Marlin_main.cpp 303 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  120. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  121. //Implemented Codes
  122. //-------------------
  123. // PRUSA CODES
  124. // P F - Returns FW versions
  125. // P R - Returns revision of printer
  126. // G0 -> G1
  127. // G1 - Coordinated Movement X Y Z E
  128. // G2 - CW ARC
  129. // G3 - CCW ARC
  130. // G4 - Dwell S<seconds> or P<milliseconds>
  131. // G10 - retract filament according to settings of M207
  132. // G11 - retract recover filament according to settings of M208
  133. // G28 - Home all Axis
  134. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  135. // G30 - Single Z Probe, probes bed at current XY location.
  136. // G31 - Dock sled (Z_PROBE_SLED only)
  137. // G32 - Undock sled (Z_PROBE_SLED only)
  138. // G80 - Automatic mesh bed leveling
  139. // G81 - Print bed profile
  140. // G90 - Use Absolute Coordinates
  141. // G91 - Use Relative Coordinates
  142. // G92 - Set current position to coordinates given
  143. // M Codes
  144. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  145. // M1 - Same as M0
  146. // M17 - Enable/Power all stepper motors
  147. // M18 - Disable all stepper motors; same as M84
  148. // M20 - List SD card
  149. // M21 - Init SD card
  150. // M22 - Release SD card
  151. // M23 - Select SD file (M23 filename.g)
  152. // M24 - Start/resume SD print
  153. // M25 - Pause SD print
  154. // M26 - Set SD position in bytes (M26 S12345)
  155. // M27 - Report SD print status
  156. // M28 - Start SD write (M28 filename.g)
  157. // M29 - Stop SD write
  158. // M30 - Delete file from SD (M30 filename.g)
  159. // M31 - Output time since last M109 or SD card start to serial
  160. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  161. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  162. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  163. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  164. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  165. // M73 - Show percent done and print time remaining
  166. // M80 - Turn on Power Supply
  167. // M81 - Turn off Power Supply
  168. // M82 - Set E codes absolute (default)
  169. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  170. // M84 - Disable steppers until next move,
  171. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  172. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  173. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  174. // M92 - Set axis_steps_per_unit - same syntax as G92
  175. // M104 - Set extruder target temp
  176. // M105 - Read current temp
  177. // M106 - Fan on
  178. // M107 - Fan off
  179. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  180. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  181. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  182. // M112 - Emergency stop
  183. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  184. // M114 - Output current position to serial port
  185. // M115 - Capabilities string
  186. // M117 - display message
  187. // M119 - Output Endstop status to serial port
  188. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  189. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  190. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  191. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M140 - Set bed target temp
  193. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  194. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  195. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  196. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  197. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  198. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  199. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  200. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  201. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  202. // M206 - set additional homing offset
  203. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  204. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  205. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  206. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  207. // M220 S<factor in percent>- set speed factor override percentage
  208. // M221 S<factor in percent>- set extrude factor override percentage
  209. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  210. // M240 - Trigger a camera to take a photograph
  211. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  212. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  213. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  214. // M301 - Set PID parameters P I and D
  215. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  216. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  217. // M304 - Set bed PID parameters P I and D
  218. // M400 - Finish all moves
  219. // M401 - Lower z-probe if present
  220. // M402 - Raise z-probe if present
  221. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  222. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  223. // M406 - Turn off Filament Sensor extrusion control
  224. // M407 - Displays measured filament diameter
  225. // M500 - stores parameters in EEPROM
  226. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  227. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  228. // M503 - print the current settings (from memory not from EEPROM)
  229. // M509 - force language selection on next restart
  230. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  231. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  232. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  233. // M860 - Wait for PINDA thermistor to reach target temperature.
  234. // M861 - Set / Read PINDA temperature compensation offsets
  235. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  236. // M907 - Set digital trimpot motor current using axis codes.
  237. // M908 - Control digital trimpot directly.
  238. // M350 - Set microstepping mode.
  239. // M351 - Toggle MS1 MS2 pins directly.
  240. // M928 - Start SD logging (M928 filename.g) - ended by M29
  241. // M999 - Restart after being stopped by error
  242. //Stepper Movement Variables
  243. //===========================================================================
  244. //=============================imported variables============================
  245. //===========================================================================
  246. //===========================================================================
  247. //=============================public variables=============================
  248. //===========================================================================
  249. #ifdef SDSUPPORT
  250. CardReader card;
  251. #endif
  252. unsigned long PingTime = millis();
  253. unsigned long NcTime;
  254. //used for PINDA temp calibration and pause print
  255. #define DEFAULT_RETRACTION 1
  256. #define DEFAULT_RETRACTION_MM 4 //MM
  257. float default_retraction = DEFAULT_RETRACTION;
  258. float homing_feedrate[] = HOMING_FEEDRATE;
  259. // Currently only the extruder axis may be switched to a relative mode.
  260. // Other axes are always absolute or relative based on the common relative_mode flag.
  261. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  262. int feedmultiply=100; //100->1 200->2
  263. int saved_feedmultiply;
  264. int extrudemultiply=100; //100->1 200->2
  265. int extruder_multiply[EXTRUDERS] = {100
  266. #if EXTRUDERS > 1
  267. , 100
  268. #if EXTRUDERS > 2
  269. , 100
  270. #endif
  271. #endif
  272. };
  273. int bowden_length[4] = {385, 385, 385, 385};
  274. bool is_usb_printing = false;
  275. bool homing_flag = false;
  276. bool temp_cal_active = false;
  277. unsigned long kicktime = millis()+100000;
  278. unsigned int usb_printing_counter;
  279. int8_t lcd_change_fil_state = 0;
  280. int feedmultiplyBckp = 100;
  281. float HotendTempBckp = 0;
  282. int fanSpeedBckp = 0;
  283. float pause_lastpos[4];
  284. unsigned long pause_time = 0;
  285. unsigned long start_pause_print = millis();
  286. unsigned long t_fan_rising_edge = millis();
  287. LongTimer safetyTimer;
  288. LongTimer crashDetTimer;
  289. //unsigned long load_filament_time;
  290. bool mesh_bed_leveling_flag = false;
  291. bool mesh_bed_run_from_menu = false;
  292. int8_t FarmMode = 0;
  293. bool prusa_sd_card_upload = false;
  294. unsigned int status_number = 0;
  295. unsigned long total_filament_used;
  296. unsigned int heating_status;
  297. unsigned int heating_status_counter;
  298. bool loading_flag = false;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // save/restore printing in case that mmu was not responding
  392. bool mmu_print_saved = false;
  393. // storing estimated time to end of print counted by slicer
  394. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  395. uint32_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  397. uint32_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  398. //===========================================================================
  399. //=============================Private Variables=============================
  400. //===========================================================================
  401. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  402. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  403. // For tracing an arc
  404. static float offset[3] = {0.0, 0.0, 0.0};
  405. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  406. // Determines Absolute or Relative Coordinates.
  407. // Also there is bool axis_relative_modes[] per axis flag.
  408. static bool relative_mode = false;
  409. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  410. //static float tt = 0;
  411. //static float bt = 0;
  412. //Inactivity shutdown variables
  413. static unsigned long previous_millis_cmd = 0;
  414. unsigned long max_inactive_time = 0;
  415. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  416. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  417. unsigned long starttime=0;
  418. unsigned long stoptime=0;
  419. unsigned long _usb_timer = 0;
  420. bool extruder_under_pressure = true;
  421. bool Stopped=false;
  422. #if NUM_SERVOS > 0
  423. Servo servos[NUM_SERVOS];
  424. #endif
  425. bool CooldownNoWait = true;
  426. bool target_direction;
  427. //Insert variables if CHDK is defined
  428. #ifdef CHDK
  429. unsigned long chdkHigh = 0;
  430. boolean chdkActive = false;
  431. #endif
  432. // save/restore printing
  433. static uint32_t saved_sdpos = 0;
  434. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  435. static float saved_pos[4] = { 0, 0, 0, 0 };
  436. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  437. static float saved_feedrate2 = 0;
  438. static uint8_t saved_active_extruder = 0;
  439. static bool saved_extruder_under_pressure = false;
  440. static bool saved_extruder_relative_mode = false;
  441. //===========================================================================
  442. //=============================Routines======================================
  443. //===========================================================================
  444. static void get_arc_coordinates();
  445. static bool setTargetedHotend(int code);
  446. static void print_time_remaining_init();
  447. uint16_t gcode_in_progress = 0;
  448. uint16_t mcode_in_progress = 0;
  449. void serial_echopair_P(const char *s_P, float v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. void serial_echopair_P(const char *s_P, double v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, unsigned long v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. #ifdef SDSUPPORT
  456. #include "SdFatUtil.h"
  457. int freeMemory() { return SdFatUtil::FreeRam(); }
  458. #else
  459. extern "C" {
  460. extern unsigned int __bss_end;
  461. extern unsigned int __heap_start;
  462. extern void *__brkval;
  463. int freeMemory() {
  464. int free_memory;
  465. if ((int)__brkval == 0)
  466. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  467. else
  468. free_memory = ((int)&free_memory) - ((int)__brkval);
  469. return free_memory;
  470. }
  471. }
  472. #endif //!SDSUPPORT
  473. void setup_killpin()
  474. {
  475. #if defined(KILL_PIN) && KILL_PIN > -1
  476. SET_INPUT(KILL_PIN);
  477. WRITE(KILL_PIN,HIGH);
  478. #endif
  479. }
  480. // Set home pin
  481. void setup_homepin(void)
  482. {
  483. #if defined(HOME_PIN) && HOME_PIN > -1
  484. SET_INPUT(HOME_PIN);
  485. WRITE(HOME_PIN,HIGH);
  486. #endif
  487. }
  488. void setup_photpin()
  489. {
  490. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  491. SET_OUTPUT(PHOTOGRAPH_PIN);
  492. WRITE(PHOTOGRAPH_PIN, LOW);
  493. #endif
  494. }
  495. void setup_powerhold()
  496. {
  497. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  498. SET_OUTPUT(SUICIDE_PIN);
  499. WRITE(SUICIDE_PIN, HIGH);
  500. #endif
  501. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  502. SET_OUTPUT(PS_ON_PIN);
  503. #if defined(PS_DEFAULT_OFF)
  504. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  505. #else
  506. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  507. #endif
  508. #endif
  509. }
  510. void suicide()
  511. {
  512. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  513. SET_OUTPUT(SUICIDE_PIN);
  514. WRITE(SUICIDE_PIN, LOW);
  515. #endif
  516. }
  517. void servo_init()
  518. {
  519. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  520. servos[0].attach(SERVO0_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  523. servos[1].attach(SERVO1_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  526. servos[2].attach(SERVO2_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  529. servos[3].attach(SERVO3_PIN);
  530. #endif
  531. #if (NUM_SERVOS >= 5)
  532. #error "TODO: enter initalisation code for more servos"
  533. #endif
  534. }
  535. void stop_and_save_print_to_ram(float z_move, float e_move);
  536. void restore_print_from_ram_and_continue(float e_move);
  537. bool fans_check_enabled = true;
  538. #ifdef TMC2130
  539. extern int8_t CrashDetectMenu;
  540. void crashdet_enable()
  541. {
  542. tmc2130_sg_stop_on_crash = true;
  543. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  544. CrashDetectMenu = 1;
  545. }
  546. void crashdet_disable()
  547. {
  548. tmc2130_sg_stop_on_crash = false;
  549. tmc2130_sg_crash = 0;
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  551. CrashDetectMenu = 0;
  552. }
  553. void crashdet_stop_and_save_print()
  554. {
  555. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  556. }
  557. void crashdet_restore_print_and_continue()
  558. {
  559. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  560. // babystep_apply();
  561. }
  562. void crashdet_stop_and_save_print2()
  563. {
  564. cli();
  565. planner_abort_hard(); //abort printing
  566. cmdqueue_reset(); //empty cmdqueue
  567. card.sdprinting = false;
  568. card.closefile();
  569. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  570. st_reset_timer();
  571. sei();
  572. }
  573. void crashdet_detected(uint8_t mask)
  574. {
  575. st_synchronize();
  576. static uint8_t crashDet_counter = 0;
  577. bool automatic_recovery_after_crash = true;
  578. if (crashDet_counter++ == 0) {
  579. crashDetTimer.start();
  580. }
  581. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  582. crashDetTimer.stop();
  583. crashDet_counter = 0;
  584. }
  585. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  586. automatic_recovery_after_crash = false;
  587. crashDetTimer.stop();
  588. crashDet_counter = 0;
  589. }
  590. else {
  591. crashDetTimer.start();
  592. }
  593. lcd_update_enable(true);
  594. lcd_clear();
  595. lcd_update(2);
  596. if (mask & X_AXIS_MASK)
  597. {
  598. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  599. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  600. }
  601. if (mask & Y_AXIS_MASK)
  602. {
  603. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  604. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  605. }
  606. lcd_update_enable(true);
  607. lcd_update(2);
  608. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  609. gcode_G28(true, true, false); //home X and Y
  610. st_synchronize();
  611. if (automatic_recovery_after_crash) {
  612. enquecommand_P(PSTR("CRASH_RECOVER"));
  613. }else{
  614. HotendTempBckp = degTargetHotend(active_extruder);
  615. setTargetHotend(0, active_extruder);
  616. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  617. lcd_update_enable(true);
  618. if (yesno)
  619. {
  620. char cmd1[10];
  621. strcpy(cmd1, "M109 S");
  622. strcat(cmd1, ftostr3(HotendTempBckp));
  623. enquecommand(cmd1);
  624. enquecommand_P(PSTR("CRASH_RECOVER"));
  625. }
  626. else
  627. {
  628. enquecommand_P(PSTR("CRASH_CANCEL"));
  629. }
  630. }
  631. }
  632. void crashdet_recover()
  633. {
  634. crashdet_restore_print_and_continue();
  635. tmc2130_sg_stop_on_crash = true;
  636. }
  637. void crashdet_cancel()
  638. {
  639. tmc2130_sg_stop_on_crash = true;
  640. if (saved_printing_type == PRINTING_TYPE_SD) {
  641. lcd_print_stop();
  642. }else if(saved_printing_type == PRINTING_TYPE_USB){
  643. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  644. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  645. }
  646. }
  647. #endif //TMC2130
  648. void failstats_reset_print()
  649. {
  650. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  651. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  652. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  653. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  654. }
  655. #ifdef MESH_BED_LEVELING
  656. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  657. #endif
  658. // Factory reset function
  659. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  660. // Level input parameter sets depth of reset
  661. // Quiet parameter masks all waitings for user interact.
  662. int er_progress = 0;
  663. void factory_reset(char level, bool quiet)
  664. {
  665. lcd_clear();
  666. switch (level) {
  667. // Level 0: Language reset
  668. case 0:
  669. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  670. WRITE(BEEPER, HIGH);
  671. _delay_ms(100);
  672. WRITE(BEEPER, LOW);
  673. lang_reset();
  674. break;
  675. //Level 1: Reset statistics
  676. case 1:
  677. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  678. WRITE(BEEPER, HIGH);
  679. _delay_ms(100);
  680. WRITE(BEEPER, LOW);
  681. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  682. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  683. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  684. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  685. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  686. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  687. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  688. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  689. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  690. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  691. lcd_menu_statistics();
  692. break;
  693. // Level 2: Prepare for shipping
  694. case 2:
  695. //lcd_puts_P(PSTR("Factory RESET"));
  696. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  697. // Force language selection at the next boot up.
  698. lang_reset();
  699. // Force the "Follow calibration flow" message at the next boot up.
  700. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  701. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  702. farm_no = 0;
  703. farm_mode = false;
  704. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  705. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  706. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  707. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  708. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  709. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  710. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  711. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  712. #ifdef FILAMENT_SENSOR
  713. fsensor_enable();
  714. fsensor_autoload_set(true);
  715. #endif //FILAMENT_SENSOR
  716. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  717. WRITE(BEEPER, HIGH);
  718. _delay_ms(100);
  719. WRITE(BEEPER, LOW);
  720. //_delay_ms(2000);
  721. break;
  722. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  723. case 3:
  724. lcd_puts_P(PSTR("Factory RESET"));
  725. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  726. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  727. WRITE(BEEPER, HIGH);
  728. _delay_ms(100);
  729. WRITE(BEEPER, LOW);
  730. er_progress = 0;
  731. lcd_puts_at_P(3, 3, PSTR(" "));
  732. lcd_set_cursor(3, 3);
  733. lcd_print(er_progress);
  734. // Erase EEPROM
  735. for (int i = 0; i < 4096; i++) {
  736. eeprom_write_byte((uint8_t*)i, 0xFF);
  737. if (i % 41 == 0) {
  738. er_progress++;
  739. lcd_puts_at_P(3, 3, PSTR(" "));
  740. lcd_set_cursor(3, 3);
  741. lcd_print(er_progress);
  742. lcd_puts_P(PSTR("%"));
  743. }
  744. }
  745. break;
  746. case 4:
  747. bowden_menu();
  748. break;
  749. default:
  750. break;
  751. }
  752. }
  753. FILE _uartout = {0};
  754. int uart_putchar(char c, FILE *stream)
  755. {
  756. MYSERIAL.write(c);
  757. return 0;
  758. }
  759. void lcd_splash()
  760. {
  761. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  762. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  763. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  764. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  765. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  766. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  767. }
  768. void factory_reset()
  769. {
  770. KEEPALIVE_STATE(PAUSED_FOR_USER);
  771. if (!READ(BTN_ENC))
  772. {
  773. _delay_ms(1000);
  774. if (!READ(BTN_ENC))
  775. {
  776. lcd_clear();
  777. lcd_puts_P(PSTR("Factory RESET"));
  778. SET_OUTPUT(BEEPER);
  779. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  780. WRITE(BEEPER, HIGH);
  781. while (!READ(BTN_ENC));
  782. WRITE(BEEPER, LOW);
  783. _delay_ms(2000);
  784. char level = reset_menu();
  785. factory_reset(level, false);
  786. switch (level) {
  787. case 0: _delay_ms(0); break;
  788. case 1: _delay_ms(0); break;
  789. case 2: _delay_ms(0); break;
  790. case 3: _delay_ms(0); break;
  791. }
  792. }
  793. }
  794. KEEPALIVE_STATE(IN_HANDLER);
  795. }
  796. void show_fw_version_warnings() {
  797. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  798. switch (FW_DEV_VERSION) {
  799. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  800. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  801. case(FW_VERSION_DEVEL):
  802. case(FW_VERSION_DEBUG):
  803. lcd_update_enable(false);
  804. lcd_clear();
  805. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  806. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  807. #else
  808. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  809. #endif
  810. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  811. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  812. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  813. lcd_wait_for_click();
  814. break;
  815. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  816. }
  817. lcd_update_enable(true);
  818. }
  819. uint8_t check_printer_version()
  820. {
  821. uint8_t version_changed = 0;
  822. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  823. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  824. if (printer_type != PRINTER_TYPE) {
  825. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  826. else version_changed |= 0b10;
  827. }
  828. if (motherboard != MOTHERBOARD) {
  829. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  830. else version_changed |= 0b01;
  831. }
  832. return version_changed;
  833. }
  834. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  835. {
  836. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  837. }
  838. #ifdef BOOTAPP
  839. #include "bootapp.h" //bootloader support
  840. #endif //BOOTAPP
  841. #if (LANG_MODE != 0) //secondary language support
  842. #ifdef W25X20CL
  843. // language update from external flash
  844. #define LANGBOOT_BLOCKSIZE 0x1000u
  845. #define LANGBOOT_RAMBUFFER 0x0800
  846. void update_sec_lang_from_external_flash()
  847. {
  848. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  849. {
  850. uint8_t lang = boot_reserved >> 4;
  851. uint8_t state = boot_reserved & 0xf;
  852. lang_table_header_t header;
  853. uint32_t src_addr;
  854. if (lang_get_header(lang, &header, &src_addr))
  855. {
  856. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  857. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  858. delay(100);
  859. boot_reserved = (state + 1) | (lang << 4);
  860. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  861. {
  862. cli();
  863. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  864. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  865. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  866. if (state == 0)
  867. {
  868. //TODO - check header integrity
  869. }
  870. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  871. }
  872. else
  873. {
  874. //TODO - check sec lang data integrity
  875. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  876. }
  877. }
  878. }
  879. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  880. }
  881. #ifdef DEBUG_W25X20CL
  882. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  883. {
  884. lang_table_header_t header;
  885. uint8_t count = 0;
  886. uint32_t addr = 0x00000;
  887. while (1)
  888. {
  889. printf_P(_n("LANGTABLE%d:"), count);
  890. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  891. if (header.magic != LANG_MAGIC)
  892. {
  893. printf_P(_n("NG!\n"));
  894. break;
  895. }
  896. printf_P(_n("OK\n"));
  897. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  898. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  899. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  900. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  901. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  902. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  903. addr += header.size;
  904. codes[count] = header.code;
  905. count ++;
  906. }
  907. return count;
  908. }
  909. void list_sec_lang_from_external_flash()
  910. {
  911. uint16_t codes[8];
  912. uint8_t count = lang_xflash_enum_codes(codes);
  913. printf_P(_n("XFlash lang count = %hhd\n"), count);
  914. }
  915. #endif //DEBUG_W25X20CL
  916. #endif //W25X20CL
  917. #endif //(LANG_MODE != 0)
  918. // "Setup" function is called by the Arduino framework on startup.
