stepper.cpp 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef TMC2130
  30. #include "tmc2130.h"
  31. #endif //TMC2130
  32. #ifdef FILAMENT_SENSOR
  33. #include "fsensor.h"
  34. int fsensor_counter = 0; //counter for e-steps
  35. #endif //FILAMENT_SENSOR
  36. #include "mmu.h"
  37. #include "ConfigurationStore.h"
  38. #ifdef DEBUG_STACK_MONITOR
  39. uint16_t SP_min = 0x21FF;
  40. #endif //DEBUG_STACK_MONITOR
  41. //===========================================================================
  42. //=============================public variables ============================
  43. //===========================================================================
  44. block_t *current_block; // A pointer to the block currently being traced
  45. bool x_min_endstop = false;
  46. bool x_max_endstop = false;
  47. bool y_min_endstop = false;
  48. bool y_max_endstop = false;
  49. bool z_min_endstop = false;
  50. bool z_max_endstop = false;
  51. //===========================================================================
  52. //=============================private variables ============================
  53. //===========================================================================
  54. //static makes it inpossible to be called from outside of this file by extern.!
  55. // Variables used by The Stepper Driver Interrupt
  56. static unsigned char out_bits; // The next stepping-bits to be output
  57. static dda_isteps_t
  58. counter_x, // Counter variables for the bresenham line tracer
  59. counter_y,
  60. counter_z,
  61. counter_e;
  62. volatile dda_usteps_t step_events_completed; // The number of step events executed in the current block
  63. static int32_t acceleration_time, deceleration_time;
  64. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  65. static uint16_t acc_step_rate; // needed for deccelaration start point
  66. static uint8_t step_loops;
  67. static uint16_t OCR1A_nominal;
  68. static uint8_t step_loops_nominal;
  69. volatile long endstops_trigsteps[3]={0,0,0};
  70. volatile long endstops_stepsTotal,endstops_stepsDone;
  71. static volatile bool endstop_x_hit=false;
  72. static volatile bool endstop_y_hit=false;
  73. static volatile bool endstop_z_hit=false;
  74. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  75. bool abort_on_endstop_hit = false;
  76. #endif
  77. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  78. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  79. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  80. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  81. #endif
  82. static bool old_x_min_endstop=false;
  83. static bool old_x_max_endstop=false;
  84. static bool old_y_min_endstop=false;
  85. static bool old_y_max_endstop=false;
  86. static bool old_z_min_endstop=false;
  87. static bool old_z_max_endstop=false;
  88. static bool check_endstops = true;
  89. static bool check_z_endstop = false;
  90. static bool z_endstop_invert = false;
  91. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  92. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  93. uint8_t LastStepMask = 0;
  94. #ifdef LIN_ADVANCE
  95. static uint16_t nextMainISR = 0;
  96. static uint16_t eISR_Rate;
  97. // Extrusion steps to be executed by the stepper.
  98. // If set to non zero, the timer ISR routine will tick the Linear Advance extruder ticks first.
  99. // If e_steps is zero, then the timer ISR routine will perform the usual DDA step.
  100. static volatile int16_t e_steps = 0;
  101. // How many extruder steps shall be ticked at a single ISR invocation?
  102. static uint8_t estep_loops;
  103. // The current speed of the extruder, scaled by the linear advance constant, so it has the same measure
  104. // as current_adv_steps.
  105. static int current_estep_rate;
  106. // The current pretension of filament expressed in extruder micro steps.
  107. static int current_adv_steps;
  108. #define _NEXT_ISR(T) nextMainISR = T
  109. #else
  110. #define _NEXT_ISR(T) OCR1A = T
  111. #endif
  112. #ifdef DEBUG_STEPPER_TIMER_MISSED
  113. extern bool stepper_timer_overflow_state;
  114. extern uint16_t stepper_timer_overflow_last;
  115. #endif /* DEBUG_STEPPER_TIMER_MISSED */
  116. //===========================================================================
  117. //=============================functions ============================
  118. //===========================================================================
  119. #ifndef _NO_ASM
  120. // intRes = intIn1 * intIn2 >> 16
  121. // uses:
  122. // r26 to store 0
  123. // r27 to store the byte 1 of the 24 bit result
  124. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  125. asm volatile ( \
  126. "clr r26 \n\t" \
  127. "mul %A1, %B2 \n\t" \
  128. "movw %A0, r0 \n\t" \
  129. "mul %A1, %A2 \n\t" \
  130. "add %A0, r1 \n\t" \
  131. "adc %B0, r26 \n\t" \
  132. "lsr r0 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "clr r1 \n\t" \
  136. : \
  137. "=&r" (intRes) \
  138. : \
  139. "d" (charIn1), \
  140. "d" (intIn2) \
  141. : \
  142. "r26" \
  143. )
  144. // intRes = longIn1 * longIn2 >> 24
  145. // uses:
  146. // r26 to store 0
  147. // r27 to store the byte 1 of the 48bit result
  148. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  149. asm volatile ( \
  150. "clr r26 \n\t" \
  151. "mul %A1, %B2 \n\t" \
  152. "mov r27, r1 \n\t" \
  153. "mul %B1, %C2 \n\t" \
  154. "movw %A0, r0 \n\t" \
  155. "mul %C1, %C2 \n\t" \
  156. "add %B0, r0 \n\t" \
  157. "mul %C1, %B2 \n\t" \
  158. "add %A0, r0 \n\t" \
  159. "adc %B0, r1 \n\t" \
  160. "mul %A1, %C2 \n\t" \
  161. "add r27, r0 \n\t" \
  162. "adc %A0, r1 \n\t" \
  163. "adc %B0, r26 \n\t" \
  164. "mul %B1, %B2 \n\t" \
  165. "add r27, r0 \n\t" \
  166. "adc %A0, r1 \n\t" \
  167. "adc %B0, r26 \n\t" \
  168. "mul %C1, %A2 \n\t" \
  169. "add r27, r0 \n\t" \
  170. "adc %A0, r1 \n\t" \
  171. "adc %B0, r26 \n\t" \
  172. "mul %B1, %A2 \n\t" \
  173. "add r27, r1 \n\t" \
  174. "adc %A0, r26 \n\t" \
  175. "adc %B0, r26 \n\t" \
  176. "lsr r27 \n\t" \
  177. "adc %A0, r26 \n\t" \
  178. "adc %B0, r26 \n\t" \
  179. "clr r1 \n\t" \
  180. : \
  181. "=&r" (intRes) \
  182. : \
  183. "d" (longIn1), \
  184. "d" (longIn2) \
  185. : \
  186. "r26" , "r27" \
  187. )
  188. #else //_NO_ASM
  189. void MultiU16X8toH16(unsigned short& intRes, unsigned char& charIn1, unsigned short& intIn2)
  190. {
  191. }
  192. void MultiU24X24toH16(uint16_t& intRes, int32_t& longIn1, long& longIn2)
  193. {
  194. }
  195. #endif //_NO_ASM
  196. // Some useful constants
  197. void checkHitEndstops()
