Marlin_main.cpp 267 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = false;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. sei();
  524. }
  525. void crashdet_detected()
  526. {
  527. // printf("CRASH_DETECTED");
  528. /* while (!is_buffer_empty())
  529. {
  530. process_commands();
  531. cmdqueue_pop_front();
  532. }*/
  533. st_synchronize();
  534. lcd_update_enable(true);
  535. lcd_implementation_clear();
  536. lcd_update(2);
  537. // Increment crash counter
  538. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  539. crash_count++;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  541. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  542. bool yesno = true;
  543. #else
  544. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  545. #endif
  546. lcd_update_enable(true);
  547. lcd_update(2);
  548. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  549. if (yesno)
  550. {
  551. enquecommand_P(PSTR("G28 X"));
  552. enquecommand_P(PSTR("G28 Y"));
  553. enquecommand_P(PSTR("CRASH_RECOVER"));
  554. }
  555. else
  556. {
  557. enquecommand_P(PSTR("CRASH_CANCEL"));
  558. }
  559. }
  560. void crashdet_recover()
  561. {
  562. crashdet_restore_print_and_continue();
  563. tmc2130_sg_stop_on_crash = true;
  564. }
  565. void crashdet_cancel()
  566. {
  567. card.sdprinting = false;
  568. card.closefile();
  569. tmc2130_sg_stop_on_crash = true;
  570. }
  571. #ifdef MESH_BED_LEVELING
  572. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  573. #endif
  574. // Factory reset function
  575. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  576. // Level input parameter sets depth of reset
  577. // Quiet parameter masks all waitings for user interact.
  578. int er_progress = 0;
  579. void factory_reset(char level, bool quiet)
  580. {
  581. lcd_implementation_clear();
  582. int cursor_pos = 0;
  583. switch (level) {
  584. // Level 0: Language reset
  585. case 0:
  586. WRITE(BEEPER, HIGH);
  587. _delay_ms(100);
  588. WRITE(BEEPER, LOW);
  589. lcd_force_language_selection();
  590. break;
  591. //Level 1: Reset statistics
  592. case 1:
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  597. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  599. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  600. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  601. lcd_menu_statistics();
  602. break;
  603. // Level 2: Prepare for shipping
  604. case 2:
  605. //lcd_printPGM(PSTR("Factory RESET"));
  606. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  607. // Force language selection at the next boot up.
  608. lcd_force_language_selection();
  609. // Force the "Follow calibration flow" message at the next boot up.
  610. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  611. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  612. farm_no = 0;
  613. farm_mode == false;
  614. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  615. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  616. WRITE(BEEPER, HIGH);
  617. _delay_ms(100);
  618. WRITE(BEEPER, LOW);
  619. //_delay_ms(2000);
  620. break;
  621. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  622. case 3:
  623. lcd_printPGM(PSTR("Factory RESET"));
  624. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  625. WRITE(BEEPER, HIGH);
  626. _delay_ms(100);
  627. WRITE(BEEPER, LOW);
  628. er_progress = 0;
  629. lcd_print_at_PGM(3, 3, PSTR(" "));
  630. lcd_implementation_print_at(3, 3, er_progress);
  631. // Erase EEPROM
  632. for (int i = 0; i < 4096; i++) {
  633. eeprom_write_byte((uint8_t*)i, 0xFF);
  634. if (i % 41 == 0) {
  635. er_progress++;
  636. lcd_print_at_PGM(3, 3, PSTR(" "));
  637. lcd_implementation_print_at(3, 3, er_progress);
  638. lcd_printPGM(PSTR("%"));
  639. }
  640. }
  641. break;
  642. case 4:
  643. bowden_menu();
  644. break;
  645. default:
  646. break;
  647. }
  648. }
  649. #include "LiquidCrystal.h"
  650. extern LiquidCrystal lcd;
  651. FILE _lcdout = {0};
  652. int lcd_putchar(char c, FILE *stream)
  653. {
  654. lcd.write(c);
  655. return 0;
  656. }
  657. FILE _uartout = {0};
  658. int uart_putchar(char c, FILE *stream)
  659. {
  660. MYSERIAL.write(c);
  661. return 0;
  662. }
  663. void lcd_splash()
  664. {
  665. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  666. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  667. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  668. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  669. }
  670. void factory_reset()
  671. {
  672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  673. if (!READ(BTN_ENC))
  674. {
  675. _delay_ms(1000);
  676. if (!READ(BTN_ENC))
  677. {
  678. lcd_implementation_clear();
  679. lcd_printPGM(PSTR("Factory RESET"));
  680. SET_OUTPUT(BEEPER);
  681. WRITE(BEEPER, HIGH);
  682. while (!READ(BTN_ENC));
  683. WRITE(BEEPER, LOW);
  684. _delay_ms(2000);
  685. char level = reset_menu();
  686. factory_reset(level, false);
  687. switch (level) {
  688. case 0: _delay_ms(0); break;
  689. case 1: _delay_ms(0); break;
  690. case 2: _delay_ms(0); break;
  691. case 3: _delay_ms(0); break;
  692. }
  693. // _delay_ms(100);
  694. /*
  695. #ifdef MESH_BED_LEVELING
  696. _delay_ms(2000);
  697. if (!READ(BTN_ENC))
  698. {
  699. WRITE(BEEPER, HIGH);
  700. _delay_ms(100);
  701. WRITE(BEEPER, LOW);
  702. _delay_ms(200);
  703. WRITE(BEEPER, HIGH);
  704. _delay_ms(100);
  705. WRITE(BEEPER, LOW);
  706. int _z = 0;
  707. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  708. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  709. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  710. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  711. }
  712. else
  713. {
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. }
  718. #endif // mesh */
  719. }
  720. }
  721. else
  722. {
  723. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  724. }
  725. KEEPALIVE_STATE(IN_HANDLER);
  726. }
  727. void show_fw_version_warnings() {
  728. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  729. switch (FW_DEV_VERSION) {
  730. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  731. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  732. case(FW_VERSION_DEVEL):
  733. case(FW_VERSION_DEBUG):
  734. lcd_update_enable(false);
  735. lcd_implementation_clear();
  736. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  737. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  738. #else
  739. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  740. #endif
  741. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  742. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  743. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  744. lcd_wait_for_click();
  745. break;
  746. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  747. }
  748. lcd_update_enable(true);
  749. }
  750. // "Setup" function is called by the Arduino framework on startup.
  751. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  752. // are initialized by the main() routine provided by the Arduino framework.
  753. void setup()
  754. {
  755. lcd_init();
  756. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  757. lcd_splash();
  758. setup_killpin();
  759. setup_powerhold();
  760. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  761. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  762. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  763. if (farm_no == 0xFFFF) farm_no = 0;
  764. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  765. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  766. if (farm_mode)
  767. {
  768. prusa_statistics(8);
  769. selectedSerialPort = 1;
  770. }
  771. MYSERIAL.begin(BAUDRATE);
  772. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  773. stdout = uartout;
  774. SERIAL_PROTOCOLLNPGM("start");
  775. SERIAL_ECHO_START;
  776. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  777. #if 0
  778. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  779. for (int i = 0; i < 4096; ++i) {
  780. int b = eeprom_read_byte((unsigned char*)i);
  781. if (b != 255) {
  782. SERIAL_ECHO(i);
  783. SERIAL_ECHO(":");
  784. SERIAL_ECHO(b);
  785. SERIAL_ECHOLN("");
  786. }
  787. }
  788. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  789. #endif
  790. // Check startup - does nothing if bootloader sets MCUSR to 0
  791. byte mcu = MCUSR;
  792. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  793. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  794. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  795. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  796. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  797. if (mcu & 1) puts_P(MSG_POWERUP);
  798. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  799. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  800. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  801. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  802. MCUSR = 0;
  803. //SERIAL_ECHORPGM(MSG_MARLIN);
  804. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  805. #ifdef STRING_VERSION_CONFIG_H
  806. #ifdef STRING_CONFIG_H_AUTHOR
  807. SERIAL_ECHO_START;
  808. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  809. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  810. SERIAL_ECHORPGM(MSG_AUTHOR);
  811. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  812. SERIAL_ECHOPGM("Compiled: ");
  813. SERIAL_ECHOLNPGM(__DATE__);
  814. #endif
  815. #endif
  816. SERIAL_ECHO_START;
  817. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  818. SERIAL_ECHO(freeMemory());
  819. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  820. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  821. //lcd_update_enable(false); // why do we need this?? - andre
  822. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  823. Config_RetrieveSettings(EEPROM_OFFSET);
  824. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  825. tp_init(); // Initialize temperature loop
  826. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  827. plan_init(); // Initialize planner;
  828. watchdog_init();
  829. factory_reset();
  830. #ifdef TMC2130
  831. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  832. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  833. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  834. if (crashdet)
  835. {
  836. crashdet_enable();
  837. MYSERIAL.println("CrashDetect ENABLED!");
  838. }
  839. else
  840. {
  841. crashdet_disable();
  842. MYSERIAL.println("CrashDetect DISABLED");
  843. }
  844. #endif //TMC2130
  845. st_init(); // Initialize stepper, this enables interrupts!
  846. setup_photpin();
  847. servo_init();
  848. // Reset the machine correction matrix.
  849. // It does not make sense to load the correction matrix until the machine is homed.
  850. world2machine_reset();
  851. #ifdef PAT9125
  852. fsensor_init();
  853. #endif //PAT9125
  854. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  855. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  856. #endif
  857. #ifdef DIGIPOT_I2C
  858. digipot_i2c_init();
  859. #endif
  860. setup_homepin();
  861. if (1) {
  862. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  863. // try to run to zero phase before powering the Z motor.
  864. // Move in negative direction
  865. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  866. // Round the current micro-micro steps to micro steps.
  867. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  868. // Until the phase counter is reset to zero.
  869. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  870. delay(2);
  871. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  872. delay(2);
  873. }
  874. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  875. }
  876. #if defined(Z_AXIS_ALWAYS_ON)
  877. enable_z();
  878. #endif
  879. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  880. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  881. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  882. if (farm_no == 0xFFFF) farm_no = 0;
  883. if (farm_mode)
  884. {
  885. prusa_statistics(8);
  886. }
  887. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  888. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  889. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  890. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  891. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  892. // where all the EEPROM entries are set to 0x0ff.
  893. // Once a firmware boots up, it forces at least a language selection, which changes
  894. // EEPROM_LANG to number lower than 0x0ff.
  895. // 1) Set a high power mode.
  896. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  897. tmc2130_mode = TMC2130_MODE_NORMAL;
  898. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  899. }
  900. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  901. // but this times out if a blocking dialog is shown in setup().
  902. card.initsd();
  903. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  904. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  905. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  906. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  907. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  908. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  909. #ifdef SNMM
  910. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  911. int _z = BOWDEN_LENGTH;
  912. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  913. }
  914. #endif
  915. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  916. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  917. // is being written into the EEPROM, so the update procedure will be triggered only once.
  918. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  919. if (lang_selected >= LANG_NUM){
  920. lcd_mylang();
  921. }
  922. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  923. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  924. temp_cal_active = false;
  925. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  926. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  927. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  928. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  929. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  930. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  931. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  932. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  933. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  934. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  935. temp_cal_active = true;
  936. }
  937. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  938. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  939. }
  940. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  941. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  942. }
  943. check_babystep(); //checking if Z babystep is in allowed range
  944. setup_uvlo_interrupt();
  945. #ifndef DEBUG_DISABLE_FANCHECK
  946. setup_fan_interrupt();
  947. #endif //DEBUG_DISABLE_FANCHECK
  948. #ifndef DEBUG_DISABLE_FSENSORCHECK
  949. fsensor_setup_interrupt();
  950. #endif //DEBUG_DISABLE_FSENSORCHECK
  951. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  952. #ifndef DEBUG_DISABLE_STARTMSGS
  953. KEEPALIVE_STATE(PAUSED_FOR_USER);
  954. show_fw_version_warnings();
  955. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  956. lcd_wizard(0);
  957. }
  958. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  959. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  960. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  961. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  962. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  963. // Show the message.
  964. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  965. }
  966. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  967. // Show the message.
  968. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  969. lcd_update_enable(true);
  970. }
  971. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  972. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  973. lcd_update_enable(true);
  974. }
  975. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  976. // Show the message.
  977. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  978. }
  979. }
  980. KEEPALIVE_STATE(IN_PROCESS);
  981. #endif //DEBUG_DISABLE_STARTMSGS
  982. lcd_update_enable(true);
  983. lcd_implementation_clear();
  984. lcd_update(2);
  985. // Store the currently running firmware into an eeprom,
  986. // so the next time the firmware gets updated, it will know from which version it has been updated.
  987. update_current_firmware_version_to_eeprom();
  988. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  989. /*
  990. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  991. else {
  992. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  993. lcd_update_enable(true);
  994. lcd_update(2);
  995. lcd_setstatuspgm(WELCOME_MSG);
  996. }
  997. */
  998. manage_heater(); // Update temperatures
  999. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1000. MYSERIAL.println("Power panic detected!");
  1001. MYSERIAL.print("Current bed temp:");
  1002. MYSERIAL.println(degBed());
  1003. MYSERIAL.print("Saved bed temp:");
  1004. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1005. #endif
  1006. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1007. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1008. MYSERIAL.println("Automatic recovery!");
  1009. #endif
  1010. recover_print(1);
  1011. }
  1012. else{
  1013. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1014. MYSERIAL.println("Normal recovery!");
  1015. #endif
  1016. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1017. else {
  1018. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1019. lcd_update_enable(true);
  1020. lcd_update(2);
  1021. lcd_setstatuspgm(WELCOME_MSG);
  1022. }
  1023. }
  1024. }
  1025. KEEPALIVE_STATE(NOT_BUSY);
  1026. wdt_enable(WDTO_4S);
  1027. }
  1028. #ifdef PAT9125
  1029. void fsensor_init() {
  1030. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  1031. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1032. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1033. if (!pat9125)
  1034. {
  1035. fsensor = 0; //disable sensor
  1036. fsensor_not_responding = true;
  1037. }
  1038. else {
  1039. fsensor_not_responding = false;
  1040. }
  1041. puts_P(PSTR("FSensor "));
  1042. if (fsensor)
  1043. {
  1044. puts_P(PSTR("ENABLED\n"));
  1045. fsensor_enable();
  1046. }
  1047. else
  1048. {
  1049. puts_P(PSTR("DISABLED\n"));
  1050. fsensor_disable();
  1051. }
  1052. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1053. filament_autoload_enabled = false;
  1054. fsensor_disable();
  1055. #endif //DEBUG_DISABLE_FSENSORCHECK
  1056. }
  1057. #endif //PAT9125
  1058. void trace();
  1059. #define CHUNK_SIZE 64 // bytes
  1060. #define SAFETY_MARGIN 1
  1061. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1062. int chunkHead = 0;
  1063. int serial_read_stream() {
  1064. setTargetHotend(0, 0);
  1065. setTargetBed(0);
  1066. lcd_implementation_clear();
  1067. lcd_printPGM(PSTR(" Upload in progress"));
  1068. // first wait for how many bytes we will receive
  1069. uint32_t bytesToReceive;
  1070. // receive the four bytes
  1071. char bytesToReceiveBuffer[4];
  1072. for (int i=0; i<4; i++) {
  1073. int data;
  1074. while ((data = MYSERIAL.read()) == -1) {};
  1075. bytesToReceiveBuffer[i] = data;
  1076. }
  1077. // make it a uint32
  1078. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1079. // we're ready, notify the sender
  1080. MYSERIAL.write('+');
  1081. // lock in the routine
  1082. uint32_t receivedBytes = 0;
  1083. while (prusa_sd_card_upload) {
  1084. int i;
  1085. for (i=0; i<CHUNK_SIZE; i++) {
  1086. int data;
  1087. // check if we're not done
  1088. if (receivedBytes == bytesToReceive) {
  1089. break;
  1090. }
  1091. // read the next byte
  1092. while ((data = MYSERIAL.read()) == -1) {};
  1093. receivedBytes++;
  1094. // save it to the chunk
  1095. chunk[i] = data;
  1096. }
  1097. // write the chunk to SD
  1098. card.write_command_no_newline(&chunk[0]);
  1099. // notify the sender we're ready for more data
  1100. MYSERIAL.write('+');
  1101. // for safety
  1102. manage_heater();
  1103. // check if we're done
  1104. if(receivedBytes == bytesToReceive) {
  1105. trace(); // beep
  1106. card.closefile();
  1107. prusa_sd_card_upload = false;
  1108. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1109. return 0;
  1110. }
  1111. }
  1112. }
  1113. #ifdef HOST_KEEPALIVE_FEATURE
  1114. /**
  1115. * Output a "busy" message at regular intervals
  1116. * while the machine is not accepting commands.
  1117. */
  1118. void host_keepalive() {
  1119. if (farm_mode) return;
  1120. long ms = millis();
  1121. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1122. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1123. switch (busy_state) {
  1124. case IN_HANDLER:
  1125. case IN_PROCESS:
  1126. SERIAL_ECHO_START;
  1127. SERIAL_ECHOLNPGM("busy: processing");
  1128. break;
  1129. case PAUSED_FOR_USER:
  1130. SERIAL_ECHO_START;
  1131. SERIAL_ECHOLNPGM("busy: paused for user");
  1132. break;
  1133. case PAUSED_FOR_INPUT:
  1134. SERIAL_ECHO_START;
  1135. SERIAL_ECHOLNPGM("busy: paused for input");
  1136. break;
  1137. default:
  1138. break;
  1139. }
  1140. }
  1141. prev_busy_signal_ms = ms;
  1142. }
  1143. #endif
  1144. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1145. // Before loop(), the setup() function is called by the main() routine.
  1146. void loop()
  1147. {
  1148. KEEPALIVE_STATE(NOT_BUSY);
  1149. bool stack_integrity = true;
  1150. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1151. {
  1152. is_usb_printing = true;
  1153. usb_printing_counter--;
  1154. _usb_timer = millis();
  1155. }
  1156. if (usb_printing_counter == 0)
  1157. {
  1158. is_usb_printing = false;
  1159. }
  1160. if (prusa_sd_card_upload)
  1161. {
  1162. //we read byte-by byte
  1163. serial_read_stream();
  1164. } else
  1165. {
  1166. get_command();
  1167. #ifdef SDSUPPORT
  1168. card.checkautostart(false);
  1169. #endif
  1170. if(buflen)
  1171. {
  1172. cmdbuffer_front_already_processed = false;
  1173. #ifdef SDSUPPORT
  1174. if(card.saving)
  1175. {
  1176. // Saving a G-code file onto an SD-card is in progress.
  1177. // Saving starts with M28, saving until M29 is seen.
  1178. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1179. card.write_command(CMDBUFFER_CURRENT_STRING);
  1180. if(card.logging)
  1181. process_commands();
  1182. else
  1183. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1184. } else {
  1185. card.closefile();
  1186. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1187. }
  1188. } else {
  1189. process_commands();
  1190. }
  1191. #else
  1192. process_commands();
  1193. #endif //SDSUPPORT
  1194. if (! cmdbuffer_front_already_processed && buflen)
  1195. {
  1196. cli();
  1197. union {
  1198. struct {
  1199. char lo;
  1200. char hi;
  1201. } lohi;
  1202. uint16_t value;
  1203. } sdlen;
  1204. sdlen.value = 0;
  1205. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1206. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1207. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1208. }
  1209. cmdqueue_pop_front();
  1210. planner_add_sd_length(sdlen.value);
  1211. sei();
  1212. }
  1213. host_keepalive();
  1214. }
  1215. }
  1216. //check heater every n milliseconds
  1217. manage_heater();
  1218. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1219. checkHitEndstops();
  1220. lcd_update();
  1221. #ifdef PAT9125
  1222. fsensor_update();
  1223. #endif //PAT9125
  1224. #ifdef TMC2130
  1225. tmc2130_check_overtemp();
  1226. if (tmc2130_sg_crash)
  1227. {
  1228. tmc2130_sg_crash = false;
  1229. // crashdet_stop_and_save_print();
  1230. enquecommand_P((PSTR("CRASH_DETECTED")));
  1231. }
  1232. #endif //TMC2130
  1233. }
  1234. #define DEFINE_PGM_READ_ANY(type, reader) \
  1235. static inline type pgm_read_any(const type *p) \
  1236. { return pgm_read_##reader##_near(p); }
  1237. DEFINE_PGM_READ_ANY(float, float);
  1238. DEFINE_PGM_READ_ANY(signed char, byte);
  1239. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1240. static const PROGMEM type array##_P[3] = \
  1241. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1242. static inline type array(int axis) \
  1243. { return pgm_read_any(&array##_P[axis]); } \
  1244. type array##_ext(int axis) \
  1245. { return pgm_read_any(&array##_P[axis]); }
  1246. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1247. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1248. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1249. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1250. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1251. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1252. static void axis_is_at_home(int axis) {
  1253. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1254. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1255. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1256. }
  1257. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1258. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1259. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1260. saved_feedrate = feedrate;
  1261. saved_feedmultiply = feedmultiply;
  1262. feedmultiply = 100;
  1263. previous_millis_cmd = millis();
  1264. enable_endstops(enable_endstops_now);
  1265. }
  1266. static void clean_up_after_endstop_move() {
  1267. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1268. enable_endstops(false);
  1269. #endif
  1270. feedrate = saved_feedrate;
  1271. feedmultiply = saved_feedmultiply;
  1272. previous_millis_cmd = millis();
  1273. }
  1274. #ifdef ENABLE_AUTO_BED_LEVELING
  1275. #ifdef AUTO_BED_LEVELING_GRID
  1276. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1277. {
  1278. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1279. planeNormal.debug("planeNormal");
  1280. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1281. //bedLevel.debug("bedLevel");
  1282. //plan_bed_level_matrix.debug("bed level before");
  1283. //vector_3 uncorrected_position = plan_get_position_mm();
  1284. //uncorrected_position.debug("position before");
  1285. vector_3 corrected_position = plan_get_position();
  1286. // corrected_position.debug("position after");
  1287. current_position[X_AXIS] = corrected_position.x;
  1288. current_position[Y_AXIS] = corrected_position.y;
  1289. current_position[Z_AXIS] = corrected_position.z;
  1290. // put the bed at 0 so we don't go below it.
  1291. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1292. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1293. }
  1294. #else // not AUTO_BED_LEVELING_GRID
  1295. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1296. plan_bed_level_matrix.set_to_identity();
  1297. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1298. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1299. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1300. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1301. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1302. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1303. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1304. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1305. vector_3 corrected_position = plan_get_position();
  1306. current_position[X_AXIS] = corrected_position.x;
  1307. current_position[Y_AXIS] = corrected_position.y;
  1308. current_position[Z_AXIS] = corrected_position.z;
  1309. // put the bed at 0 so we don't go below it.
  1310. current_position[Z_AXIS] = zprobe_zoffset;
  1311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1312. }
  1313. #endif // AUTO_BED_LEVELING_GRID
  1314. static void run_z_probe() {
  1315. plan_bed_level_matrix.set_to_identity();
  1316. feedrate = homing_feedrate[Z_AXIS];
  1317. // move down until you find the bed
  1318. float zPosition = -10;
  1319. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1320. st_synchronize();
  1321. // we have to let the planner know where we are right now as it is not where we said to go.