  919. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  920. // are initialized by the main() routine provided by the Arduino framework.
  921. void setup()
  922. {
  923. mmu_init();
  924. ultralcd_init();
  925. spi_init();
  926. lcd_splash();
  927. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  928. #ifdef W25X20CL
  929. if (!w25x20cl_init())
  930. kill(_i("External SPI flash W25X20CL not responding."));
  931. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  932. optiboot_w25x20cl_enter();
  933. #endif
  934. #if (LANG_MODE != 0) //secondary language support
  935. #ifdef W25X20CL
  936. if (w25x20cl_init())
  937. update_sec_lang_from_external_flash();
  938. #endif //W25X20CL
  939. #endif //(LANG_MODE != 0)
  940. setup_killpin();
  941. setup_powerhold();
  942. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  943. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  944. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  945. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  946. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  947. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  948. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  949. if (farm_mode)
  950. {
  951. no_response = true; //we need confirmation by recieving PRUSA thx
  952. important_status = 8;
  953. prusa_statistics(8);
  954. selectedSerialPort = 1;
  955. #ifdef TMC2130
  956. //increased extruder current (PFW363)
  957. tmc2130_current_h[E_AXIS] = 36;
  958. tmc2130_current_r[E_AXIS] = 36;
  959. #endif //TMC2130
  960. #ifdef FILAMENT_SENSOR
  961. //disabled filament autoload (PFW360)
  962. fsensor_autoload_set(false);
  963. #endif //FILAMENT_SENSOR
  964. }
  965. MYSERIAL.begin(BAUDRATE);
  966. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  967. stdout = uartout;
  968. SERIAL_PROTOCOLLNPGM("start");
  969. SERIAL_ECHO_START;
  970. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  971. #ifdef DEBUG_SEC_LANG
  972. lang_table_header_t header;
  973. uint32_t src_addr = 0x00000;
  974. if (lang_get_header(1, &header, &src_addr))
  975. {
  976. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  977. #define LT_PRINT_TEST 2
  978. // flash usage
  979. // total p.test
  980. //0 252718 t+c text code
  981. //1 253142 424 170 254
  982. //2 253040 322 164 158
  983. //3 253248 530 135 395
  984. #if (LT_PRINT_TEST==1) //not optimized printf
  985. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  986. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  987. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  988. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  989. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  990. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  991. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  992. #elif (LT_PRINT_TEST==2) //optimized printf
  993. printf_P(
  994. _n(
  995. " _src_addr = 0x%08lx\n"
  996. " _lt_magic = 0x%08lx %S\n"
  997. " _lt_size = 0x%04x (%d)\n"
  998. " _lt_count = 0x%04x (%d)\n"
  999. " _lt_chsum = 0x%04x\n"
  1000. " _lt_code = 0x%04x (%c%c)\n"
  1001. " _lt_resv1 = 0x%08lx\n"
  1002. ),
  1003. src_addr,
  1004. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1005. header.size, header.size,
  1006. header.count, header.count,
  1007. header.checksum,
  1008. header.code, header.code >> 8, header.code & 0xff,
  1009. header.signature
  1010. );
  1011. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1012. MYSERIAL.print(" _src_addr = 0x");
  1013. MYSERIAL.println(src_addr, 16);
  1014. MYSERIAL.print(" _lt_magic = 0x");
  1015. MYSERIAL.print(header.magic, 16);
  1016. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1017. MYSERIAL.print(" _lt_size = 0x");
  1018. MYSERIAL.print(header.size, 16);
  1019. MYSERIAL.print(" (");
  1020. MYSERIAL.print(header.size, 10);
  1021. MYSERIAL.println(")");
  1022. MYSERIAL.print(" _lt_count = 0x");
  1023. MYSERIAL.print(header.count, 16);
  1024. MYSERIAL.print(" (");
  1025. MYSERIAL.print(header.count, 10);
  1026. MYSERIAL.println(")");
  1027. MYSERIAL.print(" _lt_chsum = 0x");
  1028. MYSERIAL.println(header.checksum, 16);
  1029. MYSERIAL.print(" _lt_code = 0x");
  1030. MYSERIAL.print(header.code, 16);
  1031. MYSERIAL.print(" (");
  1032. MYSERIAL.print((char)(header.code >> 8), 0);
  1033. MYSERIAL.print((char)(header.code & 0xff), 0);
  1034. MYSERIAL.println(")");
  1035. MYSERIAL.print(" _lt_resv1 = 0x");
  1036. MYSERIAL.println(header.signature, 16);
  1037. #endif //(LT_PRINT_TEST==)
  1038. #undef LT_PRINT_TEST
  1039. #if 0
  1040. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1041. for (uint16_t i = 0; i < 1024; i++)
  1042. {
  1043. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1044. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1045. if ((i % 16) == 15) putchar('\n');
  1046. }
  1047. #endif
  1048. uint16_t sum = 0;
  1049. for (uint16_t i = 0; i < header.size; i++)
  1050. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1051. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1052. sum -= header.checksum; //subtract checksum
  1053. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1054. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1055. if (sum == header.checksum)
  1056. printf_P(_n("Checksum OK\n"), sum);
  1057. else
  1058. printf_P(_n("Checksum NG\n"), sum);
  1059. }
  1060. else
  1061. printf_P(_n("lang_get_header failed!\n"));
  1062. #if 0
  1063. for (uint16_t i = 0; i < 1024*10; i++)
  1064. {
  1065. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1066. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1067. if ((i % 16) == 15) putchar('\n');
  1068. }
  1069. #endif
  1070. #if 0
  1071. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1072. for (int i = 0; i < 4096; ++i) {
  1073. int b = eeprom_read_byte((unsigned char*)i);
  1074. if (b != 255) {
  1075. SERIAL_ECHO(i);
  1076. SERIAL_ECHO(":");
  1077. SERIAL_ECHO(b);
  1078. SERIAL_ECHOLN("");
  1079. }
  1080. }
  1081. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1082. #endif
  1083. #endif //DEBUG_SEC_LANG
  1084. // Check startup - does nothing if bootloader sets MCUSR to 0
  1085. byte mcu = MCUSR;
  1086. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1087. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1088. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1089. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1090. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1091. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1092. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1093. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1094. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1095. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1096. MCUSR = 0;
  1097. //SERIAL_ECHORPGM(MSG_MARLIN);
  1098. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1099. #ifdef STRING_VERSION_CONFIG_H
  1100. #ifdef STRING_CONFIG_H_AUTHOR
  1101. SERIAL_ECHO_START;
  1102. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1103. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1104. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1105. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1106. SERIAL_ECHOPGM("Compiled: ");
  1107. SERIAL_ECHOLNPGM(__DATE__);
  1108. #endif
  1109. #endif
  1110. SERIAL_ECHO_START;
  1111. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1112. SERIAL_ECHO(freeMemory());
  1113. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1114. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1115. //lcd_update_enable(false); // why do we need this?? - andre
  1116. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1117. bool previous_settings_retrieved = false;
  1118. uint8_t hw_changed = check_printer_version();
  1119. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1120. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1121. }
  1122. else { //printer version was changed so use default settings
  1123. Config_ResetDefault();
  1124. }
  1125. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1126. tp_init(); // Initialize temperature loop
  1127. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1128. plan_init(); // Initialize planner;
  1129. factory_reset();
  1130. #ifdef TMC2130
  1131. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1132. if (silentMode == 0xff) silentMode = 0;
  1133. tmc2130_mode = TMC2130_MODE_NORMAL;
  1134. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1135. if (crashdet && !farm_mode)
  1136. {
  1137. crashdet_enable();
  1138. puts_P(_N("CrashDetect ENABLED!"));
  1139. }
  1140. else
  1141. {
  1142. crashdet_disable();
  1143. puts_P(_N("CrashDetect DISABLED"));
  1144. }
  1145. #ifdef TMC2130_LINEARITY_CORRECTION
  1146. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1147. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1148. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1149. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1150. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1151. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1152. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1153. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1154. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1155. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1156. #endif //TMC2130_LINEARITY_CORRECTION
  1157. #ifdef TMC2130_VARIABLE_RESOLUTION
  1158. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1159. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1160. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1161. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1162. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1163. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1164. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1165. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1166. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1167. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1168. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1169. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1170. #else //TMC2130_VARIABLE_RESOLUTION
  1171. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1172. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1173. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1174. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1175. #endif //TMC2130_VARIABLE_RESOLUTION
  1176. #endif //TMC2130
  1177. st_init(); // Initialize stepper, this enables interrupts!
  1178. #ifdef TMC2130
  1179. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1180. update_mode_profile();
  1181. tmc2130_init();
  1182. #endif //TMC2130
  1183. setup_photpin();
  1184. servo_init();
  1185. // Reset the machine correction matrix.
  1186. // It does not make sense to load the correction matrix until the machine is homed.
  1187. world2machine_reset();
  1188. #ifdef FILAMENT_SENSOR
  1189. fsensor_init();
  1190. #endif //FILAMENT_SENSOR
  1191. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1192. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1193. #endif
  1194. setup_homepin();
  1195. #ifdef TMC2130
  1196. if (1) {
  1197. // try to run to zero phase before powering the Z motor.
  1198. // Move in negative direction
  1199. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1200. // Round the current micro-micro steps to micro steps.
  1201. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1202. // Until the phase counter is reset to zero.
  1203. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1204. delay(2);
  1205. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1206. delay(2);
  1207. }
  1208. }
  1209. #endif //TMC2130
  1210. #if defined(Z_AXIS_ALWAYS_ON)
  1211. enable_z();
  1212. #endif
  1213. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1214. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1215. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1216. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1217. if (farm_mode)
  1218. {
  1219. prusa_statistics(8);
  1220. }
  1221. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1222. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1223. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1224. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1225. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1226. // where all the EEPROM entries are set to 0x0ff.
  1227. // Once a firmware boots up, it forces at least a language selection, which changes
  1228. // EEPROM_LANG to number lower than 0x0ff.
  1229. // 1) Set a high power mode.
  1230. #ifdef TMC2130
  1231. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1232. tmc2130_mode = TMC2130_MODE_NORMAL;
  1233. #endif //TMC2130
  1234. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1235. }
  1236. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1237. // but this times out if a blocking dialog is shown in setup().
  1238. card.initsd();
  1239. #ifdef DEBUG_SD_SPEED_TEST
  1240. if (card.cardOK)
  1241. {
  1242. uint8_t* buff = (uint8_t*)block_buffer;
  1243. uint32_t block = 0;
  1244. uint32_t sumr = 0;
  1245. uint32_t sumw = 0;
  1246. for (int i = 0; i < 1024; i++)
  1247. {
  1248. uint32_t u = micros();
  1249. bool res = card.card.readBlock(i, buff);
  1250. u = micros() - u;
  1251. if (res)
  1252. {
  1253. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1254. sumr += u;
  1255. u = micros();
  1256. res = card.card.writeBlock(i, buff);
  1257. u = micros() - u;
  1258. if (res)
  1259. {
  1260. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1261. sumw += u;
  1262. }
  1263. else
  1264. {
  1265. printf_P(PSTR("writeBlock %4d error\n"), i);
  1266. break;
  1267. }
  1268. }
  1269. else
  1270. {
  1271. printf_P(PSTR("readBlock %4d error\n"), i);
  1272. break;
  1273. }
  1274. }
  1275. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1276. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1277. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1278. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1279. }
  1280. else
  1281. printf_P(PSTR("Card NG!\n"));
  1282. #endif //DEBUG_SD_SPEED_TEST
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1284. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1285. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1286. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1287. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1288. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1289. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1290. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1291. #ifdef SNMM
  1292. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1293. int _z = BOWDEN_LENGTH;
  1294. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1295. }
  1296. #endif
  1297. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1298. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1299. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1300. #if (LANG_MODE != 0) //secondary language support
  1301. #ifdef DEBUG_W25X20CL
  1302. W25X20CL_SPI_ENTER();
  1303. uint8_t uid[8]; // 64bit unique id
  1304. w25x20cl_rd_uid(uid);
  1305. puts_P(_n("W25X20CL UID="));
  1306. for (uint8_t i = 0; i < 8; i ++)
  1307. printf_P(PSTR("%02hhx"), uid[i]);
  1308. putchar('\n');
  1309. list_sec_lang_from_external_flash();
  1310. #endif //DEBUG_W25X20CL
  1311. // lang_reset();
  1312. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1313. lcd_language();
  1314. #ifdef DEBUG_SEC_LANG
  1315. uint16_t sec_lang_code = lang_get_code(1);
  1316. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1317. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1318. // lang_print_sec_lang(uartout);
  1319. #endif //DEBUG_SEC_LANG
  1320. #endif //(LANG_MODE != 0)
  1321. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1322. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1323. temp_cal_active = false;
  1324. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1325. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1326. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1327. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1328. int16_t z_shift = 0;
  1329. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1330. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1331. temp_cal_active = false;
  1332. }
  1333. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1334. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1335. }
  1336. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1337. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1338. }
  1339. check_babystep(); //checking if Z babystep is in allowed range
  1340. #ifdef UVLO_SUPPORT
  1341. setup_uvlo_interrupt();
  1342. #endif //UVLO_SUPPORT
  1343. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1344. setup_fan_interrupt();
  1345. #endif //DEBUG_DISABLE_FANCHECK
  1346. #ifdef FILAMENT_SENSOR
  1347. fsensor_setup_interrupt();
  1348. #endif //FILAMENT_SENSOR
  1349. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1350. #ifndef DEBUG_DISABLE_STARTMSGS
  1351. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1352. show_fw_version_warnings();
  1353. switch (hw_changed) {
  1354. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1355. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1356. case(0b01):
  1357. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1358. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1359. break;
  1360. case(0b10):
  1361. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1362. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1363. break;
  1364. case(0b11):
  1365. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1366. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1367. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1368. break;
  1369. default: break; //no change, show no message
  1370. }
  1371. if (!previous_settings_retrieved) {
  1372. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1373. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1374. }
  1375. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1376. lcd_wizard(0);
  1377. }
  1378. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1379. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1380. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1381. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1382. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1383. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1384. // Show the message.
  1385. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1386. }
  1387. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1388. // Show the message.
  1389. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1390. lcd_update_enable(true);
  1391. }
  1392. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1393. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1394. lcd_update_enable(true);
  1395. }
  1396. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1397. // Show the message.
  1398. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1399. }
  1400. }
  1401. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1402. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1403. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1404. update_current_firmware_version_to_eeprom();
  1405. lcd_selftest();
  1406. }
  1407. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1408. KEEPALIVE_STATE(IN_PROCESS);
  1409. #endif //DEBUG_DISABLE_STARTMSGS
  1410. lcd_update_enable(true);
  1411. lcd_clear();
  1412. lcd_update(2);
  1413. // Store the currently running firmware into an eeprom,
  1414. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1415. update_current_firmware_version_to_eeprom();
  1416. #ifdef TMC2130
  1417. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1418. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1419. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1420. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1421. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1422. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1423. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1424. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1425. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1426. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1427. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1428. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1429. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1430. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1431. #endif //TMC2130
  1432. #ifdef UVLO_SUPPORT
  1433. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1434. /*
  1435. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1436. else {
  1437. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1438. lcd_update_enable(true);
  1439. lcd_update(2);
  1440. lcd_setstatuspgm(_T(WELCOME_MSG));
  1441. }
  1442. */
  1443. manage_heater(); // Update temperatures
  1444. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1445. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1446. #endif
  1447. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1448. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1449. puts_P(_N("Automatic recovery!"));
  1450. #endif
  1451. recover_print(1);
  1452. }
  1453. else{
  1454. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1455. puts_P(_N("Normal recovery!"));
  1456. #endif
  1457. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1458. else {
  1459. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1460. lcd_update_enable(true);
  1461. lcd_update(2);
  1462. lcd_setstatuspgm(_T(WELCOME_MSG));
  1463. }
  1464. }
  1465. }
  1466. #endif //UVLO_SUPPORT
  1467. KEEPALIVE_STATE(NOT_BUSY);
  1468. #ifdef WATCHDOG
  1469. wdt_enable(WDTO_4S);
  1470. #endif //WATCHDOG
  1471. }
  1472. void trace();
  1473. #define CHUNK_SIZE 64 // bytes
  1474. #define SAFETY_MARGIN 1
  1475. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1476. int chunkHead = 0;
  1477. void serial_read_stream() {
  1478. setAllTargetHotends(0);
  1479. setTargetBed(0);
  1480. lcd_clear();
  1481. lcd_puts_P(PSTR(" Upload in progress"));
  1482. // first wait for how many bytes we will receive
  1483. uint32_t bytesToReceive;
  1484. // receive the four bytes
  1485. char bytesToReceiveBuffer[4];
  1486. for (int i=0; i<4; i++) {
  1487. int data;
  1488. while ((data = MYSERIAL.read()) == -1) {};
  1489. bytesToReceiveBuffer[i] = data;
  1490. }
  1491. // make it a uint32
  1492. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1493. // we're ready, notify the sender
  1494. MYSERIAL.write('+');
  1495. // lock in the routine
  1496. uint32_t receivedBytes = 0;
  1497. while (prusa_sd_card_upload) {
  1498. int i;
  1499. for (i=0; i<CHUNK_SIZE; i++) {
  1500. int data;
  1501. // check if we're not done
  1502. if (receivedBytes == bytesToReceive) {
  1503. break;
  1504. }
  1505. // read the next byte
  1506. while ((data = MYSERIAL.read()) == -1) {};
  1507. receivedBytes++;
  1508. // save it to the chunk
  1509. chunk[i] = data;
  1510. }
  1511. // write the chunk to SD
  1512. card.write_command_no_newline(&chunk[0]);
  1513. // notify the sender we're ready for more data
  1514. MYSERIAL.write('+');
  1515. // for safety
  1516. manage_heater();
  1517. // check if we're done
  1518. if(receivedBytes == bytesToReceive) {
  1519. trace(); // beep
  1520. card.closefile();
  1521. prusa_sd_card_upload = false;
  1522. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1523. }
  1524. }
  1525. }
  1526. #ifdef HOST_KEEPALIVE_FEATURE
  1527. /**
  1528. * Output a "busy" message at regular intervals
  1529. * while the machine is not accepting commands.
  1530. */
  1531. void host_keepalive() {
  1532. if (farm_mode) return;
  1533. long ms = millis();
  1534. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1535. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1536. switch (busy_state) {
  1537. case IN_HANDLER:
  1538. case IN_PROCESS:
  1539. SERIAL_ECHO_START;
  1540. SERIAL_ECHOLNPGM("busy: processing");
  1541. break;
  1542. case PAUSED_FOR_USER:
  1543. SERIAL_ECHO_START;
  1544. SERIAL_ECHOLNPGM("busy: paused for user");
  1545. break;
  1546. case PAUSED_FOR_INPUT:
  1547. SERIAL_ECHO_START;
  1548. SERIAL_ECHOLNPGM("busy: paused for input");
  1549. break;
  1550. default:
  1551. break;
  1552. }
  1553. }
  1554. prev_busy_signal_ms = ms;
  1555. }
  1556. #endif
  1557. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1558. // Before loop(), the setup() function is called by the main() routine.
  1559. void loop()
  1560. {
  1561. KEEPALIVE_STATE(NOT_BUSY);
  1562. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1563. {
  1564. is_usb_printing = true;
  1565. usb_printing_counter--;
  1566. _usb_timer = millis();
  1567. }
  1568. if (usb_printing_counter == 0)
  1569. {
  1570. is_usb_printing = false;
  1571. }
  1572. if (prusa_sd_card_upload)
  1573. {
  1574. //we read byte-by byte
  1575. serial_read_stream();
  1576. } else
  1577. {
  1578. get_command();
  1579. #ifdef SDSUPPORT
  1580. card.checkautostart(false);
  1581. #endif
  1582. if(buflen)
  1583. {
  1584. cmdbuffer_front_already_processed = false;
  1585. #ifdef SDSUPPORT
  1586. if(card.saving)
  1587. {
  1588. // Saving a G-code file onto an SD-card is in progress.
  1589. // Saving starts with M28, saving until M29 is seen.
  1590. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1591. card.write_command(CMDBUFFER_CURRENT_STRING);
  1592. if(card.logging)
  1593. process_commands();
  1594. else
  1595. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1596. } else {
  1597. card.closefile();
  1598. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1599. }
  1600. } else {
  1601. process_commands();
  1602. }
  1603. #else
  1604. process_commands();
  1605. #endif //SDSUPPORT
  1606. if (! cmdbuffer_front_already_processed && buflen)
  1607. {
  1608. // ptr points to the start of the block currently being processed.
  1609. // The first character in the block is the block type.
  1610. char *ptr = cmdbuffer + bufindr;
  1611. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1612. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1613. union {
  1614. struct {
  1615. char lo;
  1616. char hi;
  1617. } lohi;
  1618. uint16_t value;
  1619. } sdlen;
  1620. sdlen.value = 0;
  1621. {
  1622. // This block locks the interrupts globally for 3.25 us,
  1623. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1624. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1625. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1626. cli();
  1627. // Reset the command to something, which will be ignored by the power panic routine,
  1628. // so this buffer length will not be counted twice.
  1629. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1630. // Extract the current buffer length.
  1631. sdlen.lohi.lo = *ptr ++;
  1632. sdlen.lohi.hi = *ptr;
  1633. // and pass it to the planner queue.
  1634. planner_add_sd_length(sdlen.value);
  1635. sei();
  1636. }
  1637. }
  1638. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1639. cli();
  1640. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1641. // and one for each command to previous block in the planner queue.
