tmc2130.cpp 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036
  1. #include "Marlin.h"
  2. #ifdef TMC2130
  3. #include "tmc2130.h"
  4. #include "ultralcd.h"
  5. #include "language.h"
  6. #include "spi.h"
  7. #define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle
  8. #define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull])
  9. #define TMC2130_GCONF_SILENT 0x00000004 // stealthChop
  10. //mode
  11. uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
  12. //holding currents
  13. uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
  14. //running currents
  15. uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
  16. //running currents for homing
  17. uint8_t tmc2130_current_r_home[4] = {8, 10, 20, 18};
  18. //pwm_ampl
  19. uint8_t tmc2130_pwm_ampl[4] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y, TMC2130_PWM_AMPL_Z, TMC2130_PWM_AMPL_E};
  20. //pwm_grad
  21. uint8_t tmc2130_pwm_grad[4] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y, TMC2130_PWM_GRAD_Z, TMC2130_PWM_GRAD_E};
  22. //pwm_auto
  23. uint8_t tmc2130_pwm_auto[4] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y, TMC2130_PWM_AUTO_Z, TMC2130_PWM_AUTO_E};
  24. //pwm_freq
  25. uint8_t tmc2130_pwm_freq[4] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y, TMC2130_PWM_FREQ_Z, TMC2130_PWM_FREQ_E};
  26. uint8_t tmc2130_mres[4] = {0, 0, 0, 0}; //will be filed at begin of init
  27. uint8_t tmc2130_sg_thr[4] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  28. uint8_t tmc2130_sg_thr_home[4] = {3, 3, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  29. uint8_t tmc2130_sg_homing_axes_mask = 0x00;
  30. uint8_t tmc2130_sg_meassure = 0xff;
  31. uint32_t tmc2130_sg_meassure_cnt = 0;
  32. uint32_t tmc2130_sg_meassure_val = 0;
  33. uint8_t tmc2130_home_enabled = 0;
  34. uint8_t tmc2130_home_origin[2] = {0, 0};
  35. uint8_t tmc2130_home_bsteps[2] = {48, 48};
  36. uint8_t tmc2130_home_fsteps[2] = {48, 48};
  37. uint8_t tmc2130_wave_fac[4] = {0, 0, 0, 0};
  38. tmc2130_chopper_config_t tmc2130_chopper_config[4] = {
  39. {TMC2130_TOFF_XYZ, 5, 1, 2, 0},
  40. {TMC2130_TOFF_XYZ, 5, 1, 2, 0},
  41. {TMC2130_TOFF_XYZ, 5, 1, 2, 0},
  42. {TMC2130_TOFF_E, 5, 1, 2, 0}
  43. };
  44. bool tmc2130_sg_stop_on_crash = true;
  45. uint8_t tmc2130_sg_diag_mask = 0x00;
  46. uint8_t tmc2130_sg_crash = 0;
  47. uint16_t tmc2130_sg_err[4] = {0, 0, 0, 0};
  48. uint16_t tmc2130_sg_cnt[4] = {0, 0, 0, 0};
  49. bool tmc2130_sg_change = false;
  50. bool skip_debug_msg = false;
  51. #define DBG(args...)
  52. //printf_P(args)
  53. #ifndef _n
  54. #define _n PSTR
  55. #endif //_n
  56. #ifndef _i
  57. #define _i PSTR
  58. #endif //_i
  59. //TMC2130 registers
  60. #define TMC2130_REG_GCONF 0x00 // 17 bits
  61. #define TMC2130_REG_GSTAT 0x01 // 3 bits
  62. #define TMC2130_REG_IOIN 0x04 // 8+8 bits
  63. #define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits
  64. #define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits
  65. #define TMC2130_REG_TSTEP 0x12 // 20 bits
  66. #define TMC2130_REG_TPWMTHRS 0x13 // 20 bits
  67. #define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits
  68. #define TMC2130_REG_THIGH 0x15 // 20 bits
  69. #define TMC2130_REG_XDIRECT 0x2d // 32 bits
  70. #define TMC2130_REG_VDCMIN 0x33 // 23 bits
  71. #define TMC2130_REG_MSLUT0 0x60 // 32 bits
  72. #define TMC2130_REG_MSLUT1 0x61 // 32 bits
  73. #define TMC2130_REG_MSLUT2 0x62 // 32 bits
  74. #define TMC2130_REG_MSLUT3 0x63 // 32 bits
  75. #define TMC2130_REG_MSLUT4 0x64 // 32 bits
  76. #define TMC2130_REG_MSLUT5 0x65 // 32 bits
  77. #define TMC2130_REG_MSLUT6 0x66 // 32 bits
  78. #define TMC2130_REG_MSLUT7 0x67 // 32 bits
  79. #define TMC2130_REG_MSLUTSEL 0x68 // 32 bits
  80. #define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits
  81. #define TMC2130_REG_MSCNT 0x6a // 10 bits
  82. #define TMC2130_REG_MSCURACT 0x6b // 9+9 bits
  83. #define TMC2130_REG_CHOPCONF 0x6c // 32 bits
  84. #define TMC2130_REG_COOLCONF 0x6d // 25 bits
  85. #define TMC2130_REG_DCCTRL 0x6e // 24 bits
  86. #define TMC2130_REG_DRV_STATUS 0x6f // 32 bits
  87. #define TMC2130_REG_PWMCONF 0x70 // 22 bits
  88. #define TMC2130_REG_PWM_SCALE 0x71 // 8 bits
  89. #define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits
  90. #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
  91. uint16_t tmc2130_rd_TSTEP(uint8_t axis);
  92. uint16_t tmc2130_rd_MSCNT(uint8_t axis);
  93. uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
