temperature.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. //===========================================================================
  33. //=============================public variables============================
  34. //===========================================================================
  35. int target_temperature[EXTRUDERS] = { 0 };
  36. int target_temperature_bed = 0;
  37. int current_temperature_raw[EXTRUDERS] = { 0 };
  38. float current_temperature[EXTRUDERS] = { 0.0 };
  39. #ifdef PINDA_THERMISTOR
  40. int current_temperature_raw_pinda = 0 ;
  41. float current_temperature_pinda = 0.0;
  42. #endif //PINDA_THERMISTOR
  43. #ifdef AMBIENT_THERMISTOR
  44. int current_temperature_raw_ambient = 0 ;
  45. float current_temperature_ambient = 0.0;
  46. #endif //AMBIENT_THERMISTOR
  47. #ifdef VOLT_PWR_PIN
  48. int current_voltage_raw_pwr = 0;
  49. #endif
  50. #ifdef VOLT_BED_PIN
  51. int current_voltage_raw_bed = 0;
  52. #endif
  53. int current_temperature_bed_raw = 0;
  54. float current_temperature_bed = 0.0;
  55. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  56. int redundant_temperature_raw = 0;
  57. float redundant_temperature = 0.0;
  58. #endif
  59. #ifdef PIDTEMP
  60. float _Kp, _Ki, _Kd;
  61. int pid_cycle, pid_number_of_cycles;
  62. bool pid_tuning_finished = false;
  63. #ifdef PID_ADD_EXTRUSION_RATE
  64. float Kc=DEFAULT_Kc;
  65. #endif
  66. #endif //PIDTEMP
  67. #ifdef FAN_SOFT_PWM
  68. unsigned char fanSpeedSoftPwm;
  69. #endif
  70. unsigned char soft_pwm_bed;
  71. #ifdef BABYSTEPPING
  72. volatile int babystepsTodo[3]={0,0,0};
  73. #endif
  74. //===========================================================================
  75. //=============================private variables============================
  76. //===========================================================================
  77. static volatile bool temp_meas_ready = false;
  78. #ifdef PIDTEMP
  79. //static cannot be external:
  80. static float temp_iState[EXTRUDERS] = { 0 };
  81. static float temp_dState[EXTRUDERS] = { 0 };
  82. static float pTerm[EXTRUDERS];
  83. static float iTerm[EXTRUDERS];
  84. static float dTerm[EXTRUDERS];
  85. //int output;
  86. static float pid_error[EXTRUDERS];
  87. static float temp_iState_min[EXTRUDERS];
  88. static float temp_iState_max[EXTRUDERS];
  89. // static float pid_input[EXTRUDERS];
  90. // static float pid_output[EXTRUDERS];
  91. static bool pid_reset[EXTRUDERS];
  92. #endif //PIDTEMP
  93. #ifdef PIDTEMPBED
  94. //static cannot be external:
  95. static float temp_iState_bed = { 0 };
  96. static float temp_dState_bed = { 0 };
  97. static float pTerm_bed;
  98. static float iTerm_bed;
  99. static float dTerm_bed;
  100. //int output;
  101. static float pid_error_bed;
  102. static float temp_iState_min_bed;
  103. static float temp_iState_max_bed;
  104. #else //PIDTEMPBED
  105. static unsigned long previous_millis_bed_heater;
  106. #endif //PIDTEMPBED
  107. static unsigned char soft_pwm[EXTRUDERS];
  108. #ifdef FAN_SOFT_PWM
  109. static unsigned char soft_pwm_fan;
  110. #endif
  111. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  112. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  113. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  114. static unsigned long extruder_autofan_last_check;
  115. #endif
  116. #if EXTRUDERS > 3
  117. # error Unsupported number of extruders
  118. #elif EXTRUDERS > 2
  119. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  120. #elif EXTRUDERS > 1
  121. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  122. #else
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  124. #endif
  125. // Init min and max temp with extreme values to prevent false errors during startup
  126. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  127. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  128. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  129. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  130. #ifdef BED_MINTEMP
  131. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  132. #endif
  133. #ifdef BED_MAXTEMP
  134. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  135. #endif
  136. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  137. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  138. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  139. #else
  140. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  141. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  142. #endif
  143. static float analog2temp(int raw, uint8_t e);
  144. static float analog2tempBed(int raw);
  145. static float analog2tempAmbient(int raw);
  146. static float analog2tempPINDA(int raw);
  147. static void updateTemperaturesFromRawValues();
  148. enum TempRunawayStates
  149. {
  150. TempRunaway_INACTIVE = 0,
  151. TempRunaway_PREHEAT = 1,
  152. TempRunaway_ACTIVE = 2,
  153. };
  154. #ifdef WATCH_TEMP_PERIOD
  155. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  156. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  157. #endif //WATCH_TEMP_PERIOD
  158. #ifndef SOFT_PWM_SCALE
  159. #define SOFT_PWM_SCALE 0
  160. #endif
  161. //===========================================================================
  162. //============================= functions ============================
  163. //===========================================================================
  164. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  165. static float temp_runaway_status[4];
  166. static float temp_runaway_target[4];
  167. static float temp_runaway_timer[4];
  168. static int temp_runaway_error_counter[4];
  169. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  170. static void temp_runaway_stop(bool isPreheat, bool isBed);
  171. #endif
  172. void PID_autotune(float temp, int extruder, int ncycles)
  173. {
  174. pid_number_of_cycles = ncycles;
  175. pid_tuning_finished = false;
  176. float input = 0.0;
  177. pid_cycle=0;
  178. bool heating = true;
  179. unsigned long temp_millis = millis();
  180. unsigned long t1=temp_millis;
  181. unsigned long t2=temp_millis;
  182. long t_high = 0;
  183. long t_low = 0;
  184. long bias, d;
  185. float Ku, Tu;
  186. float max = 0, min = 10000;
  187. uint8_t safety_check_cycles = 0;
  188. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  189. float temp_ambient;
  190. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  191. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  192. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  193. unsigned long extruder_autofan_last_check = millis();
  194. #endif
  195. if ((extruder >= EXTRUDERS)
  196. #if (TEMP_BED_PIN <= -1)
  197. ||(extruder < 0)
  198. #endif
  199. ){
  200. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  201. pid_tuning_finished = true;
  202. pid_cycle = 0;
  203. return;
  204. }
  205. SERIAL_ECHOLN("PID Autotune start");
  206. disable_heater(); // switch off all heaters.
