planner.cpp 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. // Use M203 to override by software
  54. float* max_feedrate = cs.max_feedrate_normal;
  55. // Use M201 to override by software
  56. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0,
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  71. uint8_t maxlimit_status;
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile uint8_t block_buffer_head; // Index of the next block to be pushed
  84. volatile uint8_t block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. float extrude_min_temp=EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_K = LA_K_DEF;
  97. float position_float[NUM_AXIS];
  98. #endif
  99. // Request the next block to start at zero E count
  100. static bool plan_reset_next_e_queue;
  101. static bool plan_reset_next_e_sched;
  102. // Returns the index of the next block in the ring buffer
  103. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  104. static inline uint8_t next_block_index(uint8_t block_index) {
  105. if (++ block_index == BLOCK_BUFFER_SIZE)
  106. block_index = 0;
  107. return block_index;
  108. }
  109. // Returns the index of the previous block in the ring buffer
  110. static inline uint8_t prev_block_index(uint8_t block_index) {
  111. if (block_index == 0)
  112. block_index = BLOCK_BUFFER_SIZE;
  113. -- block_index;
  114. return block_index;
  115. }
  116. //===========================================================================
  117. //=============================functions ============================
  118. //===========================================================================
  119. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  120. // given acceleration:
  121. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  122. {
  123. if (acceleration!=0) {
  124. return((target_rate*target_rate-initial_rate*initial_rate)/
  125. (2.0*acceleration));
  126. }
  127. else {
  128. return 0.0; // acceleration was 0, set acceleration distance to 0
  129. }
  130. }
  131. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  132. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  133. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  134. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  135. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  136. {
  137. if (acceleration!=0) {
  138. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  139. (4.0*acceleration) );
  140. }
  141. else {
  142. return 0.0; // acceleration was 0, set intersection distance to 0
  143. }
  144. }
  145. // Minimum stepper rate 120Hz.
  146. #define MINIMAL_STEP_RATE 120
  147. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  148. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  149. {
  150. // These two lines are the only floating point calculations performed in this routine.
  151. // initial_rate, final_rate in Hz.
  152. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  153. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  154. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  155. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  156. // Limit minimal step rate (Otherwise the timer will overflow.)
  157. if (initial_rate < MINIMAL_STEP_RATE)
  158. initial_rate = MINIMAL_STEP_RATE;
  159. if (initial_rate > block->nominal_rate)
  160. initial_rate = block->nominal_rate;
  161. if (final_rate < MINIMAL_STEP_RATE)
  162. final_rate = MINIMAL_STEP_RATE;
  163. if (final_rate > block->nominal_rate)
  164. final_rate = block->nominal_rate;
  165. uint32_t acceleration = block->acceleration_st;
  166. if (acceleration == 0)
  167. // Don't allow zero acceleration.
  168. acceleration = 1;
  169. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  170. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  171. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  172. //FIXME assert that this result fits a 64bit unsigned int.
  173. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  174. uint32_t final_rate_sqr = final_rate*final_rate;
  175. uint32_t acceleration_x2 = acceleration << 1;
  176. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  177. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  178. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  179. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  180. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  181. // Size of Plateau of Nominal Rate.
  182. uint32_t plateau_steps = 0;
  183. #ifdef LIN_ADVANCE
  184. uint16_t final_adv_steps = 0;
  185. uint16_t max_adv_steps = 0;
  186. if (block->use_advance_lead) {
  187. final_adv_steps = final_rate * block->adv_comp;
  188. }
  189. #endif
  190. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  191. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  192. // in order to reach the final_rate exactly at the end of this block.
  193. if (accel_decel_steps < block->step_event_count.wide) {
  194. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  195. #ifdef LIN_ADVANCE
  196. if (block->use_advance_lead)
  197. max_adv_steps = block->nominal_rate * block->adv_comp;
  198. #endif
  199. } else {
  200. uint32_t acceleration_x4 = acceleration << 2;
  201. // Avoid negative numbers
  202. if (final_rate_sqr >= initial_rate_sqr) {
  203. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  204. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  205. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  206. #if 0
  207. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  208. #else
  209. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  210. if (block->step_event_count.wide & 1)
  211. accelerate_steps += acceleration_x2;
  212. accelerate_steps /= acceleration_x4;
  213. accelerate_steps += (block->step_event_count.wide >> 1);
  214. #endif
  215. if (accelerate_steps > block->step_event_count.wide)
  216. accelerate_steps = block->step_event_count.wide;
  217. } else {
  218. #if 0
  219. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  220. #else
  221. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  222. if (block->step_event_count.wide & 1)
  223. decelerate_steps += acceleration_x2;
  224. decelerate_steps /= acceleration_x4;
  225. decelerate_steps += (block->step_event_count.wide >> 1);
  226. #endif
  227. if (decelerate_steps > block->step_event_count.wide)
  228. decelerate_steps = block->step_event_count.wide;
  229. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  230. }
  231. #ifdef LIN_ADVANCE
  232. if (block->use_advance_lead) {
  233. if(!accelerate_steps || !decelerate_steps) {
  234. // accelerate_steps=0: deceleration-only ramp, max_rate is effectively unused
  235. // decelerate_steps=0: acceleration-only ramp, max_rate _is_ final_rate
  236. max_adv_steps = final_adv_steps;
  237. } else {
  238. float max_rate = sqrt(acceleration_x2 * accelerate_steps + initial_rate_sqr);
  239. max_adv_steps = max_rate * block->adv_comp;
  240. }
  241. }
  242. #endif
  243. }
  244. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  245. // This block locks the interrupts globally for 4.38 us,
  246. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  247. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  248. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  249. if (! block->busy) { // Don't update variables if block is busy.