  1322. zPosition = st_get_position_mm(Z_AXIS);
  1323. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1324. // move up the retract distance
  1325. zPosition += home_retract_mm(Z_AXIS);
  1326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1327. st_synchronize();
  1328. // move back down slowly to find bed
  1329. feedrate = homing_feedrate[Z_AXIS]/4;
  1330. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1332. st_synchronize();
  1333. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1334. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1335. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1336. }
  1337. static void do_blocking_move_to(float x, float y, float z) {
  1338. float oldFeedRate = feedrate;
  1339. feedrate = homing_feedrate[Z_AXIS];
  1340. current_position[Z_AXIS] = z;
  1341. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1342. st_synchronize();
  1343. feedrate = XY_TRAVEL_SPEED;
  1344. current_position[X_AXIS] = x;
  1345. current_position[Y_AXIS] = y;
  1346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1347. st_synchronize();
  1348. feedrate = oldFeedRate;
  1349. }
  1350. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1351. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1352. }
  1353. /// Probe bed height at position (x,y), returns the measured z value
  1354. static float probe_pt(float x, float y, float z_before) {
  1355. // move to right place
  1356. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1357. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1358. run_z_probe();
  1359. float measured_z = current_position[Z_AXIS];
  1360. SERIAL_PROTOCOLRPGM(MSG_BED);
  1361. SERIAL_PROTOCOLPGM(" x: ");
  1362. SERIAL_PROTOCOL(x);
  1363. SERIAL_PROTOCOLPGM(" y: ");
  1364. SERIAL_PROTOCOL(y);
  1365. SERIAL_PROTOCOLPGM(" z: ");
  1366. SERIAL_PROTOCOL(measured_z);
  1367. SERIAL_PROTOCOLPGM("\n");
  1368. return measured_z;
  1369. }
  1370. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1371. #ifdef LIN_ADVANCE
  1372. /**
  1373. * M900: Set and/or Get advance K factor and WH/D ratio
  1374. *
  1375. * K<factor> Set advance K factor
  1376. * R<ratio> Set ratio directly (overrides WH/D)
  1377. * W<width> H<height> D<diam> Set ratio from WH/D
  1378. */
  1379. inline void gcode_M900() {
  1380. st_synchronize();
  1381. const float newK = code_seen('K') ? code_value_float() : -1;
  1382. if (newK >= 0) extruder_advance_k = newK;
  1383. float newR = code_seen('R') ? code_value_float() : -1;
  1384. if (newR < 0) {
  1385. const float newD = code_seen('D') ? code_value_float() : -1,
  1386. newW = code_seen('W') ? code_value_float() : -1,
  1387. newH = code_seen('H') ? code_value_float() : -1;
  1388. if (newD >= 0 && newW >= 0 && newH >= 0)
  1389. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1390. }
  1391. if (newR >= 0) advance_ed_ratio = newR;
  1392. SERIAL_ECHO_START;
  1393. SERIAL_ECHOPGM("Advance K=");
  1394. SERIAL_ECHOLN(extruder_advance_k);
  1395. SERIAL_ECHOPGM(" E/D=");
  1396. const float ratio = advance_ed_ratio;
  1397. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1398. }
  1399. #endif // LIN_ADVANCE
  1400. bool check_commands() {
  1401. bool end_command_found = false;
  1402. while (buflen)
  1403. {
  1404. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1405. if (!cmdbuffer_front_already_processed)
  1406. cmdqueue_pop_front();
  1407. cmdbuffer_front_already_processed = false;
  1408. }
  1409. return end_command_found;
  1410. }
  1411. #ifdef TMC2130
  1412. bool calibrate_z_auto()
  1413. {
  1414. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1415. lcd_implementation_clear();
  1416. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1417. bool endstops_enabled = enable_endstops(true);
  1418. int axis_up_dir = -home_dir(Z_AXIS);
  1419. tmc2130_home_enter(Z_AXIS_MASK);
  1420. current_position[Z_AXIS] = 0;
  1421. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1422. set_destination_to_current();
  1423. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1424. feedrate = homing_feedrate[Z_AXIS];
  1425. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1426. st_synchronize();
  1427. // current_position[axis] = 0;
  1428. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1429. tmc2130_home_exit();
  1430. enable_endstops(false);
  1431. current_position[Z_AXIS] = 0;
  1432. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1433. set_destination_to_current();
  1434. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1435. feedrate = homing_feedrate[Z_AXIS] / 2;
  1436. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1437. st_synchronize();
  1438. enable_endstops(endstops_enabled);
  1439. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1441. return true;
  1442. }
  1443. #endif //TMC2130
  1444. void homeaxis(int axis)
  1445. {
  1446. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1447. #define HOMEAXIS_DO(LETTER) \
  1448. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1449. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1450. {
  1451. int axis_home_dir = home_dir(axis);
  1452. feedrate = homing_feedrate[axis];
  1453. #ifdef TMC2130
  1454. tmc2130_home_enter(X_AXIS_MASK << axis);
  1455. #endif
  1456. // Move right a bit, so that the print head does not touch the left end position,
  1457. // and the following left movement has a chance to achieve the required velocity
  1458. // for the stall guard to work.
  1459. current_position[axis] = 0;
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. // destination[axis] = 11.f;
  1462. destination[axis] = 3.f;
  1463. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1464. st_synchronize();
  1465. // Move left away from the possible collision with the collision detection disabled.
  1466. endstops_hit_on_purpose();
  1467. enable_endstops(false);
  1468. current_position[axis] = 0;
  1469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1470. destination[axis] = - 1.;
  1471. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1472. st_synchronize();
  1473. // Now continue to move up to the left end stop with the collision detection enabled.
  1474. enable_endstops(true);
  1475. destination[axis] = - 1.1 * max_length(axis);
  1476. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1477. st_synchronize();
  1478. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1479. endstops_hit_on_purpose();
  1480. enable_endstops(false);
  1481. current_position[axis] = 0;
  1482. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1483. destination[axis] = 10.f;
  1484. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1485. st_synchronize();
  1486. endstops_hit_on_purpose();
  1487. // Now move left up to the collision, this time with a repeatable velocity.
  1488. enable_endstops(true);
  1489. destination[axis] = - 15.f;
  1490. feedrate = homing_feedrate[axis]/2;
  1491. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1492. st_synchronize();
  1493. axis_is_at_home(axis);
  1494. axis_known_position[axis] = true;
  1495. #ifdef TMC2130
  1496. tmc2130_home_exit();
  1497. #endif
  1498. // Move the X carriage away from the collision.
  1499. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1500. endstops_hit_on_purpose();
  1501. enable_endstops(false);
  1502. {
  1503. // Two full periods (4 full steps).
  1504. float gap = 0.32f * 2.f;
  1505. current_position[axis] -= gap;
  1506. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1507. current_position[axis] += gap;
  1508. }
  1509. destination[axis] = current_position[axis];
  1510. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1511. st_synchronize();
  1512. feedrate = 0.0;
  1513. }
  1514. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1515. {
  1516. int axis_home_dir = home_dir(axis);
  1517. current_position[axis] = 0;
  1518. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1519. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1520. feedrate = homing_feedrate[axis];
  1521. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1522. st_synchronize();
  1523. current_position[axis] = 0;
  1524. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1525. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1526. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1527. st_synchronize();
  1528. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1529. feedrate = homing_feedrate[axis]/2 ;
  1530. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1531. st_synchronize();
  1532. axis_is_at_home(axis);
  1533. destination[axis] = current_position[axis];
  1534. feedrate = 0.0;
  1535. endstops_hit_on_purpose();
  1536. axis_known_position[axis] = true;
  1537. }
  1538. enable_endstops(endstops_enabled);
  1539. }
  1540. /**/
  1541. void home_xy()
  1542. {
  1543. set_destination_to_current();
  1544. homeaxis(X_AXIS);
  1545. homeaxis(Y_AXIS);
  1546. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1547. endstops_hit_on_purpose();
  1548. }
  1549. void refresh_cmd_timeout(void)
  1550. {
  1551. previous_millis_cmd = millis();
  1552. }
  1553. #ifdef FWRETRACT
  1554. void retract(bool retracting, bool swapretract = false) {
  1555. if(retracting && !retracted[active_extruder]) {
  1556. destination[X_AXIS]=current_position[X_AXIS];
  1557. destination[Y_AXIS]=current_position[Y_AXIS];
  1558. destination[Z_AXIS]=current_position[Z_AXIS];
  1559. destination[E_AXIS]=current_position[E_AXIS];
  1560. if (swapretract) {
  1561. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1562. } else {
  1563. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1564. }
  1565. plan_set_e_position(current_position[E_AXIS]);
  1566. float oldFeedrate = feedrate;
  1567. feedrate=retract_feedrate*60;
  1568. retracted[active_extruder]=true;
  1569. prepare_move();
  1570. current_position[Z_AXIS]-=retract_zlift;
  1571. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1572. prepare_move();
  1573. feedrate = oldFeedrate;
  1574. } else if(!retracting && retracted[active_extruder]) {
  1575. destination[X_AXIS]=current_position[X_AXIS];
  1576. destination[Y_AXIS]=current_position[Y_AXIS];
  1577. destination[Z_AXIS]=current_position[Z_AXIS];
  1578. destination[E_AXIS]=current_position[E_AXIS];
  1579. current_position[Z_AXIS]+=retract_zlift;
  1580. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1581. //prepare_move();
  1582. if (swapretract) {
  1583. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1584. } else {
  1585. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1586. }
  1587. plan_set_e_position(current_position[E_AXIS]);
  1588. float oldFeedrate = feedrate;
  1589. feedrate=retract_recover_feedrate*60;
  1590. retracted[active_extruder]=false;
  1591. prepare_move();
  1592. feedrate = oldFeedrate;
  1593. }
  1594. } //retract
  1595. #endif //FWRETRACT
  1596. void trace() {
  1597. tone(BEEPER, 440);
  1598. delay(25);
  1599. noTone(BEEPER);
  1600. delay(20);
  1601. }
  1602. /*
  1603. void ramming() {
  1604. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1605. if (current_temperature[0] < 230) {
  1606. //PLA
  1607. max_feedrate[E_AXIS] = 50;
  1608. //current_position[E_AXIS] -= 8;
  1609. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1610. //current_position[E_AXIS] += 8;
  1611. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1612. current_position[E_AXIS] += 5.4;
  1613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1614. current_position[E_AXIS] += 3.2;
  1615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1616. current_position[E_AXIS] += 3;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1618. st_synchronize();
  1619. max_feedrate[E_AXIS] = 80;
  1620. current_position[E_AXIS] -= 82;
  1621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1622. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1623. current_position[E_AXIS] -= 20;
  1624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1625. current_position[E_AXIS] += 5;
  1626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1627. current_position[E_AXIS] += 5;
  1628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1629. current_position[E_AXIS] -= 10;
  1630. st_synchronize();
  1631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1632. current_position[E_AXIS] += 10;
  1633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1634. current_position[E_AXIS] -= 10;
  1635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1636. current_position[E_AXIS] += 10;
  1637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1638. current_position[E_AXIS] -= 10;
  1639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1640. st_synchronize();
  1641. }
  1642. else {
  1643. //ABS
  1644. max_feedrate[E_AXIS] = 50;
  1645. //current_position[E_AXIS] -= 8;
  1646. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1647. //current_position[E_AXIS] += 8;
  1648. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1649. current_position[E_AXIS] += 3.1;
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1651. current_position[E_AXIS] += 3.1;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1653. current_position[E_AXIS] += 4;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1655. st_synchronize();
  1656. //current_position[X_AXIS] += 23; //delay
  1657. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1658. //current_position[X_AXIS] -= 23; //delay
  1659. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1660. delay(4700);
  1661. max_feedrate[E_AXIS] = 80;
  1662. current_position[E_AXIS] -= 92;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1664. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1665. current_position[E_AXIS] -= 5;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1667. current_position[E_AXIS] += 5;
  1668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1669. current_position[E_AXIS] -= 5;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1671. st_synchronize();
  1672. current_position[E_AXIS] += 5;
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1674. current_position[E_AXIS] -= 5;
  1675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1676. current_position[E_AXIS] += 5;
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1678. current_position[E_AXIS] -= 5;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1680. st_synchronize();
  1681. }
  1682. }
  1683. */
  1684. #ifdef TMC2130
  1685. void force_high_power_mode(bool start_high_power_section) {
  1686. uint8_t silent;
  1687. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1688. if (silent == 1) {
  1689. //we are in silent mode, set to normal mode to enable crash detection
  1690. st_synchronize();
  1691. cli();
  1692. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1693. tmc2130_init();
  1694. sei();
  1695. digipot_init();
  1696. }
  1697. }
  1698. #endif //TMC2130
  1699. bool gcode_M45(bool onlyZ)
  1700. {
  1701. bool final_result = false;
  1702. #ifdef TMC2130
  1703. FORCE_HIGH_POWER_START;
  1704. #endif // TMC2130
  1705. // Only Z calibration?
  1706. if (!onlyZ)
  1707. {
  1708. setTargetBed(0);
  1709. setTargetHotend(0, 0);
  1710. setTargetHotend(0, 1);
  1711. setTargetHotend(0, 2);
  1712. adjust_bed_reset(); //reset bed level correction
  1713. }
  1714. // Disable the default update procedure of the display. We will do a modal dialog.
  1715. lcd_update_enable(false);
  1716. // Let the planner use the uncorrected coordinates.
  1717. mbl.reset();
  1718. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1719. // the planner will not perform any adjustments in the XY plane.
  1720. // Wait for the motors to stop and update the current position with the absolute values.
  1721. world2machine_revert_to_uncorrected();
  1722. // Reset the baby step value applied without moving the axes.
  1723. babystep_reset();
  1724. // Mark all axes as in a need for homing.
  1725. memset(axis_known_position, 0, sizeof(axis_known_position));
  1726. // Home in the XY plane.
  1727. //set_destination_to_current();
  1728. setup_for_endstop_move();
  1729. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1730. home_xy();
  1731. enable_endstops(false);
  1732. current_position[X_AXIS] += 5;
  1733. current_position[Y_AXIS] += 5;
  1734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1735. st_synchronize();
  1736. // Let the user move the Z axes up to the end stoppers.
  1737. #ifdef TMC2130
  1738. if (calibrate_z_auto())
  1739. {
  1740. #else //TMC2130
  1741. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1742. {
  1743. #endif //TMC2130
  1744. refresh_cmd_timeout();
  1745. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1746. //{
  1747. // lcd_wait_for_cool_down();
  1748. //}
  1749. if(!onlyZ)
  1750. {
  1751. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1752. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1753. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1754. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1755. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1756. KEEPALIVE_STATE(IN_HANDLER);
  1757. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1758. lcd_implementation_print_at(0, 2, 1);
  1759. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1760. }
  1761. // Move the print head close to the bed.
  1762. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1763. bool endstops_enabled = enable_endstops(true);
  1764. tmc2130_home_enter(Z_AXIS_MASK);
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1766. st_synchronize();
  1767. tmc2130_home_exit();
  1768. enable_endstops(endstops_enabled);
  1769. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1770. {
  1771. //#ifdef TMC2130
  1772. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1773. //#endif
  1774. int8_t verbosity_level = 0;
  1775. if (code_seen('V'))
  1776. {
  1777. // Just 'V' without a number counts as V1.
  1778. char c = strchr_pointer[1];
  1779. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1780. }
  1781. if (onlyZ)
  1782. {
  1783. clean_up_after_endstop_move();
  1784. // Z only calibration.
  1785. // Load the machine correction matrix
  1786. world2machine_initialize();
  1787. // and correct the current_position to match the transformed coordinate system.
  1788. world2machine_update_current();
  1789. //FIXME
  1790. bool result = sample_mesh_and_store_reference();
  1791. if (result)
  1792. {
  1793. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1794. // Shipped, the nozzle height has been set already. The user can start printing now.
  1795. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1796. final_result = true;
  1797. // babystep_apply();
  1798. }
  1799. }
  1800. else
  1801. {
  1802. // Reset the baby step value and the baby step applied flag.
  1803. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1804. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1805. // Complete XYZ calibration.
  1806. uint8_t point_too_far_mask = 0;
  1807. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1808. clean_up_after_endstop_move();
  1809. // Print head up.
  1810. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1812. st_synchronize();
  1813. if (result >= 0)
  1814. {
  1815. point_too_far_mask = 0;
  1816. // Second half: The fine adjustment.
  1817. // Let the planner use the uncorrected coordinates.
  1818. mbl.reset();
  1819. world2machine_reset();
  1820. // Home in the XY plane.
  1821. setup_for_endstop_move();
  1822. home_xy();
  1823. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1824. clean_up_after_endstop_move();
  1825. // Print head up.
  1826. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1828. st_synchronize();
  1829. // if (result >= 0) babystep_apply();
  1830. }
  1831. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1832. if (result >= 0)
  1833. {
  1834. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1835. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1836. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1837. final_result = true;
  1838. }
  1839. }
  1840. #ifdef TMC2130
  1841. tmc2130_home_exit();
  1842. #endif
  1843. }
  1844. else
  1845. {
  1846. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1847. final_result = false;
  1848. }
  1849. }
  1850. else
  1851. {
  1852. // Timeouted.
  1853. }
  1854. lcd_update_enable(true);
  1855. #ifdef TMC2130
  1856. FORCE_HIGH_POWER_END;
  1857. #endif // TMC2130
  1858. return final_result;
  1859. }
  1860. void gcode_M701()
  1861. {
  1862. #ifdef SNMM
  1863. extr_adj(snmm_extruder);//loads current extruder
  1864. #else
  1865. enable_z();
  1866. custom_message = true;
  1867. custom_message_type = 2;
  1868. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1869. current_position[E_AXIS] += 70;
  1870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1871. current_position[E_AXIS] += 25;
  1872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1873. st_synchronize();
  1874. tone(BEEPER, 500);
  1875. delay_keep_alive(50);
  1876. noTone(BEEPER);
  1877. if (!farm_mode && loading_flag) {
  1878. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1879. while (!clean) {
  1880. lcd_update_enable(true);
  1881. lcd_update(2);
  1882. current_position[E_AXIS] += 25;
  1883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1884. st_synchronize();
  1885. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1886. }
  1887. }
  1888. lcd_update_enable(true);
  1889. lcd_update(2);
  1890. lcd_setstatuspgm(WELCOME_MSG);
  1891. disable_z();
  1892. loading_flag = false;
  1893. custom_message = false;
  1894. custom_message_type = 0;
  1895. #endif
  1896. }
  1897. void process_commands()
  1898. {
  1899. #ifdef FILAMENT_RUNOUT_SUPPORT
  1900. SET_INPUT(FR_SENS);
  1901. #endif
  1902. #ifdef CMDBUFFER_DEBUG
  1903. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1904. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1905. SERIAL_ECHOLNPGM("");
  1906. SERIAL_ECHOPGM("In cmdqueue: ");
  1907. SERIAL_ECHO(buflen);
  1908. SERIAL_ECHOLNPGM("");
  1909. #endif /* CMDBUFFER_DEBUG */
  1910. unsigned long codenum; //throw away variable
  1911. char *starpos = NULL;
  1912. #ifdef ENABLE_AUTO_BED_LEVELING
  1913. float x_tmp, y_tmp, z_tmp, real_z;
  1914. #endif
  1915. // PRUSA GCODES
  1916. KEEPALIVE_STATE(IN_HANDLER);
  1917. #ifdef SNMM
  1918. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1919. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1920. int8_t SilentMode;
  1921. #endif
  1922. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1923. starpos = (strchr(strchr_pointer + 5, '*'));
  1924. if (starpos != NULL)
  1925. *(starpos) = '\0';
  1926. lcd_setstatus(strchr_pointer + 5);
  1927. }
  1928. else if(code_seen("CRASH_DETECTED"))
  1929. crashdet_detected();
  1930. else if(code_seen("CRASH_RECOVER"))
  1931. crashdet_recover();
  1932. else if(code_seen("CRASH_CANCEL"))
  1933. crashdet_cancel();
  1934. else if(code_seen("PRUSA")){
  1935. if (code_seen("Ping")) { //PRUSA Ping
  1936. if (farm_mode) {
  1937. PingTime = millis();
  1938. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1939. }
  1940. }
  1941. else if (code_seen("PRN")) {
  1942. MYSERIAL.println(status_number);
  1943. }else if (code_seen("FAN")) {
  1944. MYSERIAL.print("E0:");
  1945. MYSERIAL.print(60*fan_speed[0]);
  1946. MYSERIAL.println(" RPM");
  1947. MYSERIAL.print("PRN0:");
  1948. MYSERIAL.print(60*fan_speed[1]);
  1949. MYSERIAL.println(" RPM");
  1950. }else if (code_seen("fn")) {
  1951. if (farm_mode) {
  1952. MYSERIAL.println(farm_no);
  1953. }
  1954. else {
  1955. MYSERIAL.println("Not in farm mode.");
  1956. }
  1957. }else if (code_seen("fv")) {
  1958. // get file version
  1959. #ifdef SDSUPPORT
  1960. card.openFile(strchr_pointer + 3,true);
  1961. while (true) {
  1962. uint16_t readByte = card.get();
  1963. MYSERIAL.write(readByte);
  1964. if (readByte=='\n') {
  1965. break;
  1966. }
  1967. }
  1968. card.closefile();
  1969. #endif // SDSUPPORT
  1970. } else if (code_seen("M28")) {
  1971. trace();
  1972. prusa_sd_card_upload = true;
  1973. card.openFile(strchr_pointer+4,false);
  1974. } else if (code_seen("SN")) {
  1975. if (farm_mode) {
  1976. selectedSerialPort = 0;
  1977. MSerial.write(";S");
  1978. // S/N is:CZPX0917X003XC13518
  1979. int numbersRead = 0;
  1980. while (numbersRead < 19) {
  1981. while (MSerial.available() > 0) {
  1982. uint8_t serial_char = MSerial.read();
  1983. selectedSerialPort = 1;
  1984. MSerial.write(serial_char);
  1985. numbersRead++;
  1986. selectedSerialPort = 0;
  1987. }
  1988. }
  1989. selectedSerialPort = 1;
  1990. MSerial.write('\n');
  1991. /*for (int b = 0; b < 3; b++) {
  1992. tone(BEEPER, 110);
  1993. delay(50);
  1994. noTone(BEEPER);
  1995. delay(50);
  1996. }*/
  1997. } else {
  1998. MYSERIAL.println("Not in farm mode.");
  1999. }
  2000. } else if(code_seen("Fir")){
  2001. SERIAL_PROTOCOLLN(FW_VERSION);
  2002. } else if(code_seen("Rev")){
  2003. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2004. } else if(code_seen("Lang")) {
  2005. lcd_force_language_selection();
  2006. } else if(code_seen("Lz")) {
  2007. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2008. } else if (code_seen("SERIAL LOW")) {
  2009. MYSERIAL.println("SERIAL LOW");
  2010. MYSERIAL.begin(BAUDRATE);
  2011. return;
  2012. } else if (code_seen("SERIAL HIGH")) {
  2013. MYSERIAL.println("SERIAL HIGH");
  2014. MYSERIAL.begin(1152000);
  2015. return;
  2016. } else if(code_seen("Beat")) {
  2017. // Kick farm link timer
  2018. kicktime = millis();
  2019. } else if(code_seen("FR")) {
  2020. // Factory full reset
  2021. factory_reset(0,true);
  2022. }
  2023. //else if (code_seen('Cal')) {
  2024. // lcd_calibration();
  2025. // }
  2026. }
  2027. else if (code_seen('^')) {
  2028. // nothing, this is a version line
  2029. } else if(code_seen('G'))
  2030. {
  2031. switch((int)code_value())
  2032. {
  2033. case 0: // G0 -> G1
  2034. case 1: // G1
  2035. if(Stopped == false) {
  2036. #ifdef FILAMENT_RUNOUT_SUPPORT
  2037. if(READ(FR_SENS)){
  2038. feedmultiplyBckp=feedmultiply;
  2039. float target[4];
  2040. float lastpos[4];
  2041. target[X_AXIS]=current_position[X_AXIS];
  2042. target[Y_AXIS]=current_position[Y_AXIS];
  2043. target[Z_AXIS]=current_position[Z_AXIS];
  2044. target[E_AXIS]=current_position[E_AXIS];
  2045. lastpos[X_AXIS]=current_position[X_AXIS];
  2046. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2047. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2048. lastpos[E_AXIS]=current_position[E_AXIS];
  2049. //retract by E
  2050. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2051. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2052. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2054. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2055. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2057. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2059. //finish moves
  2060. st_synchronize();
  2061. //disable extruder steppers so filament can be removed
  2062. disable_e0();
  2063. disable_e1();
  2064. disable_e2();
  2065. delay(100);
  2066. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2067. uint8_t cnt=0;
  2068. int counterBeep = 0;
  2069. lcd_wait_interact();
  2070. while(!lcd_clicked()){
  2071. cnt++;
  2072. manage_heater();
  2073. manage_inactivity(true);
  2074. //lcd_update();
  2075. if(cnt==0)
  2076. {
  2077. #if BEEPER > 0
  2078. if (counterBeep== 500){
  2079. counterBeep = 0;
  2080. }
  2081. SET_OUTPUT(BEEPER);
  2082. if (counterBeep== 0){
  2083. WRITE(BEEPER,HIGH);
  2084. }
  2085. if (counterBeep== 20){
  2086. WRITE(BEEPER,LOW);
  2087. }
  2088. counterBeep++;
  2089. #else
  2090. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2091. lcd_buzz(1000/6,100);
  2092. #else
  2093. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2094. #endif
  2095. #endif
  2096. }
  2097. }
  2098. WRITE(BEEPER,LOW);
  2099. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2100. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2101. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2102. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2103. lcd_change_fil_state = 0;
  2104. lcd_loading_filament();
  2105. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2106. lcd_change_fil_state = 0;
  2107. lcd_alright();
  2108. switch(lcd_change_fil_state){
  2109. case 2:
  2110. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2111. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2112. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2114. lcd_loading_filament();
  2115. break;
  2116. case 3:
  2117. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2119. lcd_loading_color();
  2120. break;
  2121. default:
  2122. lcd_change_success();
  2123. break;
  2124. }
  2125. }
  2126. target[E_AXIS]+= 5;
  2127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2128. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2130. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2131. //plan_set_e_position(current_position[E_AXIS]);
  2132. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2133. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2134. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2135. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2136. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2137. plan_set_e_position(lastpos[E_AXIS]);
  2138. feedmultiply=feedmultiplyBckp;
  2139. char cmd[9];
  2140. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2141. enquecommand(cmd);
  2142. }
  2143. #endif
  2144. get_coordinates(); // For X Y Z E F
  2145. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2146. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2147. }
  2148. #ifdef FWRETRACT
  2149. if(autoretract_enabled)
  2150. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2151. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2152. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2153. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2154. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2155. retract(!retracted);
  2156. return;
  2157. }
  2158. }
  2159. #endif //FWRETRACT
  2160. prepare_move();
  2161. //ClearToSend();
  2162. }
  2163. break;
  2164. case 2: // G2 - CW ARC
  2165. if(Stopped == false) {
  2166. get_arc_coordinates();
  2167. prepare_arc_move(true);
  2168. }
  2169. break;
  2170. case 3: // G3 - CCW ARC
  2171. if(Stopped == false) {
  2172. get_arc_coordinates();
  2173. prepare_arc_move(false);
  2174. }
  2175. break;
  2176. case 4: // G4 dwell
  2177. codenum = 0;
  2178. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2179. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2180. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2181. st_synchronize();
  2182. codenum += millis(); // keep track of when we started waiting
  2183. previous_millis_cmd = millis();
  2184. while(millis() < codenum) {
  2185. manage_heater();
  2186. manage_inactivity();
  2187. lcd_update();
  2188. }
  2189. break;
  2190. #ifdef FWRETRACT
  2191. case 10: // G10 retract
  2192. #if EXTRUDERS > 1
  2193. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2194. retract(true,retracted_swap[active_extruder]);
  2195. #else
  2196. retract(true);
  2197. #endif
  2198. break;
  2199. case 11: // G11 retract_recover
  2200. #if EXTRUDERS > 1
  2201. retract(false,retracted_swap[active_extruder]);
  2202. #else
  2203. retract(false);
  2204. #endif
  2205. break;
  2206. #endif //FWRETRACT
  2207. case 28: //G28 Home all Axis one at a time
  2208. {
  2209. st_synchronize();
  2210. #if 1
  2211. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2212. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2213. #endif
  2214. // Flag for the display update routine and to disable the print cancelation during homing.