  207. if (extruder<0)
  208. {
  209. soft_pwm_bed = (MAX_BED_POWER)/2;
  210. bias = d = (MAX_BED_POWER)/2;
  211. }
  212. else
  213. {
  214. soft_pwm[extruder] = (PID_MAX)/2;
  215. bias = d = (PID_MAX)/2;
  216. }
  217. for(;;) {
  218. #ifdef WATCHDOG
  219. wdt_reset();
  220. #endif //WATCHDOG
  221. if(temp_meas_ready == true) { // temp sample ready
  222. updateTemperaturesFromRawValues();
  223. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  224. max=max(max,input);
  225. min=min(min,input);
  226. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  227. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  228. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  229. if(millis() - extruder_autofan_last_check > 2500) {
  230. checkExtruderAutoFans();
  231. extruder_autofan_last_check = millis();
  232. }
  233. #endif
  234. if(heating == true && input > temp) {
  235. if(millis() - t2 > 5000) {
  236. heating=false;
  237. if (extruder<0)
  238. soft_pwm_bed = (bias - d) >> 1;
  239. else
  240. soft_pwm[extruder] = (bias - d) >> 1;
  241. t1=millis();
  242. t_high=t1 - t2;
  243. max=temp;
  244. }
  245. }
  246. if(heating == false && input < temp) {
  247. if(millis() - t1 > 5000) {
  248. heating=true;
  249. t2=millis();
  250. t_low=t2 - t1;
  251. if(pid_cycle > 0) {
  252. bias += (d*(t_high - t_low))/(t_low + t_high);
  253. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  254. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  255. else d = bias;
  256. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  257. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  258. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  259. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  260. if(pid_cycle > 2) {
  261. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  262. Tu = ((float)(t_low + t_high)/1000.0);
  263. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  264. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  265. _Kp = 0.6*Ku;
  266. _Ki = 2*_Kp/Tu;
  267. _Kd = _Kp*Tu/8;
  268. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  269. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  270. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  271. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  272. /*
  273. _Kp = 0.33*Ku;
  274. _Ki = _Kp/Tu;
  275. _Kd = _Kp*Tu/3;
  276. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  277. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  278. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  279. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  280. _Kp = 0.2*Ku;
  281. _Ki = 2*_Kp/Tu;
  282. _Kd = _Kp*Tu/3;
  283. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  284. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  285. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  286. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  287. */
  288. }
  289. }
  290. if (extruder<0)
  291. soft_pwm_bed = (bias + d) >> 1;
  292. else
  293. soft_pwm[extruder] = (bias + d) >> 1;
  294. pid_cycle++;
  295. min=temp;
  296. }
  297. }
  298. }
  299. if(input > (temp + 20)) {
  300. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  301. pid_tuning_finished = true;
  302. pid_cycle = 0;
  303. return;
  304. }
  305. if(millis() - temp_millis > 2000) {
  306. int p;
  307. if (extruder<0){
  308. p=soft_pwm_bed;
  309. SERIAL_PROTOCOLPGM("B:");
  310. }else{
  311. p=soft_pwm[extruder];
  312. SERIAL_PROTOCOLPGM("T:");
  313. }
  314. SERIAL_PROTOCOL(input);
  315. SERIAL_PROTOCOLPGM(" @:");
  316. SERIAL_PROTOCOLLN(p);
  317. if (safety_check_cycles == 0) { //save ambient temp
  318. temp_ambient = input;
  319. //SERIAL_ECHOPGM("Ambient T: ");
  320. //MYSERIAL.println(temp_ambient);
  321. safety_check_cycles++;
  322. }
  323. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  324. safety_check_cycles++;
  325. }
  326. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  327. safety_check_cycles++;
  328. //SERIAL_ECHOPGM("Time from beginning: ");
  329. //MYSERIAL.print(safety_check_cycles_count * 2);
  330. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  331. //MYSERIAL.println(input - temp_ambient);
  332. if (abs(input - temp_ambient) < 5.0) {
  333. temp_runaway_stop(false, (extruder<0));
  334. pid_tuning_finished = true;
  335. return;
  336. }
  337. }
  338. temp_millis = millis();
  339. }
  340. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  341. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  342. pid_tuning_finished = true;
  343. pid_cycle = 0;
  344. return;
  345. }
  346. if(pid_cycle > ncycles) {
  347. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  348. pid_tuning_finished = true;
  349. pid_cycle = 0;
  350. return;
  351. }
  352. lcd_update(0);
  353. }
  354. }
  355. void updatePID()
  356. {
  357. #ifdef PIDTEMP
  358. for(int e = 0; e < EXTRUDERS; e++) {
  359. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  360. }
  361. #endif
  362. #ifdef PIDTEMPBED
  363. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  364. #endif
  365. }
  366. int getHeaterPower(int heater) {
  367. if (heater<0)
  368. return soft_pwm_bed;
  369. return soft_pwm[heater];
  370. }
  371. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  372. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  373. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  374. #if defined(FAN_PIN) && FAN_PIN > -1
  375. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  376. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  377. #endif
  378. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  379. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  380. #endif
  381. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  382. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  383. #endif
  384. #endif
  385. void setExtruderAutoFanState(int pin, bool state)
  386. {
  387. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  388. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  389. pinMode(pin, OUTPUT);
  390. digitalWrite(pin, newFanSpeed);
  391. analogWrite(pin, newFanSpeed);
  392. }
  393. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  394. void countFanSpeed()
  395. {
  396. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  397. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  398. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  399. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  400. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  401. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  402. SERIAL_ECHOLNPGM(" ");*/
  403. fan_edge_counter[0] = 0;
  404. fan_edge_counter[1] = 0;
  405. }
  406. extern bool fans_check_enabled;
  407. void checkFanSpeed()
  408. {
  409. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  410. static unsigned char fan_speed_errors[2] = { 0,0 };
  411. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  412. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  413. else fan_speed_errors[0] = 0;
  414. #endif
  415. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  416. if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  417. else fan_speed_errors[1] = 0;
  418. #endif
  419. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  420. fan_speed_errors[0] = 0;
  421. fanSpeedError(0); //extruder fan
  422. }
  423. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  424. fan_speed_errors[1] = 0;
  425. fanSpeedError(1); //print fan
  426. }
  427. }
  428. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  429. extern void restore_print_from_ram_and_continue(float e_move);
  430. void fanSpeedError(unsigned char _fan) {
  431. if (get_message_level() != 0 && isPrintPaused) return;
  432. //to ensure that target temp. is not set to zero in case taht we are resuming print
  433. if (card.sdprinting) {
  434. if (heating_status != 0) {
  435. lcd_print_stop();
  436. }
  437. else {
  438. isPrintPaused = true;
  439. lcd_sdcard_pause();
  440. }
  441. }
  442. else {
  443. setTargetHotend0(0);
  444. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  445. }
  446. switch (_fan) {
  447. case 0:
  448. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  449. if (get_message_level() == 0) {
  450. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  451. WRITE(BEEPER, HIGH);
  452. delayMicroseconds(200);
  453. WRITE(BEEPER, LOW);
  454. delayMicroseconds(100);
  455. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  456. }
  457. break;
  458. case 1:
  459. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  460. if (get_message_level() == 0) {
  461. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  462. WRITE(BEEPER, HIGH);
  463. delayMicroseconds(200);
  464. WRITE(BEEPER, LOW);
  465. delayMicroseconds(100);
  466. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  467. }
  468. break;
  469. }
  470. }
  471. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  472. void checkExtruderAutoFans()
  473. {
  474. uint8_t fanState = 0;
  475. // which fan pins need to be turned on?
