more data
  1537. MYSERIAL.write('+');
  1538. // for safety
  1539. manage_heater();
  1540. // check if we're done
  1541. if(receivedBytes == bytesToReceive) {
  1542. trace(); // beep
  1543. card.closefile();
  1544. prusa_sd_card_upload = false;
  1545. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1546. return 0;
  1547. }
  1548. }
  1549. }
  1550. #ifdef HOST_KEEPALIVE_FEATURE
  1551. /**
  1552. * Output a "busy" message at regular intervals
  1553. * while the machine is not accepting commands.
  1554. */
  1555. void host_keepalive() {
  1556. if (farm_mode) return;
  1557. long ms = millis();
  1558. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1559. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1560. switch (busy_state) {
  1561. case IN_HANDLER:
  1562. case IN_PROCESS:
  1563. SERIAL_ECHO_START;
  1564. SERIAL_ECHOLNPGM("busy: processing");
  1565. break;
  1566. case PAUSED_FOR_USER:
  1567. SERIAL_ECHO_START;
  1568. SERIAL_ECHOLNPGM("busy: paused for user");
  1569. break;
  1570. case PAUSED_FOR_INPUT:
  1571. SERIAL_ECHO_START;
  1572. SERIAL_ECHOLNPGM("busy: paused for input");
  1573. break;
  1574. default:
  1575. break;
  1576. }
  1577. }
  1578. prev_busy_signal_ms = ms;
  1579. }
  1580. #endif
  1581. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1582. // Before loop(), the setup() function is called by the main() routine.
  1583. void loop()
  1584. {
  1585. KEEPALIVE_STATE(NOT_BUSY);
  1586. bool stack_integrity = true;
  1587. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1588. {
  1589. is_usb_printing = true;
  1590. usb_printing_counter--;
  1591. _usb_timer = millis();
  1592. }
  1593. if (usb_printing_counter == 0)
  1594. {
  1595. is_usb_printing = false;
  1596. }
  1597. if (prusa_sd_card_upload)
  1598. {
  1599. //we read byte-by byte
  1600. serial_read_stream();
  1601. } else
  1602. {
  1603. get_command();
  1604. #ifdef SDSUPPORT
  1605. card.checkautostart(false);
  1606. #endif
  1607. if(buflen)
  1608. {
  1609. cmdbuffer_front_already_processed = false;
  1610. #ifdef SDSUPPORT
  1611. if(card.saving)
  1612. {
  1613. // Saving a G-code file onto an SD-card is in progress.
  1614. // Saving starts with M28, saving until M29 is seen.
  1615. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1616. card.write_command(CMDBUFFER_CURRENT_STRING);
  1617. if(card.logging)
  1618. process_commands();
  1619. else
  1620. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1621. } else {
  1622. card.closefile();
  1623. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1624. }
  1625. } else {
  1626. process_commands();
  1627. }
  1628. #else
  1629. process_commands();
  1630. #endif //SDSUPPORT
  1631. if (! cmdbuffer_front_already_processed && buflen)
  1632. {
  1633. // ptr points to the start of the block currently being processed.
  1634. // The first character in the block is the block type.
  1635. char *ptr = cmdbuffer + bufindr;
  1636. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1637. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1638. union {
  1639. struct {
  1640. char lo;
  1641. char hi;
  1642. } lohi;
  1643. uint16_t value;
  1644. } sdlen;
  1645. sdlen.value = 0;
  1646. {
  1647. // This block locks the interrupts globally for 3.25 us,
  1648. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1649. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1650. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1651. cli();
  1652. // Reset the command to something, which will be ignored by the power panic routine,
  1653. // so this buffer length will not be counted twice.
  1654. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1655. // Extract the current buffer length.
  1656. sdlen.lohi.lo = *ptr ++;
  1657. sdlen.lohi.hi = *ptr;
  1658. // and pass it to the planner queue.
  1659. planner_add_sd_length(sdlen.value);
  1660. sei();
  1661. }
  1662. }
  1663. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1664. cli();
  1665. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1666. // and one for each command to previous block in the planner queue.
  1667. planner_add_sd_length(1);
  1668. sei();
  1669. }
  1670. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1671. // this block's SD card length will not be counted twice as its command type has been replaced
  1672. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1673. cmdqueue_pop_front();
  1674. }
  1675. host_keepalive();
  1676. }
  1677. }
  1678. //check heater every n milliseconds
  1679. manage_heater();
  1680. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1681. checkHitEndstops();
  1682. lcd_update();
  1683. #ifdef PAT9125
  1684. fsensor_update();
  1685. #endif //PAT9125
  1686. #ifdef TMC2130
  1687. tmc2130_check_overtemp();
  1688. if (tmc2130_sg_crash)
  1689. {
  1690. uint8_t crash = tmc2130_sg_crash;
  1691. tmc2130_sg_crash = 0;
  1692. // crashdet_stop_and_save_print();
  1693. switch (crash)
  1694. {
  1695. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1696. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1697. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1698. }
  1699. }
  1700. #endif //TMC2130
  1701. }
  1702. #define DEFINE_PGM_READ_ANY(type, reader) \
  1703. static inline type pgm_read_any(const type *p) \
  1704. { return pgm_read_##reader##_near(p); }
  1705. DEFINE_PGM_READ_ANY(float, float);
  1706. DEFINE_PGM_READ_ANY(signed char, byte);
  1707. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1708. static const PROGMEM type array##_P[3] = \
  1709. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1710. static inline type array(int axis) \
  1711. { return pgm_read_any(&array##_P[axis]); } \
  1712. type array##_ext(int axis) \
  1713. { return pgm_read_any(&array##_P[axis]); }
  1714. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1715. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1716. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1717. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1718. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1719. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1720. static void axis_is_at_home(int axis) {
  1721. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1722. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1723. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1724. }
  1725. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1726. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1727. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1728. saved_feedrate = feedrate;
  1729. saved_feedmultiply = feedmultiply;
  1730. feedmultiply = 100;
  1731. previous_millis_cmd = millis();
  1732. enable_endstops(enable_endstops_now);
  1733. }
  1734. static void clean_up_after_endstop_move() {
  1735. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1736. enable_endstops(false);
  1737. #endif
  1738. feedrate = saved_feedrate;
  1739. feedmultiply = saved_feedmultiply;
  1740. previous_millis_cmd = millis();
  1741. }
  1742. #ifdef ENABLE_AUTO_BED_LEVELING
  1743. #ifdef AUTO_BED_LEVELING_GRID
  1744. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1745. {
  1746. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1747. planeNormal.debug("planeNormal");
  1748. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1749. //bedLevel.debug("bedLevel");
  1750. //plan_bed_level_matrix.debug("bed level before");
  1751. //vector_3 uncorrected_position = plan_get_position_mm();
  1752. //uncorrected_position.debug("position before");
  1753. vector_3 corrected_position = plan_get_position();
  1754. // corrected_position.debug("position after");
  1755. current_position[X_AXIS] = corrected_position.x;
  1756. current_position[Y_AXIS] = corrected_position.y;
  1757. current_position[Z_AXIS] = corrected_position.z;
  1758. // put the bed at 0 so we don't go below it.
  1759. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. }
  1762. #else // not AUTO_BED_LEVELING_GRID
  1763. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1764. plan_bed_level_matrix.set_to_identity();
  1765. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1766. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1767. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1768. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1769. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1770. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1771. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1772. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1773. vector_3 corrected_position = plan_get_position();
  1774. current_position[X_AXIS] = corrected_position.x;
  1775. current_position[Y_AXIS] = corrected_position.y;
  1776. current_position[Z_AXIS] = corrected_position.z;
  1777. // put the bed at 0 so we don't go below it.
  1778. current_position[Z_AXIS] = zprobe_zoffset;
  1779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1780. }
  1781. #endif // AUTO_BED_LEVELING_GRID
  1782. static void run_z_probe() {
  1783. plan_bed_level_matrix.set_to_identity();
  1784. feedrate = homing_feedrate[Z_AXIS];
  1785. // move down until you find the bed
  1786. float zPosition = -10;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1788. st_synchronize();
  1789. // we have to let the planner know where we are right now as it is not where we said to go.
  1790. zPosition = st_get_position_mm(Z_AXIS);
  1791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1792. // move up the retract distance
  1793. zPosition += home_retract_mm(Z_AXIS);
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1795. st_synchronize();
  1796. // move back down slowly to find bed
  1797. feedrate = homing_feedrate[Z_AXIS]/4;
  1798. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1802. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1803. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1804. }
  1805. static void do_blocking_move_to(float x, float y, float z) {
  1806. float oldFeedRate = feedrate;
  1807. feedrate = homing_feedrate[Z_AXIS];
  1808. current_position[Z_AXIS] = z;
  1809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1810. st_synchronize();
  1811. feedrate = XY_TRAVEL_SPEED;
  1812. current_position[X_AXIS] = x;
  1813. current_position[Y_AXIS] = y;
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1815. st_synchronize();
  1816. feedrate = oldFeedRate;
  1817. }
  1818. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1819. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1820. }
  1821. /// Probe bed height at position (x,y), returns the measured z value
  1822. static float probe_pt(float x, float y, float z_before) {
  1823. // move to right place
  1824. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1825. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1826. run_z_probe();
  1827. float measured_z = current_position[Z_AXIS];
  1828. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1829. SERIAL_PROTOCOLPGM(" x: ");
  1830. SERIAL_PROTOCOL(x);
  1831. SERIAL_PROTOCOLPGM(" y: ");
  1832. SERIAL_PROTOCOL(y);
  1833. SERIAL_PROTOCOLPGM(" z: ");
  1834. SERIAL_PROTOCOL(measured_z);
  1835. SERIAL_PROTOCOLPGM("\n");
  1836. return measured_z;
  1837. }
  1838. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1839. #ifdef LIN_ADVANCE
  1840. /**
  1841. * M900: Set and/or Get advance K factor and WH/D ratio
  1842. *
  1843. * K<factor> Set advance K factor
  1844. * R<ratio> Set ratio directly (overrides WH/D)
  1845. * W<width> H<height> D<diam> Set ratio from WH/D
  1846. */
  1847. inline void gcode_M900() {
  1848. st_synchronize();
  1849. const float newK = code_seen('K') ? code_value_float() : -1;
  1850. if (newK >= 0) extruder_advance_k = newK;
  1851. float newR = code_seen('R') ? code_value_float() : -1;
  1852. if (newR < 0) {
  1853. const float newD = code_seen('D') ? code_value_float() : -1,
  1854. newW = code_seen('W') ? code_value_float() : -1,
  1855. newH = code_seen('H') ? code_value_float() : -1;
  1856. if (newD >= 0 && newW >= 0 && newH >= 0)
  1857. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1858. }
  1859. if (newR >= 0) advance_ed_ratio = newR;
  1860. SERIAL_ECHO_START;
  1861. SERIAL_ECHOPGM("Advance K=");
  1862. SERIAL_ECHOLN(extruder_advance_k);
  1863. SERIAL_ECHOPGM(" E/D=");
  1864. const float ratio = advance_ed_ratio;
  1865. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1866. }
  1867. #endif // LIN_ADVANCE
  1868. bool check_commands() {
  1869. bool end_command_found = false;
  1870. while (buflen)
  1871. {
  1872. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1873. if (!cmdbuffer_front_already_processed)
  1874. cmdqueue_pop_front();
  1875. cmdbuffer_front_already_processed = false;
  1876. }
  1877. return end_command_found;
  1878. }
  1879. #ifdef TMC2130
  1880. bool calibrate_z_auto()
  1881. {
  1882. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1883. lcd_implementation_clear();
  1884. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1885. bool endstops_enabled = enable_endstops(true);
  1886. int axis_up_dir = -home_dir(Z_AXIS);
  1887. tmc2130_home_enter(Z_AXIS_MASK);
  1888. current_position[Z_AXIS] = 0;
  1889. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1890. set_destination_to_current();
  1891. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1892. feedrate = homing_feedrate[Z_AXIS];
  1893. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1894. st_synchronize();
  1895. // current_position[axis] = 0;
  1896. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1897. tmc2130_home_exit();
  1898. enable_endstops(false);
  1899. current_position[Z_AXIS] = 0;
  1900. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1901. set_destination_to_current();
  1902. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1903. feedrate = homing_feedrate[Z_AXIS] / 2;
  1904. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1905. st_synchronize();
  1906. enable_endstops(endstops_enabled);
  1907. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. return true;
  1910. }
  1911. #endif //TMC2130
  1912. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1913. {
  1914. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1915. #define HOMEAXIS_DO(LETTER) \
  1916. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1917. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1918. {
  1919. int axis_home_dir = home_dir(axis);
  1920. feedrate = homing_feedrate[axis];
  1921. #ifdef TMC2130
  1922. tmc2130_home_enter(X_AXIS_MASK << axis);
  1923. #endif //TMC2130
  1924. // Move right a bit, so that the print head does not touch the left end position,
  1925. // and the following left movement has a chance to achieve the required velocity
  1926. // for the stall guard to work.
  1927. current_position[axis] = 0;
  1928. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1929. set_destination_to_current();
  1930. // destination[axis] = 11.f;
  1931. destination[axis] = 3.f;
  1932. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1933. st_synchronize();
  1934. // Move left away from the possible collision with the collision detection disabled.
  1935. endstops_hit_on_purpose();
  1936. enable_endstops(false);
  1937. current_position[axis] = 0;
  1938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1939. destination[axis] = - 1.;
  1940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1941. st_synchronize();
  1942. // Now continue to move up to the left end stop with the collision detection enabled.
  1943. enable_endstops(true);
  1944. destination[axis] = - 1.1 * max_length(axis);
  1945. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1946. st_synchronize();
  1947. for (uint8_t i = 0; i < cnt; i++)
  1948. {
  1949. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1950. endstops_hit_on_purpose();
  1951. enable_endstops(false);
  1952. current_position[axis] = 0;
  1953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1954. destination[axis] = 10.f;
  1955. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1956. st_synchronize();
  1957. endstops_hit_on_purpose();
  1958. // Now move left up to the collision, this time with a repeatable velocity.
  1959. enable_endstops(true);
  1960. destination[axis] = - 11.f;
  1961. #ifdef TMC2130
  1962. feedrate = homing_feedrate[axis];
  1963. #else //TMC2130
  1964. feedrate = homing_feedrate[axis] / 2;
  1965. #endif //TMC2130
  1966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1967. st_synchronize();
  1968. #ifdef TMC2130
  1969. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1970. if (pstep) pstep[i] = mscnt >> 4;
  1971. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1972. #endif //TMC2130
  1973. }
  1974. endstops_hit_on_purpose();
  1975. enable_endstops(false);
  1976. #ifdef TMC2130
  1977. uint8_t orig = tmc2130_home_origin[axis];
  1978. uint8_t back = tmc2130_home_bsteps[axis];
  1979. if (tmc2130_home_enabled && (orig <= 63))
  1980. {
  1981. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1982. if (back > 0)
  1983. tmc2130_do_steps(axis, back, 1, 1000);
  1984. }
  1985. else
  1986. tmc2130_do_steps(axis, 8, 2, 1000);
  1987. tmc2130_home_exit();
  1988. #endif //TMC2130
  1989. axis_is_at_home(axis);
  1990. axis_known_position[axis] = true;
  1991. // Move from minimum
  1992. #ifdef TMC2130
  1993. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1994. #else //TMC2130
  1995. float dist = 0.01f * 64;
  1996. #endif //TMC2130
  1997. current_position[axis] -= dist;
  1998. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1999. current_position[axis] += dist;
  2000. destination[axis] = current_position[axis];
  2001. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2002. st_synchronize();
  2003. feedrate = 0.0;
  2004. }
  2005. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2006. {
  2007. #ifdef TMC2130
  2008. FORCE_HIGH_POWER_START;
  2009. #endif
  2010. int axis_home_dir = home_dir(axis);
  2011. current_position[axis] = 0;
  2012. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2013. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2014. feedrate = homing_feedrate[axis];
  2015. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2016. st_synchronize();
  2017. #ifdef TMC2130
  2018. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2019. FORCE_HIGH_POWER_END;
  2020. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2021. return;
  2022. }
  2023. #endif //TMC2130
  2024. current_position[axis] = 0;
  2025. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2026. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2027. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2028. st_synchronize();
  2029. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2030. feedrate = homing_feedrate[axis]/2 ;
  2031. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2032. st_synchronize();
  2033. #ifdef TMC2130
  2034. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2035. FORCE_HIGH_POWER_END;
  2036. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2037. return;
  2038. }
  2039. #endif //TMC2130
  2040. axis_is_at_home(axis);
  2041. destination[axis] = current_position[axis];
  2042. feedrate = 0.0;
  2043. endstops_hit_on_purpose();
  2044. axis_known_position[axis] = true;
  2045. #ifdef TMC2130
  2046. FORCE_HIGH_POWER_END;
  2047. #endif
  2048. }
  2049. enable_endstops(endstops_enabled);
  2050. }
  2051. /**/
  2052. void home_xy()
  2053. {
  2054. set_destination_to_current();
  2055. homeaxis(X_AXIS);
  2056. homeaxis(Y_AXIS);
  2057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2058. endstops_hit_on_purpose();
  2059. }
  2060. void refresh_cmd_timeout(void)
  2061. {
  2062. previous_millis_cmd = millis();
  2063. }
  2064. #ifdef FWRETRACT
  2065. void retract(bool retracting, bool swapretract = false) {
  2066. if(retracting && !retracted[active_extruder]) {
  2067. destination[X_AXIS]=current_position[X_AXIS];
  2068. destination[Y_AXIS]=current_position[Y_AXIS];
  2069. destination[Z_AXIS]=current_position[Z_AXIS];
  2070. destination[E_AXIS]=current_position[E_AXIS];
  2071. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2072. plan_set_e_position(current_position[E_AXIS]);
  2073. float oldFeedrate = feedrate;
  2074. feedrate=retract_feedrate*60;
  2075. retracted[active_extruder]=true;
  2076. prepare_move();
  2077. current_position[Z_AXIS]-=retract_zlift;
  2078. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2079. prepare_move();
  2080. feedrate = oldFeedrate;
  2081. } else if(!retracting && retracted[active_extruder]) {
  2082. destination[X_AXIS]=current_position[X_AXIS];
  2083. destination[Y_AXIS]=current_position[Y_AXIS];
  2084. destination[Z_AXIS]=current_position[Z_AXIS];
  2085. destination[E_AXIS]=current_position[E_AXIS];
  2086. current_position[Z_AXIS]+=retract_zlift;
  2087. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2088. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2089. plan_set_e_position(current_position[E_AXIS]);
  2090. float oldFeedrate = feedrate;
  2091. feedrate=retract_recover_feedrate*60;
  2092. retracted[active_extruder]=false;
  2093. prepare_move();
  2094. feedrate = oldFeedrate;
  2095. }
  2096. } //retract
  2097. #endif //FWRETRACT
  2098. void trace() {
  2099. tone(BEEPER, 440);
  2100. delay(25);
  2101. noTone(BEEPER);
  2102. delay(20);
  2103. }
  2104. /*
  2105. void ramming() {
  2106. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2107. if (current_temperature[0] < 230) {
  2108. //PLA
  2109. max_feedrate[E_AXIS] = 50;
  2110. //current_position[E_AXIS] -= 8;
  2111. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2112. //current_position[E_AXIS] += 8;
  2113. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2114. current_position[E_AXIS] += 5.4;
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2116. current_position[E_AXIS] += 3.2;
  2117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2118. current_position[E_AXIS] += 3;
  2119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2120. st_synchronize();
  2121. max_feedrate[E_AXIS] = 80;
  2122. current_position[E_AXIS] -= 82;
  2123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2124. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2125. current_position[E_AXIS] -= 20;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2127. current_position[E_AXIS] += 5;
  2128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2129. current_position[E_AXIS] += 5;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2131. current_position[E_AXIS] -= 10;
  2132. st_synchronize();
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2134. current_position[E_AXIS] += 10;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2136. current_position[E_AXIS] -= 10;
  2137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2138. current_position[E_AXIS] += 10;
  2139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2140. current_position[E_AXIS] -= 10;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2142. st_synchronize();
  2143. }
  2144. else {
  2145. //ABS
  2146. max_feedrate[E_AXIS] = 50;
  2147. //current_position[E_AXIS] -= 8;
  2148. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2149. //current_position[E_AXIS] += 8;
  2150. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2151. current_position[E_AXIS] += 3.1;
  2152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2153. current_position[E_AXIS] += 3.1;
  2154. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2155. current_position[E_AXIS] += 4;
  2156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2157. st_synchronize();
  2158. //current_position[X_AXIS] += 23; //delay
  2159. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2160. //current_position[X_AXIS] -= 23; //delay
  2161. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2162. delay(4700);
  2163. max_feedrate[E_AXIS] = 80;
  2164. current_position[E_AXIS] -= 92;
  2165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2166. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2167. current_position[E_AXIS] -= 5;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2169. current_position[E_AXIS] += 5;
  2170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2171. current_position[E_AXIS] -= 5;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2173. st_synchronize();
  2174. current_position[E_AXIS] += 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2176. current_position[E_AXIS] -= 5;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2178. current_position[E_AXIS] += 5;
  2179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2180. current_position[E_AXIS] -= 5;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2182. st_synchronize();
  2183. }
  2184. }
  2185. */
  2186. #ifdef TMC2130
  2187. void force_high_power_mode(bool start_high_power_section) {
  2188. uint8_t silent;
  2189. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2190. if (silent == 1) {
  2191. //we are in silent mode, set to normal mode to enable crash detection
  2192. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2193. st_synchronize();
  2194. cli();
  2195. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2196. tmc2130_init();
  2197. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2198. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2199. st_reset_timer();
  2200. sei();
  2201. }
  2202. }
  2203. #endif //TMC2130
  2204. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2205. st_synchronize();
  2206. #if 0
  2207. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2208. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2209. #endif
  2210. // Flag for the display update routine and to disable the print cancelation during homing.
  2211. homing_flag = true;
  2212. // Either all X,Y,Z codes are present, or none of them.
  2213. bool home_all_axes = home_x == home_y && home_x == home_z;
  2214. if (home_all_axes)
  2215. // No X/Y/Z code provided means to home all axes.
  2216. home_x = home_y = home_z = true;
  2217. #ifdef ENABLE_AUTO_BED_LEVELING
  2218. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2219. #endif //ENABLE_AUTO_BED_LEVELING
  2220. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2221. // the planner will not perform any adjustments in the XY plane.
  2222. // Wait for the motors to stop and update the current position with the absolute values.
  2223. world2machine_revert_to_uncorrected();
  2224. // For mesh bed leveling deactivate the matrix temporarily.
  2225. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2226. // in a single axis only.
  2227. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2228. #ifdef MESH_BED_LEVELING
  2229. uint8_t mbl_was_active = mbl.active;
  2230. mbl.active = 0;
  2231. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2232. #endif
  2233. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2234. // consumed during the first movements following this statement.
  2235. if (home_z)
  2236. babystep_undo();
  2237. saved_feedrate = feedrate;
  2238. saved_feedmultiply = feedmultiply;
  2239. feedmultiply = 100;
  2240. previous_millis_cmd = millis();
  2241. enable_endstops(true);
  2242. memcpy(destination, current_position, sizeof(destination));
  2243. feedrate = 0.0;
  2244. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2245. if(home_z)
  2246. homeaxis(Z_AXIS);
  2247. #endif
  2248. #ifdef QUICK_HOME
  2249. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2250. if(home_x && home_y) //first diagonal move
  2251. {
  2252. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2253. int x_axis_home_dir = home_dir(X_AXIS);
  2254. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2255. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2256. feedrate = homing_feedrate[X_AXIS];
  2257. if(homing_feedrate[Y_AXIS]<feedrate)
  2258. feedrate = homing_feedrate[Y_AXIS];
  2259. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2260. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2261. } else {
  2262. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2263. }
  2264. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2265. st_synchronize();
  2266. axis_is_at_home(X_AXIS);
  2267. axis_is_at_home(Y_AXIS);
  2268. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2269. destination[X_AXIS] = current_position[X_AXIS];
  2270. destination[Y_AXIS] = current_position[Y_AXIS];
  2271. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2272. feedrate = 0.0;
  2273. st_synchronize();
  2274. endstops_hit_on_purpose();
  2275. current_position[X_AXIS] = destination[X_AXIS];
  2276. current_position[Y_AXIS] = destination[Y_AXIS];
  2277. current_position[Z_AXIS] = destination[Z_AXIS];
  2278. }
  2279. #endif /* QUICK_HOME */
  2280. #ifdef TMC2130
  2281. if(home_x)
  2282. {
  2283. if (!calib)
  2284. homeaxis(X_AXIS);
  2285. else
  2286. tmc2130_home_calibrate(X_AXIS);
  2287. }
  2288. if(home_y)
  2289. {
  2290. if (!calib)
  2291. homeaxis(Y_AXIS);
  2292. else
  2293. tmc2130_home_calibrate(Y_AXIS);
  2294. }
  2295. #endif //TMC2130
  2296. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2297. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2298. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2299. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2300. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2301. #ifndef Z_SAFE_HOMING
  2302. if(home_z) {
  2303. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2304. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2305. feedrate = max_feedrate[Z_AXIS];
  2306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2307. st_synchronize();
  2308. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2309. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2310. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2311. {
  2312. homeaxis(X_AXIS);
  2313. homeaxis(Y_AXIS);
  2314. }
  2315. // 1st mesh bed leveling measurement point, corrected.