  2215. homing_flag = true;
  2216. // Which axes should be homed?
  2217. bool home_x = code_seen(axis_codes[X_AXIS]);
  2218. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2219. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2220. // Either all X,Y,Z codes are present, or none of them.
  2221. bool home_all_axes = home_x == home_y && home_x == home_z;
  2222. if (home_all_axes)
  2223. // No X/Y/Z code provided means to home all axes.
  2224. home_x = home_y = home_z = true;
  2225. #ifdef ENABLE_AUTO_BED_LEVELING
  2226. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2227. #endif //ENABLE_AUTO_BED_LEVELING
  2228. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2229. // the planner will not perform any adjustments in the XY plane.
  2230. // Wait for the motors to stop and update the current position with the absolute values.
  2231. world2machine_revert_to_uncorrected();
  2232. // For mesh bed leveling deactivate the matrix temporarily.
  2233. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2234. // in a single axis only.
  2235. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2236. #ifdef MESH_BED_LEVELING
  2237. uint8_t mbl_was_active = mbl.active;
  2238. mbl.active = 0;
  2239. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2240. #endif
  2241. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2242. // consumed during the first movements following this statement.
  2243. if (home_z)
  2244. babystep_undo();
  2245. saved_feedrate = feedrate;
  2246. saved_feedmultiply = feedmultiply;
  2247. feedmultiply = 100;
  2248. previous_millis_cmd = millis();
  2249. enable_endstops(true);
  2250. memcpy(destination, current_position, sizeof(destination));
  2251. feedrate = 0.0;
  2252. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2253. if(home_z)
  2254. homeaxis(Z_AXIS);
  2255. #endif
  2256. #ifdef QUICK_HOME
  2257. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2258. if(home_x && home_y) //first diagonal move
  2259. {
  2260. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2261. int x_axis_home_dir = home_dir(X_AXIS);
  2262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2263. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2264. feedrate = homing_feedrate[X_AXIS];
  2265. if(homing_feedrate[Y_AXIS]<feedrate)
  2266. feedrate = homing_feedrate[Y_AXIS];
  2267. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2268. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2269. } else {
  2270. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2271. }
  2272. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2273. st_synchronize();
  2274. axis_is_at_home(X_AXIS);
  2275. axis_is_at_home(Y_AXIS);
  2276. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2277. destination[X_AXIS] = current_position[X_AXIS];
  2278. destination[Y_AXIS] = current_position[Y_AXIS];
  2279. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2280. feedrate = 0.0;
  2281. st_synchronize();
  2282. endstops_hit_on_purpose();
  2283. current_position[X_AXIS] = destination[X_AXIS];
  2284. current_position[Y_AXIS] = destination[Y_AXIS];
  2285. current_position[Z_AXIS] = destination[Z_AXIS];
  2286. }
  2287. #endif /* QUICK_HOME */
  2288. if(home_x)
  2289. homeaxis(X_AXIS);
  2290. if(home_y)
  2291. homeaxis(Y_AXIS);
  2292. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2293. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2294. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2295. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2296. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2297. #ifndef Z_SAFE_HOMING
  2298. if(home_z) {
  2299. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2300. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2301. feedrate = max_feedrate[Z_AXIS];
  2302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2303. st_synchronize();
  2304. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2305. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2306. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2307. {
  2308. homeaxis(X_AXIS);
  2309. homeaxis(Y_AXIS);
  2310. }
  2311. // 1st mesh bed leveling measurement point, corrected.
  2312. world2machine_initialize();
  2313. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2314. world2machine_reset();
  2315. if (destination[Y_AXIS] < Y_MIN_POS)
  2316. destination[Y_AXIS] = Y_MIN_POS;
  2317. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2318. feedrate = homing_feedrate[Z_AXIS]/10;
  2319. current_position[Z_AXIS] = 0;
  2320. enable_endstops(false);
  2321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2322. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2323. st_synchronize();
  2324. current_position[X_AXIS] = destination[X_AXIS];
  2325. current_position[Y_AXIS] = destination[Y_AXIS];
  2326. enable_endstops(true);
  2327. endstops_hit_on_purpose();
  2328. homeaxis(Z_AXIS);
  2329. #else // MESH_BED_LEVELING
  2330. homeaxis(Z_AXIS);
  2331. #endif // MESH_BED_LEVELING
  2332. }
  2333. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2334. if(home_all_axes) {
  2335. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2336. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2337. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2338. feedrate = XY_TRAVEL_SPEED/60;
  2339. current_position[Z_AXIS] = 0;
  2340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2341. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2342. st_synchronize();
  2343. current_position[X_AXIS] = destination[X_AXIS];
  2344. current_position[Y_AXIS] = destination[Y_AXIS];
  2345. homeaxis(Z_AXIS);
  2346. }
  2347. // Let's see if X and Y are homed and probe is inside bed area.
  2348. if(home_z) {
  2349. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2350. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2351. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2352. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2353. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2354. current_position[Z_AXIS] = 0;
  2355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2356. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2357. feedrate = max_feedrate[Z_AXIS];
  2358. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2359. st_synchronize();
  2360. homeaxis(Z_AXIS);
  2361. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2362. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2363. SERIAL_ECHO_START;
  2364. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2365. } else {
  2366. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2367. SERIAL_ECHO_START;
  2368. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2369. }
  2370. }
  2371. #endif // Z_SAFE_HOMING
  2372. #endif // Z_HOME_DIR < 0
  2373. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2374. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2375. #ifdef ENABLE_AUTO_BED_LEVELING
  2376. if(home_z)
  2377. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2378. #endif
  2379. // Set the planner and stepper routine positions.
  2380. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2381. // contains the machine coordinates.
  2382. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2383. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2384. enable_endstops(false);
  2385. #endif
  2386. feedrate = saved_feedrate;
  2387. feedmultiply = saved_feedmultiply;
  2388. previous_millis_cmd = millis();
  2389. endstops_hit_on_purpose();
  2390. #ifndef MESH_BED_LEVELING
  2391. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2392. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2393. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2394. lcd_adjust_z();
  2395. #endif
  2396. // Load the machine correction matrix
  2397. world2machine_initialize();
  2398. // and correct the current_position XY axes to match the transformed coordinate system.
  2399. world2machine_update_current();
  2400. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2401. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2402. {
  2403. if (! home_z && mbl_was_active) {
  2404. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2405. mbl.active = true;
  2406. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2407. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2408. }
  2409. }
  2410. else
  2411. {
  2412. st_synchronize();
  2413. homing_flag = false;
  2414. // Push the commands to the front of the message queue in the reverse order!
  2415. // There shall be always enough space reserved for these commands.
  2416. // enquecommand_front_P((PSTR("G80")));
  2417. goto case_G80;
  2418. }
  2419. #endif
  2420. if (farm_mode) { prusa_statistics(20); };
  2421. homing_flag = false;
  2422. #if 1
  2423. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2424. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2425. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2426. #endif
  2427. break;
  2428. }
  2429. #ifdef ENABLE_AUTO_BED_LEVELING
  2430. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2431. {
  2432. #if Z_MIN_PIN == -1
  2433. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2434. #endif
  2435. // Prevent user from running a G29 without first homing in X and Y
  2436. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2437. {
  2438. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2439. SERIAL_ECHO_START;
  2440. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2441. break; // abort G29, since we don't know where we are
  2442. }
  2443. st_synchronize();
  2444. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2445. //vector_3 corrected_position = plan_get_position_mm();
  2446. //corrected_position.debug("position before G29");
  2447. plan_bed_level_matrix.set_to_identity();
  2448. vector_3 uncorrected_position = plan_get_position();
  2449. //uncorrected_position.debug("position durring G29");
  2450. current_position[X_AXIS] = uncorrected_position.x;
  2451. current_position[Y_AXIS] = uncorrected_position.y;
  2452. current_position[Z_AXIS] = uncorrected_position.z;
  2453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2454. setup_for_endstop_move();
  2455. feedrate = homing_feedrate[Z_AXIS];
  2456. #ifdef AUTO_BED_LEVELING_GRID
  2457. // probe at the points of a lattice grid
  2458. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2459. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2460. // solve the plane equation ax + by + d = z
  2461. // A is the matrix with rows [x y 1] for all the probed points
  2462. // B is the vector of the Z positions
  2463. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2464. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2465. // "A" matrix of the linear system of equations
  2466. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2467. // "B" vector of Z points
  2468. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2469. int probePointCounter = 0;
  2470. bool zig = true;
  2471. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2472. {
  2473. int xProbe, xInc;
  2474. if (zig)
  2475. {
  2476. xProbe = LEFT_PROBE_BED_POSITION;
  2477. //xEnd = RIGHT_PROBE_BED_POSITION;
  2478. xInc = xGridSpacing;
  2479. zig = false;
  2480. } else // zag
  2481. {
  2482. xProbe = RIGHT_PROBE_BED_POSITION;
  2483. //xEnd = LEFT_PROBE_BED_POSITION;
  2484. xInc = -xGridSpacing;
  2485. zig = true;
  2486. }
  2487. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2488. {
  2489. float z_before;
  2490. if (probePointCounter == 0)
  2491. {
  2492. // raise before probing
  2493. z_before = Z_RAISE_BEFORE_PROBING;
  2494. } else
  2495. {
  2496. // raise extruder
  2497. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2498. }
  2499. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2500. eqnBVector[probePointCounter] = measured_z;
  2501. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2502. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2503. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2504. probePointCounter++;
  2505. xProbe += xInc;
  2506. }
  2507. }
  2508. clean_up_after_endstop_move();
  2509. // solve lsq problem
  2510. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2511. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2512. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2513. SERIAL_PROTOCOLPGM(" b: ");
  2514. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2515. SERIAL_PROTOCOLPGM(" d: ");
  2516. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2517. set_bed_level_equation_lsq(plane_equation_coefficients);
  2518. free(plane_equation_coefficients);
  2519. #else // AUTO_BED_LEVELING_GRID not defined
  2520. // Probe at 3 arbitrary points
  2521. // probe 1
  2522. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2523. // probe 2
  2524. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2525. // probe 3
  2526. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2527. clean_up_after_endstop_move();
  2528. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2529. #endif // AUTO_BED_LEVELING_GRID
  2530. st_synchronize();
  2531. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2532. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2533. // When the bed is uneven, this height must be corrected.
  2534. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2535. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2536. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2537. z_tmp = current_position[Z_AXIS];
  2538. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2539. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2540. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2541. }
  2542. break;
  2543. #ifndef Z_PROBE_SLED
  2544. case 30: // G30 Single Z Probe
  2545. {
  2546. st_synchronize();
  2547. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2548. setup_for_endstop_move();
  2549. feedrate = homing_feedrate[Z_AXIS];
  2550. run_z_probe();
  2551. SERIAL_PROTOCOLPGM(MSG_BED);
  2552. SERIAL_PROTOCOLPGM(" X: ");
  2553. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2554. SERIAL_PROTOCOLPGM(" Y: ");
  2555. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2556. SERIAL_PROTOCOLPGM(" Z: ");
  2557. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2558. SERIAL_PROTOCOLPGM("\n");
  2559. clean_up_after_endstop_move();
  2560. }
  2561. break;
  2562. #else
  2563. case 31: // dock the sled
  2564. dock_sled(true);
  2565. break;
  2566. case 32: // undock the sled
  2567. dock_sled(false);
  2568. break;
  2569. #endif // Z_PROBE_SLED
  2570. #endif // ENABLE_AUTO_BED_LEVELING
  2571. #ifdef MESH_BED_LEVELING
  2572. case 30: // G30 Single Z Probe
  2573. {
  2574. st_synchronize();
  2575. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2576. setup_for_endstop_move();
  2577. feedrate = homing_feedrate[Z_AXIS];
  2578. find_bed_induction_sensor_point_z(-10.f, 3);
  2579. SERIAL_PROTOCOLRPGM(MSG_BED);
  2580. SERIAL_PROTOCOLPGM(" X: ");
  2581. MYSERIAL.print(current_position[X_AXIS], 5);
  2582. SERIAL_PROTOCOLPGM(" Y: ");
  2583. MYSERIAL.print(current_position[Y_AXIS], 5);
  2584. SERIAL_PROTOCOLPGM(" Z: ");
  2585. MYSERIAL.print(current_position[Z_AXIS], 5);
  2586. SERIAL_PROTOCOLPGM("\n");
  2587. clean_up_after_endstop_move();
  2588. }
  2589. break;
  2590. case 75:
  2591. {
  2592. for (int i = 40; i <= 110; i++) {
  2593. MYSERIAL.print(i);
  2594. MYSERIAL.print(" ");
  2595. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2596. }
  2597. }
  2598. break;
  2599. case 76: //PINDA probe temperature calibration
  2600. {
  2601. #ifdef PINDA_THERMISTOR
  2602. if (true)
  2603. {
  2604. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2605. // We don't know where we are! HOME!
  2606. // Push the commands to the front of the message queue in the reverse order!
  2607. // There shall be always enough space reserved for these commands.
  2608. repeatcommand_front(); // repeat G76 with all its parameters
  2609. enquecommand_front_P((PSTR("G28 W0")));
  2610. break;
  2611. }
  2612. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2613. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2614. float zero_z;
  2615. int z_shift = 0; //unit: steps
  2616. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2617. if (start_temp < 35) start_temp = 35;
  2618. if (start_temp < current_temperature_pinda) start_temp += 5;
  2619. SERIAL_ECHOPGM("start temperature: ");
  2620. MYSERIAL.println(start_temp);
  2621. // setTargetHotend(200, 0);
  2622. setTargetBed(70 + (start_temp - 30));
  2623. custom_message = true;
  2624. custom_message_type = 4;
  2625. custom_message_state = 1;
  2626. custom_message = MSG_TEMP_CALIBRATION;
  2627. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2628. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2629. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2631. st_synchronize();
  2632. while (current_temperature_pinda < start_temp)
  2633. {
  2634. delay_keep_alive(1000);
  2635. serialecho_temperatures();
  2636. }
  2637. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2638. current_position[Z_AXIS] = 5;
  2639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2640. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2641. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2643. st_synchronize();
  2644. find_bed_induction_sensor_point_z(-1.f);
  2645. zero_z = current_position[Z_AXIS];
  2646. //current_position[Z_AXIS]
  2647. SERIAL_ECHOLNPGM("");
  2648. SERIAL_ECHOPGM("ZERO: ");
  2649. MYSERIAL.print(current_position[Z_AXIS]);
  2650. SERIAL_ECHOLNPGM("");
  2651. int i = -1; for (; i < 5; i++)
  2652. {
  2653. float temp = (40 + i * 5);
  2654. SERIAL_ECHOPGM("Step: ");
  2655. MYSERIAL.print(i + 2);
  2656. SERIAL_ECHOLNPGM("/6 (skipped)");
  2657. SERIAL_ECHOPGM("PINDA temperature: ");
  2658. MYSERIAL.print((40 + i*5));
  2659. SERIAL_ECHOPGM(" Z shift (mm):");
  2660. MYSERIAL.print(0);
  2661. SERIAL_ECHOLNPGM("");
  2662. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2663. if (start_temp <= temp) break;
  2664. }
  2665. for (i++; i < 5; i++)
  2666. {
  2667. float temp = (40 + i * 5);
  2668. SERIAL_ECHOPGM("Step: ");
  2669. MYSERIAL.print(i + 2);
  2670. SERIAL_ECHOLNPGM("/6");
  2671. custom_message_state = i + 2;
  2672. setTargetBed(50 + 10 * (temp - 30) / 5);
  2673. // setTargetHotend(255, 0);
  2674. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2675. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2676. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2678. st_synchronize();
  2679. while (current_temperature_pinda < temp)
  2680. {
  2681. delay_keep_alive(1000);
  2682. serialecho_temperatures();
  2683. }
  2684. current_position[Z_AXIS] = 5;
  2685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2686. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2687. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2689. st_synchronize();
  2690. find_bed_induction_sensor_point_z(-1.f);
  2691. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2692. SERIAL_ECHOLNPGM("");
  2693. SERIAL_ECHOPGM("PINDA temperature: ");
  2694. MYSERIAL.print(current_temperature_pinda);
  2695. SERIAL_ECHOPGM(" Z shift (mm):");
  2696. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2697. SERIAL_ECHOLNPGM("");
  2698. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2699. }
  2700. custom_message_type = 0;
  2701. custom_message = false;
  2702. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2703. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2704. disable_x();
  2705. disable_y();
  2706. disable_z();
  2707. disable_e0();
  2708. disable_e1();
  2709. disable_e2();
  2710. setTargetBed(0); //set bed target temperature back to 0
  2711. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2712. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2713. lcd_update_enable(true);
  2714. lcd_update(2);
  2715. break;
  2716. }
  2717. #endif //PINDA_THERMISTOR
  2718. setTargetBed(PINDA_MIN_T);
  2719. float zero_z;
  2720. int z_shift = 0; //unit: steps
  2721. int t_c; // temperature
  2722. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2723. // We don't know where we are! HOME!
  2724. // Push the commands to the front of the message queue in the reverse order!
  2725. // There shall be always enough space reserved for these commands.
  2726. repeatcommand_front(); // repeat G76 with all its parameters
  2727. enquecommand_front_P((PSTR("G28 W0")));
  2728. break;
  2729. }
  2730. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2731. custom_message = true;
  2732. custom_message_type = 4;
  2733. custom_message_state = 1;
  2734. custom_message = MSG_TEMP_CALIBRATION;
  2735. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2736. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2737. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2739. st_synchronize();
  2740. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2741. delay_keep_alive(1000);
  2742. serialecho_temperatures();
  2743. }
  2744. //enquecommand_P(PSTR("M190 S50"));
  2745. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2746. delay_keep_alive(1000);
  2747. serialecho_temperatures();
  2748. }
  2749. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2750. current_position[Z_AXIS] = 5;
  2751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2752. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2753. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2755. st_synchronize();
  2756. find_bed_induction_sensor_point_z(-1.f);
  2757. zero_z = current_position[Z_AXIS];
  2758. //current_position[Z_AXIS]
  2759. SERIAL_ECHOLNPGM("");
  2760. SERIAL_ECHOPGM("ZERO: ");
  2761. MYSERIAL.print(current_position[Z_AXIS]);
  2762. SERIAL_ECHOLNPGM("");
  2763. for (int i = 0; i<5; i++) {
  2764. SERIAL_ECHOPGM("Step: ");
  2765. MYSERIAL.print(i+2);
  2766. SERIAL_ECHOLNPGM("/6");
  2767. custom_message_state = i + 2;
  2768. t_c = 60 + i * 10;
  2769. setTargetBed(t_c);
  2770. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2771. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2772. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2774. st_synchronize();
  2775. while (degBed() < t_c) {
  2776. delay_keep_alive(1000);
  2777. serialecho_temperatures();
  2778. }
  2779. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2780. delay_keep_alive(1000);
  2781. serialecho_temperatures();
  2782. }
  2783. current_position[Z_AXIS] = 5;
  2784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2785. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2786. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2788. st_synchronize();
  2789. find_bed_induction_sensor_point_z(-1.f);
  2790. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2791. SERIAL_ECHOLNPGM("");
  2792. SERIAL_ECHOPGM("Temperature: ");
  2793. MYSERIAL.print(t_c);
  2794. SERIAL_ECHOPGM(" Z shift (mm):");
  2795. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2796. SERIAL_ECHOLNPGM("");
  2797. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2798. }
  2799. custom_message_type = 0;
  2800. custom_message = false;
  2801. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2802. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2803. disable_x();
  2804. disable_y();
  2805. disable_z();
  2806. disable_e0();
  2807. disable_e1();
  2808. disable_e2();
  2809. setTargetBed(0); //set bed target temperature back to 0
  2810. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2811. lcd_update_enable(true);
  2812. lcd_update(2);
  2813. }
  2814. break;
  2815. #ifdef DIS
  2816. case 77:
  2817. {
  2818. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2819. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2820. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2821. float dimension_x = 40;
  2822. float dimension_y = 40;
  2823. int points_x = 40;
  2824. int points_y = 40;
  2825. float offset_x = 74;
  2826. float offset_y = 33;
  2827. if (code_seen('X')) dimension_x = code_value();
  2828. if (code_seen('Y')) dimension_y = code_value();
  2829. if (code_seen('XP')) points_x = code_value();
  2830. if (code_seen('YP')) points_y = code_value();
  2831. if (code_seen('XO')) offset_x = code_value();
  2832. if (code_seen('YO')) offset_y = code_value();
  2833. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2834. } break;
  2835. #endif
  2836. case 79: {
  2837. for (int i = 255; i > 0; i = i - 5) {
  2838. fanSpeed = i;
  2839. //delay_keep_alive(2000);
  2840. for (int j = 0; j < 100; j++) {
  2841. delay_keep_alive(100);
  2842. }
  2843. fan_speed[1];
  2844. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2845. }
  2846. }break;
  2847. /**
  2848. * G80: Mesh-based Z probe, probes a grid and produces a
  2849. * mesh to compensate for variable bed height
  2850. *
  2851. * The S0 report the points as below
  2852. *
  2853. * +----> X-axis
  2854. * |
  2855. * |
  2856. * v Y-axis
  2857. *
  2858. */
  2859. case 80:
  2860. #ifdef MK1BP
  2861. break;
  2862. #endif //MK1BP
  2863. case_G80:
  2864. {
  2865. mesh_bed_leveling_flag = true;
  2866. int8_t verbosity_level = 0;
  2867. static bool run = false;
  2868. if (code_seen('V')) {
  2869. // Just 'V' without a number counts as V1.
  2870. char c = strchr_pointer[1];
  2871. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2872. }
  2873. // Firstly check if we know where we are
  2874. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2875. // We don't know where we are! HOME!
  2876. // Push the commands to the front of the message queue in the reverse order!
  2877. // There shall be always enough space reserved for these commands.
  2878. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2879. repeatcommand_front(); // repeat G80 with all its parameters
  2880. enquecommand_front_P((PSTR("G28 W0")));
  2881. }
  2882. else {
  2883. mesh_bed_leveling_flag = false;
  2884. }
  2885. break;
  2886. }
  2887. bool temp_comp_start = true;
  2888. #ifdef PINDA_THERMISTOR
  2889. temp_comp_start = false;
  2890. #endif //PINDA_THERMISTOR
  2891. if (temp_comp_start)
  2892. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2893. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2894. temp_compensation_start();
  2895. run = true;
  2896. repeatcommand_front(); // repeat G80 with all its parameters
  2897. enquecommand_front_P((PSTR("G28 W0")));
  2898. }
  2899. else {
  2900. mesh_bed_leveling_flag = false;
  2901. }
  2902. break;
  2903. }
  2904. run = false;
  2905. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2906. mesh_bed_leveling_flag = false;
  2907. break;
  2908. }
  2909. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2910. bool custom_message_old = custom_message;
  2911. unsigned int custom_message_type_old = custom_message_type;
  2912. unsigned int custom_message_state_old = custom_message_state;
  2913. custom_message = true;
  2914. custom_message_type = 1;
  2915. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2916. lcd_update(1);
  2917. mbl.reset(); //reset mesh bed leveling
  2918. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2919. // consumed during the first movements following this statement.
  2920. babystep_undo();
  2921. // Cycle through all points and probe them
  2922. // First move up. During this first movement, the babystepping will be reverted.
  2923. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2924. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2925. // The move to the first calibration point.
  2926. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2927. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2928. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2929. #ifdef SUPPORT_VERBOSITY
  2930. if (verbosity_level >= 1) {
  2931. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2932. }
  2933. #endif //SUPPORT_VERBOSITY
  2934. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2936. // Wait until the move is finished.
  2937. st_synchronize();
  2938. int mesh_point = 0; //index number of calibration point
  2939. int ix = 0;
  2940. int iy = 0;
  2941. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2942. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2943. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2944. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2945. #ifdef SUPPORT_VERBOSITY
  2946. if (verbosity_level >= 1) {
  2947. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2948. }
  2949. #endif // SUPPORT_VERBOSITY
  2950. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2951. const char *kill_message = NULL;
  2952. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2953. // Get coords of a measuring point.