  1642. planner_add_sd_length(1);
  1643. sei();
  1644. }
  1645. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1646. // this block's SD card length will not be counted twice as its command type has been replaced
  1647. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1648. cmdqueue_pop_front();
  1649. }
  1650. host_keepalive();
  1651. }
  1652. }
  1653. //check heater every n milliseconds
  1654. manage_heater();
  1655. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1656. checkHitEndstops();
  1657. lcd_update(0);
  1658. #ifdef FILAMENT_SENSOR
  1659. if (mcode_in_progress != 600) //M600 not in progress
  1660. fsensor_update();
  1661. #endif //FILAMENT_SENSOR
  1662. #ifdef TMC2130
  1663. tmc2130_check_overtemp();
  1664. if (tmc2130_sg_crash)
  1665. {
  1666. uint8_t crash = tmc2130_sg_crash;
  1667. tmc2130_sg_crash = 0;
  1668. // crashdet_stop_and_save_print();
  1669. switch (crash)
  1670. {
  1671. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1672. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1673. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1674. }
  1675. }
  1676. #endif //TMC2130
  1677. mmu_loop();
  1678. }
  1679. #define DEFINE_PGM_READ_ANY(type, reader) \
  1680. static inline type pgm_read_any(const type *p) \
  1681. { return pgm_read_##reader##_near(p); }
  1682. DEFINE_PGM_READ_ANY(float, float);
  1683. DEFINE_PGM_READ_ANY(signed char, byte);
  1684. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1685. static const PROGMEM type array##_P[3] = \
  1686. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1687. static inline type array(int axis) \
  1688. { return pgm_read_any(&array##_P[axis]); } \
  1689. type array##_ext(int axis) \
  1690. { return pgm_read_any(&array##_P[axis]); }
  1691. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1692. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1693. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1694. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1695. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1696. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1697. static void axis_is_at_home(int axis) {
  1698. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1699. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1700. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1701. }
  1702. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1703. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1704. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1705. saved_feedrate = feedrate;
  1706. saved_feedmultiply = feedmultiply;
  1707. feedmultiply = 100;
  1708. previous_millis_cmd = millis();
  1709. enable_endstops(enable_endstops_now);
  1710. }
  1711. static void clean_up_after_endstop_move() {
  1712. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1713. enable_endstops(false);
  1714. #endif
  1715. feedrate = saved_feedrate;
  1716. feedmultiply = saved_feedmultiply;
  1717. previous_millis_cmd = millis();
  1718. }
  1719. #ifdef ENABLE_AUTO_BED_LEVELING
  1720. #ifdef AUTO_BED_LEVELING_GRID
  1721. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1722. {
  1723. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1724. planeNormal.debug("planeNormal");
  1725. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1726. //bedLevel.debug("bedLevel");
  1727. //plan_bed_level_matrix.debug("bed level before");
  1728. //vector_3 uncorrected_position = plan_get_position_mm();
  1729. //uncorrected_position.debug("position before");
  1730. vector_3 corrected_position = plan_get_position();
  1731. // corrected_position.debug("position after");
  1732. current_position[X_AXIS] = corrected_position.x;
  1733. current_position[Y_AXIS] = corrected_position.y;
  1734. current_position[Z_AXIS] = corrected_position.z;
  1735. // put the bed at 0 so we don't go below it.
  1736. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1737. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1738. }
  1739. #else // not AUTO_BED_LEVELING_GRID
  1740. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1741. plan_bed_level_matrix.set_to_identity();
  1742. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1743. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1744. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1745. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1746. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1747. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1748. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1749. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1750. vector_3 corrected_position = plan_get_position();
  1751. current_position[X_AXIS] = corrected_position.x;
  1752. current_position[Y_AXIS] = corrected_position.y;
  1753. current_position[Z_AXIS] = corrected_position.z;
  1754. // put the bed at 0 so we don't go below it.
  1755. current_position[Z_AXIS] = zprobe_zoffset;
  1756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1757. }
  1758. #endif // AUTO_BED_LEVELING_GRID
  1759. static void run_z_probe() {
  1760. plan_bed_level_matrix.set_to_identity();
  1761. feedrate = homing_feedrate[Z_AXIS];
  1762. // move down until you find the bed
  1763. float zPosition = -10;
  1764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1765. st_synchronize();
  1766. // we have to let the planner know where we are right now as it is not where we said to go.
  1767. zPosition = st_get_position_mm(Z_AXIS);
  1768. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1769. // move up the retract distance
  1770. zPosition += home_retract_mm(Z_AXIS);
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1772. st_synchronize();
  1773. // move back down slowly to find bed
  1774. feedrate = homing_feedrate[Z_AXIS]/4;
  1775. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1777. st_synchronize();
  1778. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1779. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1781. }
  1782. static void do_blocking_move_to(float x, float y, float z) {
  1783. float oldFeedRate = feedrate;
  1784. feedrate = homing_feedrate[Z_AXIS];
  1785. current_position[Z_AXIS] = z;
  1786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1787. st_synchronize();
  1788. feedrate = XY_TRAVEL_SPEED;
  1789. current_position[X_AXIS] = x;
  1790. current_position[Y_AXIS] = y;
  1791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1792. st_synchronize();
  1793. feedrate = oldFeedRate;
  1794. }
  1795. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1796. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1797. }
  1798. /// Probe bed height at position (x,y), returns the measured z value
  1799. static float probe_pt(float x, float y, float z_before) {
  1800. // move to right place
  1801. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1802. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1803. run_z_probe();
  1804. float measured_z = current_position[Z_AXIS];
  1805. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1806. SERIAL_PROTOCOLPGM(" x: ");
  1807. SERIAL_PROTOCOL(x);
  1808. SERIAL_PROTOCOLPGM(" y: ");
  1809. SERIAL_PROTOCOL(y);
  1810. SERIAL_PROTOCOLPGM(" z: ");
  1811. SERIAL_PROTOCOL(measured_z);
  1812. SERIAL_PROTOCOLPGM("\n");
  1813. return measured_z;
  1814. }
  1815. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1816. #ifdef LIN_ADVANCE
  1817. /**
  1818. * M900: Set and/or Get advance K factor and WH/D ratio
  1819. *
  1820. * K<factor> Set advance K factor
  1821. * R<ratio> Set ratio directly (overrides WH/D)
  1822. * W<width> H<height> D<diam> Set ratio from WH/D
  1823. */
  1824. inline void gcode_M900() {
  1825. st_synchronize();
  1826. const float newK = code_seen('K') ? code_value_float() : -1;
  1827. if (newK >= 0) extruder_advance_k = newK;
  1828. float newR = code_seen('R') ? code_value_float() : -1;
  1829. if (newR < 0) {
  1830. const float newD = code_seen('D') ? code_value_float() : -1,
  1831. newW = code_seen('W') ? code_value_float() : -1,
  1832. newH = code_seen('H') ? code_value_float() : -1;
  1833. if (newD >= 0 && newW >= 0 && newH >= 0)
  1834. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1835. }
  1836. if (newR >= 0) advance_ed_ratio = newR;
  1837. SERIAL_ECHO_START;
  1838. SERIAL_ECHOPGM("Advance K=");
  1839. SERIAL_ECHOLN(extruder_advance_k);
  1840. SERIAL_ECHOPGM(" E/D=");
  1841. const float ratio = advance_ed_ratio;
  1842. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1843. }
  1844. #endif // LIN_ADVANCE
  1845. bool check_commands() {
  1846. bool end_command_found = false;
  1847. while (buflen)
  1848. {
  1849. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1850. if (!cmdbuffer_front_already_processed)
  1851. cmdqueue_pop_front();
  1852. cmdbuffer_front_already_processed = false;
  1853. }
  1854. return end_command_found;
  1855. }
  1856. #ifdef TMC2130
  1857. bool calibrate_z_auto()
  1858. {
  1859. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1860. lcd_clear();
  1861. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1862. bool endstops_enabled = enable_endstops(true);
  1863. int axis_up_dir = -home_dir(Z_AXIS);
  1864. tmc2130_home_enter(Z_AXIS_MASK);
  1865. current_position[Z_AXIS] = 0;
  1866. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1867. set_destination_to_current();
  1868. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1869. feedrate = homing_feedrate[Z_AXIS];
  1870. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1871. st_synchronize();
  1872. // current_position[axis] = 0;
  1873. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1874. tmc2130_home_exit();
  1875. enable_endstops(false);
  1876. current_position[Z_AXIS] = 0;
  1877. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1878. set_destination_to_current();
  1879. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1880. feedrate = homing_feedrate[Z_AXIS] / 2;
  1881. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1882. st_synchronize();
  1883. enable_endstops(endstops_enabled);
  1884. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1885. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1886. return true;
  1887. }
  1888. #endif //TMC2130
  1889. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1890. {
  1891. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1892. #define HOMEAXIS_DO(LETTER) \
  1893. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1894. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1895. {
  1896. int axis_home_dir = home_dir(axis);
  1897. feedrate = homing_feedrate[axis];
  1898. #ifdef TMC2130
  1899. tmc2130_home_enter(X_AXIS_MASK << axis);
  1900. #endif //TMC2130
  1901. // Move right a bit, so that the print head does not touch the left end position,
  1902. // and the following left movement has a chance to achieve the required velocity
  1903. // for the stall guard to work.
  1904. current_position[axis] = 0;
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. set_destination_to_current();
  1907. // destination[axis] = 11.f;
  1908. destination[axis] = 3.f;
  1909. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1910. st_synchronize();
  1911. // Move left away from the possible collision with the collision detection disabled.
  1912. endstops_hit_on_purpose();
  1913. enable_endstops(false);
  1914. current_position[axis] = 0;
  1915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1916. destination[axis] = - 1.;
  1917. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1918. st_synchronize();
  1919. // Now continue to move up to the left end stop with the collision detection enabled.
  1920. enable_endstops(true);
  1921. destination[axis] = - 1.1 * max_length(axis);
  1922. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1923. st_synchronize();
  1924. for (uint8_t i = 0; i < cnt; i++)
  1925. {
  1926. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1927. endstops_hit_on_purpose();
  1928. enable_endstops(false);
  1929. current_position[axis] = 0;
  1930. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1931. destination[axis] = 10.f;
  1932. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1933. st_synchronize();
  1934. endstops_hit_on_purpose();
  1935. // Now move left up to the collision, this time with a repeatable velocity.
  1936. enable_endstops(true);
  1937. destination[axis] = - 11.f;
  1938. #ifdef TMC2130
  1939. feedrate = homing_feedrate[axis];
  1940. #else //TMC2130
  1941. feedrate = homing_feedrate[axis] / 2;
  1942. #endif //TMC2130
  1943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1944. st_synchronize();
  1945. #ifdef TMC2130
  1946. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1947. if (pstep) pstep[i] = mscnt >> 4;
  1948. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1949. #endif //TMC2130
  1950. }
  1951. endstops_hit_on_purpose();
  1952. enable_endstops(false);
  1953. #ifdef TMC2130
  1954. uint8_t orig = tmc2130_home_origin[axis];
  1955. uint8_t back = tmc2130_home_bsteps[axis];
  1956. if (tmc2130_home_enabled && (orig <= 63))
  1957. {
  1958. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1959. if (back > 0)
  1960. tmc2130_do_steps(axis, back, 1, 1000);
  1961. }
  1962. else
  1963. tmc2130_do_steps(axis, 8, 2, 1000);
  1964. tmc2130_home_exit();
  1965. #endif //TMC2130
  1966. axis_is_at_home(axis);
  1967. axis_known_position[axis] = true;
  1968. // Move from minimum
  1969. #ifdef TMC2130
  1970. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1971. #else //TMC2130
  1972. float dist = 0.01f * 64;
  1973. #endif //TMC2130
  1974. current_position[axis] -= dist;
  1975. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1976. current_position[axis] += dist;
  1977. destination[axis] = current_position[axis];
  1978. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1979. st_synchronize();
  1980. feedrate = 0.0;
  1981. }
  1982. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1983. {
  1984. #ifdef TMC2130
  1985. FORCE_HIGH_POWER_START;
  1986. #endif
  1987. int axis_home_dir = home_dir(axis);
  1988. current_position[axis] = 0;
  1989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1990. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1991. feedrate = homing_feedrate[axis];
  1992. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1993. st_synchronize();
  1994. #ifdef TMC2130
  1995. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1996. FORCE_HIGH_POWER_END;
  1997. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1998. return;
  1999. }
  2000. #endif //TMC2130
  2001. current_position[axis] = 0;
  2002. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2003. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2004. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2005. st_synchronize();
  2006. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2007. feedrate = homing_feedrate[axis]/2 ;
  2008. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2009. st_synchronize();
  2010. #ifdef TMC2130
  2011. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2012. FORCE_HIGH_POWER_END;
  2013. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2014. return;
  2015. }
  2016. #endif //TMC2130
  2017. axis_is_at_home(axis);
  2018. destination[axis] = current_position[axis];
  2019. feedrate = 0.0;
  2020. endstops_hit_on_purpose();
  2021. axis_known_position[axis] = true;
  2022. #ifdef TMC2130
  2023. FORCE_HIGH_POWER_END;
  2024. #endif
  2025. }
  2026. enable_endstops(endstops_enabled);
  2027. }
  2028. /**/
  2029. void home_xy()
  2030. {
  2031. set_destination_to_current();
  2032. homeaxis(X_AXIS);
  2033. homeaxis(Y_AXIS);
  2034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2035. endstops_hit_on_purpose();
  2036. }
  2037. void refresh_cmd_timeout(void)
  2038. {
  2039. previous_millis_cmd = millis();
  2040. }
  2041. #ifdef FWRETRACT
  2042. void retract(bool retracting, bool swapretract = false) {
  2043. if(retracting && !retracted[active_extruder]) {
  2044. destination[X_AXIS]=current_position[X_AXIS];
  2045. destination[Y_AXIS]=current_position[Y_AXIS];
  2046. destination[Z_AXIS]=current_position[Z_AXIS];
  2047. destination[E_AXIS]=current_position[E_AXIS];
  2048. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2049. plan_set_e_position(current_position[E_AXIS]);
  2050. float oldFeedrate = feedrate;
  2051. feedrate=retract_feedrate*60;
  2052. retracted[active_extruder]=true;
  2053. prepare_move();
  2054. current_position[Z_AXIS]-=retract_zlift;
  2055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2056. prepare_move();
  2057. feedrate = oldFeedrate;
  2058. } else if(!retracting && retracted[active_extruder]) {
  2059. destination[X_AXIS]=current_position[X_AXIS];
  2060. destination[Y_AXIS]=current_position[Y_AXIS];
  2061. destination[Z_AXIS]=current_position[Z_AXIS];
  2062. destination[E_AXIS]=current_position[E_AXIS];
  2063. current_position[Z_AXIS]+=retract_zlift;
  2064. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2065. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2066. plan_set_e_position(current_position[E_AXIS]);
  2067. float oldFeedrate = feedrate;
  2068. feedrate=retract_recover_feedrate*60;
  2069. retracted[active_extruder]=false;
  2070. prepare_move();
  2071. feedrate = oldFeedrate;
  2072. }
  2073. } //retract
  2074. #endif //FWRETRACT
  2075. void trace() {
  2076. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2077. tone(BEEPER, 440);
  2078. delay(25);
  2079. noTone(BEEPER);
  2080. delay(20);
  2081. }
  2082. /*
  2083. void ramming() {
  2084. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2085. if (current_temperature[0] < 230) {
  2086. //PLA
  2087. max_feedrate[E_AXIS] = 50;
  2088. //current_position[E_AXIS] -= 8;
  2089. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2090. //current_position[E_AXIS] += 8;
  2091. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2092. current_position[E_AXIS] += 5.4;
  2093. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2094. current_position[E_AXIS] += 3.2;
  2095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2096. current_position[E_AXIS] += 3;
  2097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2098. st_synchronize();
  2099. max_feedrate[E_AXIS] = 80;
  2100. current_position[E_AXIS] -= 82;
  2101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2102. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2103. current_position[E_AXIS] -= 20;
  2104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2105. current_position[E_AXIS] += 5;
  2106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2107. current_position[E_AXIS] += 5;
  2108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2109. current_position[E_AXIS] -= 10;
  2110. st_synchronize();
  2111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2112. current_position[E_AXIS] += 10;
  2113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2114. current_position[E_AXIS] -= 10;
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2116. current_position[E_AXIS] += 10;
  2117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2118. current_position[E_AXIS] -= 10;
  2119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2120. st_synchronize();
  2121. }
  2122. else {
  2123. //ABS
  2124. max_feedrate[E_AXIS] = 50;
  2125. //current_position[E_AXIS] -= 8;
  2126. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2127. //current_position[E_AXIS] += 8;
  2128. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2129. current_position[E_AXIS] += 3.1;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2131. current_position[E_AXIS] += 3.1;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2133. current_position[E_AXIS] += 4;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2135. st_synchronize();
  2136. //current_position[X_AXIS] += 23; //delay
  2137. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2138. //current_position[X_AXIS] -= 23; //delay
  2139. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2140. delay(4700);
  2141. max_feedrate[E_AXIS] = 80;
  2142. current_position[E_AXIS] -= 92;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2144. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2145. current_position[E_AXIS] -= 5;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2147. current_position[E_AXIS] += 5;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2149. current_position[E_AXIS] -= 5;
  2150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2151. st_synchronize();
  2152. current_position[E_AXIS] += 5;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2154. current_position[E_AXIS] -= 5;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2156. current_position[E_AXIS] += 5;
  2157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2158. current_position[E_AXIS] -= 5;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2160. st_synchronize();
  2161. }
  2162. }
  2163. */
  2164. #ifdef TMC2130
  2165. void force_high_power_mode(bool start_high_power_section) {
  2166. uint8_t silent;
  2167. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2168. if (silent == 1) {
  2169. //we are in silent mode, set to normal mode to enable crash detection
  2170. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2171. st_synchronize();
  2172. cli();
  2173. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2174. update_mode_profile();
  2175. tmc2130_init();
  2176. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2177. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2178. st_reset_timer();
  2179. sei();
  2180. }
  2181. }
  2182. #endif //TMC2130
  2183. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2184. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2185. }
  2186. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2187. st_synchronize();
  2188. #if 0
  2189. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2190. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2191. #endif
  2192. // Flag for the display update routine and to disable the print cancelation during homing.
  2193. homing_flag = true;
  2194. // Which axes should be homed?
  2195. bool home_x = home_x_axis;
  2196. bool home_y = home_y_axis;
  2197. bool home_z = home_z_axis;
  2198. // Either all X,Y,Z codes are present, or none of them.
  2199. bool home_all_axes = home_x == home_y && home_x == home_z;
  2200. if (home_all_axes)
  2201. // No X/Y/Z code provided means to home all axes.
  2202. home_x = home_y = home_z = true;
  2203. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2204. if (home_all_axes) {
  2205. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2206. feedrate = homing_feedrate[Z_AXIS];
  2207. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2208. st_synchronize();
  2209. }
  2210. #ifdef ENABLE_AUTO_BED_LEVELING
  2211. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2212. #endif //ENABLE_AUTO_BED_LEVELING
  2213. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2214. // the planner will not perform any adjustments in the XY plane.
  2215. // Wait for the motors to stop and update the current position with the absolute values.
  2216. world2machine_revert_to_uncorrected();
  2217. // For mesh bed leveling deactivate the matrix temporarily.
  2218. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2219. // in a single axis only.
  2220. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2221. #ifdef MESH_BED_LEVELING
  2222. uint8_t mbl_was_active = mbl.active;
  2223. mbl.active = 0;
  2224. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2225. #endif
  2226. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2227. // consumed during the first movements following this statement.
  2228. if (home_z)
  2229. babystep_undo();
  2230. saved_feedrate = feedrate;
  2231. saved_feedmultiply = feedmultiply;
  2232. feedmultiply = 100;
  2233. previous_millis_cmd = millis();
  2234. enable_endstops(true);
  2235. memcpy(destination, current_position, sizeof(destination));
  2236. feedrate = 0.0;
  2237. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2238. if(home_z)
  2239. homeaxis(Z_AXIS);
  2240. #endif
  2241. #ifdef QUICK_HOME
  2242. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2243. if(home_x && home_y) //first diagonal move
  2244. {
  2245. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2246. int x_axis_home_dir = home_dir(X_AXIS);
  2247. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2248. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2249. feedrate = homing_feedrate[X_AXIS];
  2250. if(homing_feedrate[Y_AXIS]<feedrate)
  2251. feedrate = homing_feedrate[Y_AXIS];
  2252. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2253. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2254. } else {
  2255. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2256. }
  2257. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2258. st_synchronize();
  2259. axis_is_at_home(X_AXIS);
  2260. axis_is_at_home(Y_AXIS);
  2261. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2262. destination[X_AXIS] = current_position[X_AXIS];
  2263. destination[Y_AXIS] = current_position[Y_AXIS];
  2264. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2265. feedrate = 0.0;
  2266. st_synchronize();
  2267. endstops_hit_on_purpose();
  2268. current_position[X_AXIS] = destination[X_AXIS];
  2269. current_position[Y_AXIS] = destination[Y_AXIS];
  2270. current_position[Z_AXIS] = destination[Z_AXIS];
  2271. }
  2272. #endif /* QUICK_HOME */
  2273. #ifdef TMC2130
  2274. if(home_x)
  2275. {
  2276. if (!calib)
  2277. homeaxis(X_AXIS);
  2278. else
  2279. tmc2130_home_calibrate(X_AXIS);
  2280. }
  2281. if(home_y)
  2282. {
  2283. if (!calib)
  2284. homeaxis(Y_AXIS);
  2285. else
  2286. tmc2130_home_calibrate(Y_AXIS);
  2287. }
  2288. #endif //TMC2130
  2289. if(home_x_axis && home_x_value != 0)
  2290. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2291. if(home_y_axis && home_y_value != 0)
  2292. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2293. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2294. #ifndef Z_SAFE_HOMING
  2295. if(home_z) {
  2296. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2297. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2298. feedrate = max_feedrate[Z_AXIS];
  2299. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2300. st_synchronize();
  2301. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2302. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2303. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2304. {
  2305. homeaxis(X_AXIS);
  2306. homeaxis(Y_AXIS);
  2307. }
  2308. // 1st mesh bed leveling measurement point, corrected.