  2316. world2machine_initialize();
  2317. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2318. world2machine_reset();
  2319. if (destination[Y_AXIS] < Y_MIN_POS)
  2320. destination[Y_AXIS] = Y_MIN_POS;
  2321. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2322. feedrate = homing_feedrate[Z_AXIS]/10;
  2323. current_position[Z_AXIS] = 0;
  2324. enable_endstops(false);
  2325. #ifdef DEBUG_BUILD
  2326. SERIAL_ECHOLNPGM("plan_set_position()");
  2327. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2328. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2329. #endif
  2330. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2331. #ifdef DEBUG_BUILD
  2332. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2333. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2334. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2335. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2336. #endif
  2337. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2338. st_synchronize();
  2339. current_position[X_AXIS] = destination[X_AXIS];
  2340. current_position[Y_AXIS] = destination[Y_AXIS];
  2341. enable_endstops(true);
  2342. endstops_hit_on_purpose();
  2343. homeaxis(Z_AXIS);
  2344. #else // MESH_BED_LEVELING
  2345. homeaxis(Z_AXIS);
  2346. #endif // MESH_BED_LEVELING
  2347. }
  2348. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2349. if(home_all_axes) {
  2350. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2351. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2352. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2353. feedrate = XY_TRAVEL_SPEED/60;
  2354. current_position[Z_AXIS] = 0;
  2355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2356. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2357. st_synchronize();
  2358. current_position[X_AXIS] = destination[X_AXIS];
  2359. current_position[Y_AXIS] = destination[Y_AXIS];
  2360. homeaxis(Z_AXIS);
  2361. }
  2362. // Let's see if X and Y are homed and probe is inside bed area.
  2363. if(home_z) {
  2364. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2365. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2366. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2367. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2368. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2369. current_position[Z_AXIS] = 0;
  2370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2371. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2372. feedrate = max_feedrate[Z_AXIS];
  2373. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2374. st_synchronize();
  2375. homeaxis(Z_AXIS);
  2376. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2377. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2378. SERIAL_ECHO_START;
  2379. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2380. } else {
  2381. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2382. SERIAL_ECHO_START;
  2383. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2384. }
  2385. }
  2386. #endif // Z_SAFE_HOMING
  2387. #endif // Z_HOME_DIR < 0
  2388. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2389. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2390. #ifdef ENABLE_AUTO_BED_LEVELING
  2391. if(home_z)
  2392. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2393. #endif
  2394. // Set the planner and stepper routine positions.
  2395. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2396. // contains the machine coordinates.
  2397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2398. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2399. enable_endstops(false);
  2400. #endif
  2401. feedrate = saved_feedrate;
  2402. feedmultiply = saved_feedmultiply;
  2403. previous_millis_cmd = millis();
  2404. endstops_hit_on_purpose();
  2405. #ifndef MESH_BED_LEVELING
  2406. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2407. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2408. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2409. lcd_adjust_z();
  2410. #endif
  2411. // Load the machine correction matrix
  2412. world2machine_initialize();
  2413. // and correct the current_position XY axes to match the transformed coordinate system.
  2414. world2machine_update_current();
  2415. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2416. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2417. {
  2418. if (! home_z && mbl_was_active) {
  2419. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2420. mbl.active = true;
  2421. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2422. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2423. }
  2424. }
  2425. else
  2426. {
  2427. st_synchronize();
  2428. homing_flag = false;
  2429. // Push the commands to the front of the message queue in the reverse order!
  2430. // There shall be always enough space reserved for these commands.
  2431. enquecommand_front_P((PSTR("G80")));
  2432. //goto case_G80;
  2433. }
  2434. #endif
  2435. if (farm_mode) { prusa_statistics(20); };
  2436. homing_flag = false;
  2437. #if 0
  2438. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2439. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2440. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2441. #endif
  2442. }
  2443. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2444. {
  2445. bool final_result = false;
  2446. #ifdef TMC2130
  2447. FORCE_HIGH_POWER_START;
  2448. #endif // TMC2130
  2449. // Only Z calibration?
  2450. if (!onlyZ)
  2451. {
  2452. setTargetBed(0);
  2453. setTargetHotend(0, 0);
  2454. setTargetHotend(0, 1);
  2455. setTargetHotend(0, 2);
  2456. adjust_bed_reset(); //reset bed level correction
  2457. }
  2458. // Disable the default update procedure of the display. We will do a modal dialog.
  2459. lcd_update_enable(false);
  2460. // Let the planner use the uncorrected coordinates.
  2461. mbl.reset();
  2462. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2463. // the planner will not perform any adjustments in the XY plane.
  2464. // Wait for the motors to stop and update the current position with the absolute values.
  2465. world2machine_revert_to_uncorrected();
  2466. // Reset the baby step value applied without moving the axes.
  2467. babystep_reset();
  2468. // Mark all axes as in a need for homing.
  2469. memset(axis_known_position, 0, sizeof(axis_known_position));
  2470. // Home in the XY plane.
  2471. //set_destination_to_current();
  2472. setup_for_endstop_move();
  2473. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2474. home_xy();
  2475. enable_endstops(false);
  2476. current_position[X_AXIS] += 5;
  2477. current_position[Y_AXIS] += 5;
  2478. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2479. st_synchronize();
  2480. // Let the user move the Z axes up to the end stoppers.
  2481. #ifdef TMC2130
  2482. if (calibrate_z_auto())
  2483. {
  2484. #else //TMC2130
  2485. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2486. {
  2487. #endif //TMC2130
  2488. refresh_cmd_timeout();
  2489. #ifndef STEEL_SHEET
  2490. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2491. {
  2492. lcd_wait_for_cool_down();
  2493. }
  2494. #endif //STEEL_SHEET
  2495. if(!onlyZ)
  2496. {
  2497. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2498. #ifdef STEEL_SHEET
  2499. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2500. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2501. #endif //STEEL_SHEET
  2502. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2503. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2504. KEEPALIVE_STATE(IN_HANDLER);
  2505. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2506. lcd_implementation_print_at(0, 2, 1);
  2507. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2508. }
  2509. // Move the print head close to the bed.
  2510. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2511. bool endstops_enabled = enable_endstops(true);
  2512. #ifdef TMC2130
  2513. tmc2130_home_enter(Z_AXIS_MASK);
  2514. #endif //TMC2130
  2515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2516. st_synchronize();
  2517. #ifdef TMC2130
  2518. tmc2130_home_exit();
  2519. #endif //TMC2130
  2520. enable_endstops(endstops_enabled);
  2521. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2522. {
  2523. int8_t verbosity_level = 0;
  2524. if (code_seen('V'))
  2525. {
  2526. // Just 'V' without a number counts as V1.
  2527. char c = strchr_pointer[1];
  2528. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2529. }
  2530. if (onlyZ)
  2531. {
  2532. clean_up_after_endstop_move();
  2533. // Z only calibration.
  2534. // Load the machine correction matrix
  2535. world2machine_initialize();
  2536. // and correct the current_position to match the transformed coordinate system.
  2537. world2machine_update_current();
  2538. //FIXME
  2539. bool result = sample_mesh_and_store_reference();
  2540. if (result)
  2541. {
  2542. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2543. // Shipped, the nozzle height has been set already. The user can start printing now.
  2544. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2545. final_result = true;
  2546. // babystep_apply();
  2547. }
  2548. }
  2549. else
  2550. {
  2551. // Reset the baby step value and the baby step applied flag.
  2552. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2553. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2554. // Complete XYZ calibration.
  2555. uint8_t point_too_far_mask = 0;
  2556. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2557. clean_up_after_endstop_move();
  2558. // Print head up.
  2559. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2561. st_synchronize();
  2562. //#ifndef NEW_XYZCAL
  2563. if (result >= 0)
  2564. {
  2565. #ifdef HEATBED_V2
  2566. sample_z();
  2567. #else //HEATBED_V2
  2568. point_too_far_mask = 0;
  2569. // Second half: The fine adjustment.
  2570. // Let the planner use the uncorrected coordinates.
  2571. mbl.reset();
  2572. world2machine_reset();
  2573. // Home in the XY plane.
  2574. setup_for_endstop_move();
  2575. home_xy();
  2576. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2577. clean_up_after_endstop_move();
  2578. // Print head up.
  2579. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2581. st_synchronize();
  2582. // if (result >= 0) babystep_apply();
  2583. #endif //HEATBED_V2
  2584. }
  2585. //#endif //NEW_XYZCAL
  2586. lcd_update_enable(true);
  2587. lcd_update(2);
  2588. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2589. if (result >= 0)
  2590. {
  2591. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2592. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2593. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2594. final_result = true;
  2595. }
  2596. }
  2597. #ifdef TMC2130
  2598. tmc2130_home_exit();
  2599. #endif
  2600. }
  2601. else
  2602. {
  2603. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2604. final_result = false;
  2605. }
  2606. }
  2607. else
  2608. {
  2609. // Timeouted.
  2610. }
  2611. lcd_update_enable(true);
  2612. #ifdef TMC2130
  2613. FORCE_HIGH_POWER_END;
  2614. #endif // TMC2130
  2615. return final_result;
  2616. }
  2617. void gcode_M114()
  2618. {
  2619. SERIAL_PROTOCOLPGM("X:");
  2620. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2621. SERIAL_PROTOCOLPGM(" Y:");
  2622. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2623. SERIAL_PROTOCOLPGM(" Z:");
  2624. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2625. SERIAL_PROTOCOLPGM(" E:");
  2626. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2627. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2628. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2629. SERIAL_PROTOCOLPGM(" Y:");
  2630. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2631. SERIAL_PROTOCOLPGM(" Z:");
  2632. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2633. SERIAL_PROTOCOLPGM(" E:");
  2634. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2635. SERIAL_PROTOCOLLN("");
  2636. }
  2637. void gcode_M701()
  2638. {
  2639. #ifdef SNMM
  2640. extr_adj(snmm_extruder);//loads current extruder
  2641. #else
  2642. enable_z();
  2643. custom_message = true;
  2644. custom_message_type = 2;
  2645. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2646. current_position[E_AXIS] += 70;
  2647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2648. current_position[E_AXIS] += 25;
  2649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2650. st_synchronize();
  2651. tone(BEEPER, 500);
  2652. delay_keep_alive(50);
  2653. noTone(BEEPER);
  2654. if (!farm_mode && loading_flag) {
  2655. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2656. while (!clean) {
  2657. lcd_update_enable(true);
  2658. lcd_update(2);
  2659. current_position[E_AXIS] += 25;
  2660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2661. st_synchronize();
  2662. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2663. }
  2664. }
  2665. lcd_update_enable(true);
  2666. lcd_update(2);
  2667. lcd_setstatuspgm(_T(WELCOME_MSG));
  2668. disable_z();
  2669. loading_flag = false;
  2670. custom_message = false;
  2671. custom_message_type = 0;
  2672. #endif
  2673. }
  2674. /**
  2675. * @brief Get serial number from 32U2 processor
  2676. *
  2677. * Typical format of S/N is:CZPX0917X003XC13518
  2678. *
  2679. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2680. *
  2681. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2682. * reply is transmitted to serial port 1 character by character.
  2683. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2684. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2685. * in any case.
  2686. */
  2687. static void gcode_PRUSA_SN()
  2688. {
  2689. if (farm_mode) {
  2690. selectedSerialPort = 0;
  2691. putchar(';');
  2692. putchar('S');
  2693. int numbersRead = 0;
  2694. ShortTimer timeout;
  2695. timeout.start();
  2696. while (numbersRead < 19) {
  2697. while (MSerial.available() > 0) {
  2698. uint8_t serial_char = MSerial.read();
  2699. selectedSerialPort = 1;
  2700. putchar(serial_char);
  2701. numbersRead++;
  2702. selectedSerialPort = 0;
  2703. }
  2704. if (timeout.expired(100u)) break;
  2705. }
  2706. selectedSerialPort = 1;
  2707. putchar('\n');
  2708. #if 0
  2709. for (int b = 0; b < 3; b++) {
  2710. tone(BEEPER, 110);
  2711. delay(50);
  2712. noTone(BEEPER);
  2713. delay(50);
  2714. }
  2715. #endif
  2716. } else {
  2717. puts_P(_N("Not in farm mode."));
  2718. }
  2719. }
  2720. void process_commands()
  2721. {
  2722. if (!buflen) return; //empty command
  2723. #ifdef FILAMENT_RUNOUT_SUPPORT
  2724. SET_INPUT(FR_SENS);
  2725. #endif
  2726. #ifdef CMDBUFFER_DEBUG
  2727. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2728. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2729. SERIAL_ECHOLNPGM("");
  2730. SERIAL_ECHOPGM("In cmdqueue: ");
  2731. SERIAL_ECHO(buflen);
  2732. SERIAL_ECHOLNPGM("");
  2733. #endif /* CMDBUFFER_DEBUG */
  2734. unsigned long codenum; //throw away variable
  2735. char *starpos = NULL;
  2736. #ifdef ENABLE_AUTO_BED_LEVELING
  2737. float x_tmp, y_tmp, z_tmp, real_z;
  2738. #endif
  2739. // PRUSA GCODES
  2740. KEEPALIVE_STATE(IN_HANDLER);
  2741. #ifdef SNMM
  2742. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2743. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2744. int8_t SilentMode;
  2745. #endif
  2746. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2747. starpos = (strchr(strchr_pointer + 5, '*'));
  2748. if (starpos != NULL)
  2749. *(starpos) = '\0';
  2750. lcd_setstatus(strchr_pointer + 5);
  2751. }
  2752. #ifdef TMC2130
  2753. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2754. {
  2755. if(code_seen("CRASH_DETECTED"))
  2756. {
  2757. uint8_t mask = 0;
  2758. if (code_seen("X")) mask |= X_AXIS_MASK;
  2759. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2760. crashdet_detected(mask);
  2761. }
  2762. else if(code_seen("CRASH_RECOVER"))
  2763. crashdet_recover();
  2764. else if(code_seen("CRASH_CANCEL"))
  2765. crashdet_cancel();
  2766. }
  2767. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2768. {
  2769. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2770. {
  2771. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2772. tmc2130_set_wave(E_AXIS, 247, fac);
  2773. }
  2774. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2775. {
  2776. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2777. uint16_t res = tmc2130_get_res(E_AXIS);
  2778. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2779. }
  2780. }
  2781. #endif //TMC2130
  2782. else if(code_seen("PRUSA")){
  2783. if (code_seen("Ping")) { //PRUSA Ping
  2784. if (farm_mode) {
  2785. PingTime = millis();
  2786. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2787. }
  2788. }
  2789. else if (code_seen("PRN")) {
  2790. printf_P(_N("%d"), status_number);
  2791. }else if (code_seen("FAN")) {
  2792. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2793. }else if (code_seen("fn")) {
  2794. if (farm_mode) {
  2795. printf_P(_N("%d"), farm_no);
  2796. }
  2797. else {
  2798. puts_P(_N("Not in farm mode."));
  2799. }
  2800. }
  2801. else if (code_seen("thx")) {
  2802. no_response = false;
  2803. }else if (code_seen("fv")) {
  2804. // get file version
  2805. #ifdef SDSUPPORT
  2806. card.openFile(strchr_pointer + 3,true);
  2807. while (true) {
  2808. uint16_t readByte = card.get();
  2809. MYSERIAL.write(readByte);
  2810. if (readByte=='\n') {
  2811. break;
  2812. }
  2813. }
  2814. card.closefile();
  2815. #endif // SDSUPPORT
  2816. } else if (code_seen("M28")) {
  2817. trace();
  2818. prusa_sd_card_upload = true;
  2819. card.openFile(strchr_pointer+4,false);
  2820. } else if (code_seen("SN")) {
  2821. gcode_PRUSA_SN();
  2822. } else if(code_seen("Fir")){
  2823. SERIAL_PROTOCOLLN(FW_VERSION);
  2824. } else if(code_seen("Rev")){
  2825. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2826. } else if(code_seen("Lang")) {
  2827. lang_reset();
  2828. } else if(code_seen("Lz")) {
  2829. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2830. } else if(code_seen("Beat")) {
  2831. // Kick farm link timer
  2832. kicktime = millis();
  2833. } else if(code_seen("FR")) {
  2834. // Factory full reset
  2835. factory_reset(0,true);
  2836. }
  2837. //else if (code_seen('Cal')) {
  2838. // lcd_calibration();
  2839. // }
  2840. }
  2841. else if (code_seen('^')) {
  2842. // nothing, this is a version line
  2843. } else if(code_seen('G'))
  2844. {
  2845. switch((int)code_value())
  2846. {
  2847. case 0: // G0 -> G1
  2848. case 1: // G1
  2849. if(Stopped == false) {
  2850. #ifdef FILAMENT_RUNOUT_SUPPORT
  2851. if(READ(FR_SENS)){
  2852. feedmultiplyBckp=feedmultiply;
  2853. float target[4];
  2854. float lastpos[4];
  2855. target[X_AXIS]=current_position[X_AXIS];
  2856. target[Y_AXIS]=current_position[Y_AXIS];
  2857. target[Z_AXIS]=current_position[Z_AXIS];
  2858. target[E_AXIS]=current_position[E_AXIS];
  2859. lastpos[X_AXIS]=current_position[X_AXIS];
  2860. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2861. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2862. lastpos[E_AXIS]=current_position[E_AXIS];
  2863. //retract by E
  2864. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2865. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2866. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2867. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2868. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2869. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2870. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2871. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2872. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2873. //finish moves
  2874. st_synchronize();
  2875. //disable extruder steppers so filament can be removed
  2876. disable_e0();
  2877. disable_e1();
  2878. disable_e2();
  2879. delay(100);
  2880. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2881. uint8_t cnt=0;
  2882. int counterBeep = 0;
  2883. lcd_wait_interact();
  2884. while(!lcd_clicked()){
  2885. cnt++;
  2886. manage_heater();
  2887. manage_inactivity(true);
  2888. //lcd_update();
  2889. if(cnt==0)
  2890. {
  2891. #if BEEPER > 0
  2892. if (counterBeep== 500){
  2893. counterBeep = 0;
  2894. }
  2895. SET_OUTPUT(BEEPER);
  2896. if (counterBeep== 0){
  2897. WRITE(BEEPER,HIGH);
  2898. }
  2899. if (counterBeep== 20){
  2900. WRITE(BEEPER,LOW);
  2901. }
  2902. counterBeep++;
  2903. #else
  2904. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2905. lcd_buzz(1000/6,100);
  2906. #else
  2907. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2908. #endif
  2909. #endif
  2910. }
  2911. }
  2912. WRITE(BEEPER,LOW);
  2913. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2914. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2915. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2916. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2917. lcd_change_fil_state = 0;
  2918. lcd_loading_filament();
  2919. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2920. lcd_change_fil_state = 0;
  2921. lcd_alright();
  2922. switch(lcd_change_fil_state){
  2923. case 2:
  2924. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2925. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2926. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2927. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2928. lcd_loading_filament();
  2929. break;
  2930. case 3:
  2931. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2932. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2933. lcd_loading_color();
  2934. break;
  2935. default:
  2936. lcd_change_success();
  2937. break;
  2938. }
  2939. }
  2940. target[E_AXIS]+= 5;
  2941. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2942. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2943. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2944. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2945. //plan_set_e_position(current_position[E_AXIS]);
  2946. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2947. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2948. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2949. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2950. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2951. plan_set_e_position(lastpos[E_AXIS]);
  2952. feedmultiply=feedmultiplyBckp;
  2953. char cmd[9];
  2954. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2955. enquecommand(cmd);
  2956. }
  2957. #endif
  2958. get_coordinates(); // For X Y Z E F
  2959. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2960. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2961. }
  2962. #ifdef FWRETRACT
  2963. if(autoretract_enabled)
  2964. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2965. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2966. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2967. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2968. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2969. retract(!retracted[active_extruder]);
  2970. return;
  2971. }
  2972. }
  2973. #endif //FWRETRACT
  2974. prepare_move();
  2975. //ClearToSend();
  2976. }
  2977. break;
  2978. case 2: // G2 - CW ARC
  2979. if(Stopped == false) {
  2980. get_arc_coordinates();
  2981. prepare_arc_move(true);
  2982. }
  2983. break;
  2984. case 3: // G3 - CCW ARC
  2985. if(Stopped == false) {
  2986. get_arc_coordinates();
  2987. prepare_arc_move(false);
  2988. }
  2989. break;
  2990. case 4: // G4 dwell
  2991. codenum = 0;
  2992. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2993. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2994. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2995. st_synchronize();
  2996. codenum += millis(); // keep track of when we started waiting
  2997. previous_millis_cmd = millis();
  2998. while(millis() < codenum) {
  2999. manage_heater();
  3000. manage_inactivity();
  3001. lcd_update();
  3002. }
  3003. break;
  3004. #ifdef FWRETRACT
  3005. case 10: // G10 retract
  3006. #if EXTRUDERS > 1
  3007. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3008. retract(true,retracted_swap[active_extruder]);
  3009. #else
  3010. retract(true);
  3011. #endif
  3012. break;
  3013. case 11: // G11 retract_recover
  3014. #if EXTRUDERS > 1
  3015. retract(false,retracted_swap[active_extruder]);
  3016. #else
  3017. retract(false);
  3018. #endif
  3019. break;
  3020. #endif //FWRETRACT
  3021. case 28: //G28 Home all Axis one at a time
  3022. {
  3023. // Which axes should be homed?
  3024. bool home_x = code_seen(axis_codes[X_AXIS]);
  3025. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3026. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3027. // calibrate?