  198. {
  199. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  200. SERIAL_ECHO_START;
  201. SERIAL_ECHORPGM(_T(MSG_ENDSTOPS_HIT));
  202. if(endstop_x_hit) {
  203. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/cs.axis_steps_per_unit[X_AXIS]);
  204. // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT), PSTR("X")));
  205. }
  206. if(endstop_y_hit) {
  207. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/cs.axis_steps_per_unit[Y_AXIS]);
  208. // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT), PSTR("Y")));
  209. }
  210. if(endstop_z_hit) {
  211. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/cs.axis_steps_per_unit[Z_AXIS]);
  212. // LCD_MESSAGERPGM(CAT2(_T(MSG_ENDSTOPS_HIT),PSTR("Z")));
  213. }
  214. SERIAL_ECHOLN("");
  215. endstop_x_hit=false;
  216. endstop_y_hit=false;
  217. endstop_z_hit=false;
  218. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  219. if (abort_on_endstop_hit)
  220. {
  221. card.sdprinting = false;
  222. card.closefile();
  223. quickStop();
  224. setTargetHotend0(0);
  225. setTargetHotend1(0);
  226. setTargetHotend2(0);
  227. }
  228. #endif
  229. }
  230. }
  231. bool endstops_hit_on_purpose()
  232. {
  233. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  234. endstop_x_hit=false;
  235. endstop_y_hit=false;
  236. endstop_z_hit=false;
  237. return hit;
  238. }
  239. bool endstop_z_hit_on_purpose()
  240. {
  241. bool hit = endstop_z_hit;
  242. endstop_z_hit=false;
  243. return hit;
  244. }
  245. bool enable_endstops(bool check)
  246. {
  247. bool old = check_endstops;
  248. check_endstops = check;
  249. return old;
  250. }
  251. bool enable_z_endstop(bool check)
  252. {
  253. bool old = check_z_endstop;
  254. check_z_endstop = check;
  255. endstop_z_hit = false;
  256. return old;
  257. }
  258. void invert_z_endstop(bool endstop_invert)
  259. {
  260. z_endstop_invert = endstop_invert;
  261. }
  262. // __________________________
  263. // /| |\ _________________ ^
  264. // / | | \ /| |\ |
  265. // / | | \ / | | \ s
  266. // / | | | | | \ p
  267. // / | | | | | \ e
  268. // +-----+------------------------+---+--+---------------+----+ e
  269. // | BLOCK 1 | BLOCK 2 | d
  270. //
  271. // time ----->
  272. //
  273. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  274. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  275. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  276. // The slope of acceleration is calculated with the leib ramp alghorithm.
  277. FORCE_INLINE unsigned short calc_timer(uint16_t step_rate) {
  278. unsigned short timer;
  279. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  280. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  281. step_rate = (step_rate >> 2)&0x3fff;
  282. step_loops = 4;
  283. }
  284. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  285. step_rate = (step_rate >> 1)&0x7fff;
  286. step_loops = 2;
  287. }
  288. else {
  289. step_loops = 1;
  290. }
  291. // step_loops = 1;
  292. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  293. step_rate -= (F_CPU/500000); // Correct for minimal speed
  294. if(step_rate >= (8*256)){ // higher step rate
  295. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  296. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  297. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  298. MultiU16X8toH16(timer, tmp_step_rate, gain);
  299. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  300. }
  301. else { // lower step rates
  302. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  303. table_address += ((step_rate)>>1) & 0xfffc;
  304. timer = (unsigned short)pgm_read_word_near(table_address);
  305. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  306. }
  307. if(timer < 100) { timer = 100; MYSERIAL.print(_i("Steprate too high: ")); MYSERIAL.println(step_rate); }//(20kHz this should never happen)////MSG_STEPPER_TOO_HIGH c=0 r=0
  308. return timer;
  309. }
  310. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  311. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  312. ISR(TIMER1_COMPA_vect) {
  313. #ifdef DEBUG_STACK_MONITOR
  314. uint16_t sp = SPL + 256 * SPH;
  315. if (sp < SP_min) SP_min = sp;
  316. #endif //DEBUG_STACK_MONITOR
  317. #ifdef LIN_ADVANCE
  318. // If there are any e_steps planned, tick them.
  319. bool run_main_isr = false;
  320. if (e_steps) {
  321. //WRITE_NC(LOGIC_ANALYZER_CH7, true);
  322. for (uint8_t i = estep_loops; e_steps && i --;) {
  323. WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  324. -- e_steps;
  325. WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
  326. }
  327. if (e_steps) {
  328. // Plan another Linear Advance tick.
  329. OCR1A = eISR_Rate;
  330. nextMainISR -= eISR_Rate;
  331. } else if (! (nextMainISR & 0x8000) || nextMainISR < 16) {
  332. // The timer did not overflow and it is big enough, so it makes sense to plan it.
  333. OCR1A = nextMainISR;
  334. } else {
  335. // The timer has overflown, or it is too small. Run the main ISR just after the Linear Advance routine
  336. // in the current interrupt tick.
  337. run_main_isr = true;
  338. //FIXME pick the serial line.
  339. }
  340. //WRITE_NC(LOGIC_ANALYZER_CH7, false);
  341. } else
  342. run_main_isr = true;
  343. if (run_main_isr)
  344. #endif
  345. isr();
  346. // Don't run the ISR faster than possible
  347. // Is there a 8us time left before the next interrupt triggers?
  348. if (OCR1A < TCNT1 + 16) {
  349. #ifdef DEBUG_STEPPER_TIMER_MISSED
  350. // Verify whether the next planned timer interrupt has not been missed already.
  351. // This debugging test takes < 1.125us
  352. // This skews the profiling slightly as the fastest stepper timer
  353. // interrupt repeats at a 100us rate (10kHz).
  354. if (OCR1A + 40 < TCNT1) {
  355. // The interrupt was delayed by more than 20us (which is 1/5th of the 10kHz ISR repeat rate).
  356. // Give a warning.
  357. stepper_timer_overflow_state = true;
  358. stepper_timer_overflow_last = TCNT1 - OCR1A;
  359. // Beep, the beeper will be cleared at the stepper_timer_overflow() called from the main thread.
  360. WRITE(BEEPER, HIGH);
  361. }
  362. #endif
  363. // Fix the next interrupt to be executed after 8us from now.
  364. OCR1A = TCNT1 + 16;
  365. }
  366. }
  367. uint8_t last_dir_bits = 0;
  368. #ifdef BACKLASH_X
  369. uint8_t st_backlash_x = 0;
  370. #endif //BACKLASH_X
  371. #ifdef BACKLASH_Y
  372. uint8_t st_backlash_y = 0;
  373. #endif //BACKLASH_Y
  374. FORCE_INLINE void stepper_next_block()
  375. {
  376. // Anything in the buffer?
