| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905 | //xyzcal.cpp - xyz calibration with image processing#include "Configuration_prusa.h"#ifdef NEW_XYZCAL#include "xyzcal.h"#include <avr/wdt.h>#include "stepper.h"#include "temperature.h"#include "sm4.h"#define XYZCAL_PINDA_HYST_MIN 20  //50um#define XYZCAL_PINDA_HYST_MAX 100 //250um#define XYZCAL_PINDA_HYST_DIF 5   //12.5um#define ENABLE_FANCHECK_INTERRUPT()  EIMSK |= (1<<7)#define DISABLE_FANCHECK_INTERRUPT() EIMSK &= ~(1<<7)#define _PINDA ((READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)?1:0)#define DBG(args...) printf_P(args)//#define DBG(args...)#ifndef _n#define _n PSTR#endif //_n#define _X ((int16_t)count_position[X_AXIS])#define _Y ((int16_t)count_position[Y_AXIS])#define _Z ((int16_t)count_position[Z_AXIS])#define _E ((int16_t)count_position[E_AXIS])#define X_PLUS  0#define X_MINUS 1#define Y_PLUS  0#define Y_MINUS 1#define Z_PLUS  0#define Z_MINUS 1/// Max. jerk in PrusaSlicer, 10000 = 1 mm/s#define MAX_DELAY 1000#define MIN_SPEED (0.01f / (MAX_DELAY * 0.000001f))/// 200 = 50 mm/s#define Z_MIN_DELAY 200#define Z_ACCEL 5000#define XY_ACCEL 1000#define _PI 3.14159265F/// \returns positive value always#define ABS(a) \    ({ __typeof__ (a) _a = (a); \    _a >= 0 ? _a : (-_a); })/// \returns maximum of the two#define MAX(a, b) \    ({ __typeof__ (a) _a = (a); \    __typeof__ (b) _b = (b); \    _a >= _b ? _a : _b; })/// \returns minimum of the two#define MIN(a, b) \    ({ __typeof__ (a) _a = (a); \    __typeof__ (b) _b = (b); \    _a <= _b ? _a : _b; })/// swap values#define SWAP(a, b) \    ({ __typeof__ (a) c = (a); \        a = (b); \        b = c; })/// Saturates value/// \returns min if value is less than min/// \returns max if value is more than min/// \returns value otherwise#define CLAMP(value, min, max) \    ({ __typeof__ (value) a_ = (value); \		__typeof__ (min) min_ = (min); \		__typeof__ (max) max_ = (max); \        ( a_ < min_ ? min_ : (a_ <= max_ ? a_ : max_)); })/// \returns square of the value#define SQR(a) \    ({ __typeof__ (a) a_ = (a); \        (a_ * a_); })/// position typestypedef int16_t pos_i16_t;typedef long pos_i32_t;typedef float pos_mm_t;typedef int16_t usteps_t;uint8_t check_pinda_0();uint8_t check_pinda_1();void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd);uint8_t round_to_u8(float f){	return (uint8_t)(f + .5f);}uint16_t round_to_u16(float f){	return (uint16_t)(f + .5f);}int16_t round_to_i16(float f){	return (int16_t)(f + .5f);}/// converts millimeters to integer positionpos_i16_t mm_2_pos(pos_mm_t mm){	return (pos_i16_t)(0.5f + mm * 100);}/// converts integer position to millimeterspos_mm_t pos_2_mm(pos_i16_t pos){	return pos * 0.01f;}pos_mm_t pos_2_mm(float pos){	return pos * 0.01f;}void xyzcal_meassure_enter(void){	DBG(_n("xyzcal_meassure_enter\n"));	disable_heater();	DISABLE_TEMPERATURE_INTERRUPT();#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))	DISABLE_FANCHECK_INTERRUPT();#endif //(defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))	DISABLE_STEPPER_DRIVER_INTERRUPT();#ifdef WATCHDOG	wdt_disable();#endif //WATCHDOG	