  3028. bool calib = code_seen('C');
  3029. gcode_G28(home_x, home_y, home_z, calib);
  3030. break;
  3031. }
  3032. #ifdef ENABLE_AUTO_BED_LEVELING
  3033. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3034. {
  3035. #if Z_MIN_PIN == -1
  3036. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3037. #endif
  3038. // Prevent user from running a G29 without first homing in X and Y
  3039. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3040. {
  3041. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3042. SERIAL_ECHO_START;
  3043. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3044. break; // abort G29, since we don't know where we are
  3045. }
  3046. st_synchronize();
  3047. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3048. //vector_3 corrected_position = plan_get_position_mm();
  3049. //corrected_position.debug("position before G29");
  3050. plan_bed_level_matrix.set_to_identity();
  3051. vector_3 uncorrected_position = plan_get_position();
  3052. //uncorrected_position.debug("position durring G29");
  3053. current_position[X_AXIS] = uncorrected_position.x;
  3054. current_position[Y_AXIS] = uncorrected_position.y;
  3055. current_position[Z_AXIS] = uncorrected_position.z;
  3056. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3057. setup_for_endstop_move();
  3058. feedrate = homing_feedrate[Z_AXIS];
  3059. #ifdef AUTO_BED_LEVELING_GRID
  3060. // probe at the points of a lattice grid
  3061. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3062. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3063. // solve the plane equation ax + by + d = z
  3064. // A is the matrix with rows [x y 1] for all the probed points
  3065. // B is the vector of the Z positions
  3066. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3067. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3068. // "A" matrix of the linear system of equations
  3069. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3070. // "B" vector of Z points
  3071. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3072. int probePointCounter = 0;
  3073. bool zig = true;
  3074. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3075. {
  3076. int xProbe, xInc;
  3077. if (zig)
  3078. {
  3079. xProbe = LEFT_PROBE_BED_POSITION;
  3080. //xEnd = RIGHT_PROBE_BED_POSITION;
  3081. xInc = xGridSpacing;
  3082. zig = false;
  3083. } else // zag
  3084. {
  3085. xProbe = RIGHT_PROBE_BED_POSITION;
  3086. //xEnd = LEFT_PROBE_BED_POSITION;
  3087. xInc = -xGridSpacing;
  3088. zig = true;
  3089. }
  3090. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3091. {
  3092. float z_before;
  3093. if (probePointCounter == 0)
  3094. {
  3095. // raise before probing
  3096. z_before = Z_RAISE_BEFORE_PROBING;
  3097. } else
  3098. {
  3099. // raise extruder
  3100. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3101. }
  3102. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3103. eqnBVector[probePointCounter] = measured_z;
  3104. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3105. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3106. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3107. probePointCounter++;
  3108. xProbe += xInc;
  3109. }
  3110. }
  3111. clean_up_after_endstop_move();
  3112. // solve lsq problem
  3113. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3114. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3115. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3116. SERIAL_PROTOCOLPGM(" b: ");
  3117. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3118. SERIAL_PROTOCOLPGM(" d: ");
  3119. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3120. set_bed_level_equation_lsq(plane_equation_coefficients);
  3121. free(plane_equation_coefficients);
  3122. #else // AUTO_BED_LEVELING_GRID not defined
  3123. // Probe at 3 arbitrary points
  3124. // probe 1
  3125. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3126. // probe 2
  3127. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3128. // probe 3
  3129. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3130. clean_up_after_endstop_move();
  3131. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3132. #endif // AUTO_BED_LEVELING_GRID
  3133. st_synchronize();
  3134. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3135. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3136. // When the bed is uneven, this height must be corrected.
  3137. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3138. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3139. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3140. z_tmp = current_position[Z_AXIS];
  3141. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3142. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3143. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3144. }
  3145. break;
  3146. #ifndef Z_PROBE_SLED
  3147. case 30: // G30 Single Z Probe
  3148. {
  3149. st_synchronize();
  3150. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3151. setup_for_endstop_move();
  3152. feedrate = homing_feedrate[Z_AXIS];
  3153. run_z_probe();
  3154. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3155. SERIAL_PROTOCOLPGM(" X: ");
  3156. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3157. SERIAL_PROTOCOLPGM(" Y: ");
  3158. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3159. SERIAL_PROTOCOLPGM(" Z: ");
  3160. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3161. SERIAL_PROTOCOLPGM("\n");
  3162. clean_up_after_endstop_move();
  3163. }
  3164. break;
  3165. #else
  3166. case 31: // dock the sled
  3167. dock_sled(true);
  3168. break;
  3169. case 32: // undock the sled
  3170. dock_sled(false);
  3171. break;
  3172. #endif // Z_PROBE_SLED
  3173. #endif // ENABLE_AUTO_BED_LEVELING
  3174. #ifdef MESH_BED_LEVELING
  3175. case 30: // G30 Single Z Probe
  3176. {
  3177. st_synchronize();
  3178. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3179. setup_for_endstop_move();
  3180. feedrate = homing_feedrate[Z_AXIS];
  3181. find_bed_induction_sensor_point_z(-10.f, 3);
  3182. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3183. clean_up_after_endstop_move();
  3184. }
  3185. break;
  3186. case 75:
  3187. {
  3188. for (int i = 40; i <= 110; i++)
  3189. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3190. }
  3191. break;
  3192. case 76: //PINDA probe temperature calibration
  3193. {
  3194. #ifdef PINDA_THERMISTOR
  3195. if (true)
  3196. {
  3197. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3198. //we need to know accurate position of first calibration point
  3199. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3200. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3201. break;
  3202. }
  3203. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3204. {
  3205. // We don't know where we are! HOME!
  3206. // Push the commands to the front of the message queue in the reverse order!
  3207. // There shall be always enough space reserved for these commands.
  3208. repeatcommand_front(); // repeat G76 with all its parameters
  3209. enquecommand_front_P((PSTR("G28 W0")));
  3210. break;
  3211. }
  3212. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3213. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3214. if (result)
  3215. {
  3216. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3218. current_position[Z_AXIS] = 50;
  3219. current_position[Y_AXIS] = 180;
  3220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3221. st_synchronize();
  3222. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3223. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3224. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3225. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3226. st_synchronize();
  3227. gcode_G28(false, false, true, false);
  3228. }
  3229. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3230. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3231. current_position[Z_AXIS] = 100;
  3232. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3233. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3234. lcd_temp_cal_show_result(false);
  3235. break;
  3236. }
  3237. }
  3238. lcd_update_enable(true);
  3239. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3240. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3241. float zero_z;
  3242. int z_shift = 0; //unit: steps
  3243. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3244. if (start_temp < 35) start_temp = 35;
  3245. if (start_temp < current_temperature_pinda) start_temp += 5;
  3246. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3247. // setTargetHotend(200, 0);
  3248. setTargetBed(70 + (start_temp - 30));
  3249. custom_message = true;
  3250. custom_message_type = 4;
  3251. custom_message_state = 1;
  3252. custom_message = _T(MSG_TEMP_CALIBRATION);
  3253. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3255. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3256. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3258. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3260. st_synchronize();
  3261. while (current_temperature_pinda < start_temp)
  3262. {
  3263. delay_keep_alive(1000);
  3264. serialecho_temperatures();
  3265. }
  3266. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3267. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3269. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3270. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3272. st_synchronize();
  3273. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3274. if (find_z_result == false) {
  3275. lcd_temp_cal_show_result(find_z_result);
  3276. break;
  3277. }
  3278. zero_z = current_position[Z_AXIS];
  3279. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3280. int i = -1; for (; i < 5; i++)
  3281. {
  3282. float temp = (40 + i * 5);
  3283. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3284. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3285. if (start_temp <= temp) break;
  3286. }
  3287. for (i++; i < 5; i++)
  3288. {
  3289. float temp = (40 + i * 5);
  3290. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3291. custom_message_state = i + 2;
  3292. setTargetBed(50 + 10 * (temp - 30) / 5);
  3293. // setTargetHotend(255, 0);
  3294. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3295. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3296. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3297. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3299. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3301. st_synchronize();
  3302. while (current_temperature_pinda < temp)
  3303. {
  3304. delay_keep_alive(1000);
  3305. serialecho_temperatures();
  3306. }
  3307. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3308. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3309. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3310. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3311. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3312. st_synchronize();
  3313. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3314. if (find_z_result == false) {
  3315. lcd_temp_cal_show_result(find_z_result);
  3316. break;
  3317. }
  3318. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3319. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3320. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3321. }
  3322. lcd_temp_cal_show_result(true);
  3323. break;
  3324. }
  3325. #endif //PINDA_THERMISTOR
  3326. setTargetBed(PINDA_MIN_T);
  3327. float zero_z;
  3328. int z_shift = 0; //unit: steps
  3329. int t_c; // temperature
  3330. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3331. // We don't know where we are! HOME!
  3332. // Push the commands to the front of the message queue in the reverse order!
  3333. // There shall be always enough space reserved for these commands.
  3334. repeatcommand_front(); // repeat G76 with all its parameters
  3335. enquecommand_front_P((PSTR("G28 W0")));
  3336. break;
  3337. }
  3338. puts_P(_N("PINDA probe calibration start"));
  3339. custom_message = true;
  3340. custom_message_type = 4;
  3341. custom_message_state = 1;
  3342. custom_message = _T(MSG_TEMP_CALIBRATION);
  3343. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3344. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3345. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3347. st_synchronize();
  3348. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3349. delay_keep_alive(1000);
  3350. serialecho_temperatures();
  3351. }
  3352. //enquecommand_P(PSTR("M190 S50"));
  3353. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3354. delay_keep_alive(1000);
  3355. serialecho_temperatures();
  3356. }
  3357. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3358. current_position[Z_AXIS] = 5;
  3359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3360. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3361. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3363. st_synchronize();
  3364. find_bed_induction_sensor_point_z(-1.f);
  3365. zero_z = current_position[Z_AXIS];
  3366. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3367. for (int i = 0; i<5; i++) {
  3368. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3369. custom_message_state = i + 2;
  3370. t_c = 60 + i * 10;
  3371. setTargetBed(t_c);
  3372. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3373. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3374. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3375. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3376. st_synchronize();
  3377. while (degBed() < t_c) {
  3378. delay_keep_alive(1000);
  3379. serialecho_temperatures();
  3380. }
  3381. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3382. delay_keep_alive(1000);
  3383. serialecho_temperatures();
  3384. }
  3385. current_position[Z_AXIS] = 5;
  3386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3387. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3388. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3390. st_synchronize();
  3391. find_bed_induction_sensor_point_z(-1.f);
  3392. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3393. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3394. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3395. }
  3396. custom_message_type = 0;
  3397. custom_message = false;
  3398. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3399. puts_P(_N("Temperature calibration done."));
  3400. disable_x();
  3401. disable_y();
  3402. disable_z();
  3403. disable_e0();
  3404. disable_e1();
  3405. disable_e2();
  3406. setTargetBed(0); //set bed target temperature back to 0
  3407. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3408. temp_cal_active = true;
  3409. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3410. lcd_update_enable(true);
  3411. lcd_update(2);
  3412. }
  3413. break;
  3414. #ifdef DIS
  3415. case 77:
  3416. {
  3417. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3418. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3419. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3420. float dimension_x = 40;
  3421. float dimension_y = 40;
  3422. int points_x = 40;
  3423. int points_y = 40;
  3424. float offset_x = 74;
  3425. float offset_y = 33;
  3426. if (code_seen('X')) dimension_x = code_value();
  3427. if (code_seen('Y')) dimension_y = code_value();
  3428. if (code_seen('XP')) points_x = code_value();
  3429. if (code_seen('YP')) points_y = code_value();
  3430. if (code_seen('XO')) offset_x = code_value();
  3431. if (code_seen('YO')) offset_y = code_value();
  3432. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3433. } break;
  3434. #endif
  3435. case 79: {
  3436. for (int i = 255; i > 0; i = i - 5) {
  3437. fanSpeed = i;
  3438. //delay_keep_alive(2000);
  3439. for (int j = 0; j < 100; j++) {
  3440. delay_keep_alive(100);
  3441. }
  3442. fan_speed[1];
  3443. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3444. }
  3445. }break;
  3446. /**
  3447. * G80: Mesh-based Z probe, probes a grid and produces a
  3448. * mesh to compensate for variable bed height
  3449. *
  3450. * The S0 report the points as below
  3451. *
  3452. * +----> X-axis
  3453. * |
  3454. * |
  3455. * v Y-axis
  3456. *
  3457. */
  3458. case 80:
  3459. #ifdef MK1BP
  3460. break;
  3461. #endif //MK1BP
  3462. case_G80:
  3463. {
  3464. mesh_bed_leveling_flag = true;
  3465. int8_t verbosity_level = 0;
  3466. static bool run = false;
  3467. if (code_seen('V')) {
  3468. // Just 'V' without a number counts as V1.
  3469. char c = strchr_pointer[1];
  3470. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3471. }
  3472. // Firstly check if we know where we are
  3473. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3474. // We don't know where we are! HOME!
  3475. // Push the commands to the front of the message queue in the reverse order!
  3476. // There shall be always enough space reserved for these commands.
  3477. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3478. repeatcommand_front(); // repeat G80 with all its parameters
  3479. enquecommand_front_P((PSTR("G28 W0")));
  3480. }
  3481. else {
  3482. mesh_bed_leveling_flag = false;
  3483. }
  3484. break;
  3485. }
  3486. bool temp_comp_start = true;
  3487. #ifdef PINDA_THERMISTOR
  3488. temp_comp_start = false;
  3489. #endif //PINDA_THERMISTOR
  3490. if (temp_comp_start)
  3491. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3492. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3493. temp_compensation_start();
  3494. run = true;
  3495. repeatcommand_front(); // repeat G80 with all its parameters
  3496. enquecommand_front_P((PSTR("G28 W0")));
  3497. }
  3498. else {
  3499. mesh_bed_leveling_flag = false;
  3500. }
  3501. break;
  3502. }
  3503. run = false;
  3504. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3505. mesh_bed_leveling_flag = false;
  3506. break;
  3507. }
  3508. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3509. bool custom_message_old = custom_message;
  3510. unsigned int custom_message_type_old = custom_message_type;
  3511. unsigned int custom_message_state_old = custom_message_state;
  3512. custom_message = true;
  3513. custom_message_type = 1;
  3514. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3515. lcd_update(1);
  3516. mbl.reset(); //reset mesh bed leveling
  3517. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3518. // consumed during the first movements following this statement.
  3519. babystep_undo();
  3520. // Cycle through all points and probe them
  3521. // First move up. During this first movement, the babystepping will be reverted.
  3522. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3524. // The move to the first calibration point.
  3525. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3526. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3527. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3528. #ifdef SUPPORT_VERBOSITY
  3529. if (verbosity_level >= 1) {
  3530. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3531. }
  3532. #endif //SUPPORT_VERBOSITY
  3533. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3535. // Wait until the move is finished.
  3536. st_synchronize();
  3537. int mesh_point = 0; //index number of calibration point
  3538. int ix = 0;
  3539. int iy = 0;
  3540. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3541. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3542. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3543. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3544. #ifdef SUPPORT_VERBOSITY
  3545. if (verbosity_level >= 1) {
  3546. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3547. }
  3548. #endif // SUPPORT_VERBOSITY
  3549. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3550. const char *kill_message = NULL;
  3551. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3552. // Get coords of a measuring point.
  3553. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3554. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3555. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3556. float z0 = 0.f;
  3557. if (has_z && mesh_point > 0) {
  3558. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3559. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3560. //#if 0
  3561. #ifdef SUPPORT_VERBOSITY
  3562. if (verbosity_level >= 1) {
  3563. SERIAL_ECHOLNPGM("");
  3564. SERIAL_ECHOPGM("Bed leveling, point: ");
  3565. MYSERIAL.print(mesh_point);
  3566. SERIAL_ECHOPGM(", calibration z: ");
  3567. MYSERIAL.print(z0, 5);
  3568. SERIAL_ECHOLNPGM("");
  3569. }
  3570. #endif // SUPPORT_VERBOSITY
  3571. //#endif
  3572. }
  3573. // Move Z up to MESH_HOME_Z_SEARCH.
  3574. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3576. st_synchronize();
  3577. // Move to XY position of the sensor point.
  3578. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3579. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3580. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3581. #ifdef SUPPORT_VERBOSITY
  3582. if (verbosity_level >= 1) {
  3583. SERIAL_PROTOCOL(mesh_point);
  3584. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3585. }
  3586. #endif // SUPPORT_VERBOSITY
  3587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3588. st_synchronize();
  3589. // Go down until endstop is hit
  3590. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3591. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3592. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3593. break;
  3594. }
  3595. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3596. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3597. break;
  3598. }
  3599. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3600. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3601. break;
  3602. }
  3603. #ifdef SUPPORT_VERBOSITY
  3604. if (verbosity_level >= 10) {
  3605. SERIAL_ECHOPGM("X: ");
  3606. MYSERIAL.print(current_position[X_AXIS], 5);
  3607. SERIAL_ECHOLNPGM("");
  3608. SERIAL_ECHOPGM("Y: ");
  3609. MYSERIAL.print(current_position[Y_AXIS], 5);
  3610. SERIAL_PROTOCOLPGM("\n");
  3611. }
  3612. #endif // SUPPORT_VERBOSITY
  3613. float offset_z = 0;
  3614. #ifdef PINDA_THERMISTOR
  3615. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3616. #endif //PINDA_THERMISTOR
  3617. // #ifdef SUPPORT_VERBOSITY
  3618. /* if (verbosity_level >= 1)
  3619. {
  3620. SERIAL_ECHOPGM("mesh bed leveling: ");
  3621. MYSERIAL.print(current_position[Z_AXIS], 5);
  3622. SERIAL_ECHOPGM(" offset: ");
  3623. MYSERIAL.print(offset_z, 5);
  3624. SERIAL_ECHOLNPGM("");
  3625. }*/
  3626. // #endif // SUPPORT_VERBOSITY
  3627. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3628. custom_message_state--;
  3629. mesh_point++;
  3630. lcd_update(1);
  3631. }
  3632. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3633. #ifdef SUPPORT_VERBOSITY
  3634. if (verbosity_level >= 20) {
  3635. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3636. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3637. MYSERIAL.print(current_position[Z_AXIS], 5);
  3638. }
  3639. #endif // SUPPORT_VERBOSITY
  3640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3641. st_synchronize();
  3642. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3643. kill(kill_message);
  3644. SERIAL_ECHOLNPGM("killed");
  3645. }
  3646. clean_up_after_endstop_move();
  3647. // SERIAL_ECHOLNPGM("clean up finished ");
  3648. bool apply_temp_comp = true;
  3649. #ifdef PINDA_THERMISTOR
  3650. apply_temp_comp = false;
  3651. #endif
  3652. if (apply_temp_comp)
  3653. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3654. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3655. // SERIAL_ECHOLNPGM("babystep applied");
  3656. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3657. #ifdef SUPPORT_VERBOSITY
  3658. if (verbosity_level >= 1) {
  3659. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3660. }
  3661. #endif // SUPPORT_VERBOSITY
  3662. for (uint8_t i = 0; i < 4; ++i) {
  3663. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3664. long correction = 0;
  3665. if (code_seen(codes[i]))
  3666. correction = code_value_long();
  3667. else if (eeprom_bed_correction_valid) {
  3668. unsigned char *addr = (i < 2) ?
  3669. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3670. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3671. correction = eeprom_read_int8(addr);
  3672. }
  3673. if (correction == 0)
  3674. continue;
  3675. float offset = float(correction) * 0.001f;
  3676. if (fabs(offset) > 0.101f) {
  3677. SERIAL_ERROR_START;
  3678. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3679. SERIAL_ECHO(offset);
  3680. SERIAL_ECHOLNPGM(" microns");
  3681. }
  3682. else {
  3683. switch (i) {
  3684. case 0:
  3685. for (uint8_t row = 0; row < 3; ++row) {
  3686. mbl.z_values[row][1] += 0.5f * offset;
  3687. mbl.z_values[row][0] += offset;
  3688. }
  3689. break;
  3690. case 1:
  3691. for (uint8_t row = 0; row < 3; ++row) {
  3692. mbl.z_values[row][1] += 0.5f * offset;
  3693. mbl.z_values[row][2] += offset;
  3694. }
  3695. break;
  3696. case 2:
  3697. for (uint8_t col = 0; col < 3; ++col) {
  3698. mbl.z_values[1][col] += 0.5f * offset;
  3699. mbl.z_values[0][col] += offset;
  3700. }
  3701. break;
  3702. case 3:
  3703. for (uint8_t col = 0; col < 3; ++col) {
  3704. mbl.z_values[1][col] += 0.5f * offset;
  3705. mbl.z_values[2][col] += offset;
  3706. }
  3707. break;
  3708. }
  3709. }
  3710. }
  3711. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3712. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3713. // SERIAL_ECHOLNPGM("Upsample finished");
  3714. mbl.active = 1; //activate mesh bed leveling
  3715. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3716. go_home_with_z_lift();
  3717. // SERIAL_ECHOLNPGM("Go home finished");
  3718. //unretract (after PINDA preheat retraction)
  3719. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3720. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3722. }
  3723. KEEPALIVE_STATE(NOT_BUSY);
  3724. // Restore custom message state
  3725. custom_message = custom_message_old;
  3726. custom_message_type = custom_message_type_old;
  3727. custom_message_state = custom_message_state_old;
  3728. mesh_bed_leveling_flag = false;
  3729. mesh_bed_run_from_menu = false;
  3730. lcd_update(2);
  3731. }
  3732. break;
  3733. /**
  3734. * G81: Print mesh bed leveling status and bed profile if activated
  3735. */
  3736. case 81:
  3737. if (mbl.active) {
  3738. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3739. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3740. SERIAL_PROTOCOLPGM(",");
  3741. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3742. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3743. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3744. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3745. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3746. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3747. SERIAL_PROTOCOLPGM(" ");
  3748. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3749. }
  3750. SERIAL_PROTOCOLPGM("\n");
  3751. }
  3752. }
  3753. else
  3754. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3755. break;
  3756. #if 0
  3757. /**
  3758. * G82: Single Z probe at current location
  3759. *
  3760. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3761. *
  3762. */
  3763. case 82:
  3764. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3765. setup_for_endstop_move();
  3766. find_bed_induction_sensor_point_z();
  3767. clean_up_after_endstop_move();
  3768. SERIAL_PROTOCOLPGM("Bed found at: ");
  3769. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3770. SERIAL_PROTOCOLPGM("\n");
  3771. break;
  3772. /**
  3773. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3774. */
  3775. case 83:
  3776. {
  3777. int babystepz = code_seen('S') ? code_value() : 0;
  3778. int BabyPosition = code_seen('P') ? code_value() : 0;
  3779. if (babystepz != 0) {
  3780. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3781. // Is the axis indexed starting with zero or one?
  3782. if (BabyPosition > 4) {
  3783. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3784. }else{
  3785. // Save it to the eeprom
  3786. babystepLoadZ = babystepz;
  3787. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3788. // adjust the Z
  3789. babystepsTodoZadd(babystepLoadZ);
  3790. }
  3791. }
  3792. }
  3793. break;
  3794. /**
  3795. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3796. */
  3797. case 84:
  3798. babystepsTodoZsubtract(babystepLoadZ);
  3799. // babystepLoadZ = 0;
  3800. break;
  3801. /**
  3802. * G85: Prusa3D specific: Pick best babystep
  3803. */
  3804. case 85:
  3805. lcd_pick_babystep();
  3806. break;
  3807. #endif
  3808. /**
  3809. * G86: Prusa3D specific: Disable babystep correction after home.
  3810. * This G-code will be performed at the start of a calibration script.
  3811. */
  3812. case 86:
  3813. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3814. break;
  3815. /**
  3816. * G87: Prusa3D specific: Enable babystep correction after home
  3817. * This G-code will be performed at the end of a calibration script.