  377. //WRITE_NC(LOGIC_ANALYZER_CH2, true);
  378. current_block = plan_get_current_block();
  379. if (current_block != NULL) {
  380. #ifdef BACKLASH_X
  381. if (current_block->steps_x.wide)
  382. { //X-axis movement
  383. if ((current_block->direction_bits ^ last_dir_bits) & 1)
  384. {
  385. printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 1)?st_backlash_x:-st_backlash_x);
  386. if (current_block->direction_bits & 1)
  387. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  388. else
  389. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  390. _delay_us(100);
  391. for (uint8_t i = 0; i < st_backlash_x; i++)
  392. {
  393. WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
  394. _delay_us(100);
  395. WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
  396. _delay_us(900);
  397. }
  398. }
  399. last_dir_bits &= ~1;
  400. last_dir_bits |= current_block->direction_bits & 1;
  401. }
  402. #endif
  403. #ifdef BACKLASH_Y
  404. if (current_block->steps_y.wide)
  405. { //Y-axis movement
  406. if ((current_block->direction_bits ^ last_dir_bits) & 2)
  407. {
  408. printf_P(PSTR("BL %d\n"), (current_block->direction_bits & 2)?st_backlash_y:-st_backlash_y);
  409. if (current_block->direction_bits & 2)
  410. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  411. else
  412. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  413. _delay_us(100);
  414. for (uint8_t i = 0; i < st_backlash_y; i++)
  415. {
  416. WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  417. _delay_us(100);
  418. WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  419. _delay_us(900);
  420. }
  421. }
  422. last_dir_bits &= ~2;
  423. last_dir_bits |= current_block->direction_bits & 2;
  424. }
  425. #endif
  426. #ifdef FILAMENT_SENSOR
  427. if (mmu_enabled == false)
  428. {
  429. fsensor_counter = 0;
  430. fsensor_st_block_begin(current_block);
  431. }
  432. #endif //FILAMENT_SENSOR
  433. // The busy flag is set by the plan_get_current_block() call.
  434. // current_block->busy = true;
  435. // Initializes the trapezoid generator from the current block. Called whenever a new
  436. // block begins.
  437. deceleration_time = 0;
  438. // Set the nominal step loops to zero to indicate, that the timer value is not known yet.
  439. // That means, delay the initialization of nominal step rate and step loops until the steady
  440. // state is reached.
  441. step_loops_nominal = 0;
  442. acc_step_rate = uint16_t(current_block->initial_rate);
  443. acceleration_time = calc_timer(acc_step_rate);
  444. #ifdef LIN_ADVANCE
  445. current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  446. #endif /* LIN_ADVANCE */
  447. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES) {
  448. counter_x.lo = -(current_block->step_event_count.lo >> 1);
  449. counter_y.lo = counter_x.lo;
  450. counter_z.lo = counter_x.lo;
  451. counter_e.lo = counter_x.lo;
  452. } else {
  453. counter_x.wide = -(current_block->step_event_count.wide >> 1);
  454. counter_y.wide = counter_x.wide;
  455. counter_z.wide = counter_x.wide;
  456. counter_e.wide = counter_x.wide;
  457. }
  458. step_events_completed.wide = 0;
  459. // Set directions.
  460. out_bits = current_block->direction_bits;
  461. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  462. if((out_bits & (1<<X_AXIS))!=0){
  463. WRITE_NC(X_DIR_PIN, INVERT_X_DIR);
  464. count_direction[X_AXIS]=-1;
  465. } else {
  466. WRITE_NC(X_DIR_PIN, !INVERT_X_DIR);
  467. count_direction[X_AXIS]=1;
  468. }
  469. if((out_bits & (1<<Y_AXIS))!=0){
  470. WRITE_NC(Y_DIR_PIN, INVERT_Y_DIR);
  471. count_direction[Y_AXIS]=-1;
  472. } else {
  473. WRITE_NC(Y_DIR_PIN, !INVERT_Y_DIR);
  474. count_direction[Y_AXIS]=1;
  475. }
  476. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  477. WRITE_NC(Z_DIR_PIN,INVERT_Z_DIR);
  478. count_direction[Z_AXIS]=-1;
  479. } else { // +direction
  480. WRITE_NC(Z_DIR_PIN,!INVERT_Z_DIR);
  481. count_direction[Z_AXIS]=1;
  482. }
  483. if ((out_bits & (1 << E_AXIS)) != 0) { // -direction
  484. #ifndef LIN_ADVANCE
  485. WRITE(E0_DIR_PIN,
  486. #ifdef SNMM
  487. (mmu_extruder == 0 || mmu_extruder == 2) ? !INVERT_E0_DIR :
  488. #endif // SNMM
  489. INVERT_E0_DIR);
  490. #endif /* LIN_ADVANCE */
  491. count_direction[E_AXIS] = -1;
  492. } else { // +direction
  493. #ifndef LIN_ADVANCE
  494. WRITE(E0_DIR_PIN,
  495. #ifdef SNMM
  496. (mmu_extruder == 0 || mmu_extruder == 2) ? INVERT_E0_DIR :
  497. #endif // SNMM
  498. !INVERT_E0_DIR);
  499. #endif /* LIN_ADVANCE */
  500. count_direction[E_AXIS] = 1;
  501. }
  502. }
  503. else {
  504. OCR1A = 2000; // 1kHz.
  505. }
  506. //WRITE_NC(LOGIC_ANALYZER_CH2, false);
  507. }
  508. // Check limit switches.