sm4_stop_cb = 0;	sm4_update_pos_cb = xyzcal_update_pos;	sm4_calc_delay_cb = xyzcal_calc_delay;}void xyzcal_meassure_leave(void){	DBG(_n("xyzcal_meassure_leave\n"));    planner_abort_hard();	ENABLE_TEMPERATURE_INTERRUPT();#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))	ENABLE_FANCHECK_INTERRUPT();#endif //(defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))	ENABLE_STEPPER_DRIVER_INTERRUPT();#ifdef WATCHDOG	wdt_enable(WDTO_4S);#endif //WATCHDOG	sm4_stop_cb = 0;	sm4_update_pos_cb = 0;	sm4_calc_delay_cb = 0;}uint8_t check_pinda_0(){	return _PINDA?0:1;}uint8_t check_pinda_1(){	return _PINDA?1:0;}uint8_t xyzcal_dm = 0;void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t){//	DBG(_n("xyzcal_update_pos dx=%d dy=%d dz=%d dir=%02x\n"), dx, dy, dz, xyzcal_dm);	if (xyzcal_dm&1) count_position[0] -= dx; else count_position[0] += dx;	if (xyzcal_dm&2) count_position[1] -= dy; else count_position[1] += dy;	if (xyzcal_dm&4) count_position[2] -= dz; else count_position[2] += dz;//	DBG(_n(" after xyzcal_update_pos x=%ld y=%ld z=%ld\n"), count_position[0], count_position[1], count_position[2]);}uint16_t xyzcal_sm4_delay = 0;//#define SM4_ACCEL_TEST#ifdef SM4_ACCEL_TESTuint16_t xyzcal_sm4_v0 = 2000;uint16_t xyzcal_sm4_vm = 45000;uint16_t xyzcal_sm4_v = xyzcal_sm4_v0;uint16_t xyzcal_sm4_ac = 2000;uint16_t xyzcal_sm4_ac2 = (uint32_t)xyzcal_sm4_ac * 1024 / 10000;//float xyzcal_sm4_vm = 10000;#endif //SM4_ACCEL_TEST#ifdef SM4_ACCEL_TESTuint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd){	uint16_t del_us = 0;	if (xyzcal_sm4_v & 0xf000) //>=4096	{		del_us = (uint16_t)62500 / (uint16_t)(xyzcal_sm4_v >> 4);		xyzcal_sm4_v += (xyzcal_sm4_ac2 * del_us + 512) >> 10;		if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;		if (del_us > 25) return del_us - 25;	}	else	{		del_us = (uint32_t)1000000 / xyzcal_sm4_v;		xyzcal_sm4_v += ((uint32_t)xyzcal_sm4_ac2 * del_us + 512) >> 10;		if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;		if (del_us > 50) return del_us - 50;	}//	uint16_t del_us = (uint16_t)(((float)1000000 / xyzcal_sm4_v) + 0.5);		//	uint16_t del_us = (uint32_t)1000000 / xyzcal_sm4_v;		//	uint16_t del_us = 100;		//	uint16_t del_us = (uint16_t)10000 / xyzcal_sm4_v;//	v += (ac * del_us + 500) / 1000;//	xyzcal_sm4_v += (xyzcal_sm4_ac * del_us) / 1000;//	return xyzcal_sm4_delay;//	DBG(_n("xyzcal_calc_delay nd=%d dd=%d v=%d  del_us=%d\n"), nd, dd, xyzcal_sm4_v, del_us);	return 0;}#else //SM4_ACCEL_TESTuint16_t xyzcal_calc_delay(uint16_t, uint16_t){    return xyzcal_sm4_delay;}#endif //SM4_ACCEL_TEST/// Moves printer to absolute position [x,y,z] defined in integer position systembool xyzcal_lineXYZ_to(int16_t x, int16_t y, int16_t z, uint16_t delay_us, int8_t check_pinda){//	DBG(_n("xyzcal_lineXYZ_to x=%d y=%d z=%d  check=%d\n"), x, y, z, check_pinda);	x -= (int16_t)count_position[0];	y -= (int16_t)count_position[1];	z -= (int16_t)count_position[2];	xyzcal_dm = ((x<0)?1:0) | ((y<0)?2:0) | ((z<0)?4:0);	sm4_set_dir_bits(xyzcal_dm);	sm4_stop_cb = check_pinda?