  94. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
  95. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
  96. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32);
  97. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32);
  98. #define tmc2130_rd(axis, addr, rval) tmc2130_rx(axis, addr, rval)
  99. #define tmc2130_wr(axis, addr, wval) tmc2130_tx(axis, (addr) | 0x80, wval)
  100. static void tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval);
  101. static uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval);
  102. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r);
  103. uint16_t __tcoolthrs(uint8_t axis)
  104. {
  105. switch (axis)
  106. {
  107. case X_AXIS: return TMC2130_TCOOLTHRS_X;
  108. case Y_AXIS: return TMC2130_TCOOLTHRS_Y;
  109. case Z_AXIS: return TMC2130_TCOOLTHRS_Z;
  110. }
  111. return 0;
  112. }
  113. #ifdef PSU_Delta
  114. void tmc2130_init(bool bSupressFlag)
  115. #else
  116. void tmc2130_init()
  117. #endif
  118. {
  119. // DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL"));
  120. WRITE(X_TMC2130_CS, HIGH);
  121. WRITE(Y_TMC2130_CS, HIGH);
  122. WRITE(Z_TMC2130_CS, HIGH);
  123. WRITE(E0_TMC2130_CS, HIGH);
  124. SET_OUTPUT(X_TMC2130_CS);
  125. SET_OUTPUT(Y_TMC2130_CS);
  126. SET_OUTPUT(Z_TMC2130_CS);
  127. SET_OUTPUT(E0_TMC2130_CS);
  128. SET_INPUT(X_TMC2130_DIAG);
  129. SET_INPUT(Y_TMC2130_DIAG);
  130. SET_INPUT(Z_TMC2130_DIAG);
  131. SET_INPUT(E0_TMC2130_DIAG);
  132. for (uint_least8_t axis = 0; axis < 2; axis++) // X Y axes
  133. {
  134. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  135. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  136. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  137. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis));
  138. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  139. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  140. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  141. //tmc2130_wr_THIGH(axis, TMC2130_THIGH);
  142. }
  143. for (uint_least8_t axis = 2; axis < 3; axis++) // Z axis
  144. {
  145. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  146. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  147. #ifndef TMC2130_STEALTH_Z
  148. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  149. #else //TMC2130_STEALTH_Z
  150. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  151. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis));
  152. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  153. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  154. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  155. #endif //TMC2130_STEALTH_Z
  156. }
  157. for (uint_least8_t axis = 3; axis < 4; axis++) // E axis
  158. {
  159. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  160. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  161. #ifndef TMC2130_STEALTH_E
  162. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  163. #else //TMC2130_STEALTH_E
  164. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  165. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  166. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
  167. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  168. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  169. #endif //TMC2130_STEALTH_E
  170. }
  171. tmc2130_sg_err[0] = 0;
  172. tmc2130_sg_err[1] = 0;
  173. tmc2130_sg_err[2] = 0;
  174. tmc2130_sg_err[3] = 0;
  175. tmc2130_sg_cnt[0] = 0;
  176. tmc2130_sg_cnt[1] = 0;
  177. tmc2130_sg_cnt[2] = 0;
  178. tmc2130_sg_cnt[3] = 0;
  179. #ifdef TMC2130_LINEARITY_CORRECTION
  180. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  181. tmc2130_set_wave(X_AXIS, 247, tmc2130_wave_fac[X_AXIS]);
  182. tmc2130_set_wave(Y_AXIS, 247, tmc2130_wave_fac[Y_AXIS]);
  183. tmc2130_set_wave(Z_AXIS, 247, tmc2130_wave_fac[Z_AXIS]);
  184. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  185. tmc2130_set_wave(E_AXIS, 247, tmc2130_wave_fac[E_AXIS]);
  186. #endif //TMC2130_LINEARITY_CORRECTION
  187. #ifdef PSU_Delta
  188. if(!bSupressFlag)
  189. check_force_z();
  190. #endif // PSU_Delta
  191. }
  192. uint8_t tmc2130_sample_diag()
  193. {
  194. uint8_t mask = 0;
  195. if (READ(X_TMC2130_DIAG)) mask |= X_AXIS_MASK;
  196. if (READ(Y_TMC2130_DIAG)) mask |= Y_AXIS_MASK;
  197. // if (READ(Z_TMC2130_DIAG)) mask |= Z_AXIS_MASK;
  198. // if (READ(E0_TMC2130_DIAG)) mask |= E_AXIS_MASK;
  199. return mask;
  200. }
  201. extern bool is_usb_printing;
