fsensor.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. #include "Marlin.h"
  2. #include "fsensor.h"
  3. #include <avr/pgmspace.h>
  4. #include "pat9125.h"
  5. #include "stepper.h"
  6. #include "planner.h"
  7. #include "fastio.h"
  8. #include "cmdqueue.h"
  9. //Basic params
  10. #define FSENSOR_CHUNK_LEN 0.64F //filament sensor chunk length 0.64mm
  11. #define FSENSOR_ERR_MAX 17 //filament sensor maximum error count for runout detection
  12. //Optical quality meassurement params
  13. #define FSENSOR_OQ_MAX_ES 6 //maximum error sum while loading (length ~64mm = 100chunks)
  14. #define FSENSOR_OQ_MAX_EM 2 //maximum error counter value while loading
  15. #define FSENSOR_OQ_MIN_YD 2 //minimum yd per chunk (applied to avg value)
  16. #define FSENSOR_OQ_MAX_YD 200 //maximum yd per chunk (applied to avg value)
  17. #define FSENSOR_OQ_MAX_PD 4 //maximum positive deviation (= yd_max/yd_avg)
  18. #define FSENSOR_OQ_MAX_ND 5 //maximum negative deviation (= yd_avg/yd_min)
  19. #define FSENSOR_OQ_MAX_SH 13 //maximum shutter value
  20. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  21. #define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1
  22. #define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1)
  23. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  24. extern void restore_print_from_ram_and_continue(float e_move);
  25. extern int8_t FSensorStateMenu;
  26. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  27. uint8_t fsensor_int_pin_old = 0;
  28. int16_t fsensor_chunk_len = 0;
  29. //enabled = initialized and sampled every chunk event
  30. bool fsensor_enabled = true;
  31. //runout watching is done in fsensor_update (called from main loop)
  32. bool fsensor_watch_runout = true;
  33. //not responding - is set if any communication error occured durring initialization or readout
  34. bool fsensor_not_responding = false;
  35. //number of errors, updated in ISR
  36. uint8_t fsensor_err_cnt = 0;
  37. //variable for accumolating step count (updated callbacks from stepper and ISR)
  38. int16_t fsensor_st_cnt = 0;
  39. //last dy value from pat9125 sensor (used in ISR)
  40. int16_t fsensor_dy_old = 0;
  41. //log flag: 0=log disabled, 1=log enabled
  42. uint8_t fsensor_log = 1;
  43. ////////////////////////////////////////////////////////////////////////////////
  44. //filament autoload variables
  45. //autoload feature enabled
  46. bool fsensor_autoload_enabled = true;
  47. //autoload watching enable/disable flag
  48. bool fsensor_watch_autoload = false;
  49. //
  50. uint16_t fsensor_autoload_y;
  51. //
  52. uint8_t fsensor_autoload_c;
  53. //
  54. uint32_t fsensor_autoload_last_millis;
  55. //
  56. uint8_t fsensor_autoload_sum;
  57. ////////////////////////////////////////////////////////////////////////////////
  58. //filament optical quality meassurement variables
  59. //meassurement enable/disable flag
  60. bool fsensor_oq_meassure = false;
  61. //skip-chunk counter, for accurate meassurement is necesary to skip first chunk...
  62. uint8_t fsensor_oq_skipchunk;
  63. //number of samples from start of meassurement
  64. uint8_t fsensor_oq_samples;
  65. //sum of steps in positive direction movements
  66. uint16_t fsensor_oq_st_sum;
  67. //sum of deltas in positive direction movements
  68. uint16_t fsensor_oq_yd_sum;
  69. //sum of errors durring meassurement
  70. uint16_t fsensor_oq_er_sum;
  71. //max error counter value durring meassurement
  72. uint8_t fsensor_oq_er_max;
  73. //minimum delta value
  74. uint16_t fsensor_oq_yd_min;
  75. //maximum delta value
  76. uint16_t fsensor_oq_yd_max;
  77. //sum of shutter value
  78. uint16_t fsensor_oq_sh_sum;
  79. void fsensor_stop_and_save_print(void)
  80. {
  81. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  82. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  83. }
  84. void fsensor_restore_print_and_continue(void)
  85. {
  86. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  87. fsensor_watch_runout = true;
  88. fsensor_err_cnt = 0;
  89. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  90. }
  91. void fsensor_init(void)
  92. {
  93. uint8_t pat9125 = pat9125_init();
  94. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  95. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  96. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  97. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * axis_steps_per_unit[E_AXIS]);
  98. if (!pat9125)
  99. {
  100. fsensor = 0; //disable sensor
  101. fsensor_not_responding = true;
  102. }
  103. else
  104. fsensor_not_responding = false;
  105. if (fsensor)
  106. fsensor_enable();
  107. else
  108. fsensor_disable();
  109. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  110. }
  111. bool fsensor_enable(void)
  112. {
  113. uint8_t pat9125 = pat9125_init();
  114. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  115. if (pat9125)
  116. fsensor_not_responding = false;
  117. else
  118. fsensor_not_responding = true;
  119. fsensor_enabled = pat9125?true:false;
  120. fsensor_watch_runout = true;
  121. fsensor_oq_meassure = false;
  122. fsensor_err_cnt = 0;
  123. fsensor_dy_old = 0;
  124. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  125. FSensorStateMenu = fsensor_enabled?1:0;
  126. return fsensor_enabled;
  127. }
  128. void fsensor_disable(void)
  129. {