  2309. world2machine_initialize();
  2310. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2311. world2machine_reset();
  2312. if (destination[Y_AXIS] < Y_MIN_POS)
  2313. destination[Y_AXIS] = Y_MIN_POS;
  2314. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2315. feedrate = homing_feedrate[Z_AXIS]/10;
  2316. current_position[Z_AXIS] = 0;
  2317. enable_endstops(false);
  2318. #ifdef DEBUG_BUILD
  2319. SERIAL_ECHOLNPGM("plan_set_position()");
  2320. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2321. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2322. #endif
  2323. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2324. #ifdef DEBUG_BUILD
  2325. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2326. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2327. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2328. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2329. #endif
  2330. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2331. st_synchronize();
  2332. current_position[X_AXIS] = destination[X_AXIS];
  2333. current_position[Y_AXIS] = destination[Y_AXIS];
  2334. enable_endstops(true);
  2335. endstops_hit_on_purpose();
  2336. homeaxis(Z_AXIS);
  2337. #else // MESH_BED_LEVELING
  2338. homeaxis(Z_AXIS);
  2339. #endif // MESH_BED_LEVELING
  2340. }
  2341. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2342. if(home_all_axes) {
  2343. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2344. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2345. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2346. feedrate = XY_TRAVEL_SPEED/60;
  2347. current_position[Z_AXIS] = 0;
  2348. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2349. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2350. st_synchronize();
  2351. current_position[X_AXIS] = destination[X_AXIS];
  2352. current_position[Y_AXIS] = destination[Y_AXIS];
  2353. homeaxis(Z_AXIS);
  2354. }
  2355. // Let's see if X and Y are homed and probe is inside bed area.
  2356. if(home_z) {
  2357. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2358. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2359. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2360. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2361. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2362. current_position[Z_AXIS] = 0;
  2363. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2364. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2365. feedrate = max_feedrate[Z_AXIS];
  2366. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2367. st_synchronize();
  2368. homeaxis(Z_AXIS);
  2369. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2370. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2371. SERIAL_ECHO_START;
  2372. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2373. } else {
  2374. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2375. SERIAL_ECHO_START;
  2376. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2377. }
  2378. }
  2379. #endif // Z_SAFE_HOMING
  2380. #endif // Z_HOME_DIR < 0
  2381. if(home_z_axis && home_z_value != 0)
  2382. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2383. #ifdef ENABLE_AUTO_BED_LEVELING
  2384. if(home_z)
  2385. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2386. #endif
  2387. // Set the planner and stepper routine positions.
  2388. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2389. // contains the machine coordinates.
  2390. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2391. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2392. enable_endstops(false);
  2393. #endif
  2394. feedrate = saved_feedrate;
  2395. feedmultiply = saved_feedmultiply;
  2396. previous_millis_cmd = millis();
  2397. endstops_hit_on_purpose();
  2398. #ifndef MESH_BED_LEVELING
  2399. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2400. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2401. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2402. lcd_adjust_z();
  2403. #endif
  2404. // Load the machine correction matrix
  2405. world2machine_initialize();
  2406. // and correct the current_position XY axes to match the transformed coordinate system.
  2407. world2machine_update_current();
  2408. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2409. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2410. {
  2411. if (! home_z && mbl_was_active) {
  2412. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2413. mbl.active = true;
  2414. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2415. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2416. }
  2417. }
  2418. else
  2419. {
  2420. st_synchronize();
  2421. homing_flag = false;
  2422. }
  2423. #endif
  2424. if (farm_mode) { prusa_statistics(20); };
  2425. homing_flag = false;
  2426. #if 0
  2427. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2428. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2429. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2430. #endif
  2431. }
  2432. void adjust_bed_reset()
  2433. {
  2434. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2435. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2436. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2437. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2438. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2439. }
  2440. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2441. {
  2442. bool final_result = false;
  2443. #ifdef TMC2130
  2444. FORCE_HIGH_POWER_START;
  2445. #endif // TMC2130
  2446. // Only Z calibration?
  2447. if (!onlyZ)
  2448. {
  2449. setTargetBed(0);
  2450. setAllTargetHotends(0);
  2451. adjust_bed_reset(); //reset bed level correction
  2452. }
  2453. // Disable the default update procedure of the display. We will do a modal dialog.
  2454. lcd_update_enable(false);
  2455. // Let the planner use the uncorrected coordinates.
  2456. mbl.reset();
  2457. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2458. // the planner will not perform any adjustments in the XY plane.
  2459. // Wait for the motors to stop and update the current position with the absolute values.
  2460. world2machine_revert_to_uncorrected();
  2461. // Reset the baby step value applied without moving the axes.
  2462. babystep_reset();
  2463. // Mark all axes as in a need for homing.
  2464. memset(axis_known_position, 0, sizeof(axis_known_position));
  2465. // Home in the XY plane.
  2466. //set_destination_to_current();
  2467. setup_for_endstop_move();
  2468. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2469. home_xy();
  2470. enable_endstops(false);
  2471. current_position[X_AXIS] += 5;
  2472. current_position[Y_AXIS] += 5;
  2473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2474. st_synchronize();
  2475. // Let the user move the Z axes up to the end stoppers.
  2476. #ifdef TMC2130
  2477. if (calibrate_z_auto())
  2478. {
  2479. #else //TMC2130
  2480. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2481. {
  2482. #endif //TMC2130
  2483. refresh_cmd_timeout();
  2484. #ifndef STEEL_SHEET
  2485. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2486. {
  2487. lcd_wait_for_cool_down();
  2488. }
  2489. #endif //STEEL_SHEET
  2490. if(!onlyZ)
  2491. {
  2492. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2493. #ifdef STEEL_SHEET
  2494. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2495. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2496. #endif //STEEL_SHEET
  2497. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2498. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2499. KEEPALIVE_STATE(IN_HANDLER);
  2500. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2501. lcd_set_cursor(0, 2);
  2502. lcd_print(1);
  2503. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2504. }
  2505. // Move the print head close to the bed.
  2506. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2507. bool endstops_enabled = enable_endstops(true);
  2508. #ifdef TMC2130
  2509. tmc2130_home_enter(Z_AXIS_MASK);
  2510. #endif //TMC2130
  2511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2512. st_synchronize();
  2513. #ifdef TMC2130
  2514. tmc2130_home_exit();
  2515. #endif //TMC2130
  2516. enable_endstops(endstops_enabled);
  2517. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2518. {
  2519. int8_t verbosity_level = 0;
  2520. if (code_seen('V'))
  2521. {
  2522. // Just 'V' without a number counts as V1.
  2523. char c = strchr_pointer[1];
  2524. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2525. }
  2526. if (onlyZ)
  2527. {
  2528. clean_up_after_endstop_move();
  2529. // Z only calibration.
  2530. // Load the machine correction matrix
  2531. world2machine_initialize();
  2532. // and correct the current_position to match the transformed coordinate system.
  2533. world2machine_update_current();
  2534. //FIXME
  2535. bool result = sample_mesh_and_store_reference();
  2536. if (result)
  2537. {
  2538. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2539. // Shipped, the nozzle height has been set already. The user can start printing now.
  2540. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2541. final_result = true;
  2542. // babystep_apply();
  2543. }
  2544. }
  2545. else
  2546. {
  2547. // Reset the baby step value and the baby step applied flag.
  2548. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2549. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2550. // Complete XYZ calibration.
  2551. uint8_t point_too_far_mask = 0;
  2552. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2553. clean_up_after_endstop_move();
  2554. // Print head up.
  2555. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2557. st_synchronize();
  2558. //#ifndef NEW_XYZCAL
  2559. if (result >= 0)
  2560. {
  2561. #ifdef HEATBED_V2
  2562. sample_z();
  2563. #else //HEATBED_V2
  2564. point_too_far_mask = 0;
  2565. // Second half: The fine adjustment.
  2566. // Let the planner use the uncorrected coordinates.
  2567. mbl.reset();
  2568. world2machine_reset();
  2569. // Home in the XY plane.
  2570. setup_for_endstop_move();
  2571. home_xy();
  2572. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2573. clean_up_after_endstop_move();
  2574. // Print head up.
  2575. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2577. st_synchronize();
  2578. // if (result >= 0) babystep_apply();
  2579. #endif //HEATBED_V2
  2580. }
  2581. //#endif //NEW_XYZCAL
  2582. lcd_update_enable(true);
  2583. lcd_update(2);
  2584. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2585. if (result >= 0)
  2586. {
  2587. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2588. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2589. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2590. final_result = true;
  2591. }
  2592. }
  2593. #ifdef TMC2130
  2594. tmc2130_home_exit();
  2595. #endif
  2596. }
  2597. else
  2598. {
  2599. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2600. final_result = false;
  2601. }
  2602. }
  2603. else
  2604. {
  2605. // Timeouted.
  2606. }
  2607. lcd_update_enable(true);
  2608. #ifdef TMC2130
  2609. FORCE_HIGH_POWER_END;
  2610. #endif // TMC2130
  2611. return final_result;
  2612. }
  2613. void gcode_M114()
  2614. {
  2615. SERIAL_PROTOCOLPGM("X:");
  2616. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2617. SERIAL_PROTOCOLPGM(" Y:");
  2618. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2619. SERIAL_PROTOCOLPGM(" Z:");
  2620. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2621. SERIAL_PROTOCOLPGM(" E:");
  2622. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2623. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2624. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2625. SERIAL_PROTOCOLPGM(" Y:");
  2626. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2627. SERIAL_PROTOCOLPGM(" Z:");
  2628. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2629. SERIAL_PROTOCOLPGM(" E:");
  2630. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2631. SERIAL_PROTOCOLLN("");
  2632. }
  2633. void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float e_shift_late) {
  2634. st_synchronize();
  2635. float lastpos[4];
  2636. if (farm_mode)
  2637. {
  2638. prusa_statistics(22);
  2639. }
  2640. //First backup current position and settings
  2641. feedmultiplyBckp=feedmultiply;
  2642. HotendTempBckp = degTargetHotend(active_extruder);
  2643. fanSpeedBckp = fanSpeed;
  2644. lastpos[X_AXIS]=current_position[X_AXIS];
  2645. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2646. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2647. lastpos[E_AXIS]=current_position[E_AXIS];
  2648. //Retract E
  2649. current_position[E_AXIS]+= e_shift;
  2650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2651. st_synchronize();
  2652. //Lift Z
  2653. current_position[Z_AXIS]+= z_shift;
  2654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2655. st_synchronize();
  2656. //Move XY to side
  2657. current_position[X_AXIS]= x_position;
  2658. current_position[Y_AXIS]= y_position;
  2659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2660. st_synchronize();
  2661. //Beep, manage nozzle heater and wait for user to start unload filament
  2662. if(!automatic) M600_wait_for_user();
  2663. lcd_change_fil_state = 0;
  2664. // Unload filament
  2665. if (mmu_enabled)
  2666. extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2667. else
  2668. unload_filament(); //unload filament for single material (used also in M702)
  2669. //finish moves
  2670. st_synchronize();
  2671. if (!mmu_enabled)
  2672. {
  2673. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2674. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2675. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2676. lcd_update_enable(true);
  2677. }
  2678. if (mmu_enabled)
  2679. mmu_M600_load_filament(automatic);
  2680. else
  2681. M600_load_filament();
  2682. if(!automatic) M600_check_state();
  2683. //Not let's go back to print
  2684. fanSpeed = fanSpeedBckp;
  2685. //Feed a little of filament to stabilize pressure
  2686. if (!automatic) {
  2687. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2689. }
  2690. //Move XY back
  2691. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2692. st_synchronize();
  2693. //Move Z back
  2694. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2695. st_synchronize();
  2696. //Unretract
  2697. current_position[E_AXIS]= current_position[E_AXIS] - e_shift;
  2698. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2699. st_synchronize();
  2700. //Set E position to original
  2701. plan_set_e_position(lastpos[E_AXIS]);
  2702. memcpy(current_position, lastpos, sizeof(lastpos));
  2703. memcpy(destination, current_position, sizeof(current_position));
  2704. //Recover feed rate
  2705. feedmultiply=feedmultiplyBckp;
  2706. char cmd[9];
  2707. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2708. enquecommand(cmd);
  2709. lcd_setstatuspgm(_T(WELCOME_MSG));
  2710. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2711. }
  2712. void gcode_M701()
  2713. {
  2714. printf_P(PSTR("gcode_M701 begin\n"));
  2715. if (mmu_enabled)
  2716. extr_adj(mmu_extruder);//loads current extruder
  2717. else
  2718. {
  2719. enable_z();
  2720. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2721. #ifdef FILAMENT_SENSOR
  2722. fsensor_oq_meassure_start(40);
  2723. #endif //FILAMENT_SENSOR
  2724. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2725. current_position[E_AXIS] += 40;
  2726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2727. st_synchronize();
  2728. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2729. current_position[E_AXIS] += 30;
  2730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2731. st_synchronize();
  2732. current_position[E_AXIS] += 25;
  2733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2734. st_synchronize();
  2735. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2736. delay_keep_alive(50);
  2737. noTone(BEEPER);
  2738. if (!farm_mode && loading_flag) {
  2739. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2740. while (!clean) {
  2741. lcd_update_enable(true);
  2742. lcd_update(2);
  2743. current_position[E_AXIS] += 25;
  2744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2745. st_synchronize();
  2746. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2747. }
  2748. }
  2749. lcd_update_enable(true);
  2750. lcd_update(2);
  2751. lcd_setstatuspgm(_T(WELCOME_MSG));
  2752. disable_z();
  2753. loading_flag = false;
  2754. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2755. #ifdef FILAMENT_SENSOR
  2756. fsensor_oq_meassure_stop();
  2757. if (!fsensor_oq_result())
  2758. {
  2759. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2760. lcd_update_enable(true);
  2761. lcd_update(2);
  2762. if (disable)
  2763. fsensor_disable();
  2764. }
  2765. #endif //FILAMENT_SENSOR
  2766. }
  2767. }
  2768. /**
  2769. * @brief Get serial number from 32U2 processor
  2770. *
  2771. * Typical format of S/N is:CZPX0917X003XC13518
  2772. *
  2773. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2774. *
  2775. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2776. * reply is transmitted to serial port 1 character by character.
  2777. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2778. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2779. * in any case.
  2780. */
  2781. static void gcode_PRUSA_SN()
  2782. {
  2783. if (farm_mode) {
  2784. selectedSerialPort = 0;
  2785. putchar(';');
  2786. putchar('S');
  2787. int numbersRead = 0;
  2788. ShortTimer timeout;
  2789. timeout.start();
  2790. while (numbersRead < 19) {
  2791. while (MSerial.available() > 0) {
  2792. uint8_t serial_char = MSerial.read();
  2793. selectedSerialPort = 1;
  2794. putchar(serial_char);
  2795. numbersRead++;
  2796. selectedSerialPort = 0;
  2797. }
  2798. if (timeout.expired(100u)) break;
  2799. }
  2800. selectedSerialPort = 1;
  2801. putchar('\n');
  2802. #if 0
  2803. for (int b = 0; b < 3; b++) {
  2804. tone(BEEPER, 110);
  2805. delay(50);
  2806. noTone(BEEPER);
  2807. delay(50);
  2808. }
  2809. #endif
  2810. } else {
  2811. puts_P(_N("Not in farm mode."));
  2812. }
  2813. }
  2814. #ifdef BACKLASH_X
  2815. extern uint8_t st_backlash_x;
  2816. #endif //BACKLASH_X
  2817. #ifdef BACKLASH_Y
  2818. extern uint8_t st_backlash_y;
  2819. #endif //BACKLASH_Y
  2820. void process_commands()
  2821. {
  2822. if (!buflen) return; //empty command
  2823. #ifdef FILAMENT_RUNOUT_SUPPORT
  2824. SET_INPUT(FR_SENS);
  2825. #endif
  2826. #ifdef CMDBUFFER_DEBUG
  2827. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2828. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2829. SERIAL_ECHOLNPGM("");
  2830. SERIAL_ECHOPGM("In cmdqueue: ");
  2831. SERIAL_ECHO(buflen);
  2832. SERIAL_ECHOLNPGM("");
  2833. #endif /* CMDBUFFER_DEBUG */
  2834. unsigned long codenum; //throw away variable
  2835. char *starpos = NULL;
  2836. #ifdef ENABLE_AUTO_BED_LEVELING
  2837. float x_tmp, y_tmp, z_tmp, real_z;
  2838. #endif
  2839. // PRUSA GCODES
  2840. KEEPALIVE_STATE(IN_HANDLER);
  2841. #ifdef SNMM
  2842. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2843. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2844. int8_t SilentMode;
  2845. #endif
  2846. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2847. starpos = (strchr(strchr_pointer + 5, '*'));
  2848. if (starpos != NULL)
  2849. *(starpos) = '\0';
  2850. lcd_setstatus(strchr_pointer + 5);
  2851. }
  2852. #ifdef TMC2130
  2853. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2854. {
  2855. if(code_seen("CRASH_DETECTED"))
  2856. {
  2857. uint8_t mask = 0;
  2858. if (code_seen('X')) mask |= X_AXIS_MASK;
  2859. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2860. crashdet_detected(mask);
  2861. }
  2862. else if(code_seen("CRASH_RECOVER"))
  2863. crashdet_recover();
  2864. else if(code_seen("CRASH_CANCEL"))
  2865. crashdet_cancel();
  2866. }
  2867. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2868. {
  2869. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2870. {
  2871. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2872. axis = (axis == 'E')?3:(axis - 'X');
  2873. if (axis < 4)
  2874. {
  2875. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2876. tmc2130_set_wave(axis, 247, fac);
  2877. }
  2878. }
  2879. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2880. {
  2881. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2882. axis = (axis == 'E')?3:(axis - 'X');
  2883. if (axis < 4)
  2884. {
  2885. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2886. uint16_t res = tmc2130_get_res(axis);
  2887. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2888. }
  2889. }
  2890. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2891. {
  2892. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2893. axis = (axis == 'E')?3:(axis - 'X');
  2894. if (axis < 4)
  2895. {
  2896. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2897. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2898. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2899. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2900. char* str_end = 0;
  2901. if (CMDBUFFER_CURRENT_STRING[14])
  2902. {
  2903. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2904. if (str_end && *str_end)
  2905. {
  2906. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2907. if (str_end && *str_end)
  2908. {
  2909. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2910. if (str_end && *str_end)
  2911. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2912. }
  2913. }
  2914. }
  2915. tmc2130_chopper_config[axis].toff = chop0;
  2916. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2917. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2918. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2919. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2920. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2921. }
  2922. }
  2923. }
  2924. #ifdef BACKLASH_X
  2925. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2926. {
  2927. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2928. st_backlash_x = bl;
  2929. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2930. }
  2931. #endif //BACKLASH_X
  2932. #ifdef BACKLASH_Y
  2933. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2934. {
  2935. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2936. st_backlash_y = bl;
  2937. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2938. }
  2939. #endif //BACKLASH_Y
  2940. #endif //TMC2130
  2941. else if(code_seen("PRUSA")){
  2942. if (code_seen("Ping")) { //PRUSA Ping
  2943. if (farm_mode) {
  2944. PingTime = millis();
  2945. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2946. }
  2947. }
  2948. else if (code_seen("PRN")) {
  2949. printf_P(_N("%d"), status_number);
  2950. }else if (code_seen("FAN")) {
  2951. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2952. }else if (code_seen("fn")) {
  2953. if (farm_mode) {
  2954. printf_P(_N("%d"), farm_no);
  2955. }
  2956. else {
  2957. puts_P(_N("Not in farm mode."));
  2958. }
  2959. }
  2960. else if (code_seen("thx"))
  2961. {
  2962. no_response = false;
  2963. }
  2964. else if (code_seen("uvlo"))
  2965. {
  2966. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2967. enquecommand_P(PSTR("M24"));
  2968. }
  2969. else if (code_seen("MMURES"))
  2970. {
  2971. mmu_reset();
  2972. }
  2973. else if (code_seen("RESET")) {
  2974. // careful!