  202. void tmc2130_st_isr()
  203. {
  204. if (tmc2130_mode == TMC2130_MODE_SILENT || tmc2130_sg_stop_on_crash == false) return;
  205. uint8_t crash = 0;
  206. uint8_t diag_mask = tmc2130_sample_diag();
  207. // for (uint8_t axis = X_AXIS; axis <= E_AXIS; axis++)
  208. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++)
  209. {
  210. uint8_t mask = (X_AXIS_MASK << axis);
  211. if (diag_mask & mask) tmc2130_sg_err[axis]++;
  212. else
  213. if (tmc2130_sg_err[axis] > 0) tmc2130_sg_err[axis]--;
  214. if (tmc2130_sg_cnt[axis] < tmc2130_sg_err[axis])
  215. {
  216. tmc2130_sg_cnt[axis] = tmc2130_sg_err[axis];
  217. tmc2130_sg_change = true;
  218. uint8_t sg_thr = 64;
  219. // if (axis == Y_AXIS) sg_thr = 64;
  220. if (tmc2130_sg_err[axis] >= sg_thr)
  221. {
  222. tmc2130_sg_err[axis] = 0;
  223. crash |= mask;
  224. }
  225. }
  226. }
  227. if (tmc2130_sg_homing_axes_mask == 0)
  228. {
  229. if (tmc2130_sg_stop_on_crash && crash)
  230. {
  231. tmc2130_sg_crash = crash;
  232. tmc2130_sg_stop_on_crash = false;
  233. crashdet_stop_and_save_print();
  234. }
  235. }
  236. }
  237. bool tmc2130_update_sg()
  238. {
  239. if (tmc2130_sg_meassure <= E_AXIS)
  240. {
  241. uint32_t val32 = 0;
  242. tmc2130_rd(tmc2130_sg_meassure, TMC2130_REG_DRV_STATUS, &val32);
  243. tmc2130_sg_meassure_val += (val32 & 0x3ff);
  244. tmc2130_sg_meassure_cnt++;
  245. return true;
  246. }
  247. return false;
  248. }
  249. void tmc2130_home_enter(uint8_t axes_mask)
  250. {
  251. printf_P(PSTR("tmc2130_home_enter(axes_mask=0x%02x)\n"), axes_mask);
  252. #ifdef TMC2130_SG_HOMING
  253. if (axes_mask & 0x03) //X or Y
  254. tmc2130_wait_standstill_xy(1000);
  255. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  256. {
  257. uint8_t mask = (X_AXIS_MASK << axis);
  258. if (axes_mask & mask)
  259. {
  260. tmc2130_sg_homing_axes_mask |= mask;
  261. //Configuration to spreadCycle
  262. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  263. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
  264. // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  265. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis));
  266. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]);
  267. if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  268. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
  269. }
  270. }
  271. #endif //TMC2130_SG_HOMING
  272. }
  273. void tmc2130_home_exit()
  274. {
  275. printf_P(PSTR("tmc2130_home_exit tmc2130_sg_homing_axes_mask=0x%02x\n"), tmc2130_sg_homing_axes_mask);
  276. #ifdef TMC2130_SG_HOMING
  277. if (tmc2130_sg_homing_axes_mask & 0x03) //X or Y
  278. tmc2130_wait_standstill_xy(1000);
  279. if (tmc2130_sg_homing_axes_mask)
  280. {
  281. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  282. {
  283. uint8_t mask = (X_AXIS_MASK << axis);
  284. if (tmc2130_sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  285. {
  286. #ifndef TMC2130_STEALTH_Z
  287. if ((tmc2130_mode == TMC2130_MODE_SILENT) && (axis != Z_AXIS))
  288. #else //TMC2130_STEALTH_Z
  289. if (tmc2130_mode == TMC2130_MODE_SILENT)
  290. #endif //TMC2130_STEALTH_Z
  291. {
  292. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
  293. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  294. // tmc2130_wr_PWMCONF(i, tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
  295. }
  296. else
  297. {
  298. // tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  299. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  300. // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  301. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  302. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis));
  303. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  304. }
  305. }
  306. }
  307. tmc2130_sg_homing_axes_mask = 0x00;
  308. }
  309. tmc2130_sg_crash = false;
  310. #endif
  311. }
  312. void tmc2130_sg_meassure_start(uint8_t axis)
  313. {
  314. tmc2130_sg_meassure = axis;
  315. tmc2130_sg_meassure_cnt = 0;
  316. tmc2130_sg_meassure_val = 0;
  317. }
  318. uint16_t tmc2130_sg_meassure_stop()
  319. {
  320. tmc2130_sg_meassure = 0xff;
  321. return tmc2130_sg_meassure_val / tmc2130_sg_meassure_cnt;
  322. }
  323. bool tmc2130_wait_standstill_xy(int timeout)
  324. {
  325. // DBG(_n("tmc2130_wait_standstill_xy(timeout=%d)\n"), timeout);
  326. bool standstill = false;
  327. while (!standstill && (timeout > 0))
  328. {
  329. uint32_t drv_status_x = 0;