  509. FORCE_INLINE void stepper_check_endstops()
  510. {
  511. if(check_endstops)
  512. {
  513. #ifndef COREXY
  514. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
  515. #else
  516. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) //-X occurs for -A and -B
  517. #endif
  518. {
  519. #if ( (defined(X_MIN_PIN) && (X_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMINLIMIT)
  520. #ifdef TMC2130_SG_HOMING
  521. // Stall guard homing turned on
  522. x_min_endstop = (READ(X_TMC2130_DIAG) != 0);
  523. #else
  524. // Normal homing
  525. x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  526. #endif
  527. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x.wide > 0)) {
  528. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  529. endstop_x_hit=true;
  530. step_events_completed.wide = current_block->step_event_count.wide;
  531. }
  532. old_x_min_endstop = x_min_endstop;
  533. #endif
  534. } else { // +direction
  535. #if ( (defined(X_MAX_PIN) && (X_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_XMAXLIMIT)
  536. #ifdef TMC2130_SG_HOMING
  537. // Stall guard homing turned on
  538. x_max_endstop = (READ(X_TMC2130_DIAG) != 0);
  539. #else
  540. // Normal homing
  541. x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  542. #endif
  543. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x.wide > 0)){
  544. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  545. endstop_x_hit=true;
  546. step_events_completed.wide = current_block->step_event_count.wide;
  547. }
  548. old_x_max_endstop = x_max_endstop;
  549. #endif
  550. }
  551. #ifndef COREXY
  552. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  553. #else
  554. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) // -Y occurs for -A and +B
  555. #endif
  556. {
  557. #if ( (defined(Y_MIN_PIN) && (Y_MIN_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMINLIMIT)
  558. #ifdef TMC2130_SG_HOMING
  559. // Stall guard homing turned on
  560. y_min_endstop = (READ(Y_TMC2130_DIAG) != 0);
  561. #else
  562. // Normal homing
  563. y_min_endstop = (READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  564. #endif
  565. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y.wide > 0)) {
  566. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  567. endstop_y_hit=true;
  568. step_events_completed.wide = current_block->step_event_count.wide;
  569. }
  570. old_y_min_endstop = y_min_endstop;
  571. #endif
  572. } else { // +direction
  573. #if ( (defined(Y_MAX_PIN) && (Y_MAX_PIN > -1)) || defined(TMC2130_SG_HOMING) ) && !defined(DEBUG_DISABLE_YMAXLIMIT)
  574. #ifdef TMC2130_SG_HOMING
  575. // Stall guard homing turned on
  576. y_max_endstop = (READ(Y_TMC2130_DIAG) != 0);
  577. #else
  578. // Normal homing
  579. y_max_endstop = (READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  580. #endif
  581. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y.wide > 0)){
  582. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  583. endstop_y_hit=true;
  584. step_events_completed.wide = current_block->step_event_count.wide;
  585. }
  586. old_y_max_endstop = y_max_endstop;
  587. #endif
  588. }
  589. if ((out_bits & (1<<Z_AXIS)) != 0) // -direction
  590. {
  591. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  592. if (! check_z_endstop) {
  593. #ifdef TMC2130_SG_HOMING
  594. // Stall guard homing turned on
  595. #ifdef TMC2130_STEALTH_Z
  596. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  597. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  598. else
  599. #endif //TMC2130_STEALTH_Z
  600. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  601. #else
  602. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  603. #endif //TMC2130_SG_HOMING
  604. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z.wide > 0)) {
  605. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  606. endstop_z_hit=true;
  607. step_events_completed.wide = current_block->step_event_count.wide;
  608. }
  609. old_z_min_endstop = z_min_endstop;
  610. }
  611. #endif
  612. } else { // +direction
  613. #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)
  614. #ifdef TMC2130_SG_HOMING
  615. // Stall guard homing turned on
  616. #ifdef TMC2130_STEALTH_Z
  617. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  618. z_max_endstop = false;
  619. else
  620. #endif //TMC2130_STEALTH_Z
  621. z_max_endstop = (READ(Z_TMC2130_DIAG) != 0);
  622. #else
  623. z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  624. #endif //TMC2130_SG_HOMING
  625. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z.wide > 0)) {
  626. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  627. endstop_z_hit=true;
  628. step_events_completed.wide = current_block->step_event_count.wide;
  629. }
  630. old_z_max_endstop = z_max_endstop;
  631. #endif
  632. }
  633. }
  634. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  635. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  636. if (check_z_endstop) {
  637. // Check the Z min end-stop no matter what.
  638. // Good for searching for the center of an induction target.
  639. #ifdef TMC2130_SG_HOMING
  640. // Stall guard homing turned on
  641. #ifdef TMC2130_STEALTH_Z
  642. if ((tmc2130_mode == TMC2130_MODE_SILENT) && !(tmc2130_sg_homing_axes_mask & 0x04))
  643. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  644. else
  645. #endif //TMC2130_STEALTH_Z
  646. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) || (READ(Z_TMC2130_DIAG) != 0);
  647. #else
  648. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  649. #endif //TMC2130_SG_HOMING
  650. if(z_min_endstop && old_z_min_endstop) {
  651. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  652. endstop_z_hit=true;
  653. step_events_completed.wide = current_block->step_event_count.wide;
  654. }
  655. old_z_min_endstop = z_min_endstop;
  656. }
  657. #endif
  658. }
  659. FORCE_INLINE void stepper_tick_lowres()
  660. {
  661. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  662. MSerial.checkRx(); // Check for serial chars.
  663. // Step in X axis
  664. counter_x.lo += current_block->steps_x.lo;
  665. if (counter_x.lo > 0) {
  666. WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
  667. LastStepMask |= X_AXIS_MASK;
  668. #ifdef DEBUG_XSTEP_DUP_PIN
  669. WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  670. #endif //DEBUG_XSTEP_DUP_PIN
  671. counter_x.lo -= current_block->step_event_count.lo;
  672. count_position[X_AXIS]+=count_direction[X_AXIS];
  673. WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
  674. #ifdef DEBUG_XSTEP_DUP_PIN
  675. WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  676. #endif //DEBUG_XSTEP_DUP_PIN
  677. }
  678. // Step in Y axis
  679. counter_y.lo += current_block->steps_y.lo;
  680. if (counter_y.lo > 0) {
  681. WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  682. LastStepMask |= Y_AXIS_MASK;
  683. #ifdef DEBUG_YSTEP_DUP_PIN
  684. WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  685. #endif //DEBUG_YSTEP_DUP_PIN
  686. counter_y.lo -= current_block->step_event_count.lo;
  687. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  688. WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  689. #ifdef DEBUG_YSTEP_DUP_PIN
  690. WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  691. #endif //DEBUG_YSTEP_DUP_PIN
  692. }
  693. // Step in Z axis
  694. counter_z.lo += current_block->steps_z.lo;
  695. if (counter_z.lo > 0) {
  696. WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  697. LastStepMask |= Z_AXIS_MASK;
  698. counter_z.lo -= current_block->step_event_count.lo;
  699. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  700. WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  701. }
  702. // Step in E axis
  703. counter_e.lo += current_block->steps_e.lo;
  704. if (counter_e.lo > 0) {
  705. #ifndef LIN_ADVANCE
  706. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  707. #endif /* LIN_ADVANCE */
  708. counter_e.lo -= current_block->step_event_count.lo;
  709. count_position[E_AXIS] += count_direction[E_AXIS];
  710. #ifdef LIN_ADVANCE
  711. ++ e_steps;
  712. #else
  713. #ifdef FILAMENT_SENSOR
  714. ++ fsensor_counter;
  715. #endif //FILAMENT_SENSOR
  716. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  717. #endif
  718. }
  719. if(++ step_events_completed.lo >= current_block->step_event_count.lo)
  720. break;
  721. }
  722. }
  723. FORCE_INLINE void stepper_tick_highres()
  724. {
  725. for (uint8_t i=0; i < step_loops; ++ i) { // Take multiple steps per interrupt (For high speed moves)