  476. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  477. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  478. fanState |= 1;
  479. #endif
  480. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  481. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  482. {
  483. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  484. fanState |= 1;
  485. else
  486. fanState |= 2;
  487. }
  488. #endif
  489. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  490. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  491. {
  492. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  493. fanState |= 1;
  494. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  495. fanState |= 2;
  496. else
  497. fanState |= 4;
  498. }
  499. #endif
  500. // update extruder auto fan states
  501. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  502. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  503. #endif
  504. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  505. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  506. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  507. #endif
  508. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  509. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  510. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  511. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  512. #endif
  513. }
  514. #endif // any extruder auto fan pins set
  515. void manage_heater()
  516. {
  517. #ifdef WATCHDOG
  518. wdt_reset();
  519. #endif //WATCHDOG
  520. float pid_input;
  521. float pid_output;
  522. if(temp_meas_ready != true) //better readability
  523. return;
  524. updateTemperaturesFromRawValues();
  525. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  526. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  527. #endif
  528. for(int e = 0; e < EXTRUDERS; e++)
  529. {
  530. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  531. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  532. #endif
  533. #ifdef PIDTEMP
  534. pid_input = current_temperature[e];
  535. #ifndef PID_OPENLOOP
  536. pid_error[e] = target_temperature[e] - pid_input;
  537. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  538. pid_output = BANG_MAX;
  539. pid_reset[e] = true;
  540. }
  541. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  542. pid_output = 0;
  543. pid_reset[e] = true;
  544. }
  545. else {
  546. if(pid_reset[e] == true) {
  547. temp_iState[e] = 0.0;
  548. pid_reset[e] = false;
  549. }
  550. pTerm[e] = cs.Kp * pid_error[e];
  551. temp_iState[e] += pid_error[e];
  552. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  553. iTerm[e] = cs.Ki * temp_iState[e];
  554. //K1 defined in Configuration.h in the PID settings
  555. #define K2 (1.0-K1)
  556. dTerm[e] = (cs.Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  557. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  558. if (pid_output > PID_MAX) {
  559. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  560. pid_output=PID_MAX;
  561. } else if (pid_output < 0){
  562. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  563. pid_output=0;
  564. }
  565. }
  566. temp_dState[e] = pid_input;
  567. #else
  568. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  569. #endif //PID_OPENLOOP
  570. #ifdef PID_DEBUG
  571. SERIAL_ECHO_START;
  572. SERIAL_ECHO(" PID_DEBUG ");
  573. SERIAL_ECHO(e);
  574. SERIAL_ECHO(": Input ");
  575. SERIAL_ECHO(pid_input);
  576. SERIAL_ECHO(" Output ");
  577. SERIAL_ECHO(pid_output);
  578. SERIAL_ECHO(" pTerm ");
  579. SERIAL_ECHO(pTerm[e]);
  580. SERIAL_ECHO(" iTerm ");
  581. SERIAL_ECHO(iTerm[e]);
  582. SERIAL_ECHO(" dTerm ");
  583. SERIAL_ECHOLN(dTerm[e]);
  584. #endif //PID_DEBUG
  585. #else /* PID off */
  586. pid_output = 0;
  587. if(current_temperature[e] < target_temperature[e]) {
  588. pid_output = PID_MAX;
  589. }
  590. #endif
  591. // Check if temperature is within the correct range
  592. #ifdef AMBIENT_THERMISTOR
  593. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  594. #else //AMBIENT_THERMISTOR
  595. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  596. #endif //AMBIENT_THERMISTOR
  597. {
  598. soft_pwm[e] = (int)pid_output >> 1;
  599. }
  600. else
  601. {
  602. soft_pwm[e] = 0;
  603. }
  604. #ifdef WATCH_TEMP_PERIOD
  605. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  606. {
  607. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  608. {
  609. setTargetHotend(0, e);
  610. LCD_MESSAGEPGM("Heating failed");
  611. SERIAL_ECHO_START;
  612. SERIAL_ECHOLN("Heating failed");
  613. }else{
  614. watchmillis[e] = 0;
  615. }
  616. }
  617. #endif
  618. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  619. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  620. disable_heater();
  621. if(IsStopped() == false) {
  622. SERIAL_ERROR_START;
  623. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  624. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  625. }
  626. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  627. Stop();
  628. #endif
  629. }
  630. #endif
  631. } // End extruder for loop
  632. #ifndef DEBUG_DISABLE_FANCHECK
  633. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  634. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  635. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  636. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  637. {
  638. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  639. countFanSpeed();
  640. checkFanSpeed();
  641. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  642. checkExtruderAutoFans();
  643. extruder_autofan_last_check = millis();
  644. }
  645. #endif
  646. #endif //DEBUG_DISABLE_FANCHECK
  647. #ifndef PIDTEMPBED
  648. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  649. return;
  650. previous_millis_bed_heater = millis();
  651. #endif
  652. #if TEMP_SENSOR_BED != 0
  653. #ifdef PIDTEMPBED
  654. pid_input = current_temperature_bed;
  655. #ifndef PID_OPENLOOP
  656. pid_error_bed = target_temperature_bed - pid_input;
  657. pTerm_bed = cs.bedKp * pid_error_bed;
  658. temp_iState_bed += pid_error_bed;
  659. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  660. iTerm_bed = cs.bedKi * temp_iState_bed;
  661. //K1 defined in Configuration.h in the PID settings
  662. #define K2 (1.0-K1)
  663. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  664. temp_dState_bed = pid_input;
  665. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  666. if (pid_output > MAX_BED_POWER) {
  667. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  668. pid_output=MAX_BED_POWER;
  669. } else if (pid_output < 0){
  670. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  671. pid_output=0;
  672. }
  673. #else
  674. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  675. #endif //PID_OPENLOOP
  676. #ifdef AMBIENT_THERMISTOR
  677. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  678. #else //AMBIENT_THERMISTOR
  679. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  680. #endif //AMBIENT_THERMISTOR
  681. {
  682. soft_pwm_bed = (int)pid_output >> 1;
  683. }
  684. else {
  685. soft_pwm_bed = 0;
  686. }
  687. #elif !defined(BED_LIMIT_SWITCHING)
  688. // Check if temperature is within the correct range
  689. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  690. {
  691. if(current_temperature_bed >= target_temperature_bed)
  692. {
  693. soft_pwm_bed = 0;
  694. }
  695. else
  696. {
  697. soft_pwm_bed = MAX_BED_POWER>>1;
  698. }
  699. }
  700. else
  701. {
  702. soft_pwm_bed = 0;
  703. WRITE(HEATER_BED_PIN,LOW);
  704. }
  705. #else //#ifdef BED_LIMIT_SWITCHING
  706. // Check if temperature is within the correct band
  707. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  708. {
  709. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  710. {
  711. soft_pwm_bed = 0;
  712. }
  713. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  714. {
  715. soft_pwm_bed = MAX_BED_POWER>>1;
  716. }
  717. }
  718. else
  719. {
  720. soft_pwm_bed = 0;
  721. WRITE(HEATER_BED_PIN,LOW);
  722. }
  723. #endif
  724. #endif
  725. #ifdef HOST_KEEPALIVE_FEATURE
  726. host_keepalive();
  727. #endif
  728. }
  729. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  730. // Derived from RepRap FiveD extruder::getTemperature()
  731. // For hot end temperature measurement.