  330. uint32_t drv_status_y = 0;
  331. tmc2130_rd(X_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_x);
  332. tmc2130_rd(Y_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_y);
  333. // DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y);
  334. standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000);
  335. tmc2130_check_overtemp();
  336. timeout--;
  337. }
  338. return standstill;
  339. }
  340. void tmc2130_check_overtemp()
  341. {
  342. static uint32_t checktime = 0;
  343. if (_millis() - checktime > 1000 )
  344. {
  345. for (uint_least8_t i = 0; i < 4; i++)
  346. {
  347. uint32_t drv_status = 0;
  348. skip_debug_msg = true;
  349. tmc2130_rd(i, TMC2130_REG_DRV_STATUS, &drv_status);
  350. if (drv_status & ((uint32_t)1 << 26))
  351. { // BIT 26 - over temp prewarning ~120C (+-20C)
  352. SERIAL_ERRORRPGM(MSG_TMC_OVERTEMP);
  353. SERIAL_ECHOLN(i);
  354. for (uint_least8_t j = 0; j < 4; j++)
  355. tmc2130_wr(j, TMC2130_REG_CHOPCONF, 0x00010000);
  356. kill(MSG_TMC_OVERTEMP);
  357. }
  358. }
  359. checktime = _millis();
  360. tmc2130_sg_change = true;
  361. }
  362. #ifdef DEBUG_CRASHDET_COUNTERS
  363. if (tmc2130_sg_change)
  364. {
  365. for (int i = 0; i < 4; i++)
  366. {
  367. tmc2130_sg_change = false;
  368. lcd_set_cursor(0 + i*4, 3);
  369. lcd_print(itostr3(tmc2130_sg_cnt[i]));
  370. lcd_print(' ');
  371. }
  372. }
  373. #endif //DEBUG_CRASHDET_COUNTERS
  374. }
  375. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
  376. {
  377. uint8_t intpol = 1;
  378. uint8_t toff = tmc2130_chopper_config[axis].toff; // toff = 3 (fchop = 27.778kHz)
  379. uint8_t hstrt = tmc2130_chopper_config[axis].hstr; //initial 4, modified to 5
  380. uint8_t hend = tmc2130_chopper_config[axis].hend; //original value = 1
  381. uint8_t fd3 = 0;
  382. uint8_t rndtf = 0; //random off time
  383. uint8_t chm = 0; //spreadCycle
  384. uint8_t tbl = tmc2130_chopper_config[axis].tbl; //blanking time, original value = 2
  385. if (axis == E_AXIS)
  386. {
  387. #ifdef TMC2130_CNSTOFF_E
  388. // fd = 0 (slow decay only)
  389. hstrt = 0; //fd0..2
  390. fd3 = 0; //fd3
  391. hend = 0; //sine wave offset
  392. chm = 1; // constant off time mod
  393. #endif //TMC2130_CNSTOFF_E
  394. // toff = TMC2130_TOFF_E; // toff = 3-5
  395. // rndtf = 1;
  396. }
  397. // DBG(_n("tmc2130_setup_chopper(axis=%hhd, mres=%hhd, curh=%hhd, curr=%hhd\n"), axis, mres, current_h, current_r);
  398. // DBG(_n(" toff=%hhd, hstr=%hhd, hend=%hhd, tbl=%hhd\n"), toff, hstrt, hend, tbl);
  399. if (current_r <= 31)
  400. {
  401. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
  402. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
  403. }
  404. else
  405. {
  406. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 0, 0, 0, 0, mres, intpol, 0, 0);
  407. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
  408. }
  409. }
  410. void tmc2130_set_current_h(uint8_t axis, uint8_t current)
  411. {
  412. // DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current);
  413. tmc2130_current_h[axis] = current;
  414. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  415. }
  416. void tmc2130_set_current_r(uint8_t axis, uint8_t current)
  417. {
  418. // DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current);
  419. tmc2130_current_r[axis] = current;
  420. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  421. }
  422. void tmc2130_print_currents()
  423. {
  424. printf_P(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"),
  425. tmc2130_current_h[0], tmc2130_current_r[0],
  426. tmc2130_current_h[1], tmc2130_current_r[1],
  427. tmc2130_current_h[2], tmc2130_current_r[2],
  428. tmc2130_current_h[3], tmc2130_current_r[3]
  429. );
  430. }
  431. void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
  432. {
  433. // DBG(_n("tmc2130_set_pwm_ampl(axis=%hhd, pwm_ampl=%hhd\n"), axis, pwm_ampl);
  434. tmc2130_pwm_ampl[axis] = pwm_ampl;
  435. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  436. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  437. }
  438. void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
  439. {
  440. // DBG(_n("tmc2130_set_pwm_grad(axis=%hhd, pwm_grad=%hhd\n"), axis, pwm_grad);
  441. tmc2130_pwm_grad[axis] = pwm_grad;
  442. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  443. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  444. }
  445. uint16_t tmc2130_rd_TSTEP(uint8_t axis)
  446. {
  447. uint32_t val32 = 0;