  250. block->accelerate_until = accelerate_steps;
  251. block->decelerate_after = accelerate_steps+plateau_steps;
  252. block->initial_rate = initial_rate;
  253. block->final_rate = final_rate;
  254. #ifdef LIN_ADVANCE
  255. block->final_adv_steps = final_adv_steps;
  256. block->max_adv_steps = max_adv_steps;
  257. #endif
  258. }
  259. CRITICAL_SECTION_END;
  260. }
  261. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  262. // decceleration within the allotted distance.
  263. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  264. {
  265. // assert(decceleration < 0);
  266. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  267. }
  268. // Recalculates the motion plan according to the following algorithm:
  269. //
  270. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  271. // so that:
  272. // a. The junction jerk is within the set limit
  273. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  274. // acceleration.
  275. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  276. // a. The speed increase within one block would require faster accelleration than the one, true
  277. // constant acceleration.
  278. //
  279. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  280. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  281. // the set limit. Finally it will:
  282. //
  283. // 3. Recalculate trapezoids for all blocks.
  284. //
  285. //FIXME This routine is called 15x every time a new line is added to the planner,
  286. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  287. // if the CPU is found lacking computational power.
  288. //
  289. // Following sources may be used to optimize the 8-bit AVR code:
  290. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  291. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  292. //
  293. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  294. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  295. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  296. //
  297. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  298. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  299. // https://github.com/rekka/avrmultiplication
  300. //
  301. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  302. // https://courses.cit.cornell.edu/ee476/Math/
  303. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  304. //
  305. void planner_recalculate(const float &safe_final_speed)
  306. {
  307. // Reverse pass
  308. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  309. // by consuming the blocks, therefore shortening the queue.
  310. uint8_t tail = block_buffer_tail;
  311. uint8_t block_index;
  312. block_t *prev, *current, *next;
  313. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  314. // At least three blocks are in the queue?
  315. uint8_t n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  316. if (n_blocks >= 3) {
  317. // Initialize the last tripple of blocks.
  318. block_index = prev_block_index(block_buffer_head);
  319. next = block_buffer + block_index;
  320. current = block_buffer + (block_index = prev_block_index(block_index));
  321. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  322. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  323. // 1) it may already be running at the stepper interrupt,
  324. // 2) there is no way to limit it when going in the forward direction.
  325. while (block_index != tail) {
  326. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  327. // Don't modify the entry velocity of the starting block.
  328. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  329. // for the stepper interrupt routine to use them.
  330. tail = block_index;
  331. // Update the number of blocks to process.
  332. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  333. // SERIAL_ECHOLNPGM("START");
  334. break;
  335. }
  336. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  337. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  338. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  339. if (current->entry_speed != current->max_entry_speed) {
  340. // assert(current->entry_speed < current->max_entry_speed);
  341. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  342. // segment and the maximum acceleration allowed for this segment.
  343. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  344. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  345. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  346. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  347. // together with an assembly 32bit->16bit sqrt function.
  348. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  349. current->max_entry_speed :
  350. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  351. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  352. current->flag |= BLOCK_FLAG_RECALCULATE;
  353. }
  354. next = current;
  355. current = block_buffer + (block_index = prev_block_index(block_index));
  356. }
  357. }
  358. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  359. // Forward pass and recalculate the trapezoids.
  360. if (n_blocks >= 2) {
  361. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  362. block_index = tail;
  363. prev = block_buffer + block_index;
  364. current = block_buffer + (block_index = next_block_index(block_index));
  365. do {
  366. // If the previous block is an acceleration block, but it is not long enough to complete the
  367. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  368. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  369. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  370. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  371. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  372. // Check for junction speed change
  373. if (current->entry_speed != entry_speed) {
  374. current->entry_speed = entry_speed;
  375. current->flag |= BLOCK_FLAG_RECALCULATE;
  376. }
  377. }
  378. // Recalculate if current block entry or exit junction speed has changed.
  379. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  380. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  381. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  382. // Reset current only to ensure next trapezoid is computed.