  2954. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2955. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2956. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2957. float z0 = 0.f;
  2958. if (has_z && mesh_point > 0) {
  2959. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2960. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2961. //#if 0
  2962. #ifdef SUPPORT_VERBOSITY
  2963. if (verbosity_level >= 1) {
  2964. SERIAL_ECHOLNPGM("");
  2965. SERIAL_ECHOPGM("Bed leveling, point: ");
  2966. MYSERIAL.print(mesh_point);
  2967. SERIAL_ECHOPGM(", calibration z: ");
  2968. MYSERIAL.print(z0, 5);
  2969. SERIAL_ECHOLNPGM("");
  2970. }
  2971. #endif // SUPPORT_VERBOSITY
  2972. //#endif
  2973. }
  2974. // Move Z up to MESH_HOME_Z_SEARCH.
  2975. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2977. st_synchronize();
  2978. // Move to XY position of the sensor point.
  2979. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2980. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2981. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2982. #ifdef SUPPORT_VERBOSITY
  2983. if (verbosity_level >= 1) {
  2984. SERIAL_PROTOCOL(mesh_point);
  2985. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2986. }
  2987. #endif // SUPPORT_VERBOSITY
  2988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2989. st_synchronize();
  2990. // Go down until endstop is hit
  2991. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2992. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2993. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2994. break;
  2995. }
  2996. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2997. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2998. break;
  2999. }
  3000. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3001. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3002. break;
  3003. }
  3004. #ifdef SUPPORT_VERBOSITY
  3005. if (verbosity_level >= 10) {
  3006. SERIAL_ECHOPGM("X: ");
  3007. MYSERIAL.print(current_position[X_AXIS], 5);
  3008. SERIAL_ECHOLNPGM("");
  3009. SERIAL_ECHOPGM("Y: ");
  3010. MYSERIAL.print(current_position[Y_AXIS], 5);
  3011. SERIAL_PROTOCOLPGM("\n");
  3012. }
  3013. #endif // SUPPORT_VERBOSITY
  3014. float offset_z = 0;
  3015. #ifdef PINDA_THERMISTOR
  3016. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3017. #endif //PINDA_THERMISTOR
  3018. // #ifdef SUPPORT_VERBOSITY
  3019. /* if (verbosity_level >= 1)
  3020. {
  3021. SERIAL_ECHOPGM("mesh bed leveling: ");
  3022. MYSERIAL.print(current_position[Z_AXIS], 5);
  3023. SERIAL_ECHOPGM(" offset: ");
  3024. MYSERIAL.print(offset_z, 5);
  3025. SERIAL_ECHOLNPGM("");
  3026. }*/
  3027. // #endif // SUPPORT_VERBOSITY
  3028. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3029. custom_message_state--;
  3030. mesh_point++;
  3031. lcd_update(1);
  3032. }
  3033. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3034. #ifdef SUPPORT_VERBOSITY
  3035. if (verbosity_level >= 20) {
  3036. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3037. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3038. MYSERIAL.print(current_position[Z_AXIS], 5);
  3039. }
  3040. #endif // SUPPORT_VERBOSITY
  3041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3042. st_synchronize();
  3043. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3044. kill(kill_message);
  3045. SERIAL_ECHOLNPGM("killed");
  3046. }
  3047. clean_up_after_endstop_move();
  3048. // SERIAL_ECHOLNPGM("clean up finished ");
  3049. bool apply_temp_comp = true;
  3050. #ifdef PINDA_THERMISTOR
  3051. apply_temp_comp = false;
  3052. #endif
  3053. if (apply_temp_comp)
  3054. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3055. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3056. // SERIAL_ECHOLNPGM("babystep applied");
  3057. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3058. #ifdef SUPPORT_VERBOSITY
  3059. if (verbosity_level >= 1) {
  3060. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3061. }
  3062. #endif // SUPPORT_VERBOSITY
  3063. for (uint8_t i = 0; i < 4; ++i) {
  3064. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3065. long correction = 0;
  3066. if (code_seen(codes[i]))
  3067. correction = code_value_long();
  3068. else if (eeprom_bed_correction_valid) {
  3069. unsigned char *addr = (i < 2) ?
  3070. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3071. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3072. correction = eeprom_read_int8(addr);
  3073. }
  3074. if (correction == 0)
  3075. continue;
  3076. float offset = float(correction) * 0.001f;
  3077. if (fabs(offset) > 0.101f) {
  3078. SERIAL_ERROR_START;
  3079. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3080. SERIAL_ECHO(offset);
  3081. SERIAL_ECHOLNPGM(" microns");
  3082. }
  3083. else {
  3084. switch (i) {
  3085. case 0:
  3086. for (uint8_t row = 0; row < 3; ++row) {
  3087. mbl.z_values[row][1] += 0.5f * offset;
  3088. mbl.z_values[row][0] += offset;
  3089. }
  3090. break;
  3091. case 1:
  3092. for (uint8_t row = 0; row < 3; ++row) {
  3093. mbl.z_values[row][1] += 0.5f * offset;
  3094. mbl.z_values[row][2] += offset;
  3095. }
  3096. break;
  3097. case 2:
  3098. for (uint8_t col = 0; col < 3; ++col) {
  3099. mbl.z_values[1][col] += 0.5f * offset;
  3100. mbl.z_values[0][col] += offset;
  3101. }
  3102. break;
  3103. case 3:
  3104. for (uint8_t col = 0; col < 3; ++col) {
  3105. mbl.z_values[1][col] += 0.5f * offset;
  3106. mbl.z_values[2][col] += offset;
  3107. }
  3108. break;
  3109. }
  3110. }
  3111. }
  3112. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3113. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3114. // SERIAL_ECHOLNPGM("Upsample finished");
  3115. mbl.active = 1; //activate mesh bed leveling
  3116. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3117. go_home_with_z_lift();
  3118. // SERIAL_ECHOLNPGM("Go home finished");
  3119. //unretract (after PINDA preheat retraction)
  3120. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3121. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3123. }
  3124. KEEPALIVE_STATE(NOT_BUSY);
  3125. // Restore custom message state
  3126. custom_message = custom_message_old;
  3127. custom_message_type = custom_message_type_old;
  3128. custom_message_state = custom_message_state_old;
  3129. mesh_bed_leveling_flag = false;
  3130. mesh_bed_run_from_menu = false;
  3131. lcd_update(2);
  3132. }
  3133. break;
  3134. /**
  3135. * G81: Print mesh bed leveling status and bed profile if activated
  3136. */
  3137. case 81:
  3138. if (mbl.active) {
  3139. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3140. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3141. SERIAL_PROTOCOLPGM(",");
  3142. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3143. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3144. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3145. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3146. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3147. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3148. SERIAL_PROTOCOLPGM(" ");
  3149. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3150. }
  3151. SERIAL_PROTOCOLPGM("\n");
  3152. }
  3153. }
  3154. else
  3155. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3156. break;
  3157. #if 0
  3158. /**
  3159. * G82: Single Z probe at current location
  3160. *
  3161. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3162. *
  3163. */
  3164. case 82:
  3165. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3166. setup_for_endstop_move();
  3167. find_bed_induction_sensor_point_z();
  3168. clean_up_after_endstop_move();
  3169. SERIAL_PROTOCOLPGM("Bed found at: ");
  3170. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3171. SERIAL_PROTOCOLPGM("\n");
  3172. break;
  3173. /**
  3174. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3175. */
  3176. case 83:
  3177. {
  3178. int babystepz = code_seen('S') ? code_value() : 0;
  3179. int BabyPosition = code_seen('P') ? code_value() : 0;
  3180. if (babystepz != 0) {
  3181. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3182. // Is the axis indexed starting with zero or one?
  3183. if (BabyPosition > 4) {
  3184. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3185. }else{
  3186. // Save it to the eeprom
  3187. babystepLoadZ = babystepz;
  3188. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3189. // adjust the Z
  3190. babystepsTodoZadd(babystepLoadZ);
  3191. }
  3192. }
  3193. }
  3194. break;
  3195. /**
  3196. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3197. */
  3198. case 84:
  3199. babystepsTodoZsubtract(babystepLoadZ);
  3200. // babystepLoadZ = 0;
  3201. break;
  3202. /**
  3203. * G85: Prusa3D specific: Pick best babystep
  3204. */
  3205. case 85:
  3206. lcd_pick_babystep();
  3207. break;
  3208. #endif
  3209. /**
  3210. * G86: Prusa3D specific: Disable babystep correction after home.
  3211. * This G-code will be performed at the start of a calibration script.
  3212. */
  3213. case 86:
  3214. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3215. break;
  3216. /**
  3217. * G87: Prusa3D specific: Enable babystep correction after home
  3218. * This G-code will be performed at the end of a calibration script.
  3219. */
  3220. case 87:
  3221. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3222. break;
  3223. /**
  3224. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3225. */
  3226. case 88:
  3227. break;
  3228. #endif // ENABLE_MESH_BED_LEVELING
  3229. case 90: // G90
  3230. relative_mode = false;
  3231. break;
  3232. case 91: // G91
  3233. relative_mode = true;
  3234. break;
  3235. case 92: // G92
  3236. if(!code_seen(axis_codes[E_AXIS]))
  3237. st_synchronize();
  3238. for(int8_t i=0; i < NUM_AXIS; i++) {
  3239. if(code_seen(axis_codes[i])) {
  3240. if(i == E_AXIS) {
  3241. current_position[i] = code_value();
  3242. plan_set_e_position(current_position[E_AXIS]);
  3243. }
  3244. else {
  3245. current_position[i] = code_value()+add_homing[i];
  3246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3247. }
  3248. }
  3249. }
  3250. break;
  3251. case 98: //activate farm mode
  3252. farm_mode = 1;
  3253. PingTime = millis();
  3254. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3255. break;
  3256. case 99: //deactivate farm mode
  3257. farm_mode = 0;
  3258. lcd_printer_connected();
  3259. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3260. lcd_update(2);
  3261. break;
  3262. }
  3263. } // end if(code_seen('G'))
  3264. else if(code_seen('M'))
  3265. {
  3266. int index;
  3267. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3268. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3269. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3270. SERIAL_ECHOLNPGM("Invalid M code");
  3271. } else
  3272. switch((int)code_value())
  3273. {
  3274. #ifdef ULTIPANEL
  3275. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3276. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3277. {
  3278. char *src = strchr_pointer + 2;
  3279. codenum = 0;
  3280. bool hasP = false, hasS = false;
  3281. if (code_seen('P')) {
  3282. codenum = code_value(); // milliseconds to wait
  3283. hasP = codenum > 0;
  3284. }
  3285. if (code_seen('S')) {
  3286. codenum = code_value() * 1000; // seconds to wait
  3287. hasS = codenum > 0;
  3288. }
  3289. starpos = strchr(src, '*');
  3290. if (starpos != NULL) *(starpos) = '\0';
  3291. while (*src == ' ') ++src;
  3292. if (!hasP && !hasS && *src != '\0') {
  3293. lcd_setstatus(src);
  3294. } else {
  3295. LCD_MESSAGERPGM(MSG_USERWAIT);
  3296. }
  3297. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3298. st_synchronize();
  3299. previous_millis_cmd = millis();
  3300. if (codenum > 0){
  3301. codenum += millis(); // keep track of when we started waiting
  3302. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3303. while(millis() < codenum && !lcd_clicked()){
  3304. manage_heater();
  3305. manage_inactivity(true);
  3306. lcd_update();
  3307. }
  3308. KEEPALIVE_STATE(IN_HANDLER);
  3309. lcd_ignore_click(false);
  3310. }else{
  3311. if (!lcd_detected())
  3312. break;
  3313. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3314. while(!lcd_clicked()){
  3315. manage_heater();
  3316. manage_inactivity(true);
  3317. lcd_update();
  3318. }
  3319. KEEPALIVE_STATE(IN_HANDLER);
  3320. }
  3321. if (IS_SD_PRINTING)
  3322. LCD_MESSAGERPGM(MSG_RESUMING);
  3323. else
  3324. LCD_MESSAGERPGM(WELCOME_MSG);
  3325. }
  3326. break;
  3327. #endif
  3328. case 17:
  3329. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3330. enable_x();
  3331. enable_y();
  3332. enable_z();
  3333. enable_e0();
  3334. enable_e1();
  3335. enable_e2();
  3336. break;
  3337. #ifdef SDSUPPORT
  3338. case 20: // M20 - list SD card
  3339. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3340. card.ls();
  3341. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3342. break;
  3343. case 21: // M21 - init SD card
  3344. card.initsd();
  3345. break;
  3346. case 22: //M22 - release SD card
  3347. card.release();
  3348. break;
  3349. case 23: //M23 - Select file
  3350. starpos = (strchr(strchr_pointer + 4,'*'));
  3351. if(starpos!=NULL)
  3352. *(starpos)='\0';
  3353. card.openFile(strchr_pointer + 4,true);
  3354. break;
  3355. case 24: //M24 - Start SD print
  3356. card.startFileprint();
  3357. starttime=millis();
  3358. break;
  3359. case 25: //M25 - Pause SD print
  3360. card.pauseSDPrint();
  3361. break;
  3362. case 26: //M26 - Set SD index
  3363. if(card.cardOK && code_seen('S')) {
  3364. card.setIndex(code_value_long());
  3365. }
  3366. break;
  3367. case 27: //M27 - Get SD status
  3368. card.getStatus();
  3369. break;
  3370. case 28: //M28 - Start SD write
  3371. starpos = (strchr(strchr_pointer + 4,'*'));
  3372. if(starpos != NULL){
  3373. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3374. strchr_pointer = strchr(npos,' ') + 1;
  3375. *(starpos) = '\0';
  3376. }
  3377. card.openFile(strchr_pointer+4,false);
  3378. break;
  3379. case 29: //M29 - Stop SD write
  3380. //processed in write to file routine above
  3381. //card,saving = false;
  3382. break;
  3383. case 30: //M30 <filename> Delete File
  3384. if (card.cardOK){
  3385. card.closefile();
  3386. starpos = (strchr(strchr_pointer + 4,'*'));
  3387. if(starpos != NULL){
  3388. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3389. strchr_pointer = strchr(npos,' ') + 1;
  3390. *(starpos) = '\0';
  3391. }
  3392. card.removeFile(strchr_pointer + 4);
  3393. }
  3394. break;
  3395. case 32: //M32 - Select file and start SD print
  3396. {
  3397. if(card.sdprinting) {
  3398. st_synchronize();
  3399. }
  3400. starpos = (strchr(strchr_pointer + 4,'*'));
  3401. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3402. if(namestartpos==NULL)
  3403. {
  3404. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3405. }
  3406. else
  3407. namestartpos++; //to skip the '!'
  3408. if(starpos!=NULL)
  3409. *(starpos)='\0';
  3410. bool call_procedure=(code_seen('P'));
  3411. if(strchr_pointer>namestartpos)
  3412. call_procedure=false; //false alert, 'P' found within filename
  3413. if( card.cardOK )
  3414. {
  3415. card.openFile(namestartpos,true,!call_procedure);
  3416. if(code_seen('S'))
  3417. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3418. card.setIndex(code_value_long());
  3419. card.startFileprint();
  3420. if(!call_procedure)
  3421. starttime=millis(); //procedure calls count as normal print time.
  3422. }
  3423. } break;
  3424. case 928: //M928 - Start SD write
  3425. starpos = (strchr(strchr_pointer + 5,'*'));
  3426. if(starpos != NULL){
  3427. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3428. strchr_pointer = strchr(npos,' ') + 1;
  3429. *(starpos) = '\0';
  3430. }
  3431. card.openLogFile(strchr_pointer+5);
  3432. break;
  3433. #endif //SDSUPPORT
  3434. case 31: //M31 take time since the start of the SD print or an M109 command
  3435. {
  3436. stoptime=millis();
  3437. char time[30];
  3438. unsigned long t=(stoptime-starttime)/1000;
  3439. int sec,min;
  3440. min=t/60;
  3441. sec=t%60;
  3442. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3443. SERIAL_ECHO_START;
  3444. SERIAL_ECHOLN(time);
  3445. lcd_setstatus(time);
  3446. autotempShutdown();
  3447. }
  3448. break;
  3449. #ifndef _DISABLE_M42_M226
  3450. case 42: //M42 -Change pin status via gcode
  3451. if (code_seen('S'))
  3452. {
  3453. int pin_status = code_value();
  3454. int pin_number = LED_PIN;
  3455. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3456. pin_number = code_value();
  3457. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3458. {
  3459. if (sensitive_pins[i] == pin_number)
  3460. {
  3461. pin_number = -1;
  3462. break;
  3463. }
  3464. }
  3465. #if defined(FAN_PIN) && FAN_PIN > -1
  3466. if (pin_number == FAN_PIN)
  3467. fanSpeed = pin_status;
  3468. #endif
  3469. if (pin_number > -1)
  3470. {
  3471. pinMode(pin_number, OUTPUT);
  3472. digitalWrite(pin_number, pin_status);
  3473. analogWrite(pin_number, pin_status);
  3474. }
  3475. }
  3476. break;
  3477. #endif //_DISABLE_M42_M226
  3478. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3479. // Reset the baby step value and the baby step applied flag.
  3480. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3481. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3482. // Reset the skew and offset in both RAM and EEPROM.
  3483. reset_bed_offset_and_skew();
  3484. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3485. // the planner will not perform any adjustments in the XY plane.
  3486. // Wait for the motors to stop and update the current position with the absolute values.
  3487. world2machine_revert_to_uncorrected();
  3488. break;
  3489. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3490. {
  3491. bool only_Z = code_seen('Z');
  3492. gcode_M45(only_Z);
  3493. }
  3494. break;
  3495. /*
  3496. case 46:
  3497. {
  3498. // M46: Prusa3D: Show the assigned IP address.
  3499. uint8_t ip[4];
  3500. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3501. if (hasIP) {
  3502. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3503. SERIAL_ECHO(int(ip[0]));
  3504. SERIAL_ECHOPGM(".");
  3505. SERIAL_ECHO(int(ip[1]));
  3506. SERIAL_ECHOPGM(".");
  3507. SERIAL_ECHO(int(ip[2]));
  3508. SERIAL_ECHOPGM(".");
  3509. SERIAL_ECHO(int(ip[3]));
  3510. SERIAL_ECHOLNPGM("");
  3511. } else {
  3512. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3513. }
  3514. break;
  3515. }
  3516. */
  3517. case 47:
  3518. // M47: Prusa3D: Show end stops dialog on the display.
  3519. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3520. lcd_diag_show_end_stops();
  3521. KEEPALIVE_STATE(IN_HANDLER);
  3522. break;
  3523. #if 0
  3524. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3525. {
  3526. // Disable the default update procedure of the display. We will do a modal dialog.
  3527. lcd_update_enable(false);
  3528. // Let the planner use the uncorrected coordinates.
  3529. mbl.reset();
  3530. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3531. // the planner will not perform any adjustments in the XY plane.
  3532. // Wait for the motors to stop and update the current position with the absolute values.
  3533. world2machine_revert_to_uncorrected();
  3534. // Move the print head close to the bed.
  3535. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3537. st_synchronize();
  3538. // Home in the XY plane.
  3539. set_destination_to_current();
  3540. setup_for_endstop_move();
  3541. home_xy();
  3542. int8_t verbosity_level = 0;
  3543. if (code_seen('V')) {
  3544. // Just 'V' without a number counts as V1.
  3545. char c = strchr_pointer[1];
  3546. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3547. }
  3548. bool success = scan_bed_induction_points(verbosity_level);
  3549. clean_up_after_endstop_move();
  3550. // Print head up.
  3551. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3553. st_synchronize();
  3554. lcd_update_enable(true);
  3555. break;
  3556. }
  3557. #endif
  3558. // M48 Z-Probe repeatability measurement function.
  3559. //
  3560. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3561. //
  3562. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3563. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3564. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3565. // regenerated.
  3566. //
  3567. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3568. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3569. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3570. //
  3571. #ifdef ENABLE_AUTO_BED_LEVELING
  3572. #ifdef Z_PROBE_REPEATABILITY_TEST
  3573. case 48: // M48 Z-Probe repeatability
  3574. {
  3575. #if Z_MIN_PIN == -1
  3576. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3577. #endif
  3578. double sum=0.0;
  3579. double mean=0.0;
  3580. double sigma=0.0;
  3581. double sample_set[50];
  3582. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3583. double X_current, Y_current, Z_current;
  3584. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3585. if (code_seen('V') || code_seen('v')) {
  3586. verbose_level = code_value();
  3587. if (verbose_level<0 || verbose_level>4 ) {
  3588. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3589. goto Sigma_Exit;
  3590. }
  3591. }
  3592. if (verbose_level > 0) {
  3593. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3594. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3595. }
  3596. if (code_seen('n')) {
  3597. n_samples = code_value();
  3598. if (n_samples<4 || n_samples>50 ) {
  3599. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3600. goto Sigma_Exit;
  3601. }
  3602. }
  3603. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3604. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3605. Z_current = st_get_position_mm(Z_AXIS);
  3606. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3607. ext_position = st_get_position_mm(E_AXIS);
  3608. if (code_seen('X') || code_seen('x') ) {
  3609. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3610. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3611. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3612. goto Sigma_Exit;
  3613. }
  3614. }
  3615. if (code_seen('Y') || code_seen('y') ) {
  3616. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3617. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3618. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3619. goto Sigma_Exit;
  3620. }
  3621. }
  3622. if (code_seen('L') || code_seen('l') ) {
  3623. n_legs = code_value();
  3624. if ( n_legs==1 )
  3625. n_legs = 2;
  3626. if ( n_legs<0 || n_legs>15 ) {
  3627. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3628. goto Sigma_Exit;
  3629. }
  3630. }
  3631. //
  3632. // Do all the preliminary setup work. First raise the probe.
  3633. //
  3634. st_synchronize();
  3635. plan_bed_level_matrix.set_to_identity();
  3636. plan_buffer_line( X_current, Y_current, Z_start_location,
  3637. ext_position,
  3638. homing_feedrate[Z_AXIS]/60,
  3639. active_extruder);
  3640. st_synchronize();
  3641. //
  3642. // Now get everything to the specified probe point So we can safely do a probe to
  3643. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3644. // use that as a starting point for each probe.
  3645. //
  3646. if (verbose_level > 2)
  3647. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3648. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3649. ext_position,
  3650. homing_feedrate[X_AXIS]/60,
  3651. active_extruder);
  3652. st_synchronize();
  3653. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3654. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3655. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3656. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3657. //
  3658. // OK, do the inital probe to get us close to the bed.