  732. static float analog2temp(int raw, uint8_t e) {
  733. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  734. if(e > EXTRUDERS)
  735. #else
  736. if(e >= EXTRUDERS)
  737. #endif
  738. {
  739. SERIAL_ERROR_START;
  740. SERIAL_ERROR((int)e);
  741. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  742. kill(PSTR(""), 6);
  743. return 0.0;
  744. }
  745. #ifdef HEATER_0_USES_MAX6675
  746. if (e == 0)
  747. {
  748. return 0.25 * raw;
  749. }
  750. #endif
  751. if(heater_ttbl_map[e] != NULL)
  752. {
  753. float celsius = 0;
  754. uint8_t i;
  755. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  756. for (i=1; i<heater_ttbllen_map[e]; i++)
  757. {
  758. if (PGM_RD_W((*tt)[i][0]) > raw)
  759. {
  760. celsius = PGM_RD_W((*tt)[i-1][1]) +
  761. (raw - PGM_RD_W((*tt)[i-1][0])) *
  762. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  763. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  764. break;
  765. }
  766. }
  767. // Overflow: Set to last value in the table
  768. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  769. return celsius;
  770. }
  771. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  772. }
  773. // Derived from RepRap FiveD extruder::getTemperature()
  774. // For bed temperature measurement.
  775. static float analog2tempBed(int raw) {
  776. #ifdef BED_USES_THERMISTOR
  777. float celsius = 0;
  778. byte i;
  779. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  780. {
  781. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  782. {
  783. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  784. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  785. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  786. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  787. break;
  788. }
  789. }
  790. // Overflow: Set to last value in the table
  791. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  792. // temperature offset adjustment
  793. #ifdef BED_OFFSET
  794. float _offset = BED_OFFSET;
  795. float _offset_center = BED_OFFSET_CENTER;
  796. float _offset_start = BED_OFFSET_START;
  797. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  798. float _second_koef = (_offset / 2) / (100 - _offset_center);
  799. if (celsius >= _offset_start && celsius <= _offset_center)
  800. {
  801. celsius = celsius + (_first_koef * (celsius - _offset_start));
  802. }
  803. else if (celsius > _offset_center && celsius <= 100)
  804. {
  805. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  806. }
  807. else if (celsius > 100)
  808. {
  809. celsius = celsius + _offset;
  810. }
  811. #endif
  812. return celsius;
  813. #elif defined BED_USES_AD595
  814. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  815. #else
  816. return 0;
  817. #endif
  818. }
  819. #ifdef PINDA_THERMISTOR
  820. static float analog2tempPINDA(int raw) {
  821. float celsius = 0;
  822. byte i;
  823. for (i = 1; i<BEDTEMPTABLE_LEN; i++)
  824. {
  825. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  826. {
  827. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  828. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  829. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  830. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  831. break;
  832. }
  833. }
  834. // Overflow: Set to last value in the table
  835. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  836. return celsius;
  837. }
  838. #endif //PINDA_THERMISTOR
  839. #ifdef AMBIENT_THERMISTOR
  840. static float analog2tempAmbient(int raw)
  841. {
  842. float celsius = 0;
  843. byte i;
  844. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  845. {
  846. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  847. {
  848. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  849. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  850. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  851. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  852. break;
  853. }
  854. }
  855. // Overflow: Set to last value in the table
  856. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  857. return celsius;
  858. }
  859. #endif //AMBIENT_THERMISTOR
  860. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  861. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  862. static void updateTemperaturesFromRawValues()
  863. {
  864. for(uint8_t e=0;e<EXTRUDERS;e++)
  865. {
  866. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  867. }
  868. #ifdef PINDA_THERMISTOR
  869. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  870. #endif
  871. #ifdef AMBIENT_THERMISTOR
  872. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  873. #endif
  874. #ifdef DEBUG_HEATER_BED_SIM
  875. current_temperature_bed = target_temperature_bed;
  876. #else //DEBUG_HEATER_BED_SIM
  877. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  878. #endif //DEBUG_HEATER_BED_SIM
  879. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  880. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  881. #endif
  882. //Reset the watchdog after we know we have a temperature measurement.
  883. #ifdef WATCHDOG
  884. wdt_reset();
  885. #endif //WATCHDOG
  886. CRITICAL_SECTION_START;
  887. temp_meas_ready = false;
  888. CRITICAL_SECTION_END;
  889. }
  890. void tp_init()
  891. {
  892. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  893. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  894. MCUCR=(1<<JTD);
  895. MCUCR=(1<<JTD);
  896. #endif
  897. // Finish init of mult extruder arrays
  898. for(int e = 0; e < EXTRUDERS; e++) {
  899. // populate with the first value
  900. maxttemp[e] = maxttemp[0];
  901. #ifdef PIDTEMP
  902. temp_iState_min[e] = 0.0;
  903. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  904. #endif //PIDTEMP
  905. #ifdef PIDTEMPBED
  906. temp_iState_min_bed = 0.0;
  907. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  908. #endif //PIDTEMPBED
  909. }
  910. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  911. SET_OUTPUT(HEATER_0_PIN);
  912. #endif
  913. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  914. SET_OUTPUT(HEATER_1_PIN);
  915. #endif
  916. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  917. SET_OUTPUT(HEATER_2_PIN);
  918. #endif
  919. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  920. SET_OUTPUT(HEATER_BED_PIN);
  921. #endif
  922. #if defined(FAN_PIN) && (FAN_PIN > -1)
  923. SET_OUTPUT(FAN_PIN);
  924. #ifdef FAST_PWM_FAN
  925. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  926. #endif
  927. #ifdef FAN_SOFT_PWM
  928. soft_pwm_fan = fanSpeedSoftPwm / 2;
  929. #endif
  930. #endif
  931. #ifdef HEATER_0_USES_MAX6675
  932. #ifndef SDSUPPORT