  448. tmc2130_rd(axis, TMC2130_REG_TSTEP, &val32);
  449. if (val32 & 0x000f0000) return 0xffff;
  450. return val32 & 0xffff;
  451. }
  452. uint16_t tmc2130_rd_MSCNT(uint8_t axis)
  453. {
  454. uint32_t val32 = 0;
  455. tmc2130_rd(axis, TMC2130_REG_MSCNT, &val32);
  456. return val32 & 0x3ff;
  457. }
  458. uint32_t tmc2130_rd_MSCURACT(uint8_t axis)
  459. {
  460. uint32_t val32 = 0;
  461. tmc2130_rd(axis, TMC2130_REG_MSCURACT, &val32);
  462. return val32;
  463. }
  464. void tmc2130_wr_MSLUTSTART(uint8_t axis, uint8_t start_sin, uint8_t start_sin90)
  465. {
  466. uint32_t val = 0;
  467. val |= (uint32_t)start_sin;
  468. val |= ((uint32_t)start_sin90) << 16;
  469. tmc2130_wr(axis, TMC2130_REG_MSLUTSTART, val);
  470. //printf_P(PSTR("MSLUTSTART=%08lx (start_sin=%d start_sin90=%d)\n"), val, start_sin, start_sin90);
  471. }
  472. void tmc2130_wr_MSLUTSEL(uint8_t axis, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t w0, uint8_t w1, uint8_t w2, uint8_t w3)
  473. {
  474. uint32_t val = 0;
  475. val |= ((uint32_t)w0);
  476. val |= ((uint32_t)w1) << 2;
  477. val |= ((uint32_t)w2) << 4;
  478. val |= ((uint32_t)w3) << 6;
  479. val |= ((uint32_t)x1) << 8;
  480. val |= ((uint32_t)x2) << 16;
  481. val |= ((uint32_t)x3) << 24;
  482. tmc2130_wr(axis, TMC2130_REG_MSLUTSEL, val);
  483. //printf_P(PSTR("MSLUTSEL=%08lx (x1=%d x2=%d x3=%d w0=%d w1=%d w2=%d w3=%d)\n"), val, x1, x2, x3, w0, w1, w2, w3);
  484. }
  485. void tmc2130_wr_MSLUT(uint8_t axis, uint8_t i, uint32_t val)
  486. {
  487. tmc2130_wr(axis, TMC2130_REG_MSLUT0 + (i & 7), val);
  488. //printf_P(PSTR("MSLUT[%d]=%08lx\n"), i, val);
  489. }
  490. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
  491. {
  492. uint32_t val = 0;
  493. val |= (uint32_t)(toff & 15);
  494. val |= (uint32_t)(hstrt & 7) << 4;
  495. val |= (uint32_t)(hend & 15) << 7;
  496. val |= (uint32_t)(fd3 & 1) << 11;
  497. val |= (uint32_t)(disfdcc & 1) << 12;
  498. val |= (uint32_t)(rndtf & 1) << 13;
  499. val |= (uint32_t)(chm & 1) << 14;
  500. val |= (uint32_t)(tbl & 3) << 15;
  501. val |= (uint32_t)(vsense & 1) << 17;
  502. val |= (uint32_t)(vhighfs & 1) << 18;
  503. val |= (uint32_t)(vhighchm & 1) << 19;
  504. val |= (uint32_t)(sync & 15) << 20;
  505. val |= (uint32_t)(mres & 15) << 24;
  506. val |= (uint32_t)(intpol & 1) << 28;
  507. val |= (uint32_t)(dedge & 1) << 29;
  508. val |= (uint32_t)(diss2g & 1) << 30;
  509. tmc2130_wr(axis, TMC2130_REG_CHOPCONF, val);
  510. }
  511. //void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
  512. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
  513. {
  514. uint32_t val = 0;
  515. val |= (uint32_t)(pwm_ampl & 255);
  516. val |= (uint32_t)(pwm_grad & 255) << 8;
  517. val |= (uint32_t)(pwm_freq & 3) << 16;
  518. val |= (uint32_t)(pwm_auto & 1) << 18;
  519. val |= (uint32_t)(pwm_symm & 1) << 19;
  520. val |= (uint32_t)(freewheel & 3) << 20;
  521. tmc2130_wr(axis, TMC2130_REG_PWMCONF, val);
  522. // tmc2130_wr(axis, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
  523. }
  524. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32)
  525. {
  526. tmc2130_wr(axis, TMC2130_REG_TPWMTHRS, val32);
  527. }
  528. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32)
  529. {
  530. tmc2130_wr(axis, TMC2130_REG_THIGH, val32);
  531. }
  532. uint8_t tmc2130_usteps2mres(uint16_t usteps)
  533. {
  534. uint8_t mres = 8; while (mres && (usteps >>= 1)) mres--;
  535. return mres;
  536. }
  537. inline void tmc2130_cs_low(uint8_t axis)
  538. {
  539. switch (axis)
  540. {
  541. case X_AXIS: WRITE(X_TMC2130_CS, LOW); break;
  542. case Y_AXIS: WRITE(Y_TMC2130_CS, LOW); break;
  543. case Z_AXIS: WRITE(Z_TMC2130_CS, LOW); break;
  544. case E_AXIS: WRITE(E0_TMC2130_CS, LOW); break;
  545. }
  546. }
  547. inline void tmc2130_cs_high(uint8_t axis)
  548. {
  549. switch (axis)
  550. {
  551. case X_AXIS: WRITE(X_TMC2130_CS, HIGH); break;
  552. case Y_AXIS: WRITE(Y_TMC2130_CS, HIGH); break;
  553. case Z_AXIS: WRITE(Z_TMC2130_CS, HIGH); break;
  554. case E_AXIS: WRITE(E0_TMC2130_CS, HIGH); break;
  555. }
  556. }
  557. //spi
  558. #define TMC2130_SPI_ENTER() spi_setup(TMC2130_SPCR, TMC2130_SPSR)
  559. #define TMC2130_SPI_TXRX spi_txrx
  560. #define TMC2130_SPI_LEAVE()
  561. static void tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval)
  562. {
  563. //datagram1 - request
  564. TMC2130_SPI_ENTER();
  565. tmc2130_cs_low(axis);
  566. TMC2130_SPI_TXRX(addr); // address