  2975. if (farm_mode) {
  2976. #ifdef WATCHDOG
  2977. boot_app_magic = BOOT_APP_MAGIC;
  2978. boot_app_flags = BOOT_APP_FLG_RUN;
  2979. wdt_enable(WDTO_15MS);
  2980. cli();
  2981. while(1);
  2982. #else //WATCHDOG
  2983. asm volatile("jmp 0x3E000");
  2984. #endif //WATCHDOG
  2985. }
  2986. else {
  2987. MYSERIAL.println("Not in farm mode.");
  2988. }
  2989. }else if (code_seen("fv")) {
  2990. // get file version
  2991. #ifdef SDSUPPORT
  2992. card.openFile(strchr_pointer + 3,true);
  2993. while (true) {
  2994. uint16_t readByte = card.get();
  2995. MYSERIAL.write(readByte);
  2996. if (readByte=='\n') {
  2997. break;
  2998. }
  2999. }
  3000. card.closefile();
  3001. #endif // SDSUPPORT
  3002. } else if (code_seen("M28")) {
  3003. trace();
  3004. prusa_sd_card_upload = true;
  3005. card.openFile(strchr_pointer+4,false);
  3006. } else if (code_seen("SN")) {
  3007. gcode_PRUSA_SN();
  3008. } else if(code_seen("Fir")){
  3009. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3010. } else if(code_seen("Rev")){
  3011. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3012. } else if(code_seen("Lang")) {
  3013. lang_reset();
  3014. } else if(code_seen("Lz")) {
  3015. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3016. } else if(code_seen("Beat")) {
  3017. // Kick farm link timer
  3018. kicktime = millis();
  3019. } else if(code_seen("FR")) {
  3020. // Factory full reset
  3021. factory_reset(0,true);
  3022. }
  3023. //else if (code_seen('Cal')) {
  3024. // lcd_calibration();
  3025. // }
  3026. }
  3027. else if (code_seen('^')) {
  3028. // nothing, this is a version line
  3029. } else if(code_seen('G'))
  3030. {
  3031. gcode_in_progress = (int)code_value();
  3032. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3033. switch (gcode_in_progress)
  3034. {
  3035. case 0: // G0 -> G1
  3036. case 1: // G1
  3037. if(Stopped == false) {
  3038. #ifdef FILAMENT_RUNOUT_SUPPORT
  3039. if(READ(FR_SENS)){
  3040. feedmultiplyBckp=feedmultiply;
  3041. float target[4];
  3042. float lastpos[4];
  3043. target[X_AXIS]=current_position[X_AXIS];
  3044. target[Y_AXIS]=current_position[Y_AXIS];
  3045. target[Z_AXIS]=current_position[Z_AXIS];
  3046. target[E_AXIS]=current_position[E_AXIS];
  3047. lastpos[X_AXIS]=current_position[X_AXIS];
  3048. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3049. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3050. lastpos[E_AXIS]=current_position[E_AXIS];
  3051. //retract by E
  3052. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3054. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3056. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3057. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3059. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3061. //finish moves
  3062. st_synchronize();
  3063. //disable extruder steppers so filament can be removed
  3064. disable_e0();
  3065. disable_e1();
  3066. disable_e2();
  3067. delay(100);
  3068. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3069. uint8_t cnt=0;
  3070. int counterBeep = 0;
  3071. lcd_wait_interact();
  3072. while(!lcd_clicked()){
  3073. cnt++;
  3074. manage_heater();
  3075. manage_inactivity(true);
  3076. //lcd_update(0);
  3077. if(cnt==0)
  3078. {
  3079. #if BEEPER > 0
  3080. if (counterBeep== 500){
  3081. counterBeep = 0;
  3082. }
  3083. SET_OUTPUT(BEEPER);
  3084. if (counterBeep== 0){
  3085. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3086. WRITE(BEEPER,HIGH);
  3087. }
  3088. if (counterBeep== 20){
  3089. WRITE(BEEPER,LOW);
  3090. }
  3091. counterBeep++;
  3092. #else
  3093. #endif
  3094. }
  3095. }
  3096. WRITE(BEEPER,LOW);
  3097. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3098. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3099. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3100. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3101. lcd_change_fil_state = 0;
  3102. lcd_loading_filament();
  3103. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3104. lcd_change_fil_state = 0;
  3105. lcd_alright();
  3106. switch(lcd_change_fil_state){
  3107. case 2:
  3108. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3109. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3110. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3111. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3112. lcd_loading_filament();
  3113. break;
  3114. case 3:
  3115. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3117. lcd_loading_color();
  3118. break;
  3119. default:
  3120. lcd_change_success();
  3121. break;
  3122. }
  3123. }
  3124. target[E_AXIS]+= 5;
  3125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3126. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3128. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3129. //plan_set_e_position(current_position[E_AXIS]);
  3130. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3131. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3132. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3133. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3134. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3135. plan_set_e_position(lastpos[E_AXIS]);
  3136. feedmultiply=feedmultiplyBckp;
  3137. char cmd[9];
  3138. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3139. enquecommand(cmd);
  3140. }
  3141. #endif
  3142. get_coordinates(); // For X Y Z E F
  3143. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3144. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3145. }
  3146. #ifdef FWRETRACT
  3147. if(autoretract_enabled)
  3148. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3149. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3150. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3151. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3152. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3153. retract(!retracted[active_extruder]);
  3154. return;
  3155. }
  3156. }
  3157. #endif //FWRETRACT
  3158. prepare_move();
  3159. //ClearToSend();
  3160. }
  3161. break;
  3162. case 2: // G2 - CW ARC
  3163. if(Stopped == false) {
  3164. get_arc_coordinates();
  3165. prepare_arc_move(true);
  3166. }
  3167. break;
  3168. case 3: // G3 - CCW ARC
  3169. if(Stopped == false) {
  3170. get_arc_coordinates();
  3171. prepare_arc_move(false);
  3172. }
  3173. break;
  3174. case 4: // G4 dwell
  3175. codenum = 0;
  3176. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3177. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3178. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3179. st_synchronize();
  3180. codenum += millis(); // keep track of when we started waiting
  3181. previous_millis_cmd = millis();
  3182. while(millis() < codenum) {
  3183. manage_heater();
  3184. manage_inactivity();
  3185. lcd_update(0);
  3186. }
  3187. break;
  3188. #ifdef FWRETRACT
  3189. case 10: // G10 retract
  3190. #if EXTRUDERS > 1
  3191. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3192. retract(true,retracted_swap[active_extruder]);
  3193. #else
  3194. retract(true);
  3195. #endif
  3196. break;
  3197. case 11: // G11 retract_recover
  3198. #if EXTRUDERS > 1
  3199. retract(false,retracted_swap[active_extruder]);
  3200. #else
  3201. retract(false);
  3202. #endif
  3203. break;
  3204. #endif //FWRETRACT
  3205. case 28: //G28 Home all Axis one at a time
  3206. {
  3207. long home_x_value = 0;
  3208. long home_y_value = 0;
  3209. long home_z_value = 0;
  3210. // Which axes should be homed?
  3211. bool home_x = code_seen(axis_codes[X_AXIS]);
  3212. home_x_value = code_value_long();
  3213. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3214. home_y_value = code_value_long();
  3215. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3216. home_z_value = code_value_long();
  3217. bool without_mbl = code_seen('W');
  3218. // calibrate?
  3219. bool calib = code_seen('C');
  3220. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3221. if ((home_x || home_y || without_mbl || home_z) == false) {
  3222. // Push the commands to the front of the message queue in the reverse order!
  3223. // There shall be always enough space reserved for these commands.
  3224. goto case_G80;
  3225. }
  3226. break;
  3227. }
  3228. #ifdef ENABLE_AUTO_BED_LEVELING
  3229. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3230. {
  3231. #if Z_MIN_PIN == -1
  3232. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3233. #endif
  3234. // Prevent user from running a G29 without first homing in X and Y
  3235. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3236. {
  3237. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3238. SERIAL_ECHO_START;
  3239. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3240. break; // abort G29, since we don't know where we are
  3241. }
  3242. st_synchronize();
  3243. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3244. //vector_3 corrected_position = plan_get_position_mm();
  3245. //corrected_position.debug("position before G29");
  3246. plan_bed_level_matrix.set_to_identity();
  3247. vector_3 uncorrected_position = plan_get_position();
  3248. //uncorrected_position.debug("position durring G29");
  3249. current_position[X_AXIS] = uncorrected_position.x;
  3250. current_position[Y_AXIS] = uncorrected_position.y;
  3251. current_position[Z_AXIS] = uncorrected_position.z;
  3252. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3253. setup_for_endstop_move();
  3254. feedrate = homing_feedrate[Z_AXIS];
  3255. #ifdef AUTO_BED_LEVELING_GRID
  3256. // probe at the points of a lattice grid
  3257. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3258. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3259. // solve the plane equation ax + by + d = z
  3260. // A is the matrix with rows [x y 1] for all the probed points
  3261. // B is the vector of the Z positions
  3262. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3263. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3264. // "A" matrix of the linear system of equations
  3265. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3266. // "B" vector of Z points
  3267. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3268. int probePointCounter = 0;
  3269. bool zig = true;
  3270. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3271. {
  3272. int xProbe, xInc;
  3273. if (zig)
  3274. {
  3275. xProbe = LEFT_PROBE_BED_POSITION;
  3276. //xEnd = RIGHT_PROBE_BED_POSITION;
  3277. xInc = xGridSpacing;
  3278. zig = false;
  3279. } else // zag
  3280. {
  3281. xProbe = RIGHT_PROBE_BED_POSITION;
  3282. //xEnd = LEFT_PROBE_BED_POSITION;
  3283. xInc = -xGridSpacing;
  3284. zig = true;
  3285. }
  3286. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3287. {
  3288. float z_before;
  3289. if (probePointCounter == 0)
  3290. {
  3291. // raise before probing
  3292. z_before = Z_RAISE_BEFORE_PROBING;
  3293. } else
  3294. {
  3295. // raise extruder
  3296. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3297. }
  3298. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3299. eqnBVector[probePointCounter] = measured_z;
  3300. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3301. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3302. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3303. probePointCounter++;
  3304. xProbe += xInc;
  3305. }
  3306. }
  3307. clean_up_after_endstop_move();
  3308. // solve lsq problem
  3309. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3310. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3311. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3312. SERIAL_PROTOCOLPGM(" b: ");
  3313. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3314. SERIAL_PROTOCOLPGM(" d: ");
  3315. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3316. set_bed_level_equation_lsq(plane_equation_coefficients);
  3317. free(plane_equation_coefficients);
  3318. #else // AUTO_BED_LEVELING_GRID not defined
  3319. // Probe at 3 arbitrary points
  3320. // probe 1
  3321. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3322. // probe 2
  3323. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3324. // probe 3
  3325. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3326. clean_up_after_endstop_move();
  3327. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3328. #endif // AUTO_BED_LEVELING_GRID
  3329. st_synchronize();
  3330. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3331. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3332. // When the bed is uneven, this height must be corrected.
  3333. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3334. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3335. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3336. z_tmp = current_position[Z_AXIS];
  3337. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3338. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3339. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3340. }
  3341. break;
  3342. #ifndef Z_PROBE_SLED
  3343. case 30: // G30 Single Z Probe
  3344. {
  3345. st_synchronize();
  3346. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3347. setup_for_endstop_move();
  3348. feedrate = homing_feedrate[Z_AXIS];
  3349. run_z_probe();
  3350. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3351. SERIAL_PROTOCOLPGM(" X: ");
  3352. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3353. SERIAL_PROTOCOLPGM(" Y: ");
  3354. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3355. SERIAL_PROTOCOLPGM(" Z: ");
  3356. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3357. SERIAL_PROTOCOLPGM("\n");
  3358. clean_up_after_endstop_move();
  3359. }
  3360. break;
  3361. #else
  3362. case 31: // dock the sled
  3363. dock_sled(true);
  3364. break;
  3365. case 32: // undock the sled
  3366. dock_sled(false);
  3367. break;
  3368. #endif // Z_PROBE_SLED
  3369. #endif // ENABLE_AUTO_BED_LEVELING
  3370. #ifdef MESH_BED_LEVELING
  3371. case 30: // G30 Single Z Probe
  3372. {
  3373. st_synchronize();
  3374. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3375. setup_for_endstop_move();
  3376. feedrate = homing_feedrate[Z_AXIS];
  3377. find_bed_induction_sensor_point_z(-10.f, 3);
  3378. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3379. clean_up_after_endstop_move();
  3380. }
  3381. break;
  3382. case 75:
  3383. {
  3384. for (int i = 40; i <= 110; i++)
  3385. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3386. }
  3387. break;
  3388. case 76: //PINDA probe temperature calibration
  3389. {
  3390. #ifdef PINDA_THERMISTOR
  3391. if (true)
  3392. {
  3393. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3394. //we need to know accurate position of first calibration point
  3395. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3396. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3397. break;
  3398. }
  3399. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3400. {
  3401. // We don't know where we are! HOME!
  3402. // Push the commands to the front of the message queue in the reverse order!
  3403. // There shall be always enough space reserved for these commands.
  3404. repeatcommand_front(); // repeat G76 with all its parameters
  3405. enquecommand_front_P((PSTR("G28 W0")));
  3406. break;
  3407. }
  3408. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3409. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3410. if (result)
  3411. {
  3412. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3414. current_position[Z_AXIS] = 50;
  3415. current_position[Y_AXIS] = 180;
  3416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3417. st_synchronize();
  3418. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3419. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3420. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3422. st_synchronize();
  3423. gcode_G28(false, false, true);
  3424. }
  3425. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3426. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3427. current_position[Z_AXIS] = 100;
  3428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3429. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3430. lcd_temp_cal_show_result(false);
  3431. break;
  3432. }
  3433. }
  3434. lcd_update_enable(true);
  3435. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3436. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3437. float zero_z;
  3438. int z_shift = 0; //unit: steps
  3439. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3440. if (start_temp < 35) start_temp = 35;
  3441. if (start_temp < current_temperature_pinda) start_temp += 5;
  3442. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3443. // setTargetHotend(200, 0);
  3444. setTargetBed(70 + (start_temp - 30));
  3445. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3446. custom_message_state = 1;
  3447. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3448. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3450. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3451. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3453. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3455. st_synchronize();
  3456. while (current_temperature_pinda < start_temp)
  3457. {
  3458. delay_keep_alive(1000);
  3459. serialecho_temperatures();
  3460. }
  3461. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3462. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3464. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3465. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3467. st_synchronize();
  3468. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3469. if (find_z_result == false) {
  3470. lcd_temp_cal_show_result(find_z_result);
  3471. break;
  3472. }
  3473. zero_z = current_position[Z_AXIS];
  3474. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3475. int i = -1; for (; i < 5; i++)
  3476. {
  3477. float temp = (40 + i * 5);
  3478. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3479. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3480. if (start_temp <= temp) break;
  3481. }
  3482. for (i++; i < 5; i++)
  3483. {
  3484. float temp = (40 + i * 5);
  3485. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3486. custom_message_state = i + 2;
  3487. setTargetBed(50 + 10 * (temp - 30) / 5);
  3488. // setTargetHotend(255, 0);
  3489. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3491. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3492. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3494. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. st_synchronize();
  3497. while (current_temperature_pinda < temp)
  3498. {
  3499. delay_keep_alive(1000);
  3500. serialecho_temperatures();
  3501. }
  3502. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3504. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3505. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3507. st_synchronize();
  3508. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3509. if (find_z_result == false) {
  3510. lcd_temp_cal_show_result(find_z_result);
  3511. break;
  3512. }
  3513. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3514. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3515. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3516. }
  3517. lcd_temp_cal_show_result(true);
  3518. break;
  3519. }
  3520. #endif //PINDA_THERMISTOR
  3521. setTargetBed(PINDA_MIN_T);
  3522. float zero_z;
  3523. int z_shift = 0; //unit: steps
  3524. int t_c; // temperature
  3525. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3526. // We don't know where we are! HOME!
  3527. // Push the commands to the front of the message queue in the reverse order!
  3528. // There shall be always enough space reserved for these commands.
  3529. repeatcommand_front(); // repeat G76 with all its parameters
  3530. enquecommand_front_P((PSTR("G28 W0")));
  3531. break;
  3532. }
  3533. puts_P(_N("PINDA probe calibration start"));
  3534. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3535. custom_message_state = 1;
  3536. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3537. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3538. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3539. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3541. st_synchronize();
  3542. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3543. delay_keep_alive(1000);
  3544. serialecho_temperatures();
  3545. }
  3546. //enquecommand_P(PSTR("M190 S50"));
  3547. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3548. delay_keep_alive(1000);
  3549. serialecho_temperatures();
  3550. }
  3551. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3552. current_position[Z_AXIS] = 5;
  3553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3554. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3555. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3557. st_synchronize();
  3558. find_bed_induction_sensor_point_z(-1.f);
  3559. zero_z = current_position[Z_AXIS];
  3560. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3561. for (int i = 0; i<5; i++) {
  3562. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3563. custom_message_state = i + 2;
  3564. t_c = 60 + i * 10;
  3565. setTargetBed(t_c);
  3566. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3567. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3568. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3570. st_synchronize();
  3571. while (degBed() < t_c) {
  3572. delay_keep_alive(1000);
  3573. serialecho_temperatures();
  3574. }
  3575. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3576. delay_keep_alive(1000);
  3577. serialecho_temperatures();
  3578. }
  3579. current_position[Z_AXIS] = 5;
  3580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3581. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3582. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3584. st_synchronize();
  3585. find_bed_induction_sensor_point_z(-1.f);
  3586. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3587. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3588. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3589. }
  3590. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3591. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3592. puts_P(_N("Temperature calibration done."));
  3593. disable_x();
  3594. disable_y();
  3595. disable_z();
  3596. disable_e0();
  3597. disable_e1();
  3598. disable_e2();
  3599. setTargetBed(0); //set bed target temperature back to 0
  3600. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3601. temp_cal_active = true;
  3602. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3603. lcd_update_enable(true);
  3604. lcd_update(2);
  3605. }
  3606. break;
  3607. #ifdef DIS
  3608. case 77:
  3609. {
  3610. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3611. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3612. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3613. float dimension_x = 40;
  3614. float dimension_y = 40;
  3615. int points_x = 40;
  3616. int points_y = 40;
  3617. float offset_x = 74;
  3618. float offset_y = 33;
  3619. if (code_seen('X')) dimension_x = code_value();
  3620. if (code_seen('Y')) dimension_y = code_value();
  3621. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3622. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3623. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3624. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3625. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3626. } break;
  3627. #endif
  3628. case 79: {
  3629. for (int i = 255; i > 0; i = i - 5) {
  3630. fanSpeed = i;
  3631. //delay_keep_alive(2000);
  3632. for (int j = 0; j < 100; j++) {
  3633. delay_keep_alive(100);
  3634. }
  3635. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3636. }
  3637. }break;
  3638. /**
  3639. * G80: Mesh-based Z probe, probes a grid and produces a
  3640. * mesh to compensate for variable bed height
  3641. *
  3642. * The S0 report the points as below
  3643. *
  3644. * +----> X-axis
  3645. * |
  3646. * |
  3647. * v Y-axis
  3648. *
  3649. */
  3650. case 80:
  3651. #ifdef MK1BP
  3652. break;
  3653. #endif //MK1BP
  3654. case_G80:
  3655. {
  3656. mesh_bed_leveling_flag = true;
  3657. static bool run = false;
  3658. #ifdef SUPPORT_VERBOSITY
  3659. int8_t verbosity_level = 0;
  3660. if (code_seen('V')) {
  3661. // Just 'V' without a number counts as V1.
  3662. char c = strchr_pointer[1];
  3663. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3664. }
  3665. #endif //SUPPORT_VERBOSITY
  3666. // Firstly check if we know where we are
  3667. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3668. // We don't know where we are! HOME!
  3669. // Push the commands to the front of the message queue in the reverse order!
  3670. // There shall be always enough space reserved for these commands.
  3671. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3672. repeatcommand_front(); // repeat G80 with all its parameters
  3673. enquecommand_front_P((PSTR("G28 W0")));
  3674. }
  3675. else {
  3676. mesh_bed_leveling_flag = false;
  3677. }
  3678. break;
  3679. }
  3680. bool temp_comp_start = true;
  3681. #ifdef PINDA_THERMISTOR
  3682. temp_comp_start = false;
  3683. #endif //PINDA_THERMISTOR
  3684. if (temp_comp_start)
  3685. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3686. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3687. temp_compensation_start();
  3688. run = true;
  3689. repeatcommand_front(); // repeat G80 with all its parameters
  3690. enquecommand_front_P((PSTR("G28 W0")));
  3691. }
  3692. else {
  3693. mesh_bed_leveling_flag = false;
  3694. }
  3695. break;
  3696. }
  3697. run = false;
  3698. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3699. mesh_bed_leveling_flag = false;
  3700. break;
  3701. }
  3702. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3703. unsigned int custom_message_type_old = custom_message_type;
  3704. unsigned int custom_message_state_old = custom_message_state;
  3705. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3706. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3707. lcd_update(1);
  3708. mbl.reset(); //reset mesh bed leveling
  3709. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3710. // consumed during the first movements following this statement.
  3711. babystep_undo();
  3712. // Cycle through all points and probe them
  3713. // First move up. During this first movement, the babystepping will be reverted.
  3714. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3716. // The move to the first calibration point.
  3717. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3718. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3719. #ifdef SUPPORT_VERBOSITY
  3720. if (verbosity_level >= 1)
  3721. {
  3722. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3723. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3724. }
  3725. #endif //SUPPORT_VERBOSITY
  3726. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3728. // Wait until the move is finished.