  3659. // Then retrace the right amount and use that in subsequent probes
  3660. //
  3661. setup_for_endstop_move();
  3662. run_z_probe();
  3663. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3664. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3665. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3666. ext_position,
  3667. homing_feedrate[X_AXIS]/60,
  3668. active_extruder);
  3669. st_synchronize();
  3670. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3671. for( n=0; n<n_samples; n++) {
  3672. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3673. if ( n_legs) {
  3674. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3675. int rotational_direction, l;
  3676. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3677. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3678. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3679. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3680. //SERIAL_ECHOPAIR(" theta: ",theta);
  3681. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3682. //SERIAL_PROTOCOLLNPGM("");
  3683. for( l=0; l<n_legs-1; l++) {
  3684. if (rotational_direction==1)
  3685. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3686. else
  3687. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3688. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3689. if ( radius<0.0 )
  3690. radius = -radius;
  3691. X_current = X_probe_location + cos(theta) * radius;
  3692. Y_current = Y_probe_location + sin(theta) * radius;
  3693. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3694. X_current = X_MIN_POS;
  3695. if ( X_current>X_MAX_POS)
  3696. X_current = X_MAX_POS;
  3697. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3698. Y_current = Y_MIN_POS;
  3699. if ( Y_current>Y_MAX_POS)
  3700. Y_current = Y_MAX_POS;
  3701. if (verbose_level>3 ) {
  3702. SERIAL_ECHOPAIR("x: ", X_current);
  3703. SERIAL_ECHOPAIR("y: ", Y_current);
  3704. SERIAL_PROTOCOLLNPGM("");
  3705. }
  3706. do_blocking_move_to( X_current, Y_current, Z_current );
  3707. }
  3708. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3709. }
  3710. setup_for_endstop_move();
  3711. run_z_probe();
  3712. sample_set[n] = current_position[Z_AXIS];
  3713. //
  3714. // Get the current mean for the data points we have so far
  3715. //
  3716. sum=0.0;
  3717. for( j=0; j<=n; j++) {
  3718. sum = sum + sample_set[j];
  3719. }
  3720. mean = sum / (double (n+1));
  3721. //
  3722. // Now, use that mean to calculate the standard deviation for the
  3723. // data points we have so far
  3724. //
  3725. sum=0.0;
  3726. for( j=0; j<=n; j++) {
  3727. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3728. }
  3729. sigma = sqrt( sum / (double (n+1)) );
  3730. if (verbose_level > 1) {
  3731. SERIAL_PROTOCOL(n+1);
  3732. SERIAL_PROTOCOL(" of ");
  3733. SERIAL_PROTOCOL(n_samples);
  3734. SERIAL_PROTOCOLPGM(" z: ");
  3735. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3736. }
  3737. if (verbose_level > 2) {
  3738. SERIAL_PROTOCOL(" mean: ");
  3739. SERIAL_PROTOCOL_F(mean,6);
  3740. SERIAL_PROTOCOL(" sigma: ");
  3741. SERIAL_PROTOCOL_F(sigma,6);
  3742. }
  3743. if (verbose_level > 0)
  3744. SERIAL_PROTOCOLPGM("\n");
  3745. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3746. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3747. st_synchronize();
  3748. }
  3749. delay(1000);
  3750. clean_up_after_endstop_move();
  3751. // enable_endstops(true);
  3752. if (verbose_level > 0) {
  3753. SERIAL_PROTOCOLPGM("Mean: ");
  3754. SERIAL_PROTOCOL_F(mean, 6);
  3755. SERIAL_PROTOCOLPGM("\n");
  3756. }
  3757. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3758. SERIAL_PROTOCOL_F(sigma, 6);
  3759. SERIAL_PROTOCOLPGM("\n\n");
  3760. Sigma_Exit:
  3761. break;
  3762. }
  3763. #endif // Z_PROBE_REPEATABILITY_TEST
  3764. #endif // ENABLE_AUTO_BED_LEVELING
  3765. case 104: // M104
  3766. if(setTargetedHotend(104)){
  3767. break;
  3768. }
  3769. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3770. setWatch();
  3771. break;
  3772. case 112: // M112 -Emergency Stop
  3773. kill("", 3);
  3774. break;
  3775. case 140: // M140 set bed temp
  3776. if (code_seen('S')) setTargetBed(code_value());
  3777. break;
  3778. case 105 : // M105
  3779. if(setTargetedHotend(105)){
  3780. break;
  3781. }
  3782. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3783. SERIAL_PROTOCOLPGM("ok T:");
  3784. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3785. SERIAL_PROTOCOLPGM(" /");
  3786. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3787. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3788. SERIAL_PROTOCOLPGM(" B:");
  3789. SERIAL_PROTOCOL_F(degBed(),1);
  3790. SERIAL_PROTOCOLPGM(" /");
  3791. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3792. #endif //TEMP_BED_PIN
  3793. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3794. SERIAL_PROTOCOLPGM(" T");
  3795. SERIAL_PROTOCOL(cur_extruder);
  3796. SERIAL_PROTOCOLPGM(":");
  3797. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3798. SERIAL_PROTOCOLPGM(" /");
  3799. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3800. }
  3801. #else
  3802. SERIAL_ERROR_START;
  3803. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3804. #endif
  3805. SERIAL_PROTOCOLPGM(" @:");
  3806. #ifdef EXTRUDER_WATTS
  3807. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3808. SERIAL_PROTOCOLPGM("W");
  3809. #else
  3810. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3811. #endif
  3812. SERIAL_PROTOCOLPGM(" B@:");
  3813. #ifdef BED_WATTS
  3814. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3815. SERIAL_PROTOCOLPGM("W");
  3816. #else
  3817. SERIAL_PROTOCOL(getHeaterPower(-1));
  3818. #endif
  3819. #ifdef PINDA_THERMISTOR
  3820. SERIAL_PROTOCOLPGM(" P:");
  3821. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3822. #endif //PINDA_THERMISTOR
  3823. #ifdef AMBIENT_THERMISTOR
  3824. SERIAL_PROTOCOLPGM(" A:");
  3825. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3826. #endif //AMBIENT_THERMISTOR
  3827. #ifdef SHOW_TEMP_ADC_VALUES
  3828. {float raw = 0.0;
  3829. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3830. SERIAL_PROTOCOLPGM(" ADC B:");
  3831. SERIAL_PROTOCOL_F(degBed(),1);
  3832. SERIAL_PROTOCOLPGM("C->");
  3833. raw = rawBedTemp();
  3834. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3835. SERIAL_PROTOCOLPGM(" Rb->");
  3836. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3837. SERIAL_PROTOCOLPGM(" Rxb->");
  3838. SERIAL_PROTOCOL_F(raw, 5);
  3839. #endif
  3840. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3841. SERIAL_PROTOCOLPGM(" T");
  3842. SERIAL_PROTOCOL(cur_extruder);
  3843. SERIAL_PROTOCOLPGM(":");
  3844. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3845. SERIAL_PROTOCOLPGM("C->");
  3846. raw = rawHotendTemp(cur_extruder);
  3847. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3848. SERIAL_PROTOCOLPGM(" Rt");
  3849. SERIAL_PROTOCOL(cur_extruder);
  3850. SERIAL_PROTOCOLPGM("->");
  3851. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3852. SERIAL_PROTOCOLPGM(" Rx");
  3853. SERIAL_PROTOCOL(cur_extruder);
  3854. SERIAL_PROTOCOLPGM("->");
  3855. SERIAL_PROTOCOL_F(raw, 5);
  3856. }}
  3857. #endif
  3858. SERIAL_PROTOCOLLN("");
  3859. KEEPALIVE_STATE(NOT_BUSY);
  3860. return;
  3861. break;
  3862. case 109:
  3863. {// M109 - Wait for extruder heater to reach target.
  3864. if(setTargetedHotend(109)){
  3865. break;
  3866. }
  3867. LCD_MESSAGERPGM(MSG_HEATING);
  3868. heating_status = 1;
  3869. if (farm_mode) { prusa_statistics(1); };
  3870. #ifdef AUTOTEMP
  3871. autotemp_enabled=false;
  3872. #endif
  3873. if (code_seen('S')) {
  3874. setTargetHotend(code_value(), tmp_extruder);
  3875. CooldownNoWait = true;
  3876. } else if (code_seen('R')) {
  3877. setTargetHotend(code_value(), tmp_extruder);
  3878. CooldownNoWait = false;
  3879. }
  3880. #ifdef AUTOTEMP
  3881. if (code_seen('S')) autotemp_min=code_value();
  3882. if (code_seen('B')) autotemp_max=code_value();
  3883. if (code_seen('F'))
  3884. {
  3885. autotemp_factor=code_value();
  3886. autotemp_enabled=true;
  3887. }
  3888. #endif
  3889. setWatch();
  3890. codenum = millis();
  3891. /* See if we are heating up or cooling down */
  3892. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3893. KEEPALIVE_STATE(NOT_BUSY);
  3894. cancel_heatup = false;
  3895. wait_for_heater(codenum); //loops until target temperature is reached
  3896. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3897. KEEPALIVE_STATE(IN_HANDLER);
  3898. heating_status = 2;
  3899. if (farm_mode) { prusa_statistics(2); };
  3900. //starttime=millis();
  3901. previous_millis_cmd = millis();
  3902. }
  3903. break;
  3904. case 190: // M190 - Wait for bed heater to reach target.
  3905. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3906. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3907. heating_status = 3;
  3908. if (farm_mode) { prusa_statistics(1); };
  3909. if (code_seen('S'))
  3910. {
  3911. setTargetBed(code_value());
  3912. CooldownNoWait = true;
  3913. }
  3914. else if (code_seen('R'))
  3915. {
  3916. setTargetBed(code_value());
  3917. CooldownNoWait = false;
  3918. }
  3919. codenum = millis();
  3920. cancel_heatup = false;
  3921. target_direction = isHeatingBed(); // true if heating, false if cooling
  3922. KEEPALIVE_STATE(NOT_BUSY);
  3923. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3924. {
  3925. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3926. {
  3927. if (!farm_mode) {
  3928. float tt = degHotend(active_extruder);
  3929. SERIAL_PROTOCOLPGM("T:");
  3930. SERIAL_PROTOCOL(tt);
  3931. SERIAL_PROTOCOLPGM(" E:");
  3932. SERIAL_PROTOCOL((int)active_extruder);
  3933. SERIAL_PROTOCOLPGM(" B:");
  3934. SERIAL_PROTOCOL_F(degBed(), 1);
  3935. SERIAL_PROTOCOLLN("");
  3936. }
  3937. codenum = millis();
  3938. }
  3939. manage_heater();
  3940. manage_inactivity();
  3941. lcd_update();
  3942. }
  3943. LCD_MESSAGERPGM(MSG_BED_DONE);
  3944. KEEPALIVE_STATE(IN_HANDLER);
  3945. heating_status = 4;
  3946. previous_millis_cmd = millis();
  3947. #endif
  3948. break;
  3949. #if defined(FAN_PIN) && FAN_PIN > -1
  3950. case 106: //M106 Fan On
  3951. if (code_seen('S')){
  3952. fanSpeed=constrain(code_value(),0,255);
  3953. }
  3954. else {
  3955. fanSpeed=255;
  3956. }
  3957. break;
  3958. case 107: //M107 Fan Off
  3959. fanSpeed = 0;
  3960. break;
  3961. #endif //FAN_PIN
  3962. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3963. case 80: // M80 - Turn on Power Supply
  3964. SET_OUTPUT(PS_ON_PIN); //GND
  3965. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3966. // If you have a switch on suicide pin, this is useful
  3967. // if you want to start another print with suicide feature after
  3968. // a print without suicide...
  3969. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3970. SET_OUTPUT(SUICIDE_PIN);
  3971. WRITE(SUICIDE_PIN, HIGH);
  3972. #endif
  3973. #ifdef ULTIPANEL
  3974. powersupply = true;
  3975. LCD_MESSAGERPGM(WELCOME_MSG);
  3976. lcd_update();
  3977. #endif
  3978. break;
  3979. #endif
  3980. case 81: // M81 - Turn off Power Supply
  3981. disable_heater();
  3982. st_synchronize();
  3983. disable_e0();
  3984. disable_e1();
  3985. disable_e2();
  3986. finishAndDisableSteppers();
  3987. fanSpeed = 0;
  3988. delay(1000); // Wait a little before to switch off
  3989. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3990. st_synchronize();
  3991. suicide();
  3992. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3993. SET_OUTPUT(PS_ON_PIN);
  3994. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3995. #endif
  3996. #ifdef ULTIPANEL
  3997. powersupply = false;
  3998. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3999. /*
  4000. MACHNAME = "Prusa i3"
  4001. MSGOFF = "Vypnuto"
  4002. "Prusai3"" ""vypnuto""."
  4003. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4004. */
  4005. lcd_update();
  4006. #endif
  4007. break;
  4008. case 82:
  4009. axis_relative_modes[3] = false;
  4010. break;
  4011. case 83:
  4012. axis_relative_modes[3] = true;
  4013. break;
  4014. case 18: //compatibility
  4015. case 84: // M84
  4016. if(code_seen('S')){
  4017. stepper_inactive_time = code_value() * 1000;
  4018. }
  4019. else
  4020. {
  4021. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4022. if(all_axis)
  4023. {
  4024. st_synchronize();
  4025. disable_e0();
  4026. disable_e1();
  4027. disable_e2();
  4028. finishAndDisableSteppers();
  4029. }
  4030. else
  4031. {
  4032. st_synchronize();
  4033. if (code_seen('X')) disable_x();
  4034. if (code_seen('Y')) disable_y();
  4035. if (code_seen('Z')) disable_z();
  4036. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4037. if (code_seen('E')) {
  4038. disable_e0();
  4039. disable_e1();
  4040. disable_e2();
  4041. }
  4042. #endif
  4043. }
  4044. }
  4045. snmm_filaments_used = 0;
  4046. break;
  4047. case 85: // M85
  4048. if(code_seen('S')) {
  4049. max_inactive_time = code_value() * 1000;
  4050. }
  4051. break;
  4052. case 92: // M92
  4053. for(int8_t i=0; i < NUM_AXIS; i++)
  4054. {
  4055. if(code_seen(axis_codes[i]))
  4056. {
  4057. if(i == 3) { // E
  4058. float value = code_value();
  4059. if(value < 20.0) {
  4060. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4061. max_jerk[E_AXIS] *= factor;
  4062. max_feedrate[i] *= factor;
  4063. axis_steps_per_sqr_second[i] *= factor;
  4064. }
  4065. axis_steps_per_unit[i] = value;
  4066. }
  4067. else {
  4068. axis_steps_per_unit[i] = code_value();
  4069. }
  4070. }
  4071. }
  4072. break;
  4073. case 110: // M110 - reset line pos
  4074. if (code_seen('N'))
  4075. gcode_LastN = code_value_long();
  4076. break;
  4077. #ifdef HOST_KEEPALIVE_FEATURE
  4078. case 113: // M113 - Get or set Host Keepalive interval
  4079. if (code_seen('S')) {
  4080. host_keepalive_interval = (uint8_t)code_value_short();
  4081. // NOMORE(host_keepalive_interval, 60);
  4082. }
  4083. else {
  4084. SERIAL_ECHO_START;
  4085. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4086. SERIAL_PROTOCOLLN("");
  4087. }
  4088. break;
  4089. #endif
  4090. case 115: // M115
  4091. if (code_seen('V')) {
  4092. // Report the Prusa version number.
  4093. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4094. } else if (code_seen('U')) {
  4095. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4096. // pause the print and ask the user to upgrade the firmware.
  4097. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4098. } else {
  4099. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4100. }
  4101. break;
  4102. /* case 117: // M117 display message
  4103. starpos = (strchr(strchr_pointer + 5,'*'));
  4104. if(starpos!=NULL)
  4105. *(starpos)='\0';
  4106. lcd_setstatus(strchr_pointer + 5);
  4107. break;*/
  4108. case 114: // M114
  4109. SERIAL_PROTOCOLPGM("X:");
  4110. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4111. SERIAL_PROTOCOLPGM(" Y:");
  4112. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4113. SERIAL_PROTOCOLPGM(" Z:");
  4114. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4115. SERIAL_PROTOCOLPGM(" E:");
  4116. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4117. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4118. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4119. SERIAL_PROTOCOLPGM(" Y:");
  4120. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4121. SERIAL_PROTOCOLPGM(" Z:");
  4122. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4123. SERIAL_PROTOCOLPGM(" E:");
  4124. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4125. SERIAL_PROTOCOLLN("");
  4126. break;
  4127. case 120: // M120
  4128. enable_endstops(false) ;
  4129. break;
  4130. case 121: // M121
  4131. enable_endstops(true) ;
  4132. break;
  4133. case 119: // M119
  4134. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4135. SERIAL_PROTOCOLLN("");
  4136. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4137. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4138. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4139. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4140. }else{
  4141. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4142. }
  4143. SERIAL_PROTOCOLLN("");
  4144. #endif
  4145. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4146. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4147. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4148. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4149. }else{
  4150. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4151. }
  4152. SERIAL_PROTOCOLLN("");
  4153. #endif
  4154. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4155. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4156. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4157. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4158. }else{
  4159. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4160. }
  4161. SERIAL_PROTOCOLLN("");
  4162. #endif
  4163. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4164. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4165. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4166. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4167. }else{
  4168. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4169. }
  4170. SERIAL_PROTOCOLLN("");
  4171. #endif
  4172. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4173. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4174. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4175. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4176. }else{
  4177. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4178. }
  4179. SERIAL_PROTOCOLLN("");
  4180. #endif
  4181. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4182. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4183. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4184. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4185. }else{
  4186. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4187. }
  4188. SERIAL_PROTOCOLLN("");
  4189. #endif
  4190. break;
  4191. //TODO: update for all axis, use for loop
  4192. #ifdef BLINKM
  4193. case 150: // M150
  4194. {
  4195. byte red;
  4196. byte grn;
  4197. byte blu;
  4198. if(code_seen('R')) red = code_value();
  4199. if(code_seen('U')) grn = code_value();
  4200. if(code_seen('B')) blu = code_value();
  4201. SendColors(red,grn,blu);
  4202. }
  4203. break;
  4204. #endif //BLINKM
  4205. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4206. {
  4207. tmp_extruder = active_extruder;
  4208. if(code_seen('T')) {
  4209. tmp_extruder = code_value();
  4210. if(tmp_extruder >= EXTRUDERS) {
  4211. SERIAL_ECHO_START;
  4212. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4213. break;
  4214. }
  4215. }
  4216. float area = .0;
  4217. if(code_seen('D')) {
  4218. float diameter = (float)code_value();
  4219. if (diameter == 0.0) {
  4220. // setting any extruder filament size disables volumetric on the assumption that
  4221. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4222. // for all extruders
  4223. volumetric_enabled = false;
  4224. } else {
  4225. filament_size[tmp_extruder] = (float)code_value();
  4226. // make sure all extruders have some sane value for the filament size
  4227. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4228. #if EXTRUDERS > 1
  4229. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4230. #if EXTRUDERS > 2
  4231. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4232. #endif
  4233. #endif
  4234. volumetric_enabled = true;
  4235. }
  4236. } else {
  4237. //reserved for setting filament diameter via UFID or filament measuring device
  4238. break;
  4239. }
  4240. calculate_volumetric_multipliers();
  4241. }
  4242. break;
  4243. case 201: // M201
  4244. for(int8_t i=0; i < NUM_AXIS; i++)
  4245. {
  4246. if(code_seen(axis_codes[i]))
  4247. {
  4248. max_acceleration_units_per_sq_second[i] = code_value();
  4249. }
  4250. }
  4251. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4252. reset_acceleration_rates();
  4253. break;
  4254. #if 0 // Not used for Sprinter/grbl gen6
  4255. case 202: // M202
  4256. for(int8_t i=0; i < NUM_AXIS; i++) {
  4257. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4258. }
  4259. break;
  4260. #endif
  4261. case 203: // M203 max feedrate mm/sec
  4262. for(int8_t i=0; i < NUM_AXIS; i++) {
  4263. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4264. }
  4265. break;
  4266. case 204: // M204 acclereration S normal moves T filmanent only moves
  4267. {
  4268. if(code_seen('S')) acceleration = code_value() ;
  4269. if(code_seen('T')) retract_acceleration = code_value() ;
  4270. }
  4271. break;
  4272. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4273. {
  4274. if(code_seen('S')) minimumfeedrate = code_value();
  4275. if(code_seen('T')) mintravelfeedrate = code_value();
  4276. if(code_seen('B')) minsegmenttime = code_value() ;
  4277. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4278. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4279. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4280. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4281. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4282. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4283. }
  4284. break;
  4285. case 206: // M206 additional homing offset
  4286. for(int8_t i=0; i < 3; i++)
  4287. {
  4288. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4289. }
  4290. break;
  4291. #ifdef FWRETRACT
  4292. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4293. {
  4294. if(code_seen('S'))
  4295. {
  4296. retract_length = code_value() ;
  4297. }
  4298. if(code_seen('F'))
  4299. {
  4300. retract_feedrate = code_value()/60 ;
  4301. }
  4302. if(code_seen('Z'))
  4303. {
  4304. retract_zlift = code_value() ;
  4305. }
  4306. }break;
  4307. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4308. {
  4309. if(code_seen('S'))
  4310. {
  4311. retract_recover_length = code_value() ;
  4312. }
  4313. if(code_seen('F'))
  4314. {
  4315. retract_recover_feedrate = code_value()/60 ;
  4316. }
  4317. }break;
  4318. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4319. {
  4320. if(code_seen('S'))
  4321. {
  4322. int t= code_value() ;
  4323. switch(t)
  4324. {
  4325. case 0:
  4326. {
  4327. autoretract_enabled=false;
  4328. retracted[0]=false;
  4329. #if EXTRUDERS > 1
  4330. retracted[1]=false;
  4331. #endif
  4332. #if EXTRUDERS > 2
  4333. retracted[2]=false;
  4334. #endif
  4335. }break;
  4336. case 1:
  4337. {
  4338. autoretract_enabled=true;
  4339. retracted[0]=false;
  4340. #if EXTRUDERS > 1
  4341. retracted[1]=false;
  4342. #endif
  4343. #if EXTRUDERS > 2
  4344. retracted[2]=false;
  4345. #endif
  4346. }break;
  4347. default:
  4348. SERIAL_ECHO_START;
  4349. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4350. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4351. SERIAL_ECHOLNPGM("\"(1)");
  4352. }
  4353. }
  4354. }break;
  4355. #endif // FWRETRACT
  4356. #if EXTRUDERS > 1
  4357. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4358. {
  4359. if(setTargetedHotend(218)){
  4360. break;
  4361. }
  4362. if(code_seen('X'))
  4363. {
  4364. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4365. }
  4366. if(code_seen('Y'))
  4367. {
  4368. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4369. }
  4370. SERIAL_ECHO_START;
  4371. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4372. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4373. {
  4374. SERIAL_ECHO(" ");
  4375. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4376. SERIAL_ECHO(",");
  4377. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4378. }
  4379. SERIAL_ECHOLN("");
  4380. }break;
  4381. #endif
  4382. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4383. {
  4384. if(code_seen('S'))
  4385. {
  4386. feedmultiply = code_value() ;
  4387. }
  4388. }
  4389. break;
  4390. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4391. {
  4392. if(code_seen('S'))
  4393. {
  4394. int tmp_code = code_value();
  4395. if (code_seen('T'))
  4396. {
  4397. if(setTargetedHotend(221)){
  4398. break;
  4399. }
  4400. extruder_multiply[tmp_extruder] = tmp_code;
  4401. }
  4402. else
  4403. {
  4404. extrudemultiply = tmp_code ;
  4405. }
  4406. }
  4407. }
  4408. break;
  4409. #ifndef _DISABLE_M42_M226
  4410. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4411. {
  4412. if(code_seen('P')){
  4413. int pin_number = code_value(); // pin number
  4414. int pin_state = -1; // required pin state - default is inverted
  4415. if(code_seen('S')) pin_state = code_value(); // required pin state
  4416. if(pin_state >= -1 && pin_state <= 1){
  4417. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4418. {
  4419. if (sensitive_pins[i] == pin_number)
  4420. {
  4421. pin_number = -1;
  4422. break;
  4423. }
  4424. }
  4425. if (pin_number > -1)
  4426. {
  4427. int target = LOW;
  4428. st_synchronize();
  4429. pinMode(pin_number, INPUT);
  4430. switch(pin_state){
  4431. case 1:
  4432. target = HIGH;
  4433. break;
  4434. case 0:
  4435. target = LOW;
  4436. break;
  4437. case -1:
  4438. target = !digitalRead(pin_number);
  4439. break;
  4440. }
  4441. while(digitalRead(pin_number) != target){
  4442. manage_heater();
  4443. manage_inactivity();
  4444. lcd_update();
  4445. }
  4446. }
  4447. }
  4448. }
  4449. }
  4450. break;
  4451. #endif //_DISABLE_M42_M226
  4452. #if NUM_SERVOS > 0
  4453. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4454. {
  4455. int servo_index = -1;
  4456. int servo_position = 0;
  4457. if (code_seen('P'))
  4458. servo_index = code_value();
  4459. if (code_seen('S')) {
  4460. servo_position = code_value();
  4461. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4462. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4463. servos[servo_index].attach(0);
  4464. #endif
  4465. servos[servo_index].write(servo_position);
  4466. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4467. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4468. servos[servo_index].detach();
  4469. #endif
  4470. }
  4471. else {
  4472. SERIAL_ECHO_START;
  4473. SERIAL_ECHO("Servo ");
  4474. SERIAL_ECHO(servo_index);
  4475. SERIAL_ECHOLN(" out of range");
  4476. }
  4477. }
  4478. else if (servo_index >= 0) {
  4479. SERIAL_PROTOCOL(MSG_OK);
  4480. SERIAL_PROTOCOL(" Servo ");
  4481. SERIAL_PROTOCOL(servo_index);
  4482. SERIAL_PROTOCOL(": ");
  4483. SERIAL_PROTOCOL(servos[servo_index].read());
  4484. SERIAL_PROTOCOLLN("");
  4485. }
  4486. }
  4487. break;
  4488. #endif // NUM_SERVOS > 0
  4489. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4490. case 300: // M300
  4491. {
  4492. int beepS = code_seen('S') ? code_value() : 110;
  4493. int beepP = code_seen('P') ? code_value() : 1000;
  4494. if (beepS > 0)
  4495. {
  4496. #if BEEPER > 0
  4497. tone(BEEPER, beepS);
  4498. delay(beepP);
  4499. noTone(BEEPER);
  4500. #elif defined(ULTRALCD)
  4501. lcd_buzz(beepS, beepP);
  4502. #elif defined(LCD_USE_I2C_BUZZER)
  4503. lcd_buzz(beepP, beepS);
  4504. #endif
  4505. }
  4506. else
  4507. {
  4508. delay(beepP);
  4509. }
  4510. }
  4511. break;
  4512. #endif // M300
  4513. #ifdef PIDTEMP
  4514. case 301: // M301
  4515. {
  4516. if(code_seen('P')) Kp = code_value();
  4517. if(code_seen('I')) Ki = scalePID_i(code_value());
  4518. if(code_seen('D')) Kd = scalePID_d(code_value());
  4519. #ifdef PID_ADD_EXTRUSION_RATE
  4520. if(code_seen('C')) Kc = code_value();
  4521. #endif
  4522. updatePID();
  4523. SERIAL_PROTOCOLRPGM(MSG_OK);
  4524. SERIAL_PROTOCOL(" p:");
  4525. SERIAL_PROTOCOL(Kp);
  4526. SERIAL_PROTOCOL(" i:");
  4527. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4528. SERIAL_PROTOCOL(" d:");
  4529. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4530. #ifdef PID_ADD_EXTRUSION_RATE
  4531. SERIAL_PROTOCOL(" c:");
  4532. //Kc does not have scaling applied above, or in resetting defaults
  4533. SERIAL_PROTOCOL(Kc);
  4534. #endif
  4535. SERIAL_PROTOCOLLN("");
  4536. }
  4537. break;
  4538. #endif //PIDTEMP
  4539. #ifdef PIDTEMPBED
  4540. case 304: // M304
  4541. {
  4542. if(code_seen('P')) bedKp = code_value();
  4543. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4544. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4545. updatePID();
  4546. SERIAL_PROTOCOLRPGM(MSG_OK);
  4547. SERIAL_PROTOCOL(" p:");
  4548. SERIAL_PROTOCOL(bedKp);
  4549. SERIAL_PROTOCOL(" i:");
  4550. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4551. SERIAL_PROTOCOL(" d:");
  4552. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4553. SERIAL_PROTOCOLLN("");
  4554. }
  4555. break;
  4556. #endif //PIDTEMP
  4557. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4558. {
  4559. #ifdef CHDK
  4560. SET_OUTPUT(CHDK);
  4561. WRITE(CHDK, HIGH);
  4562. chdkHigh = millis();
  4563. chdkActive = true;
  4564. #else
  4565. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4566. const uint8_t NUM_PULSES=16;
  4567. const float PULSE_LENGTH=0.01524;
  4568. for(int i=0; i < NUM_PULSES; i++) {
  4569. WRITE(PHOTOGRAPH_PIN, HIGH);
  4570. _delay_ms(PULSE_LENGTH);
  4571. WRITE(PHOTOGRAPH_PIN, LOW);
  4572. _delay_ms(PULSE_LENGTH);
  4573. }
  4574. delay(7.33);
  4575. for(int i=0; i < NUM_PULSES; i++) {