  933. SET_OUTPUT(SCK_PIN);
  934. WRITE(SCK_PIN,0);
  935. SET_OUTPUT(MOSI_PIN);
  936. WRITE(MOSI_PIN,1);
  937. SET_INPUT(MISO_PIN);
  938. WRITE(MISO_PIN,1);
  939. #endif
  940. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  941. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  942. pinMode(SS_PIN, OUTPUT);
  943. digitalWrite(SS_PIN,0);
  944. pinMode(MAX6675_SS, OUTPUT);
  945. digitalWrite(MAX6675_SS,1);
  946. #endif
  947. adc_init();
  948. // Use timer0 for temperature measurement
  949. // Interleave temperature interrupt with millies interrupt
  950. OCR0B = 128;
  951. TIMSK0 |= (1<<OCIE0B);
  952. // Wait for temperature measurement to settle
  953. delay(250);
  954. #ifdef HEATER_0_MINTEMP
  955. minttemp[0] = HEATER_0_MINTEMP;
  956. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  957. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  958. minttemp_raw[0] += OVERSAMPLENR;
  959. #else
  960. minttemp_raw[0] -= OVERSAMPLENR;
  961. #endif
  962. }
  963. #endif //MINTEMP
  964. #ifdef HEATER_0_MAXTEMP
  965. maxttemp[0] = HEATER_0_MAXTEMP;
  966. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  967. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  968. maxttemp_raw[0] -= OVERSAMPLENR;
  969. #else
  970. maxttemp_raw[0] += OVERSAMPLENR;
  971. #endif
  972. }
  973. #endif //MAXTEMP
  974. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  975. minttemp[1] = HEATER_1_MINTEMP;
  976. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  977. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  978. minttemp_raw[1] += OVERSAMPLENR;
  979. #else
  980. minttemp_raw[1] -= OVERSAMPLENR;
  981. #endif
  982. }
  983. #endif // MINTEMP 1
  984. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  985. maxttemp[1] = HEATER_1_MAXTEMP;
  986. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  987. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  988. maxttemp_raw[1] -= OVERSAMPLENR;
  989. #else
  990. maxttemp_raw[1] += OVERSAMPLENR;
  991. #endif
  992. }
  993. #endif //MAXTEMP 1
  994. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  995. minttemp[2] = HEATER_2_MINTEMP;
  996. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  997. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  998. minttemp_raw[2] += OVERSAMPLENR;
  999. #else
  1000. minttemp_raw[2] -= OVERSAMPLENR;
  1001. #endif
  1002. }
  1003. #endif //MINTEMP 2
  1004. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1005. maxttemp[2] = HEATER_2_MAXTEMP;
  1006. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1007. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1008. maxttemp_raw[2] -= OVERSAMPLENR;
  1009. #else
  1010. maxttemp_raw[2] += OVERSAMPLENR;
  1011. #endif
  1012. }
  1013. #endif //MAXTEMP 2
  1014. #ifdef BED_MINTEMP
  1015. /* No bed MINTEMP error implemented?!? */
  1016. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1017. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1018. bed_minttemp_raw += OVERSAMPLENR;
  1019. #else
  1020. bed_minttemp_raw -= OVERSAMPLENR;
  1021. #endif
  1022. }
  1023. #endif //BED_MINTEMP
  1024. #ifdef BED_MAXTEMP
  1025. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1026. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1027. bed_maxttemp_raw -= OVERSAMPLENR;
  1028. #else
  1029. bed_maxttemp_raw += OVERSAMPLENR;
  1030. #endif
  1031. }
  1032. #endif //BED_MAXTEMP
  1033. }
  1034. void setWatch()
  1035. {
  1036. #ifdef WATCH_TEMP_PERIOD
  1037. for (int e = 0; e < EXTRUDERS; e++)
  1038. {
  1039. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1040. {
  1041. watch_start_temp[e] = degHotend(e);
  1042. watchmillis[e] = millis();
  1043. }
  1044. }
  1045. #endif
  1046. }
  1047. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1048. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1049. {
  1050. float __hysteresis = 0;
  1051. int __timeout = 0;
  1052. bool temp_runaway_check_active = false;
  1053. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1054. static int __preheat_counter[2] = { 0,0};
  1055. static int __preheat_errors[2] = { 0,0};
  1056. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1057. if (_isbed)
  1058. {
  1059. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1060. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1061. }
  1062. #endif
  1063. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1064. if (!_isbed)
  1065. {
  1066. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1067. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1068. }
  1069. #endif
  1070. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1071. {
  1072. temp_runaway_timer[_heater_id] = millis();
  1073. if (_output == 0)
  1074. {
  1075. temp_runaway_check_active = false;
  1076. temp_runaway_error_counter[_heater_id] = 0;
  1077. }
  1078. if (temp_runaway_target[_heater_id] != _target_temperature)
  1079. {
  1080. if (_target_temperature > 0)
  1081. {
  1082. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1083. temp_runaway_target[_heater_id] = _target_temperature;
  1084. __preheat_start[_heater_id] = _current_temperature;
  1085. __preheat_counter[_heater_id] = 0;
  1086. }
  1087. else
  1088. {
  1089. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1090. temp_runaway_target[_heater_id] = _target_temperature;
  1091. }
  1092. }
  1093. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1094. {
  1095. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1096. {
  1097. __preheat_counter[_heater_id]++;
  1098. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1099. {
  1100. /*SERIAL_ECHOPGM("Heater:");
  1101. MYSERIAL.print(_heater_id);
  1102. SERIAL_ECHOPGM(" T:");
  1103. MYSERIAL.print(_current_temperature);
  1104. SERIAL_ECHOPGM(" Tstart:");
  1105. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1106. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1107. __preheat_errors[_heater_id]++;
  1108. /*SERIAL_ECHOPGM(" Preheat errors:");
  1109. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1110. }
  1111. else {
  1112. //SERIAL_ECHOLNPGM("");
  1113. __preheat_errors[_heater_id] = 0;
  1114. }
  1115. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1116. {
  1117. if (farm_mode) { prusa_statistics(0); }
  1118. temp_runaway_stop(true, _isbed);
  1119. if (farm_mode) { prusa_statistics(91); }
  1120. }
  1121. __preheat_start[_heater_id] = _current_temperature;
  1122. __preheat_counter[_heater_id] = 0;
  1123. }
  1124. }
  1125. }
  1126. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1127. {
  1128. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1129. temp_runaway_check_active = false;
  1130. }
  1131. if (!temp_runaway_check_active && _output > 0)