  3818. */
  3819. case 87:
  3820. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3821. break;
  3822. /**
  3823. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3824. */
  3825. case 88:
  3826. break;
  3827. #endif // ENABLE_MESH_BED_LEVELING
  3828. case 90: // G90
  3829. relative_mode = false;
  3830. break;
  3831. case 91: // G91
  3832. relative_mode = true;
  3833. break;
  3834. case 92: // G92
  3835. if(!code_seen(axis_codes[E_AXIS]))
  3836. st_synchronize();
  3837. for(int8_t i=0; i < NUM_AXIS; i++) {
  3838. if(code_seen(axis_codes[i])) {
  3839. if(i == E_AXIS) {
  3840. current_position[i] = code_value();
  3841. plan_set_e_position(current_position[E_AXIS]);
  3842. }
  3843. else {
  3844. current_position[i] = code_value()+add_homing[i];
  3845. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3846. }
  3847. }
  3848. }
  3849. break;
  3850. case 98: // G98 (activate farm mode)
  3851. farm_mode = 1;
  3852. PingTime = millis();
  3853. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3854. SilentModeMenu = SILENT_MODE_OFF;
  3855. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3856. break;
  3857. case 99: // G99 (deactivate farm mode)
  3858. farm_mode = 0;
  3859. lcd_printer_connected();
  3860. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3861. lcd_update(2);
  3862. break;
  3863. default:
  3864. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3865. }
  3866. } // end if(code_seen('G'))
  3867. else if(code_seen('M'))
  3868. {
  3869. int index;
  3870. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3871. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3872. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3873. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3874. } else
  3875. switch((int)code_value())
  3876. {
  3877. #ifdef ULTIPANEL
  3878. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3879. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3880. {
  3881. char *src = strchr_pointer + 2;
  3882. codenum = 0;
  3883. bool hasP = false, hasS = false;
  3884. if (code_seen('P')) {
  3885. codenum = code_value(); // milliseconds to wait
  3886. hasP = codenum > 0;
  3887. }
  3888. if (code_seen('S')) {
  3889. codenum = code_value() * 1000; // seconds to wait
  3890. hasS = codenum > 0;
  3891. }
  3892. starpos = strchr(src, '*');
  3893. if (starpos != NULL) *(starpos) = '\0';
  3894. while (*src == ' ') ++src;
  3895. if (!hasP && !hasS && *src != '\0') {
  3896. lcd_setstatus(src);
  3897. } else {
  3898. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3899. }
  3900. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3901. st_synchronize();
  3902. previous_millis_cmd = millis();
  3903. if (codenum > 0){
  3904. codenum += millis(); // keep track of when we started waiting
  3905. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3906. while(millis() < codenum && !lcd_clicked()){
  3907. manage_heater();
  3908. manage_inactivity(true);
  3909. lcd_update();
  3910. }
  3911. KEEPALIVE_STATE(IN_HANDLER);
  3912. lcd_ignore_click(false);
  3913. }else{
  3914. if (!lcd_detected())
  3915. break;
  3916. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3917. while(!lcd_clicked()){
  3918. manage_heater();
  3919. manage_inactivity(true);
  3920. lcd_update();
  3921. }
  3922. KEEPALIVE_STATE(IN_HANDLER);
  3923. }
  3924. if (IS_SD_PRINTING)
  3925. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3926. else
  3927. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3928. }
  3929. break;
  3930. #endif
  3931. case 17:
  3932. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3933. enable_x();
  3934. enable_y();
  3935. enable_z();
  3936. enable_e0();
  3937. enable_e1();
  3938. enable_e2();
  3939. break;
  3940. #ifdef SDSUPPORT
  3941. case 20: // M20 - list SD card
  3942. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3943. card.ls();
  3944. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3945. break;
  3946. case 21: // M21 - init SD card
  3947. card.initsd();
  3948. break;
  3949. case 22: //M22 - release SD card
  3950. card.release();
  3951. break;
  3952. case 23: //M23 - Select file
  3953. starpos = (strchr(strchr_pointer + 4,'*'));
  3954. if(starpos!=NULL)
  3955. *(starpos)='\0';
  3956. card.openFile(strchr_pointer + 4,true);
  3957. break;
  3958. case 24: //M24 - Start SD print
  3959. if (!card.paused)
  3960. failstats_reset_print();
  3961. card.startFileprint();
  3962. starttime=millis();
  3963. break;
  3964. case 25: //M25 - Pause SD print
  3965. card.pauseSDPrint();
  3966. break;
  3967. case 26: //M26 - Set SD index
  3968. if(card.cardOK && code_seen('S')) {
  3969. card.setIndex(code_value_long());
  3970. }
  3971. break;
  3972. case 27: //M27 - Get SD status
  3973. card.getStatus();
  3974. break;
  3975. case 28: //M28 - Start SD write
  3976. starpos = (strchr(strchr_pointer + 4,'*'));
  3977. if(starpos != NULL){
  3978. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3979. strchr_pointer = strchr(npos,' ') + 1;
  3980. *(starpos) = '\0';
  3981. }
  3982. card.openFile(strchr_pointer+4,false);
  3983. break;
  3984. case 29: //M29 - Stop SD write
  3985. //processed in write to file routine above
  3986. //card,saving = false;
  3987. break;
  3988. case 30: //M30 <filename> Delete File
  3989. if (card.cardOK){
  3990. card.closefile();
  3991. starpos = (strchr(strchr_pointer + 4,'*'));
  3992. if(starpos != NULL){
  3993. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3994. strchr_pointer = strchr(npos,' ') + 1;
  3995. *(starpos) = '\0';
  3996. }
  3997. card.removeFile(strchr_pointer + 4);
  3998. }
  3999. break;
  4000. case 32: //M32 - Select file and start SD print
  4001. {
  4002. if(card.sdprinting) {
  4003. st_synchronize();
  4004. }
  4005. starpos = (strchr(strchr_pointer + 4,'*'));
  4006. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4007. if(namestartpos==NULL)
  4008. {
  4009. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4010. }
  4011. else
  4012. namestartpos++; //to skip the '!'
  4013. if(starpos!=NULL)
  4014. *(starpos)='\0';
  4015. bool call_procedure=(code_seen('P'));
  4016. if(strchr_pointer>namestartpos)
  4017. call_procedure=false; //false alert, 'P' found within filename
  4018. if( card.cardOK )
  4019. {
  4020. card.openFile(namestartpos,true,!call_procedure);
  4021. if(code_seen('S'))
  4022. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4023. card.setIndex(code_value_long());
  4024. card.startFileprint();
  4025. if(!call_procedure)
  4026. starttime=millis(); //procedure calls count as normal print time.
  4027. }
  4028. } break;
  4029. case 928: //M928 - Start SD write
  4030. starpos = (strchr(strchr_pointer + 5,'*'));
  4031. if(starpos != NULL){
  4032. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4033. strchr_pointer = strchr(npos,' ') + 1;
  4034. *(starpos) = '\0';
  4035. }
  4036. card.openLogFile(strchr_pointer+5);
  4037. break;
  4038. #endif //SDSUPPORT
  4039. case 31: //M31 take time since the start of the SD print or an M109 command
  4040. {
  4041. stoptime=millis();
  4042. char time[30];
  4043. unsigned long t=(stoptime-starttime)/1000;
  4044. int sec,min;
  4045. min=t/60;
  4046. sec=t%60;
  4047. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4048. SERIAL_ECHO_START;
  4049. SERIAL_ECHOLN(time);
  4050. lcd_setstatus(time);
  4051. autotempShutdown();
  4052. }
  4053. break;
  4054. #ifndef _DISABLE_M42_M226
  4055. case 42: //M42 -Change pin status via gcode
  4056. if (code_seen('S'))
  4057. {
  4058. int pin_status = code_value();
  4059. int pin_number = LED_PIN;
  4060. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4061. pin_number = code_value();
  4062. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4063. {
  4064. if (sensitive_pins[i] == pin_number)
  4065. {
  4066. pin_number = -1;
  4067. break;
  4068. }
  4069. }
  4070. #if defined(FAN_PIN) && FAN_PIN > -1
  4071. if (pin_number == FAN_PIN)
  4072. fanSpeed = pin_status;
  4073. #endif
  4074. if (pin_number > -1)
  4075. {
  4076. pinMode(pin_number, OUTPUT);
  4077. digitalWrite(pin_number, pin_status);
  4078. analogWrite(pin_number, pin_status);
  4079. }
  4080. }
  4081. break;
  4082. #endif //_DISABLE_M42_M226
  4083. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4084. // Reset the baby step value and the baby step applied flag.
  4085. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4086. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4087. // Reset the skew and offset in both RAM and EEPROM.
  4088. reset_bed_offset_and_skew();
  4089. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4090. // the planner will not perform any adjustments in the XY plane.
  4091. // Wait for the motors to stop and update the current position with the absolute values.
  4092. world2machine_revert_to_uncorrected();
  4093. break;
  4094. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4095. {
  4096. int8_t verbosity_level = 0;
  4097. bool only_Z = code_seen('Z');
  4098. #ifdef SUPPORT_VERBOSITY
  4099. if (code_seen('V'))
  4100. {
  4101. // Just 'V' without a number counts as V1.
  4102. char c = strchr_pointer[1];
  4103. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4104. }
  4105. #endif //SUPPORT_VERBOSITY
  4106. gcode_M45(only_Z, verbosity_level);
  4107. }
  4108. break;
  4109. /*
  4110. case 46:
  4111. {
  4112. // M46: Prusa3D: Show the assigned IP address.
  4113. uint8_t ip[4];
  4114. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4115. if (hasIP) {
  4116. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4117. SERIAL_ECHO(int(ip[0]));
  4118. SERIAL_ECHOPGM(".");
  4119. SERIAL_ECHO(int(ip[1]));
  4120. SERIAL_ECHOPGM(".");
  4121. SERIAL_ECHO(int(ip[2]));
  4122. SERIAL_ECHOPGM(".");
  4123. SERIAL_ECHO(int(ip[3]));
  4124. SERIAL_ECHOLNPGM("");
  4125. } else {
  4126. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4127. }
  4128. break;
  4129. }
  4130. */
  4131. case 47:
  4132. // M47: Prusa3D: Show end stops dialog on the display.
  4133. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4134. lcd_diag_show_end_stops();
  4135. KEEPALIVE_STATE(IN_HANDLER);
  4136. break;
  4137. #if 0
  4138. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4139. {
  4140. // Disable the default update procedure of the display. We will do a modal dialog.
  4141. lcd_update_enable(false);
  4142. // Let the planner use the uncorrected coordinates.
  4143. mbl.reset();
  4144. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4145. // the planner will not perform any adjustments in the XY plane.
  4146. // Wait for the motors to stop and update the current position with the absolute values.
  4147. world2machine_revert_to_uncorrected();
  4148. // Move the print head close to the bed.
  4149. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4151. st_synchronize();
  4152. // Home in the XY plane.
  4153. set_destination_to_current();
  4154. setup_for_endstop_move();
  4155. home_xy();
  4156. int8_t verbosity_level = 0;
  4157. if (code_seen('V')) {
  4158. // Just 'V' without a number counts as V1.
  4159. char c = strchr_pointer[1];
  4160. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4161. }
  4162. bool success = scan_bed_induction_points(verbosity_level);
  4163. clean_up_after_endstop_move();
  4164. // Print head up.
  4165. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4167. st_synchronize();
  4168. lcd_update_enable(true);
  4169. break;
  4170. }
  4171. #endif
  4172. // M48 Z-Probe repeatability measurement function.
  4173. //
  4174. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4175. //
  4176. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4177. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4178. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4179. // regenerated.
  4180. //
  4181. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4182. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4183. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4184. //
  4185. #ifdef ENABLE_AUTO_BED_LEVELING
  4186. #ifdef Z_PROBE_REPEATABILITY_TEST
  4187. case 48: // M48 Z-Probe repeatability
  4188. {
  4189. #if Z_MIN_PIN == -1
  4190. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4191. #endif
  4192. double sum=0.0;
  4193. double mean=0.0;
  4194. double sigma=0.0;
  4195. double sample_set[50];
  4196. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4197. double X_current, Y_current, Z_current;
  4198. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4199. if (code_seen('V') || code_seen('v')) {
  4200. verbose_level = code_value();
  4201. if (verbose_level<0 || verbose_level>4 ) {
  4202. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4203. goto Sigma_Exit;
  4204. }
  4205. }
  4206. if (verbose_level > 0) {
  4207. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4208. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4209. }
  4210. if (code_seen('n')) {
  4211. n_samples = code_value();
  4212. if (n_samples<4 || n_samples>50 ) {
  4213. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4214. goto Sigma_Exit;
  4215. }
  4216. }
  4217. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4218. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4219. Z_current = st_get_position_mm(Z_AXIS);
  4220. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4221. ext_position = st_get_position_mm(E_AXIS);
  4222. if (code_seen('X') || code_seen('x') ) {
  4223. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4224. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4225. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4226. goto Sigma_Exit;
  4227. }
  4228. }
  4229. if (code_seen('Y') || code_seen('y') ) {
  4230. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4231. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4232. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4233. goto Sigma_Exit;
  4234. }
  4235. }
  4236. if (code_seen('L') || code_seen('l') ) {
  4237. n_legs = code_value();
  4238. if ( n_legs==1 )
  4239. n_legs = 2;
  4240. if ( n_legs<0 || n_legs>15 ) {
  4241. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4242. goto Sigma_Exit;
  4243. }
  4244. }
  4245. //
  4246. // Do all the preliminary setup work. First raise the probe.
  4247. //
  4248. st_synchronize();
  4249. plan_bed_level_matrix.set_to_identity();
  4250. plan_buffer_line( X_current, Y_current, Z_start_location,
  4251. ext_position,
  4252. homing_feedrate[Z_AXIS]/60,
  4253. active_extruder);
  4254. st_synchronize();
  4255. //
  4256. // Now get everything to the specified probe point So we can safely do a probe to
  4257. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4258. // use that as a starting point for each probe.
  4259. //
  4260. if (verbose_level > 2)
  4261. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4262. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4263. ext_position,
  4264. homing_feedrate[X_AXIS]/60,
  4265. active_extruder);
  4266. st_synchronize();
  4267. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4268. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4269. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4270. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4271. //
  4272. // OK, do the inital probe to get us close to the bed.
  4273. // Then retrace the right amount and use that in subsequent probes
  4274. //
  4275. setup_for_endstop_move();
  4276. run_z_probe();
  4277. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4278. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4279. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4280. ext_position,
  4281. homing_feedrate[X_AXIS]/60,
  4282. active_extruder);
  4283. st_synchronize();
  4284. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4285. for( n=0; n<n_samples; n++) {
  4286. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4287. if ( n_legs) {
  4288. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4289. int rotational_direction, l;
  4290. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4291. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4292. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4293. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4294. //SERIAL_ECHOPAIR(" theta: ",theta);
  4295. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4296. //SERIAL_PROTOCOLLNPGM("");
  4297. for( l=0; l<n_legs-1; l++) {
  4298. if (rotational_direction==1)
  4299. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4300. else
  4301. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4302. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4303. if ( radius<0.0 )
  4304. radius = -radius;
  4305. X_current = X_probe_location + cos(theta) * radius;
  4306. Y_current = Y_probe_location + sin(theta) * radius;
  4307. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4308. X_current = X_MIN_POS;
  4309. if ( X_current>X_MAX_POS)
  4310. X_current = X_MAX_POS;
  4311. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4312. Y_current = Y_MIN_POS;
  4313. if ( Y_current>Y_MAX_POS)
  4314. Y_current = Y_MAX_POS;
  4315. if (verbose_level>3 ) {
  4316. SERIAL_ECHOPAIR("x: ", X_current);
  4317. SERIAL_ECHOPAIR("y: ", Y_current);
  4318. SERIAL_PROTOCOLLNPGM("");
  4319. }
  4320. do_blocking_move_to( X_current, Y_current, Z_current );
  4321. }
  4322. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4323. }
  4324. setup_for_endstop_move();
  4325. run_z_probe();
  4326. sample_set[n] = current_position[Z_AXIS];
  4327. //
  4328. // Get the current mean for the data points we have so far
  4329. //
  4330. sum=0.0;
  4331. for( j=0; j<=n; j++) {
  4332. sum = sum + sample_set[j];
  4333. }
  4334. mean = sum / (double (n+1));
  4335. //
  4336. // Now, use that mean to calculate the standard deviation for the
  4337. // data points we have so far
  4338. //
  4339. sum=0.0;
  4340. for( j=0; j<=n; j++) {
  4341. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4342. }
  4343. sigma = sqrt( sum / (double (n+1)) );
  4344. if (verbose_level > 1) {
  4345. SERIAL_PROTOCOL(n+1);
  4346. SERIAL_PROTOCOL(" of ");
  4347. SERIAL_PROTOCOL(n_samples);
  4348. SERIAL_PROTOCOLPGM(" z: ");
  4349. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4350. }
  4351. if (verbose_level > 2) {
  4352. SERIAL_PROTOCOL(" mean: ");
  4353. SERIAL_PROTOCOL_F(mean,6);
  4354. SERIAL_PROTOCOL(" sigma: ");
  4355. SERIAL_PROTOCOL_F(sigma,6);
  4356. }
  4357. if (verbose_level > 0)
  4358. SERIAL_PROTOCOLPGM("\n");
  4359. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4360. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4361. st_synchronize();
  4362. }
  4363. delay(1000);
  4364. clean_up_after_endstop_move();
  4365. // enable_endstops(true);
  4366. if (verbose_level > 0) {
  4367. SERIAL_PROTOCOLPGM("Mean: ");
  4368. SERIAL_PROTOCOL_F(mean, 6);
  4369. SERIAL_PROTOCOLPGM("\n");
  4370. }
  4371. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4372. SERIAL_PROTOCOL_F(sigma, 6);
  4373. SERIAL_PROTOCOLPGM("\n\n");
  4374. Sigma_Exit:
  4375. break;
  4376. }
  4377. #endif // Z_PROBE_REPEATABILITY_TEST
  4378. #endif // ENABLE_AUTO_BED_LEVELING
  4379. case 73: //M73 show percent done and time remaining
  4380. if(code_seen('P')) print_percent_done_normal = code_value();
  4381. if(code_seen('R')) print_time_remaining_normal = code_value();
  4382. if(code_seen('Q')) print_percent_done_silent = code_value();
  4383. if(code_seen('S')) print_time_remaining_silent = code_value();
  4384. {
  4385. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4386. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4387. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4388. }
  4389. break;
  4390. case 104: // M104
  4391. if(setTargetedHotend(104)){
  4392. break;
  4393. }
  4394. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4395. setWatch();
  4396. break;
  4397. case 112: // M112 -Emergency Stop
  4398. kill(_n(""), 3);
  4399. break;
  4400. case 140: // M140 set bed temp
  4401. if (code_seen('S')) setTargetBed(code_value());
  4402. break;
  4403. case 105 : // M105
  4404. if(setTargetedHotend(105)){
  4405. break;
  4406. }
  4407. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4408. SERIAL_PROTOCOLPGM("ok T:");
  4409. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4410. SERIAL_PROTOCOLPGM(" /");
  4411. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4412. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4413. SERIAL_PROTOCOLPGM(" B:");
  4414. SERIAL_PROTOCOL_F(degBed(),1);
  4415. SERIAL_PROTOCOLPGM(" /");
  4416. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4417. #endif //TEMP_BED_PIN
  4418. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4419. SERIAL_PROTOCOLPGM(" T");
  4420. SERIAL_PROTOCOL(cur_extruder);
  4421. SERIAL_PROTOCOLPGM(":");
  4422. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4423. SERIAL_PROTOCOLPGM(" /");
  4424. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4425. }
  4426. #else
  4427. SERIAL_ERROR_START;
  4428. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4429. #endif
  4430. SERIAL_PROTOCOLPGM(" @:");
  4431. #ifdef EXTRUDER_WATTS
  4432. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4433. SERIAL_PROTOCOLPGM("W");
  4434. #else
  4435. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4436. #endif
  4437. SERIAL_PROTOCOLPGM(" B@:");
  4438. #ifdef BED_WATTS
  4439. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4440. SERIAL_PROTOCOLPGM("W");
  4441. #else
  4442. SERIAL_PROTOCOL(getHeaterPower(-1));
  4443. #endif
  4444. #ifdef PINDA_THERMISTOR
  4445. SERIAL_PROTOCOLPGM(" P:");
  4446. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4447. #endif //PINDA_THERMISTOR
  4448. #ifdef AMBIENT_THERMISTOR
  4449. SERIAL_PROTOCOLPGM(" A:");
  4450. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4451. #endif //AMBIENT_THERMISTOR
  4452. #ifdef SHOW_TEMP_ADC_VALUES
  4453. {float raw = 0.0;
  4454. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4455. SERIAL_PROTOCOLPGM(" ADC B:");
  4456. SERIAL_PROTOCOL_F(degBed(),1);
  4457. SERIAL_PROTOCOLPGM("C->");
  4458. raw = rawBedTemp();
  4459. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4460. SERIAL_PROTOCOLPGM(" Rb->");
  4461. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4462. SERIAL_PROTOCOLPGM(" Rxb->");
  4463. SERIAL_PROTOCOL_F(raw, 5);
  4464. #endif
  4465. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4466. SERIAL_PROTOCOLPGM(" T");
  4467. SERIAL_PROTOCOL(cur_extruder);
  4468. SERIAL_PROTOCOLPGM(":");
  4469. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4470. SERIAL_PROTOCOLPGM("C->");
  4471. raw = rawHotendTemp(cur_extruder);
  4472. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4473. SERIAL_PROTOCOLPGM(" Rt");
  4474. SERIAL_PROTOCOL(cur_extruder);
  4475. SERIAL_PROTOCOLPGM("->");
  4476. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4477. SERIAL_PROTOCOLPGM(" Rx");
  4478. SERIAL_PROTOCOL(cur_extruder);
  4479. SERIAL_PROTOCOLPGM("->");
  4480. SERIAL_PROTOCOL_F(raw, 5);
  4481. }}
  4482. #endif
  4483. SERIAL_PROTOCOLLN("");
  4484. KEEPALIVE_STATE(NOT_BUSY);
  4485. return;
  4486. break;
  4487. case 109:
  4488. {// M109 - Wait for extruder heater to reach target.
  4489. if(setTargetedHotend(109)){
  4490. break;
  4491. }
  4492. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4493. heating_status = 1;
  4494. if (farm_mode) { prusa_statistics(1); };
  4495. #ifdef AUTOTEMP
  4496. autotemp_enabled=false;
  4497. #endif
  4498. if (code_seen('S')) {
  4499. setTargetHotend(code_value(), tmp_extruder);
  4500. CooldownNoWait = true;
  4501. } else if (code_seen('R')) {
  4502. setTargetHotend(code_value(), tmp_extruder);
  4503. CooldownNoWait = false;
  4504. }
  4505. #ifdef AUTOTEMP
  4506. if (code_seen('S')) autotemp_min=code_value();
  4507. if (code_seen('B')) autotemp_max=code_value();
  4508. if (code_seen('F'))
  4509. {
  4510. autotemp_factor=code_value();
  4511. autotemp_enabled=true;
  4512. }
  4513. #endif
  4514. setWatch();
  4515. codenum = millis();
  4516. /* See if we are heating up or cooling down */
  4517. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4518. KEEPALIVE_STATE(NOT_BUSY);
  4519. cancel_heatup = false;
  4520. wait_for_heater(codenum); //loops until target temperature is reached
  4521. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4522. KEEPALIVE_STATE(IN_HANDLER);
  4523. heating_status = 2;
  4524. if (farm_mode) { prusa_statistics(2); };
  4525. //starttime=millis();
  4526. previous_millis_cmd = millis();
  4527. }
  4528. break;
  4529. case 190: // M190 - Wait for bed heater to reach target.
  4530. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4531. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4532. heating_status = 3;
  4533. if (farm_mode) { prusa_statistics(1); };
  4534. if (code_seen('S'))
  4535. {
  4536. setTargetBed(code_value());
  4537. CooldownNoWait = true;
  4538. }
  4539. else if (code_seen('R'))
  4540. {
  4541. setTargetBed(code_value());
  4542. CooldownNoWait = false;
  4543. }
  4544. codenum = millis();
  4545. cancel_heatup = false;
  4546. target_direction = isHeatingBed(); // true if heating, false if cooling
  4547. KEEPALIVE_STATE(NOT_BUSY);
  4548. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4549. {
  4550. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4551. {
  4552. if (!farm_mode) {
  4553. float tt = degHotend(active_extruder);
  4554. SERIAL_PROTOCOLPGM("T:");
  4555. SERIAL_PROTOCOL(tt);
  4556. SERIAL_PROTOCOLPGM(" E:");
  4557. SERIAL_PROTOCOL((int)active_extruder);
  4558. SERIAL_PROTOCOLPGM(" B:");
  4559. SERIAL_PROTOCOL_F(degBed(), 1);
  4560. SERIAL_PROTOCOLLN("");
  4561. }
  4562. codenum = millis();
  4563. }
  4564. manage_heater();
  4565. manage_inactivity();
  4566. lcd_update();
  4567. }
  4568. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4569. KEEPALIVE_STATE(IN_HANDLER);
  4570. heating_status = 4;
  4571. previous_millis_cmd = millis();
  4572. #endif
  4573. break;
  4574. #if defined(FAN_PIN) && FAN_PIN > -1
  4575. case 106: //M106 Fan On
  4576. if (code_seen('S')){
  4577. fanSpeed=constrain(code_value(),0,255);
  4578. }
  4579. else {
  4580. fanSpeed=255;
  4581. }
  4582. break;
  4583. case 107: //M107 Fan Off
  4584. fanSpeed = 0;
  4585. break;
  4586. #endif //FAN_PIN
  4587. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4588. case 80: // M80 - Turn on Power Supply
  4589. SET_OUTPUT(PS_ON_PIN); //GND
  4590. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4591. // If you have a switch on suicide pin, this is useful
  4592. // if you want to start another print with suicide feature after
  4593. // a print without suicide...