((check_pinda<0)?check_pinda_0:check_pinda_1):0;	xyzcal_sm4_delay = delay_us;	//	uint32_t u = _micros();	bool ret = sm4_line_xyze_ui(abs(x), abs(y), abs(z), 0) ? true : false;	//	u = _micros() - u;	return ret;}/// Moves printer to absolute position [x,y,z] defined in millimetersbool xyzcal_lineXYZ_to_float(pos_mm_t x, pos_mm_t y, pos_mm_t z, uint16_t delay_us, int8_t check_pinda){	return xyzcal_lineXYZ_to(mm_2_pos(x), mm_2_pos(y), mm_2_pos(z), delay_us, check_pinda);}bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, int16_t rotation, uint16_t delay_us, int8_t check_pinda, uint16_t* pad){	bool ret = false;	float r = 0; //radius	uint8_t n = 0; //point number	uint16_t ad = 0; //angle [deg]	float ar; //angle [rad]	uint8_t dad = 0; //delta angle [deg]	uint8_t dad_min = 4; //delta angle min [deg]	uint8_t dad_max = 16; //delta angle max [deg]	uint8_t k = 720 / (dad_max - dad_min); //delta calculation constant	ad = 0;	if (pad) ad = *pad % 720;		DBG(_n("xyzcal_spiral2 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);	// lcd_set_cursor(0, 4);	// char text[10];	// snprintf(text, 10, "%4d", z0);	// lcd_print(text);	for (; ad < 720; ad++)	{		if (radius > 0)		{			dad = dad_max - (ad / k);			r = (float)(((uint32_t)ad) * radius) / 720;		}		else		{			dad = dad_max - ((719 - ad) / k);			r = (float)(((uint32_t)(719 - ad)) * (-radius)) / 720;		}		ar = (ad + rotation)* (float)_PI / 180;		float _cos = cos(ar);		float _sin = sin(ar);		int x = (int)(cx + (_cos * r));		int y = (int)(cy + (_sin * r));		int z = (int)(z0 - ((float)((int32_t)dz * ad) / 720));		if (xyzcal_lineXYZ_to(x, y, z, delay_us, check_pinda))		{			ad += dad + 1;			ret = true;			break;		}		n++;		ad += dad;	}	if (pad) *pad = ad;	// if(ret){	// 	lcd_set_cursor(0, 4);	// 	lcd_print("         ");	// }	return ret;}bool xyzcal_spiral8(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, uint16_t delay_us, int8_t check_pinda, uint16_t* pad){	bool ret = false;	uint16_t ad = 0;	if (pad) ad = *pad;	DBG(_n("xyzcal_spiral8 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);	if (!ret && (ad < 720))		if ((ret = xyzcal_spiral2(cx, cy, z0 - 0*dz, dz, radius, 0, delay_us, check_pinda, &ad)) != 0)			ad += 0;	if (!ret && (ad < 1440))		if ((ret = xyzcal_spiral2(cx, cy, z0 - 1*dz, dz, -radius, 0, delay_us, check_pinda, &ad)) != 0)			ad += 720;	if (!ret && (ad < 2160))		if ((ret = xyzcal_spiral2(cx, cy, z0 - 2*dz, dz, radius, 180, delay_us, check_pinda, &ad)) != 0)			ad += 1440;	if (!ret && (ad < 2880))		if ((ret = xyzcal_spiral2(cx, cy, z0 - 3*dz, dz, -radius, 180, delay_us, check_pinda, &ad)) != 0)			ad += 2160;	if (pad) *pad = ad;	return ret;}#ifdef XYZCAL_MEASSURE_PINDA_HYSTEREZISint8_t xyzcal_meassure_pinda_hysterezis(int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t samples){	DBG(_n("xyzcal_meassure_pinda_hysterezis\n"));	int8_t ret = -1; // PINDA signal error	int16_t z = _Z;	int16_t sum_up = 0;	int16_t sum_dn = 0;	int16_t up;	int16_t dn;	uint8_t sample;	xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);	xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1);	if (!