  726. MSerial.checkRx(); // Check for serial chars.
  727. // Step in X axis
  728. counter_x.wide += current_block->steps_x.wide;
  729. if (counter_x.wide > 0) {
  730. WRITE_NC(X_STEP_PIN, !INVERT_X_STEP_PIN);
  731. LastStepMask |= X_AXIS_MASK;
  732. #ifdef DEBUG_XSTEP_DUP_PIN
  733. WRITE_NC(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  734. #endif //DEBUG_XSTEP_DUP_PIN
  735. counter_x.wide -= current_block->step_event_count.wide;
  736. count_position[X_AXIS]+=count_direction[X_AXIS];
  737. WRITE_NC(X_STEP_PIN, INVERT_X_STEP_PIN);
  738. #ifdef DEBUG_XSTEP_DUP_PIN
  739. WRITE_NC(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  740. #endif //DEBUG_XSTEP_DUP_PIN
  741. }
  742. // Step in Y axis
  743. counter_y.wide += current_block->steps_y.wide;
  744. if (counter_y.wide > 0) {
  745. WRITE_NC(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  746. LastStepMask |= Y_AXIS_MASK;
  747. #ifdef DEBUG_YSTEP_DUP_PIN
  748. WRITE_NC(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  749. #endif //DEBUG_YSTEP_DUP_PIN
  750. counter_y.wide -= current_block->step_event_count.wide;
  751. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  752. WRITE_NC(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  753. #ifdef DEBUG_YSTEP_DUP_PIN
  754. WRITE_NC(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  755. #endif //DEBUG_YSTEP_DUP_PIN
  756. }
  757. // Step in Z axis
  758. counter_z.wide += current_block->steps_z.wide;
  759. if (counter_z.wide > 0) {
  760. WRITE_NC(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  761. LastStepMask |= Z_AXIS_MASK;
  762. counter_z.wide -= current_block->step_event_count.wide;
  763. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  764. WRITE_NC(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  765. }
  766. // Step in E axis
  767. counter_e.wide += current_block->steps_e.wide;
  768. if (counter_e.wide > 0) {
  769. #ifndef LIN_ADVANCE
  770. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  771. #endif /* LIN_ADVANCE */
  772. counter_e.wide -= current_block->step_event_count.wide;
  773. count_position[E_AXIS]+=count_direction[E_AXIS];
  774. #ifdef LIN_ADVANCE
  775. ++ e_steps;
  776. #else
  777. #ifdef FILAMENT_SENSOR
  778. ++ fsensor_counter;
  779. #endif //FILAMENT_SENSOR
  780. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  781. #endif
  782. }
  783. if(++ step_events_completed.wide >= current_block->step_event_count.wide)
  784. break;
  785. }
  786. }
  787. // 50us delay
  788. #define LIN_ADV_FIRST_TICK_DELAY 100
  789. FORCE_INLINE void isr() {
  790. //WRITE_NC(LOGIC_ANALYZER_CH0, true);
  791. //if (UVLO) uvlo();
  792. // If there is no current block, attempt to pop one from the buffer
  793. if (current_block == NULL)
  794. stepper_next_block();
  795. LastStepMask = 0;
  796. if (current_block != NULL)
  797. {
  798. stepper_check_endstops();
  799. #ifdef LIN_ADVANCE
  800. e_steps = 0;
  801. #endif /* LIN_ADVANCE */
  802. if (current_block->flag & BLOCK_FLAG_DDA_LOWRES)
  803. stepper_tick_lowres();
  804. else
  805. stepper_tick_highres();
  806. #ifdef LIN_ADVANCE
  807. if (out_bits&(1<<E_AXIS))
  808. // Move in negative direction.
  809. e_steps = - e_steps;
  810. if (current_block->use_advance_lead) {
  811. //int esteps_inc = 0;
  812. //esteps_inc = current_estep_rate - current_adv_steps;
  813. //e_steps += esteps_inc;
  814. e_steps += current_estep_rate - current_adv_steps;
  815. #if 0
  816. if (abs(esteps_inc) > 4) {
  817. LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc);
  818. if (esteps_inc < -511 || esteps_inc > 511)
  819. LOGIC_ANALYZER_SERIAL_TX_WRITE(esteps_inc >> 9);
  820. }
  821. #endif
  822. current_adv_steps = current_estep_rate;
  823. }
  824. // If we have esteps to execute, step some of them now.
  825. if (e_steps) {
  826. //WRITE_NC(LOGIC_ANALYZER_CH7, true);
  827. // Set the step direction.
  828. {
  829. bool neg = e_steps < 0;
  830. bool dir =
  831. #ifdef SNMM
  832. (neg == (mmu_extruder & 1))
  833. #else
  834. neg
  835. #endif
  836. ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.
  837. WRITE_NC(E0_DIR_PIN, dir);
  838. if (neg)
  839. // Flip the e_steps counter to be always positive.
  840. e_steps = - e_steps;
  841. }
  842. // Tick min(step_loops, abs(e_steps)).
  843. estep_loops = (e_steps & 0x0ff00) ? 4 : e_steps;
  844. if (step_loops < estep_loops)
  845. estep_loops = step_loops;
  846. #ifdef FILAMENT_SENSOR
  847. if (mmu_enabled == false)
  848. {
  849. fsensor_counter += estep_loops;
  850. }
  851. #endif //FILAMENT_SENSOR
  852. do {
  853. WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  854. -- e_steps;
  855. WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
  856. } while (-- estep_loops != 0);
  857. //WRITE_NC(LOGIC_ANALYZER_CH7, false);
  858. MSerial.checkRx(); // Check for serial chars.
  859. }
  860. #endif
  861. // Calculare new timer value
  862. // 13.38-14.63us for steady state,
  863. // 25.12us for acceleration / deceleration.
  864. {
  865. //WRITE_NC(LOGIC_ANALYZER_CH1, true);
  866. if (step_events_completed.wide <= (unsigned long int)current_block->accelerate_until) {
  867. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  868. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  869. acc_step_rate += uint16_t(current_block->initial_rate);
  870. // upper limit
  871. if(acc_step_rate > uint16_t(current_block->nominal_rate))
  872. acc_step_rate = current_block->nominal_rate;
  873. // step_rate to timer interval
  874. uint16_t timer = calc_timer(acc_step_rate);
  875. _NEXT_ISR(timer);
  876. acceleration_time += timer;
  877. #ifdef LIN_ADVANCE
  878. if (current_block->use_advance_lead)
  879. // int32_t = (uint16_t * uint32_t) >> 17
  880. current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  881. #endif
  882. }
  883. else if (step_events_completed.wide > (unsigned long int)current_block->decelerate_after) {
  884. uint16_t step_rate;
  885. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  886. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  887. if ((step_rate & 0x8000) || step_rate < uint16_t(current_block->final_rate)) {
  888. // Result is negative or too small.
  889. step_rate = uint16_t(current_block->final_rate);
  890. }
  891. // Step_rate to timer interval.
  892. uint16_t timer = calc_timer(step_rate);
  893. _NEXT_ISR(timer);
  894. deceleration_time += timer;
  895. #ifdef LIN_ADVANCE
  896. if (current_block->use_advance_lead)
  897. current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  898. #endif
  899. }
  900. else {
  901. if (! step_loops_nominal) {
  902. // Calculation of the steady state timer rate has been delayed to the 1st tick of the steady state to lower
  903. // the initial interrupt blocking.
  904. OCR1A_nominal = calc_timer(uint16_t(current_block->nominal_rate));
  905. step_loops_nominal = step_loops;
  906. #ifdef LIN_ADVANCE
  907. if (current_block->use_advance_lead)
  908. current_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  909. #endif
  910. }
  911. _NEXT_ISR(OCR1A_nominal);
  912. }
  913. //WRITE_NC(LOGIC_ANALYZER_CH1, false);
  914. }
  915. #ifdef LIN_ADVANCE
  916. if (e_steps && current_block->use_advance_lead) {
  917. //WRITE_NC(LOGIC_ANALYZER_CH7, true);
  918. MSerial.checkRx(); // Check for serial chars.
  919. // Some of the E steps were not ticked yet. Plan additional interrupts.