  4594. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4595. SET_OUTPUT(SUICIDE_PIN);
  4596. WRITE(SUICIDE_PIN, HIGH);
  4597. #endif
  4598. #ifdef ULTIPANEL
  4599. powersupply = true;
  4600. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4601. lcd_update();
  4602. #endif
  4603. break;
  4604. #endif
  4605. case 81: // M81 - Turn off Power Supply
  4606. disable_heater();
  4607. st_synchronize();
  4608. disable_e0();
  4609. disable_e1();
  4610. disable_e2();
  4611. finishAndDisableSteppers();
  4612. fanSpeed = 0;
  4613. delay(1000); // Wait a little before to switch off
  4614. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4615. st_synchronize();
  4616. suicide();
  4617. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4618. SET_OUTPUT(PS_ON_PIN);
  4619. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4620. #endif
  4621. #ifdef ULTIPANEL
  4622. powersupply = false;
  4623. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4624. lcd_update();
  4625. #endif
  4626. break;
  4627. case 82:
  4628. axis_relative_modes[3] = false;
  4629. break;
  4630. case 83:
  4631. axis_relative_modes[3] = true;
  4632. break;
  4633. case 18: //compatibility
  4634. case 84: // M84
  4635. if(code_seen('S')){
  4636. stepper_inactive_time = code_value() * 1000;
  4637. }
  4638. else
  4639. {
  4640. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4641. if(all_axis)
  4642. {
  4643. st_synchronize();
  4644. disable_e0();
  4645. disable_e1();
  4646. disable_e2();
  4647. finishAndDisableSteppers();
  4648. }
  4649. else
  4650. {
  4651. st_synchronize();
  4652. if (code_seen('X')) disable_x();
  4653. if (code_seen('Y')) disable_y();
  4654. if (code_seen('Z')) disable_z();
  4655. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4656. if (code_seen('E')) {
  4657. disable_e0();
  4658. disable_e1();
  4659. disable_e2();
  4660. }
  4661. #endif
  4662. }
  4663. }
  4664. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4665. print_time_remaining_init();
  4666. snmm_filaments_used = 0;
  4667. break;
  4668. case 85: // M85
  4669. if(code_seen('S')) {
  4670. max_inactive_time = code_value() * 1000;
  4671. }
  4672. break;
  4673. case 92: // M92
  4674. for(int8_t i=0; i < NUM_AXIS; i++)
  4675. {
  4676. if(code_seen(axis_codes[i]))
  4677. {
  4678. if(i == 3) { // E
  4679. float value = code_value();
  4680. if(value < 20.0) {
  4681. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4682. max_jerk[E_AXIS] *= factor;
  4683. max_feedrate[i] *= factor;
  4684. axis_steps_per_sqr_second[i] *= factor;
  4685. }
  4686. axis_steps_per_unit[i] = value;
  4687. }
  4688. else {
  4689. axis_steps_per_unit[i] = code_value();
  4690. }
  4691. }
  4692. }
  4693. break;
  4694. case 110: // M110 - reset line pos
  4695. if (code_seen('N'))
  4696. gcode_LastN = code_value_long();
  4697. break;
  4698. #ifdef HOST_KEEPALIVE_FEATURE
  4699. case 113: // M113 - Get or set Host Keepalive interval
  4700. if (code_seen('S')) {
  4701. host_keepalive_interval = (uint8_t)code_value_short();
  4702. // NOMORE(host_keepalive_interval, 60);
  4703. }
  4704. else {
  4705. SERIAL_ECHO_START;
  4706. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4707. SERIAL_PROTOCOLLN("");
  4708. }
  4709. break;
  4710. #endif
  4711. case 115: // M115
  4712. if (code_seen('V')) {
  4713. // Report the Prusa version number.
  4714. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4715. } else if (code_seen('U')) {
  4716. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4717. // pause the print and ask the user to upgrade the firmware.
  4718. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4719. } else {
  4720. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4721. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4722. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4723. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4724. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4725. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4726. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4727. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4728. SERIAL_ECHOPGM(" UUID:");
  4729. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4730. }
  4731. break;
  4732. /* case 117: // M117 display message
  4733. starpos = (strchr(strchr_pointer + 5,'*'));
  4734. if(starpos!=NULL)
  4735. *(starpos)='\0';
  4736. lcd_setstatus(strchr_pointer + 5);
  4737. break;*/
  4738. case 114: // M114
  4739. gcode_M114();
  4740. break;
  4741. case 120: // M120
  4742. enable_endstops(false) ;
  4743. break;
  4744. case 121: // M121
  4745. enable_endstops(true) ;
  4746. break;
  4747. case 119: // M119
  4748. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4749. SERIAL_PROTOCOLLN("");
  4750. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4751. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4752. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4753. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4754. }else{
  4755. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4756. }
  4757. SERIAL_PROTOCOLLN("");
  4758. #endif
  4759. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4760. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4761. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4762. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4763. }else{
  4764. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4765. }
  4766. SERIAL_PROTOCOLLN("");
  4767. #endif
  4768. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4769. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4770. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4771. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4772. }else{
  4773. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4774. }
  4775. SERIAL_PROTOCOLLN("");
  4776. #endif
  4777. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4778. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4779. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4780. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4781. }else{
  4782. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4783. }
  4784. SERIAL_PROTOCOLLN("");
  4785. #endif
  4786. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4787. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4788. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4789. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4790. }else{
  4791. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4792. }
  4793. SERIAL_PROTOCOLLN("");
  4794. #endif
  4795. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4796. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4797. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4798. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4799. }else{
  4800. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4801. }
  4802. SERIAL_PROTOCOLLN("");
  4803. #endif
  4804. break;
  4805. //TODO: update for all axis, use for loop
  4806. #ifdef BLINKM
  4807. case 150: // M150
  4808. {
  4809. byte red;
  4810. byte grn;
  4811. byte blu;
  4812. if(code_seen('R')) red = code_value();
  4813. if(code_seen('U')) grn = code_value();
  4814. if(code_seen('B')) blu = code_value();
  4815. SendColors(red,grn,blu);
  4816. }
  4817. break;
  4818. #endif //BLINKM
  4819. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4820. {
  4821. tmp_extruder = active_extruder;
  4822. if(code_seen('T')) {
  4823. tmp_extruder = code_value();
  4824. if(tmp_extruder >= EXTRUDERS) {
  4825. SERIAL_ECHO_START;
  4826. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4827. break;
  4828. }
  4829. }
  4830. float area = .0;
  4831. if(code_seen('D')) {
  4832. float diameter = (float)code_value();
  4833. if (diameter == 0.0) {
  4834. // setting any extruder filament size disables volumetric on the assumption that
  4835. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4836. // for all extruders
  4837. volumetric_enabled = false;
  4838. } else {
  4839. filament_size[tmp_extruder] = (float)code_value();
  4840. // make sure all extruders have some sane value for the filament size
  4841. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4842. #if EXTRUDERS > 1
  4843. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4844. #if EXTRUDERS > 2
  4845. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4846. #endif
  4847. #endif
  4848. volumetric_enabled = true;
  4849. }
  4850. } else {
  4851. //reserved for setting filament diameter via UFID or filament measuring device
  4852. break;
  4853. }
  4854. calculate_extruder_multipliers();
  4855. }
  4856. break;
  4857. case 201: // M201
  4858. for(int8_t i=0; i < NUM_AXIS; i++)
  4859. {
  4860. if(code_seen(axis_codes[i]))
  4861. {
  4862. max_acceleration_units_per_sq_second[i] = code_value();
  4863. }
  4864. }
  4865. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4866. reset_acceleration_rates();
  4867. break;
  4868. #if 0 // Not used for Sprinter/grbl gen6
  4869. case 202: // M202
  4870. for(int8_t i=0; i < NUM_AXIS; i++) {
  4871. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4872. }
  4873. break;
  4874. #endif
  4875. case 203: // M203 max feedrate mm/sec
  4876. for(int8_t i=0; i < NUM_AXIS; i++) {
  4877. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4878. }
  4879. break;
  4880. case 204: // M204 acclereration S normal moves T filmanent only moves
  4881. {
  4882. if(code_seen('S')) acceleration = code_value() ;
  4883. if(code_seen('T')) retract_acceleration = code_value() ;
  4884. }
  4885. break;
  4886. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4887. {
  4888. if(code_seen('S')) minimumfeedrate = code_value();
  4889. if(code_seen('T')) mintravelfeedrate = code_value();
  4890. if(code_seen('B')) minsegmenttime = code_value() ;
  4891. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4892. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4893. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4894. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4895. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4896. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4897. }
  4898. break;
  4899. case 206: // M206 additional homing offset
  4900. for(int8_t i=0; i < 3; i++)
  4901. {
  4902. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4903. }
  4904. break;
  4905. #ifdef FWRETRACT
  4906. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4907. {
  4908. if(code_seen('S'))
  4909. {
  4910. retract_length = code_value() ;
  4911. }
  4912. if(code_seen('F'))
  4913. {
  4914. retract_feedrate = code_value()/60 ;
  4915. }
  4916. if(code_seen('Z'))
  4917. {
  4918. retract_zlift = code_value() ;
  4919. }
  4920. }break;
  4921. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4922. {
  4923. if(code_seen('S'))
  4924. {
  4925. retract_recover_length = code_value() ;
  4926. }
  4927. if(code_seen('F'))
  4928. {
  4929. retract_recover_feedrate = code_value()/60 ;
  4930. }
  4931. }break;
  4932. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4933. {
  4934. if(code_seen('S'))
  4935. {
  4936. int t= code_value() ;
  4937. switch(t)
  4938. {
  4939. case 0:
  4940. {
  4941. autoretract_enabled=false;
  4942. retracted[0]=false;
  4943. #if EXTRUDERS > 1
  4944. retracted[1]=false;
  4945. #endif
  4946. #if EXTRUDERS > 2
  4947. retracted[2]=false;
  4948. #endif
  4949. }break;
  4950. case 1:
  4951. {
  4952. autoretract_enabled=true;
  4953. retracted[0]=false;
  4954. #if EXTRUDERS > 1
  4955. retracted[1]=false;
  4956. #endif
  4957. #if EXTRUDERS > 2
  4958. retracted[2]=false;
  4959. #endif
  4960. }break;
  4961. default:
  4962. SERIAL_ECHO_START;
  4963. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4964. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4965. SERIAL_ECHOLNPGM("\"(1)");
  4966. }
  4967. }
  4968. }break;
  4969. #endif // FWRETRACT
  4970. #if EXTRUDERS > 1
  4971. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4972. {
  4973. if(setTargetedHotend(218)){
  4974. break;
  4975. }
  4976. if(code_seen('X'))
  4977. {
  4978. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4979. }
  4980. if(code_seen('Y'))
  4981. {
  4982. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4983. }
  4984. SERIAL_ECHO_START;
  4985. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4986. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4987. {
  4988. SERIAL_ECHO(" ");
  4989. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4990. SERIAL_ECHO(",");
  4991. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4992. }
  4993. SERIAL_ECHOLN("");
  4994. }break;
  4995. #endif
  4996. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4997. {
  4998. if(code_seen('S'))
  4999. {
  5000. feedmultiply = code_value() ;
  5001. }
  5002. }
  5003. break;
  5004. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5005. {
  5006. if(code_seen('S'))
  5007. {
  5008. int tmp_code = code_value();
  5009. if (code_seen('T'))
  5010. {
  5011. if(setTargetedHotend(221)){
  5012. break;
  5013. }
  5014. extruder_multiply[tmp_extruder] = tmp_code;
  5015. }
  5016. else
  5017. {
  5018. extrudemultiply = tmp_code ;
  5019. }
  5020. }
  5021. calculate_extruder_multipliers();
  5022. }
  5023. break;
  5024. #ifndef _DISABLE_M42_M226
  5025. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5026. {
  5027. if(code_seen('P')){
  5028. int pin_number = code_value(); // pin number
  5029. int pin_state = -1; // required pin state - default is inverted
  5030. if(code_seen('S')) pin_state = code_value(); // required pin state
  5031. if(pin_state >= -1 && pin_state <= 1){
  5032. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5033. {
  5034. if (sensitive_pins[i] == pin_number)
  5035. {
  5036. pin_number = -1;
  5037. break;
  5038. }
  5039. }
  5040. if (pin_number > -1)
  5041. {
  5042. int target = LOW;
  5043. st_synchronize();
  5044. pinMode(pin_number, INPUT);
  5045. switch(pin_state){
  5046. case 1:
  5047. target = HIGH;
  5048. break;
  5049. case 0:
  5050. target = LOW;
  5051. break;
  5052. case -1:
  5053. target = !digitalRead(pin_number);
  5054. break;
  5055. }
  5056. while(digitalRead(pin_number) != target){
  5057. manage_heater();
  5058. manage_inactivity();
  5059. lcd_update();
  5060. }
  5061. }
  5062. }
  5063. }
  5064. }
  5065. break;
  5066. #endif //_DISABLE_M42_M226
  5067. #if NUM_SERVOS > 0
  5068. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5069. {
  5070. int servo_index = -1;
  5071. int servo_position = 0;
  5072. if (code_seen('P'))
  5073. servo_index = code_value();
  5074. if (code_seen('S')) {
  5075. servo_position = code_value();
  5076. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5077. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5078. servos[servo_index].attach(0);
  5079. #endif
  5080. servos[servo_index].write(servo_position);
  5081. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5082. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5083. servos[servo_index].detach();
  5084. #endif
  5085. }
  5086. else {
  5087. SERIAL_ECHO_START;
  5088. SERIAL_ECHO("Servo ");
  5089. SERIAL_ECHO(servo_index);
  5090. SERIAL_ECHOLN(" out of range");
  5091. }
  5092. }
  5093. else if (servo_index >= 0) {
  5094. SERIAL_PROTOCOL(_T(MSG_OK));
  5095. SERIAL_PROTOCOL(" Servo ");
  5096. SERIAL_PROTOCOL(servo_index);
  5097. SERIAL_PROTOCOL(": ");
  5098. SERIAL_PROTOCOL(servos[servo_index].read());
  5099. SERIAL_PROTOCOLLN("");
  5100. }
  5101. }
  5102. break;
  5103. #endif // NUM_SERVOS > 0
  5104. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5105. case 300: // M300
  5106. {
  5107. int beepS = code_seen('S') ? code_value() : 110;
  5108. int beepP = code_seen('P') ? code_value() : 1000;
  5109. if (beepS > 0)
  5110. {
  5111. #if BEEPER > 0
  5112. tone(BEEPER, beepS);
  5113. delay(beepP);
  5114. noTone(BEEPER);
  5115. #elif defined(ULTRALCD)
  5116. lcd_buzz(beepS, beepP);
  5117. #elif defined(LCD_USE_I2C_BUZZER)
  5118. lcd_buzz(beepP, beepS);
  5119. #endif
  5120. }
  5121. else
  5122. {
  5123. delay(beepP);
  5124. }
  5125. }
  5126. break;
  5127. #endif // M300
  5128. #ifdef PIDTEMP
  5129. case 301: // M301
  5130. {
  5131. if(code_seen('P')) Kp = code_value();
  5132. if(code_seen('I')) Ki = scalePID_i(code_value());
  5133. if(code_seen('D')) Kd = scalePID_d(code_value());
  5134. #ifdef PID_ADD_EXTRUSION_RATE
  5135. if(code_seen('C')) Kc = code_value();
  5136. #endif
  5137. updatePID();
  5138. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5139. SERIAL_PROTOCOL(" p:");
  5140. SERIAL_PROTOCOL(Kp);
  5141. SERIAL_PROTOCOL(" i:");
  5142. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5143. SERIAL_PROTOCOL(" d:");
  5144. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5145. #ifdef PID_ADD_EXTRUSION_RATE
  5146. SERIAL_PROTOCOL(" c:");
  5147. //Kc does not have scaling applied above, or in resetting defaults
  5148. SERIAL_PROTOCOL(Kc);
  5149. #endif
  5150. SERIAL_PROTOCOLLN("");
  5151. }
  5152. break;
  5153. #endif //PIDTEMP
  5154. #ifdef PIDTEMPBED
  5155. case 304: // M304
  5156. {
  5157. if(code_seen('P')) bedKp = code_value();
  5158. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5159. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5160. updatePID();
  5161. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5162. SERIAL_PROTOCOL(" p:");
  5163. SERIAL_PROTOCOL(bedKp);
  5164. SERIAL_PROTOCOL(" i:");
  5165. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5166. SERIAL_PROTOCOL(" d:");
  5167. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5168. SERIAL_PROTOCOLLN("");
  5169. }
  5170. break;
  5171. #endif //PIDTEMP
  5172. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5173. {
  5174. #ifdef CHDK
  5175. SET_OUTPUT(CHDK);
  5176. WRITE(CHDK, HIGH);
  5177. chdkHigh = millis();
  5178. chdkActive = true;
  5179. #else
  5180. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5181. const uint8_t NUM_PULSES=16;
  5182. const float PULSE_LENGTH=0.01524;
  5183. for(int i=0; i < NUM_PULSES; i++) {
  5184. WRITE(PHOTOGRAPH_PIN, HIGH);
  5185. _delay_ms(PULSE_LENGTH);
  5186. WRITE(PHOTOGRAPH_PIN, LOW);
  5187. _delay_ms(PULSE_LENGTH);
  5188. }
  5189. delay(7.33);
  5190. for(int i=0; i < NUM_PULSES; i++) {
  5191. WRITE(PHOTOGRAPH_PIN, HIGH);
  5192. _delay_ms(PULSE_LENGTH);
  5193. WRITE(PHOTOGRAPH_PIN, LOW);
  5194. _delay_ms(PULSE_LENGTH);
  5195. }
  5196. #endif
  5197. #endif //chdk end if
  5198. }
  5199. break;
  5200. #ifdef DOGLCD
  5201. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5202. {
  5203. if (code_seen('C')) {
  5204. lcd_setcontrast( ((int)code_value())&63 );
  5205. }
  5206. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5207. SERIAL_PROTOCOL(lcd_contrast);
  5208. SERIAL_PROTOCOLLN("");
  5209. }
  5210. break;
  5211. #endif
  5212. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5213. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5214. {
  5215. float temp = .0;
  5216. if (code_seen('S')) temp=code_value();
  5217. set_extrude_min_temp(temp);
  5218. }
  5219. break;
  5220. #endif
  5221. case 303: // M303 PID autotune
  5222. {
  5223. float temp = 150.0;
  5224. int e=0;
  5225. int c=5;
  5226. if (code_seen('E')) e=code_value();
  5227. if (e<0)
  5228. temp=70;
  5229. if (code_seen('S')) temp=code_value();
  5230. if (code_seen('C')) c=code_value();
  5231. PID_autotune(temp, e, c);
  5232. }
  5233. break;
  5234. case 400: // M400 finish all moves
  5235. {
  5236. st_synchronize();
  5237. }
  5238. break;
  5239. case 500: // M500 Store settings in EEPROM
  5240. {
  5241. Config_StoreSettings(EEPROM_OFFSET);
  5242. }
  5243. break;
  5244. case 501: // M501 Read settings from EEPROM
  5245. {
  5246. Config_RetrieveSettings(EEPROM_OFFSET);
  5247. }
  5248. break;
  5249. case 502: // M502 Revert to default settings
  5250. {
  5251. Config_ResetDefault();
  5252. }
  5253. break;
  5254. case 503: // M503 print settings currently in memory
  5255. {
  5256. Config_PrintSettings();
  5257. }
  5258. break;
  5259. case 509: //M509 Force language selection
  5260. {
  5261. lang_reset();
  5262. SERIAL_ECHO_START;
  5263. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5264. }
  5265. break;
  5266. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5267. case 540:
  5268. {
  5269. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5270. }
  5271. break;
  5272. #endif
  5273. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5274. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5275. {
  5276. float value;
  5277. if (code_seen('Z'))
  5278. {
  5279. value = code_value();
  5280. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5281. {
  5282. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5283. SERIAL_ECHO_START;
  5284. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5285. SERIAL_PROTOCOLLN("");
  5286. }
  5287. else
  5288. {
  5289. SERIAL_ECHO_START;
  5290. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5291. SERIAL_ECHORPGM(MSG_Z_MIN);
  5292. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5293. SERIAL_ECHORPGM(MSG_Z_MAX);
  5294. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5295. SERIAL_PROTOCOLLN("");
  5296. }
  5297. }
  5298. else
  5299. {
  5300. SERIAL_ECHO_START;
  5301. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5302. SERIAL_ECHO(-zprobe_zoffset);
  5303. SERIAL_PROTOCOLLN("");
  5304. }
  5305. break;
  5306. }
  5307. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5308. #ifdef FILAMENTCHANGEENABLE
  5309. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5310. {
  5311. #ifdef PAT9125
  5312. bool old_fsensor_enabled = fsensor_enabled;
  5313. fsensor_enabled = false; //temporary solution for unexpected restarting
  5314. #endif //PAT9125
  5315. st_synchronize();
  5316. float target[4];
  5317. float lastpos[4];
  5318. if (farm_mode)
  5319. {
  5320. prusa_statistics(22);
  5321. }
  5322. feedmultiplyBckp=feedmultiply;
  5323. int8_t TooLowZ = 0;
  5324. float HotendTempBckp = degTargetHotend(active_extruder);
  5325. int fanSpeedBckp = fanSpeed;
  5326. target[X_AXIS]=current_position[X_AXIS];
  5327. target[Y_AXIS]=current_position[Y_AXIS];
  5328. target[Z_AXIS]=current_position[Z_AXIS];
  5329. target[E_AXIS]=current_position[E_AXIS];
  5330. lastpos[X_AXIS]=current_position[X_AXIS];
  5331. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5332. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5333. lastpos[E_AXIS]=current_position[E_AXIS];
  5334. //Restract extruder
  5335. if(code_seen('E'))
  5336. {
  5337. target[E_AXIS]+= code_value();
  5338. }
  5339. else
  5340. {
  5341. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5342. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5343. #endif
  5344. }
  5345. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5346. //Lift Z
  5347. if(code_seen('Z'))
  5348. {
  5349. target[Z_AXIS]+= code_value();
  5350. }
  5351. else
  5352. {
  5353. #ifdef FILAMENTCHANGE_ZADD
  5354. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5355. if(target[Z_AXIS] < 10){
  5356. target[Z_AXIS]+= 10 ;
  5357. TooLowZ = 1;
  5358. }else{
  5359. TooLowZ = 0;
  5360. }
  5361. #endif
  5362. }
  5363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5364. //Move XY to side
  5365. if(code_seen('X'))
  5366. {
  5367. target[X_AXIS]+= code_value();
  5368. }
  5369. else
  5370. {
  5371. #ifdef FILAMENTCHANGE_XPOS
  5372. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5373. #endif
  5374. }
  5375. if(code_seen('Y'))
  5376. {
  5377. target[Y_AXIS]= code_value();
  5378. }
  5379. else
  5380. {
  5381. #ifdef FILAMENTCHANGE_YPOS
  5382. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5383. #endif
  5384. }
  5385. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5386. st_synchronize();
  5387. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5388. uint8_t cnt = 0;
  5389. int counterBeep = 0;
  5390. fanSpeed = 0;
  5391. unsigned long waiting_start_time = millis();
  5392. uint8_t wait_for_user_state = 0;
  5393. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5394. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5395. //cnt++;
  5396. manage_heater();
  5397. manage_inactivity(true);
  5398. /*#ifdef SNMM
  5399. target[E_AXIS] += 0.002;
  5400. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5401. #endif // SNMM*/
  5402. //if (cnt == 0)
  5403. {
  5404. #if BEEPER > 0
  5405. if (counterBeep == 500) {
  5406. counterBeep = 0;
  5407. }
  5408. SET_OUTPUT(BEEPER);
  5409. if (counterBeep == 0) {
  5410. WRITE(BEEPER, HIGH);
  5411. }
  5412. if (counterBeep == 20) {
  5413. WRITE(BEEPER, LOW);
  5414. }
  5415. counterBeep++;
  5416. #else
  5417. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5418. lcd_buzz(1000 / 6, 100);
  5419. #else
  5420. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5421. #endif
  5422. #endif
  5423. }
  5424. switch (wait_for_user_state) {
  5425. case 0:
  5426. delay_keep_alive(4);
  5427. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5428. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5429. wait_for_user_state = 1;
  5430. setTargetHotend(0, 0);
  5431. setTargetHotend(0, 1);
  5432. setTargetHotend(0, 2);
  5433. st_synchronize();
  5434. disable_e0();
  5435. disable_e1();
  5436. disable_e2();
  5437. }
  5438. break;
  5439. case 1:
  5440. delay_keep_alive(4);
  5441. if (lcd_clicked()) {
  5442. setTargetHotend(HotendTempBckp, active_extruder);
  5443. lcd_wait_for_heater();
  5444. wait_for_user_state = 2;
  5445. }
  5446. break;
  5447. case 2:
  5448. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5449. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5450. waiting_start_time = millis();
  5451. wait_for_user_state = 0;
  5452. }
  5453. else {
  5454. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5455. lcd.setCursor(1, 4);
  5456. lcd.print(ftostr3(degHotend(active_extruder)));
  5457. }
  5458. break;
  5459. }
  5460. }
  5461. WRITE(BEEPER, LOW);
  5462. lcd_change_fil_state = 0;
  5463. // Unload filament
  5464. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5465. KEEPALIVE_STATE(IN_HANDLER);
  5466. custom_message = true;
  5467. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5468. if (code_seen('L'))
  5469. {
  5470. target[E_AXIS] += code_value();
  5471. }
  5472. else
  5473. {
  5474. #ifdef SNMM
  5475. #else
  5476. #ifdef FILAMENTCHANGE_FINALRETRACT
  5477. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5478. #endif
  5479. #endif // SNMM
  5480. }
  5481. #ifdef SNMM
  5482. target[E_AXIS] += 12;
  5483. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5484. target[E_AXIS] += 6;
  5485. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5486. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5487. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5488. st_synchronize();