  1132. {
  1133. temp_runaway_check_active = true;
  1134. }
  1135. if (temp_runaway_check_active)
  1136. {
  1137. // we are in range
  1138. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1139. {
  1140. temp_runaway_check_active = false;
  1141. temp_runaway_error_counter[_heater_id] = 0;
  1142. }
  1143. else
  1144. {
  1145. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1146. {
  1147. temp_runaway_error_counter[_heater_id]++;
  1148. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1149. {
  1150. if (farm_mode) { prusa_statistics(0); }
  1151. temp_runaway_stop(false, _isbed);
  1152. if (farm_mode) { prusa_statistics(90); }
  1153. }
  1154. }
  1155. }
  1156. }
  1157. }
  1158. }
  1159. void temp_runaway_stop(bool isPreheat, bool isBed)
  1160. {
  1161. cancel_heatup = true;
  1162. quickStop();
  1163. if (card.sdprinting)
  1164. {
  1165. card.sdprinting = false;
  1166. card.closefile();
  1167. }
  1168. // Clean the input command queue
  1169. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1170. cmdqueue_reset();
  1171. disable_heater();
  1172. disable_x();
  1173. disable_y();
  1174. disable_e0();
  1175. disable_e1();
  1176. disable_e2();
  1177. manage_heater();
  1178. lcd_update(0);
  1179. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1180. WRITE(BEEPER, HIGH);
  1181. delayMicroseconds(500);
  1182. WRITE(BEEPER, LOW);
  1183. delayMicroseconds(100);
  1184. if (isPreheat)
  1185. {
  1186. Stop();
  1187. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1188. SERIAL_ERROR_START;
  1189. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1190. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1191. SET_OUTPUT(FAN_PIN);
  1192. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1193. analogWrite(FAN_PIN, 255);
  1194. fanSpeed = 255;
  1195. delayMicroseconds(2000);
  1196. }
  1197. else
  1198. {
  1199. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1200. SERIAL_ERROR_START;
  1201. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1202. }
  1203. }
  1204. #endif
  1205. void disable_heater()
  1206. {
  1207. setAllTargetHotends(0);
  1208. setTargetBed(0);
  1209. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1210. target_temperature[0]=0;
  1211. soft_pwm[0]=0;
  1212. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1213. WRITE(HEATER_0_PIN,LOW);
  1214. #endif
  1215. #endif
  1216. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1217. target_temperature[1]=0;
  1218. soft_pwm[1]=0;
  1219. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1220. WRITE(HEATER_1_PIN,LOW);
  1221. #endif
  1222. #endif
  1223. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1224. target_temperature[2]=0;
  1225. soft_pwm[2]=0;
  1226. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1227. WRITE(HEATER_2_PIN,LOW);
  1228. #endif
  1229. #endif
  1230. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1231. target_temperature_bed=0;
  1232. soft_pwm_bed=0;
  1233. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1234. WRITE(HEATER_BED_PIN,LOW);
  1235. #endif
  1236. #endif
  1237. }
  1238. void max_temp_error(uint8_t e) {
  1239. disable_heater();
  1240. if(IsStopped() == false) {
  1241. SERIAL_ERROR_START;
  1242. SERIAL_ERRORLN((int)e);
  1243. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1244. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1245. }
  1246. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1247. Stop();
  1248. #endif
  1249. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1250. SET_OUTPUT(FAN_PIN);
  1251. SET_OUTPUT(BEEPER);
  1252. WRITE(FAN_PIN, 1);
  1253. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1254. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1255. WRITE(BEEPER, 1);
  1256. // fanSpeed will consumed by the check_axes_activity() routine.
  1257. fanSpeed=255;
  1258. if (farm_mode) { prusa_statistics(93); }
  1259. }
  1260. void min_temp_error(uint8_t e) {
  1261. #ifdef DEBUG_DISABLE_MINTEMP
  1262. return;
  1263. #endif
  1264. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1265. disable_heater();
  1266. if(IsStopped() == false) {
  1267. SERIAL_ERROR_START;
  1268. SERIAL_ERRORLN((int)e);
  1269. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1270. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1271. }
  1272. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1273. Stop();
  1274. #endif
  1275. if (farm_mode) { prusa_statistics(92); }
  1276. }
  1277. void bed_max_temp_error(void) {
  1278. #if HEATER_BED_PIN > -1
  1279. WRITE(HEATER_BED_PIN, 0);
  1280. #endif
  1281. if(IsStopped() == false) {
  1282. SERIAL_ERROR_START;
  1283. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1284. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1285. }
  1286. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1287. Stop();
  1288. #endif
  1289. }
  1290. void bed_min_temp_error(void) {
  1291. #ifdef DEBUG_DISABLE_MINTEMP
  1292. return;
  1293. #endif
  1294. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1295. #if HEATER_BED_PIN > -1
  1296. WRITE(HEATER_BED_PIN, 0);
  1297. #endif
  1298. if(IsStopped() == false) {
  1299. SERIAL_ERROR_START;
  1300. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1301. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1302. }
  1303. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1304. Stop();
  1305. #endif
  1306. }
  1307. #ifdef HEATER_0_USES_MAX6675
  1308. #define MAX6675_HEAT_INTERVAL 250
  1309. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1310. int max6675_temp = 2000;
  1311. int read_max6675()
  1312. {
  1313. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1314. return max6675_temp;
  1315. max6675_previous_millis = millis();
  1316. max6675_temp = 0;
  1317. #ifdef PRR
  1318. PRR &= ~(1<<PRSPI);
  1319. #elif defined PRR0
  1320. PRR0 &= ~(1<<PRSPI);
  1321. #endif
  1322. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1323. // enable TT_MAX6675
  1324. WRITE(MAX6675_SS, 0);
  1325. // ensure 100ns delay - a bit extra is fine
  1326. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1327. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1328. // read MSB
  1329. SPDR = 0;
  1330. for (;(SPSR & (1<<SPIF)) == 0;);
  1331. max6675_temp = SPDR;
  1332. max6675_temp <<= 8;
  1333. // read LSB
  1334. SPDR = 0;
  1335. for (;(SPSR & (1<<SPIF)) == 0;);
  1336. max6675_temp |= SPDR;
  1337. // disable TT_MAX6675
  1338. WRITE(MAX6675_SS, 1);
  1339. if (max6675_temp & 4)
  1340. {
  1341. // thermocouple open
  1342. max6675_temp = 2000;
  1343. }
  1344. else
  1345. {
  1346. max6675_temp = max6675_temp >> 3;
  1347. }
  1348. return max6675_temp;