  4576. WRITE(PHOTOGRAPH_PIN, HIGH);
  4577. _delay_ms(PULSE_LENGTH);
  4578. WRITE(PHOTOGRAPH_PIN, LOW);
  4579. _delay_ms(PULSE_LENGTH);
  4580. }
  4581. #endif
  4582. #endif //chdk end if
  4583. }
  4584. break;
  4585. #ifdef DOGLCD
  4586. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4587. {
  4588. if (code_seen('C')) {
  4589. lcd_setcontrast( ((int)code_value())&63 );
  4590. }
  4591. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4592. SERIAL_PROTOCOL(lcd_contrast);
  4593. SERIAL_PROTOCOLLN("");
  4594. }
  4595. break;
  4596. #endif
  4597. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4598. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4599. {
  4600. float temp = .0;
  4601. if (code_seen('S')) temp=code_value();
  4602. set_extrude_min_temp(temp);
  4603. }
  4604. break;
  4605. #endif
  4606. case 303: // M303 PID autotune
  4607. {
  4608. float temp = 150.0;
  4609. int e=0;
  4610. int c=5;
  4611. if (code_seen('E')) e=code_value();
  4612. if (e<0)
  4613. temp=70;
  4614. if (code_seen('S')) temp=code_value();
  4615. if (code_seen('C')) c=code_value();
  4616. PID_autotune(temp, e, c);
  4617. }
  4618. break;
  4619. case 400: // M400 finish all moves
  4620. {
  4621. st_synchronize();
  4622. }
  4623. break;
  4624. #ifdef FILAMENT_SENSOR
  4625. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4626. {
  4627. #if (FILWIDTH_PIN > -1)
  4628. if(code_seen('N')) filament_width_nominal=code_value();
  4629. else{
  4630. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4631. SERIAL_PROTOCOLLN(filament_width_nominal);
  4632. }
  4633. #endif
  4634. }
  4635. break;
  4636. case 405: //M405 Turn on filament sensor for control
  4637. {
  4638. if(code_seen('D')) meas_delay_cm=code_value();
  4639. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4640. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4641. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4642. {
  4643. int temp_ratio = widthFil_to_size_ratio();
  4644. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4645. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4646. }
  4647. delay_index1=0;
  4648. delay_index2=0;
  4649. }
  4650. filament_sensor = true ;
  4651. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4652. //SERIAL_PROTOCOL(filament_width_meas);
  4653. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4654. //SERIAL_PROTOCOL(extrudemultiply);
  4655. }
  4656. break;
  4657. case 406: //M406 Turn off filament sensor for control
  4658. {
  4659. filament_sensor = false ;
  4660. }
  4661. break;
  4662. case 407: //M407 Display measured filament diameter
  4663. {
  4664. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4665. SERIAL_PROTOCOLLN(filament_width_meas);
  4666. }
  4667. break;
  4668. #endif
  4669. case 500: // M500 Store settings in EEPROM
  4670. {
  4671. Config_StoreSettings(EEPROM_OFFSET);
  4672. }
  4673. break;
  4674. case 501: // M501 Read settings from EEPROM
  4675. {
  4676. Config_RetrieveSettings(EEPROM_OFFSET);
  4677. }
  4678. break;
  4679. case 502: // M502 Revert to default settings
  4680. {
  4681. Config_ResetDefault();
  4682. }
  4683. break;
  4684. case 503: // M503 print settings currently in memory
  4685. {
  4686. Config_PrintSettings();
  4687. }
  4688. break;
  4689. case 509: //M509 Force language selection
  4690. {
  4691. lcd_force_language_selection();
  4692. SERIAL_ECHO_START;
  4693. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4694. }
  4695. break;
  4696. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4697. case 540:
  4698. {
  4699. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4700. }
  4701. break;
  4702. #endif
  4703. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4704. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4705. {
  4706. float value;
  4707. if (code_seen('Z'))
  4708. {
  4709. value = code_value();
  4710. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4711. {
  4712. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4713. SERIAL_ECHO_START;
  4714. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4715. SERIAL_PROTOCOLLN("");
  4716. }
  4717. else
  4718. {
  4719. SERIAL_ECHO_START;
  4720. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4721. SERIAL_ECHORPGM(MSG_Z_MIN);
  4722. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4723. SERIAL_ECHORPGM(MSG_Z_MAX);
  4724. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4725. SERIAL_PROTOCOLLN("");
  4726. }
  4727. }
  4728. else
  4729. {
  4730. SERIAL_ECHO_START;
  4731. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4732. SERIAL_ECHO(-zprobe_zoffset);
  4733. SERIAL_PROTOCOLLN("");
  4734. }
  4735. break;
  4736. }
  4737. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4738. #ifdef FILAMENTCHANGEENABLE
  4739. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4740. {
  4741. bool old_fsensor_enabled = fsensor_enabled;
  4742. fsensor_enabled = false; //temporary solution for unexpected restarting
  4743. st_synchronize();
  4744. float target[4];
  4745. float lastpos[4];
  4746. if (farm_mode)
  4747. {
  4748. prusa_statistics(22);
  4749. }
  4750. feedmultiplyBckp=feedmultiply;
  4751. int8_t TooLowZ = 0;
  4752. float HotendTempBckp = degTargetHotend(active_extruder);
  4753. int fanSpeedBckp = fanSpeed;
  4754. target[X_AXIS]=current_position[X_AXIS];
  4755. target[Y_AXIS]=current_position[Y_AXIS];
  4756. target[Z_AXIS]=current_position[Z_AXIS];
  4757. target[E_AXIS]=current_position[E_AXIS];
  4758. lastpos[X_AXIS]=current_position[X_AXIS];
  4759. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4760. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4761. lastpos[E_AXIS]=current_position[E_AXIS];
  4762. //Restract extruder
  4763. if(code_seen('E'))
  4764. {
  4765. target[E_AXIS]+= code_value();
  4766. }
  4767. else
  4768. {
  4769. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4770. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4771. #endif
  4772. }
  4773. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4774. //Lift Z
  4775. if(code_seen('Z'))
  4776. {
  4777. target[Z_AXIS]+= code_value();
  4778. }
  4779. else
  4780. {
  4781. #ifdef FILAMENTCHANGE_ZADD
  4782. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4783. if(target[Z_AXIS] < 10){
  4784. target[Z_AXIS]+= 10 ;
  4785. TooLowZ = 1;
  4786. }else{
  4787. TooLowZ = 0;
  4788. }
  4789. #endif
  4790. }
  4791. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4792. //Move XY to side
  4793. if(code_seen('X'))
  4794. {
  4795. target[X_AXIS]+= code_value();
  4796. }
  4797. else
  4798. {
  4799. #ifdef FILAMENTCHANGE_XPOS
  4800. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4801. #endif
  4802. }
  4803. if(code_seen('Y'))
  4804. {
  4805. target[Y_AXIS]= code_value();
  4806. }
  4807. else
  4808. {
  4809. #ifdef FILAMENTCHANGE_YPOS
  4810. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4811. #endif
  4812. }
  4813. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4814. st_synchronize();
  4815. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4816. uint8_t cnt = 0;
  4817. int counterBeep = 0;
  4818. fanSpeed = 0;
  4819. unsigned long waiting_start_time = millis();
  4820. uint8_t wait_for_user_state = 0;
  4821. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4822. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4823. //cnt++;
  4824. manage_heater();
  4825. manage_inactivity(true);
  4826. /*#ifdef SNMM
  4827. target[E_AXIS] += 0.002;
  4828. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4829. #endif // SNMM*/
  4830. //if (cnt == 0)
  4831. {
  4832. #if BEEPER > 0
  4833. if (counterBeep == 500) {
  4834. counterBeep = 0;
  4835. }
  4836. SET_OUTPUT(BEEPER);
  4837. if (counterBeep == 0) {
  4838. WRITE(BEEPER, HIGH);
  4839. }
  4840. if (counterBeep == 20) {
  4841. WRITE(BEEPER, LOW);
  4842. }
  4843. counterBeep++;
  4844. #else
  4845. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4846. lcd_buzz(1000 / 6, 100);
  4847. #else
  4848. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4849. #endif
  4850. #endif
  4851. }
  4852. switch (wait_for_user_state) {
  4853. case 0:
  4854. delay_keep_alive(4);
  4855. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4856. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4857. wait_for_user_state = 1;
  4858. setTargetHotend(0, 0);
  4859. setTargetHotend(0, 1);
  4860. setTargetHotend(0, 2);
  4861. st_synchronize();
  4862. disable_e0();
  4863. disable_e1();
  4864. disable_e2();
  4865. }
  4866. break;
  4867. case 1:
  4868. delay_keep_alive(4);
  4869. if (lcd_clicked()) {
  4870. setTargetHotend(HotendTempBckp, active_extruder);
  4871. lcd_wait_for_heater();
  4872. wait_for_user_state = 2;
  4873. }
  4874. break;
  4875. case 2:
  4876. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4877. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4878. waiting_start_time = millis();
  4879. wait_for_user_state = 0;
  4880. }
  4881. else {
  4882. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4883. lcd.setCursor(1, 4);
  4884. lcd.print(ftostr3(degHotend(active_extruder)));
  4885. }
  4886. break;
  4887. }
  4888. }
  4889. WRITE(BEEPER, LOW);
  4890. lcd_change_fil_state = 0;
  4891. // Unload filament
  4892. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4893. KEEPALIVE_STATE(IN_HANDLER);
  4894. custom_message = true;
  4895. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4896. if (code_seen('L'))
  4897. {
  4898. target[E_AXIS] += code_value();
  4899. }
  4900. else
  4901. {
  4902. #ifdef SNMM
  4903. #else
  4904. #ifdef FILAMENTCHANGE_FINALRETRACT
  4905. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4906. #endif
  4907. #endif // SNMM
  4908. }
  4909. #ifdef SNMM
  4910. target[E_AXIS] += 12;
  4911. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4912. target[E_AXIS] += 6;
  4913. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4914. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4915. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4916. st_synchronize();
  4917. target[E_AXIS] += (FIL_COOLING);
  4918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4919. target[E_AXIS] += (FIL_COOLING*-1);
  4920. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4921. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4922. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4923. st_synchronize();
  4924. #else
  4925. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4926. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4927. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4928. target[E_AXIS] -= 45;
  4929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  4930. st_synchronize();
  4931. target[E_AXIS] -= 15;
  4932. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4933. st_synchronize();
  4934. target[E_AXIS] -= 20;
  4935. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4936. st_synchronize();
  4937. #endif // SNMM
  4938. //finish moves
  4939. st_synchronize();
  4940. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  4941. //disable extruder steppers so filament can be removed
  4942. disable_e0();
  4943. disable_e1();
  4944. disable_e2();
  4945. delay(100);
  4946. WRITE(BEEPER, HIGH);
  4947. counterBeep = 0;
  4948. while(!lcd_clicked() && (counterBeep < 50)) {
  4949. if(counterBeep > 5) WRITE(BEEPER, LOW);
  4950. delay_keep_alive(100);
  4951. counterBeep++;
  4952. }
  4953. WRITE(BEEPER, LOW);
  4954. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4955. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, true);
  4956. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  4957. //lcd_return_to_status();
  4958. lcd_update_enable(true);
  4959. //Wait for user to insert filament
  4960. lcd_wait_interact();
  4961. //load_filament_time = millis();
  4962. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4963. #ifdef PAT9125
  4964. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  4965. #endif //PAT9125
  4966. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  4967. while(!lcd_clicked())
  4968. {
  4969. manage_heater();
  4970. manage_inactivity(true);
  4971. #ifdef PAT9125
  4972. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  4973. {
  4974. tone(BEEPER, 1000);
  4975. delay_keep_alive(50);
  4976. noTone(BEEPER);
  4977. break;
  4978. }
  4979. #endif //PAT9125
  4980. /*#ifdef SNMM
  4981. target[E_AXIS] += 0.002;
  4982. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4983. #endif // SNMM*/
  4984. }
  4985. #ifdef PAT9125
  4986. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  4987. #endif //PAT9125
  4988. //WRITE(BEEPER, LOW);
  4989. KEEPALIVE_STATE(IN_HANDLER);
  4990. #ifdef SNMM
  4991. display_loading();
  4992. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4993. do {
  4994. target[E_AXIS] += 0.002;
  4995. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4996. delay_keep_alive(2);
  4997. } while (!lcd_clicked());
  4998. KEEPALIVE_STATE(IN_HANDLER);
  4999. /*if (millis() - load_filament_time > 2) {
  5000. load_filament_time = millis();
  5001. target[E_AXIS] += 0.001;
  5002. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5003. }*/
  5004. //Filament inserted
  5005. //Feed the filament to the end of nozzle quickly
  5006. st_synchronize();
  5007. target[E_AXIS] += bowden_length[snmm_extruder];
  5008. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5009. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5010. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5011. target[E_AXIS] += 40;
  5012. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5013. target[E_AXIS] += 10;
  5014. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5015. #else
  5016. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5017. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5018. #endif // SNMM
  5019. //Extrude some filament
  5020. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5021. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5022. //Wait for user to check the state
  5023. lcd_change_fil_state = 0;
  5024. lcd_loading_filament();
  5025. tone(BEEPER, 500);
  5026. delay_keep_alive(50);
  5027. noTone(BEEPER);
  5028. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5029. lcd_change_fil_state = 0;
  5030. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5031. lcd_alright();
  5032. KEEPALIVE_STATE(IN_HANDLER);
  5033. switch(lcd_change_fil_state){
  5034. // Filament failed to load so load it again
  5035. case 2:
  5036. #ifdef SNMM
  5037. display_loading();
  5038. do {
  5039. target[E_AXIS] += 0.002;
  5040. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5041. delay_keep_alive(2);
  5042. } while (!lcd_clicked());
  5043. st_synchronize();
  5044. target[E_AXIS] += bowden_length[snmm_extruder];
  5045. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5046. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5047. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5048. target[E_AXIS] += 40;
  5049. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5050. target[E_AXIS] += 10;
  5051. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5052. #else
  5053. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5054. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5055. #endif
  5056. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5058. lcd_loading_filament();
  5059. break;
  5060. // Filament loaded properly but color is not clear
  5061. case 3:
  5062. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5064. lcd_loading_color();
  5065. break;
  5066. // Everything good
  5067. default:
  5068. lcd_change_success();
  5069. lcd_update_enable(true);
  5070. break;
  5071. }
  5072. }
  5073. //Not let's go back to print
  5074. fanSpeed = fanSpeedBckp;
  5075. //Feed a little of filament to stabilize pressure
  5076. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5078. //Retract
  5079. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5081. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5082. //Move XY back
  5083. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5084. //Move Z back
  5085. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5086. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5087. //Unretract
  5088. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5089. //Set E position to original
  5090. plan_set_e_position(lastpos[E_AXIS]);
  5091. //Recover feed rate
  5092. feedmultiply=feedmultiplyBckp;
  5093. char cmd[9];
  5094. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5095. enquecommand(cmd);
  5096. lcd_setstatuspgm(WELCOME_MSG);
  5097. custom_message = false;
  5098. custom_message_type = 0;
  5099. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5100. #ifdef PAT9125
  5101. if (fsensor_M600)
  5102. {
  5103. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5104. st_synchronize();
  5105. while (!is_buffer_empty())
  5106. {
  5107. process_commands();
  5108. cmdqueue_pop_front();
  5109. }
  5110. fsensor_enable();
  5111. fsensor_restore_print_and_continue();
  5112. }
  5113. #endif //PAT9125
  5114. }
  5115. break;
  5116. #endif //FILAMENTCHANGEENABLE
  5117. case 601: {
  5118. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5119. }
  5120. break;
  5121. case 602: {
  5122. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5123. }
  5124. break;
  5125. #ifdef LIN_ADVANCE
  5126. case 900: // M900: Set LIN_ADVANCE options.
  5127. gcode_M900();
  5128. break;
  5129. #endif
  5130. case 907: // M907 Set digital trimpot motor current using axis codes.
  5131. {
  5132. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5133. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5134. if(code_seen('B')) digipot_current(4,code_value());
  5135. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5136. #endif
  5137. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5138. if(code_seen('X')) digipot_current(0, code_value());
  5139. #endif
  5140. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5141. if(code_seen('Z')) digipot_current(1, code_value());
  5142. #endif
  5143. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5144. if(code_seen('E')) digipot_current(2, code_value());
  5145. #endif
  5146. #ifdef DIGIPOT_I2C
  5147. // this one uses actual amps in floating point
  5148. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5149. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5150. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5151. #endif
  5152. }
  5153. break;
  5154. case 908: // M908 Control digital trimpot directly.
  5155. {
  5156. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5157. uint8_t channel,current;
  5158. if(code_seen('P')) channel=code_value();
  5159. if(code_seen('S')) current=code_value();
  5160. digitalPotWrite(channel, current);
  5161. #endif
  5162. }
  5163. break;
  5164. case 910: // M910 TMC2130 init
  5165. {
  5166. tmc2130_init();
  5167. }
  5168. break;
  5169. case 911: // M911 Set TMC2130 holding currents
  5170. {
  5171. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5172. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5173. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5174. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5175. }
  5176. break;
  5177. case 912: // M912 Set TMC2130 running currents
  5178. {
  5179. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5180. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5181. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5182. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5183. }
  5184. break;
  5185. case 913: // M913 Print TMC2130 currents
  5186. {
  5187. tmc2130_print_currents();
  5188. }
  5189. break;
  5190. case 914: // M914 Set normal mode
  5191. {
  5192. tmc2130_mode = TMC2130_MODE_NORMAL;
  5193. tmc2130_init();
  5194. }
  5195. break;
  5196. case 915: // M915 Set silent mode
  5197. {
  5198. tmc2130_mode = TMC2130_MODE_SILENT;
  5199. tmc2130_init();
  5200. }
  5201. break;
  5202. case 916: // M916 Set sg_thrs
  5203. {
  5204. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5205. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5206. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5207. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5208. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5209. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5210. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5211. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5212. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5213. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5214. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5215. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5216. }
  5217. break;
  5218. case 917: // M917 Set TMC2130 pwm_ampl
  5219. {
  5220. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5221. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5222. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5223. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5224. }
  5225. break;
  5226. case 918: // M918 Set TMC2130 pwm_grad
  5227. {
  5228. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5229. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5230. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5231. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5232. }
  5233. break;
  5234. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5235. {
  5236. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5237. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5238. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5239. if(code_seen('B')) microstep_mode(4,code_value());
  5240. microstep_readings();
  5241. #endif
  5242. }
  5243. break;
  5244. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5245. {
  5246. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5247. if(code_seen('S')) switch((int)code_value())
  5248. {
  5249. case 1:
  5250. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5251. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5252. break;
  5253. case 2:
  5254. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5255. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5256. break;
  5257. }
  5258. microstep_readings();
  5259. #endif
  5260. }
  5261. break;
  5262. case 701: //M701: load filament
  5263. {
  5264. gcode_M701();
  5265. }
  5266. break;
  5267. case 702:
  5268. {
  5269. #ifdef SNMM
  5270. if (code_seen('U')) {
  5271. extr_unload_used(); //unload all filaments which were used in current print
  5272. }
  5273. else if (code_seen('C')) {
  5274. extr_unload(); //unload just current filament
  5275. }
  5276. else {
  5277. extr_unload_all(); //unload all filaments
  5278. }
  5279. #else
  5280. bool old_fsensor_enabled = fsensor_enabled;
  5281. fsensor_enabled = false;
  5282. custom_message = true;
  5283. custom_message_type = 2;
  5284. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5285. // extr_unload2();
  5286. current_position[E_AXIS] -= 45;
  5287. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5288. st_synchronize();
  5289. current_position[E_AXIS] -= 15;
  5290. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5291. st_synchronize();
  5292. current_position[E_AXIS] -= 20;
  5293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5294. st_synchronize();
  5295. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5296. //disable extruder steppers so filament can be removed
  5297. disable_e0();
  5298. disable_e1();
  5299. disable_e2();
  5300. delay(100);
  5301. WRITE(BEEPER, HIGH);
  5302. uint8_t counterBeep = 0;
  5303. while (!lcd_clicked() && (counterBeep < 50)) {
  5304. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5305. delay_keep_alive(100);
  5306. counterBeep++;
  5307. }
  5308. WRITE(BEEPER, LOW);
  5309. st_synchronize();
  5310. while (lcd_clicked()) delay_keep_alive(100);
  5311. lcd_update_enable(true);
  5312. lcd_setstatuspgm(WELCOME_MSG);
  5313. custom_message = false;
  5314. custom_message_type = 0;
  5315. fsensor_enabled = old_fsensor_enabled;
  5316. #endif
  5317. }
  5318. break;
  5319. case 999: // M999: Restart after being stopped
  5320. Stopped = false;
  5321. lcd_reset_alert_level();
  5322. gcode_LastN = Stopped_gcode_LastN;
  5323. FlushSerialRequestResend();
  5324. break;
  5325. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5326. }
  5327. } // end if(code_seen('M')) (end of M codes)
  5328. else if(code_seen('T'))
  5329. {
  5330. int index;
  5331. st_synchronize();
  5332. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5333. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5334. SERIAL_ECHOLNPGM("Invalid T code.");
  5335. }
  5336. else {
  5337. if (*(strchr_pointer + index) == '?') {
  5338. tmp_extruder = choose_extruder_menu();
  5339. }
  5340. else {
  5341. tmp_extruder = code_value();
  5342. }
  5343. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5344. #ifdef SNMM
  5345. #ifdef LIN_ADVANCE
  5346. if (snmm_extruder != tmp_extruder)
  5347. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5348. #endif
  5349. snmm_extruder = tmp_extruder;
  5350. delay(100);
  5351. disable_e0();
  5352. disable_e1();
  5353. disable_e2();
  5354. pinMode(E_MUX0_PIN, OUTPUT);
  5355. pinMode(E_MUX1_PIN, OUTPUT);
  5356. pinMode(E_MUX2_PIN, OUTPUT);
  5357. delay(100);
  5358. SERIAL_ECHO_START;
  5359. SERIAL_ECHO("T:");
  5360. SERIAL_ECHOLN((int)tmp_extruder);
  5361. switch (tmp_extruder) {
  5362. case 1:
  5363. WRITE(E_MUX0_PIN, HIGH);
  5364. WRITE(E_MUX1_PIN, LOW);
  5365. WRITE(E_MUX2_PIN, LOW);
  5366. break;
  5367. case 2:
  5368. WRITE(E_MUX0_PIN, LOW);
  5369. WRITE(E_MUX1_PIN, HIGH);
  5370. WRITE(E_MUX2_PIN, LOW);
  5371. break;
  5372. case 3:
  5373. WRITE(E_MUX0_PIN, HIGH);
  5374. WRITE(E_MUX1_PIN, HIGH);
  5375. WRITE(E_MUX2_PIN, LOW);
  5376. break;
  5377. default:
  5378. WRITE(E_MUX0_PIN, LOW);
  5379. WRITE(E_MUX1_PIN, LOW);
  5380. WRITE(E_MUX2_PIN, LOW);
  5381. break;
  5382. }
  5383. delay(100);
  5384. #else
  5385. if (tmp_extruder >= EXTRUDERS) {
  5386. SERIAL_ECHO_START;
  5387. SERIAL_ECHOPGM("T");
  5388. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5389. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5390. }
  5391. else {
  5392. boolean make_move = false;
  5393. if (code_seen('F')) {
  5394. make_move = true;
  5395. next_feedrate = code_value();
  5396. if (next_feedrate > 0.0) {
  5397. feedrate = next_feedrate;
  5398. }
  5399. }
  5400. #if EXTRUDERS > 1
  5401. if (tmp_extruder != active_extruder) {
  5402. // Save current position to return to after applying extruder offset
  5403. memcpy(destination, current_position, sizeof(destination));
  5404. // Offset extruder (only by XY)
  5405. int i;
  5406. for (i = 0; i < 2; i++) {
  5407. current_position[i] = current_position[i] -
  5408. extruder_offset[i][active_extruder] +
  5409. extruder_offset[i][tmp_extruder];
  5410. }
  5411. // Set the new active extruder and position
  5412. active_extruder = tmp_extruder;
  5413. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5414. // Move to the old position if 'F' was in the parameters
  5415. if (make_move && Stopped == false) {
  5416. prepare_move();
  5417. }
  5418. }
  5419. #endif
  5420. SERIAL_ECHO_START;
  5421. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5422. SERIAL_PROTOCOLLN((int)active_extruder);
  5423. }
  5424. #endif
  5425. }
  5426. } // end if(code_seen('T')) (end of T codes)
  5427. #ifdef DEBUG_DCODES
  5428. else if (code_seen('D')) // D codes (debug)
  5429. {
  5430. switch((int)code_value())
  5431. {
  5432. case -1: // D-1 - Endless loop
  5433. dcode__1(); break;
  5434. case 0: // D0 - Reset
  5435. dcode_0(); break;
  5436. case 1: // D1 - Clear EEPROM
  5437. dcode_1(); break;
  5438. case 2: // D2 - Read/Write RAM
  5439. dcode_2(); break;
  5440. case 3: // D3 - Read/Write EEPROM
  5441. dcode_3(); break;
  5442. case 4: // D4 - Read/Write PIN
  5443. dcode_4(); break;
  5444. case 5: // D5 - Read/Write FLASH
  5445. // dcode_5(); break;
  5446. break;
  5447. case 6: // D6 - Read/Write external FLASH
  5448. dcode_6(); break;
  5449. case 7: // D7 - Read/Write Bootloader
  5450. dcode_7(); break;
  5451. case 8: // D8 - Read/Write PINDA
  5452. dcode_8(); break;
  5453. case 9: // D9 - Read/Write ADC
  5454. dcode_9(); break;
  5455. case 10: // D10 - XYZ calibration = OK
  5456. dcode_10(); break;
  5457. case 12: //D12 - Reset failstat counters
  5458. dcode_12(); break;
  5459. case 2130: // D9125 - TMC2130
  5460. dcode_2130(); break;
  5461. case 9125: // D9125 - PAT9125
  5462. dcode_9125(); break;
  5463. }
  5464. }
  5465. #endif //DEBUG_DCODES
  5466. else
  5467. {
  5468. SERIAL_ECHO_START;
  5469. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5470. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5471. SERIAL_ECHOLNPGM("\"(2)");
  5472. }
  5473. KEEPALIVE_STATE(NOT_BUSY);
  5474. ClearToSend();
  5475. }
  5476. void FlushSerialRequestResend()
  5477. {
  5478. //char cmdbuffer[bufindr][100]="Resend:";
  5479. MYSERIAL.flush();
  5480. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5481. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5482. previous_millis_cmd = millis();
  5483. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5484. }
  5485. // Confirm the execution of a command, if sent from a serial line.