  5489. target[E_AXIS] += (FIL_COOLING);
  5490. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5491. target[E_AXIS] += (FIL_COOLING*-1);
  5492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5493. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5495. st_synchronize();
  5496. #else
  5497. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5498. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5499. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5500. st_synchronize();
  5501. #ifdef TMC2130
  5502. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5503. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5504. #else
  5505. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5506. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5507. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5508. #endif //TMC2130
  5509. target[E_AXIS] -= 45;
  5510. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5511. st_synchronize();
  5512. target[E_AXIS] -= 15;
  5513. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5514. st_synchronize();
  5515. target[E_AXIS] -= 20;
  5516. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5517. st_synchronize();
  5518. #ifdef TMC2130
  5519. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5520. #else
  5521. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5522. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5523. else st_current_set(2, tmp_motor_loud[2]);
  5524. #endif //TMC2130
  5525. #endif // SNMM
  5526. //finish moves
  5527. st_synchronize();
  5528. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5529. //disable extruder steppers so filament can be removed
  5530. disable_e0();
  5531. disable_e1();
  5532. disable_e2();
  5533. delay(100);
  5534. WRITE(BEEPER, HIGH);
  5535. counterBeep = 0;
  5536. while(!lcd_clicked() && (counterBeep < 50)) {
  5537. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5538. delay_keep_alive(100);
  5539. counterBeep++;
  5540. }
  5541. WRITE(BEEPER, LOW);
  5542. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5543. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5544. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5545. //lcd_return_to_status();
  5546. lcd_update_enable(true);
  5547. //Wait for user to insert filament
  5548. lcd_wait_interact();
  5549. //load_filament_time = millis();
  5550. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5551. #ifdef PAT9125
  5552. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5553. #endif //PAT9125
  5554. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5555. while(!lcd_clicked())
  5556. {
  5557. manage_heater();
  5558. manage_inactivity(true);
  5559. #ifdef PAT9125
  5560. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5561. {
  5562. tone(BEEPER, 1000);
  5563. delay_keep_alive(50);
  5564. noTone(BEEPER);
  5565. break;
  5566. }
  5567. #endif //PAT9125
  5568. /*#ifdef SNMM
  5569. target[E_AXIS] += 0.002;
  5570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5571. #endif // SNMM*/
  5572. }
  5573. #ifdef PAT9125
  5574. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5575. #endif //PAT9125
  5576. //WRITE(BEEPER, LOW);
  5577. KEEPALIVE_STATE(IN_HANDLER);
  5578. #ifdef SNMM
  5579. display_loading();
  5580. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5581. do {
  5582. target[E_AXIS] += 0.002;
  5583. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5584. delay_keep_alive(2);
  5585. } while (!lcd_clicked());
  5586. KEEPALIVE_STATE(IN_HANDLER);
  5587. /*if (millis() - load_filament_time > 2) {
  5588. load_filament_time = millis();
  5589. target[E_AXIS] += 0.001;
  5590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5591. }*/
  5592. //Filament inserted
  5593. //Feed the filament to the end of nozzle quickly
  5594. st_synchronize();
  5595. target[E_AXIS] += bowden_length[snmm_extruder];
  5596. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5597. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5598. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5599. target[E_AXIS] += 40;
  5600. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5601. target[E_AXIS] += 10;
  5602. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5603. #else
  5604. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5605. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5606. #endif // SNMM
  5607. //Extrude some filament
  5608. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5609. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5610. //Wait for user to check the state
  5611. lcd_change_fil_state = 0;
  5612. lcd_loading_filament();
  5613. tone(BEEPER, 500);
  5614. delay_keep_alive(50);
  5615. noTone(BEEPER);
  5616. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5617. lcd_change_fil_state = 0;
  5618. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5619. lcd_alright();
  5620. KEEPALIVE_STATE(IN_HANDLER);
  5621. switch(lcd_change_fil_state){
  5622. // Filament failed to load so load it again
  5623. case 2:
  5624. #ifdef SNMM
  5625. display_loading();
  5626. do {
  5627. target[E_AXIS] += 0.002;
  5628. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5629. delay_keep_alive(2);
  5630. } while (!lcd_clicked());
  5631. st_synchronize();
  5632. target[E_AXIS] += bowden_length[snmm_extruder];
  5633. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5634. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5636. target[E_AXIS] += 40;
  5637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5638. target[E_AXIS] += 10;
  5639. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5640. #else
  5641. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5642. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5643. #endif
  5644. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5645. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5646. lcd_loading_filament();
  5647. break;
  5648. // Filament loaded properly but color is not clear
  5649. case 3:
  5650. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5651. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5652. lcd_loading_color();
  5653. break;
  5654. // Everything good
  5655. default:
  5656. lcd_change_success();
  5657. lcd_update_enable(true);
  5658. break;
  5659. }
  5660. }
  5661. //Not let's go back to print
  5662. fanSpeed = fanSpeedBckp;
  5663. //Feed a little of filament to stabilize pressure
  5664. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5666. //Retract
  5667. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5668. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5669. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5670. //Move XY back
  5671. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5672. //Move Z back
  5673. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5674. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5675. //Unretract
  5676. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5677. //Set E position to original
  5678. plan_set_e_position(lastpos[E_AXIS]);
  5679. //Recover feed rate
  5680. feedmultiply=feedmultiplyBckp;
  5681. char cmd[9];
  5682. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5683. enquecommand(cmd);
  5684. lcd_setstatuspgm(_T(WELCOME_MSG));
  5685. custom_message = false;
  5686. custom_message_type = 0;
  5687. #ifdef PAT9125
  5688. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5689. if (fsensor_M600)
  5690. {
  5691. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5692. st_synchronize();
  5693. while (!is_buffer_empty())
  5694. {
  5695. process_commands();
  5696. cmdqueue_pop_front();
  5697. }
  5698. fsensor_enable();
  5699. fsensor_restore_print_and_continue();
  5700. }
  5701. #endif //PAT9125
  5702. }
  5703. break;
  5704. #endif //FILAMENTCHANGEENABLE
  5705. case 601: {
  5706. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5707. }
  5708. break;
  5709. case 602: {
  5710. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5711. }
  5712. break;
  5713. #ifdef PINDA_THERMISTOR
  5714. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5715. {
  5716. int set_target_pinda = 0;
  5717. if (code_seen('S')) {
  5718. set_target_pinda = code_value();
  5719. }
  5720. else {
  5721. break;
  5722. }
  5723. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5724. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5725. SERIAL_PROTOCOL(set_target_pinda);
  5726. SERIAL_PROTOCOLLN("");
  5727. codenum = millis();
  5728. cancel_heatup = false;
  5729. bool is_pinda_cooling = false;
  5730. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5731. is_pinda_cooling = true;
  5732. }
  5733. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5734. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5735. {
  5736. SERIAL_PROTOCOLPGM("P:");
  5737. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5738. SERIAL_PROTOCOLPGM("/");
  5739. SERIAL_PROTOCOL(set_target_pinda);
  5740. SERIAL_PROTOCOLLN("");
  5741. codenum = millis();
  5742. }
  5743. manage_heater();
  5744. manage_inactivity();
  5745. lcd_update();
  5746. }
  5747. LCD_MESSAGERPGM(_T(MSG_OK));
  5748. break;
  5749. }
  5750. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5751. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5752. uint8_t cal_status = calibration_status_pinda();
  5753. int16_t usteps = 0;
  5754. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5755. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5756. for (uint8_t i = 0; i < 6; i++)
  5757. {
  5758. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5759. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5760. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5761. SERIAL_PROTOCOLPGM(", ");
  5762. SERIAL_PROTOCOL(35 + (i * 5));
  5763. SERIAL_PROTOCOLPGM(", ");
  5764. SERIAL_PROTOCOL(usteps);
  5765. SERIAL_PROTOCOLPGM(", ");
  5766. SERIAL_PROTOCOL(mm * 1000);
  5767. SERIAL_PROTOCOLLN("");
  5768. }
  5769. }
  5770. else if (code_seen('!')) { // ! - Set factory default values
  5771. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5772. int16_t z_shift = 8; //40C - 20um - 8usteps
  5773. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5774. z_shift = 24; //45C - 60um - 24usteps
  5775. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5776. z_shift = 48; //50C - 120um - 48usteps
  5777. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5778. z_shift = 80; //55C - 200um - 80usteps
  5779. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5780. z_shift = 120; //60C - 300um - 120usteps
  5781. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5782. SERIAL_PROTOCOLLN("factory restored");
  5783. }
  5784. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5785. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5786. int16_t z_shift = 0;
  5787. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5788. SERIAL_PROTOCOLLN("zerorized");
  5789. }
  5790. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5791. int16_t usteps = code_value();
  5792. if (code_seen('I')) {
  5793. byte index = code_value();
  5794. if ((index >= 0) && (index < 5)) {
  5795. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5796. SERIAL_PROTOCOLLN("OK");
  5797. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5798. for (uint8_t i = 0; i < 6; i++)
  5799. {
  5800. usteps = 0;
  5801. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5802. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5803. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5804. SERIAL_PROTOCOLPGM(", ");
  5805. SERIAL_PROTOCOL(35 + (i * 5));
  5806. SERIAL_PROTOCOLPGM(", ");
  5807. SERIAL_PROTOCOL(usteps);
  5808. SERIAL_PROTOCOLPGM(", ");
  5809. SERIAL_PROTOCOL(mm * 1000);
  5810. SERIAL_PROTOCOLLN("");
  5811. }
  5812. }
  5813. }
  5814. }
  5815. else {
  5816. SERIAL_PROTOCOLPGM("no valid command");
  5817. }
  5818. break;
  5819. #endif //PINDA_THERMISTOR
  5820. #ifdef LIN_ADVANCE
  5821. case 900: // M900: Set LIN_ADVANCE options.
  5822. gcode_M900();
  5823. break;
  5824. #endif
  5825. case 907: // M907 Set digital trimpot motor current using axis codes.
  5826. {
  5827. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5828. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5829. if(code_seen('B')) st_current_set(4,code_value());
  5830. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5831. #endif
  5832. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5833. if(code_seen('X')) st_current_set(0, code_value());
  5834. #endif
  5835. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5836. if(code_seen('Z')) st_current_set(1, code_value());
  5837. #endif
  5838. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5839. if(code_seen('E')) st_current_set(2, code_value());
  5840. #endif
  5841. }
  5842. break;
  5843. case 908: // M908 Control digital trimpot directly.
  5844. {
  5845. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5846. uint8_t channel,current;
  5847. if(code_seen('P')) channel=code_value();
  5848. if(code_seen('S')) current=code_value();
  5849. digitalPotWrite(channel, current);
  5850. #endif
  5851. }
  5852. break;
  5853. #ifdef TMC2130
  5854. case 910: // M910 TMC2130 init
  5855. {
  5856. tmc2130_init();
  5857. }
  5858. break;
  5859. case 911: // M911 Set TMC2130 holding currents
  5860. {
  5861. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5862. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5863. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5864. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5865. }
  5866. break;
  5867. case 912: // M912 Set TMC2130 running currents
  5868. {
  5869. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5870. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5871. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5872. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5873. }
  5874. break;
  5875. case 913: // M913 Print TMC2130 currents
  5876. {
  5877. tmc2130_print_currents();
  5878. }
  5879. break;
  5880. case 914: // M914 Set normal mode
  5881. {
  5882. tmc2130_mode = TMC2130_MODE_NORMAL;
  5883. tmc2130_init();
  5884. }
  5885. break;
  5886. case 915: // M915 Set silent mode
  5887. {
  5888. tmc2130_mode = TMC2130_MODE_SILENT;
  5889. tmc2130_init();
  5890. }
  5891. break;
  5892. case 916: // M916 Set sg_thrs
  5893. {
  5894. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5895. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5896. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5897. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5898. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5899. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5900. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5901. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5902. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5903. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5904. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5905. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5906. }
  5907. break;
  5908. case 917: // M917 Set TMC2130 pwm_ampl
  5909. {
  5910. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5911. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5912. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5913. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5914. }
  5915. break;
  5916. case 918: // M918 Set TMC2130 pwm_grad
  5917. {
  5918. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5919. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5920. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5921. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5922. }
  5923. break;
  5924. #endif //TMC2130
  5925. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5926. {
  5927. #ifdef TMC2130
  5928. if(code_seen('E'))
  5929. {
  5930. uint16_t res_new = code_value();
  5931. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5932. {
  5933. st_synchronize();
  5934. uint8_t axis = E_AXIS;
  5935. uint16_t res = tmc2130_get_res(axis);
  5936. tmc2130_set_res(axis, res_new);
  5937. if (res_new > res)
  5938. {
  5939. uint16_t fac = (res_new / res);
  5940. axis_steps_per_unit[axis] *= fac;
  5941. position[E_AXIS] *= fac;
  5942. }
  5943. else
  5944. {
  5945. uint16_t fac = (res / res_new);
  5946. axis_steps_per_unit[axis] /= fac;
  5947. position[E_AXIS] /= fac;
  5948. }
  5949. }
  5950. }
  5951. #else //TMC2130
  5952. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5953. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5954. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5955. if(code_seen('B')) microstep_mode(4,code_value());
  5956. microstep_readings();
  5957. #endif
  5958. #endif //TMC2130
  5959. }
  5960. break;
  5961. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5962. {
  5963. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5964. if(code_seen('S')) switch((int)code_value())
  5965. {
  5966. case 1:
  5967. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5968. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5969. break;
  5970. case 2:
  5971. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5972. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5973. break;
  5974. }
  5975. microstep_readings();
  5976. #endif
  5977. }
  5978. break;
  5979. case 701: //M701: load filament
  5980. {
  5981. gcode_M701();
  5982. }
  5983. break;
  5984. case 702:
  5985. {
  5986. #ifdef SNMM
  5987. if (code_seen('U')) {
  5988. extr_unload_used(); //unload all filaments which were used in current print
  5989. }
  5990. else if (code_seen('C')) {
  5991. extr_unload(); //unload just current filament
  5992. }
  5993. else {
  5994. extr_unload_all(); //unload all filaments
  5995. }
  5996. #else
  5997. #ifdef PAT9125
  5998. bool old_fsensor_enabled = fsensor_enabled;
  5999. fsensor_enabled = false;
  6000. #endif //PAT9125
  6001. custom_message = true;
  6002. custom_message_type = 2;
  6003. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6004. // extr_unload2();
  6005. current_position[E_AXIS] -= 45;
  6006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6007. st_synchronize();
  6008. current_position[E_AXIS] -= 15;
  6009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6010. st_synchronize();
  6011. current_position[E_AXIS] -= 20;
  6012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6013. st_synchronize();
  6014. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6015. //disable extruder steppers so filament can be removed
  6016. disable_e0();
  6017. disable_e1();
  6018. disable_e2();
  6019. delay(100);
  6020. WRITE(BEEPER, HIGH);
  6021. uint8_t counterBeep = 0;
  6022. while (!lcd_clicked() && (counterBeep < 50)) {
  6023. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6024. delay_keep_alive(100);
  6025. counterBeep++;
  6026. }
  6027. WRITE(BEEPER, LOW);
  6028. st_synchronize();
  6029. while (lcd_clicked()) delay_keep_alive(100);
  6030. lcd_update_enable(true);
  6031. lcd_setstatuspgm(_T(WELCOME_MSG));
  6032. custom_message = false;
  6033. custom_message_type = 0;
  6034. #ifdef PAT9125
  6035. fsensor_enabled = old_fsensor_enabled;
  6036. #endif //PAT9125
  6037. #endif
  6038. }
  6039. break;
  6040. case 999: // M999: Restart after being stopped
  6041. Stopped = false;
  6042. lcd_reset_alert_level();
  6043. gcode_LastN = Stopped_gcode_LastN;
  6044. FlushSerialRequestResend();
  6045. break;
  6046. default:
  6047. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6048. }
  6049. } // end if(code_seen('M')) (end of M codes)
  6050. else if(code_seen('T'))
  6051. {
  6052. int index;
  6053. st_synchronize();
  6054. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6055. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6056. SERIAL_ECHOLNPGM("Invalid T code.");
  6057. }
  6058. else {
  6059. if (*(strchr_pointer + index) == '?') {
  6060. tmp_extruder = choose_extruder_menu();
  6061. }
  6062. else {
  6063. tmp_extruder = code_value();
  6064. }
  6065. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6066. #ifdef SNMM
  6067. #ifdef LIN_ADVANCE
  6068. if (snmm_extruder != tmp_extruder)
  6069. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6070. #endif
  6071. snmm_extruder = tmp_extruder;
  6072. delay(100);
  6073. disable_e0();
  6074. disable_e1();
  6075. disable_e2();
  6076. pinMode(E_MUX0_PIN, OUTPUT);
  6077. pinMode(E_MUX1_PIN, OUTPUT);
  6078. delay(100);
  6079. SERIAL_ECHO_START;
  6080. SERIAL_ECHO("T:");
  6081. SERIAL_ECHOLN((int)tmp_extruder);
  6082. switch (tmp_extruder) {
  6083. case 1:
  6084. WRITE(E_MUX0_PIN, HIGH);
  6085. WRITE(E_MUX1_PIN, LOW);
  6086. break;
  6087. case 2:
  6088. WRITE(E_MUX0_PIN, LOW);
  6089. WRITE(E_MUX1_PIN, HIGH);
  6090. break;
  6091. case 3:
  6092. WRITE(E_MUX0_PIN, HIGH);
  6093. WRITE(E_MUX1_PIN, HIGH);
  6094. break;
  6095. default:
  6096. WRITE(E_MUX0_PIN, LOW);
  6097. WRITE(E_MUX1_PIN, LOW);
  6098. break;
  6099. }
  6100. delay(100);
  6101. #else
  6102. if (tmp_extruder >= EXTRUDERS) {
  6103. SERIAL_ECHO_START;
  6104. SERIAL_ECHOPGM("T");
  6105. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6106. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6107. }
  6108. else {
  6109. boolean make_move = false;
  6110. if (code_seen('F')) {
  6111. make_move = true;
  6112. next_feedrate = code_value();
  6113. if (next_feedrate > 0.0) {
  6114. feedrate = next_feedrate;
  6115. }
  6116. }
  6117. #if EXTRUDERS > 1
  6118. if (tmp_extruder != active_extruder) {
  6119. // Save current position to return to after applying extruder offset
  6120. memcpy(destination, current_position, sizeof(destination));
  6121. // Offset extruder (only by XY)
  6122. int i;
  6123. for (i = 0; i < 2; i++) {
  6124. current_position[i] = current_position[i] -
  6125. extruder_offset[i][active_extruder] +
  6126. extruder_offset[i][tmp_extruder];
  6127. }
  6128. // Set the new active extruder and position
  6129. active_extruder = tmp_extruder;
  6130. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6131. // Move to the old position if 'F' was in the parameters
  6132. if (make_move && Stopped == false) {
  6133. prepare_move();
  6134. }
  6135. }
  6136. #endif
  6137. SERIAL_ECHO_START;
  6138. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6139. SERIAL_PROTOCOLLN((int)active_extruder);
  6140. }
  6141. #endif
  6142. }
  6143. } // end if(code_seen('T')) (end of T codes)
  6144. #ifdef DEBUG_DCODES
  6145. else if (code_seen('D')) // D codes (debug)
  6146. {
  6147. switch((int)code_value())
  6148. {
  6149. case -1: // D-1 - Endless loop
  6150. dcode__1(); break;
  6151. case 0: // D0 - Reset
  6152. dcode_0(); break;
  6153. case 1: // D1 - Clear EEPROM
  6154. dcode_1(); break;
  6155. case 2: // D2 - Read/Write RAM
  6156. dcode_2(); break;
  6157. case 3: // D3 - Read/Write EEPROM
  6158. dcode_3(); break;
  6159. case 4: // D4 - Read/Write PIN
  6160. dcode_4(); break;
  6161. case 5: // D5 - Read/Write FLASH
  6162. // dcode_5(); break;
  6163. break;
  6164. case 6: // D6 - Read/Write external FLASH
  6165. dcode_6(); break;
  6166. case 7: // D7 - Read/Write Bootloader
  6167. dcode_7(); break;
  6168. case 8: // D8 - Read/Write PINDA
  6169. dcode_8(); break;
  6170. case 9: // D9 - Read/Write ADC
  6171. dcode_9(); break;
  6172. case 10: // D10 - XYZ calibration = OK
  6173. dcode_10(); break;
  6174. #ifdef TMC2130
  6175. case 2130: // D9125 - TMC2130
  6176. dcode_2130(); break;
  6177. #endif //TMC2130
  6178. #ifdef PAT9125
  6179. case 9125: // D9125 - PAT9125
  6180. dcode_9125(); break;
  6181. #endif //PAT9125
  6182. }
  6183. }
  6184. #endif //DEBUG_DCODES
  6185. else
  6186. {
  6187. SERIAL_ECHO_START;
  6188. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6189. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6190. SERIAL_ECHOLNPGM("\"(2)");
  6191. }
  6192. KEEPALIVE_STATE(NOT_BUSY);
  6193. ClearToSend();
  6194. }
  6195. void FlushSerialRequestResend()
  6196. {
  6197. //char cmdbuffer[bufindr][100]="Resend:";
  6198. MYSERIAL.flush();
  6199. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6200. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6201. previous_millis_cmd = millis();
  6202. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6203. }
  6204. // Confirm the execution of a command, if sent from a serial line.
  6205. // Execution of a command from a SD card will not be confirmed.
  6206. void ClearToSend()
  6207. {
  6208. previous_millis_cmd = millis();
  6209. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6210. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6211. }
  6212. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6213. void update_currents() {
  6214. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6215. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6216. float tmp_motor[3];
  6217. //SERIAL_ECHOLNPGM("Currents updated: ");
  6218. if (destination[Z_AXIS] < Z_SILENT) {
  6219. //SERIAL_ECHOLNPGM("LOW");
  6220. for (uint8_t i = 0; i < 3; i++) {
  6221. st_current_set(i, current_low[i]);
  6222. /*MYSERIAL.print(int(i));
  6223. SERIAL_ECHOPGM(": ");
  6224. MYSERIAL.println(current_low[i]);*/
  6225. }
  6226. }
  6227. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6228. //SERIAL_ECHOLNPGM("HIGH");
  6229. for (uint8_t i = 0; i < 3; i++) {
  6230. st_current_set(i, current_high[i]);
  6231. /*MYSERIAL.print(int(i));
  6232. SERIAL_ECHOPGM(": ");
  6233. MYSERIAL.println(current_high[i]);*/
  6234. }
  6235. }
  6236. else {
  6237. for (uint8_t i = 0; i < 3; i++) {
  6238. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6239. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6240. st_current_set(i, tmp_motor[i]);
  6241. /*MYSERIAL.print(int(i));
  6242. SERIAL_ECHOPGM(": ");
  6243. MYSERIAL.println(tmp_motor[i]);*/
  6244. }
  6245. }
  6246. }
  6247. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6248. void get_coordinates()
  6249. {
  6250. bool seen[4]={false,false,false,false};
  6251. for(int8_t i=0; i < NUM_AXIS; i++) {
  6252. if(code_seen(axis_codes[i]))
  6253. {
  6254. bool relative = axis_relative_modes[i] || relative_mode;
  6255. destination[i] = (float)code_value();
  6256. if (i == E_AXIS) {
  6257. float emult = extruder_multiplier[active_extruder];
  6258. if (emult != 1.) {
  6259. if (! relative) {
  6260. destination[i] -= current_position[i];
  6261. relative = true;
  6262. }
  6263. destination[i] *= emult;
  6264. }
  6265. }
  6266. if (relative)
  6267. destination[i] += current_position[i];
  6268. seen[i]=true;
  6269. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6270. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6271. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6272. }
  6273. else destination[i] = current_position[i]; //Are these else lines really needed?