  920. uint16_t now = TCNT1;
  921. // Plan the first linear advance interrupt after 50us from now.
  922. uint16_t to_go = nextMainISR - now - LIN_ADV_FIRST_TICK_DELAY;
  923. eISR_Rate = 0;
  924. if ((to_go & 0x8000) == 0) {
  925. // The to_go number is not negative.
  926. // Count the number of 7812,5 ticks, that fit into to_go 2MHz ticks.
  927. uint8_t ticks = to_go >> 8;
  928. if (ticks == 1) {
  929. // Avoid running the following loop for a very short interval.
  930. estep_loops = 255;
  931. eISR_Rate = 1;
  932. } else if ((e_steps & 0x0ff00) == 0) {
  933. // e_steps <= 0x0ff
  934. if (uint8_t(e_steps) <= ticks) {
  935. // Spread the e_steps along the whole go_to interval.
  936. eISR_Rate = to_go / uint8_t(e_steps);
  937. estep_loops = 1;
  938. } else if (ticks != 0) {
  939. // At least one tick fits into the to_go interval. Calculate the e-step grouping.
  940. uint8_t e = uint8_t(e_steps) >> 1;
  941. estep_loops = 2;
  942. while (e > ticks) {
  943. e >>= 1;
  944. estep_loops <<= 1;
  945. }
  946. // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
  947. // to squeeze enough of Linear Advance ticks until nextMainISR.
  948. // Calculate the tick rate.
  949. eISR_Rate = to_go / ticks;
  950. }
  951. } else {
  952. // This is an exterme case with too many e_steps inserted by the linear advance.
  953. // At least one tick fits into the to_go interval. Calculate the e-step grouping.
  954. estep_loops = 2;
  955. uint16_t e = e_steps >> 1;
  956. while (e & 0x0ff00) {
  957. e >>= 1;
  958. estep_loops <<= 1;
  959. }
  960. while (uint8_t(e) > ticks) {
  961. e >>= 1;
  962. estep_loops <<= 1;
  963. }
  964. // Now the estep_loops contains the number of loops of power of 2, that will be sufficient
  965. // to squeeze enough of Linear Advance ticks until nextMainISR.
  966. // Calculate the tick rate.
  967. eISR_Rate = to_go / ticks;
  968. }
  969. }
  970. if (eISR_Rate == 0) {
  971. // There is not enough time to fit even a single additional tick.
  972. // Tick all the extruder ticks now.
  973. #ifdef FILAMENT_SENSOR
  974. if (mmu_enabled == false) {
  975. fsensor_counter += e_steps;
  976. }
  977. #endif //FILAMENT_SENSOR
  978. MSerial.checkRx(); // Check for serial chars.
  979. do {
  980. WRITE_NC(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  981. -- e_steps;
  982. WRITE_NC(E0_STEP_PIN, INVERT_E_STEP_PIN);
  983. } while (e_steps);
  984. OCR1A = nextMainISR;
  985. } else {
  986. // Tick the 1st Linear Advance interrupt after 50us from now.
  987. nextMainISR -= LIN_ADV_FIRST_TICK_DELAY;
  988. OCR1A = now + LIN_ADV_FIRST_TICK_DELAY;
  989. }
  990. //WRITE_NC(LOGIC_ANALYZER_CH7, false);
  991. } else
  992. OCR1A = nextMainISR;
  993. #endif
  994. // If current block is finished, reset pointer
  995. if (step_events_completed.wide >= current_block->step_event_count.wide) {
  996. #ifdef FILAMENT_SENSOR
  997. if (mmu_enabled == false) {
  998. fsensor_st_block_chunk(current_block, fsensor_counter);
  999. fsensor_counter = 0;
  1000. }
  1001. #endif //FILAMENT_SENSOR
  1002. current_block = NULL;
  1003. plan_discard_current_block();
  1004. }
  1005. #ifdef FILAMENT_SENSOR
  1006. else if ((fsensor_counter >= fsensor_chunk_len) && (mmu_enabled == false))
  1007. {
  1008. fsensor_st_block_chunk(current_block, fsensor_counter);
  1009. fsensor_counter = 0;
  1010. }
  1011. #endif //FILAMENT_SENSOR
  1012. }
  1013. #ifdef TMC2130
  1014. tmc2130_st_isr(LastStepMask);
  1015. #endif //TMC2130
  1016. //WRITE_NC(LOGIC_ANALYZER_CH0, false);
  1017. }
  1018. #ifdef LIN_ADVANCE
  1019. void clear_current_adv_vars() {
  1020. e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..
  1021. current_adv_steps = 0;
  1022. }
  1023. #endif // LIN_ADVANCE
  1024. void st_init()
  1025. {
  1026. #ifdef TMC2130
  1027. tmc2130_init();
  1028. #endif //TMC2130
  1029. st_current_init(); //Initialize Digipot Motor Current
  1030. microstep_init(); //Initialize Microstepping Pins
  1031. //Initialize Dir Pins
  1032. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  1033. SET_OUTPUT(X_DIR_PIN);
  1034. #endif
  1035. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  1036. SET_OUTPUT(X2_DIR_PIN);
  1037. #endif
  1038. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  1039. SET_OUTPUT(Y_DIR_PIN);
  1040. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  1041. SET_OUTPUT(Y2_DIR_PIN);
  1042. #endif
  1043. #endif
  1044. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  1045. SET_OUTPUT(Z_DIR_PIN);
  1046. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  1047. SET_OUTPUT(Z2_DIR_PIN);
  1048. #endif
  1049. #endif
  1050. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  1051. SET_OUTPUT(E0_DIR_PIN);
  1052. #endif
  1053. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  1054. SET_OUTPUT(E1_DIR_PIN);
  1055. #endif
  1056. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  1057. SET_OUTPUT(E2_DIR_PIN);
  1058. #endif
  1059. //Initialize Enable Pins - steppers default to disabled.