  130. fsensor_enabled = false;
  131. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  132. FSensorStateMenu = 0;
  133. }
  134. void fsensor_autoload_set(bool State)
  135. {
  136. fsensor_autoload_enabled = State;
  137. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  138. }
  139. void pciSetup(byte pin)
  140. {
  141. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  142. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  143. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  144. }
  145. void fsensor_autoload_check_start(void)
  146. {
  147. // puts_P(_N("fsensor_autoload_check_start\n"));
  148. if (!fsensor_enabled) return;
  149. if (!fsensor_autoload_enabled) return;
  150. if (fsensor_watch_autoload) return;
  151. if (!pat9125_update_y()) //update sensor
  152. {
  153. fsensor_disable();
  154. fsensor_not_responding = true;
  155. fsensor_watch_autoload = false;
  156. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  157. return;
  158. }
  159. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  160. fsensor_autoload_y = pat9125_y; //save current y value
  161. fsensor_autoload_c = 0; //reset number of changes counter
  162. fsensor_autoload_sum = 0;
  163. fsensor_autoload_last_millis = millis();
  164. fsensor_watch_runout = false;
  165. fsensor_watch_autoload = true;
  166. fsensor_err_cnt = 0;
  167. }
  168. void fsensor_autoload_check_stop(void)
  169. {
  170. // puts_P(_N("fsensor_autoload_check_stop\n"));
  171. if (!fsensor_enabled) return;
  172. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  173. if (!fsensor_autoload_enabled) return;
  174. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  175. if (!fsensor_watch_autoload) return;
  176. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  177. fsensor_autoload_sum = 0;
  178. fsensor_watch_autoload = false;
  179. fsensor_watch_runout = true;
  180. fsensor_err_cnt = 0;
  181. }
  182. bool fsensor_check_autoload(void)
  183. {
  184. if (!fsensor_enabled) return false;
  185. if (!fsensor_autoload_enabled) return false;
  186. if (!fsensor_watch_autoload)
  187. {
  188. fsensor_autoload_check_start();
  189. return false;
  190. }
  191. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  192. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  193. fsensor_autoload_last_millis = millis();
  194. if (!pat9125_update_y()) //update sensor
  195. {
  196. fsensor_disable();
  197. fsensor_not_responding = true;
  198. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  199. return false;
  200. }
  201. int16_t dy = pat9125_y - fsensor_autoload_y;
  202. if (dy) //? dy value is nonzero
  203. {
  204. if (dy > 0) //? delta-y value is positive (inserting)
  205. {
  206. fsensor_autoload_sum += dy;
  207. fsensor_autoload_c += 3; //increment change counter by 3
  208. }
  209. else if (fsensor_autoload_c > 1)
  210. fsensor_autoload_c -= 2; //decrement change counter by 2
  211. fsensor_autoload_y = pat9125_y; //save current value
  212. }
  213. else if (fsensor_autoload_c > 0)
  214. fsensor_autoload_c--;
  215. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  216. // puts_P(_N("fsensor_check_autoload\n"));
  217. // if (fsensor_autoload_c != fsensor_autoload_c_old)
  218. // printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  219. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  220. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  221. {
  222. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  223. return true;
  224. }
  225. return false;
  226. }
  227. void fsensor_oq_meassure_start(uint8_t skip)
  228. {
  229. if (!fsensor_enabled) return;
  230. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  231. fsensor_oq_skipchunk = skip;
  232. fsensor_oq_samples = 0;
  233. fsensor_oq_st_sum = 0;
  234. fsensor_oq_yd_sum = 0;
  235. fsensor_oq_er_sum = 0;
  236. fsensor_oq_er_max = 0;
  237. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  238. fsensor_oq_yd_max = 0;
  239. fsensor_oq_sh_sum = 0;
  240. pat9125_update();
  241. pat9125_y = 0;
  242. fsensor_watch_runout = false;
  243. fsensor_oq_meassure = true;
  244. }
  245. void fsensor_oq_meassure_stop(void)
  246. {
  247. if (!fsensor_enabled) return;
  248. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  249. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  250. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  251. fsensor_oq_meassure = false;
  252. fsensor_watch_runout = true;
  253. fsensor_err_cnt = 0;
  254. }
  255. const char _OK[] PROGMEM = "OK";
  256. const char _NG[] PROGMEM = "NG!";
  257. bool fsensor_oq_result(void)
  258. {
  259. if (!fsensor_enabled) return true;
  260. printf_P(_N("fsensor_oq_result\n"));
  261. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  262. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  263. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  264. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  265. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  266. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  267. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  268. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  269. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  270. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  271. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  272. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  273. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  274. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  275. printf_P(_N(" yd_qua = %u\n"), yd_qua);
