| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632 | /*  stepper.c - stepper motor driver: executes motion plans using stepper motors  Part of Grbl  Copyright (c) 2009-2011 Simen Svale Skogsrud  Grbl is free software: you can redistribute it and/or modify  it under the terms of the GNU General Public License as published by  the Free Software Foundation, either version 3 of the License, or  (at your option) any later version.  Grbl is distributed in the hope that it will be useful,  but WITHOUT ANY WARRANTY; without even the implied warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the  GNU General Public License for more details.  You should have received a copy of the GNU General Public License  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.*//* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith   and Philipp Tiefenbacher. */#include "Marlin.h"#include "stepper.h"#include "planner.h"#include "temperature.h"#include "ultralcd.h"#include "language.h"#include "cardreader.h"#include "speed_lookuptable.h"#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1#include <SPI.h>#endif#ifdef TMC2130#include "tmc2130.h"#endif //TMC2130#ifdef FILAMENT_SENSOR#include "fsensor.h"int fsensor_counter = 0; //counter for e-steps#endif //FILAMENT_SENSOR#ifdef DEBUG_STACK_MONITORuint16_t SP_min = 0x21FF;#endif //DEBUG_STACK_MONITOR//===========================================================================//=============================public variables  ============================//===========================================================================block_t *current_block;  // A pointer to the block currently being tracedbool x_min_endstop = false;bool x_max_endstop = false;bool y_min_endstop = false;bool y_max_endstop = false;bool z_min_endstop = false;bool z_max_endstop = false;//===========================================================================//=============================private variables ============================//===========================================================================//static makes it inpossible to be called from outside of this file by extern.!// Variables used by The Stepper Driver Interruptstatic unsigned char out_bits;        // The next stepping-bits to be outputstatic dda_isteps_t               counter_x,       // Counter variables for the bresenham line tracer               counter_y,               counter_z,               counter_e;volatile dda_usteps_t step_events_completed; // The number of step events executed in the current blockstatic int32_t  acceleration_time, deceleration_time;//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;static uint16_t acc_step_rate; // needed for deccelaration start pointstatic uint8_t  step_loops;static uint16_t OCR1A_nominal;static uint8_t  step_loops_nominal;volatile long endstops_trigsteps[3]={0,0,0};volatile long endstops_stepsTotal,endstops_stepsDone;static volatile bool endstop_x_hit=false;static volatile bool endstop_y_hit=false;static volatile bool endstop_z_hit=false;#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLEDbool abort_on_endstop_hit = false;#endif#ifdef MOTOR_CURRENT_PWM_XY_PIN  int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;  int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;  int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;#endifstatic bool old_x_min_endstop=false;static bool old_x_max_endstop=false;static bool old_y_min_endstop=false;static bool old_y_max_endstop=false;static bool old_z_min_endstop=false;static bool old_z_max_endstop=false;static bool check_endstops = true;static bool check_z_endstop = false;static bool z_endstop_invert = false;volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};#ifdef LIN_ADVANCE  static uint16_t nextMainISR = 0;  static uint16_t eISR_Rate;  // Extrusion steps to be executed by the stepper.  // If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.  // If e_steps is zero, then the timer ISR routine will perform the usual DDA step.  static volatile int16_t e_steps = 0;  // How many extruder steps shall be ticked at a single ISR invocation?  static uint8_t          estep_loops;  // The current speed of the extruder, scaled by the linear advance constant, so it has the same measure  // as current_adv_steps.  static int              current_estep_rate;  // The current pretension of filament expressed in extruder micro steps.  static int              current_adv_steps;  #define _NEXT_ISR(T)    nextMainISR = T#else  #define _NEXT_ISR(T)    OCR1A = T#endif#ifdef DEBUG_STEPPER_TIMER_MISSEDextern bool stepper_timer_overflow_state;extern uint16_t stepper_timer_overflow_last;#endif /* DEBUG_STEPPER_TIMER_MISSED *///===========================================================================//=============================functions         ============================//===========================================================================#ifndef _NO_ASM// intRes = intIn1 * intIn2 >> 16// uses:// r26 to store 0// r27 to store the byte 1 of the 24 bit result#define MultiU16X8toH16(intRes, charIn1, intIn2) \asm volatile ( \"clr r26 \n\t" \"mul %A1, %B2 \n\t" \"movw %A0, r0 \n\t" \"mul %A1, %A2 \n\t" \"add %A0, r1 \n\t" \"adc %B0, r26 \n\t" \"lsr r0 \n\t" \"adc %A0, r26 \n\t" \"adc %B0, r26 \n\t" \"clr r1 \n\t" \: \"=&r" (intRes) \: \"d" (charIn1), \"d" (intIn2) \: \"r26" \)// intRes = longIn1 * longIn2 >> 24// uses:// r26 to store 0// r27 to store the byte 1 of the 48bit result#define MultiU24X24toH16(intRes, longIn1, longIn2) \asm volatile ( \"clr r26 \n\t" \"mul %A1, %B2 \n\t" \"mov r27, r1 \n\t" \"mul %B1, %C2 \n\t" \"movw %A0, r0 \n\t" \"mul %C1, %C2 \n\t" \"add %B0, r0 \n\t" \"mul %C1, %B2 \n\t" \"add %A0, r0 \n\t" \"adc %B0, r1 \n\t" \"mul %A1, %C2 \n\t" \"add r27, r0 \n\t" \"adc %A0, r1 \n\t" \"adc %B0, r26 \n\t" \"mul %B1, %B2 \n\t" \"add r27, r0 \n\t" \"adc %A0, r1 \n\t" \"adc %B0, r26 \n\t" \"mul %C1, %A2 \n\t" \"add r27, r0 \n\t" \"adc %A0, r1 \n\t" \"adc %B0, r26 \n\t" \"mul %B1, %A2 \n\t" \"add r27, r1 \n\t" \"adc %A0, r26 \n\t" \"adc %B0, r26 \n\t" \"lsr r27 \n\t" \"adc %A0, r26 \n\t" \"adc %B0, r26 \n\t" \"clr r1 \n\t" \: \"=&r" (intRes) \: \"d" (longIn1), \"d" (longIn2) \: \"r26" , "r27" \)#else //_NO_ASMvoid MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2){}void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2){}#endif //_NO_ASM// Some useful constantsvoid checkHitEndstops(){ if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {   SERIAL_ECHO_START;   SERIAL_ECHORPGM(_T(MSG_ENDSTOPS_HIT));   if(endstop_x_hit) {     SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);     LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT), PSTR("X")));   }   if(endstop_y_hit) {     SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);     LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT), PSTR("Y")));   }   if(endstop_z_hit) {     SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);     LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT),PSTR("Z")));   }   SERIAL_ECHOLN("");   endstop_x_hit=false;   endstop_y_hit=false;   endstop_z_hit=false;#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)   if (abort_on_endstop_hit)   {     card.sdprinting = false;     card.closefile();     quickStop();     setTargetHotend0(0);     setTargetHotend1(0);     setTargetHotend2(0);   }#endif }}bool endstops_hit_on_purpose(){  bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;  endstop_x_hit=false;  endstop_y_hit=false;  endstop_z_hit=false;  return hit;}bool endstop_z_hit_on_purpose(){  bool hit = endstop_z_hit;  endstop_z_hit=false;  return hit;}bool enable_endstops(bool check){  bool old = check_endstops;  check_endstops = check;  return old;}bool enable_z_endstop(bool check){	bool old = check_z_endstop;	check_z_endstop = check;	endstop_z_hit = false;	return old;}void invert_z_endstop(bool endstop_invert){  z_endstop_invert = endstop_invert;}//         __________________________//        /|                        |\     _________________         ^//       / |                        | \   /|               |\        |//      /  |                        |  \ / |               | \       s//     /   |                        |   |  |               |  \      p//    /    |                        |   |  |               |   \     e//   +-----+------------------------+---+--+---------------+----+    e//   |               BLOCK 1            |      BLOCK 2          |    d////                           time ----->////  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates//  first block->accelerate_until step_events_completed, then keeps going at constant speed until//  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.//  The slope of acceleration is calculated with the leib ramp alghorithm.FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {  unsigned short timer;  if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;  if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times    step_rate = (step_rate >> 2)&0x3fff;    step_loops = 4;  }  else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times    step_rate = (step_rate >> 1)&0x7fff;    step_loops = 2;  }  else {    step_loops = 1;  }//    step_loops = 1;  if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);  step_rate -= (F_CPU/500000); // Correct for minimal speed  if(step_rate >= (8*256)){ // higher step rate    unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];    unsigned char tmp_step_rate = (step_rate & 0x00ff);    unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);    MultiU16X8toH16(timer, tmp_step_rate, gain);    timer = (unsigned short)pgm_read_word_near(table_address) - timer;  }  else { // lower step rates    unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];    table_address += ((step_rate)>>1) & 0xfffc;    timer = (unsigned short)pgm_read_word_near(table_address);    timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);  }  if(timer < 100) { timer = 100; MYSERIAL.print(_i("Steprate too high: ")); MYSERIAL.println(step_rate); }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH c=0 r=0  return timer;}// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.ISR(TIMER1_COMPA_vect) {#ifdef DEBUG_STACK_MONITOR	uint16_t sp = SPL + 256 * SPH;	if (sp < SP_min) SP_min = sp;#endif //DEBUG_STACK_MONITOR#ifdef LIN_ADVANCE  // If there are any e_steps planned, tick them.  bool run_main_isr = false;  if (e_steps) {    //WRITE_NC(LOGIC_ANALYZER_CH7, true);    for (uint8_t i = estep_loops; e_steps && i --;) {        WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);        -- e_steps;        WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);    }    if (e_steps) {      // Plan another Linear Advance tick.      OCR1A = eISR_Rate;      nextMainISR -= eISR_Rate;    } else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {      // The timer did not overflow and it is big enough, so it makes sense to plan it.      OCR1A = nextMainISR;    } else {      // The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine      // in the current interrupt tick.      run_main_isr = true;      //FIXME pick the serial line.    }    //WRITE_NC(LOGIC_ANALYZER_CH7, false);  } else    run_main_isr = true;  if (run_main_isr)#endif    isr();  // Don't run the ISR faster than possible  // Is there a 8us time left before the next interrupt triggers?  if (OCR1A < TCNT1 + 16) {#ifdef DEBUG_STEPPER_TIMER_MISSED    // Verify whether the next planned timer interrupt has not been missed already.      // This debugging test takes < 1.125us    // This skews the profiling slightly as the fastest stepper timer    // interrupt repeats at a 100us rate (10kHz).    if (OCR1A + 40 < TCNT1) {      // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).      // Give a warning.      stepper_timer_overflow_state = true;      stepper_timer_overflow_last = TCNT1 - OCR1A;      // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.      WRITE(BEEPER, HIGH);    }#endif    // Fix the next interrupt to be executed after 8us from now.    OCR1A = TCNT1 + 16;   }}uint8_t last_dir_bits = 0;#ifdef BACKLASH_Xuint8_t st_backlash_x = 0;#endif //BACKLASH_X#ifdef BACKLASH_Yuint8_t st_backlash_y = 0;#endif //BACKLASH_YFORCE_INLINE void stepper_next_block(){  // Anything in the buffer?  //WRITE_NC(LOGIC_ANALYZER_CH2, true);  current_block = plan_get_current_block();  if (current_block != NULL) {#ifdef BACKLASH_X	if (current_block->steps_x.wide)	{ //X-axis movement		if ((current_block->direction_bits ^ last_dir_bits) & 1)		{			printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);			if (current_block->direction_bits & 1)				WRITE_NC(X_DIR_PIN, INVERT_X_DIR);			else				WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);			_delay_us(100);			for (uint8_t i = 0; i < st_backlash_x; i++)			{				WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);				_delay_us(100);				WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);				_delay_us(900);			}		}		last_dir_bits &= ~1;		last_dir_bits |= current_block->direction_bits & 1;	}#endif#ifdef BACKLASH_Y	if (current_block->steps_y.wide)	{ //Y-axis movement		if ((current_block->direction_bits ^ last_dir_bits) & 2)		{			printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);			if (current_block->direction_bits & 2)				WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);			else				WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);			_delay_us(100);			for (uint8_t i = 0; i < st_backlash_y; i++)			{				WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);				_delay_us(100);				WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);				_delay_us(900);			}		}		last_dir_bits &= ~2;		last_dir_bits |= current_block->direction_bits & 2;	}#endif#ifdef FILAMENT_SENSOR    fsensor_counter = 0;    fsensor_st_block_begin(current_block);#endif //FILAMENT_SENSOR    // The busy flag is set by the plan_get_current_block() call.    // current_block->busy = true;    // Initializes the trapezoid generator from the current block. Called whenever a new    // block begins.    deceleration_time = 0;    // Set the nominal step loops to zero to indicate, that the timer value is not known yet.    // That means, delay the initialization of nominal step rate and step loops until the steady    // state is reached.    step_loops_nominal = 0;    acc_step_rate = uint16_t(current_block->initial_rate);    acceleration_time = calc_timer(acc_step_rate);#ifdef LIN_ADVANCE    current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;#endif /* LIN_ADVANCE */    if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {      counter_x.lo = -(current_block->step_event_count.lo >> 1);      counter_y.lo = counter_x.lo;      counter_z.lo = counter_x.lo;      counter_e.lo = counter_x.lo;    } else {      counter_x.wide = -(current_block->step_event_count.wide >> 1);      counter_y.wide = counter_x.wide;      counter_z.wide = counter_x.wide;      counter_e.wide = counter_x.wide;    }    step_events_completed.wide = 0;    // Set directions.    out_bits = current_block->direction_bits;    // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)    if((out_bits & (1<<X_AXIS))!=0){      WRITE_NC(X_DIR_PIN, INVERT_X_DIR);      count_direction[X_AXIS]=-1;    } else {      WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);      count_direction[X_AXIS]=1;    }    if((out_bits & (1<<Y_AXIS))!=0){      WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);      count_direction[Y_AXIS]=-1;    } else {      WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);      count_direction[Y_AXIS]=1;    }    if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction      WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);      count_direction[Z_AXIS]=-1;    } else { // +direction      WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);      count_direction[Z_AXIS]=1;    }    if ((out_bits & (1 << E_AXIS)) != 0) { // -direction#ifndef LIN_ADVANCE      WRITE(E0_DIR_PIN,   #ifdef SNMM        (snmm_extruder == 0 || snmm_extruder == 2) ? !INVERT_E0_DIR :  #endif // SNMM        INVERT_E0_DIR);#endif /* LIN_ADVANCE */      count_direction[E_AXIS] = -1;    } else { // +direction#ifndef LIN_ADVANCE      WRITE(E0_DIR_PIN,  #ifdef SNMM        (snmm_extruder == 0 || snmm_extruder == 2) ? INVERT_E0_DIR :  #endif // SNMM        !INVERT_E0_DIR);#endif /* LIN_ADVANCE */      count_direction[E_AXIS] = 1;    }  }  else {    OCR1A = 2000; // 1kHz.  }  //WRITE_NC(LOGIC_ANALYZER_CH2, false);}// Check limit switches.FORCE_INLINE void stepper_check_endstops(){  if(check_endstops)   {    #ifndef COREXY    if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis    #else    if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B    #endif    {      #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)      #ifdef TMC2130_SG_HOMING        // Stall guard homing turned on        x_min_endstop = (READ(X_TMC2130_DIAG) != 0);      #else        // Normal homing        x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);      #endif        if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {          endstops_trigsteps[X_AXIS] = count_position[X_AXIS];          endstop_x_hit=true;          step_events_completed.wide = current_block->step_event_count.wide;        }        old_x_min_endstop = x_min_endstop;      #endif    } else { // +direction      #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)                  #ifdef TMC2130_SG_HOMING        // Stall guard homing turned on            x_max_endstop = (READ(X_TMC2130_DIAG) != 0);        #else        // Normal homing        x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);        #endif        if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){          endstops_trigsteps[X_AXIS] = count_position[X_AXIS];          endstop_x_hit=true;          step_events_completed.wide = current_block->step_event_count.wide;        }        old_x_max_endstop = x_max_endstop;      #endif    }    #ifndef COREXY    if ((out_bits & (1<<Y_AXIS)) != 0) // -direction    #else    if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B    #endif    {              #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)                #ifdef TMC2130_SG_HOMING      // Stall guard homing turned on          y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);      #else      // Normal homing      y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);      #endif        if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {          endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];          endstop_y_hit=true;          step_events_completed.wide = current_block->step_event_count.wide;        }        old_y_min_endstop = y_min_endstop;      #endif    } else { // +direction      #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)                        #ifdef TMC2130_SG_HOMING        // Stall guard homing turned on            y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);        #else        // Normal homing        y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);        #endif        if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){          endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];          endstop_y_hit=true;          step_events_completed.wide = current_block->step_event_count.wide;        }        old_y_max_endstop = y_max_endstop;      #endif    }    if ((out_bits & (1<<Z_AXIS)) != 0) // -direction    {      #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)      if (! check_z_endstop) {        #ifdef TMC2130_SG_HOMING          // Stall guard homing turned on#ifdef TMC2130_STEALTH_Z		  if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))	          z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);		  else#endif //TMC2130_STEALTH_Z	          z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);        #else          z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);        #endif //TMC2130_SG_HOMING        if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {          endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];          endstop_z_hit=true;          step_events_completed.wide = current_block->step_event_count.wide;        }        old_z_min_endstop = z_min_endstop;      }      #endif    } else { // +direction      #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)        #ifdef TMC2130_SG_HOMING        // Stall guard homing turned on#ifdef TMC2130_STEALTH_Z		  if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))	          z_max_endstop = false;		  else#endif //TMC2130_STEALTH_Z        z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);        #else        z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);        #endif //TMC2130_SG_HOMING        if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {          endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];          endstop_z_hit=true;          step_events_completed.wide = current_block->step_event_count.wide;        }        old_z_max_endstop = z_max_endstop;      #endif    }  }  // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.  #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)  if (check_z_endstop) {      // Check the Z min end-stop no matter what.      // Good for searching for the center of an induction target.      #ifdef TMC2130_SG_HOMING      // Stall guard homing turned on#ifdef TMC2130_STEALTH_Z		  if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))	          z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);		  else#endif //TMC2130_STEALTH_Z       z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);      #else        z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);      #endif //TMC2130_SG_HOMING      if(z_min_endstop && old_z_min_endstop) {        endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];        endstop_z_hit=true;        step_events_completed.wide = current_block->step_event_count.wide;      }      old_z_min_endstop = z_min_endstop;  }  #endif}FORCE_INLINE void stepper_tick_lowres(){  for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)    MSerial.checkRx(); // Check for serial chars.    // Step in X axis    counter_x.lo += current_block->steps_x.lo;    if (counter_x.lo > 0) {      WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN      WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN      counter_x.lo -= current_block->step_event_count.lo;      count_position[X_AXIS]+=count_direction[X_AXIS];      WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN      WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN    }    // Step in Y axis    counter_y.lo += current_block->steps_y.lo;    if (counter_y.lo > 0) {      WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN      WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN      counter_y.lo -= current_block->step_event_count.lo;      count_position[Y_AXIS]+=count_direction[Y_AXIS];      WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN      WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN        }    // Step in Z axis    counter_z.lo += current_block->steps_z.lo;    if (counter_z.lo > 0) {      WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);      counter_z.lo -= current_block->step_event_count.lo;      count_position[Z_AXIS]+=count_direction[Z_AXIS];      WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);    }    // Step in E axis    counter_e.lo += current_block->steps_e.lo;    if (counter_e.lo > 0) {#ifndef LIN_ADVANCE      WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);#endif /* LIN_ADVANCE */      counter_e.lo -= current_block->step_event_count.lo;      count_position[E_AXIS] += count_direction[E_AXIS];#ifdef LIN_ADVANCE      ++ e_steps;#else  #ifdef FILAMENT_SENSOR      ++ fsensor_counter;  #endif //FILAMENT_SENSOR      WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);#endif    }    if(++ step_events_completed.lo >= current_block->step_event_count.lo)      break;  }}FORCE_INLINE void stepper_tick_highres(){  for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)    MSerial.checkRx(); // Check for serial chars.    // Step in X axis    counter_x.wide += current_block->steps_x.wide;    if (counter_x.wide > 0) {      WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN      WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN      counter_x.wide -= current_block->step_event_count.wide;      count_position[X_AXIS]+=count_direction[X_AXIS];         WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN      WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN    }    // Step in Y axis    counter_y.wide += current_block->steps_y.wide;    if (counter_y.wide > 0) {      WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN      WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN      counter_y.wide -= current_block->step_event_count.wide;      count_position[Y_AXIS]+=count_direction[Y_AXIS];      WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN      WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN        }    // Step in Z axis    counter_z.wide += current_block->steps_z.wide;    if (counter_z.wide > 0) {      WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);      counter_z.wide -= current_block->step_event_count.wide;      count_position[Z_AXIS]+=count_direction[Z_AXIS];      WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);    }    // Step in E axis    counter_e.wide += current_block->steps_e.wide;    if (counter_e.wide > 0) {#ifndef LIN_ADVANCE      WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);#endif /* LIN_ADVANCE */      counter_e.wide -= current_block->step_event_count.wide;      count_position[E_AXIS]+=count_direction[E_AXIS];#ifdef LIN_ADVANCE      ++ e_steps;#else  #ifdef FILAMENT_SENSOR      ++ fsensor_counter;  #endif //FILAMENT_SENSOR      WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);#endif    }    if(++ step_events_completed.wide >= current_block->step_event_count.wide)      break;  }}// 50us delay#define LIN_ADV_FIRST_TICK_DELAY 100FORCE_INLINE void isr() {  //WRITE_NC(LOGIC_ANALYZER_CH0, true);	//if (UVLO) uvlo();  // If there is no current block, attempt to pop one from the buffer  if (current_block == NULL)    stepper_next_block();  if (current_block != NULL)   {    stepper_check_endstops();#ifdef LIN_ADVANCE      e_steps = 0;#endif /* LIN_ADVANCE */    if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)      stepper_tick_lowres();    else      stepper_tick_highres();#ifdef LIN_ADVANCE      if (out_bits&(1<<E_AXIS))        // Move in negative direction.        e_steps = - e_steps;      if (current_block->use_advance_lead) {        //int esteps_inc = 0;        //esteps_inc = current_estep_rate - current_adv_steps;        //e_steps += esteps_inc;        e_steps += current_estep_rate - current_adv_steps;#if 0        if (abs(esteps_inc) > 4) {          LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);          if (esteps_inc < -511 || esteps_inc > 511)            LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);        }#endif        current_adv_steps = current_estep_rate;      }      // If we have esteps to execute, step some of them now.      if (e_steps) {        //WRITE_NC(LOGIC_ANALYZER_CH7, true);        // Set the step direction.        {          bool neg = e_steps < 0;          bool dir =        #ifdef SNMM            (neg == (snmm_extruder & 1))        #else            neg        #endif            ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.          WRITE_NC(E0_DIR_PIN, dir);          if (neg)            // Flip the e_steps counter to be always positive.            e_steps = - e_steps;        }        // Tick min(step_loops, abs(e_steps)).        estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;        if (step_loops < estep_loops)          estep_loops = step_loops;    #ifdef FILAMENT_SENSOR        fsensor_counter += estep_loops;    #endif //FILAMENT_SENSOR        do {          WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);          -- e_steps;          WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);        } while (-- estep_loops != 0);        //WRITE_NC(LOGIC_ANALYZER_CH7, false);        MSerial.checkRx(); // Check for serial chars.      }#endif    // Calculare new timer value    // 13.38-14.63us for steady state,    // 25.12us for acceleration / deceleration.    {      //WRITE_NC(LOGIC_ANALYZER_CH1, true);      if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {        // v = t * a   ->   acc_step_rate = acceleration_time * current_block->acceleration_rate        MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);        acc_step_rate += uint16_t(current_block->initial_rate);        // upper limit        if(acc_step_rate > uint16_t(current_block->nominal_rate))          acc_step_rate = current_block->nominal_rate;        // step_rate to timer interval        uint16_t timer = calc_timer(acc_step_rate);        _NEXT_ISR(timer);        acceleration_time += timer;  #ifdef LIN_ADVANCE        if (current_block->use_advance_lead)          // int32_t = (uint16_t * uint32_t) >> 17          current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;  #endif      }      else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {        uint16_t step_rate;        MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);        step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.        if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {          // Result is negative or too small.          step_rate = uint16_t(current_block->final_rate);        }        // Step_rate to timer interval.        uint16_t timer = calc_timer(step_rate);        _NEXT_ISR(timer);        deceleration_time += timer;  #ifdef LIN_ADVANCE        if (current_block->use_advance_lead)          current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;  #endif      }      else {        if (! step_loops_nominal) {          // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower          // the initial interrupt blocking.          OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));          step_loops_nominal = step_loops;  #ifdef LIN_ADVANCE          if (current_block->use_advance_lead)            current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;  #endif        }        _NEXT_ISR(OCR1A_nominal);      }      //WRITE_NC(LOGIC_ANALYZER_CH1, false);    }#ifdef LIN_ADVANCE    if (e_steps && current_block->use_advance_lead) {      //WRITE_NC(LOGIC_ANALYZER_CH7, true);      MSerial.checkRx(); // Check for serial chars.      // Some of the E steps were not ticked yet. Plan additional interrupts.      