_PINDA)	{		for (sample = 0; sample < samples; sample++)		{			dn = _Z;			if (!xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1)) break;			dn = dn - _Z;			up = _Z;			if (!xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1)) break;			up = _Z - up;			DBG(_n("%d. up=%d dn=%d\n"), sample, up, dn);			sum_up += up;			sum_dn += dn;			if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)			{				ret = -2; // difference between up-dn to high				break;			}		}		if (sample == samples)		{			up = sum_up / samples;			dn = sum_dn / samples;			uint16_t hyst = (up + dn) / 2;			if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)				ret = -2; // difference between up-dn to high			else if ((hyst < XYZCAL_PINDA_HYST_MIN) || (hyst > XYZCAL_PINDA_HYST_MAX))				ret = -3; // hysterezis out of range			else				ret = hyst;		}	}	xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0);	return ret;}#endif //XYZCAL_MEASSURE_PINDA_HYSTEREZIS/// Accelerate up to max.speed (defined by @min_delay_us)void accelerate(uint8_t axis, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us){	sm4_do_step(axis);	/// keep max speed (avoid extra computation)	if (acc > 0 && delay_us == min_delay_us){		delayMicroseconds(delay_us);		return;	}	// v1 = v0 + a * t	// 0.01 = length of a step	const float t0 = delay_us * 0.000001f;	const float v1 = (0.01f / t0 + acc * t0);	uint16_t t1;	if (v1 <= 0.16f){ ///< slowest speed convertible to uint16_t delay		t1 = MAX_DELAY; ///< already too slow so it wants to move back	} else {		/// don't exceed max.speed		t1 = MAX(min_delay_us, round_to_u16(0.01f / v1 * 1000000.f));	}	/// make sure delay has changed a bit at least	if (t1 == delay_us && acc != 0){		if (acc > 0)			t1--;		else			t1++;	}		//DBG(_n("%d "), t1);	delayMicroseconds(t1);	delay_us = t1;}void go_and_stop(uint8_t axis, int16_t dec, uint16_t &delay_us, uint16_t &steps){	if (steps <= 0 || dec <= 0)		return;	/// deceleration distance in steps, s = 1/2 v^2 / a	uint16_t s = round_to_u16(100 * 0.5f * SQR(0.01f) / (SQR((float)delay_us) * dec));	if (steps > s){		/// go steady		sm4_do_step(axis);		delayMicroseconds(delay_us);	} else {		/// decelerate		accelerate(axis, -dec, delay_us, delay_us);	}	--steps;}/// Count number of zeros on the 32 byte array/// If the number is less than 16, it changes @min_z so it will be next timebool more_zeros(uint8_t* pixels, int16_t &min_z){	uint8_t hist[256];	uint8_t i = 0;		/// clear	do {		hist[i] = 0;	} while (i++ < 255);	/// fill	for (i = 0; i < 32; ++i){		++hist[pixels[i]];	}		/// already more zeros on the line	if (hist[0] >= 16)		return true;		/// find threshold	uint8_t sum = 0;	i = 0;	do {		sum += hist[i];		if (sum >= 16)			break;	} while (i++ < 255);	min_z += i;	return false;}void xyzcal_scan_pixels_32x32_Zhop(int16_t cx, int16_t cy, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t* pixels){	if (!pixels)		return;	int16_t z = _Z;	int16_t z_trig;	uint16_t line_buffer[32];	uint16_t current_delay_us = MAX_DELAY; ///< defines current speed	xyzcal_lineXYZ_to(cx - 1024, cy - 1024, min_z, delay_us, 0);	int16_t start_z;	uint16_t steps_to_go;	uint8_t restart = 0; ///< restart if needed but just once	int16_t corr_min_z = min_z; ///< shifted min_z if it's