  383. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  384. }
  385. prev = current;
  386. current = block_buffer + (block_index = next_block_index(block_index));
  387. } while (block_index != block_buffer_head);
  388. }
  389. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  390. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  391. current = block_buffer + prev_block_index(block_buffer_head);
  392. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  393. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  394. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  395. }
  396. void plan_init() {
  397. block_buffer_head = 0;
  398. block_buffer_tail = 0;
  399. memset(position, 0, sizeof(position)); // clear position
  400. #ifdef LIN_ADVANCE
  401. memset(position_float, 0, sizeof(position_float)); // clear position
  402. #endif
  403. memset(previous_speed, 0, sizeof(previous_speed));
  404. previous_nominal_speed = 0.0;
  405. plan_reset_next_e_queue = false;
  406. plan_reset_next_e_sched = false;
  407. }
  408. #ifdef AUTOTEMP
  409. void getHighESpeed()
  410. {
  411. static float oldt=0;
  412. if(!autotemp_enabled){
  413. return;
  414. }
  415. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  416. return; //do nothing
  417. }
  418. float high=0.0;
  419. uint8_t block_index = block_buffer_tail;
  420. while(block_index != block_buffer_head) {
  421. if((block_buffer[block_index].steps_x.wide != 0) ||
  422. (block_buffer[block_index].steps_y.wide != 0) ||
  423. (block_buffer[block_index].steps_z.wide != 0)) {
  424. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  425. //se; mm/sec;
  426. if(se>high)
  427. {
  428. high=se;
  429. }
  430. }
  431. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  432. }
  433. float g=autotemp_min+high*autotemp_factor;
  434. float t=g;
  435. if(t<autotemp_min)
  436. t=autotemp_min;
  437. if(t>autotemp_max)
  438. t=autotemp_max;
  439. if(oldt>t)
  440. {
  441. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  442. }
  443. oldt=t;
  444. setTargetHotend0(t);
  445. }
  446. #endif
  447. bool e_active()
  448. {
  449. unsigned char e_active = 0;
  450. block_t *block;
  451. if(block_buffer_tail != block_buffer_head)
  452. {
  453. uint8_t block_index = block_buffer_tail;
  454. while(block_index != block_buffer_head)
  455. {
  456. block = &block_buffer[block_index];
  457. if(block->steps_e.wide != 0) e_active++;
  458. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  459. }
  460. }
  461. return (e_active > 0) ? true : false ;
  462. }
  463. void check_axes_activity()
  464. {
  465. unsigned char x_active = 0;
  466. unsigned char y_active = 0;
  467. unsigned char z_active = 0;
  468. unsigned char e_active = 0;
  469. unsigned char tail_fan_speed = fanSpeed;
  470. block_t *block;
  471. if(block_buffer_tail != block_buffer_head)
  472. {
  473. uint8_t block_index = block_buffer_tail;
  474. tail_fan_speed = block_buffer[block_index].fan_speed;
  475. while(block_index != block_buffer_head)
  476. {
  477. block = &block_buffer[block_index];
  478. if(block->steps_x.wide != 0) x_active++;
  479. if(block->steps_y.wide != 0) y_active++;
  480. if(block->steps_z.wide != 0) z_active++;
  481. if(block->steps_e.wide != 0) e_active++;
  482. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  483. }
  484. }
  485. if((DISABLE_X) && (x_active == 0)) disable_x();
  486. if((DISABLE_Y) && (y_active == 0)) disable_y();
  487. if((DISABLE_Z) && (z_active == 0)) disable_z();
  488. if((DISABLE_E) && (e_active == 0))
  489. {
  490. disable_e0();
  491. disable_e1();
  492. disable_e2();
  493. }
  494. #if defined(FAN_PIN) && FAN_PIN > -1
  495. #ifdef FAN_KICKSTART_TIME
  496. static unsigned long fan_kick_end;
  497. if (tail_fan_speed) {
  498. if (fan_kick_end == 0) {
  499. // Just starting up fan - run at full power.
  500. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  501. tail_fan_speed = 255;
  502. } else if (fan_kick_end > _millis())
  503. // Fan still spinning up.
  504. tail_fan_speed = 255;
  505. } else {
  506. fan_kick_end = 0;
  507. }
  508. #endif//FAN_KICKSTART_TIME
  509. #ifdef FAN_SOFT_PWM
  510. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  511. fanSpeedBckp = tail_fan_speed;
  512. }
  513. else {
  514. fanSpeedSoftPwm = tail_fan_speed;
  515. }
  516. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  517. #else
  518. analogWrite(FAN_PIN,tail_fan_speed);
  519. #endif//!FAN_SOFT_PWM
  520. #endif//FAN_PIN > -1
  521. #ifdef AUTOTEMP
  522. getHighESpeed();
  523. #endif
  524. }
  525. bool waiting_inside_plan_buffer_line_print_aborted = false;
  526. /*
  527. void planner_abort_soft()
  528. {
  529. // Empty the queue.
  530. while (blocks_queued()) plan_discard_current_block();
  531. // Relay to planner wait routine, that the current line shall be canceled.
  532. waiting_inside_plan_buffer_line_print_aborted = true;
  533. //current_position[i]
  534. }
  535. */
  536. #ifdef PLANNER_DIAGNOSTICS
  537. static inline void planner_update_queue_min_counter()
  538. {
  539. uint8_t new_counter = moves_planned();
  540. if (new_counter < g_cntr_planner_queue_min)
  541. g_cntr_planner_queue_min = new_counter;
  542. }
  543. #endif /* PLANNER_DIAGNOSTICS */
  544. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  545. void planner_abort_hard()
  546. {
  547. // Abort the stepper routine and flush the planner queue.
  548. DISABLE_STEPPER_DRIVER_INTERRUPT();
  549. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  550. // First update the planner's current position in the physical motor steps.