  567. TMC2130_SPI_TXRX((wval >> 24) & 0xff); // MSB
  568. TMC2130_SPI_TXRX((wval >> 16) & 0xff);
  569. TMC2130_SPI_TXRX((wval >> 8) & 0xff);
  570. TMC2130_SPI_TXRX(wval & 0xff); // LSB
  571. tmc2130_cs_high(axis);
  572. TMC2130_SPI_LEAVE();
  573. }
  574. static uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval)
  575. {
  576. //datagram1 - request
  577. TMC2130_SPI_ENTER();
  578. tmc2130_cs_low(axis);
  579. TMC2130_SPI_TXRX(addr); // address
  580. TMC2130_SPI_TXRX(0); // MSB
  581. TMC2130_SPI_TXRX(0);
  582. TMC2130_SPI_TXRX(0);
  583. TMC2130_SPI_TXRX(0); // LSB
  584. tmc2130_cs_high(axis);
  585. TMC2130_SPI_LEAVE();
  586. //datagram2 - response
  587. TMC2130_SPI_ENTER();
  588. tmc2130_cs_low(axis);
  589. uint8_t stat = TMC2130_SPI_TXRX(0); // status
  590. uint32_t val32 = 0;
  591. val32 = TMC2130_SPI_TXRX(0); // MSB
  592. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0);
  593. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0);
  594. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0); // LSB
  595. tmc2130_cs_high(axis);
  596. TMC2130_SPI_LEAVE();
  597. if (rval != 0) *rval = val32;
  598. return stat;
  599. }
  600. #define _GET_PWR_X (READ(X_ENABLE_PIN) == X_ENABLE_ON)
  601. #define _GET_PWR_Y (READ(Y_ENABLE_PIN) == Y_ENABLE_ON)
  602. #define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON)
  603. #define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON)
  604. #define _SET_PWR_X(ena) { WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON); asm("nop"); }
  605. #define _SET_PWR_Y(ena) { WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON); asm("nop"); }
  606. #define _SET_PWR_Z(ena) { WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON); asm("nop"); }
  607. #define _SET_PWR_E(ena) { WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON); asm("nop"); }
  608. #define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR)
  609. #define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR)
  610. #define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR)
  611. #define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR)
  612. #define _SET_DIR_X(dir) { WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR); asm("nop"); }
  613. #define _SET_DIR_Y(dir) { WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR); asm("nop"); }
  614. #define _SET_DIR_Z(dir) { WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR); asm("nop"); }
  615. #define _SET_DIR_E(dir) { WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR); asm("nop"); }
  616. #define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); asm("nop"); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); asm("nop"); }
  617. #define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); asm("nop"); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); asm("nop"); }
  618. #define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); asm("nop"); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); asm("nop"); }
  619. #define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); asm("nop"); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); asm("nop"); }
  620. uint16_t tmc2130_get_res(uint8_t axis)
  621. {
  622. return tmc2130_mres2usteps(tmc2130_mres[axis]);
  623. }
  624. void tmc2130_set_res(uint8_t axis, uint16_t res)
  625. {
  626. tmc2130_mres[axis] = tmc2130_usteps2mres(res);
  627. // uint32_t u = _micros();
  628. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  629. // u = _micros() - u;
  630. // printf_P(PSTR("tmc2130_setup_chopper %c %lu us"), "XYZE"[axis], u);
  631. }
  632. uint8_t tmc2130_get_pwr(uint8_t axis)
  633. {
  634. switch (axis)
  635. {
  636. case X_AXIS: return _GET_PWR_X;
  637. case Y_AXIS: return _GET_PWR_Y;
  638. case Z_AXIS: return _GET_PWR_Z;
  639. case E_AXIS: return _GET_PWR_E;
  640. }
  641. return 0;
  642. }
  643. //! @par pwr motor power
  644. //! * 0 disabled
  645. //! * non-zero enabled
  646. void tmc2130_set_pwr(uint8_t axis, uint8_t pwr)
  647. {
  648. switch (axis)
  649. {
  650. case X_AXIS: _SET_PWR_X(pwr); break;
  651. case Y_AXIS: _SET_PWR_Y(pwr); break;
  652. case Z_AXIS: _SET_PWR_Z(pwr); break;
  653. case E_AXIS: _SET_PWR_E(pwr); break;
  654. }
  655. }
  656. uint8_t tmc2130_get_inv(uint8_t axis)
  657. {
  658. switch (axis)
  659. {
  660. case X_AXIS: return INVERT_X_DIR;
  661. case Y_AXIS: return INVERT_Y_DIR;
  662. case Z_AXIS: return INVERT_Z_DIR;
  663. case E_AXIS: return INVERT_E0_DIR;
  664. }