  1349. }
  1350. #endif
  1351. extern "C" {
  1352. void adc_ready(void) //callback from adc when sampling finished
  1353. {
  1354. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1355. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1356. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1357. #ifdef VOLT_PWR_PIN
  1358. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1359. #endif
  1360. #ifdef AMBIENT_THERMISTOR
  1361. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1362. #endif //AMBIENT_THERMISTOR
  1363. #ifdef VOLT_BED_PIN
  1364. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1365. #endif
  1366. temp_meas_ready = true;
  1367. }
  1368. } // extern "C"
  1369. // Timer 0 is shared with millies
  1370. ISR(TIMER0_COMPB_vect)
  1371. {
  1372. static bool _lock = false;
  1373. if (_lock) return;
  1374. _lock = true;
  1375. asm("sei");
  1376. if (!temp_meas_ready) adc_cycle();
  1377. else
  1378. {
  1379. check_max_temp();
  1380. check_min_temp();
  1381. }
  1382. lcd_buttons_update();
  1383. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1384. static unsigned char soft_pwm_0;
  1385. #ifdef SLOW_PWM_HEATERS
  1386. static unsigned char slow_pwm_count = 0;
  1387. static unsigned char state_heater_0 = 0;
  1388. static unsigned char state_timer_heater_0 = 0;
  1389. #endif
  1390. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1391. static unsigned char soft_pwm_1;
  1392. #ifdef SLOW_PWM_HEATERS
  1393. static unsigned char state_heater_1 = 0;
  1394. static unsigned char state_timer_heater_1 = 0;
  1395. #endif
  1396. #endif
  1397. #if EXTRUDERS > 2
  1398. static unsigned char soft_pwm_2;
  1399. #ifdef SLOW_PWM_HEATERS
  1400. static unsigned char state_heater_2 = 0;
  1401. static unsigned char state_timer_heater_2 = 0;
  1402. #endif
  1403. #endif
  1404. #if HEATER_BED_PIN > -1
  1405. static unsigned char soft_pwm_b;
  1406. #ifdef SLOW_PWM_HEATERS
  1407. static unsigned char state_heater_b = 0;
  1408. static unsigned char state_timer_heater_b = 0;
  1409. #endif
  1410. #endif
  1411. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1412. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1413. #endif
  1414. #ifndef SLOW_PWM_HEATERS
  1415. /*
  1416. * standard PWM modulation
  1417. */
  1418. if (pwm_count == 0)
  1419. {
  1420. soft_pwm_0 = soft_pwm[0];
  1421. if(soft_pwm_0 > 0)
  1422. {
  1423. WRITE(HEATER_0_PIN,1);
  1424. #ifdef HEATERS_PARALLEL
  1425. WRITE(HEATER_1_PIN,1);
  1426. #endif
  1427. } else WRITE(HEATER_0_PIN,0);
  1428. #if EXTRUDERS > 1
  1429. soft_pwm_1 = soft_pwm[1];
  1430. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1431. #endif
  1432. #if EXTRUDERS > 2
  1433. soft_pwm_2 = soft_pwm[2];
  1434. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1435. #endif
  1436. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1437. soft_pwm_b = soft_pwm_bed;
  1438. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1439. #endif
  1440. #ifdef FAN_SOFT_PWM
  1441. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1442. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1443. #endif
  1444. }
  1445. if(soft_pwm_0 < pwm_count)
  1446. {
  1447. WRITE(HEATER_0_PIN,0);
  1448. #ifdef HEATERS_PARALLEL
  1449. WRITE(HEATER_1_PIN,0);
  1450. #endif
  1451. }
  1452. #if EXTRUDERS > 1
  1453. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1454. #endif
  1455. #if EXTRUDERS > 2
  1456. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1457. #endif
  1458. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1459. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1460. #endif
  1461. #ifdef FAN_SOFT_PWM
  1462. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1463. #endif
  1464. pwm_count += (1 << SOFT_PWM_SCALE);
  1465. pwm_count &= 0x7f;
  1466. #else //ifndef SLOW_PWM_HEATERS
  1467. /*
  1468. * SLOW PWM HEATERS
  1469. *
  1470. * for heaters drived by relay
  1471. */
  1472. #ifndef MIN_STATE_TIME
  1473. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1474. #endif
  1475. if (slow_pwm_count == 0) {
  1476. // EXTRUDER 0
  1477. soft_pwm_0 = soft_pwm[0];
  1478. if (soft_pwm_0 > 0) {
  1479. // turn ON heather only if the minimum time is up
  1480. if (state_timer_heater_0 == 0) {
  1481. // if change state set timer
  1482. if (state_heater_0 == 0) {
  1483. state_timer_heater_0 = MIN_STATE_TIME;
  1484. }
  1485. state_heater_0 = 1;
  1486. WRITE(HEATER_0_PIN, 1);
  1487. #ifdef HEATERS_PARALLEL
  1488. WRITE(HEATER_1_PIN, 1);
  1489. #endif
  1490. }
  1491. } else {
  1492. // turn OFF heather only if the minimum time is up
  1493. if (state_timer_heater_0 == 0) {
  1494. // if change state set timer
  1495. if (state_heater_0 == 1) {
  1496. state_timer_heater_0 = MIN_STATE_TIME;
  1497. }
  1498. state_heater_0 = 0;
  1499. WRITE(HEATER_0_PIN, 0);
  1500. #ifdef HEATERS_PARALLEL
  1501. WRITE(HEATER_1_PIN, 0);
  1502. #endif
  1503. }
  1504. }
  1505. #if EXTRUDERS > 1
  1506. // EXTRUDER 1
  1507. soft_pwm_1 = soft_pwm[1];
  1508. if (soft_pwm_1 > 0) {
  1509. // turn ON heather only if the minimum time is up
  1510. if (state_timer_heater_1 == 0) {
  1511. // if change state set timer
  1512. if (state_heater_1 == 0) {
  1513. state_timer_heater_1 = MIN_STATE_TIME;
  1514. }
  1515. state_heater_1 = 1;
  1516. WRITE(HEATER_1_PIN, 1);
  1517. }
  1518. } else {
  1519. // turn OFF heather only if the minimum time is up
  1520. if (state_timer_heater_1 == 0) {
  1521. // if change state set timer
  1522. if (state_heater_1 == 1) {
  1523. state_timer_heater_1 = MIN_STATE_TIME;
  1524. }
  1525. state_heater_1 = 0;
  1526. WRITE(HEATER_1_PIN, 0);
  1527. }
  1528. }
  1529. #endif
  1530. #if EXTRUDERS > 2
  1531. // EXTRUDER 2
  1532. soft_pwm_2 = soft_pwm[2];
  1533. if (soft_pwm_2 > 0) {
  1534. // turn ON heather only if the minimum time is up
  1535. if (state_timer_heater_2 == 0) {
  1536. // if change state set timer
  1537. if (state_heater_2 == 0) {
  1538. state_timer_heater_2 = MIN_STATE_TIME;
  1539. }
  1540. state_heater_2 = 1;
  1541. WRITE(HEATER_2_PIN, 1);
  1542. }
  1543. } else {
  1544. // turn OFF heather only if the minimum time is up
  1545. if (state_timer_heater_2 == 0) {
  1546. // if change state set timer
  1547. if (state_heater_2 == 1) {
  1548. state_timer_heater_2 = MIN_STATE_TIME;
  1549. }
  1550. state_heater_2 = 0;
  1551. WRITE(HEATER_2_PIN, 0);
  1552. }
  1553. }
  1554. #endif
  1555. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1556. // BED
  1557. soft_pwm_b = soft_pwm_bed;
  1558. if (soft_pwm_b > 0) {
  1559. // turn ON heather only if the minimum time is up
  1560. if (state_timer_heater_b == 0) {
  1561. // if change state set timer