too low	do {		if (restart == 1)			restart = 2;		for (uint8_t r = 0; r < 32; r++){ ///< Y axis			xyzcal_lineXYZ_to(_X, cy - 1024 + r * 64, z, delay_us, 0);			for (int8_t d = 0; d < 2; ++d){ ///< direction							xyzcal_lineXYZ_to((d & 1) ? (cx + 1024) : (cx - 1024), _Y, corr_min_z, delay_us, 0);				z = _Z;				sm4_set_dir(X_AXIS, d);				for (uint8_t c = 0; c < 32; c++){ ///< X axis					z_trig = corr_min_z;					/// move up to un-trigger (surpress hysteresis)					sm4_set_dir(Z_AXIS, Z_PLUS);					/// speed up from stop, go half the way					current_delay_us = MAX_DELAY;					for (start_z = z; z < (max_z + start_z) / 2; ++z){						if (!_PINDA){							break;						}						accelerate(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);					}					if(_PINDA){						uint16_t steps_to_go = MAX(0, max_z - z);						while (_PINDA && z < max_z){							go_and_stop(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);							++z;						}					}					/// slow down to stop					while (current_delay_us < MAX_DELAY){						accelerate(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY);						++z;					}					/// move down to trigger					sm4_set_dir(Z_AXIS, Z_MINUS);					/// speed up					current_delay_us = MAX_DELAY;					for (start_z = z; z > (corr_min_z + start_z) / 2; --z){						if (_PINDA){							z_trig = z;							break;						}						accelerate(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);					}					/// slow down					if(!_PINDA){						steps_to_go = MAX(0, z - corr_min_z);						while (!_PINDA && z > corr_min_z){							go_and_stop(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);							--z;						}						z_trig = z;					}					/// slow down to stop					while (z > corr_min_z && current_delay_us < MAX_DELAY){						accelerate(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY);						--z;					}					count_position[2] = z;					if (d == 0){						line_buffer[c] = (uint16_t)(z_trig - corr_min_z);					} else {						/// data reversed in X						// DBG(_n("%04x"), (line_buffer[31 - c] + (z - corr_min_z)) / 2);						/// save average of both directions						pixels[(uint16_t)r * 32 + (31 - c)] = (uint8_t)MIN((uint32_t)255, ((uint32_t)line_buffer[31 - c] + (z_trig - corr_min_z)) / 2);					}					/// move to the next point and move Z up diagonally (if needed)					current_delay_us = MAX_DELAY;					// const int8_t dir = (d & 1) ? -1 : 1;					const int16_t end_x = ((d & 1) ? 1 : -1) * (64 * (16 - c) - 32) + cx;					const int16_t length_x = ABS(end_x - _X);					const int16_t half_x = length_x / 2;					int16_t x = 0;					/// don't go up if PINDA not triggered					const bool up = _PINDA;					int8_t axis = up ? X_AXIS_MASK | Z_AXIS_MASK : X_AXIS_MASK;					sm4_set_dir(Z_AXIS, Z_PLUS);					/// speed up					for (x = 0; x <= half_x; ++x){						accelerate(axis, Z_ACCEL, current_delay_us, Z_MIN_DELAY);						if (up)							++z;					}					/// slow down					steps_to_go = length_x - x;					for (; x < length_x; ++x){						go_and_stop(axis, Z_ACCEL, current_delay_us, steps_to_go);						if (up)							++z;					}					count_position[0] = end_x;					count_position[2] = z;				}			}			if (r == 0 && restart == 0){				if (!more_zeros(pixels, corr_min_z))					restart = 1;			}			if (restart == 1)				break;			// DBG(_n("\n\n"));		}	} while (restart == 1);}/// Returns rate of match/// max match = 132, min match = 0uint8_t xyzcal_match_pattern_12x12_in_32x32(uint16_t* pattern, uint8_t* pixels, uint8_t c, uint8_t r){	uint8_t thr = 16;	uint8_t match = 0;	for (uint8_t i = 0; i < 12; ++i){		for (uint8_t j = 0; j < 12; ++j){			/// skip corners (3 pixels in each)			if (((i == 0) || (i == 11)) && ((j < 2) || (j >= 10))) continue;			if (((j == 0) || (j == 11)) && ((i < 2) || (i >= 10))) continue;			const uint16_t idx = (c + j) + 32 * ((uint16_t)r + i);			const bool high_pix = pixels[idx] > thr;			const bool high_pat = pattern[i] & (1 << j);			if (high_pix == high_pat)				match++;		}	}	return match;}/// Searches for best match of pattern by shifting it/// Returns rate of match and the best location/// max match = 132, min match = 0uint8_t xyzcal_find_pattern_12x12_in_32x32(uint8_t* pixels, uint16_t* pattern, uint8_t* pc, uint8_t* pr){	if (!pixels || !pattern || !pc || !pr)		return -1;	uint8_t max_c = 0;	uint8_t max_r = 0;	uint8_t max_match = 0;	// DBG(_n("Matching:\n"));	/// pixel precision	for (uint8_t r = 0; r < (32 - 12); ++r){		for (uint8_t c = 0; c < (32 - 12); ++c){			const uint8_t match = xyzcal_match_pattern_12x12_in_32x32(pattern, pixels, c, r);			if (max_match < match){				max_c = c;				max_r = r;				max_match = match;			}			// DBG(_n("%d "), match);		}		// DBG(_n("\n"));	}	DBG(_n("max_c=%d max_r=%d max_match=%d pixel\n"), max_c, max_r, max_match);	*pc = max_c;	*pr = max_r;	return max_match;}uint8_t xyzcal_xycoords2point(int16_t x, int16_t y){	uint8_t ix = (x > 10000)?1:0;	uint8_t iy = (y > 10000)?1:0;	return iy?(3-ix):ix;}//MK3#if ((MOTHERBOARD == BOARD_EINSY_1_0a))const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};const int16_t xyzcal_point_ycoords[4] PROGMEM = {600, 600, 19800, 19800};#endif //((MOTHERBOARD == BOARD_EINSY_1_0a))//MK2.5#if ((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))const int16_t xyzcal_point_xcoords[4] PROGMEM = {1200, 22000, 22000, 1200};const int16_t xyzcal_point_ycoords[4] PROGMEM = {700, 700, 19800, 19800};#endif //((MOTHERBOARD == BOARD_RAMBO_MINI_1_0) || (MOTHERBOARD == BOARD_RAMBO_MINI_1_3))const uint16_t xyzcal_point_pattern[12] PROGMEM = {0x000, 0x0f0, 0x1f8, 0x3fc, 0x7fe, 0x7fe, 0x7fe, 0x7fe, 0x3fc, 0x1f8, 0x0f0, 0x000};bool xyzcal_searchZ(void){	DBG(_n("xyzcal_searchZ x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);	int16_t x0 = _X;	int16_t y0 = _Y;	int16_t z0 = _Z;//	int16_t min_z = -6000;//	int16_t dz = 100;	int16_t z = z0;	while (z > -2300) //-6mm + 0.25mm	{		uint16_t ad = 0;		if (xyzcal_spiral8(x0, y0, z, 100, 900, 320, 1, &ad)) //dz=100 radius=900 delay=400		{			int16_t x_on = _X;			int16_t y_on = _Y;			int16_t z_on = _Z;			DBG(_n(" ON-SIGNAL at x=%d y=%d z=%d ad=%d\n"), x_on, y_on, z_on, ad);			return true;		}		z -= 400;	}	DBG(_n("xyzcal_searchZ no signal\n x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);	return false;}/// returns value of any location within data/// uses