  551. position[X_AXIS] = st_get_position(X_AXIS);
  552. position[Y_AXIS] = st_get_position(Y_AXIS);
  553. position[Z_AXIS] = st_get_position(Z_AXIS);
  554. position[E_AXIS] = st_get_position(E_AXIS);
  555. // Second update the current position of the front end.
  556. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  557. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  558. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  559. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  560. // Apply the mesh bed leveling correction to the Z axis.
  561. #ifdef MESH_BED_LEVELING
  562. if (mbl.active) {
  563. #if 1
  564. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  565. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  566. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  567. #else
  568. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  569. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  570. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  571. else {
  572. float t = float(step_events_completed) / float(current_block->step_event_count);
  573. float vec[3] = {
  574. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  575. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  576. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  577. };
  578. float pos1[3], pos2[3];
  579. for (int8_t i = 0; i < 3; ++ i) {
  580. if (current_block->direction_bits & (1<<i))
  581. vec[i] = - vec[i];
  582. pos1[i] = current_position[i] - vec[i] * t;
  583. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  584. }
  585. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  586. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  587. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  588. }
  589. #endif
  590. }
  591. #endif
  592. // Clear the planner queue, reset and re-enable the stepper timer.
  593. quickStop();
  594. // Apply inverse world correction matrix.
  595. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  596. memcpy(destination, current_position, sizeof(destination));
  597. #ifdef LIN_ADVANCE
  598. memcpy(position_float, current_position, sizeof(position_float));
  599. #endif
  600. // Resets planner junction speeds. Assumes start from rest.
  601. previous_nominal_speed = 0.0;
  602. memset(previous_speed, 0, sizeof(previous_speed));
  603. plan_reset_next_e_queue = false;
  604. plan_reset_next_e_sched = false;
  605. // Relay to planner wait routine, that the current line shall be canceled.
  606. waiting_inside_plan_buffer_line_print_aborted = true;
  607. }
  608. void plan_buffer_line_curposXYZE(float feed_rate) {
  609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder );
  610. }
  611. void plan_buffer_line_destinationXYZE(float feed_rate) {
  612. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_rate, active_extruder);
  613. }
  614. void plan_set_position_curposXYZE(){
  615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  616. }
  617. float junction_deviation = 0.1;
  618. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  619. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  620. // calculation the caller must also provide the physical length of the line in millimeters.
  621. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target)
  622. {
  623. // Calculate the buffer head after we push this byte
  624. uint8_t next_buffer_head = next_block_index(block_buffer_head);
  625. // If the buffer is full: good! That means we are well ahead of the robot.
  626. // Rest here until there is room in the buffer.
  627. waiting_inside_plan_buffer_line_print_aborted = false;
  628. if (block_buffer_tail == next_buffer_head) {
  629. do {
  630. manage_heater();
  631. // Vojtech: Don't disable motors inside the planner!
  632. manage_inactivity(false);
  633. lcd_update(0);
  634. } while (block_buffer_tail == next_buffer_head);
  635. if (waiting_inside_plan_buffer_line_print_aborted) {
  636. // Inside the lcd_update(0) routine the print has been aborted.
  637. // Cancel the print, do not plan the current line this routine is waiting on.
  638. #ifdef PLANNER_DIAGNOSTICS
  639. planner_update_queue_min_counter();
  640. #endif /* PLANNER_DIAGNOSTICS */
  641. return;
  642. }
  643. }
  644. #ifdef PLANNER_DIAGNOSTICS
  645. planner_update_queue_min_counter();
  646. #endif /* PLANNER_DIAGNOSTICS */
  647. // Prepare to set up new block
  648. block_t *block = &block_buffer[block_buffer_head];
  649. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  650. block->busy = false;
  651. // Set sdlen for calculating sd position
  652. block->sdlen = 0;
  653. // Save original destination of the move
  654. if (gcode_target)
  655. memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));
  656. else
  657. {
  658. block->gcode_target[X_AXIS] = x;
  659. block->gcode_target[Y_AXIS] = y;
  660. block->gcode_target[Z_AXIS] = z;
  661. block->gcode_target[E_AXIS] = e;
  662. }
  663. // Save the global feedrate at scheduling time
  664. block->gcode_feedrate = feedrate;
  665. // Reset the starting E position when requested
  666. if (plan_reset_next_e_queue)
  667. {
  668. position[E_AXIS] = 0;
  669. #ifdef LIN_ADVANCE
  670. position_float[E_AXIS] = 0;
  671. #endif
  672. // the block might still be discarded later, but we need to ensure the lower-level
  673. // count_position is also reset correctly for consistent results!
  674. plan_reset_next_e_queue = false;
  675. plan_reset_next_e_sched = true;
  676. }
  677. #ifdef ENABLE_AUTO_BED_LEVELING
  678. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  679. #endif // ENABLE_AUTO_BED_LEVELING
  680. // Apply the machine correction matrix.