  1562. if (state_heater_b == 0) {
  1563. state_timer_heater_b = MIN_STATE_TIME;
  1564. }
  1565. state_heater_b = 1;
  1566. WRITE(HEATER_BED_PIN, 1);
  1567. }
  1568. } else {
  1569. // turn OFF heather only if the minimum time is up
  1570. if (state_timer_heater_b == 0) {
  1571. // if change state set timer
  1572. if (state_heater_b == 1) {
  1573. state_timer_heater_b = MIN_STATE_TIME;
  1574. }
  1575. state_heater_b = 0;
  1576. WRITE(HEATER_BED_PIN, 0);
  1577. }
  1578. }
  1579. #endif
  1580. } // if (slow_pwm_count == 0)
  1581. // EXTRUDER 0
  1582. if (soft_pwm_0 < slow_pwm_count) {
  1583. // turn OFF heather only if the minimum time is up
  1584. if (state_timer_heater_0 == 0) {
  1585. // if change state set timer
  1586. if (state_heater_0 == 1) {
  1587. state_timer_heater_0 = MIN_STATE_TIME;
  1588. }
  1589. state_heater_0 = 0;
  1590. WRITE(HEATER_0_PIN, 0);
  1591. #ifdef HEATERS_PARALLEL
  1592. WRITE(HEATER_1_PIN, 0);
  1593. #endif
  1594. }
  1595. }
  1596. #if EXTRUDERS > 1
  1597. // EXTRUDER 1
  1598. if (soft_pwm_1 < slow_pwm_count) {
  1599. // turn OFF heather only if the minimum time is up
  1600. if (state_timer_heater_1 == 0) {
  1601. // if change state set timer
  1602. if (state_heater_1 == 1) {
  1603. state_timer_heater_1 = MIN_STATE_TIME;
  1604. }
  1605. state_heater_1 = 0;
  1606. WRITE(HEATER_1_PIN, 0);
  1607. }
  1608. }
  1609. #endif
  1610. #if EXTRUDERS > 2
  1611. // EXTRUDER 2
  1612. if (soft_pwm_2 < slow_pwm_count) {
  1613. // turn OFF heather only if the minimum time is up
  1614. if (state_timer_heater_2 == 0) {
  1615. // if change state set timer
  1616. if (state_heater_2 == 1) {
  1617. state_timer_heater_2 = MIN_STATE_TIME;
  1618. }
  1619. state_heater_2 = 0;
  1620. WRITE(HEATER_2_PIN, 0);
  1621. }
  1622. }
  1623. #endif
  1624. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1625. // BED
  1626. if (soft_pwm_b < slow_pwm_count) {
  1627. // turn OFF heather only if the minimum time is up
  1628. if (state_timer_heater_b == 0) {
  1629. // if change state set timer
  1630. if (state_heater_b == 1) {
  1631. state_timer_heater_b = MIN_STATE_TIME;
  1632. }
  1633. state_heater_b = 0;
  1634. WRITE(HEATER_BED_PIN, 0);
  1635. }
  1636. }
  1637. #endif
  1638. #ifdef FAN_SOFT_PWM
  1639. if (pwm_count == 0){
  1640. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1641. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1642. }
  1643. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1644. #endif
  1645. pwm_count += (1 << SOFT_PWM_SCALE);
  1646. pwm_count &= 0x7f;
  1647. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1648. if ((pwm_count % 64) == 0) {
  1649. slow_pwm_count++;
  1650. slow_pwm_count &= 0x7f;
  1651. // Extruder 0
  1652. if (state_timer_heater_0 > 0) {
  1653. state_timer_heater_0--;
  1654. }
  1655. #if EXTRUDERS > 1
  1656. // Extruder 1
  1657. if (state_timer_heater_1 > 0)
  1658. state_timer_heater_1--;
  1659. #endif
  1660. #if EXTRUDERS > 2
  1661. // Extruder 2
  1662. if (state_timer_heater_2 > 0)
  1663. state_timer_heater_2--;
  1664. #endif
  1665. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1666. // Bed
  1667. if (state_timer_heater_b > 0)
  1668. state_timer_heater_b--;
  1669. #endif
  1670. } //if ((pwm_count % 64) == 0) {
  1671. #endif //ifndef SLOW_PWM_HEATERS
  1672. #ifdef BABYSTEPPING
  1673. for(uint8_t axis=0;axis<3;axis++)
  1674. {
  1675. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1676. if(curTodo>0)
  1677. {
  1678. asm("cli");
  1679. babystep(axis,/*fwd*/true);
  1680. babystepsTodo[axis]--; //less to do next time
  1681. asm("sei");
  1682. }
  1683. else
  1684. if(curTodo<0)
  1685. {
  1686. asm("cli");
  1687. babystep(axis,/*fwd*/false);
  1688. babystepsTodo[axis]++; //less to do next time
  1689. asm("sei");
  1690. }
  1691. }
  1692. #endif //BABYSTEPPING
  1693. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1694. check_fans();
  1695. #endif //(defined(TACH_0))
  1696. _lock = false;
  1697. }
  1698. void check_max_temp()
  1699. {
  1700. //heater
  1701. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1702. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1703. #else
  1704. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1705. #endif
  1706. max_temp_error(0);
  1707. }
  1708. //bed
  1709. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1710. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1711. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1712. #else
  1713. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1714. #endif
  1715. target_temperature_bed = 0;
  1716. bed_max_temp_error();
  1717. }
  1718. #endif
  1719. }
  1720. void check_min_temp_heater0()
  1721. {
  1722. //heater
  1723. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1724. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1725. #else
  1726. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1727. #endif
  1728. min_temp_error(0);
  1729. }
  1730. }
  1731. void check_min_temp_bed()
  1732. {
  1733. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1734. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1735. #else
  1736. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1737. #endif
  1738. bed_min_temp_error();
  1739. }
  1740. }
  1741. void check_min_temp()
  1742. {
  1743. #ifdef AMBIENT_THERMISTOR
  1744. static uint8_t heat_cycles = 0;
  1745. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1746. {
  1747. if (READ(HEATER_0_PIN) == HIGH)
  1748. {
  1749. // if ((heat_cycles % 10) == 0)
  1750. // printf_P(PSTR("X%d\n"), heat_cycles);
  1751. if (heat_cycles > 50) //reaction time 5-10s
  1752. check_min_temp_heater0();
  1753. else
  1754. heat_cycles++;
  1755. }
  1756. else
  1757. heat_cycles = 0;
  1758. return;
  1759. }
  1760. #endif //AMBIENT_THERMISTOR
  1761. check_min_temp_heater0();
  1762. check_min_temp_bed();
  1763. }
  1764. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1765. void check_fans() {
  1766. if (READ(TACH_0) != fan_state[0]) {
  1767. fan_edge_counter[0] ++;
  1768. fan_state[0] = !fan_state[0];
  1769. }
  1770. //if (READ(TACH_1) != fan_state[1]) {
  1771. // fan_edge_counter[1] ++;
  1772. // fan_state[1] = !fan_state[1];
  1773. //}
  1774. }
  1775. #endif //TACH_0
  1776. #ifdef PIDTEMP
  1777. // Apply the scale factors to the PID values
  1778. float scalePID_i(float i)
  1779. {
  1780. return i*PID_dT;
  1781. }
  1782. float unscalePID_i(float i)
  1783. {
  1784. return i/PID_dT;
  1785. }
  1786. float scalePID_d(float d)
  1787. {
  1788. return d/PID_dT;
  1789. }
  1790. float unscalePID_d(float d)
  1791. {
  1792. return d*PID_dT;
  1793. }
  1794. #endif //PIDTEMP