  1060. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  1061. SET_OUTPUT(X_ENABLE_PIN);
  1062. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  1063. #endif
  1064. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  1065. SET_OUTPUT(X2_ENABLE_PIN);
  1066. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  1067. #endif
  1068. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  1069. SET_OUTPUT(Y_ENABLE_PIN);
  1070. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  1071. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  1072. SET_OUTPUT(Y2_ENABLE_PIN);
  1073. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  1074. #endif
  1075. #endif
  1076. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  1077. SET_OUTPUT(Z_ENABLE_PIN);
  1078. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  1079. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  1080. SET_OUTPUT(Z2_ENABLE_PIN);
  1081. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  1082. #endif
  1083. #endif
  1084. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  1085. SET_OUTPUT(E0_ENABLE_PIN);
  1086. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  1087. #endif
  1088. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  1089. SET_OUTPUT(E1_ENABLE_PIN);
  1090. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  1091. #endif
  1092. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  1093. SET_OUTPUT(E2_ENABLE_PIN);
  1094. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  1095. #endif
  1096. //endstops and pullups
  1097. #ifdef TMC2130_SG_HOMING
  1098. SET_INPUT(X_TMC2130_DIAG);
  1099. WRITE(X_TMC2130_DIAG,HIGH);
  1100. SET_INPUT(Y_TMC2130_DIAG);
  1101. WRITE(Y_TMC2130_DIAG,HIGH);
  1102. SET_INPUT(Z_TMC2130_DIAG);
  1103. WRITE(Z_TMC2130_DIAG,HIGH);
  1104. SET_INPUT(E0_TMC2130_DIAG);
  1105. WRITE(E0_TMC2130_DIAG,HIGH);
  1106. #endif
  1107. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1108. SET_INPUT(X_MIN_PIN);
  1109. #ifdef ENDSTOPPULLUP_XMIN
  1110. WRITE(X_MIN_PIN,HIGH);
  1111. #endif
  1112. #endif
  1113. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1114. SET_INPUT(Y_MIN_PIN);
  1115. #ifdef ENDSTOPPULLUP_YMIN
  1116. WRITE(Y_MIN_PIN,HIGH);
  1117. #endif
  1118. #endif
  1119. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1120. SET_INPUT(Z_MIN_PIN);
  1121. #ifdef ENDSTOPPULLUP_ZMIN
  1122. WRITE(Z_MIN_PIN,HIGH);
  1123. #endif
  1124. #endif
  1125. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1126. SET_INPUT(X_MAX_PIN);
  1127. #ifdef ENDSTOPPULLUP_XMAX
  1128. WRITE(X_MAX_PIN,HIGH);
  1129. #endif
  1130. #endif
  1131. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1132. SET_INPUT(Y_MAX_PIN);
  1133. #ifdef ENDSTOPPULLUP_YMAX
  1134. WRITE(Y_MAX_PIN,HIGH);
  1135. #endif
  1136. #endif
  1137. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1138. SET_INPUT(Z_MAX_PIN);
  1139. #ifdef ENDSTOPPULLUP_ZMAX
  1140. WRITE(Z_MAX_PIN,HIGH);
  1141. #endif
  1142. #endif
  1143. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1144. SET_INPUT(TACH_0);
  1145. #ifdef TACH0PULLUP
  1146. WRITE(TACH_0, HIGH);
  1147. #endif
  1148. #endif
  1149. //Initialize Step Pins
  1150. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  1151. SET_OUTPUT(X_STEP_PIN);
  1152. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  1153. #ifdef DEBUG_XSTEP_DUP_PIN
  1154. SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);
  1155. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1156. #endif //DEBUG_XSTEP_DUP_PIN
  1157. disable_x();
  1158. #endif
  1159. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  1160. SET_OUTPUT(X2_STEP_PIN);
  1161. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  1162. disable_x();
  1163. #endif
  1164. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  1165. SET_OUTPUT(Y_STEP_PIN);
  1166. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  1167. #ifdef DEBUG_YSTEP_DUP_PIN
  1168. SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);
  1169. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1170. #endif //DEBUG_YSTEP_DUP_PIN
  1171. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  1172. SET_OUTPUT(Y2_STEP_PIN);
  1173. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  1174. #endif
  1175. disable_y();
  1176. #endif
  1177. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  1178. SET_OUTPUT(Z_STEP_PIN);
  1179. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  1180. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  1181. SET_OUTPUT(Z2_STEP_PIN);
  1182. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  1183. #endif
  1184. disable_z();
  1185. #endif
  1186. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  1187. SET_OUTPUT(E0_STEP_PIN);
  1188. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  1189. disable_e0();
  1190. #endif
  1191. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  1192. SET_OUTPUT(E1_STEP_PIN);
  1193. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  1194. disable_e1();
  1195. #endif
  1196. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  1197. SET_OUTPUT(E2_STEP_PIN);
  1198. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  1199. disable_e2();
  1200. #endif
  1201. // waveform generation = 0100 = CTC
  1202. TCCR1B &= ~(1<<WGM13);
  1203. TCCR1B |= (1<<WGM12);
  1204. TCCR1A &= ~(1<<WGM11);
  1205. TCCR1A &= ~(1<<WGM10);
  1206. // output mode = 00 (disconnected)
  1207. TCCR1A &= ~(3<<COM1A0);
  1208. TCCR1A &= ~(3<<COM1B0);
  1209. // Set the timer pre-scaler
  1210. // Generally we use a divider of 8, resulting in a 2MHz timer
  1211. // frequency on a 16MHz MCU. If you are going to change this, be
  1212. // sure to regenerate speed_lookuptable.h with
  1213. // create_speed_lookuptable.py
  1214. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  1215. // Plan the first interrupt after 8ms from now.
  1216. OCR1A = 0x4000;
  1217. TCNT1 = 0;
  1218. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1219. #ifdef LIN_ADVANCE
  1220. e_steps = 0;
  1221. current_adv_steps = 0;
  1222. #endif
  1223. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  1224. sei();
  1225. }
  1226. // Block until all buffered steps are executed
  1227. void st_synchronize()
  1228. {
  1229. while(blocks_queued())
  1230. {
  1231. #ifdef TMC2130
  1232. manage_heater();
  1233. // Vojtech: Don't disable motors inside the planner!
  1234. if (!tmc2130_update_sg())
  1235. {
  1236. manage_inactivity(true);
  1237. lcd_update(0);
  1238. }
  1239. #else //TMC2130
  1240. manage_heater();
  1241. // Vojtech: Don't disable motors inside the planner!
  1242. manage_inactivity(true);
  1243. lcd_update(0);
  1244. #endif //TMC2130
  1245. }
  1246. }
  1247. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  1248. {
  1249. CRITICAL_SECTION_START;
  1250. // Copy 4x4B.
  1251. // This block locks the interrupts globally for 4.56 us,
  1252. // which corresponds to a maximum repeat frequency of 219.18 kHz.