  5486. // Execution of a command from a SD card will not be confirmed.
  5487. void ClearToSend()
  5488. {
  5489. previous_millis_cmd = millis();
  5490. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5491. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5492. }
  5493. void get_coordinates()
  5494. {
  5495. bool seen[4]={false,false,false,false};
  5496. for(int8_t i=0; i < NUM_AXIS; i++) {
  5497. if(code_seen(axis_codes[i]))
  5498. {
  5499. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5500. seen[i]=true;
  5501. }
  5502. else destination[i] = current_position[i]; //Are these else lines really needed?
  5503. }
  5504. if(code_seen('F')) {
  5505. next_feedrate = code_value();
  5506. #ifdef MAX_SILENT_FEEDRATE
  5507. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5508. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5509. #endif //MAX_SILENT_FEEDRATE
  5510. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5511. }
  5512. }
  5513. void get_arc_coordinates()
  5514. {
  5515. #ifdef SF_ARC_FIX
  5516. bool relative_mode_backup = relative_mode;
  5517. relative_mode = true;
  5518. #endif
  5519. get_coordinates();
  5520. #ifdef SF_ARC_FIX
  5521. relative_mode=relative_mode_backup;
  5522. #endif
  5523. if(code_seen('I')) {
  5524. offset[0] = code_value();
  5525. }
  5526. else {
  5527. offset[0] = 0.0;
  5528. }
  5529. if(code_seen('J')) {
  5530. offset[1] = code_value();
  5531. }
  5532. else {
  5533. offset[1] = 0.0;
  5534. }
  5535. }
  5536. void clamp_to_software_endstops(float target[3])
  5537. {
  5538. #ifdef DEBUG_DISABLE_SWLIMITS
  5539. return;
  5540. #endif //DEBUG_DISABLE_SWLIMITS
  5541. world2machine_clamp(target[0], target[1]);
  5542. // Clamp the Z coordinate.
  5543. if (min_software_endstops) {
  5544. float negative_z_offset = 0;
  5545. #ifdef ENABLE_AUTO_BED_LEVELING
  5546. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5547. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5548. #endif
  5549. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5550. }
  5551. if (max_software_endstops) {
  5552. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5553. }
  5554. }
  5555. #ifdef MESH_BED_LEVELING
  5556. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5557. float dx = x - current_position[X_AXIS];
  5558. float dy = y - current_position[Y_AXIS];
  5559. float dz = z - current_position[Z_AXIS];
  5560. int n_segments = 0;
  5561. if (mbl.active) {
  5562. float len = abs(dx) + abs(dy);
  5563. if (len > 0)
  5564. // Split to 3cm segments or shorter.
  5565. n_segments = int(ceil(len / 30.f));
  5566. }
  5567. if (n_segments > 1) {
  5568. float de = e - current_position[E_AXIS];
  5569. for (int i = 1; i < n_segments; ++ i) {
  5570. float t = float(i) / float(n_segments);
  5571. plan_buffer_line(
  5572. current_position[X_AXIS] + t * dx,
  5573. current_position[Y_AXIS] + t * dy,
  5574. current_position[Z_AXIS] + t * dz,
  5575. current_position[E_AXIS] + t * de,
  5576. feed_rate, extruder);
  5577. }
  5578. }
  5579. // The rest of the path.
  5580. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5581. current_position[X_AXIS] = x;
  5582. current_position[Y_AXIS] = y;
  5583. current_position[Z_AXIS] = z;
  5584. current_position[E_AXIS] = e;
  5585. }
  5586. #endif // MESH_BED_LEVELING
  5587. void prepare_move()
  5588. {
  5589. clamp_to_software_endstops(destination);
  5590. previous_millis_cmd = millis();
  5591. // Do not use feedmultiply for E or Z only moves
  5592. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5593. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5594. }
  5595. else {
  5596. #ifdef MESH_BED_LEVELING
  5597. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5598. #else
  5599. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5600. #endif
  5601. }
  5602. for(int8_t i=0; i < NUM_AXIS; i++) {
  5603. current_position[i] = destination[i];
  5604. }
  5605. }
  5606. void prepare_arc_move(char isclockwise) {
  5607. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5608. // Trace the arc
  5609. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5610. // As far as the parser is concerned, the position is now == target. In reality the
  5611. // motion control system might still be processing the action and the real tool position
  5612. // in any intermediate location.
  5613. for(int8_t i=0; i < NUM_AXIS; i++) {
  5614. current_position[i] = destination[i];
  5615. }
  5616. previous_millis_cmd = millis();
  5617. }
  5618. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5619. #if defined(FAN_PIN)
  5620. #if CONTROLLERFAN_PIN == FAN_PIN
  5621. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5622. #endif
  5623. #endif
  5624. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5625. unsigned long lastMotorCheck = 0;
  5626. void controllerFan()
  5627. {
  5628. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5629. {
  5630. lastMotorCheck = millis();
  5631. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5632. #if EXTRUDERS > 2
  5633. || !READ(E2_ENABLE_PIN)
  5634. #endif
  5635. #if EXTRUDER > 1
  5636. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5637. || !READ(X2_ENABLE_PIN)
  5638. #endif
  5639. || !READ(E1_ENABLE_PIN)
  5640. #endif
  5641. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5642. {
  5643. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5644. }
  5645. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5646. {
  5647. digitalWrite(CONTROLLERFAN_PIN, 0);
  5648. analogWrite(CONTROLLERFAN_PIN, 0);
  5649. }
  5650. else
  5651. {
  5652. // allows digital or PWM fan output to be used (see M42 handling)
  5653. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5654. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5655. }
  5656. }
  5657. }
  5658. #endif
  5659. #ifdef TEMP_STAT_LEDS
  5660. static bool blue_led = false;
  5661. static bool red_led = false;
  5662. static uint32_t stat_update = 0;
  5663. void handle_status_leds(void) {
  5664. float max_temp = 0.0;
  5665. if(millis() > stat_update) {
  5666. stat_update += 500; // Update every 0.5s
  5667. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5668. max_temp = max(max_temp, degHotend(cur_extruder));
  5669. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5670. }
  5671. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5672. max_temp = max(max_temp, degTargetBed());
  5673. max_temp = max(max_temp, degBed());
  5674. #endif
  5675. if((max_temp > 55.0) && (red_led == false)) {
  5676. digitalWrite(STAT_LED_RED, 1);
  5677. digitalWrite(STAT_LED_BLUE, 0);
  5678. red_led = true;
  5679. blue_led = false;
  5680. }
  5681. if((max_temp < 54.0) && (blue_led == false)) {
  5682. digitalWrite(STAT_LED_RED, 0);
  5683. digitalWrite(STAT_LED_BLUE, 1);
  5684. red_led = false;
  5685. blue_led = true;
  5686. }
  5687. }
  5688. }
  5689. #endif
  5690. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5691. {
  5692. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5693. {
  5694. if (fsensor_autoload_enabled)
  5695. {
  5696. if (fsensor_check_autoload())
  5697. {
  5698. if (degHotend0() > EXTRUDE_MINTEMP)
  5699. {
  5700. fsensor_autoload_check_stop();
  5701. tone(BEEPER, 1000);
  5702. delay_keep_alive(50);
  5703. noTone(BEEPER);
  5704. loading_flag = true;
  5705. enquecommand_front_P((PSTR("M701")));
  5706. }
  5707. else
  5708. {
  5709. lcd_update_enable(false);
  5710. lcd_implementation_clear();
  5711. lcd.setCursor(0, 0);
  5712. lcd_printPGM(MSG_ERROR);
  5713. lcd.setCursor(0, 2);
  5714. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5715. delay(2000);
  5716. lcd_implementation_clear();
  5717. lcd_update_enable(true);
  5718. }
  5719. }
  5720. }
  5721. else
  5722. fsensor_autoload_check_start();
  5723. }
  5724. else
  5725. if (fsensor_autoload_enabled)
  5726. fsensor_autoload_check_stop();
  5727. #if defined(KILL_PIN) && KILL_PIN > -1
  5728. static int killCount = 0; // make the inactivity button a bit less responsive
  5729. const int KILL_DELAY = 10000;
  5730. #endif
  5731. if(buflen < (BUFSIZE-1)){
  5732. get_command();
  5733. }
  5734. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5735. if(max_inactive_time)
  5736. kill("", 4);
  5737. if(stepper_inactive_time) {
  5738. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5739. {
  5740. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5741. disable_x();
  5742. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5743. disable_y();
  5744. disable_z();
  5745. disable_e0();
  5746. disable_e1();
  5747. disable_e2();
  5748. }
  5749. }
  5750. }
  5751. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5752. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5753. {
  5754. chdkActive = false;
  5755. WRITE(CHDK, LOW);
  5756. }
  5757. #endif
  5758. #if defined(KILL_PIN) && KILL_PIN > -1
  5759. // Check if the kill button was pressed and wait just in case it was an accidental
  5760. // key kill key press
  5761. // -------------------------------------------------------------------------------
  5762. if( 0 == READ(KILL_PIN) )
  5763. {
  5764. killCount++;
  5765. }
  5766. else if (killCount > 0)
  5767. {
  5768. killCount--;
  5769. }
  5770. // Exceeded threshold and we can confirm that it was not accidental
  5771. // KILL the machine
  5772. // ----------------------------------------------------------------
  5773. if ( killCount >= KILL_DELAY)
  5774. {
  5775. kill("", 5);
  5776. }
  5777. #endif
  5778. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5779. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5780. #endif
  5781. #ifdef EXTRUDER_RUNOUT_PREVENT
  5782. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5783. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5784. {
  5785. bool oldstatus=READ(E0_ENABLE_PIN);
  5786. enable_e0();
  5787. float oldepos=current_position[E_AXIS];
  5788. float oldedes=destination[E_AXIS];
  5789. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5790. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5791. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5792. current_position[E_AXIS]=oldepos;
  5793. destination[E_AXIS]=oldedes;
  5794. plan_set_e_position(oldepos);
  5795. previous_millis_cmd=millis();
  5796. st_synchronize();
  5797. WRITE(E0_ENABLE_PIN,oldstatus);
  5798. }
  5799. #endif
  5800. #ifdef TEMP_STAT_LEDS
  5801. handle_status_leds();
  5802. #endif
  5803. check_axes_activity();
  5804. }
  5805. void kill(const char *full_screen_message, unsigned char id)
  5806. {
  5807. SERIAL_ECHOPGM("KILL: ");
  5808. MYSERIAL.println(int(id));
  5809. //return;
  5810. cli(); // Stop interrupts
  5811. disable_heater();
  5812. disable_x();
  5813. // SERIAL_ECHOLNPGM("kill - disable Y");
  5814. disable_y();
  5815. disable_z();
  5816. disable_e0();
  5817. disable_e1();
  5818. disable_e2();
  5819. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5820. pinMode(PS_ON_PIN,INPUT);
  5821. #endif
  5822. SERIAL_ERROR_START;
  5823. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5824. if (full_screen_message != NULL) {
  5825. SERIAL_ERRORLNRPGM(full_screen_message);
  5826. lcd_display_message_fullscreen_P(full_screen_message);
  5827. } else {
  5828. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5829. }
  5830. // FMC small patch to update the LCD before ending
  5831. sei(); // enable interrupts
  5832. for ( int i=5; i--; lcd_update())
  5833. {
  5834. delay(200);
  5835. }
  5836. cli(); // disable interrupts
  5837. suicide();
  5838. while(1)
  5839. {
  5840. wdt_reset();
  5841. /* Intentionally left empty */
  5842. } // Wait for reset
  5843. }
  5844. void Stop()
  5845. {
  5846. disable_heater();
  5847. if(Stopped == false) {
  5848. Stopped = true;
  5849. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5850. SERIAL_ERROR_START;
  5851. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5852. LCD_MESSAGERPGM(MSG_STOPPED);
  5853. }
  5854. }
  5855. bool IsStopped() { return Stopped; };
  5856. #ifdef FAST_PWM_FAN
  5857. void setPwmFrequency(uint8_t pin, int val)
  5858. {
  5859. val &= 0x07;
  5860. switch(digitalPinToTimer(pin))
  5861. {
  5862. #if defined(TCCR0A)
  5863. case TIMER0A:
  5864. case TIMER0B:
  5865. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5866. // TCCR0B |= val;
  5867. break;
  5868. #endif
  5869. #if defined(TCCR1A)
  5870. case TIMER1A:
  5871. case TIMER1B:
  5872. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5873. // TCCR1B |= val;
  5874. break;
  5875. #endif
  5876. #if defined(TCCR2)
  5877. case TIMER2:
  5878. case TIMER2:
  5879. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5880. TCCR2 |= val;
  5881. break;
  5882. #endif
  5883. #if defined(TCCR2A)
  5884. case TIMER2A:
  5885. case TIMER2B:
  5886. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5887. TCCR2B |= val;
  5888. break;
  5889. #endif
  5890. #if defined(TCCR3A)
  5891. case TIMER3A:
  5892. case TIMER3B:
  5893. case TIMER3C:
  5894. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5895. TCCR3B |= val;
  5896. break;
  5897. #endif
  5898. #if defined(TCCR4A)
  5899. case TIMER4A:
  5900. case TIMER4B:
  5901. case TIMER4C:
  5902. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5903. TCCR4B |= val;
  5904. break;
  5905. #endif
  5906. #if defined(TCCR5A)
  5907. case TIMER5A:
  5908. case TIMER5B:
  5909. case TIMER5C:
  5910. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5911. TCCR5B |= val;
  5912. break;
  5913. #endif
  5914. }
  5915. }
  5916. #endif //FAST_PWM_FAN
  5917. bool setTargetedHotend(int code){
  5918. tmp_extruder = active_extruder;
  5919. if(code_seen('T')) {
  5920. tmp_extruder = code_value();
  5921. if(tmp_extruder >= EXTRUDERS) {
  5922. SERIAL_ECHO_START;
  5923. switch(code){
  5924. case 104:
  5925. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5926. break;
  5927. case 105:
  5928. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5929. break;
  5930. case 109:
  5931. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5932. break;
  5933. case 218:
  5934. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5935. break;
  5936. case 221:
  5937. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5938. break;
  5939. }
  5940. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5941. return true;
  5942. }
  5943. }
  5944. return false;
  5945. }
  5946. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5947. {
  5948. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5949. {
  5950. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5951. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5952. }
  5953. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5954. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5955. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5956. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5957. total_filament_used = 0;
  5958. }
  5959. float calculate_volumetric_multiplier(float diameter) {
  5960. float area = .0;
  5961. float radius = .0;
  5962. radius = diameter * .5;
  5963. if (! volumetric_enabled || radius == 0) {
  5964. area = 1;
  5965. }
  5966. else {
  5967. area = M_PI * pow(radius, 2);
  5968. }
  5969. return 1.0 / area;
  5970. }
  5971. void calculate_volumetric_multipliers() {
  5972. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5973. #if EXTRUDERS > 1
  5974. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5975. #if EXTRUDERS > 2
  5976. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5977. #endif
  5978. #endif
  5979. }
  5980. void delay_keep_alive(unsigned int ms)
  5981. {
  5982. for (;;) {
  5983. manage_heater();
  5984. // Manage inactivity, but don't disable steppers on timeout.
  5985. manage_inactivity(true);
  5986. lcd_update();
  5987. if (ms == 0)
  5988. break;
  5989. else if (ms >= 50) {
  5990. delay(50);
  5991. ms -= 50;
  5992. } else {
  5993. delay(ms);
  5994. ms = 0;
  5995. }
  5996. }
  5997. }
  5998. void wait_for_heater(long codenum) {
  5999. #ifdef TEMP_RESIDENCY_TIME
  6000. long residencyStart;
  6001. residencyStart = -1;
  6002. /* continue to loop until we have reached the target temp
  6003. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6004. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6005. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6006. #else
  6007. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6008. #endif //TEMP_RESIDENCY_TIME
  6009. if ((millis() - codenum) > 1000UL)
  6010. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6011. if (!farm_mode) {
  6012. SERIAL_PROTOCOLPGM("T:");
  6013. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6014. SERIAL_PROTOCOLPGM(" E:");
  6015. SERIAL_PROTOCOL((int)tmp_extruder);
  6016. #ifdef TEMP_RESIDENCY_TIME
  6017. SERIAL_PROTOCOLPGM(" W:");
  6018. if (residencyStart > -1)
  6019. {
  6020. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6021. SERIAL_PROTOCOLLN(codenum);
  6022. }
  6023. else
  6024. {
  6025. SERIAL_PROTOCOLLN("?");
  6026. }
  6027. }
  6028. #else
  6029. SERIAL_PROTOCOLLN("");
  6030. #endif
  6031. codenum = millis();
  6032. }
  6033. manage_heater();
  6034. manage_inactivity();
  6035. lcd_update();
  6036. #ifdef TEMP_RESIDENCY_TIME
  6037. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6038. or when current temp falls outside the hysteresis after target temp was reached */
  6039. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6040. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6041. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6042. {
  6043. residencyStart = millis();
  6044. }
  6045. #endif //TEMP_RESIDENCY_TIME
  6046. }
  6047. }
  6048. void check_babystep() {
  6049. int babystep_z;
  6050. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6051. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6052. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6053. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6054. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6055. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6056. lcd_update_enable(true);
  6057. }
  6058. }
  6059. #ifdef DIS
  6060. void d_setup()
  6061. {
  6062. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6063. pinMode(D_DATA, INPUT_PULLUP);
  6064. pinMode(D_REQUIRE, OUTPUT);
  6065. digitalWrite(D_REQUIRE, HIGH);
  6066. }
  6067. float d_ReadData()
  6068. {
  6069. int digit[13];
  6070. String mergeOutput;
  6071. float output;
  6072. digitalWrite(D_REQUIRE, HIGH);
  6073. for (int i = 0; i<13; i++)
  6074. {
  6075. for (int j = 0; j < 4; j++)
  6076. {
  6077. while (digitalRead(D_DATACLOCK) == LOW) {}
  6078. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6079. bitWrite(digit[i], j, digitalRead(D_DATA));
  6080. }
  6081. }
  6082. digitalWrite(D_REQUIRE, LOW);
  6083. mergeOutput = "";
  6084. output = 0;
  6085. for (int r = 5; r <= 10; r++) //Merge digits
  6086. {
  6087. mergeOutput += digit[r];
  6088. }
  6089. output = mergeOutput.toFloat();
  6090. if (digit[4] == 8) //Handle sign
  6091. {
  6092. output *= -1;
  6093. }
  6094. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6095. {
  6096. output /= 10;
  6097. }
  6098. return output;
  6099. }
  6100. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6101. int t1 = 0;
  6102. int t_delay = 0;
  6103. int digit[13];
  6104. int m;
  6105. char str[3];
  6106. //String mergeOutput;
  6107. char mergeOutput[15];
  6108. float output;
  6109. int mesh_point = 0; //index number of calibration point
  6110. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6111. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6112. float mesh_home_z_search = 4;
  6113. float row[x_points_num];
  6114. int ix = 0;
  6115. int iy = 0;
  6116. char* filename_wldsd = "wldsd.txt";
  6117. char data_wldsd[70];
  6118. char numb_wldsd[10];
  6119. d_setup();
  6120. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6121. // We don't know where we are! HOME!
  6122. // Push the commands to the front of the message queue in the reverse order!
  6123. // There shall be always enough space reserved for these commands.