  681. {
  682. #if 0
  683. SERIAL_ECHOPGM("Planner, current position - servos: ");
  684. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  685. SERIAL_ECHOPGM(", ");
  686. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  687. SERIAL_ECHOPGM(", ");
  688. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  689. SERIAL_ECHOLNPGM("");
  690. SERIAL_ECHOPGM("Planner, target position, initial: ");
  691. MYSERIAL.print(x, 5);
  692. SERIAL_ECHOPGM(", ");
  693. MYSERIAL.print(y, 5);
  694. SERIAL_ECHOLNPGM("");
  695. SERIAL_ECHOPGM("Planner, world2machine: ");
  696. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  697. SERIAL_ECHOPGM(", ");
  698. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  699. SERIAL_ECHOPGM(", ");
  700. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  701. SERIAL_ECHOPGM(", ");
  702. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  703. SERIAL_ECHOLNPGM("");
  704. SERIAL_ECHOPGM("Planner, offset: ");
  705. MYSERIAL.print(world2machine_shift[0], 5);
  706. SERIAL_ECHOPGM(", ");
  707. MYSERIAL.print(world2machine_shift[1], 5);
  708. SERIAL_ECHOLNPGM("");
  709. #endif
  710. world2machine(x, y);
  711. #if 0
  712. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  713. MYSERIAL.print(x, 5);
  714. SERIAL_ECHOPGM(", ");
  715. MYSERIAL.print(y, 5);
  716. SERIAL_ECHOLNPGM("");
  717. #endif
  718. }
  719. // The target position of the tool in absolute steps
  720. // Calculate target position in absolute steps
  721. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  722. long target[4];
  723. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  724. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  725. #ifdef MESH_BED_LEVELING
  726. if (mbl.active){
  727. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  728. }else{
  729. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  730. }
  731. #else
  732. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  733. #endif // ENABLE_MESH_BED_LEVELING
  734. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  735. #ifdef PREVENT_DANGEROUS_EXTRUDE
  736. if(target[E_AXIS]!=position[E_AXIS])
  737. {
  738. if(degHotend(active_extruder)<extrude_min_temp)
  739. {
  740. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  741. #ifdef LIN_ADVANCE
  742. position_float[E_AXIS] = e;
  743. #endif
  744. SERIAL_ECHO_START;
  745. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  746. }
  747. #ifdef PREVENT_LENGTHY_EXTRUDE
  748. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  749. {
  750. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  751. #ifdef LIN_ADVANCE
  752. position_float[E_AXIS] = e;
  753. #endif
  754. SERIAL_ECHO_START;
  755. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  756. }
  757. #endif
  758. }
  759. #endif
  760. // Number of steps for each axis
  761. #ifndef COREXY
  762. // default non-h-bot planning
  763. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  764. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  765. #else
  766. // corexy planning
  767. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  768. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  769. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  770. #endif
  771. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  772. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  773. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  774. // Bail if this is a zero-length block
  775. if (block->step_event_count.wide <= dropsegments)
  776. {
  777. #ifdef PLANNER_DIAGNOSTICS
  778. planner_update_queue_min_counter();
  779. #endif /* PLANNER_DIAGNOSTICS */
  780. return;
  781. }
  782. block->fan_speed = fanSpeed;
  783. // Compute direction bits for this block
  784. block->direction_bits = 0;
  785. #ifndef COREXY
  786. if (target[X_AXIS] < position[X_AXIS])
  787. {
  788. block->direction_bits |= (1<<X_AXIS);
  789. }
  790. if (target[Y_AXIS] < position[Y_AXIS])
  791. {
  792. block->direction_bits |= (1<<Y_AXIS);
  793. }
  794. #else
  795. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  796. {
  797. block->direction_bits |= (1<<X_AXIS);
  798. }
  799. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  800. {
  801. block->direction_bits |= (1<<Y_AXIS);
  802. }
  803. #endif
  804. if (target[Z_AXIS] < position[Z_AXIS])
  805. {
  806. block->direction_bits |= (1<<Z_AXIS);
  807. }
  808. if (target[E_AXIS] < position[E_AXIS])
  809. {
  810. block->direction_bits |= (1<<E_AXIS);
  811. }
  812. block->active_extruder = extruder;
  813. //enable active axes
  814. #ifdef COREXY
  815. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  816. {
  817. enable_x();
  818. enable_y();
  819. }
  820. #else
  821. if(block->steps_x.wide != 0) enable_x();
  822. if(block->steps_y.wide != 0) enable_y();
  823. #endif
  824. if(block->steps_z.wide != 0) enable_z();
  825. // Enable extruder(s)
  826. if(block->steps_e.wide != 0)
  827. {
  828. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  829. {
  830. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  831. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  832. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  833. switch(extruder)
  834. {
  835. case 0:
  836. enable_e0();
  837. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  838. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  839. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  840. break;
  841. case 1:
  842. enable_e1();
  843. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  844. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  845. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  846. break;
  847. case 2:
  848. enable_e2();
  849. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  850. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  851. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  852. break;
  853. }
  854. }
  855. else //enable all
  856. {
  857. enable_e0();
  858. enable_e1();
  859. enable_e2();
  860. }
  861. }
  862. if (block->steps_e.wide == 0)
  863. {
  864. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  865. }
  866. else
  867. {
  868. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  869. }
  870. /* This part of the code calculates the total length of the movement.