  3729. st_synchronize();
  3730. int mesh_point = 0; //index number of calibration point
  3731. int ix = 0;
  3732. int iy = 0;
  3733. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3734. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3735. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3736. #ifdef SUPPORT_VERBOSITY
  3737. if (verbosity_level >= 1) {
  3738. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3739. }
  3740. #endif // SUPPORT_VERBOSITY
  3741. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3742. const char *kill_message = NULL;
  3743. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3744. // Get coords of a measuring point.
  3745. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3746. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3747. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3748. float z0 = 0.f;
  3749. if (has_z && mesh_point > 0) {
  3750. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3751. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3752. //#if 0
  3753. #ifdef SUPPORT_VERBOSITY
  3754. if (verbosity_level >= 1) {
  3755. SERIAL_ECHOLNPGM("");
  3756. SERIAL_ECHOPGM("Bed leveling, point: ");
  3757. MYSERIAL.print(mesh_point);
  3758. SERIAL_ECHOPGM(", calibration z: ");
  3759. MYSERIAL.print(z0, 5);
  3760. SERIAL_ECHOLNPGM("");
  3761. }
  3762. #endif // SUPPORT_VERBOSITY
  3763. //#endif
  3764. }
  3765. // Move Z up to MESH_HOME_Z_SEARCH.
  3766. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3768. st_synchronize();
  3769. // Move to XY position of the sensor point.
  3770. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3771. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3772. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3773. #ifdef SUPPORT_VERBOSITY
  3774. if (verbosity_level >= 1) {
  3775. SERIAL_PROTOCOL(mesh_point);
  3776. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3777. }
  3778. #endif // SUPPORT_VERBOSITY
  3779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3780. st_synchronize();
  3781. // Go down until endstop is hit
  3782. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3783. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3784. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3785. break;
  3786. }
  3787. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3788. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3789. break;
  3790. }
  3791. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3792. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3793. break;
  3794. }
  3795. #ifdef SUPPORT_VERBOSITY
  3796. if (verbosity_level >= 10) {
  3797. SERIAL_ECHOPGM("X: ");
  3798. MYSERIAL.print(current_position[X_AXIS], 5);
  3799. SERIAL_ECHOLNPGM("");
  3800. SERIAL_ECHOPGM("Y: ");
  3801. MYSERIAL.print(current_position[Y_AXIS], 5);
  3802. SERIAL_PROTOCOLPGM("\n");
  3803. }
  3804. #endif // SUPPORT_VERBOSITY
  3805. float offset_z = 0;
  3806. #ifdef PINDA_THERMISTOR
  3807. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3808. #endif //PINDA_THERMISTOR
  3809. // #ifdef SUPPORT_VERBOSITY
  3810. /* if (verbosity_level >= 1)
  3811. {
  3812. SERIAL_ECHOPGM("mesh bed leveling: ");
  3813. MYSERIAL.print(current_position[Z_AXIS], 5);
  3814. SERIAL_ECHOPGM(" offset: ");
  3815. MYSERIAL.print(offset_z, 5);
  3816. SERIAL_ECHOLNPGM("");
  3817. }*/
  3818. // #endif // SUPPORT_VERBOSITY
  3819. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3820. custom_message_state--;
  3821. mesh_point++;
  3822. lcd_update(1);
  3823. }
  3824. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3825. #ifdef SUPPORT_VERBOSITY
  3826. if (verbosity_level >= 20) {
  3827. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3828. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3829. MYSERIAL.print(current_position[Z_AXIS], 5);
  3830. }
  3831. #endif // SUPPORT_VERBOSITY
  3832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3833. st_synchronize();
  3834. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3835. kill(kill_message);
  3836. SERIAL_ECHOLNPGM("killed");
  3837. }
  3838. clean_up_after_endstop_move();
  3839. // SERIAL_ECHOLNPGM("clean up finished ");
  3840. bool apply_temp_comp = true;
  3841. #ifdef PINDA_THERMISTOR
  3842. apply_temp_comp = false;
  3843. #endif
  3844. if (apply_temp_comp)
  3845. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3846. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3847. // SERIAL_ECHOLNPGM("babystep applied");
  3848. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3849. #ifdef SUPPORT_VERBOSITY
  3850. if (verbosity_level >= 1) {
  3851. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3852. }
  3853. #endif // SUPPORT_VERBOSITY
  3854. for (uint8_t i = 0; i < 4; ++i) {
  3855. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3856. long correction = 0;
  3857. if (code_seen(codes[i]))
  3858. correction = code_value_long();
  3859. else if (eeprom_bed_correction_valid) {
  3860. unsigned char *addr = (i < 2) ?
  3861. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3862. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3863. correction = eeprom_read_int8(addr);
  3864. }
  3865. if (correction == 0)
  3866. continue;
  3867. float offset = float(correction) * 0.001f;
  3868. if (fabs(offset) > 0.101f) {
  3869. SERIAL_ERROR_START;
  3870. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3871. SERIAL_ECHO(offset);
  3872. SERIAL_ECHOLNPGM(" microns");
  3873. }
  3874. else {
  3875. switch (i) {
  3876. case 0:
  3877. for (uint8_t row = 0; row < 3; ++row) {
  3878. mbl.z_values[row][1] += 0.5f * offset;
  3879. mbl.z_values[row][0] += offset;
  3880. }
  3881. break;
  3882. case 1:
  3883. for (uint8_t row = 0; row < 3; ++row) {
  3884. mbl.z_values[row][1] += 0.5f * offset;
  3885. mbl.z_values[row][2] += offset;
  3886. }
  3887. break;
  3888. case 2:
  3889. for (uint8_t col = 0; col < 3; ++col) {
  3890. mbl.z_values[1][col] += 0.5f * offset;
  3891. mbl.z_values[0][col] += offset;
  3892. }
  3893. break;
  3894. case 3:
  3895. for (uint8_t col = 0; col < 3; ++col) {
  3896. mbl.z_values[1][col] += 0.5f * offset;
  3897. mbl.z_values[2][col] += offset;
  3898. }
  3899. break;
  3900. }
  3901. }
  3902. }
  3903. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3904. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3905. // SERIAL_ECHOLNPGM("Upsample finished");
  3906. mbl.active = 1; //activate mesh bed leveling
  3907. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3908. go_home_with_z_lift();
  3909. // SERIAL_ECHOLNPGM("Go home finished");
  3910. //unretract (after PINDA preheat retraction)
  3911. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3912. current_position[E_AXIS] += default_retraction;
  3913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3914. }
  3915. KEEPALIVE_STATE(NOT_BUSY);
  3916. // Restore custom message state
  3917. lcd_setstatuspgm(_T(WELCOME_MSG));
  3918. custom_message_type = custom_message_type_old;
  3919. custom_message_state = custom_message_state_old;
  3920. mesh_bed_leveling_flag = false;
  3921. mesh_bed_run_from_menu = false;
  3922. lcd_update(2);
  3923. }
  3924. break;
  3925. /**
  3926. * G81: Print mesh bed leveling status and bed profile if activated
  3927. */
  3928. case 81:
  3929. if (mbl.active) {
  3930. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3931. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3932. SERIAL_PROTOCOLPGM(",");
  3933. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3934. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3935. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3936. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3937. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3938. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3939. SERIAL_PROTOCOLPGM(" ");
  3940. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3941. }
  3942. SERIAL_PROTOCOLPGM("\n");
  3943. }
  3944. }
  3945. else
  3946. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3947. break;
  3948. #if 0
  3949. /**
  3950. * G82: Single Z probe at current location
  3951. *
  3952. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3953. *
  3954. */
  3955. case 82:
  3956. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3957. setup_for_endstop_move();
  3958. find_bed_induction_sensor_point_z();
  3959. clean_up_after_endstop_move();
  3960. SERIAL_PROTOCOLPGM("Bed found at: ");
  3961. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3962. SERIAL_PROTOCOLPGM("\n");
  3963. break;
  3964. /**
  3965. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3966. */
  3967. case 83:
  3968. {
  3969. int babystepz = code_seen('S') ? code_value() : 0;
  3970. int BabyPosition = code_seen('P') ? code_value() : 0;
  3971. if (babystepz != 0) {
  3972. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3973. // Is the axis indexed starting with zero or one?
  3974. if (BabyPosition > 4) {
  3975. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3976. }else{
  3977. // Save it to the eeprom
  3978. babystepLoadZ = babystepz;
  3979. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3980. // adjust the Z
  3981. babystepsTodoZadd(babystepLoadZ);
  3982. }
  3983. }
  3984. }
  3985. break;
  3986. /**
  3987. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3988. */
  3989. case 84:
  3990. babystepsTodoZsubtract(babystepLoadZ);
  3991. // babystepLoadZ = 0;
  3992. break;
  3993. /**
  3994. * G85: Prusa3D specific: Pick best babystep
  3995. */
  3996. case 85:
  3997. lcd_pick_babystep();
  3998. break;
  3999. #endif
  4000. /**
  4001. * G86: Prusa3D specific: Disable babystep correction after home.
  4002. * This G-code will be performed at the start of a calibration script.
  4003. */
  4004. case 86:
  4005. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4006. break;
  4007. /**
  4008. * G87: Prusa3D specific: Enable babystep correction after home
  4009. * This G-code will be performed at the end of a calibration script.
  4010. */
  4011. case 87:
  4012. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4013. break;
  4014. /**
  4015. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4016. */
  4017. case 88:
  4018. break;
  4019. #endif // ENABLE_MESH_BED_LEVELING
  4020. case 90: // G90
  4021. relative_mode = false;
  4022. break;
  4023. case 91: // G91
  4024. relative_mode = true;
  4025. break;
  4026. case 92: // G92
  4027. if(!code_seen(axis_codes[E_AXIS]))
  4028. st_synchronize();
  4029. for(int8_t i=0; i < NUM_AXIS; i++) {
  4030. if(code_seen(axis_codes[i])) {
  4031. if(i == E_AXIS) {
  4032. current_position[i] = code_value();
  4033. plan_set_e_position(current_position[E_AXIS]);
  4034. }
  4035. else {
  4036. current_position[i] = code_value()+add_homing[i];
  4037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4038. }
  4039. }
  4040. }
  4041. break;
  4042. case 98: // G98 (activate farm mode)
  4043. farm_mode = 1;
  4044. PingTime = millis();
  4045. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4046. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4047. SilentModeMenu = SILENT_MODE_OFF;
  4048. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4049. break;
  4050. case 99: // G99 (deactivate farm mode)
  4051. farm_mode = 0;
  4052. lcd_printer_connected();
  4053. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4054. lcd_update(2);
  4055. break;
  4056. default:
  4057. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4058. }
  4059. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4060. gcode_in_progress = 0;
  4061. } // end if(code_seen('G'))
  4062. else if(code_seen('M'))
  4063. {
  4064. int index;
  4065. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4066. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4067. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4068. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4069. } else
  4070. {
  4071. mcode_in_progress = (int)code_value();
  4072. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4073. switch(mcode_in_progress)
  4074. {
  4075. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4076. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4077. {
  4078. char *src = strchr_pointer + 2;
  4079. codenum = 0;
  4080. bool hasP = false, hasS = false;
  4081. if (code_seen('P')) {
  4082. codenum = code_value(); // milliseconds to wait
  4083. hasP = codenum > 0;
  4084. }
  4085. if (code_seen('S')) {
  4086. codenum = code_value() * 1000; // seconds to wait
  4087. hasS = codenum > 0;
  4088. }
  4089. starpos = strchr(src, '*');
  4090. if (starpos != NULL) *(starpos) = '\0';
  4091. while (*src == ' ') ++src;
  4092. if (!hasP && !hasS && *src != '\0') {
  4093. lcd_setstatus(src);
  4094. } else {
  4095. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4096. }
  4097. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4098. st_synchronize();
  4099. previous_millis_cmd = millis();
  4100. if (codenum > 0){
  4101. codenum += millis(); // keep track of when we started waiting
  4102. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4103. while(millis() < codenum && !lcd_clicked()){
  4104. manage_heater();
  4105. manage_inactivity(true);
  4106. lcd_update(0);
  4107. }
  4108. KEEPALIVE_STATE(IN_HANDLER);
  4109. lcd_ignore_click(false);
  4110. }else{
  4111. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4112. while(!lcd_clicked()){
  4113. manage_heater();
  4114. manage_inactivity(true);
  4115. lcd_update(0);
  4116. }
  4117. KEEPALIVE_STATE(IN_HANDLER);
  4118. }
  4119. if (IS_SD_PRINTING)
  4120. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4121. else
  4122. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4123. }
  4124. break;
  4125. case 17:
  4126. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4127. enable_x();
  4128. enable_y();
  4129. enable_z();
  4130. enable_e0();
  4131. enable_e1();
  4132. enable_e2();
  4133. break;
  4134. #ifdef SDSUPPORT
  4135. case 20: // M20 - list SD card
  4136. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4137. card.ls();
  4138. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4139. break;
  4140. case 21: // M21 - init SD card
  4141. card.initsd();
  4142. break;
  4143. case 22: //M22 - release SD card
  4144. card.release();
  4145. break;
  4146. case 23: //M23 - Select file
  4147. starpos = (strchr(strchr_pointer + 4,'*'));
  4148. if(starpos!=NULL)
  4149. *(starpos)='\0';
  4150. card.openFile(strchr_pointer + 4,true);
  4151. break;
  4152. case 24: //M24 - Start SD print
  4153. if (!card.paused)
  4154. failstats_reset_print();
  4155. card.startFileprint();
  4156. starttime=millis();
  4157. break;
  4158. case 25: //M25 - Pause SD print
  4159. card.pauseSDPrint();
  4160. break;
  4161. case 26: //M26 - Set SD index
  4162. if(card.cardOK && code_seen('S')) {
  4163. card.setIndex(code_value_long());
  4164. }
  4165. break;
  4166. case 27: //M27 - Get SD status
  4167. card.getStatus();
  4168. break;
  4169. case 28: //M28 - Start SD write
  4170. starpos = (strchr(strchr_pointer + 4,'*'));
  4171. if(starpos != NULL){
  4172. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4173. strchr_pointer = strchr(npos,' ') + 1;
  4174. *(starpos) = '\0';
  4175. }
  4176. card.openFile(strchr_pointer+4,false);
  4177. break;
  4178. case 29: //M29 - Stop SD write
  4179. //processed in write to file routine above
  4180. //card,saving = false;
  4181. break;
  4182. case 30: //M30 <filename> Delete File
  4183. if (card.cardOK){
  4184. card.closefile();
  4185. starpos = (strchr(strchr_pointer + 4,'*'));
  4186. if(starpos != NULL){
  4187. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4188. strchr_pointer = strchr(npos,' ') + 1;
  4189. *(starpos) = '\0';
  4190. }
  4191. card.removeFile(strchr_pointer + 4);
  4192. }
  4193. break;
  4194. case 32: //M32 - Select file and start SD print
  4195. {
  4196. if(card.sdprinting) {
  4197. st_synchronize();
  4198. }
  4199. starpos = (strchr(strchr_pointer + 4,'*'));
  4200. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4201. if(namestartpos==NULL)
  4202. {
  4203. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4204. }
  4205. else
  4206. namestartpos++; //to skip the '!'
  4207. if(starpos!=NULL)
  4208. *(starpos)='\0';
  4209. bool call_procedure=(code_seen('P'));
  4210. if(strchr_pointer>namestartpos)
  4211. call_procedure=false; //false alert, 'P' found within filename
  4212. if( card.cardOK )
  4213. {
  4214. card.openFile(namestartpos,true,!call_procedure);
  4215. if(code_seen('S'))
  4216. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4217. card.setIndex(code_value_long());
  4218. card.startFileprint();
  4219. if(!call_procedure)
  4220. starttime=millis(); //procedure calls count as normal print time.
  4221. }
  4222. } break;
  4223. case 928: //M928 - Start SD write
  4224. starpos = (strchr(strchr_pointer + 5,'*'));
  4225. if(starpos != NULL){
  4226. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4227. strchr_pointer = strchr(npos,' ') + 1;
  4228. *(starpos) = '\0';
  4229. }
  4230. card.openLogFile(strchr_pointer+5);
  4231. break;
  4232. #endif //SDSUPPORT
  4233. case 31: //M31 take time since the start of the SD print or an M109 command
  4234. {
  4235. stoptime=millis();
  4236. char time[30];
  4237. unsigned long t=(stoptime-starttime)/1000;
  4238. int sec,min;
  4239. min=t/60;
  4240. sec=t%60;
  4241. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4242. SERIAL_ECHO_START;
  4243. SERIAL_ECHOLN(time);
  4244. lcd_setstatus(time);
  4245. autotempShutdown();
  4246. }
  4247. break;
  4248. case 42: //M42 -Change pin status via gcode
  4249. if (code_seen('S'))
  4250. {
  4251. int pin_status = code_value();
  4252. int pin_number = LED_PIN;
  4253. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4254. pin_number = code_value();
  4255. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4256. {
  4257. if (sensitive_pins[i] == pin_number)
  4258. {
  4259. pin_number = -1;
  4260. break;
  4261. }
  4262. }
  4263. #if defined(FAN_PIN) && FAN_PIN > -1
  4264. if (pin_number == FAN_PIN)
  4265. fanSpeed = pin_status;
  4266. #endif
  4267. if (pin_number > -1)
  4268. {
  4269. pinMode(pin_number, OUTPUT);
  4270. digitalWrite(pin_number, pin_status);
  4271. analogWrite(pin_number, pin_status);
  4272. }
  4273. }
  4274. break;
  4275. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4276. // Reset the baby step value and the baby step applied flag.
  4277. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4278. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4279. // Reset the skew and offset in both RAM and EEPROM.
  4280. reset_bed_offset_and_skew();
  4281. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4282. // the planner will not perform any adjustments in the XY plane.
  4283. // Wait for the motors to stop and update the current position with the absolute values.
  4284. world2machine_revert_to_uncorrected();
  4285. break;
  4286. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4287. {
  4288. int8_t verbosity_level = 0;
  4289. bool only_Z = code_seen('Z');
  4290. #ifdef SUPPORT_VERBOSITY
  4291. if (code_seen('V'))
  4292. {
  4293. // Just 'V' without a number counts as V1.
  4294. char c = strchr_pointer[1];
  4295. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4296. }
  4297. #endif //SUPPORT_VERBOSITY
  4298. gcode_M45(only_Z, verbosity_level);
  4299. }
  4300. break;
  4301. /*
  4302. case 46:
  4303. {
  4304. // M46: Prusa3D: Show the assigned IP address.
  4305. uint8_t ip[4];
  4306. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4307. if (hasIP) {
  4308. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4309. SERIAL_ECHO(int(ip[0]));
  4310. SERIAL_ECHOPGM(".");
  4311. SERIAL_ECHO(int(ip[1]));
  4312. SERIAL_ECHOPGM(".");
  4313. SERIAL_ECHO(int(ip[2]));
  4314. SERIAL_ECHOPGM(".");
  4315. SERIAL_ECHO(int(ip[3]));
  4316. SERIAL_ECHOLNPGM("");
  4317. } else {
  4318. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4319. }
  4320. break;
  4321. }
  4322. */
  4323. case 47:
  4324. // M47: Prusa3D: Show end stops dialog on the display.
  4325. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4326. lcd_diag_show_end_stops();
  4327. KEEPALIVE_STATE(IN_HANDLER);
  4328. break;
  4329. #if 0
  4330. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4331. {
  4332. // Disable the default update procedure of the display. We will do a modal dialog.
  4333. lcd_update_enable(false);
  4334. // Let the planner use the uncorrected coordinates.
  4335. mbl.reset();
  4336. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4337. // the planner will not perform any adjustments in the XY plane.
  4338. // Wait for the motors to stop and update the current position with the absolute values.
  4339. world2machine_revert_to_uncorrected();
  4340. // Move the print head close to the bed.
  4341. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4342. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4343. st_synchronize();
  4344. // Home in the XY plane.
  4345. set_destination_to_current();
  4346. setup_for_endstop_move();
  4347. home_xy();
  4348. int8_t verbosity_level = 0;
  4349. if (code_seen('V')) {
  4350. // Just 'V' without a number counts as V1.
  4351. char c = strchr_pointer[1];
  4352. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4353. }
  4354. bool success = scan_bed_induction_points(verbosity_level);
  4355. clean_up_after_endstop_move();
  4356. // Print head up.
  4357. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4359. st_synchronize();
  4360. lcd_update_enable(true);
  4361. break;
  4362. }
  4363. #endif
  4364. // M48 Z-Probe repeatability measurement function.
  4365. //
  4366. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4367. //
  4368. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4369. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4370. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4371. // regenerated.