bilinear interpolationfloat get_value(uint8_t * matrix_32x32, float c, float r){	if (c <= 0 || r <= 0 || c >= 31 || r >= 31)		return 0;	/// calculate weights of nearby points	const float wc1 = c - floor(c);	const float wr1 = r - floor(r);	const float wc0 = 1 - wc1;	const float wr0 = 1 - wr1;	const float w00 = wc0 * wr0;	const float w01 = wc0 * wr1;	const float w10 = wc1 * wr0;	const float w11 = wc1 * wr1;	const uint16_t c0 = c;	const uint16_t c1 = c0 + 1;	const uint16_t r0 = r;	const uint16_t r1 = r0 + 1;	const uint16_t idx00 = c0 + 32 * r0;	const uint16_t idx01 = c0 + 32 * r1;	const uint16_t idx10 = c1 + 32 * r0;	const uint16_t idx11 = c1 + 32 * r1;	/// bilinear resampling	return w00 * matrix_32x32[idx00] + w01 * matrix_32x32[idx01] + w10 * matrix_32x32[idx10] + w11 * matrix_32x32[idx11];}const constexpr float m_infinity = -1000.f;/// replaces the highest number by m_infinityvoid remove_highest(float *points, const uint8_t num_points){	if (num_points <= 0)		return;	float max = points[0];	uint8_t max_i = 0;	for (uint8_t i = 0; i < num_points; ++i){		if (max < points[i]){			max = points[i];			max_i = i;		}	}	points[max_i] = m_infinity;}/// return the highest number in the listfloat highest(float *points, const uint8_t num_points){	if (num_points <= 0)		return 0;	float max = points[0];	for (uint8_t i = 0; i < num_points; ++i){		if (max < points[i]){			max = points[i];		}	}	return max;}/// Searches for circle iteratively/// Uses points on the perimeter. If point is high it pushes circle out of the center (shift or change of radius),/// otherwise to the center./// Algorithm is stopped after fixed number of iterations. Move is limited to 0.5 px per iteration.void dynamic_circle(uint8_t *matrix_32x32, float &x, float &y, float &r, uint8_t iterations){	/// circle of 10.5 diameter has 33 in circumference, don't go much above	const constexpr uint8_t num_points = 33;	float points[num_points];	float pi_2_div_num_points = 2 * M_PI / num_points;	const constexpr uint8_t target_z = 32; ///< target z height of the circle	float norm;	float angle;	float max_val = 0.5f;	const uint8_t blocks = 7;	float shifts_x[blocks];	float shifts_y[blocks];		float shifts_r[blocks];		for (int8_t i = iterations; i > 0; --i){			// DBG(_n(" [%f, %f][%f] circle\n"), x, y, r);		/// read points on the circle		for (uint8_t p = 0; p < num_points; ++p){			angle = p * pi_2_div_num_points;			points[p] = get_value(matrix_32x32, r * cos(angle) + x, r * sin(angle) + y) - target_z;			// DBG(_n("%f "), points[p]);		}		// DBG(_n(" points\n"));		/// sum blocks		for (uint8_t j = 0; j < blocks; ++j){			shifts_x[j] = shifts_y[j] = shifts_r[j] = 0;			/// first part			for (uint8_t p = 0; p < num_points * 3 / 4; ++p){				uint8_t idx = (p + j * num_points / blocks) % num_points;				angle = idx * pi_2_div_num_points;				shifts_x[j] += cos(angle) * points[idx];				shifts_y[j] += sin(angle) * points[idx];				shifts_r[j] += points[idx];			}		}		/// remove extreme values (slow but simple)		for (uint8_t j = 0; j < blocks / 2; ++j){			remove_highest(shifts_x, blocks);			remove_highest(shifts_y, blocks);			