  665. return 0;
  666. }
  667. uint8_t tmc2130_get_dir(uint8_t axis)
  668. {
  669. switch (axis)
  670. {
  671. case X_AXIS: return _GET_DIR_X;
  672. case Y_AXIS: return _GET_DIR_Y;
  673. case Z_AXIS: return _GET_DIR_Z;
  674. case E_AXIS: return _GET_DIR_E;
  675. }
  676. return 0;
  677. }
  678. void tmc2130_set_dir(uint8_t axis, uint8_t dir)
  679. {
  680. switch (axis)
  681. {
  682. case X_AXIS: _SET_DIR_X(dir); break;
  683. case Y_AXIS: _SET_DIR_Y(dir); break;
  684. case Z_AXIS: _SET_DIR_Z(dir); break;
  685. case E_AXIS: _SET_DIR_E(dir); break;
  686. }
  687. }
  688. void tmc2130_do_step(uint8_t axis)
  689. {
  690. switch (axis)
  691. {
  692. case X_AXIS: _DO_STEP_X; break;
  693. case Y_AXIS: _DO_STEP_Y; break;
  694. case Z_AXIS: _DO_STEP_Z; break;
  695. case E_AXIS: _DO_STEP_E; break;
  696. }
  697. }
  698. void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us)
  699. {
  700. tmc2130_set_dir(axis, dir);
  701. delayMicroseconds(100);
  702. while (steps--)
  703. {
  704. tmc2130_do_step(axis);
  705. delayMicroseconds(delay_us);
  706. }
  707. }
  708. void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution)
  709. {
  710. printf_P(PSTR("tmc2130_goto_step %d %d %d %d \n"), axis, step, dir, delay_us, microstep_resolution);
  711. uint8_t shift; for (shift = 0; shift < 8; shift++) if (microstep_resolution == (256u >> shift)) break;
  712. uint16_t cnt = 4 * (1 << (8 - shift));
  713. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  714. if (dir == 2)
  715. {
  716. dir = tmc2130_get_inv(axis)?0:1;
  717. int steps = (int)step - (int)(mscnt >> shift);
  718. if (steps < 0)
  719. {
  720. dir ^= 1;
  721. steps = -steps;
  722. }
  723. if (steps > static_cast<int>(cnt / 2))
  724. {
  725. dir ^= 1;
  726. steps = cnt - steps;
  727. }
  728. cnt = steps;
  729. }
  730. tmc2130_set_dir(axis, dir);
  731. delayMicroseconds(100);
  732. mscnt = tmc2130_rd_MSCNT(axis);
  733. while ((cnt--) && ((mscnt >> shift) != step))
  734. {
  735. tmc2130_do_step(axis);
  736. delayMicroseconds(delay_us);
  737. mscnt = tmc2130_rd_MSCNT(axis);
  738. }
  739. }
  740. void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream)
  741. {
  742. uint8_t pwr = tmc2130_get_pwr(axis);
  743. tmc2130_set_pwr(axis, 0);
  744. tmc2130_setup_chopper(axis, tmc2130_usteps2mres(256), tmc2130_current_h[axis], tmc2130_current_r[axis]);
  745. tmc2130_goto_step(axis, 0, 2, 100, 256);
  746. tmc2130_set_dir(axis, tmc2130_get_inv(axis)?0:1);
  747. for (unsigned int i = 0; i <= 255; i++)
  748. {
  749. uint32_t val = tmc2130_rd_MSCURACT(axis);
  750. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  751. int curA = (val & 0xff) | ((val << 7) & 0x8000);
  752. if (stream)
  753. {
  754. if (mscnt == i)
  755. fprintf_P(stream, PSTR("%d\t%d\n"), i, curA);
  756. else //TODO - remove this check
  757. fprintf_P(stream, PSTR("!! (i=%d MSCNT=%d)\n"), i, mscnt);
  758. }
  759. if (data) *(data++) = curA;
  760. tmc2130_do_step(axis);
  761. delayMicroseconds(100);
  762. }
  763. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  764. tmc2130_set_pwr(axis, pwr);
  765. }
  766. void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac1000)
  767. {
  768. // TMC2130 wave compression algorithm
  769. // optimized for minimal memory requirements
  770. // printf_P(PSTR("tmc2130_set_wave %hhd %hhd\n"), axis, fac1000);
  771. if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
  772. if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
  773. float fac = 0;
  774. if (fac1000) fac = ((float)((uint16_t)fac1000 + 1000) / 1000); //correction factor
  775. // printf_P(PSTR(" factor: %s\n"), ftostr43(fac));
  776. uint8_t vA = 0; //value of currentA
  777. uint8_t va = 0; //previous vA
  778. int8_t d0 = 0; //delta0
  779. int8_t d1 = 1; //delta1
  780. uint8_t w[4] = {1,1,1,1}; //W bits (MSLUTSEL)
  781. uint8_t x[3] = {255,255,255}; //X segment bounds (MSLUTSEL)
  782. uint8_t s = 0; //current segment
  783. int8_t b; //encoded bit value
  784. int8_t dA; //delta value
  785. int i; //microstep index
  786. uint32_t reg = 0; //tmc2130 register
  787. tmc2130_wr_MSLUTSTART(axis, 0, amp);
  788. for (i = 0; i < 256; i++)
  789. {
  790. if ((i & 0x1f) == 0)
  791. reg = 0;
  792. // calculate value
  793. if (fac == 0) // default TMC wave
  794. vA = (uint8_t)((amp+1) * sin((2*PI*i + PI)/1024) + 0.5) - 1;
  795. else // corrected wave
  796. vA = (uint8_t)(amp * pow(sin(2*PI*i/1024), fac) + 0.5);