  6274. }
  6275. if(code_seen('F')) {
  6276. next_feedrate = code_value();
  6277. #ifdef MAX_SILENT_FEEDRATE
  6278. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6279. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6280. #endif //MAX_SILENT_FEEDRATE
  6281. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6282. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6283. {
  6284. // float e_max_speed =
  6285. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6286. }
  6287. }
  6288. }
  6289. void get_arc_coordinates()
  6290. {
  6291. #ifdef SF_ARC_FIX
  6292. bool relative_mode_backup = relative_mode;
  6293. relative_mode = true;
  6294. #endif
  6295. get_coordinates();
  6296. #ifdef SF_ARC_FIX
  6297. relative_mode=relative_mode_backup;
  6298. #endif
  6299. if(code_seen('I')) {
  6300. offset[0] = code_value();
  6301. }
  6302. else {
  6303. offset[0] = 0.0;
  6304. }
  6305. if(code_seen('J')) {
  6306. offset[1] = code_value();
  6307. }
  6308. else {
  6309. offset[1] = 0.0;
  6310. }
  6311. }
  6312. void clamp_to_software_endstops(float target[3])
  6313. {
  6314. #ifdef DEBUG_DISABLE_SWLIMITS
  6315. return;
  6316. #endif //DEBUG_DISABLE_SWLIMITS
  6317. world2machine_clamp(target[0], target[1]);
  6318. // Clamp the Z coordinate.
  6319. if (min_software_endstops) {
  6320. float negative_z_offset = 0;
  6321. #ifdef ENABLE_AUTO_BED_LEVELING
  6322. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6323. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6324. #endif
  6325. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6326. }
  6327. if (max_software_endstops) {
  6328. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6329. }
  6330. }
  6331. #ifdef MESH_BED_LEVELING
  6332. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6333. float dx = x - current_position[X_AXIS];
  6334. float dy = y - current_position[Y_AXIS];
  6335. float dz = z - current_position[Z_AXIS];
  6336. int n_segments = 0;
  6337. if (mbl.active) {
  6338. float len = abs(dx) + abs(dy);
  6339. if (len > 0)
  6340. // Split to 3cm segments or shorter.
  6341. n_segments = int(ceil(len / 30.f));
  6342. }
  6343. if (n_segments > 1) {
  6344. float de = e - current_position[E_AXIS];
  6345. for (int i = 1; i < n_segments; ++ i) {
  6346. float t = float(i) / float(n_segments);
  6347. plan_buffer_line(
  6348. current_position[X_AXIS] + t * dx,
  6349. current_position[Y_AXIS] + t * dy,
  6350. current_position[Z_AXIS] + t * dz,
  6351. current_position[E_AXIS] + t * de,
  6352. feed_rate, extruder);
  6353. }
  6354. }
  6355. // The rest of the path.
  6356. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6357. current_position[X_AXIS] = x;
  6358. current_position[Y_AXIS] = y;
  6359. current_position[Z_AXIS] = z;
  6360. current_position[E_AXIS] = e;
  6361. }
  6362. #endif // MESH_BED_LEVELING
  6363. void prepare_move()
  6364. {
  6365. clamp_to_software_endstops(destination);
  6366. previous_millis_cmd = millis();
  6367. // Do not use feedmultiply for E or Z only moves
  6368. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6369. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6370. }
  6371. else {
  6372. #ifdef MESH_BED_LEVELING
  6373. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6374. #else
  6375. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6376. #endif
  6377. }
  6378. for(int8_t i=0; i < NUM_AXIS; i++) {
  6379. current_position[i] = destination[i];
  6380. }
  6381. }
  6382. void prepare_arc_move(char isclockwise) {
  6383. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6384. // Trace the arc
  6385. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6386. // As far as the parser is concerned, the position is now == target. In reality the
  6387. // motion control system might still be processing the action and the real tool position
  6388. // in any intermediate location.
  6389. for(int8_t i=0; i < NUM_AXIS; i++) {
  6390. current_position[i] = destination[i];
  6391. }
  6392. previous_millis_cmd = millis();
  6393. }
  6394. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6395. #if defined(FAN_PIN)
  6396. #if CONTROLLERFAN_PIN == FAN_PIN
  6397. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6398. #endif
  6399. #endif
  6400. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6401. unsigned long lastMotorCheck = 0;
  6402. void controllerFan()
  6403. {
  6404. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6405. {
  6406. lastMotorCheck = millis();
  6407. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6408. #if EXTRUDERS > 2
  6409. || !READ(E2_ENABLE_PIN)
  6410. #endif
  6411. #if EXTRUDER > 1
  6412. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6413. || !READ(X2_ENABLE_PIN)
  6414. #endif
  6415. || !READ(E1_ENABLE_PIN)
  6416. #endif
  6417. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6418. {
  6419. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6420. }
  6421. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6422. {
  6423. digitalWrite(CONTROLLERFAN_PIN, 0);
  6424. analogWrite(CONTROLLERFAN_PIN, 0);
  6425. }
  6426. else
  6427. {
  6428. // allows digital or PWM fan output to be used (see M42 handling)
  6429. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6430. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6431. }
  6432. }
  6433. }
  6434. #endif
  6435. #ifdef TEMP_STAT_LEDS
  6436. static bool blue_led = false;
  6437. static bool red_led = false;
  6438. static uint32_t stat_update = 0;
  6439. void handle_status_leds(void) {
  6440. float max_temp = 0.0;
  6441. if(millis() > stat_update) {
  6442. stat_update += 500; // Update every 0.5s
  6443. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6444. max_temp = max(max_temp, degHotend(cur_extruder));
  6445. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6446. }
  6447. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6448. max_temp = max(max_temp, degTargetBed());
  6449. max_temp = max(max_temp, degBed());
  6450. #endif
  6451. if((max_temp > 55.0) && (red_led == false)) {
  6452. digitalWrite(STAT_LED_RED, 1);
  6453. digitalWrite(STAT_LED_BLUE, 0);
  6454. red_led = true;
  6455. blue_led = false;
  6456. }
  6457. if((max_temp < 54.0) && (blue_led == false)) {
  6458. digitalWrite(STAT_LED_RED, 0);
  6459. digitalWrite(STAT_LED_BLUE, 1);
  6460. red_led = false;
  6461. blue_led = true;
  6462. }
  6463. }
  6464. }
  6465. #endif
  6466. #ifdef SAFETYTIMER
  6467. /**
  6468. * @brief Turn off heating after 30 minutes of inactivity
  6469. *
  6470. * Full screen blocking notification message is shown after heater turning off.
  6471. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6472. * damage print.
  6473. */
  6474. static void handleSafetyTimer()
  6475. {
  6476. #if (EXTRUDERS > 1)
  6477. #error Implemented only for one extruder.
  6478. #endif //(EXTRUDERS > 1)
  6479. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)))
  6480. {
  6481. safetyTimer.stop();
  6482. }
  6483. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6484. {
  6485. safetyTimer.start();
  6486. }
  6487. else if (safetyTimer.expired(1800000ul)) //30 min
  6488. {
  6489. setTargetBed(0);
  6490. setTargetHotend(0, 0);
  6491. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6492. }
  6493. }
  6494. #endif //SAFETYTIMER
  6495. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6496. {
  6497. #ifdef PAT9125
  6498. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6499. {
  6500. if (fsensor_autoload_enabled)
  6501. {
  6502. if (fsensor_check_autoload())
  6503. {
  6504. if (degHotend0() > EXTRUDE_MINTEMP)
  6505. {
  6506. fsensor_autoload_check_stop();
  6507. tone(BEEPER, 1000);
  6508. delay_keep_alive(50);
  6509. noTone(BEEPER);
  6510. loading_flag = true;
  6511. enquecommand_front_P((PSTR("M701")));
  6512. }
  6513. else
  6514. {
  6515. lcd_update_enable(false);
  6516. lcd_implementation_clear();
  6517. lcd.setCursor(0, 0);
  6518. lcd_printPGM(_T(MSG_ERROR));
  6519. lcd.setCursor(0, 2);
  6520. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6521. delay(2000);
  6522. lcd_implementation_clear();
  6523. lcd_update_enable(true);
  6524. }
  6525. }
  6526. }
  6527. else
  6528. fsensor_autoload_check_start();
  6529. }
  6530. else
  6531. if (fsensor_autoload_enabled)
  6532. fsensor_autoload_check_stop();
  6533. #endif //PAT9125
  6534. #ifdef SAFETYTIMER
  6535. handleSafetyTimer();
  6536. #endif //SAFETYTIMER
  6537. #if defined(KILL_PIN) && KILL_PIN > -1
  6538. static int killCount = 0; // make the inactivity button a bit less responsive
  6539. const int KILL_DELAY = 10000;
  6540. #endif
  6541. if(buflen < (BUFSIZE-1)){
  6542. get_command();
  6543. }
  6544. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6545. if(max_inactive_time)
  6546. kill(_n(""), 4);
  6547. if(stepper_inactive_time) {
  6548. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6549. {
  6550. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6551. disable_x();
  6552. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6553. disable_y();
  6554. disable_z();
  6555. disable_e0();
  6556. disable_e1();
  6557. disable_e2();
  6558. }
  6559. }
  6560. }
  6561. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6562. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6563. {
  6564. chdkActive = false;
  6565. WRITE(CHDK, LOW);
  6566. }
  6567. #endif
  6568. #if defined(KILL_PIN) && KILL_PIN > -1
  6569. // Check if the kill button was pressed and wait just in case it was an accidental
  6570. // key kill key press
  6571. // -------------------------------------------------------------------------------
  6572. if( 0 == READ(KILL_PIN) )
  6573. {
  6574. killCount++;
  6575. }
  6576. else if (killCount > 0)
  6577. {
  6578. killCount--;
  6579. }
  6580. // Exceeded threshold and we can confirm that it was not accidental
  6581. // KILL the machine
  6582. // ----------------------------------------------------------------
  6583. if ( killCount >= KILL_DELAY)
  6584. {
  6585. kill("", 5);
  6586. }
  6587. #endif
  6588. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6589. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6590. #endif
  6591. #ifdef EXTRUDER_RUNOUT_PREVENT
  6592. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6593. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6594. {
  6595. bool oldstatus=READ(E0_ENABLE_PIN);
  6596. enable_e0();
  6597. float oldepos=current_position[E_AXIS];
  6598. float oldedes=destination[E_AXIS];
  6599. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6600. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6601. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6602. current_position[E_AXIS]=oldepos;
  6603. destination[E_AXIS]=oldedes;
  6604. plan_set_e_position(oldepos);
  6605. previous_millis_cmd=millis();
  6606. st_synchronize();
  6607. WRITE(E0_ENABLE_PIN,oldstatus);
  6608. }
  6609. #endif
  6610. #ifdef TEMP_STAT_LEDS
  6611. handle_status_leds();
  6612. #endif
  6613. check_axes_activity();
  6614. }
  6615. void kill(const char *full_screen_message, unsigned char id)
  6616. {
  6617. SERIAL_ECHOPGM("KILL: ");
  6618. MYSERIAL.println(int(id));
  6619. //return;
  6620. cli(); // Stop interrupts
  6621. disable_heater();
  6622. disable_x();
  6623. // SERIAL_ECHOLNPGM("kill - disable Y");
  6624. disable_y();
  6625. disable_z();
  6626. disable_e0();
  6627. disable_e1();
  6628. disable_e2();
  6629. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6630. pinMode(PS_ON_PIN,INPUT);
  6631. #endif
  6632. SERIAL_ERROR_START;
  6633. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6634. if (full_screen_message != NULL) {
  6635. SERIAL_ERRORLNRPGM(full_screen_message);
  6636. lcd_display_message_fullscreen_P(full_screen_message);
  6637. } else {
  6638. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6639. }
  6640. // FMC small patch to update the LCD before ending
  6641. sei(); // enable interrupts
  6642. for ( int i=5; i--; lcd_update())
  6643. {
  6644. delay(200);
  6645. }
  6646. cli(); // disable interrupts
  6647. suicide();
  6648. while(1)
  6649. {
  6650. #ifdef WATCHDOG
  6651. wdt_reset();
  6652. #endif //WATCHDOG
  6653. /* Intentionally left empty */
  6654. } // Wait for reset
  6655. }
  6656. void Stop()
  6657. {
  6658. disable_heater();
  6659. if(Stopped == false) {
  6660. Stopped = true;
  6661. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6662. SERIAL_ERROR_START;
  6663. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6664. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6665. }
  6666. }
  6667. bool IsStopped() { return Stopped; };
  6668. #ifdef FAST_PWM_FAN
  6669. void setPwmFrequency(uint8_t pin, int val)
  6670. {
  6671. val &= 0x07;
  6672. switch(digitalPinToTimer(pin))
  6673. {
  6674. #if defined(TCCR0A)
  6675. case TIMER0A:
  6676. case TIMER0B:
  6677. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6678. // TCCR0B |= val;
  6679. break;
  6680. #endif
  6681. #if defined(TCCR1A)
  6682. case TIMER1A:
  6683. case TIMER1B:
  6684. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6685. // TCCR1B |= val;
  6686. break;
  6687. #endif
  6688. #if defined(TCCR2)
  6689. case TIMER2:
  6690. case TIMER2:
  6691. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6692. TCCR2 |= val;
  6693. break;
  6694. #endif
  6695. #if defined(TCCR2A)
  6696. case TIMER2A:
  6697. case TIMER2B:
  6698. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6699. TCCR2B |= val;
  6700. break;
  6701. #endif
  6702. #if defined(TCCR3A)
  6703. case TIMER3A:
  6704. case TIMER3B:
  6705. case TIMER3C:
  6706. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6707. TCCR3B |= val;
  6708. break;
  6709. #endif
  6710. #if defined(TCCR4A)
  6711. case TIMER4A:
  6712. case TIMER4B:
  6713. case TIMER4C:
  6714. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6715. TCCR4B |= val;
  6716. break;
  6717. #endif
  6718. #if defined(TCCR5A)
  6719. case TIMER5A:
  6720. case TIMER5B:
  6721. case TIMER5C:
  6722. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6723. TCCR5B |= val;
  6724. break;
  6725. #endif
  6726. }
  6727. }
  6728. #endif //FAST_PWM_FAN
  6729. bool setTargetedHotend(int code){
  6730. tmp_extruder = active_extruder;
  6731. if(code_seen('T')) {
  6732. tmp_extruder = code_value();
  6733. if(tmp_extruder >= EXTRUDERS) {
  6734. SERIAL_ECHO_START;
  6735. switch(code){
  6736. case 104:
  6737. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6738. break;
  6739. case 105:
  6740. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6741. break;
  6742. case 109:
  6743. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6744. break;
  6745. case 218:
  6746. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6747. break;
  6748. case 221:
  6749. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6750. break;
  6751. }
  6752. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6753. return true;
  6754. }
  6755. }
  6756. return false;
  6757. }
  6758. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6759. {
  6760. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6761. {
  6762. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6763. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6764. }
  6765. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6766. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6767. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6768. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6769. total_filament_used = 0;
  6770. }
  6771. float calculate_extruder_multiplier(float diameter) {
  6772. float out = 1.f;
  6773. if (volumetric_enabled && diameter > 0.f) {
  6774. float area = M_PI * diameter * diameter * 0.25;
  6775. out = 1.f / area;
  6776. }
  6777. if (extrudemultiply != 100)
  6778. out *= float(extrudemultiply) * 0.01f;
  6779. return out;
  6780. }
  6781. void calculate_extruder_multipliers() {
  6782. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6783. #if EXTRUDERS > 1
  6784. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6785. #if EXTRUDERS > 2
  6786. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6787. #endif
  6788. #endif
  6789. }
  6790. void delay_keep_alive(unsigned int ms)
  6791. {
  6792. for (;;) {
  6793. manage_heater();
  6794. // Manage inactivity, but don't disable steppers on timeout.
  6795. manage_inactivity(true);
  6796. lcd_update();
  6797. if (ms == 0)
  6798. break;
  6799. else if (ms >= 50) {
  6800. delay(50);
  6801. ms -= 50;
  6802. } else {
  6803. delay(ms);
  6804. ms = 0;
  6805. }
  6806. }
  6807. }
  6808. void wait_for_heater(long codenum) {
  6809. #ifdef TEMP_RESIDENCY_TIME
  6810. long residencyStart;
  6811. residencyStart = -1;
  6812. /* continue to loop until we have reached the target temp
  6813. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6814. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6815. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6816. #else
  6817. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6818. #endif //TEMP_RESIDENCY_TIME
  6819. if ((millis() - codenum) > 1000UL)
  6820. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6821. if (!farm_mode) {
  6822. SERIAL_PROTOCOLPGM("T:");
  6823. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6824. SERIAL_PROTOCOLPGM(" E:");
  6825. SERIAL_PROTOCOL((int)tmp_extruder);
  6826. #ifdef TEMP_RESIDENCY_TIME
  6827. SERIAL_PROTOCOLPGM(" W:");
  6828. if (residencyStart > -1)
  6829. {
  6830. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6831. SERIAL_PROTOCOLLN(codenum);
  6832. }
  6833. else
  6834. {
  6835. SERIAL_PROTOCOLLN("?");
  6836. }
  6837. }
  6838. #else
  6839. SERIAL_PROTOCOLLN("");
  6840. #endif
  6841. codenum = millis();
  6842. }
  6843. manage_heater();
  6844. manage_inactivity();
  6845. lcd_update();
  6846. #ifdef TEMP_RESIDENCY_TIME
  6847. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6848. or when current temp falls outside the hysteresis after target temp was reached */
  6849. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6850. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6851. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6852. {
  6853. residencyStart = millis();
  6854. }
  6855. #endif //TEMP_RESIDENCY_TIME
  6856. }
  6857. }
  6858. void check_babystep() {
  6859. int babystep_z;
  6860. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6861. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6862. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6863. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6864. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6865. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6866. lcd_update_enable(true);
  6867. }
  6868. }
  6869. #ifdef DIS
  6870. void d_setup()
  6871. {
  6872. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6873. pinMode(D_DATA, INPUT_PULLUP);
  6874. pinMode(D_REQUIRE, OUTPUT);
  6875. digitalWrite(D_REQUIRE, HIGH);
  6876. }
  6877. float d_ReadData()
  6878. {
  6879. int digit[13];
  6880. String mergeOutput;
  6881. float output;
  6882. digitalWrite(D_REQUIRE, HIGH);
  6883. for (int i = 0; i<13; i++)
  6884. {
  6885. for (int j = 0; j < 4; j++)
  6886. {
  6887. while (digitalRead(D_DATACLOCK) == LOW) {}
  6888. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6889. bitWrite(digit[i], j, digitalRead(D_DATA));
  6890. }
  6891. }
  6892. digitalWrite(D_REQUIRE, LOW);
  6893. mergeOutput = "";
  6894. output = 0;
  6895. for (int r = 5; r <= 10; r++) //Merge digits
  6896. {
  6897. mergeOutput += digit[r];
  6898. }
  6899. output = mergeOutput.toFloat();
  6900. if (digit[4] == 8) //Handle sign
  6901. {
  6902. output *= -1;
  6903. }
  6904. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6905. {
  6906. output /= 10;
  6907. }
  6908. return output;
  6909. }
  6910. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6911. int t1 = 0;
  6912. int t_delay = 0;
  6913. int digit[13];
  6914. int m;
  6915. char str[3];
  6916. //String mergeOutput;
  6917. char mergeOutput[15];
  6918. float output;
  6919. int mesh_point = 0; //index number of calibration point
  6920. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6921. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6922. float mesh_home_z_search = 4;
  6923. float row[x_points_num];
  6924. int ix = 0;
  6925. int iy = 0;
  6926. char* filename_wldsd = "wldsd.txt";
  6927. char data_wldsd[70];
  6928. char numb_wldsd[10];
  6929. d_setup();
  6930. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6931. // We don't know where we are! HOME!
  6932. // Push the commands to the front of the message queue in the reverse order!
  6933. // There shall be always enough space reserved for these commands.