  4372. //
  4373. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4374. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4375. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4376. //
  4377. #ifdef ENABLE_AUTO_BED_LEVELING
  4378. #ifdef Z_PROBE_REPEATABILITY_TEST
  4379. case 48: // M48 Z-Probe repeatability
  4380. {
  4381. #if Z_MIN_PIN == -1
  4382. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4383. #endif
  4384. double sum=0.0;
  4385. double mean=0.0;
  4386. double sigma=0.0;
  4387. double sample_set[50];
  4388. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4389. double X_current, Y_current, Z_current;
  4390. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4391. if (code_seen('V') || code_seen('v')) {
  4392. verbose_level = code_value();
  4393. if (verbose_level<0 || verbose_level>4 ) {
  4394. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4395. goto Sigma_Exit;
  4396. }
  4397. }
  4398. if (verbose_level > 0) {
  4399. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4400. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4401. }
  4402. if (code_seen('n')) {
  4403. n_samples = code_value();
  4404. if (n_samples<4 || n_samples>50 ) {
  4405. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4406. goto Sigma_Exit;
  4407. }
  4408. }
  4409. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4410. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4411. Z_current = st_get_position_mm(Z_AXIS);
  4412. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4413. ext_position = st_get_position_mm(E_AXIS);
  4414. if (code_seen('X') || code_seen('x') ) {
  4415. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4416. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4417. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4418. goto Sigma_Exit;
  4419. }
  4420. }
  4421. if (code_seen('Y') || code_seen('y') ) {
  4422. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4423. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4424. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4425. goto Sigma_Exit;
  4426. }
  4427. }
  4428. if (code_seen('L') || code_seen('l') ) {
  4429. n_legs = code_value();
  4430. if ( n_legs==1 )
  4431. n_legs = 2;
  4432. if ( n_legs<0 || n_legs>15 ) {
  4433. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4434. goto Sigma_Exit;
  4435. }
  4436. }
  4437. //
  4438. // Do all the preliminary setup work. First raise the probe.
  4439. //
  4440. st_synchronize();
  4441. plan_bed_level_matrix.set_to_identity();
  4442. plan_buffer_line( X_current, Y_current, Z_start_location,
  4443. ext_position,
  4444. homing_feedrate[Z_AXIS]/60,
  4445. active_extruder);
  4446. st_synchronize();
  4447. //
  4448. // Now get everything to the specified probe point So we can safely do a probe to
  4449. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4450. // use that as a starting point for each probe.
  4451. //
  4452. if (verbose_level > 2)
  4453. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4454. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4455. ext_position,
  4456. homing_feedrate[X_AXIS]/60,
  4457. active_extruder);
  4458. st_synchronize();
  4459. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4460. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4461. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4462. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4463. //
  4464. // OK, do the inital probe to get us close to the bed.
  4465. // Then retrace the right amount and use that in subsequent probes
  4466. //
  4467. setup_for_endstop_move();
  4468. run_z_probe();
  4469. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4470. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4471. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4472. ext_position,
  4473. homing_feedrate[X_AXIS]/60,
  4474. active_extruder);
  4475. st_synchronize();
  4476. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4477. for( n=0; n<n_samples; n++) {
  4478. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4479. if ( n_legs) {
  4480. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4481. int rotational_direction, l;
  4482. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4483. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4484. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4485. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4486. //SERIAL_ECHOPAIR(" theta: ",theta);
  4487. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4488. //SERIAL_PROTOCOLLNPGM("");
  4489. for( l=0; l<n_legs-1; l++) {
  4490. if (rotational_direction==1)
  4491. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4492. else
  4493. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4494. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4495. if ( radius<0.0 )
  4496. radius = -radius;
  4497. X_current = X_probe_location + cos(theta) * radius;
  4498. Y_current = Y_probe_location + sin(theta) * radius;
  4499. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4500. X_current = X_MIN_POS;
  4501. if ( X_current>X_MAX_POS)
  4502. X_current = X_MAX_POS;
  4503. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4504. Y_current = Y_MIN_POS;
  4505. if ( Y_current>Y_MAX_POS)
  4506. Y_current = Y_MAX_POS;
  4507. if (verbose_level>3 ) {
  4508. SERIAL_ECHOPAIR("x: ", X_current);
  4509. SERIAL_ECHOPAIR("y: ", Y_current);
  4510. SERIAL_PROTOCOLLNPGM("");
  4511. }
  4512. do_blocking_move_to( X_current, Y_current, Z_current );
  4513. }
  4514. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4515. }
  4516. setup_for_endstop_move();
  4517. run_z_probe();
  4518. sample_set[n] = current_position[Z_AXIS];
  4519. //
  4520. // Get the current mean for the data points we have so far
  4521. //
  4522. sum=0.0;
  4523. for( j=0; j<=n; j++) {
  4524. sum = sum + sample_set[j];
  4525. }
  4526. mean = sum / (double (n+1));
  4527. //
  4528. // Now, use that mean to calculate the standard deviation for the
  4529. // data points we have so far
  4530. //
  4531. sum=0.0;
  4532. for( j=0; j<=n; j++) {
  4533. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4534. }
  4535. sigma = sqrt( sum / (double (n+1)) );
  4536. if (verbose_level > 1) {
  4537. SERIAL_PROTOCOL(n+1);
  4538. SERIAL_PROTOCOL(" of ");
  4539. SERIAL_PROTOCOL(n_samples);
  4540. SERIAL_PROTOCOLPGM(" z: ");
  4541. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4542. }
  4543. if (verbose_level > 2) {
  4544. SERIAL_PROTOCOL(" mean: ");
  4545. SERIAL_PROTOCOL_F(mean,6);
  4546. SERIAL_PROTOCOL(" sigma: ");
  4547. SERIAL_PROTOCOL_F(sigma,6);
  4548. }
  4549. if (verbose_level > 0)
  4550. SERIAL_PROTOCOLPGM("\n");
  4551. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4552. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4553. st_synchronize();
  4554. }
  4555. delay(1000);
  4556. clean_up_after_endstop_move();
  4557. // enable_endstops(true);
  4558. if (verbose_level > 0) {
  4559. SERIAL_PROTOCOLPGM("Mean: ");
  4560. SERIAL_PROTOCOL_F(mean, 6);
  4561. SERIAL_PROTOCOLPGM("\n");
  4562. }
  4563. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4564. SERIAL_PROTOCOL_F(sigma, 6);
  4565. SERIAL_PROTOCOLPGM("\n\n");
  4566. Sigma_Exit:
  4567. break;
  4568. }
  4569. #endif // Z_PROBE_REPEATABILITY_TEST
  4570. #endif // ENABLE_AUTO_BED_LEVELING
  4571. case 73: //M73 show percent done and time remaining
  4572. if(code_seen('P')) print_percent_done_normal = code_value();
  4573. if(code_seen('R')) print_time_remaining_normal = code_value();
  4574. if(code_seen('Q')) print_percent_done_silent = code_value();
  4575. if(code_seen('S')) print_time_remaining_silent = code_value();
  4576. {
  4577. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4578. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4579. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4580. }
  4581. break;
  4582. case 104: // M104
  4583. if(setTargetedHotend(104)){
  4584. break;
  4585. }
  4586. if (code_seen('S'))
  4587. {
  4588. setTargetHotendSafe(code_value(), tmp_extruder);
  4589. }
  4590. setWatch();
  4591. break;
  4592. case 112: // M112 -Emergency Stop
  4593. kill(_n(""), 3);
  4594. break;
  4595. case 140: // M140 set bed temp
  4596. if (code_seen('S')) setTargetBed(code_value());
  4597. break;
  4598. case 105 : // M105
  4599. if(setTargetedHotend(105)){
  4600. break;
  4601. }
  4602. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4603. SERIAL_PROTOCOLPGM("ok T:");
  4604. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4605. SERIAL_PROTOCOLPGM(" /");
  4606. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4607. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4608. SERIAL_PROTOCOLPGM(" B:");
  4609. SERIAL_PROTOCOL_F(degBed(),1);
  4610. SERIAL_PROTOCOLPGM(" /");
  4611. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4612. #endif //TEMP_BED_PIN
  4613. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4614. SERIAL_PROTOCOLPGM(" T");
  4615. SERIAL_PROTOCOL(cur_extruder);
  4616. SERIAL_PROTOCOLPGM(":");
  4617. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4618. SERIAL_PROTOCOLPGM(" /");
  4619. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4620. }
  4621. #else
  4622. SERIAL_ERROR_START;
  4623. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4624. #endif
  4625. SERIAL_PROTOCOLPGM(" @:");
  4626. #ifdef EXTRUDER_WATTS
  4627. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4628. SERIAL_PROTOCOLPGM("W");
  4629. #else
  4630. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4631. #endif
  4632. SERIAL_PROTOCOLPGM(" B@:");
  4633. #ifdef BED_WATTS
  4634. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4635. SERIAL_PROTOCOLPGM("W");
  4636. #else
  4637. SERIAL_PROTOCOL(getHeaterPower(-1));
  4638. #endif
  4639. #ifdef PINDA_THERMISTOR
  4640. SERIAL_PROTOCOLPGM(" P:");
  4641. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4642. #endif //PINDA_THERMISTOR
  4643. #ifdef AMBIENT_THERMISTOR
  4644. SERIAL_PROTOCOLPGM(" A:");
  4645. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4646. #endif //AMBIENT_THERMISTOR
  4647. #ifdef SHOW_TEMP_ADC_VALUES
  4648. {float raw = 0.0;
  4649. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4650. SERIAL_PROTOCOLPGM(" ADC B:");
  4651. SERIAL_PROTOCOL_F(degBed(),1);
  4652. SERIAL_PROTOCOLPGM("C->");
  4653. raw = rawBedTemp();
  4654. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4655. SERIAL_PROTOCOLPGM(" Rb->");
  4656. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4657. SERIAL_PROTOCOLPGM(" Rxb->");
  4658. SERIAL_PROTOCOL_F(raw, 5);
  4659. #endif
  4660. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4661. SERIAL_PROTOCOLPGM(" T");
  4662. SERIAL_PROTOCOL(cur_extruder);
  4663. SERIAL_PROTOCOLPGM(":");
  4664. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4665. SERIAL_PROTOCOLPGM("C->");
  4666. raw = rawHotendTemp(cur_extruder);
  4667. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4668. SERIAL_PROTOCOLPGM(" Rt");
  4669. SERIAL_PROTOCOL(cur_extruder);
  4670. SERIAL_PROTOCOLPGM("->");
  4671. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4672. SERIAL_PROTOCOLPGM(" Rx");
  4673. SERIAL_PROTOCOL(cur_extruder);
  4674. SERIAL_PROTOCOLPGM("->");
  4675. SERIAL_PROTOCOL_F(raw, 5);
  4676. }}
  4677. #endif
  4678. SERIAL_PROTOCOLLN("");
  4679. KEEPALIVE_STATE(NOT_BUSY);
  4680. return;
  4681. break;
  4682. case 109:
  4683. {// M109 - Wait for extruder heater to reach target.
  4684. if(setTargetedHotend(109)){
  4685. break;
  4686. }
  4687. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4688. heating_status = 1;
  4689. if (farm_mode) { prusa_statistics(1); };
  4690. #ifdef AUTOTEMP
  4691. autotemp_enabled=false;
  4692. #endif
  4693. if (code_seen('S')) {
  4694. setTargetHotendSafe(code_value(), tmp_extruder);
  4695. CooldownNoWait = true;
  4696. } else if (code_seen('R')) {
  4697. setTargetHotendSafe(code_value(), tmp_extruder);
  4698. CooldownNoWait = false;
  4699. }
  4700. #ifdef AUTOTEMP
  4701. if (code_seen('S')) autotemp_min=code_value();
  4702. if (code_seen('B')) autotemp_max=code_value();
  4703. if (code_seen('F'))
  4704. {
  4705. autotemp_factor=code_value();
  4706. autotemp_enabled=true;
  4707. }
  4708. #endif
  4709. setWatch();
  4710. codenum = millis();
  4711. /* See if we are heating up or cooling down */
  4712. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4713. KEEPALIVE_STATE(NOT_BUSY);
  4714. cancel_heatup = false;
  4715. wait_for_heater(codenum); //loops until target temperature is reached
  4716. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4717. KEEPALIVE_STATE(IN_HANDLER);
  4718. heating_status = 2;
  4719. if (farm_mode) { prusa_statistics(2); };
  4720. //starttime=millis();
  4721. previous_millis_cmd = millis();
  4722. }
  4723. break;
  4724. case 190: // M190 - Wait for bed heater to reach target.
  4725. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4726. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4727. heating_status = 3;
  4728. if (farm_mode) { prusa_statistics(1); };
  4729. if (code_seen('S'))
  4730. {
  4731. setTargetBed(code_value());
  4732. CooldownNoWait = true;
  4733. }
  4734. else if (code_seen('R'))
  4735. {
  4736. setTargetBed(code_value());
  4737. CooldownNoWait = false;
  4738. }
  4739. codenum = millis();
  4740. cancel_heatup = false;
  4741. target_direction = isHeatingBed(); // true if heating, false if cooling
  4742. KEEPALIVE_STATE(NOT_BUSY);
  4743. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4744. {
  4745. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4746. {
  4747. if (!farm_mode) {
  4748. float tt = degHotend(active_extruder);
  4749. SERIAL_PROTOCOLPGM("T:");
  4750. SERIAL_PROTOCOL(tt);
  4751. SERIAL_PROTOCOLPGM(" E:");
  4752. SERIAL_PROTOCOL((int)active_extruder);
  4753. SERIAL_PROTOCOLPGM(" B:");
  4754. SERIAL_PROTOCOL_F(degBed(), 1);
  4755. SERIAL_PROTOCOLLN("");
  4756. }
  4757. codenum = millis();
  4758. }
  4759. manage_heater();
  4760. manage_inactivity();
  4761. lcd_update(0);
  4762. }
  4763. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4764. KEEPALIVE_STATE(IN_HANDLER);
  4765. heating_status = 4;
  4766. previous_millis_cmd = millis();
  4767. #endif
  4768. break;
  4769. #if defined(FAN_PIN) && FAN_PIN > -1
  4770. case 106: //M106 Fan On
  4771. if (code_seen('S')){
  4772. fanSpeed=constrain(code_value(),0,255);
  4773. }
  4774. else {
  4775. fanSpeed=255;
  4776. }
  4777. break;
  4778. case 107: //M107 Fan Off
  4779. fanSpeed = 0;
  4780. break;
  4781. #endif //FAN_PIN
  4782. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4783. case 80: // M80 - Turn on Power Supply
  4784. SET_OUTPUT(PS_ON_PIN); //GND
  4785. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4786. // If you have a switch on suicide pin, this is useful
  4787. // if you want to start another print with suicide feature after
  4788. // a print without suicide...
  4789. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4790. SET_OUTPUT(SUICIDE_PIN);
  4791. WRITE(SUICIDE_PIN, HIGH);
  4792. #endif
  4793. powersupply = true;
  4794. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4795. lcd_update(0);
  4796. break;
  4797. #endif
  4798. case 81: // M81 - Turn off Power Supply
  4799. disable_heater();
  4800. st_synchronize();
  4801. disable_e0();
  4802. disable_e1();
  4803. disable_e2();
  4804. finishAndDisableSteppers();
  4805. fanSpeed = 0;
  4806. delay(1000); // Wait a little before to switch off
  4807. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4808. st_synchronize();
  4809. suicide();
  4810. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4811. SET_OUTPUT(PS_ON_PIN);
  4812. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4813. #endif
  4814. powersupply = false;
  4815. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4816. lcd_update(0);
  4817. break;
  4818. case 82:
  4819. axis_relative_modes[3] = false;
  4820. break;
  4821. case 83:
  4822. axis_relative_modes[3] = true;
  4823. break;
  4824. case 18: //compatibility
  4825. case 84: // M84
  4826. if(code_seen('S')){
  4827. stepper_inactive_time = code_value() * 1000;
  4828. }
  4829. else
  4830. {
  4831. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4832. if(all_axis)
  4833. {
  4834. st_synchronize();
  4835. disable_e0();
  4836. disable_e1();
  4837. disable_e2();
  4838. finishAndDisableSteppers();
  4839. }
  4840. else
  4841. {
  4842. st_synchronize();
  4843. if (code_seen('X')) disable_x();
  4844. if (code_seen('Y')) disable_y();
  4845. if (code_seen('Z')) disable_z();
  4846. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4847. if (code_seen('E')) {
  4848. disable_e0();
  4849. disable_e1();
  4850. disable_e2();
  4851. }
  4852. #endif
  4853. }
  4854. }
  4855. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4856. print_time_remaining_init();
  4857. snmm_filaments_used = 0;
  4858. break;
  4859. case 85: // M85
  4860. if(code_seen('S')) {
  4861. max_inactive_time = code_value() * 1000;
  4862. }
  4863. break;
  4864. #ifdef SAFETYTIMER
  4865. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4866. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4867. if (code_seen('S')) {
  4868. safetytimer_inactive_time = code_value() * 1000;
  4869. safetyTimer.start();
  4870. }
  4871. break;
  4872. #endif
  4873. case 92: // M92
  4874. for(int8_t i=0; i < NUM_AXIS; i++)
  4875. {
  4876. if(code_seen(axis_codes[i]))
  4877. {
  4878. if(i == 3) { // E
  4879. float value = code_value();
  4880. if(value < 20.0) {
  4881. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4882. max_jerk[E_AXIS] *= factor;
  4883. max_feedrate[i] *= factor;
  4884. axis_steps_per_sqr_second[i] *= factor;
  4885. }
  4886. axis_steps_per_unit[i] = value;
  4887. }
  4888. else {
  4889. axis_steps_per_unit[i] = code_value();
  4890. }
  4891. }
  4892. }
  4893. break;
  4894. case 110: // M110 - reset line pos
  4895. if (code_seen('N'))
  4896. gcode_LastN = code_value_long();
  4897. break;
  4898. #ifdef HOST_KEEPALIVE_FEATURE
  4899. case 113: // M113 - Get or set Host Keepalive interval
  4900. if (code_seen('S')) {
  4901. host_keepalive_interval = (uint8_t)code_value_short();
  4902. // NOMORE(host_keepalive_interval, 60);
  4903. }
  4904. else {
  4905. SERIAL_ECHO_START;
  4906. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4907. SERIAL_PROTOCOLLN("");
  4908. }
  4909. break;
  4910. #endif
  4911. case 115: // M115
  4912. if (code_seen('V')) {
  4913. // Report the Prusa version number.
  4914. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4915. } else if (code_seen('U')) {
  4916. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4917. // pause the print and ask the user to upgrade the firmware.
  4918. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4919. } else {
  4920. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4921. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4922. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4923. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4924. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4925. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4926. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4927. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4928. SERIAL_ECHOPGM(" UUID:");
  4929. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4930. }
  4931. break;
  4932. /* case 117: // M117 display message
  4933. starpos = (strchr(strchr_pointer + 5,'*'));
  4934. if(starpos!=NULL)
  4935. *(starpos)='\0';
  4936. lcd_setstatus(strchr_pointer + 5);
  4937. break;*/
  4938. case 114: // M114
  4939. gcode_M114();
  4940. break;
  4941. case 120: // M120
  4942. enable_endstops(false) ;
  4943. break;
  4944. case 121: // M121
  4945. enable_endstops(true) ;
  4946. break;
  4947. case 119: // M119
  4948. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4949. SERIAL_PROTOCOLLN("");
  4950. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4951. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4952. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4953. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4954. }else{
  4955. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4956. }
  4957. SERIAL_PROTOCOLLN("");
  4958. #endif
  4959. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4960. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4961. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4962. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4963. }else{
  4964. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4965. }
  4966. SERIAL_PROTOCOLLN("");
  4967. #endif
  4968. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4969. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4970. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4971. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4972. }else{
  4973. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4974. }
  4975. SERIAL_PROTOCOLLN("");
  4976. #endif
  4977. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4978. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4979. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4980. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4981. }else{
  4982. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4983. }
  4984. SERIAL_PROTOCOLLN("");
  4985. #endif
  4986. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4987. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4988. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4989. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4990. }else{
  4991. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4992. }
  4993. SERIAL_PROTOCOLLN("");
  4994. #endif
  4995. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4996. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4997. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4998. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4999. }else{
  5000. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5001. }
  5002. SERIAL_PROTOCOLLN("");
  5003. #endif
  5004. break;
  5005. //TODO: update for all axis, use for loop
  5006. #ifdef BLINKM
  5007. case 150: // M150
  5008. {
  5009. byte red;
  5010. byte grn;
  5011. byte blu;
  5012. if(code_seen('R')) red = code_value();
  5013. if(code_seen('U')) grn = code_value();
  5014. if(code_seen('B')) blu = code_value();
  5015. SendColors(red,grn,blu);
  5016. }
  5017. break;
  5018. #endif //BLINKM
  5019. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5020. {
  5021. tmp_extruder = active_extruder;
  5022. if(code_seen('T')) {
  5023. tmp_extruder = code_value();
  5024. if(tmp_extruder >= EXTRUDERS) {
  5025. SERIAL_ECHO_START;
  5026. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5027. break;
  5028. }
  5029. }
  5030. if(code_seen('D')) {
  5031. float diameter = (float)code_value();
  5032. if (diameter == 0.0) {
  5033. // setting any extruder filament size disables volumetric on the assumption that
  5034. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5035. // for all extruders
  5036. volumetric_enabled = false;
  5037. } else {
  5038. filament_size[tmp_extruder] = (float)code_value();
  5039. // make sure all extruders have some sane value for the filament size
  5040. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5041. #if EXTRUDERS > 1
  5042. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5043. #if EXTRUDERS > 2
  5044. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5045. #endif
  5046. #endif
  5047. volumetric_enabled = true;
  5048. }
  5049. } else {
  5050. //reserved for setting filament diameter via UFID or filament measuring device
  5051. break;
  5052. }
  5053. calculate_extruder_multipliers();
  5054. }
  5055. break;
  5056. case 201: // M201
  5057. for (int8_t i = 0; i < NUM_AXIS; i++)
  5058. {
  5059. if (code_seen(axis_codes[i]))
  5060. {
  5061. unsigned long val = code_value();
  5062. #ifdef TMC2130
  5063. unsigned long val_silent = val;
  5064. if ((i == X_AXIS) || (i == Y_AXIS))
  5065. {
  5066. if (val > NORMAL_MAX_ACCEL_XY)
  5067. val = NORMAL_MAX_ACCEL_XY;
  5068. if (val_silent > SILENT_MAX_ACCEL_XY)
  5069. val_silent = SILENT_MAX_ACCEL_XY;
  5070. }
  5071. max_acceleration_units_per_sq_second_normal[i] = val;
  5072. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5073. #else //TMC2130
  5074. max_acceleration_units_per_sq_second[i] = val;
  5075. #endif //TMC2130
  5076. }
  5077. }
  5078. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5079. reset_acceleration_rates();
  5080. break;
  5081. #if 0 // Not used for Sprinter/grbl gen6
  5082. case 202: // M202
  5083. for(int8_t i=0; i < NUM_AXIS; i++) {
  5084. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5085. }
  5086. break;
  5087. #endif
  5088. case 203: // M203 max feedrate mm/sec
  5089. for (int8_t i = 0; i < NUM_AXIS; i++)
  5090. {
  5091. if (code_seen(axis_codes[i]))
  5092. {
  5093. float val = code_value();
  5094. #ifdef TMC2130
  5095. float val_silent = val;
  5096. if ((i == X_AXIS) || (i == Y_AXIS))
  5097. {
  5098. if (val > NORMAL_MAX_FEEDRATE_XY)
  5099. val = NORMAL_MAX_FEEDRATE_XY;
  5100. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5101. val_silent = SILENT_MAX_FEEDRATE_XY;
  5102. }
  5103. max_feedrate_normal[i] = val;
  5104. max_feedrate_silent[i] = val_silent;
  5105. #else //TMC2130
  5106. max_feedrate[i] = val;
  5107. #endif //TMC2130
  5108. }
  5109. }
  5110. break;
  5111. case 204:
  5112. // M204 acclereration settings.