  1253. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1254. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1255. count_position[X_AXIS] = x;
  1256. count_position[Y_AXIS] = y;
  1257. count_position[Z_AXIS] = z;
  1258. count_position[E_AXIS] = e;
  1259. CRITICAL_SECTION_END;
  1260. }
  1261. void st_set_e_position(const long &e)
  1262. {
  1263. CRITICAL_SECTION_START;
  1264. count_position[E_AXIS] = e;
  1265. CRITICAL_SECTION_END;
  1266. }
  1267. long st_get_position(uint8_t axis)
  1268. {
  1269. long count_pos;
  1270. CRITICAL_SECTION_START;
  1271. count_pos = count_position[axis];
  1272. CRITICAL_SECTION_END;
  1273. return count_pos;
  1274. }
  1275. void st_get_position_xy(long &x, long &y)
  1276. {
  1277. CRITICAL_SECTION_START;
  1278. x = count_position[X_AXIS];
  1279. y = count_position[Y_AXIS];
  1280. CRITICAL_SECTION_END;
  1281. }
  1282. float st_get_position_mm(uint8_t axis)
  1283. {
  1284. float steper_position_in_steps = st_get_position(axis);
  1285. return steper_position_in_steps / cs.axis_steps_per_unit[axis];
  1286. }
  1287. void finishAndDisableSteppers()
  1288. {
  1289. st_synchronize();
  1290. disable_x();
  1291. disable_y();
  1292. disable_z();
  1293. disable_e0();
  1294. disable_e1();
  1295. disable_e2();
  1296. }
  1297. void quickStop()
  1298. {
  1299. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1300. while (blocks_queued()) plan_discard_current_block();
  1301. current_block = NULL;
  1302. st_reset_timer();
  1303. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1304. }
  1305. #ifdef BABYSTEPPING
  1306. void babystep(const uint8_t axis,const bool direction)
  1307. {
  1308. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1309. //store initial pin states
  1310. switch(axis)
  1311. {
  1312. case X_AXIS:
  1313. {
  1314. enable_x();
  1315. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1316. //setup new step
  1317. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1318. //perform step
  1319. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1320. LastStepMask |= X_AXIS_MASK;
  1321. #ifdef DEBUG_XSTEP_DUP_PIN
  1322. WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);
  1323. #endif //DEBUG_XSTEP_DUP_PIN
  1324. {
  1325. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1326. }
  1327. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1328. #ifdef DEBUG_XSTEP_DUP_PIN
  1329. WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);
  1330. #endif //DEBUG_XSTEP_DUP_PIN
  1331. //get old pin state back.
  1332. WRITE(X_DIR_PIN,old_x_dir_pin);
  1333. }
  1334. break;
  1335. case Y_AXIS:
  1336. {
  1337. enable_y();
  1338. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1339. //setup new step
  1340. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1341. //perform step
  1342. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1343. LastStepMask |= Y_AXIS_MASK;
  1344. #ifdef DEBUG_YSTEP_DUP_PIN
  1345. WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);
  1346. #endif //DEBUG_YSTEP_DUP_PIN
  1347. {
  1348. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1349. }
  1350. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1351. #ifdef DEBUG_YSTEP_DUP_PIN
  1352. WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);
  1353. #endif //DEBUG_YSTEP_DUP_PIN
  1354. //get old pin state back.
  1355. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1356. }
  1357. break;
  1358. case Z_AXIS:
  1359. {
  1360. enable_z();
  1361. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1362. //setup new step
  1363. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1364. #ifdef Z_DUAL_STEPPER_DRIVERS
  1365. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1366. #endif
  1367. //perform step
  1368. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1369. LastStepMask |= Z_AXIS_MASK;
  1370. #ifdef Z_DUAL_STEPPER_DRIVERS
  1371. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1372. #endif
  1373. //wait a tiny bit
  1374. {
  1375. volatile float x=1./float(axis+1); //absolutely useless
  1376. }
  1377. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1378. #ifdef Z_DUAL_STEPPER_DRIVERS
  1379. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1380. #endif
  1381. //get old pin state back.
  1382. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1383. #ifdef Z_DUAL_STEPPER_DRIVERS
  1384. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1385. #endif
  1386. }
  1387. break;
  1388. default: break;
  1389. }
  1390. }
  1391. #endif //BABYSTEPPING
  1392. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1393. {
  1394. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1395. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1396. SPI.transfer(address); // send in the address and value via SPI:
  1397. SPI.transfer(value);
  1398. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1399. //delay(10);
  1400. #endif
  1401. }
  1402. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1403. {
  1404. do
  1405. {
  1406. *value = eeprom_read_byte((unsigned char*)pos);
  1407. pos++;
  1408. value++;
  1409. }while(--size);
  1410. }
  1411. void st_current_init() //Initialize Digipot Motor Current
  1412. {
  1413. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1414. SilentModeMenu = SilentMode;
  1415. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1416. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1417. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1418. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1419. if((SilentMode == SILENT_MODE_OFF) || (farm_mode) ){
  1420. motor_current_setting[0] = motor_current_setting_loud[0];
  1421. motor_current_setting[1] = motor_current_setting_loud[1];
  1422. motor_current_setting[2] = motor_current_setting_loud[2];
  1423. }else{
  1424. motor_current_setting[0] = motor_current_setting_silent[0];
  1425. motor_current_setting[1] = motor_current_setting_silent[1];
  1426. motor_current_setting[2] = motor_current_setting_silent[2];
  1427. }
  1428. st_current_set(0, motor_current_setting[0]);
  1429. st_current_set(1, motor_current_setting[1]);
  1430. st_current_set(2, motor_current_setting[2]);
  1431. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1432. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1433. #endif
  1434. }
  1435. void st_current_set(uint8_t driver, int current)
  1436. {
  1437. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1438. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1439. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1440. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1441. #endif
  1442. }
  1443. void microstep_init()
  1444. {
  1445. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1446. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1447. pinMode(E1_MS1_PIN,OUTPUT);
  1448. pinMode(E1_MS2_PIN,OUTPUT);
  1449. #endif
  1450. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1451. pinMode(X_MS1_PIN,OUTPUT);
  1452. pinMode(X_MS2_PIN,OUTPUT);
  1453. pinMode(Y_MS1_PIN,OUTPUT);
  1454. pinMode(Y_MS2_PIN,OUTPUT);
  1455. pinMode(Z_MS1_PIN,OUTPUT);
  1456. pinMode(Z_MS2_PIN,OUTPUT);
  1457. pinMode(E0_MS1_PIN,OUTPUT);
  1458. pinMode(E0_MS2_PIN,OUTPUT);
  1459. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1460. #endif
  1461. }
  1462. #ifndef TMC2130
  1463. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1464. {
  1465. if(ms1 > -1) switch(driver)
  1466. {
  1467. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1468. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1469. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1470. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1471. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1472. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1473. #endif
  1474. }
  1475. if(ms2 > -1) switch(driver)
  1476. {
  1477. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1478. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1479. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1480. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1481. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1482. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1483. #endif
  1484. }
  1485. }
  1486. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1487. {
  1488. switch(stepping_mode)
  1489. {
  1490. case 1: microstep_ms(driver,MICROSTEP1); break;
  1491. case 2: microstep_ms(driver,MICROSTEP2); break;
  1492. case 4: microstep_ms(driver,MICROSTEP4); break;
  1493. case 8: microstep_ms(driver,MICROSTEP8); break;
  1494. case 16: microstep_ms(driver,MICROSTEP16); break;
  1495. }
  1496. }
  1497. void microstep_readings()
  1498. {
  1499. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1500. SERIAL_PROTOCOLPGM("X: ");
  1501. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1502. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1503. SERIAL_PROTOCOLPGM("Y: ");
  1504. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1505. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1506. SERIAL_PROTOCOLPGM("Z: ");
  1507. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1508. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1509. SERIAL_PROTOCOLPGM("E0: ");
  1510. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1511. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1512. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1513. SERIAL_PROTOCOLPGM("E1: ");
  1514. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1515. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1516. #endif
  1517. }
  1518. #endif //TMC2130