  276. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  277. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  278. if (yd_qua >= 8) res_sh_avg = true;
  279. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  280. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  281. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  282. return res;
  283. }
  284. ISR(PCINT2_vect)
  285. {
  286. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  287. fsensor_int_pin_old = PINK;
  288. static bool _lock = false;
  289. if (_lock) return;
  290. _lock = true;
  291. int st_cnt = fsensor_st_cnt;
  292. fsensor_st_cnt = 0;
  293. sei();
  294. uint8_t old_err_cnt = fsensor_err_cnt;
  295. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  296. if (!pat9125_res)
  297. {
  298. fsensor_disable();
  299. fsensor_not_responding = true;
  300. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  301. }
  302. if (st_cnt != 0)
  303. { //movement
  304. if (st_cnt > 0) //positive movement
  305. {
  306. if (pat9125_y < 0)
  307. {
  308. if (fsensor_err_cnt)
  309. fsensor_err_cnt += 2;
  310. else
  311. fsensor_err_cnt++;
  312. }
  313. else if (pat9125_y > 0)
  314. {
  315. if (fsensor_err_cnt)
  316. fsensor_err_cnt--;
  317. }
  318. else //(pat9125_y == 0)
  319. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  320. fsensor_err_cnt++;
  321. if (fsensor_oq_meassure)
  322. {
  323. if (fsensor_oq_skipchunk)
  324. {
  325. fsensor_oq_skipchunk--;
  326. fsensor_err_cnt = 0;
  327. }
  328. else
  329. {
  330. if (st_cnt == fsensor_chunk_len)
  331. {
  332. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  333. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  334. }
  335. fsensor_oq_samples++;
  336. fsensor_oq_st_sum += st_cnt;
  337. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  338. if (fsensor_err_cnt > old_err_cnt)
  339. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  340. if (fsensor_oq_er_max < fsensor_err_cnt)
  341. fsensor_oq_er_max = fsensor_err_cnt;
  342. fsensor_oq_sh_sum += pat9125_s;
  343. }
  344. }
  345. }
  346. else //negative movement
  347. {
  348. }
  349. }
  350. else
  351. { //no movement
  352. }
  353. #ifdef DEBUG_FSENSOR_LOG
  354. if (fsensor_log)
  355. {
  356. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  357. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  358. }
  359. #endif //DEBUG_FSENSOR_LOG
  360. fsensor_dy_old = pat9125_y;
  361. pat9125_y = 0;
  362. _lock = false;
  363. return;
  364. }
  365. void fsensor_st_block_begin(block_t* bl)
  366. {
  367. if (!fsensor_enabled) return;
  368. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  369. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  370. {
  371. if (_READ(63)) _WRITE(63, LOW);
  372. else _WRITE(63, HIGH);
  373. }
  374. }
  375. void fsensor_st_block_chunk(block_t* bl, int cnt)
  376. {
  377. if (!fsensor_enabled) return;
  378. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  379. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  380. {
  381. if (_READ(63)) _WRITE(63, LOW);
  382. else _WRITE(63, HIGH);
  383. }
  384. }
  385. void fsensor_update(void)
  386. {
  387. if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  388. {
  389. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  390. fsensor_autoload_enabled = false;
  391. fsensor_stop_and_save_print();
  392. fsensor_err_cnt = 0;
  393. fsensor_oq_meassure_start(0);
  394. // st_synchronize();
  395. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  396. // current_position[axis] = st_get_position_mm(axis);
  397. /*
  398. current_position[E_AXIS] -= 3;
  399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder);
  400. st_synchronize();
  401. current_position[E_AXIS] += 3;
  402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200 / 60, active_extruder);
  403. st_synchronize();
  404. */
  405. enquecommand_front_P((PSTR("G1 E-3 F200")));
  406. process_commands();
  407. cmdqueue_pop_front();
  408. st_synchronize();
  409. enquecommand_front_P((PSTR("G1 E3 F200")));
  410. process_commands();
  411. cmdqueue_pop_front();
  412. st_synchronize();
  413. uint8_t err_cnt = fsensor_err_cnt;
  414. fsensor_oq_meassure_stop();
  415. bool err = false;
  416. err |= (fsensor_oq_er_sum > 2);
  417. err |= (err_cnt > 1);
  418. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  419. if (!err)
  420. {
  421. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  422. fsensor_restore_print_and_continue();
  423. }
  424. else
  425. {
  426. printf_P(PSTR("fsensor_update - M600\n"));
  427. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  428. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  429. enquecommand_front_P(PSTR("FSENSOR_RECOVER"));
  430. enquecommand_front_P((PSTR("M600")));
  431. fsensor_watch_runout = false;
  432. }
  433. fsensor_autoload_enabled = autoload_enabled_tmp;
  434. }
  435. }
  436. void fsensor_setup_interrupt(void)
  437. {
  438. pinMode(FSENSOR_INT_PIN, OUTPUT);
  439. digitalWrite(FSENSOR_INT_PIN, LOW);
  440. fsensor_int_pin_old = 0;
  441. pciSetup(FSENSOR_INT_PIN);
  442. }