  871. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  872. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  873. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  874. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  875. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  876. */
  877. #ifndef COREXY
  878. float delta_mm[4];
  879. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  880. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  881. #else
  882. float delta_mm[6];
  883. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  884. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  885. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  886. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  887. #endif
  888. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  889. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  890. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  891. {
  892. block->millimeters = fabs(delta_mm[E_AXIS]);
  893. }
  894. else
  895. {
  896. #ifndef COREXY
  897. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  898. #else
  899. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  900. #endif
  901. }
  902. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  903. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  904. float inverse_second = feed_rate * inverse_millimeters;
  905. uint8_t moves_queued = moves_planned();
  906. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  907. #ifdef SLOWDOWN
  908. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  909. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  910. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  911. // segment time in micro seconds
  912. unsigned long segment_time = lround(1000000.0/inverse_second);
  913. if (segment_time < cs.minsegmenttime)
  914. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  915. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  916. }
  917. #endif // SLOWDOWN
  918. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  919. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  920. // Calculate and limit speed in mm/sec for each axis
  921. float current_speed[4];
  922. float speed_factor = 1.0; //factor <=1 do decrease speed
  923. for(int i=0; i < 4; i++)
  924. {
  925. current_speed[i] = delta_mm[i] * inverse_second;
  926. if(fabs(current_speed[i]) > max_feedrate[i])
  927. {
  928. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  929. }
  930. }
  931. // Correct the speed
  932. if( speed_factor < 1.0)
  933. {
  934. for(unsigned char i=0; i < 4; i++)
  935. {
  936. current_speed[i] *= speed_factor;
  937. }
  938. block->nominal_speed *= speed_factor;
  939. block->nominal_rate *= speed_factor;
  940. }
  941. #ifdef LIN_ADVANCE
  942. float e_D_ratio = 0;
  943. #endif
  944. // Compute and limit the acceleration rate for the trapezoid generator.
  945. // block->step_event_count ... event count of the fastest axis
  946. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  947. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  948. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  949. {
  950. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  951. #ifdef LIN_ADVANCE
  952. block->use_advance_lead = false;
  953. #endif
  954. }
  955. else
  956. {
  957. float acceleration = (block->steps_e.wide == 0? cs.travel_acceleration: cs.acceleration);
  958. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  959. #ifdef LIN_ADVANCE
  960. /**
  961. * Use LIN_ADVANCE within this block if all these are true:
  962. *
  963. * extruder_advance_K : There is an advance factor set.
  964. * delta_mm[E_AXIS] >= 0 : Extruding or traveling, but _not_ retracting.
  965. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  966. */
  967. block->use_advance_lead = extruder_advance_K > 0
  968. && delta_mm[E_AXIS] >= 0
  969. && fabs(delta_mm[Z_AXIS]) < 0.5;
  970. if (block->use_advance_lead) {
  971. #ifdef LA_FLOWADJ
  972. // M221/FLOW should change uniformly the extrusion thickness
  973. float delta_e = (e - position_float[E_AXIS]) / extruder_multiplier[extruder];
  974. #else
  975. // M221/FLOW only adjusts for an incorrect source diameter
  976. float delta_e = (e - position_float[E_AXIS]);
  977. #endif
  978. float delta_D = sqrt(sq(x - position_float[X_AXIS])
  979. + sq(y - position_float[Y_AXIS])
  980. + sq(z - position_float[Z_AXIS]));
  981. // all extrusion moves with LA require a compression which is proportional to the
  982. // extrusion_length to distance ratio (e/D)
  983. e_D_ratio = delta_e / delta_D;
  984. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  985. // print move due to min. steps per segment. Never execute this with advance! This assumes
  986. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  987. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  988. if (e_D_ratio > 3.0)
  989. block->use_advance_lead = false;
  990. else if (e_D_ratio > 0) {
  991. const float max_accel_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio);
  992. if (cs.acceleration > max_accel_per_s2) {
  993. block->acceleration_st = ceil(max_accel_per_s2 * steps_per_mm);
  994. #ifdef LA_DEBUG
  995. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  996. #endif
  997. }
  998. }
  999. }
  1000. #endif
  1001. // Limit acceleration per axis
  1002. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  1003. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  1004. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; }
  1005. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  1006. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; }
  1007. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  1008. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; }
  1009. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  1010. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; }
  1011. }
  1012. // Acceleration of the segment, in mm/sec^2
  1013. block->acceleration = block->acceleration_st / steps_per_mm;
  1014. #if 0
  1015. // Oversample diagonal movements by a power of 2 up to 8x
  1016. // to achieve more accurate diagonal movements.
  1017. uint8_t bresenham_oversample = 1;
  1018. for (uint8_t i = 0; i < 3; ++ i) {
  1019. if (block->nominal_rate >= 5000) // 5kHz
  1020. break;
  1021. block->nominal_rate << 1;
  1022. bresenham_oversample << 1;
  1023. block->step_event_count << 1;
  1024. }
  1025. if (bresenham_oversample > 1)
  1026. // Lower the acceleration steps/sec^2 to account for the oversampling.
  1027. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  1028. #endif
  1029. block->acceleration_rate = ((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1030. // Start with a safe speed.
  1031. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1032. float safe_speed = block->nominal_speed;
  1033. bool limited = false;
  1034. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1035. float jerk = fabs(current_speed[axis]);
  1036. if (jerk > cs.max_jerk[axis]) {
  1037. // The actual jerk is lower, if it has been limited by the XY jerk.