  6934. repeatcommand_front(); // repeat G80 with all its parameters
  6935. enquecommand_front_P((PSTR("G28 W0")));
  6936. enquecommand_front_P((PSTR("G1 Z5")));
  6937. return;
  6938. }
  6939. bool custom_message_old = custom_message;
  6940. unsigned int custom_message_type_old = custom_message_type;
  6941. unsigned int custom_message_state_old = custom_message_state;
  6942. custom_message = true;
  6943. custom_message_type = 1;
  6944. custom_message_state = (x_points_num * y_points_num) + 10;
  6945. lcd_update(1);
  6946. mbl.reset();
  6947. babystep_undo();
  6948. card.openFile(filename_wldsd, false);
  6949. current_position[Z_AXIS] = mesh_home_z_search;
  6950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6951. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6952. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6953. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6954. setup_for_endstop_move(false);
  6955. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6956. SERIAL_PROTOCOL(x_points_num);
  6957. SERIAL_PROTOCOLPGM(",");
  6958. SERIAL_PROTOCOL(y_points_num);
  6959. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6960. SERIAL_PROTOCOL(mesh_home_z_search);
  6961. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6962. SERIAL_PROTOCOL(x_dimension);
  6963. SERIAL_PROTOCOLPGM(",");
  6964. SERIAL_PROTOCOL(y_dimension);
  6965. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6966. while (mesh_point != x_points_num * y_points_num) {
  6967. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6968. iy = mesh_point / x_points_num;
  6969. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6970. float z0 = 0.f;
  6971. current_position[Z_AXIS] = mesh_home_z_search;
  6972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6973. st_synchronize();
  6974. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6975. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6977. st_synchronize();
  6978. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6979. break;
  6980. card.closefile();
  6981. }
  6982. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6983. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6984. //strcat(data_wldsd, numb_wldsd);
  6985. //MYSERIAL.println(data_wldsd);
  6986. //delay(1000);
  6987. //delay(3000);
  6988. //t1 = millis();
  6989. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6990. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6991. memset(digit, 0, sizeof(digit));
  6992. //cli();
  6993. digitalWrite(D_REQUIRE, LOW);
  6994. for (int i = 0; i<13; i++)
  6995. {
  6996. //t1 = millis();
  6997. for (int j = 0; j < 4; j++)
  6998. {
  6999. while (digitalRead(D_DATACLOCK) == LOW) {}
  7000. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7001. bitWrite(digit[i], j, digitalRead(D_DATA));
  7002. }
  7003. //t_delay = (millis() - t1);
  7004. //SERIAL_PROTOCOLPGM(" ");
  7005. //SERIAL_PROTOCOL_F(t_delay, 5);
  7006. //SERIAL_PROTOCOLPGM(" ");
  7007. }
  7008. //sei();
  7009. digitalWrite(D_REQUIRE, HIGH);
  7010. mergeOutput[0] = '\0';
  7011. output = 0;
  7012. for (int r = 5; r <= 10; r++) //Merge digits
  7013. {
  7014. sprintf(str, "%d", digit[r]);
  7015. strcat(mergeOutput, str);
  7016. }
  7017. output = atof(mergeOutput);
  7018. if (digit[4] == 8) //Handle sign
  7019. {
  7020. output *= -1;
  7021. }
  7022. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7023. {
  7024. output *= 0.1;
  7025. }
  7026. //output = d_ReadData();
  7027. //row[ix] = current_position[Z_AXIS];
  7028. memset(data_wldsd, 0, sizeof(data_wldsd));
  7029. for (int i = 0; i <3; i++) {
  7030. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7031. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7032. strcat(data_wldsd, numb_wldsd);
  7033. strcat(data_wldsd, ";");
  7034. }
  7035. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7036. dtostrf(output, 8, 5, numb_wldsd);
  7037. strcat(data_wldsd, numb_wldsd);
  7038. //strcat(data_wldsd, ";");
  7039. card.write_command(data_wldsd);
  7040. //row[ix] = d_ReadData();
  7041. row[ix] = output; // current_position[Z_AXIS];
  7042. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7043. for (int i = 0; i < x_points_num; i++) {
  7044. SERIAL_PROTOCOLPGM(" ");
  7045. SERIAL_PROTOCOL_F(row[i], 5);
  7046. }
  7047. SERIAL_PROTOCOLPGM("\n");
  7048. }
  7049. custom_message_state--;
  7050. mesh_point++;
  7051. lcd_update(1);
  7052. }
  7053. card.closefile();
  7054. }
  7055. #endif
  7056. void temp_compensation_start() {
  7057. custom_message = true;
  7058. custom_message_type = 5;
  7059. custom_message_state = PINDA_HEAT_T + 1;
  7060. lcd_update(2);
  7061. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7062. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7063. }
  7064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7065. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7066. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7067. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7069. st_synchronize();
  7070. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7071. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7072. delay_keep_alive(1000);
  7073. custom_message_state = PINDA_HEAT_T - i;
  7074. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7075. else lcd_update(1);
  7076. }
  7077. custom_message_type = 0;
  7078. custom_message_state = 0;
  7079. custom_message = false;
  7080. }
  7081. void temp_compensation_apply() {
  7082. int i_add;
  7083. int compensation_value;
  7084. int z_shift = 0;
  7085. float z_shift_mm;
  7086. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7087. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7088. i_add = (target_temperature_bed - 60) / 10;
  7089. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7090. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7091. }else {
  7092. //interpolation
  7093. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7094. }
  7095. SERIAL_PROTOCOLPGM("\n");
  7096. SERIAL_PROTOCOLPGM("Z shift applied:");
  7097. MYSERIAL.print(z_shift_mm);
  7098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7099. st_synchronize();
  7100. plan_set_z_position(current_position[Z_AXIS]);
  7101. }
  7102. else {
  7103. //we have no temp compensation data
  7104. }
  7105. }
  7106. float temp_comp_interpolation(float inp_temperature) {
  7107. //cubic spline interpolation
  7108. int n, i, j, k;
  7109. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7110. int shift[10];
  7111. int temp_C[10];
  7112. n = 6; //number of measured points
  7113. shift[0] = 0;
  7114. for (i = 0; i < n; i++) {
  7115. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7116. temp_C[i] = 50 + i * 10; //temperature in C
  7117. #ifdef PINDA_THERMISTOR
  7118. temp_C[i] = 35 + i * 5; //temperature in C
  7119. #else
  7120. temp_C[i] = 50 + i * 10; //temperature in C
  7121. #endif
  7122. x[i] = (float)temp_C[i];
  7123. f[i] = (float)shift[i];
  7124. }
  7125. if (inp_temperature < x[0]) return 0;
  7126. for (i = n - 1; i>0; i--) {
  7127. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7128. h[i - 1] = x[i] - x[i - 1];
  7129. }
  7130. //*********** formation of h, s , f matrix **************
  7131. for (i = 1; i<n - 1; i++) {
  7132. m[i][i] = 2 * (h[i - 1] + h[i]);
  7133. if (i != 1) {
  7134. m[i][i - 1] = h[i - 1];
  7135. m[i - 1][i] = h[i - 1];
  7136. }
  7137. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7138. }
  7139. //*********** forward elimination **************
  7140. for (i = 1; i<n - 2; i++) {
  7141. temp = (m[i + 1][i] / m[i][i]);
  7142. for (j = 1; j <= n - 1; j++)
  7143. m[i + 1][j] -= temp*m[i][j];
  7144. }
  7145. //*********** backward substitution *********
  7146. for (i = n - 2; i>0; i--) {
  7147. sum = 0;
  7148. for (j = i; j <= n - 2; j++)
  7149. sum += m[i][j] * s[j];
  7150. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7151. }
  7152. for (i = 0; i<n - 1; i++)
  7153. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7154. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7155. b = s[i] / 2;
  7156. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7157. d = f[i];
  7158. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7159. }
  7160. return sum;
  7161. }
  7162. #ifdef PINDA_THERMISTOR
  7163. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7164. {
  7165. if (!temp_cal_active) return 0;
  7166. if (!calibration_status_pinda()) return 0;
  7167. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7168. }
  7169. #endif //PINDA_THERMISTOR
  7170. void long_pause() //long pause print
  7171. {
  7172. st_synchronize();
  7173. //save currently set parameters to global variables
  7174. saved_feedmultiply = feedmultiply;
  7175. HotendTempBckp = degTargetHotend(active_extruder);
  7176. fanSpeedBckp = fanSpeed;
  7177. start_pause_print = millis();
  7178. //save position
  7179. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7180. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7181. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7182. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7183. //retract
  7184. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7186. //lift z
  7187. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7188. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7190. //set nozzle target temperature to 0
  7191. setTargetHotend(0, 0);
  7192. setTargetHotend(0, 1);
  7193. setTargetHotend(0, 2);
  7194. //Move XY to side
  7195. current_position[X_AXIS] = X_PAUSE_POS;
  7196. current_position[Y_AXIS] = Y_PAUSE_POS;
  7197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7198. // Turn off the print fan
  7199. fanSpeed = 0;
  7200. st_synchronize();
  7201. }
  7202. void serialecho_temperatures() {
  7203. float tt = degHotend(active_extruder);
  7204. SERIAL_PROTOCOLPGM("T:");
  7205. SERIAL_PROTOCOL(tt);
  7206. SERIAL_PROTOCOLPGM(" E:");
  7207. SERIAL_PROTOCOL((int)active_extruder);
  7208. SERIAL_PROTOCOLPGM(" B:");
  7209. SERIAL_PROTOCOL_F(degBed(), 1);
  7210. SERIAL_PROTOCOLLN("");
  7211. }
  7212. extern uint32_t sdpos_atomic;
  7213. #ifdef UVLO_SUPPORT
  7214. void uvlo_()
  7215. {
  7216. unsigned long time_start = millis();
  7217. bool sd_print = card.sdprinting;
  7218. // Conserve power as soon as possible.
  7219. disable_x();
  7220. disable_y();
  7221. #ifdef TMC2130
  7222. tmc2130_set_current_h(Z_AXIS, 20);
  7223. tmc2130_set_current_r(Z_AXIS, 20);
  7224. tmc2130_set_current_h(E_AXIS, 20);
  7225. tmc2130_set_current_r(E_AXIS, 20);
  7226. #endif //TMC2130
  7227. // Indicate that the interrupt has been triggered.
  7228. // SERIAL_ECHOLNPGM("UVLO");
  7229. // Read out the current Z motor microstep counter. This will be later used
  7230. // for reaching the zero full step before powering off.
  7231. uint16_t z_microsteps = 0;
  7232. #ifdef TMC2130
  7233. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7234. #endif //TMC2130
  7235. // Calculate the file position, from which to resume this print.
  7236. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7237. {
  7238. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7239. sd_position -= sdlen_planner;
  7240. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7241. sd_position -= sdlen_cmdqueue;
  7242. if (sd_position < 0) sd_position = 0;
  7243. }
  7244. // Backup the feedrate in mm/min.
  7245. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7246. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7247. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7248. // are in action.
  7249. planner_abort_hard();
  7250. // Store the current extruder position.
  7251. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7252. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7253. // Clean the input command queue.
  7254. cmdqueue_reset();
  7255. card.sdprinting = false;
  7256. // card.closefile();
  7257. // Enable stepper driver interrupt to move Z axis.
  7258. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7259. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7260. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7261. sei();
  7262. plan_buffer_line(
  7263. current_position[X_AXIS],
  7264. current_position[Y_AXIS],
  7265. current_position[Z_AXIS],
  7266. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7267. 95, active_extruder);
  7268. st_synchronize();
  7269. disable_e0();
  7270. plan_buffer_line(
  7271. current_position[X_AXIS],
  7272. current_position[Y_AXIS],
  7273. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7274. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7275. 40, active_extruder);
  7276. st_synchronize();
  7277. disable_e0();
  7278. plan_buffer_line(
  7279. current_position[X_AXIS],
  7280. current_position[Y_AXIS],
  7281. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7282. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7283. 40, active_extruder);
  7284. st_synchronize();
  7285. disable_e0();
  7286. disable_z();
  7287. // Move Z up to the next 0th full step.
  7288. // Write the file position.
  7289. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7290. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7291. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7292. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7293. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7294. // Scale the z value to 1u resolution.
  7295. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7296. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7297. }
  7298. // Read out the current Z motor microstep counter. This will be later used
  7299. // for reaching the zero full step before powering off.
  7300. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7301. // Store the current position.
  7302. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7303. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7304. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7305. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7306. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7307. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7308. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7309. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7310. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7311. #if EXTRUDERS > 1
  7312. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7313. #if EXTRUDERS > 2
  7314. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7315. #endif
  7316. #endif
  7317. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7318. // Finaly store the "power outage" flag.
  7319. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7320. st_synchronize();
  7321. SERIAL_ECHOPGM("stps");
  7322. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7323. disable_z();
  7324. // Increment power failure counter
  7325. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7326. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7327. SERIAL_ECHOLNPGM("UVLO - end");
  7328. MYSERIAL.println(millis() - time_start);
  7329. #if 0
  7330. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7331. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7332. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7333. st_synchronize();
  7334. #endif
  7335. cli();
  7336. volatile unsigned int ppcount = 0;
  7337. SET_OUTPUT(BEEPER);
  7338. WRITE(BEEPER, HIGH);
  7339. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7340. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7341. }
  7342. WRITE(BEEPER, LOW);
  7343. while(1){
  7344. #if 1
  7345. WRITE(BEEPER, LOW);
  7346. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7347. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7348. }
  7349. #endif
  7350. };
  7351. }
  7352. #endif //UVLO_SUPPORT
  7353. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7354. void setup_fan_interrupt() {
  7355. //INT7
  7356. DDRE &= ~(1 << 7); //input pin
  7357. PORTE &= ~(1 << 7); //no internal pull-up
  7358. //start with sensing rising edge
  7359. EICRB &= ~(1 << 6);
  7360. EICRB |= (1 << 7);
  7361. //enable INT7 interrupt
  7362. EIMSK |= (1 << 7);
  7363. }
  7364. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7365. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7366. ISR(INT7_vect) {
  7367. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7368. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7369. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7370. t_fan_rising_edge = millis_nc();
  7371. }
  7372. else { //interrupt was triggered by falling edge
  7373. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7374. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7375. }
  7376. }
  7377. EICRB ^= (1 << 6); //change edge
  7378. }
  7379. #endif
  7380. #ifdef UVLO_SUPPORT
  7381. void setup_uvlo_interrupt() {
  7382. DDRE &= ~(1 << 4); //input pin
  7383. PORTE &= ~(1 << 4); //no internal pull-up
  7384. //sensing falling edge
  7385. EICRB |= (1 << 0);
  7386. EICRB &= ~(1 << 1);
  7387. //enable INT4 interrupt
  7388. EIMSK |= (1 << 4);
  7389. }
  7390. ISR(INT4_vect) {
  7391. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7392. SERIAL_ECHOLNPGM("INT4");
  7393. if (IS_SD_PRINTING) uvlo_();
  7394. }
  7395. void recover_print(uint8_t automatic) {
  7396. char cmd[30];
  7397. lcd_update_enable(true);
  7398. lcd_update(2);
  7399. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7400. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7401. // Lift the print head, so one may remove the excess priming material.
  7402. if (current_position[Z_AXIS] < 25)
  7403. enquecommand_P(PSTR("G1 Z25 F800"));
  7404. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7405. enquecommand_P(PSTR("G28 X Y"));
  7406. // Set the target bed and nozzle temperatures and wait.
  7407. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7408. enquecommand(cmd);
  7409. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7410. enquecommand(cmd);
  7411. enquecommand_P(PSTR("M83")); //E axis relative mode
  7412. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7413. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7414. if(automatic == 0){
  7415. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7416. }
  7417. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7418. // Mark the power panic status as inactive.
  7419. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7420. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7421. delay_keep_alive(1000);
  7422. }*/
  7423. SERIAL_ECHOPGM("After waiting for temp:");
  7424. SERIAL_ECHOPGM("Current position X_AXIS:");
  7425. MYSERIAL.println(current_position[X_AXIS]);
  7426. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7427. MYSERIAL.println(current_position[Y_AXIS]);
  7428. // Restart the print.
  7429. restore_print_from_eeprom();
  7430. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7431. MYSERIAL.print(current_position[Z_AXIS]);
  7432. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7433. MYSERIAL.print(current_position[E_AXIS]);
  7434. }
  7435. void recover_machine_state_after_power_panic()
  7436. {
  7437. char cmd[30];
  7438. // 1) Recover the logical cordinates at the time of the power panic.
  7439. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7440. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7441. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7442. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7443. // The current position after power panic is moved to the next closest 0th full step.
  7444. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7445. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7446. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7447. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7448. sprintf_P(cmd, PSTR("G92 E"));
  7449. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7450. enquecommand(cmd);
  7451. }
  7452. memcpy(destination, current_position, sizeof(destination));
  7453. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7454. print_world_coordinates();
  7455. // 2) Initialize the logical to physical coordinate system transformation.
  7456. world2machine_initialize();
  7457. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7458. mbl.active = false;
  7459. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7460. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7461. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7462. // Scale the z value to 10u resolution.
  7463. int16_t v;
  7464. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7465. if (v != 0)
  7466. mbl.active = true;
  7467. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7468. }
  7469. if (mbl.active)
  7470. mbl.upsample_3x3();
  7471. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7472. // print_mesh_bed_leveling_table();
  7473. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7474. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7475. babystep_load();
  7476. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7477. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7478. // 6) Power up the motors, mark their positions as known.
  7479. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7480. axis_known_position[X_AXIS] = true; enable_x();
  7481. axis_known_position[Y_AXIS] = true; enable_y();
  7482. axis_known_position[Z_AXIS] = true; enable_z();
  7483. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7484. print_physical_coordinates();
  7485. // 7) Recover the target temperatures.
  7486. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7487. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7488. // 8) Recover extruder multipilers
  7489. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7490. #if EXTRUDERS > 1
  7491. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7492. #if EXTRUDERS > 2
  7493. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7494. #endif
  7495. #endif
  7496. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7497. }
  7498. void restore_print_from_eeprom() {
  7499. float x_rec, y_rec, z_pos;
  7500. int feedrate_rec;
  7501. uint8_t fan_speed_rec;
  7502. char cmd[30];
  7503. char* c;
  7504. char filename[13];
  7505. uint8_t depth = 0;
  7506. char dir_name[9];
  7507. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7508. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7509. SERIAL_ECHOPGM("Feedrate:");
  7510. MYSERIAL.println(feedrate_rec);
  7511. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7512. MYSERIAL.println(int(depth));
  7513. for (int i = 0; i < depth; i++) {
  7514. for (int j = 0; j < 8; j++) {
  7515. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7516. }
  7517. dir_name[8] = '\0';
  7518. MYSERIAL.println(dir_name);
  7519. card.chdir(dir_name);
  7520. }
  7521. for (int i = 0; i < 8; i++) {
  7522. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7523. }
  7524. filename[8] = '\0';
  7525. MYSERIAL.print(filename);
  7526. strcat_P(filename, PSTR(".gco"));
  7527. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7528. for (c = &cmd[4]; *c; c++)
  7529. *c = tolower(*c);
  7530. enquecommand(cmd);
  7531. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7532. SERIAL_ECHOPGM("Position read from eeprom:");
  7533. MYSERIAL.println(position);
  7534. // E axis relative mode.
  7535. enquecommand_P(PSTR("M83"));
  7536. // Move to the XY print position in logical coordinates, where the print has been killed.
  7537. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7538. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7539. strcat_P(cmd, PSTR(" F2000"));
  7540. enquecommand(cmd);
  7541. // Move the Z axis down to the print, in logical coordinates.
  7542. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7543. enquecommand(cmd);
  7544. // Unretract.
  7545. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7546. // Set the feedrate saved at the power panic.
  7547. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7548. enquecommand(cmd);
  7549. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7550. {
  7551. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7552. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7553. }
  7554. // Set the fan speed saved at the power panic.
  7555. strcpy_P(cmd, PSTR("M106 S"));
  7556. strcat(cmd, itostr3(int(fan_speed_rec)));
  7557. enquecommand(cmd);
  7558. // Set a position in the file.
  7559. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7560. enquecommand(cmd);
  7561. // Start SD print.
  7562. enquecommand_P(PSTR("M24"));
  7563. }
  7564. #endif //UVLO_SUPPORT
  7565. ////////////////////////////////////////////////////////////////////////////////
  7566. // save/restore printing
  7567. void stop_and_save_print_to_ram(float z_move, float e_move)
  7568. {
  7569. if (saved_printing) return;
  7570. unsigned char nplanner_blocks;
  7571. unsigned char nlines;
  7572. uint16_t sdlen_planner;
  7573. uint16_t sdlen_cmdqueue;
  7574. cli();
  7575. if (card.sdprinting) {
  7576. nplanner_blocks = number_of_blocks();
  7577. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7578. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7579. saved_sdpos -= sdlen_planner;
  7580. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7581. saved_sdpos -= sdlen_cmdqueue;
  7582. saved_printing_type = PRINTING_TYPE_SD;
  7583. }
  7584. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7585. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7586. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7587. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7588. saved_sdpos -= nlines;
  7589. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7590. saved_printing_type = PRINTING_TYPE_USB;
  7591. }
  7592. else {
  7593. //not sd printing nor usb printing
  7594. }
  7595. #if 0
  7596. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7597. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7598. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7599. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7600. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7601. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7602. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7603. {
  7604. card.setIndex(saved_sdpos);
  7605. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7606. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7607. MYSERIAL.print(char(card.get()));
  7608. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7609. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7610. MYSERIAL.print(char(card.get()));
  7611. SERIAL_ECHOLNPGM("End of command buffer");
  7612. }
  7613. {
  7614. // Print the content of the planner buffer, line by line:
  7615. card.setIndex(saved_sdpos);
  7616. int8_t iline = 0;
  7617. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7618. SERIAL_ECHOPGM("Planner line (from file): ");
  7619. MYSERIAL.print(int(iline), DEC);
  7620. SERIAL_ECHOPGM(", length: ");
  7621. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7622. SERIAL_ECHOPGM(", steps: (");
  7623. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7624. SERIAL_ECHOPGM(",");
  7625. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7626. SERIAL_ECHOPGM(",");
  7627. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7628. SERIAL_ECHOPGM(",");
  7629. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7630. SERIAL_ECHOPGM("), events: ");
  7631. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7632. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7633. MYSERIAL.print(char(card.get()));
  7634. }
  7635. }
  7636. {
  7637. // Print the content of the command buffer, line by line:
  7638. int8_t iline = 0;
  7639. union {
  7640. struct {
  7641. char lo;
  7642. char hi;
  7643. } lohi;
  7644. uint16_t value;
  7645. } sdlen_single;
  7646. int _bufindr = bufindr;
  7647. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7648. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7649. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7650. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7651. }
  7652. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7653. MYSERIAL.print(int(iline), DEC);
  7654. SERIAL_ECHOPGM(", type: ");
  7655. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7656. SERIAL_ECHOPGM(", len: ");
  7657. MYSERIAL.println(sdlen_single.value, DEC);
  7658. // Print the content of the buffer line.
  7659. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7660. SERIAL_ECHOPGM("Buffer line (from file): ");
  7661. MYSERIAL.print(int(iline), DEC);
  7662. MYSERIAL.println(int(iline), DEC);
  7663. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7664. MYSERIAL.print(char(card.get()));
  7665. if (-- _buflen == 0)
  7666. break;
  7667. // First skip the current command ID and iterate up to the end of the string.
  7668. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7669. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7670. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7671. // If the end of the buffer was empty,
  7672. if (_bufindr == sizeof(cmdbuffer)) {
  7673. // skip to the start and find the nonzero command.
  7674. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7675. }
  7676. }
  7677. }
  7678. #endif
  7679. #if 0
  7680. saved_feedrate2 = feedrate; //save feedrate
  7681. #else
  7682. // Try to deduce the feedrate from the first block of the planner.
  7683. // Speed is in mm/min.
  7684. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7685. #endif
  7686. planner_abort_hard(); //abort printing
  7687. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7688. saved_active_extruder = active_extruder; //save active_extruder
  7689. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7690. cmdqueue_reset(); //empty cmdqueue
  7691. card.sdprinting = false;
  7692. // card.closefile();
  7693. saved_printing = true;
  7694. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7695. st_reset_timer();
  7696. sei();
  7697. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7698. #if 1
  7699. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7700. char buf[48];
  7701. // First unretract (relative extrusion)
  7702. strcpy_P(buf, PSTR("G1 E"));
  7703. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7704. strcat_P(buf, PSTR(" F"));
  7705. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7706. enquecommand(buf, false);
  7707. // Then lift Z axis
  7708. strcpy_P(buf, PSTR("G1 Z"));
  7709. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7710. strcat_P(buf, PSTR(" F"));
  7711. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7712. // At this point the command queue is empty.
  7713. enquecommand(buf, false);
  7714. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7715. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7716. repeatcommand_front();
  7717. #else
  7718. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7719. st_synchronize(); //wait moving
  7720. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7721. memcpy(destination, current_position, sizeof(destination));
  7722. #endif
  7723. }
  7724. }
  7725. void restore_print_from_ram_and_continue(float e_move)
  7726. {
  7727. if (!saved_printing) return;
  7728. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7729. // current_position[axis] = st_get_position_mm(axis);
  7730. active_extruder = saved_active_extruder; //restore active_extruder
  7731. feedrate = saved_feedrate2; //restore feedrate
  7732. float e = saved_pos[E_AXIS] - e_move;
  7733. plan_set_e_position(e);
  7734. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7735. st_synchronize();
  7736. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7737. memcpy(destination, current_position, sizeof(destination));
  7738. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7739. card.setIndex(saved_sdpos);
  7740. sdpos_atomic = saved_sdpos;
  7741. card.sdprinting = true;
  7742. }
  7743. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7744. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7745. FlushSerialRequestResend();
  7746. }
  7747. else {
  7748. //not sd printing nor usb printing
  7749. }
  7750. saved_printing = false;
  7751. }
  7752. void print_world_coordinates()
  7753. {
  7754. SERIAL_ECHOPGM("world coordinates: (");
  7755. MYSERIAL.print(current_position[X_AXIS], 3);
  7756. SERIAL_ECHOPGM(", ");
  7757. MYSERIAL.print(current_position[Y_AXIS], 3);
  7758. SERIAL_ECHOPGM(", ");
  7759. MYSERIAL.print(current_position[Z_AXIS], 3);
  7760. SERIAL_ECHOLNPGM(")");
  7761. }
  7762. void print_physical_coordinates()
  7763. {
  7764. SERIAL_ECHOPGM("physical coordinates: (");
  7765. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7766. SERIAL_ECHOPGM(", ");
  7767. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7768. SERIAL_ECHOPGM(", ");
  7769. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7770. SERIAL_ECHOLNPGM(")");
  7771. }
  7772. void print_mesh_bed_leveling_table()
  7773. {
  7774. SERIAL_ECHOPGM("mesh bed leveling: ");
  7775. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7776. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7777. MYSERIAL.print(mbl.z_values[y][x], 3);
  7778. SERIAL_ECHOPGM(" ");
  7779. }
  7780. SERIAL_ECHOLNPGM("");
  7781. }
  7782. uint16_t print_time_remaining() {
  7783. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7784. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7785. else print_t = print_time_remaining_silent;
  7786. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7787. return print_t;
  7788. }
  7789. uint8_t print_percent_done() {
  7790. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7791. uint8_t percent_done = 0;
  7792. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7793. percent_done = print_percent_done_normal;
  7794. }
  7795. else if (print_percent_done_silent <= 100) {
  7796. percent_done = print_percent_done_silent;
  7797. }
  7798. else {
  7799. percent_done = card.percentDone();
  7800. }
  7801. return percent_done;
  7802. }
  7803. static void print_time_remaining_init() {
  7804. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7805. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7806. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7807. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7808. }
  7809. #define FIL_LOAD_LENGTH 60