  6124. repeatcommand_front(); // repeat G80 with all its parameters
  6125. enquecommand_front_P((PSTR("G28 W0")));
  6126. enquecommand_front_P((PSTR("G1 Z5")));
  6127. return;
  6128. }
  6129. bool custom_message_old = custom_message;
  6130. unsigned int custom_message_type_old = custom_message_type;
  6131. unsigned int custom_message_state_old = custom_message_state;
  6132. custom_message = true;
  6133. custom_message_type = 1;
  6134. custom_message_state = (x_points_num * y_points_num) + 10;
  6135. lcd_update(1);
  6136. mbl.reset();
  6137. babystep_undo();
  6138. card.openFile(filename_wldsd, false);
  6139. current_position[Z_AXIS] = mesh_home_z_search;
  6140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6141. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6142. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6143. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6144. setup_for_endstop_move(false);
  6145. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6146. SERIAL_PROTOCOL(x_points_num);
  6147. SERIAL_PROTOCOLPGM(",");
  6148. SERIAL_PROTOCOL(y_points_num);
  6149. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6150. SERIAL_PROTOCOL(mesh_home_z_search);
  6151. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6152. SERIAL_PROTOCOL(x_dimension);
  6153. SERIAL_PROTOCOLPGM(",");
  6154. SERIAL_PROTOCOL(y_dimension);
  6155. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6156. while (mesh_point != x_points_num * y_points_num) {
  6157. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6158. iy = mesh_point / x_points_num;
  6159. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6160. float z0 = 0.f;
  6161. current_position[Z_AXIS] = mesh_home_z_search;
  6162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6163. st_synchronize();
  6164. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6165. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6167. st_synchronize();
  6168. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6169. break;
  6170. card.closefile();
  6171. }
  6172. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6173. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6174. //strcat(data_wldsd, numb_wldsd);
  6175. //MYSERIAL.println(data_wldsd);
  6176. //delay(1000);
  6177. //delay(3000);
  6178. //t1 = millis();
  6179. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6180. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6181. memset(digit, 0, sizeof(digit));
  6182. //cli();
  6183. digitalWrite(D_REQUIRE, LOW);
  6184. for (int i = 0; i<13; i++)
  6185. {
  6186. //t1 = millis();
  6187. for (int j = 0; j < 4; j++)
  6188. {
  6189. while (digitalRead(D_DATACLOCK) == LOW) {}
  6190. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6191. bitWrite(digit[i], j, digitalRead(D_DATA));
  6192. }
  6193. //t_delay = (millis() - t1);
  6194. //SERIAL_PROTOCOLPGM(" ");
  6195. //SERIAL_PROTOCOL_F(t_delay, 5);
  6196. //SERIAL_PROTOCOLPGM(" ");
  6197. }
  6198. //sei();
  6199. digitalWrite(D_REQUIRE, HIGH);
  6200. mergeOutput[0] = '\0';
  6201. output = 0;
  6202. for (int r = 5; r <= 10; r++) //Merge digits
  6203. {
  6204. sprintf(str, "%d", digit[r]);
  6205. strcat(mergeOutput, str);
  6206. }
  6207. output = atof(mergeOutput);
  6208. if (digit[4] == 8) //Handle sign
  6209. {
  6210. output *= -1;
  6211. }
  6212. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6213. {
  6214. output *= 0.1;
  6215. }
  6216. //output = d_ReadData();
  6217. //row[ix] = current_position[Z_AXIS];
  6218. memset(data_wldsd, 0, sizeof(data_wldsd));
  6219. for (int i = 0; i <3; i++) {
  6220. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6221. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6222. strcat(data_wldsd, numb_wldsd);
  6223. strcat(data_wldsd, ";");
  6224. }
  6225. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6226. dtostrf(output, 8, 5, numb_wldsd);
  6227. strcat(data_wldsd, numb_wldsd);
  6228. //strcat(data_wldsd, ";");
  6229. card.write_command(data_wldsd);
  6230. //row[ix] = d_ReadData();
  6231. row[ix] = output; // current_position[Z_AXIS];
  6232. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6233. for (int i = 0; i < x_points_num; i++) {
  6234. SERIAL_PROTOCOLPGM(" ");
  6235. SERIAL_PROTOCOL_F(row[i], 5);
  6236. }
  6237. SERIAL_PROTOCOLPGM("\n");
  6238. }
  6239. custom_message_state--;
  6240. mesh_point++;
  6241. lcd_update(1);
  6242. }
  6243. card.closefile();
  6244. }
  6245. #endif
  6246. void temp_compensation_start() {
  6247. custom_message = true;
  6248. custom_message_type = 5;
  6249. custom_message_state = PINDA_HEAT_T + 1;
  6250. lcd_update(2);
  6251. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6252. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6253. }
  6254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6255. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6256. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6257. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6258. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6259. st_synchronize();
  6260. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6261. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6262. delay_keep_alive(1000);
  6263. custom_message_state = PINDA_HEAT_T - i;
  6264. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6265. else lcd_update(1);
  6266. }
  6267. custom_message_type = 0;
  6268. custom_message_state = 0;
  6269. custom_message = false;
  6270. }
  6271. void temp_compensation_apply() {
  6272. int i_add;
  6273. int compensation_value;
  6274. int z_shift = 0;
  6275. float z_shift_mm;
  6276. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6277. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6278. i_add = (target_temperature_bed - 60) / 10;
  6279. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6280. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6281. }else {
  6282. //interpolation
  6283. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6284. }
  6285. SERIAL_PROTOCOLPGM("\n");
  6286. SERIAL_PROTOCOLPGM("Z shift applied:");
  6287. MYSERIAL.print(z_shift_mm);
  6288. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6289. st_synchronize();
  6290. plan_set_z_position(current_position[Z_AXIS]);
  6291. }
  6292. else {
  6293. //we have no temp compensation data
  6294. }
  6295. }
  6296. float temp_comp_interpolation(float inp_temperature) {
  6297. //cubic spline interpolation
  6298. int n, i, j, k;
  6299. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6300. int shift[10];
  6301. int temp_C[10];
  6302. n = 6; //number of measured points
  6303. shift[0] = 0;
  6304. for (i = 0; i < n; i++) {
  6305. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6306. temp_C[i] = 50 + i * 10; //temperature in C
  6307. #ifdef PINDA_THERMISTOR
  6308. temp_C[i] = 35 + i * 5; //temperature in C
  6309. #else
  6310. temp_C[i] = 50 + i * 10; //temperature in C
  6311. #endif
  6312. x[i] = (float)temp_C[i];
  6313. f[i] = (float)shift[i];
  6314. }
  6315. if (inp_temperature < x[0]) return 0;
  6316. for (i = n - 1; i>0; i--) {
  6317. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6318. h[i - 1] = x[i] - x[i - 1];
  6319. }
  6320. //*********** formation of h, s , f matrix **************
  6321. for (i = 1; i<n - 1; i++) {
  6322. m[i][i] = 2 * (h[i - 1] + h[i]);
  6323. if (i != 1) {
  6324. m[i][i - 1] = h[i - 1];
  6325. m[i - 1][i] = h[i - 1];
  6326. }
  6327. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6328. }
  6329. //*********** forward elimination **************
  6330. for (i = 1; i<n - 2; i++) {
  6331. temp = (m[i + 1][i] / m[i][i]);
  6332. for (j = 1; j <= n - 1; j++)
  6333. m[i + 1][j] -= temp*m[i][j];
  6334. }
  6335. //*********** backward substitution *********
  6336. for (i = n - 2; i>0; i--) {
  6337. sum = 0;
  6338. for (j = i; j <= n - 2; j++)
  6339. sum += m[i][j] * s[j];
  6340. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6341. }
  6342. for (i = 0; i<n - 1; i++)
  6343. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6344. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6345. b = s[i] / 2;
  6346. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6347. d = f[i];
  6348. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6349. }
  6350. return sum;
  6351. }
  6352. #ifdef PINDA_THERMISTOR
  6353. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6354. {
  6355. if (!temp_cal_active) return 0;
  6356. if (!calibration_status_pinda()) return 0;
  6357. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6358. }
  6359. #endif //PINDA_THERMISTOR
  6360. void long_pause() //long pause print
  6361. {
  6362. st_synchronize();
  6363. //save currently set parameters to global variables
  6364. saved_feedmultiply = feedmultiply;
  6365. HotendTempBckp = degTargetHotend(active_extruder);
  6366. fanSpeedBckp = fanSpeed;
  6367. start_pause_print = millis();
  6368. //save position
  6369. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6370. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6371. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6372. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6373. SERIAL_ECHOPGM("X: ");
  6374. MYSERIAL.println(pause_lastpos[X_AXIS]);
  6375. SERIAL_ECHOPGM("Y: ");
  6376. MYSERIAL.println(pause_lastpos[Y_AXIS]);
  6377. SERIAL_ECHOPGM("Z: ");
  6378. MYSERIAL.println(pause_lastpos[Z_AXIS]);
  6379. //retract
  6380. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6382. //lift z
  6383. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6384. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6386. //set nozzle target temperature to 0
  6387. setTargetHotend(0, 0);
  6388. setTargetHotend(0, 1);
  6389. setTargetHotend(0, 2);
  6390. //Move XY to side
  6391. current_position[X_AXIS] = X_PAUSE_POS;
  6392. current_position[Y_AXIS] = Y_PAUSE_POS;
  6393. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6394. // Turn off the print fan
  6395. fanSpeed = 0;
  6396. st_synchronize();
  6397. }
  6398. void serialecho_temperatures() {
  6399. float tt = degHotend(active_extruder);
  6400. SERIAL_PROTOCOLPGM("T:");
  6401. SERIAL_PROTOCOL(tt);
  6402. SERIAL_PROTOCOLPGM(" E:");
  6403. SERIAL_PROTOCOL((int)active_extruder);
  6404. SERIAL_PROTOCOLPGM(" B:");
  6405. SERIAL_PROTOCOL_F(degBed(), 1);
  6406. SERIAL_PROTOCOLLN("");
  6407. }
  6408. extern uint32_t sdpos_atomic;
  6409. void uvlo_()
  6410. {
  6411. unsigned long time_start = millis();
  6412. bool sd_print = card.sdprinting;
  6413. // Conserve power as soon as possible.
  6414. disable_x();
  6415. disable_y();
  6416. disable_e0();
  6417. tmc2130_set_current_h(Z_AXIS, 20);
  6418. tmc2130_set_current_r(Z_AXIS, 20);
  6419. tmc2130_set_current_h(E_AXIS, 20);
  6420. tmc2130_set_current_r(E_AXIS, 20);
  6421. // Indicate that the interrupt has been triggered.
  6422. // SERIAL_ECHOLNPGM("UVLO");
  6423. // Read out the current Z motor microstep counter. This will be later used
  6424. // for reaching the zero full step before powering off.
  6425. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6426. // Calculate the file position, from which to resume this print.
  6427. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6428. {
  6429. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6430. sd_position -= sdlen_planner;
  6431. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6432. sd_position -= sdlen_cmdqueue;
  6433. if (sd_position < 0) sd_position = 0;
  6434. }
  6435. // Backup the feedrate in mm/min.
  6436. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6437. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6438. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6439. // are in action.
  6440. planner_abort_hard();
  6441. // Store the current extruder position.
  6442. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6443. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6444. // Clean the input command queue.
  6445. cmdqueue_reset();
  6446. card.sdprinting = false;
  6447. // card.closefile();
  6448. // Enable stepper driver interrupt to move Z axis.
  6449. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6450. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6451. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6452. sei();
  6453. plan_buffer_line(
  6454. current_position[X_AXIS],
  6455. current_position[Y_AXIS],
  6456. current_position[Z_AXIS],
  6457. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6458. 95, active_extruder);
  6459. st_synchronize();
  6460. disable_e0();
  6461. plan_buffer_line(
  6462. current_position[X_AXIS],
  6463. current_position[Y_AXIS],
  6464. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6465. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6466. 40, active_extruder);
  6467. st_synchronize();
  6468. disable_e0();
  6469. plan_buffer_line(
  6470. current_position[X_AXIS],
  6471. current_position[Y_AXIS],
  6472. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6473. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6474. 40, active_extruder);
  6475. st_synchronize();
  6476. disable_e0();
  6477. disable_z();
  6478. // Move Z up to the next 0th full step.
  6479. // Write the file position.
  6480. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6481. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6482. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6483. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6484. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6485. // Scale the z value to 1u resolution.
  6486. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6487. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6488. }
  6489. // Read out the current Z motor microstep counter. This will be later used
  6490. // for reaching the zero full step before powering off.
  6491. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6492. // Store the current position.
  6493. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6494. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6495. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6496. // Store the current feed rate, temperatures and fan speed.
  6497. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6498. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6499. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6500. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6501. // Finaly store the "power outage" flag.
  6502. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6503. st_synchronize();
  6504. SERIAL_ECHOPGM("stps");
  6505. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6506. disable_z();
  6507. // Increment power failure counter
  6508. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6509. power_count++;
  6510. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6511. SERIAL_ECHOLNPGM("UVLO - end");
  6512. MYSERIAL.println(millis() - time_start);
  6513. #if 0
  6514. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6515. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6517. st_synchronize();
  6518. #endif
  6519. cli();
  6520. volatile unsigned int ppcount = 0;
  6521. SET_OUTPUT(BEEPER);
  6522. WRITE(BEEPER, HIGH);
  6523. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6524. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6525. }
  6526. WRITE(BEEPER, LOW);
  6527. while(1){
  6528. #if 1
  6529. WRITE(BEEPER, LOW);
  6530. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6531. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6532. }
  6533. #endif
  6534. };
  6535. }
  6536. void setup_fan_interrupt() {
  6537. //INT7
  6538. DDRE &= ~(1 << 7); //input pin
  6539. PORTE &= ~(1 << 7); //no internal pull-up
  6540. //start with sensing rising edge
  6541. EICRB &= ~(1 << 6);
  6542. EICRB |= (1 << 7);
  6543. //enable INT7 interrupt
  6544. EIMSK |= (1 << 7);
  6545. }
  6546. ISR(INT7_vect) {
  6547. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6548. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6549. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6550. t_fan_rising_edge = millis_nc();
  6551. }
  6552. else { //interrupt was triggered by falling edge
  6553. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6554. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6555. }
  6556. }
  6557. EICRB ^= (1 << 6); //change edge
  6558. }
  6559. void setup_uvlo_interrupt() {
  6560. DDRE &= ~(1 << 4); //input pin
  6561. PORTE &= ~(1 << 4); //no internal pull-up
  6562. //sensing falling edge
  6563. EICRB |= (1 << 0);
  6564. EICRB &= ~(1 << 1);
  6565. //enable INT4 interrupt
  6566. EIMSK |= (1 << 4);
  6567. }
  6568. ISR(INT4_vect) {
  6569. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6570. SERIAL_ECHOLNPGM("INT4");
  6571. if (IS_SD_PRINTING) uvlo_();
  6572. }
  6573. void recover_print(uint8_t automatic) {
  6574. char cmd[30];
  6575. lcd_update_enable(true);
  6576. lcd_update(2);
  6577. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6578. recover_machine_state_after_power_panic();
  6579. // Set the target bed and nozzle temperatures.
  6580. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6581. enquecommand(cmd);
  6582. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6583. enquecommand(cmd);
  6584. // Lift the print head, so one may remove the excess priming material.
  6585. if (current_position[Z_AXIS] < 25)
  6586. enquecommand_P(PSTR("G1 Z25 F800"));
  6587. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6588. enquecommand_P(PSTR("G28 X Y"));
  6589. // Set the target bed and nozzle temperatures and wait.
  6590. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6591. enquecommand(cmd);
  6592. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6593. enquecommand(cmd);
  6594. enquecommand_P(PSTR("M83")); //E axis relative mode
  6595. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6596. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6597. if(automatic == 0){
  6598. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6599. }
  6600. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6601. // Mark the power panic status as inactive.
  6602. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6603. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6604. delay_keep_alive(1000);
  6605. }*/
  6606. SERIAL_ECHOPGM("After waiting for temp:");
  6607. SERIAL_ECHOPGM("Current position X_AXIS:");
  6608. MYSERIAL.println(current_position[X_AXIS]);
  6609. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6610. MYSERIAL.println(current_position[Y_AXIS]);
  6611. // Restart the print.
  6612. restore_print_from_eeprom();
  6613. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6614. MYSERIAL.print(current_position[Z_AXIS]);
  6615. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6616. MYSERIAL.print(current_position[E_AXIS]);
  6617. }
  6618. void recover_machine_state_after_power_panic()
  6619. {
  6620. char cmd[30];
  6621. // 1) Recover the logical cordinates at the time of the power panic.
  6622. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6623. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6624. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6625. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6626. // The current position after power panic is moved to the next closest 0th full step.
  6627. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6628. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6629. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6630. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6631. sprintf_P(cmd, PSTR("G92 E"));
  6632. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6633. enquecommand(cmd);
  6634. }
  6635. memcpy(destination, current_position, sizeof(destination));
  6636. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6637. print_world_coordinates();
  6638. // 2) Initialize the logical to physical coordinate system transformation.
  6639. world2machine_initialize();
  6640. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6641. mbl.active = false;
  6642. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6643. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6644. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6645. // Scale the z value to 10u resolution.
  6646. int16_t v;
  6647. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6648. if (v != 0)
  6649. mbl.active = true;
  6650. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6651. }
  6652. if (mbl.active)
  6653. mbl.upsample_3x3();
  6654. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6655. // print_mesh_bed_leveling_table();
  6656. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6657. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6658. babystep_load();
  6659. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6660. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6661. // 6) Power up the motors, mark their positions as known.
  6662. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6663. axis_known_position[X_AXIS] = true; enable_x();
  6664. axis_known_position[Y_AXIS] = true; enable_y();
  6665. axis_known_position[Z_AXIS] = true; enable_z();
  6666. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6667. print_physical_coordinates();
  6668. // 7) Recover the target temperatures.
  6669. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6670. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6671. }
  6672. void restore_print_from_eeprom() {
  6673. float x_rec, y_rec, z_pos;
  6674. int feedrate_rec;
  6675. uint8_t fan_speed_rec;
  6676. char cmd[30];
  6677. char* c;
  6678. char filename[13];
  6679. uint8_t depth = 0;
  6680. char dir_name[9];
  6681. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6682. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6683. SERIAL_ECHOPGM("Feedrate:");
  6684. MYSERIAL.println(feedrate_rec);
  6685. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6686. MYSERIAL.println(int(depth));
  6687. for (int i = 0; i < depth; i++) {
  6688. for (int j = 0; j < 8; j++) {
  6689. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6690. }
  6691. dir_name[8] = '\0';
  6692. MYSERIAL.println(dir_name);
  6693. card.chdir(dir_name);
  6694. }
  6695. for (int i = 0; i < 8; i++) {
  6696. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6697. }
  6698. filename[8] = '\0';
  6699. MYSERIAL.print(filename);
  6700. strcat_P(filename, PSTR(".gco"));
  6701. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6702. for (c = &cmd[4]; *c; c++)
  6703. *c = tolower(*c);
  6704. enquecommand(cmd);
  6705. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6706. SERIAL_ECHOPGM("Position read from eeprom:");
  6707. MYSERIAL.println(position);
  6708. // E axis relative mode.
  6709. enquecommand_P(PSTR("M83"));
  6710. // Move to the XY print position in logical coordinates, where the print has been killed.
  6711. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6712. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6713. strcat_P(cmd, PSTR(" F2000"));
  6714. enquecommand(cmd);
  6715. // Move the Z axis down to the print, in logical coordinates.
  6716. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6717. enquecommand(cmd);
  6718. // Unretract.
  6719. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6720. // Set the feedrate saved at the power panic.
  6721. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6722. enquecommand(cmd);
  6723. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6724. {
  6725. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6726. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6727. }
  6728. // Set the fan speed saved at the power panic.
  6729. strcpy_P(cmd, PSTR("M106 S"));
  6730. strcat(cmd, itostr3(int(fan_speed_rec)));
  6731. enquecommand(cmd);
  6732. // Set a position in the file.
  6733. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6734. enquecommand(cmd);
  6735. // Start SD print.
  6736. enquecommand_P(PSTR("M24"));
  6737. }
  6738. ////////////////////////////////////////////////////////////////////////////////
  6739. // new save/restore printing
  6740. //extern uint32_t sdpos_atomic;
  6741. bool saved_printing = false;
  6742. uint32_t saved_sdpos = 0;
  6743. float saved_pos[4] = {0, 0, 0, 0};
  6744. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6745. float saved_feedrate2 = 0;
  6746. uint8_t saved_active_extruder = 0;
  6747. bool saved_extruder_under_pressure = false;
  6748. void stop_and_save_print_to_ram(float z_move, float e_move)
  6749. {
  6750. if (saved_printing) return;
  6751. cli();
  6752. unsigned char nplanner_blocks = number_of_blocks();
  6753. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6754. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6755. saved_sdpos -= sdlen_planner;
  6756. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6757. saved_sdpos -= sdlen_cmdqueue;
  6758. #if 0
  6759. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6760. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6761. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6762. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6763. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6764. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6765. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6766. {
  6767. card.setIndex(saved_sdpos);
  6768. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6769. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6770. MYSERIAL.print(char(card.get()));
  6771. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6772. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6773. MYSERIAL.print(char(card.get()));
  6774. SERIAL_ECHOLNPGM("End of command buffer");
  6775. }
  6776. {
  6777. // Print the content of the planner buffer, line by line:
  6778. card.setIndex(saved_sdpos);
  6779. int8_t iline = 0;
  6780. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6781. SERIAL_ECHOPGM("Planner line (from file): ");
  6782. MYSERIAL.print(int(iline), DEC);
  6783. SERIAL_ECHOPGM(", length: ");
  6784. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6785. SERIAL_ECHOPGM(", steps: (");
  6786. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6787. SERIAL_ECHOPGM(",");
  6788. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6789. SERIAL_ECHOPGM(",");
  6790. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6791. SERIAL_ECHOPGM(",");
  6792. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6793. SERIAL_ECHOPGM("), events: ");
  6794. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6795. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6796. MYSERIAL.print(char(card.get()));
  6797. }
  6798. }
  6799. {
  6800. // Print the content of the command buffer, line by line:
  6801. int8_t iline = 0;
  6802. union {
  6803. struct {
  6804. char lo;
  6805. char hi;
  6806. } lohi;
  6807. uint16_t value;
  6808. } sdlen_single;
  6809. int _bufindr = bufindr;
  6810. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6811. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6812. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6813. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6814. }
  6815. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6816. MYSERIAL.print(int(iline), DEC);
  6817. SERIAL_ECHOPGM(", type: ");
  6818. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6819. SERIAL_ECHOPGM(", len: ");
  6820. MYSERIAL.println(sdlen_single.value, DEC);
  6821. // Print the content of the buffer line.
  6822. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6823. SERIAL_ECHOPGM("Buffer line (from file): ");
  6824. MYSERIAL.print(int(iline), DEC);
  6825. MYSERIAL.println(int(iline), DEC);
  6826. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6827. MYSERIAL.print(char(card.get()));
  6828. if (-- _buflen == 0)
  6829. break;
  6830. // First skip the current command ID and iterate up to the end of the string.
  6831. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6832. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6833. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6834. // If the end of the buffer was empty,
  6835. if (_bufindr == sizeof(cmdbuffer)) {
  6836. // skip to the start and find the nonzero command.
  6837. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6838. }
  6839. }
  6840. }
  6841. #endif
  6842. #if 0
  6843. saved_feedrate2 = feedrate; //save feedrate
  6844. #else
  6845. // Try to deduce the feedrate from the first block of the planner.
  6846. // Speed is in mm/min.
  6847. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6848. #endif
  6849. planner_abort_hard(); //abort printing
  6850. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6851. saved_active_extruder = active_extruder; //save active_extruder
  6852. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6853. cmdqueue_reset(); //empty cmdqueue
  6854. card.sdprinting = false;
  6855. // card.closefile();
  6856. saved_printing = true;
  6857. sei();
  6858. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6859. #if 1
  6860. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6861. char buf[48];
  6862. strcpy_P(buf, PSTR("G1 Z"));
  6863. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6864. strcat_P(buf, PSTR(" E"));
  6865. // Relative extrusion
  6866. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6867. strcat_P(buf, PSTR(" F"));
  6868. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6869. // At this point the command queue is empty.
  6870. enquecommand(buf, false);
  6871. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6872. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6873. repeatcommand_front();
  6874. #else
  6875. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6876. st_synchronize(); //wait moving
  6877. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6878. memcpy(destination, current_position, sizeof(destination));
  6879. #endif
  6880. }
  6881. }
  6882. void restore_print_from_ram_and_continue(float e_move)
  6883. {
  6884. if (!saved_printing) return;
  6885. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6886. // current_position[axis] = st_get_position_mm(axis);
  6887. active_extruder = saved_active_extruder; //restore active_extruder
  6888. feedrate = saved_feedrate2; //restore feedrate
  6889. float e = saved_pos[E_AXIS] - e_move;
  6890. plan_set_e_position(e);
  6891. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6892. st_synchronize();
  6893. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6894. memcpy(destination, current_position, sizeof(destination));
  6895. card.setIndex(saved_sdpos);
  6896. sdpos_atomic = saved_sdpos;
  6897. card.sdprinting = true;
  6898. saved_printing = false;
  6899. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  6900. }
  6901. void print_world_coordinates()
  6902. {
  6903. SERIAL_ECHOPGM("world coordinates: (");
  6904. MYSERIAL.print(current_position[X_AXIS], 3);
  6905. SERIAL_ECHOPGM(", ");
  6906. MYSERIAL.print(current_position[Y_AXIS], 3);
  6907. SERIAL_ECHOPGM(", ");
  6908. MYSERIAL.print(current_position[Z_AXIS], 3);
  6909. SERIAL_ECHOLNPGM(")");
  6910. }
  6911. void print_physical_coordinates()
  6912. {
  6913. SERIAL_ECHOPGM("physical coordinates: (");
  6914. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6915. SERIAL_ECHOPGM(", ");
  6916. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6917. SERIAL_ECHOPGM(", ");
  6918. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6919. SERIAL_ECHOLNPGM(")");
  6920. }
  6921. void print_mesh_bed_leveling_table()
  6922. {
  6923. SERIAL_ECHOPGM("mesh bed leveling: ");
  6924. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6925. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6926. MYSERIAL.print(mbl.z_values[y][x], 3);
  6927. SERIAL_ECHOPGM(" ");
  6928. }
  6929. SERIAL_ECHOLNPGM("");
  6930. }
  6931. #define FIL_LOAD_LENGTH 60
  6932. void extr_unload2() { //unloads filament
  6933. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6934. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6935. // int8_t SilentMode;
  6936. uint8_t snmm_extruder = 0;
  6937. if (degHotend0() > EXTRUDE_MINTEMP) {
  6938. lcd_implementation_clear();
  6939. lcd_display_message_fullscreen_P(PSTR(""));
  6940. max_feedrate[E_AXIS] = 50;
  6941. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6942. // lcd.print(" ");
  6943. // lcd.print(snmm_extruder + 1);
  6944. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6945. if (current_position[Z_AXIS] < 15) {
  6946. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6948. }
  6949. current_position[E_AXIS] += 10; //extrusion
  6950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6951. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6952. if (current_temperature[0] < 230) { //PLA & all other filaments
  6953. current_position[E_AXIS] += 5.4;
  6954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6955. current_position[E_AXIS] += 3.2;
  6956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6957. current_position[E_AXIS] += 3;
  6958. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6959. }
  6960. else { //ABS
  6961. current_position[E_AXIS] += 3.1;
  6962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6963. current_position[E_AXIS] += 3.1;
  6964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6965. current_position[E_AXIS] += 4;
  6966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6967. /*current_position[X_AXIS] += 23; //delay
  6968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6969. current_position[X_AXIS] -= 23; //delay
  6970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6971. delay_keep_alive(4700);
  6972. }
  6973. max_feedrate[E_AXIS] = 80;
  6974. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6976. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6978. st_synchronize();
  6979. //digipot_init();
  6980. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6981. // else digipot_current(2, tmp_motor_loud[2]);
  6982. lcd_update_enable(true);
  6983. // lcd_return_to_status();
  6984. max_feedrate[E_AXIS] = 50;
  6985. }
  6986. else {
  6987. lcd_implementation_clear();
  6988. lcd.setCursor(0, 0);
  6989. lcd_printPGM(MSG_ERROR);
  6990. lcd.setCursor(0, 2);
  6991. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6992. delay(2000);
  6993. lcd_implementation_clear();
  6994. }
  6995. // lcd_return_to_status();
  6996. }