  1038. if (limited) {
  1039. // Spare one division by a following gymnastics:
  1040. // Instead of jerk *= safe_speed / block->nominal_speed,
  1041. // multiply max_jerk[axis] by the divisor.
  1042. jerk *= safe_speed;
  1043. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1044. if (jerk > mjerk) {
  1045. safe_speed *= mjerk / jerk;
  1046. limited = true;
  1047. }
  1048. } else {
  1049. safe_speed = cs.max_jerk[axis];
  1050. limited = true;
  1051. }
  1052. }
  1053. }
  1054. // Reset the block flag.
  1055. block->flag = 0;
  1056. if (plan_reset_next_e_sched)
  1057. {
  1058. // finally propagate a pending reset
  1059. block->flag |= BLOCK_FLAG_E_RESET;
  1060. plan_reset_next_e_sched = false;
  1061. }
  1062. // Initial limit on the segment entry velocity.
  1063. float vmax_junction;
  1064. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1065. // Is it because we don't want to tinker with the first buffer line, which
  1066. // is likely to be executed by the stepper interrupt routine soon?
  1067. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1068. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1069. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1070. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1071. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1072. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1073. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1074. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1075. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1076. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1077. float v_factor = 1.f;
  1078. limited = false;
  1079. // Now limit the jerk in all axes.
  1080. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1081. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1082. float v_exit = previous_speed[axis];
  1083. float v_entry = current_speed [axis];
  1084. if (prev_speed_larger)
  1085. v_exit *= smaller_speed_factor;
  1086. if (limited) {
  1087. v_exit *= v_factor;
  1088. v_entry *= v_factor;
  1089. }
  1090. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1091. float jerk =
  1092. (v_exit > v_entry) ?
  1093. ((v_entry > 0.f || v_exit < 0.f) ?
  1094. // coasting
  1095. (v_exit - v_entry) :
  1096. // axis reversal
  1097. max(v_exit, - v_entry)) :
  1098. // v_exit <= v_entry
  1099. ((v_entry < 0.f || v_exit > 0.f) ?
  1100. // coasting
  1101. (v_entry - v_exit) :
  1102. // axis reversal
  1103. max(- v_exit, v_entry));
  1104. if (jerk > cs.max_jerk[axis]) {
  1105. v_factor *= cs.max_jerk[axis] / jerk;
  1106. limited = true;
  1107. }
  1108. }
  1109. if (limited)
  1110. vmax_junction *= v_factor;
  1111. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1112. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1113. float vmax_junction_threshold = vmax_junction * 0.99f;
  1114. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1115. // Not coasting. The machine will stop and start the movements anyway,
  1116. // better to start the segment from start.
  1117. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1118. vmax_junction = safe_speed;
  1119. }
  1120. } else {
  1121. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1122. vmax_junction = safe_speed;
  1123. }
  1124. // Max entry speed of this block equals the max exit speed of the previous block.
  1125. block->max_entry_speed = vmax_junction;
  1126. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1127. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1128. block->entry_speed = min(vmax_junction, v_allowable);
  1129. // Initialize planner efficiency flags
  1130. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1131. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1132. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1133. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1134. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1135. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1136. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1137. // Always calculate trapezoid for new block
  1138. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1139. // Update previous path unit_vector and nominal speed
  1140. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1141. previous_nominal_speed = block->nominal_speed;
  1142. previous_safe_speed = safe_speed;
  1143. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1144. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1145. #ifdef LIN_ADVANCE
  1146. if (block->use_advance_lead) {
  1147. // calculate the compression ratio for the segment (the required advance steps are computed
  1148. // during trapezoid planning)
  1149. float adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS]; // (step/(mm/s))
  1150. block->adv_comp = adv_comp / block->speed_factor; // step/(step/min)
  1151. float advance_speed;
  1152. if (e_D_ratio > 0)
  1153. advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  1154. else
  1155. advance_speed = cs.max_jerk[E_AXIS] * cs.axis_steps_per_unit[E_AXIS];
  1156. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  1157. // still need to replicate the *exact* same step grouping policy (see below)
  1158. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  1159. float advance_rate = (F_CPU / 8.0) / advance_speed;
  1160. if (advance_speed > 20000) {
  1161. block->advance_rate = advance_rate * 4;
  1162. block->advance_step_loops = 4;
  1163. }
  1164. else if (advance_speed > 10000) {
  1165. block->advance_rate = advance_rate * 2;
  1166. block->advance_step_loops = 2;
  1167. }
  1168. else
  1169. {
  1170. // never overflow the internal accumulator with very low rates
  1171. if (advance_rate < UINT16_MAX)
  1172. block->advance_rate = advance_rate;
  1173. else
  1174. block->advance_rate = UINT16_MAX;
  1175. block->advance_step_loops = 1;
  1176. }
  1177. #ifdef LA_DEBUG
  1178. if (block->advance_step_loops > 2)
  1179. // @wavexx: we should really check for the difference between step_loops and
  1180. // advance_step_loops instead. A difference of more than 1 will lead
  1181. // to uneven speed and *should* be adjusted here by furthermore
  1182. // reducing the speed.