  797. dA = vA - va; // calculate delta
  798. va = vA;
  799. b = -1;
  800. if (dA == d0) b = 0; //delta == delta0 => bit=0
  801. else if (dA == d1) b = 1; //delta == delta1 => bit=1
  802. else
  803. {
  804. if (dA < d0) // delta < delta0 => switch wbit down
  805. {
  806. //printf("dn\n");
  807. b = 0;
  808. switch (dA)
  809. {
  810. case -1: d0 = -1; d1 = 0; w[s+1] = 0; break;
  811. case 0: d0 = 0; d1 = 1; w[s+1] = 1; break;
  812. case 1: d0 = 1; d1 = 2; w[s+1] = 2; break;
  813. default: b = -1; break;
  814. }
  815. if (b >= 0) { x[s] = i; s++; }
  816. }
  817. else if (dA > d1) // delta > delta0 => switch wbit up
  818. {
  819. //printf("up\n");
  820. b = 1;
  821. switch (dA)
  822. {
  823. case 1: d0 = 0; d1 = 1; w[s+1] = 1; break;
  824. case 2: d0 = 1; d1 = 2; w[s+1] = 2; break;
  825. case 3: d0 = 2; d1 = 3; w[s+1] = 3; break;
  826. default: b = -1; break;
  827. }
  828. if (b >= 0) { x[s] = i; s++; }
  829. }
  830. }
  831. if (b < 0) break; // delta out of range (<-1 or >3)
  832. if (s > 3) break; // segment out of range (> 3)
  833. //printf("%d\n", vA);
  834. if (b == 1) reg |= 0x80000000;
  835. if ((i & 31) == 31)
  836. tmc2130_wr_MSLUT(axis, (uint8_t)(i >> 5), reg);
  837. else
  838. reg >>= 1;
  839. // printf("%3d\t%3d\t%2d\t%2d\t%2d\t%2d %08x\n", i, vA, dA, b, w[s], s, reg);
  840. }
  841. tmc2130_wr_MSLUTSEL(axis, x[0], x[1], x[2], w[0], w[1], w[2], w[3]);
  842. }
  843. void bubblesort_uint8(uint8_t* data, uint8_t size, uint8_t* data2)
  844. {
  845. uint8_t changed = 1;
  846. while (changed)
  847. {
  848. changed = 0;
  849. for (uint8_t i = 0; i < (size - 1); i++)
  850. if (data[i] > data[i+1])
  851. {
  852. uint8_t register d = data[i];
  853. data[i] = data[i+1];
  854. data[i+1] = d;
  855. if (data2)
  856. {
  857. d = data2[i];
  858. data2[i] = data2[i+1];
  859. data2[i+1] = d;
  860. }
  861. changed = 1;
  862. }
  863. }
  864. }
  865. uint8_t clusterize_uint8(uint8_t* data, uint8_t size, uint8_t* ccnt, uint8_t* cval, uint8_t tol)
  866. {
  867. uint8_t cnt = 1;
  868. uint16_t sum = data[0];
  869. uint8_t cl = 0;
  870. for (uint8_t i = 1; i < size; i++)
  871. {
  872. uint8_t d = data[i];
  873. uint8_t val = sum / cnt;
  874. uint8_t dif = 0;
  875. if (val > d) dif = val - d;
  876. else dif = d - val;
  877. if (dif <= tol)
  878. {
  879. cnt += 1;
  880. sum += d;
  881. }
  882. else
  883. {
  884. if (ccnt) ccnt[cl] = cnt;
  885. if (cval) cval[cl] = val;
  886. cnt = 1;
  887. sum = d;
  888. cl += 1;
  889. }
  890. }
  891. if (ccnt) ccnt[cl] = cnt;
  892. if (cval) cval[cl] = sum / cnt;
  893. return ++cl;
  894. }
  895. bool tmc2130_home_calibrate(uint8_t axis)
  896. {
  897. uint8_t step[16];
  898. uint8_t cnt[16];
  899. uint8_t val[16];
  900. homeaxis(axis, 16, step);
  901. bubblesort_uint8(step, 16, 0);
  902. printf_P(PSTR("sorted samples:\n"));
  903. for (uint8_t i = 0; i < 16; i++)
  904. printf_P(PSTR(" i=%2d step=%2d\n"), i, step[i]);
  905. uint8_t cl = clusterize_uint8(step, 16, cnt, val, 1);
  906. printf_P(PSTR("clusters:\n"));
  907. for (uint8_t i = 0; i < cl; i++)
  908. printf_P(PSTR(" i=%2d cnt=%2d val=%2d\n"), i, cnt[i], val[i]);
  909. bubblesort_uint8(cnt, cl, val);
  910. tmc2130_home_origin[axis] = val[cl-1];
  911. printf_P(PSTR("result value: %d\n"), tmc2130_home_origin[axis]);
  912. if (axis == X_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
  913. else if (axis == Y_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
  914. return true;
  915. }
  916. uint8_t tmc2130_cur2val(float cur)
  917. {
  918. if (cur < 0) cur = 0; //limit min
  919. if (cur > 1029) cur = 1029; //limit max
  920. //540mA is threshold for switch from high sense to low sense
  921. //for higher currents is maximum current 1029mA
  922. if (cur >= 540) return 63 * (float)cur / 1029;
  923. //for lower currents must be the value divided by 1.125 (= 0.18*2/0.32)
  924. return 63 * (float)cur / (1029 * 1.125);
  925. }
  926. float tmc2130_val2cur(uint8_t val)
  927. {
  928. float rsense = 0.2; //0.2 ohm sense resistors
  929. uint8_t vsense = (val & 0x20)?0:1; //vsense bit = val>31
  930. float vfs = vsense?0.18:0.32; //vfs depends on vsense bit
  931. uint8_t val2 = vsense?val:(val >> 1); //vals 32..63 shifted right (16..31)
  932. // equation from datasheet (0.7071 ~= 1/sqrt(2))
  933. float cur = ((float)(val2 + 1)/32) * (vfs/(rsense + 0.02)) * 0.7071;
  934. return cur * 1000; //return current in mA
  935. }
  936. #endif //TMC2130