uint16_t now = TCNT1;      // Plan the first linear advance interrupt after 50us from now.      uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;      eISR_Rate = 0;      if ((to_go & 0x8000) == 0) {        // The to_go number is not negative.        // Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.        uint8_t ticks = to_go >> 8;        if (ticks == 1) {          // Avoid running the following loop for a very short interval.          estep_loops = 255;          eISR_Rate = 1;        } else if ((e_steps & 0x0ff00) == 0) {          // e_steps <= 0x0ff          if (uint8_t(e_steps) <= ticks) {            // Spread the e_steps along the whole go_to interval.            eISR_Rate = to_go / uint8_t(e_steps);            estep_loops = 1;          } else if (ticks != 0) {            // At least one tick fits into the to_go interval. Calculate the e-step grouping.            uint8_t e = uint8_t(e_steps) >> 1;            estep_loops = 2;            while (e > ticks) {              e >>= 1;              estep_loops <<= 1;            }            // Now the estep_loops contains the number of loops of power of 2, that will be sufficient            // to squeeze enough of Linear Advance ticks until nextMainISR.            // Calculate the tick rate.            eISR_Rate = to_go / ticks;                    }        } else {          // This is an exterme case with too many e_steps inserted by the linear advance.          // At least one tick fits into the to_go interval. Calculate the e-step grouping.          estep_loops = 2;          uint16_t e = e_steps >> 1;          while (e & 0x0ff00) {            e >>= 1;            estep_loops <<= 1;          }          while (uint8_t(e) > ticks) {            e >>= 1;            estep_loops <<= 1;          }          // Now the estep_loops contains the number of loops of power of 2, that will be sufficient          // to squeeze enough of Linear Advance ticks until nextMainISR.          // Calculate the tick rate.          eISR_Rate = to_go / ticks;        }      }      if (eISR_Rate == 0) {        // There is not enough time to fit even a single additional tick.        // Tick all the extruder ticks now.    #ifdef FILAMENT_SENSOR        fsensor_counter += e_steps;    #endif //FILAMENT_SENSOR        MSerial.checkRx(); // Check for serial chars.        do {          WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);          -- e_steps;          WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);        } while (e_steps);        OCR1A = nextMainISR;      } else {        // Tick the 1st Linear Advance interrupt after 50us from now.        nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;        OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;      }      //WRITE_NC(LOGIC_ANALYZER_CH7, false);    } else      OCR1A = nextMainISR;#endif    // If current block is finished, reset pointer    if (step_events_completed.wide >= current_block->step_event_count.wide) {#ifdef FILAMENT_SENSOR      fsensor_st_block_chunk(current_block, fsensor_counter);	    fsensor_counter = 0;#endif //FILAMENT_SENSOR      current_block = NULL;      plan_discard_current_block();    }#ifdef FILAMENT_SENSOR  	else if (fsensor_counter >= fsensor_chunk_len)  	{      fsensor_st_block_chunk(current_block, fsensor_counter);  	  fsensor_counter = 0;  	}#endif //FILAMENT_SENSOR  }#ifdef TMC2130	tmc2130_st_isr();#endif //TMC2130  //WRITE_NC(LOGIC_ANALYZER_CH0, false);}#ifdef LIN_ADVANCEvoid clear_current_adv_vars() {  e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..  current_adv_steps = 0;}#endif // LIN_ADVANCE      void st_init(){#ifdef TMC2130	tmc2130_init();#endif //TMC2130  st_current_init(); //Initialize Digipot Motor Current  microstep_init(); //Initialize Microstepping Pins  //Initialize Dir Pins  #if defined(X_DIR_PIN) && X_DIR_PIN > -1    SET_OUTPUT(X_DIR_PIN);  #endif  #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1    SET_OUTPUT(X2_DIR_PIN);  #endif  #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1    SET_OUTPUT(Y_DIR_PIN);			#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)	  SET_OUTPUT(Y2_DIR_PIN);	#endif  #endif  #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1    SET_OUTPUT(Z_DIR_PIN);    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)      SET_OUTPUT(Z2_DIR_PIN);    #endif  #endif  #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1    SET_OUTPUT(E0_DIR_PIN);  #endif  #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)    SET_OUTPUT(E1_DIR_PIN);  #endif  #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)    SET_OUTPUT(E2_DIR_PIN);  #endif  //Initialize Enable Pins - steppers default to disabled.  #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1    SET_OUTPUT(X_ENABLE_PIN);    if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);  #endif  #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1    SET_OUTPUT(X2_ENABLE_PIN);    if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);  #endif  #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1    SET_OUTPUT(Y_ENABLE_PIN);    if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);		#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)	  SET_OUTPUT(Y2_ENABLE_PIN);	  if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);	#endif  #endif  #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1    SET_OUTPUT(Z_ENABLE_PIN);    if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)      SET_OUTPUT(Z2_ENABLE_PIN);      if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);    #endif  #endif  #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)    SET_OUTPUT(E0_ENABLE_PIN);    if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);  #endif  #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)    SET_OUTPUT(E1_ENABLE_PIN);    if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);  #endif  #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)    SET_OUTPUT(E2_ENABLE_PIN);    if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);  #endif  //endstops and pullups  #ifdef TMC2130_SG_HOMING    SET_INPUT(X_TMC2130_DIAG);    