remove_highest(shifts_r, blocks);		}		/// median is the highest now		norm = 1.f / (32.f * (num_points * 3 / 4));		x += CLAMP(highest(shifts_x, blocks) * norm, -max_val, max_val);		y += CLAMP(highest(shifts_y, blocks) * norm, -max_val, max_val);		r += CLAMP(highest(shifts_r, blocks) * norm, -max_val, max_val);		r = MAX(2, r);	}	DBG(_n(" [%f, %f][%f] final circle\n"), x, y, r);}/// Prints matrix in hex to debug output (serial line)void print_image(uint8_t *matrix_32x32){	for (uint8_t y = 0; y < 32; ++y){		const uint16_t idx_y = y * 32;		for (uint8_t x = 0; x < 32; ++x){			DBG(_n("%02x"), matrix_32x32[idx_y + x]);		}		DBG(_n("\n"));	}	DBG(_n("\n"));}/// scans area around the current head location and/// searches for the center of the calibration pinbool xyzcal_scan_and_process(void){	DBG(_n("sizeof(block_buffer)=%d\n"), sizeof(block_t)*BLOCK_BUFFER_SIZE);	bool ret = false;	int16_t x = _X;	int16_t y = _Y;	int16_t z = _Z;	uint8_t *matrix32 = (uint8_t *)block_buffer;	uint16_t *pattern = (uint16_t *)(matrix32 + 32 * 32);	xyzcal_scan_pixels_32x32_Zhop(x, y, z - 72, 2400, 600, matrix32);	print_image(matrix32);	for (uint8_t i = 0; i < 12; i++){		pattern[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern + i));//		DBG(_n(" pattern[%d]=%d\n"), i, pattern[i]);	}		/// SEARCH FOR BINARY CIRCLE	uint8_t uc = 0;	uint8_t ur = 0;	/// max match = 132, 1/2 good = 66, 2/3 good = 88	if (xyzcal_find_pattern_12x12_in_32x32(matrix32, pattern, &uc, &ur) >= 88){		/// find precise circle		/// move to the center of the pattern (+5.5)		float xf = uc + 5.5f;		float yf = ur + 5.5f;		float radius = 5; ///< default radius		const uint8_t iterations = 20;		dynamic_circle(matrix32, xf, yf, radius, iterations);		if (ABS(xf - (uc + 5.5f)) > 3 || ABS(yf - (ur + 5.5f)) > 3 || ABS(radius - 5) > 3){			DBG(_n(" [%f %f][%f] mm divergence\n"), xf - (uc + 5.5f), yf - (ur + 5.5f), radius - 5);			/// dynamic algorithm diverged, use original position instead			xf = uc + 5.5f;			yf = ur + 5.5f;		}		/// move to the center of area and convert to position		xf = (float)x + (xf - 15.5f) * 64;		yf = (float)y + (yf - 15.5f) * 64;		DBG(_n(" [%f %f] mm pattern center\n"), pos_2_mm(xf), pos_2_mm(yf));		x = round_to_i16(xf);		y = round_to_i16(yf);		xyzcal_lineXYZ_to(x, y, z, 200, 0);		ret = true;	}	/// wipe buffer	for (uint16_t i = 0; i < sizeof(block_t)*BLOCK_BUFFER_SIZE; i++)		matrix32[i] = 0;	return ret;}bool xyzcal_find_bed_induction_sensor_point_xy(void){	bool ret = false;	DBG(_n("xyzcal_find_bed_induction_sensor_point_xy x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);	st_synchronize();	pos_i16_t x = _X;	pos_i16_t y = _Y;	pos_i16_t z = _Z;	uint8_t point = xyzcal_xycoords2point(x, y);	x = pgm_read_word((uint16_t *)(xyzcal_point_xcoords + point));	y = pgm_read_word((uint16_t *)(xyzcal_point_ycoords + point));	DBG(_n("point=%d x=%d y=%d z=%d\n"), point, x, y, z);	xyzcal_meassure_enter();	xyzcal_lineXYZ_to(x, y, z, 200, 0);	if (xyzcal_searchZ()){		int16_t z = _Z;		xyzcal_lineXYZ_to(x, y, z, 200, 0);		ret = xyzcal_scan_and_process();	}	xyzcal_meassure_leave();	return ret;}#endif //NEW_XYZCAL
 |