  1183. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1184. #endif
  1185. }
  1186. #endif
  1187. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1188. if (block->step_event_count.wide <= 32767)
  1189. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1190. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1191. block_buffer_head = next_buffer_head;
  1192. // Update position
  1193. memcpy(position, target, sizeof(target)); // position[] = target[]
  1194. #ifdef LIN_ADVANCE
  1195. position_float[X_AXIS] = x;
  1196. position_float[Y_AXIS] = y;
  1197. position_float[Z_AXIS] = z;
  1198. position_float[E_AXIS] = e;
  1199. #endif
  1200. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1201. // the machine limits (maximum acceleration and maximum jerk).
  1202. // This runs asynchronously with the stepper interrupt controller, which may
  1203. // interfere with the process.
  1204. planner_recalculate(safe_speed);
  1205. // SERIAL_ECHOPGM("Q");
  1206. // SERIAL_ECHO(int(moves_planned()));
  1207. // SERIAL_ECHOLNPGM("");
  1208. #ifdef PLANNER_DIAGNOSTICS
  1209. planner_update_queue_min_counter();
  1210. #endif /* PLANNER_DIAGNOSTIC */
  1211. // The stepper timer interrupt will run continuously from now on.
  1212. // If there are no planner blocks to be executed by the stepper routine,
  1213. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1214. // from the planner queue if available.
  1215. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1216. }
  1217. #ifdef ENABLE_AUTO_BED_LEVELING
  1218. vector_3 plan_get_position() {
  1219. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1220. //position.debug("in plan_get position");
  1221. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1222. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1223. //inverse.debug("in plan_get inverse");
  1224. position.apply_rotation(inverse);
  1225. //position.debug("after rotation");
  1226. return position;
  1227. }
  1228. #endif // ENABLE_AUTO_BED_LEVELING
  1229. void plan_set_position(float x, float y, float z, const float &e)
  1230. {
  1231. #ifdef ENABLE_AUTO_BED_LEVELING
  1232. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1233. #endif // ENABLE_AUTO_BED_LEVELING
  1234. world2machine(x, y);
  1235. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1236. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1237. #ifdef MESH_BED_LEVELING
  1238. position[Z_AXIS] = mbl.active ?
  1239. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1240. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1241. #else
  1242. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1243. #endif // ENABLE_MESH_BED_LEVELING
  1244. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1245. #ifdef LIN_ADVANCE
  1246. position_float[X_AXIS] = x;
  1247. position_float[Y_AXIS] = y;
  1248. position_float[Z_AXIS] = z;
  1249. position_float[E_AXIS] = e;
  1250. #endif
  1251. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1252. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1253. memset(previous_speed, 0, sizeof(previous_speed));
  1254. }
  1255. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1256. void plan_set_z_position(const float &z)
  1257. {
  1258. #ifdef LIN_ADVANCE
  1259. position_float[Z_AXIS] = z;
  1260. #endif
  1261. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1262. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1263. }
  1264. void plan_set_e_position(const float &e)
  1265. {
  1266. #ifdef LIN_ADVANCE
  1267. position_float[E_AXIS] = e;
  1268. #endif
  1269. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1270. st_set_e_position(position[E_AXIS]);
  1271. }
  1272. void plan_reset_next_e()
  1273. {
  1274. plan_reset_next_e_queue = true;
  1275. }
  1276. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1277. void set_extrude_min_temp(float temp)
  1278. {
  1279. extrude_min_temp=temp;
  1280. }
  1281. #endif
  1282. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1283. void reset_acceleration_rates()
  1284. {
  1285. for(int8_t i=0; i < NUM_AXIS; i++)
  1286. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1287. }
  1288. #ifdef TMC2130
  1289. void update_mode_profile()
  1290. {
  1291. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1292. {
  1293. max_feedrate = cs.max_feedrate_normal;
  1294. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1295. }
  1296. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1297. {
  1298. max_feedrate = cs.max_feedrate_silent;
  1299. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1300. }
  1301. reset_acceleration_rates();
  1302. }
  1303. #endif //TMC2130
  1304. uint8_t number_of_blocks()
  1305. {
  1306. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1307. }
  1308. #ifdef PLANNER_DIAGNOSTICS
  1309. uint8_t planner_queue_min()
  1310. {
  1311. return g_cntr_planner_queue_min;
  1312. }
  1313. void planner_queue_min_reset()
  1314. {
  1315. g_cntr_planner_queue_min = moves_planned();
  1316. }
  1317. #endif /* PLANNER_DIAGNOSTICS */
  1318. void planner_add_sd_length(uint16_t sdlen)
  1319. {
  1320. if (block_buffer_head != block_buffer_tail) {
  1321. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1322. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1323. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1324. } else {
  1325. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1326. // at a power panic, so the length of this command may be forgotten.
  1327. }
  1328. }
  1329. uint16_t planner_calc_sd_length()
  1330. {
  1331. uint8_t _block_buffer_head = block_buffer_head;
  1332. uint8_t _block_buffer_tail = block_buffer_tail;
  1333. uint16_t sdlen = 0;
  1334. while (_block_buffer_head != _block_buffer_tail)
  1335. {
  1336. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1337. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1338. }
  1339. return sdlen;
  1340. }