WRITE(X_TMC2130_DIAG,HIGH);        SET_INPUT(Y_TMC2130_DIAG);    WRITE(Y_TMC2130_DIAG,HIGH);        SET_INPUT(Z_TMC2130_DIAG);    WRITE(Z_TMC2130_DIAG,HIGH);	SET_INPUT(E0_TMC2130_DIAG);    WRITE(E0_TMC2130_DIAG,HIGH);      #endif      #if defined(X_MIN_PIN) && X_MIN_PIN > -1    SET_INPUT(X_MIN_PIN);    #ifdef ENDSTOPPULLUP_XMIN      WRITE(X_MIN_PIN,HIGH);    #endif  #endif  #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1    SET_INPUT(Y_MIN_PIN);    #ifdef ENDSTOPPULLUP_YMIN      WRITE(Y_MIN_PIN,HIGH);    #endif  #endif  #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1    SET_INPUT(Z_MIN_PIN);    #ifdef ENDSTOPPULLUP_ZMIN      WRITE(Z_MIN_PIN,HIGH);    #endif  #endif  #if defined(X_MAX_PIN) && X_MAX_PIN > -1    SET_INPUT(X_MAX_PIN);    #ifdef ENDSTOPPULLUP_XMAX      WRITE(X_MAX_PIN,HIGH);    #endif  #endif  #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1    SET_INPUT(Y_MAX_PIN);    #ifdef ENDSTOPPULLUP_YMAX      WRITE(Y_MAX_PIN,HIGH);    #endif  #endif  #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1    SET_INPUT(Z_MAX_PIN);    #ifdef ENDSTOPPULLUP_ZMAX      WRITE(Z_MAX_PIN,HIGH);    #endif  #endif  #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))	SET_INPUT(TACH_0);    #ifdef TACH0PULLUP	  WRITE(TACH_0, HIGH);    #endif  #endif  //Initialize Step Pins#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)    SET_OUTPUT(X_STEP_PIN);    WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN    SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);    WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN    disable_x();  #endif  #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)    SET_OUTPUT(X2_STEP_PIN);    WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);    disable_x();  #endif  #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)    SET_OUTPUT(Y_STEP_PIN);    WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN    SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);    WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN    #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)      SET_OUTPUT(Y2_STEP_PIN);      WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);    #endif    disable_y();  #endif  #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)    SET_OUTPUT(Z_STEP_PIN);    WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)      SET_OUTPUT(Z2_STEP_PIN);      WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);    #endif    disable_z();  #endif  #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)    SET_OUTPUT(E0_STEP_PIN);    WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);    disable_e0();  #endif  #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)    SET_OUTPUT(E1_STEP_PIN);    WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);    disable_e1();  #endif  #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)    SET_OUTPUT(E2_STEP_PIN);    WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);    disable_e2();  #endif  // waveform generation = 0100 = CTC  TCCR1B &= ~(1<<WGM13);  TCCR1B |=  (1<<WGM12);  TCCR1A &= ~(1<<WGM11);  TCCR1A &= ~(1<<WGM10);  // output mode = 00 (disconnected)  TCCR1A &= ~(3<<COM1A0);  TCCR1A &= ~(3<<COM1B0);  // Set the timer pre-scaler  // Generally we use a divider of 8, resulting in a 2MHz timer  // frequency on a 16MHz MCU. If you are going to change this, be  // sure to regenerate speed_lookuptable.h with  // create_speed_lookuptable.py  TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);  // Plan the first interrupt after 8ms from now.  OCR1A = 0x4000;  TCNT1 = 0;  ENABLE_STEPPER_DRIVER_INTERRUPT();#ifdef LIN_ADVANCE    e_steps = 0;    current_adv_steps = 0;#endif      enable_endstops(true); // Start with endstops active. After homing they can be disabled  sei();}// Block until all buffered steps are executedvoid st_synchronize(){	while(blocks_queued())	{#ifdef TMC2130		manage_heater();		// Vojtech: Don't disable motors inside the planner!		if (!tmc2130_update_sg())		{			manage_inactivity(true);			lcd_update(0);		}#else //TMC2130		manage_heater();		// Vojtech: Don't disable motors inside the planner!		manage_inactivity(true);		lcd_update(0);#endif //TMC2130	}}void st_set_position(const long &x, const long &y, const long &z, const long &e){  CRITICAL_SECTION_START;  // Copy 4x4B.  // This block locks the interrupts globally for 4.56 us,  // which corresponds to a maximum repeat frequency of 219.18 kHz.  // This blocking is safe in the context of a 10kHz stepper driver interrupt  // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.  count_position[X_AXIS] = x;  count_position[Y_AXIS] = y;  count_position[Z_AXIS] = z;  count_position[E_AXIS] = e;  CRITICAL_SECTION_END;}void st_set_e_position(const long &e){  CRITICAL_SECTION_START;  count_position[E_AXIS] = e;  CRITICAL_SECTION_END;}long st_get_position(uint8_t axis){  long count_pos;  CRITICAL_SECTION_START;  count_pos = count_position[axis];  CRITICAL_SECTION_END;  return count_pos;}void st_get_position_xy(long &x, long &y){  CRITICAL_SECTION_START;  x = count_position[X_AXIS];  y = count_position[Y_AXIS];  CRITICAL_SECTION_END;}float st_get_position_mm(uint8_t axis){  float steper_position_in_steps = st_get_position(axis);  return steper_position_in_steps / axis_steps_per_unit[axis];}void finishAndDisableSteppers(){  st_synchronize();  disable_x();  disable_y();  disable_z();  disable_e0();  disable_e1();  disable_e2();}void quickStop(){  DISABLE_STEPPER_DRIVER_INTERRUPT();  while (blocks_queued()) plan_discard_current_block();   current_block = NULL;  st_reset_timer();  ENABLE_STEPPER_DRIVER_INTERRUPT();}#ifdef BABYSTEPPINGvoid babystep(const uint8_t axis,const bool direction){  //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this    //store initial pin states  switch(axis)  {  case X_AXIS:  {    enable_x();       uint8_t old_x_dir_pin= READ(X_DIR_PIN);  //if dualzstepper, both point to same direction.       //setup new step    WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);        //perform step     WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); #ifdef DEBUG_XSTEP_DUP_PIN    WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN    delayMicroseconds(1);    WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN    WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN    //get old pin state back.    WRITE(X_DIR_PIN,old_x_dir_pin);  }  break;  case Y_AXIS:  {    enable_y();       uint8_t old_y_dir_pin= READ(Y_DIR_PIN);  //if dualzstepper, both point to same direction.       //setup new step    WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);        //perform step     WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); #ifdef DEBUG_YSTEP_DUP_PIN    WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN    delayMicroseconds(1);    WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN    WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN    //get old pin state back.    WRITE(Y_DIR_PIN,old_y_dir_pin);  }  break;   case Z_AXIS:  {    enable_z();    uint8_t old_z_dir_pin= READ(Z_DIR_PIN);  //if dualzstepper, both point to same direction.    //setup new step    WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);    #ifdef Z_DUAL_STEPPER_DRIVERS      WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);    #endif    //perform step     WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);     #ifdef Z_DUAL_STEPPER_DRIVERS      WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);    #endif    delayMicroseconds(1);    WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);    #ifdef Z_DUAL_STEPPER_DRIVERS      WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);    #endif    //get old pin state back.    WRITE(Z_DIR_PIN,old_z_dir_pin);    #ifdef Z_DUAL_STEPPER_DRIVERS      WRITE(Z2_DIR_PIN,old_z_dir_pin);    #endif  }  break;   default:    break;  }}#endif //BABYSTEPPING#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example{    digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip    SPI.transfer(address); //  send in the address and value via SPI:    SPI.transfer(value);    digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:    //delay(10);}#endifvoid EEPROM_read_st(int pos, uint8_t* value, uint8_t size){    do    {        *value = eeprom_read_byte((unsigned char*)pos);        pos++;        value++;    }while(--size);}void st_current_init() //Initialize Digipot Motor Current{  uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);  SilentModeMenu = SilentMode;  #ifdef MOTOR_CURRENT_PWM_XY_PIN    pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);    pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);    pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);    if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){     motor_current_setting[0] = motor_current_setting_loud[0];     motor_current_setting[1] = motor_current_setting_loud[1];     motor_current_setting[2] = motor_current_setting_loud[2];    }else{     motor_current_setting[0] = motor_current_setting_silent[0];     motor_current_setting[1] = motor_current_setting_silent[1];     motor_current_setting[2] = motor_current_setting_silent[2];    }    st_current_set(0, motor_current_setting[0]);    st_current_set(1, motor_current_setting[1]);    st_current_set(2, motor_current_setting[2]);    //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)    TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);  #endif}#ifdef MOTOR_CURRENT_PWM_XY_PINvoid st_current_set(uint8_t driver, int current){  if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);  if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);  if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);}#else //MOTOR_CURRENT_PWM_XY_PINvoid st_current_set(uint8_t, int ){}#endif //MOTOR_CURRENT_PWM_XY_PINvoid microstep_init(){  #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1  pinMode(E1_MS1_PIN,OUTPUT);  pinMode(E1_MS2_PIN,OUTPUT);   #endif  #if defined(X_MS1_PIN) && X_MS1_PIN > -1  const uint8_t microstep_modes[] = MICROSTEP_MODES;  pinMode(X_MS1_PIN,OUTPUT);  pinMode(X_MS2_PIN,OUTPUT);    pinMode(Y_MS1_PIN,OUTPUT);  pinMode(Y_MS2_PIN,OUTPUT);  pinMode(Z_MS1_PIN,OUTPUT);  pinMode(Z_MS2_PIN,OUTPUT);  pinMode(E0_MS1_PIN,OUTPUT);  pinMode(E0_MS2_PIN,OUTPUT);  for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);  #endif}#ifndef TMC2130void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2){  if(ms1 > -1) switch(driver)  {    case 0: digitalWrite( X_MS1_PIN,ms1); break;    case 1: digitalWrite( Y_MS1_PIN,ms1); break;    case 2: digitalWrite( Z_MS1_PIN,ms1); break;    case 3: digitalWrite(E0_MS1_PIN,ms1); break;    #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1    case 4: digitalWrite(E1_MS1_PIN,ms1); break;    #endif  }  if(ms2 > -1) switch(driver)  {    case 0: digitalWrite( X_MS2_PIN,ms2); break;    case 1: digitalWrite( Y_MS2_PIN,ms2); break;    case 2: digitalWrite( Z_MS2_PIN,ms2); break;    case 3: digitalWrite(E0_MS2_PIN,ms2); break;    #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1    case 4: digitalWrite(E1_MS2_PIN,ms2); break;    #endif  }}void microstep_mode(uint8_t driver, uint8_t stepping_mode){  switch(stepping_mode)  {    case 1: microstep_ms(driver,MICROSTEP1); break;    case 2: microstep_ms(driver,MICROSTEP2); break;    case 4: microstep_ms(driver,MICROSTEP4); break;    case 8: microstep_ms(driver,MICROSTEP8); break;    case 16: microstep_ms(driver,MICROSTEP16); break;  }}void microstep_readings(){      SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");      SERIAL_PROTOCOLPGM("X: ");      SERIAL_PROTOCOL(   digitalRead(X_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));      SERIAL_PROTOCOLPGM("Y: ");      SERIAL_PROTOCOL(   digitalRead(Y_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));      SERIAL_PROTOCOLPGM("Z: ");      SERIAL_PROTOCOL(   digitalRead(Z_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));      SERIAL_PROTOCOLPGM("E0: ");      SERIAL_PROTOCOL(   digitalRead(E0_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));      #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1      SERIAL_PROTOCOLPGM("E1: ");      SERIAL_PROTOCOL(   digitalRead(E1_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));      #endif}#endif //TMC2130
 |