  5113. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5114. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5115. {
  5116. if(code_seen('S')) {
  5117. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5118. // and it is also generated by Slic3r to control acceleration per extrusion type
  5119. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5120. acceleration = code_value();
  5121. // Interpret the T value as retract acceleration in the old Marlin format.
  5122. if(code_seen('T'))
  5123. retract_acceleration = code_value();
  5124. } else {
  5125. // New acceleration format, compatible with the upstream Marlin.
  5126. if(code_seen('P'))
  5127. acceleration = code_value();
  5128. if(code_seen('R'))
  5129. retract_acceleration = code_value();
  5130. if(code_seen('T')) {
  5131. // Interpret the T value as the travel acceleration in the new Marlin format.
  5132. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5133. // travel_acceleration = code_value();
  5134. }
  5135. }
  5136. }
  5137. break;
  5138. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5139. {
  5140. if(code_seen('S')) minimumfeedrate = code_value();
  5141. if(code_seen('T')) mintravelfeedrate = code_value();
  5142. if(code_seen('B')) minsegmenttime = code_value() ;
  5143. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5144. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5145. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5146. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5147. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5148. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5149. }
  5150. break;
  5151. case 206: // M206 additional homing offset
  5152. for(int8_t i=0; i < 3; i++)
  5153. {
  5154. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5155. }
  5156. break;
  5157. #ifdef FWRETRACT
  5158. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5159. {
  5160. if(code_seen('S'))
  5161. {
  5162. retract_length = code_value() ;
  5163. }
  5164. if(code_seen('F'))
  5165. {
  5166. retract_feedrate = code_value()/60 ;
  5167. }
  5168. if(code_seen('Z'))
  5169. {
  5170. retract_zlift = code_value() ;
  5171. }
  5172. }break;
  5173. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5174. {
  5175. if(code_seen('S'))
  5176. {
  5177. retract_recover_length = code_value() ;
  5178. }
  5179. if(code_seen('F'))
  5180. {
  5181. retract_recover_feedrate = code_value()/60 ;
  5182. }
  5183. }break;
  5184. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5185. {
  5186. if(code_seen('S'))
  5187. {
  5188. int t= code_value() ;
  5189. switch(t)
  5190. {
  5191. case 0:
  5192. {
  5193. autoretract_enabled=false;
  5194. retracted[0]=false;
  5195. #if EXTRUDERS > 1
  5196. retracted[1]=false;
  5197. #endif
  5198. #if EXTRUDERS > 2
  5199. retracted[2]=false;
  5200. #endif
  5201. }break;
  5202. case 1:
  5203. {
  5204. autoretract_enabled=true;
  5205. retracted[0]=false;
  5206. #if EXTRUDERS > 1
  5207. retracted[1]=false;
  5208. #endif
  5209. #if EXTRUDERS > 2
  5210. retracted[2]=false;
  5211. #endif
  5212. }break;
  5213. default:
  5214. SERIAL_ECHO_START;
  5215. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5216. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5217. SERIAL_ECHOLNPGM("\"(1)");
  5218. }
  5219. }
  5220. }break;
  5221. #endif // FWRETRACT
  5222. #if EXTRUDERS > 1
  5223. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5224. {
  5225. if(setTargetedHotend(218)){
  5226. break;
  5227. }
  5228. if(code_seen('X'))
  5229. {
  5230. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5231. }
  5232. if(code_seen('Y'))
  5233. {
  5234. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5235. }
  5236. SERIAL_ECHO_START;
  5237. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5238. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5239. {
  5240. SERIAL_ECHO(" ");
  5241. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5242. SERIAL_ECHO(",");
  5243. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5244. }
  5245. SERIAL_ECHOLN("");
  5246. }break;
  5247. #endif
  5248. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5249. {
  5250. if(code_seen('S'))
  5251. {
  5252. feedmultiply = code_value() ;
  5253. }
  5254. }
  5255. break;
  5256. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5257. {
  5258. if(code_seen('S'))
  5259. {
  5260. int tmp_code = code_value();
  5261. if (code_seen('T'))
  5262. {
  5263. if(setTargetedHotend(221)){
  5264. break;
  5265. }
  5266. extruder_multiply[tmp_extruder] = tmp_code;
  5267. }
  5268. else
  5269. {
  5270. extrudemultiply = tmp_code ;
  5271. }
  5272. }
  5273. calculate_extruder_multipliers();
  5274. }
  5275. break;
  5276. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5277. {
  5278. if(code_seen('P')){
  5279. int pin_number = code_value(); // pin number
  5280. int pin_state = -1; // required pin state - default is inverted
  5281. if(code_seen('S')) pin_state = code_value(); // required pin state
  5282. if(pin_state >= -1 && pin_state <= 1){
  5283. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5284. {
  5285. if (sensitive_pins[i] == pin_number)
  5286. {
  5287. pin_number = -1;
  5288. break;
  5289. }
  5290. }
  5291. if (pin_number > -1)
  5292. {
  5293. int target = LOW;
  5294. st_synchronize();
  5295. pinMode(pin_number, INPUT);
  5296. switch(pin_state){
  5297. case 1:
  5298. target = HIGH;
  5299. break;
  5300. case 0:
  5301. target = LOW;
  5302. break;
  5303. case -1:
  5304. target = !digitalRead(pin_number);
  5305. break;
  5306. }
  5307. while(digitalRead(pin_number) != target){
  5308. manage_heater();
  5309. manage_inactivity();
  5310. lcd_update(0);
  5311. }
  5312. }
  5313. }
  5314. }
  5315. }
  5316. break;
  5317. #if NUM_SERVOS > 0
  5318. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5319. {
  5320. int servo_index = -1;
  5321. int servo_position = 0;
  5322. if (code_seen('P'))
  5323. servo_index = code_value();
  5324. if (code_seen('S')) {
  5325. servo_position = code_value();
  5326. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5327. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5328. servos[servo_index].attach(0);
  5329. #endif
  5330. servos[servo_index].write(servo_position);
  5331. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5332. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5333. servos[servo_index].detach();
  5334. #endif
  5335. }
  5336. else {
  5337. SERIAL_ECHO_START;
  5338. SERIAL_ECHO("Servo ");
  5339. SERIAL_ECHO(servo_index);
  5340. SERIAL_ECHOLN(" out of range");
  5341. }
  5342. }
  5343. else if (servo_index >= 0) {
  5344. SERIAL_PROTOCOL(_T(MSG_OK));
  5345. SERIAL_PROTOCOL(" Servo ");
  5346. SERIAL_PROTOCOL(servo_index);
  5347. SERIAL_PROTOCOL(": ");
  5348. SERIAL_PROTOCOL(servos[servo_index].read());
  5349. SERIAL_PROTOCOLLN("");
  5350. }
  5351. }
  5352. break;
  5353. #endif // NUM_SERVOS > 0
  5354. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5355. case 300: // M300
  5356. {
  5357. int beepS = code_seen('S') ? code_value() : 110;
  5358. int beepP = code_seen('P') ? code_value() : 1000;
  5359. if (beepS > 0)
  5360. {
  5361. #if BEEPER > 0
  5362. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5363. tone(BEEPER, beepS);
  5364. delay(beepP);
  5365. noTone(BEEPER);
  5366. #endif
  5367. }
  5368. else
  5369. {
  5370. delay(beepP);
  5371. }
  5372. }
  5373. break;
  5374. #endif // M300
  5375. #ifdef PIDTEMP
  5376. case 301: // M301
  5377. {
  5378. if(code_seen('P')) Kp = code_value();
  5379. if(code_seen('I')) Ki = scalePID_i(code_value());
  5380. if(code_seen('D')) Kd = scalePID_d(code_value());
  5381. #ifdef PID_ADD_EXTRUSION_RATE
  5382. if(code_seen('C')) Kc = code_value();
  5383. #endif
  5384. updatePID();
  5385. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5386. SERIAL_PROTOCOL(" p:");
  5387. SERIAL_PROTOCOL(Kp);
  5388. SERIAL_PROTOCOL(" i:");
  5389. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5390. SERIAL_PROTOCOL(" d:");
  5391. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5392. #ifdef PID_ADD_EXTRUSION_RATE
  5393. SERIAL_PROTOCOL(" c:");
  5394. //Kc does not have scaling applied above, or in resetting defaults
  5395. SERIAL_PROTOCOL(Kc);
  5396. #endif
  5397. SERIAL_PROTOCOLLN("");
  5398. }
  5399. break;
  5400. #endif //PIDTEMP
  5401. #ifdef PIDTEMPBED
  5402. case 304: // M304
  5403. {
  5404. if(code_seen('P')) bedKp = code_value();
  5405. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5406. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5407. updatePID();
  5408. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5409. SERIAL_PROTOCOL(" p:");
  5410. SERIAL_PROTOCOL(bedKp);
  5411. SERIAL_PROTOCOL(" i:");
  5412. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5413. SERIAL_PROTOCOL(" d:");
  5414. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5415. SERIAL_PROTOCOLLN("");
  5416. }
  5417. break;
  5418. #endif //PIDTEMP
  5419. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5420. {
  5421. #ifdef CHDK
  5422. SET_OUTPUT(CHDK);
  5423. WRITE(CHDK, HIGH);
  5424. chdkHigh = millis();
  5425. chdkActive = true;
  5426. #else
  5427. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5428. const uint8_t NUM_PULSES=16;
  5429. const float PULSE_LENGTH=0.01524;
  5430. for(int i=0; i < NUM_PULSES; i++) {
  5431. WRITE(PHOTOGRAPH_PIN, HIGH);
  5432. _delay_ms(PULSE_LENGTH);
  5433. WRITE(PHOTOGRAPH_PIN, LOW);
  5434. _delay_ms(PULSE_LENGTH);
  5435. }
  5436. delay(7.33);
  5437. for(int i=0; i < NUM_PULSES; i++) {
  5438. WRITE(PHOTOGRAPH_PIN, HIGH);
  5439. _delay_ms(PULSE_LENGTH);
  5440. WRITE(PHOTOGRAPH_PIN, LOW);
  5441. _delay_ms(PULSE_LENGTH);
  5442. }
  5443. #endif
  5444. #endif //chdk end if
  5445. }
  5446. break;
  5447. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5448. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5449. {
  5450. float temp = .0;
  5451. if (code_seen('S')) temp=code_value();
  5452. set_extrude_min_temp(temp);
  5453. }
  5454. break;
  5455. #endif
  5456. case 303: // M303 PID autotune
  5457. {
  5458. float temp = 150.0;
  5459. int e=0;
  5460. int c=5;
  5461. if (code_seen('E')) e=code_value();
  5462. if (e<0)
  5463. temp=70;
  5464. if (code_seen('S')) temp=code_value();
  5465. if (code_seen('C')) c=code_value();
  5466. PID_autotune(temp, e, c);
  5467. }
  5468. break;
  5469. case 400: // M400 finish all moves
  5470. {
  5471. st_synchronize();
  5472. }
  5473. break;
  5474. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5475. {
  5476. //currently three different materials are needed (default, flex and PVA)
  5477. //add storing this information for different load/unload profiles etc. in the future
  5478. //firmware does not wait for "ok" from mmu
  5479. if (mmu_enabled)
  5480. {
  5481. uint8_t extruder;
  5482. uint8_t filament;
  5483. if(code_seen('E')) extruder = code_value();
  5484. if(code_seen('F')) filament = code_value();
  5485. mmu_set_filament_type(extruder, filament);
  5486. }
  5487. }
  5488. break;
  5489. case 500: // M500 Store settings in EEPROM
  5490. {
  5491. Config_StoreSettings(EEPROM_OFFSET);
  5492. }
  5493. break;
  5494. case 501: // M501 Read settings from EEPROM
  5495. {
  5496. Config_RetrieveSettings(EEPROM_OFFSET);
  5497. }
  5498. break;
  5499. case 502: // M502 Revert to default settings
  5500. {
  5501. Config_ResetDefault();
  5502. }
  5503. break;
  5504. case 503: // M503 print settings currently in memory
  5505. {
  5506. Config_PrintSettings();
  5507. }
  5508. break;
  5509. case 509: //M509 Force language selection
  5510. {
  5511. lang_reset();
  5512. SERIAL_ECHO_START;
  5513. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5514. }
  5515. break;
  5516. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5517. case 540:
  5518. {
  5519. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5520. }
  5521. break;
  5522. #endif
  5523. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5524. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5525. {
  5526. float value;
  5527. if (code_seen('Z'))
  5528. {
  5529. value = code_value();
  5530. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5531. {
  5532. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5533. SERIAL_ECHO_START;
  5534. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5535. SERIAL_PROTOCOLLN("");
  5536. }
  5537. else
  5538. {
  5539. SERIAL_ECHO_START;
  5540. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5541. SERIAL_ECHORPGM(MSG_Z_MIN);
  5542. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5543. SERIAL_ECHORPGM(MSG_Z_MAX);
  5544. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5545. SERIAL_PROTOCOLLN("");
  5546. }
  5547. }
  5548. else
  5549. {
  5550. SERIAL_ECHO_START;
  5551. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5552. SERIAL_ECHO(-zprobe_zoffset);
  5553. SERIAL_PROTOCOLLN("");
  5554. }
  5555. break;
  5556. }
  5557. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5558. #ifdef FILAMENTCHANGEENABLE
  5559. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5560. {
  5561. st_synchronize();
  5562. float x_position = current_position[X_AXIS];
  5563. float y_position = current_position[Y_AXIS];
  5564. float z_shift = 0;
  5565. float e_shift_init = 0;
  5566. float e_shift_late = 0;
  5567. bool automatic = false;
  5568. //Retract extruder
  5569. if(code_seen('E'))
  5570. {
  5571. e_shift_init = code_value();
  5572. }
  5573. else
  5574. {
  5575. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5576. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5577. #endif
  5578. }
  5579. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5580. if (code_seen('L'))
  5581. {
  5582. e_shift_late = code_value();
  5583. }
  5584. else
  5585. {
  5586. #ifdef FILAMENTCHANGE_FINALRETRACT
  5587. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5588. #endif
  5589. }
  5590. //Lift Z
  5591. if(code_seen('Z'))
  5592. {
  5593. z_shift = code_value();
  5594. }
  5595. else
  5596. {
  5597. #ifdef FILAMENTCHANGE_ZADD
  5598. z_shift= FILAMENTCHANGE_ZADD ;
  5599. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5600. #endif
  5601. }
  5602. //Move XY to side
  5603. if(code_seen('X'))
  5604. {
  5605. x_position = code_value();
  5606. }
  5607. else
  5608. {
  5609. #ifdef FILAMENTCHANGE_XPOS
  5610. x_position = FILAMENTCHANGE_XPOS;
  5611. #endif
  5612. }
  5613. if(code_seen('Y'))
  5614. {
  5615. y_position = code_value();
  5616. }
  5617. else
  5618. {
  5619. #ifdef FILAMENTCHANGE_YPOS
  5620. y_position = FILAMENTCHANGE_YPOS ;
  5621. #endif
  5622. }
  5623. if (mmu_enabled && code_seen("AUTO"))
  5624. automatic = true;
  5625. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5626. }
  5627. break;
  5628. #endif //FILAMENTCHANGEENABLE
  5629. case 601: {
  5630. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5631. }
  5632. break;
  5633. case 602: {
  5634. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5635. }
  5636. break;
  5637. #ifdef PINDA_THERMISTOR
  5638. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5639. {
  5640. int set_target_pinda = 0;
  5641. if (code_seen('S')) {
  5642. set_target_pinda = code_value();
  5643. }
  5644. else {
  5645. break;
  5646. }
  5647. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5648. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5649. SERIAL_PROTOCOL(set_target_pinda);
  5650. SERIAL_PROTOCOLLN("");
  5651. codenum = millis();
  5652. cancel_heatup = false;
  5653. bool is_pinda_cooling = false;
  5654. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5655. is_pinda_cooling = true;
  5656. }
  5657. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5658. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5659. {
  5660. SERIAL_PROTOCOLPGM("P:");
  5661. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5662. SERIAL_PROTOCOLPGM("/");
  5663. SERIAL_PROTOCOL(set_target_pinda);
  5664. SERIAL_PROTOCOLLN("");
  5665. codenum = millis();
  5666. }
  5667. manage_heater();
  5668. manage_inactivity();
  5669. lcd_update(0);
  5670. }
  5671. LCD_MESSAGERPGM(_T(MSG_OK));
  5672. break;
  5673. }
  5674. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5675. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5676. uint8_t cal_status = calibration_status_pinda();
  5677. int16_t usteps = 0;
  5678. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5679. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5680. for (uint8_t i = 0; i < 6; i++)
  5681. {
  5682. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5683. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5684. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5685. SERIAL_PROTOCOLPGM(", ");
  5686. SERIAL_PROTOCOL(35 + (i * 5));
  5687. SERIAL_PROTOCOLPGM(", ");
  5688. SERIAL_PROTOCOL(usteps);
  5689. SERIAL_PROTOCOLPGM(", ");
  5690. SERIAL_PROTOCOL(mm * 1000);
  5691. SERIAL_PROTOCOLLN("");
  5692. }
  5693. }
  5694. else if (code_seen('!')) { // ! - Set factory default values
  5695. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5696. int16_t z_shift = 8; //40C - 20um - 8usteps
  5697. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5698. z_shift = 24; //45C - 60um - 24usteps
  5699. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5700. z_shift = 48; //50C - 120um - 48usteps
  5701. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5702. z_shift = 80; //55C - 200um - 80usteps
  5703. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5704. z_shift = 120; //60C - 300um - 120usteps
  5705. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5706. SERIAL_PROTOCOLLN("factory restored");
  5707. }
  5708. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5709. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5710. int16_t z_shift = 0;
  5711. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5712. SERIAL_PROTOCOLLN("zerorized");
  5713. }
  5714. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5715. int16_t usteps = code_value();
  5716. if (code_seen('I')) {
  5717. byte index = code_value();
  5718. if ((index >= 0) && (index < 5)) {
  5719. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5720. SERIAL_PROTOCOLLN("OK");
  5721. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5722. for (uint8_t i = 0; i < 6; i++)
  5723. {
  5724. usteps = 0;
  5725. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5726. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5727. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5728. SERIAL_PROTOCOLPGM(", ");
  5729. SERIAL_PROTOCOL(35 + (i * 5));
  5730. SERIAL_PROTOCOLPGM(", ");
  5731. SERIAL_PROTOCOL(usteps);
  5732. SERIAL_PROTOCOLPGM(", ");
  5733. SERIAL_PROTOCOL(mm * 1000);
  5734. SERIAL_PROTOCOLLN("");
  5735. }
  5736. }
  5737. }
  5738. }
  5739. else {
  5740. SERIAL_PROTOCOLPGM("no valid command");
  5741. }
  5742. break;
  5743. #endif //PINDA_THERMISTOR
  5744. #ifdef LIN_ADVANCE
  5745. case 900: // M900: Set LIN_ADVANCE options.
  5746. gcode_M900();
  5747. break;
  5748. #endif
  5749. case 907: // M907 Set digital trimpot motor current using axis codes.
  5750. {
  5751. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5752. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5753. if(code_seen('B')) st_current_set(4,code_value());
  5754. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5755. #endif
  5756. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5757. if(code_seen('X')) st_current_set(0, code_value());
  5758. #endif
  5759. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5760. if(code_seen('Z')) st_current_set(1, code_value());
  5761. #endif
  5762. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5763. if(code_seen('E')) st_current_set(2, code_value());
  5764. #endif
  5765. }
  5766. break;
  5767. case 908: // M908 Control digital trimpot directly.
  5768. {
  5769. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5770. uint8_t channel,current;
  5771. if(code_seen('P')) channel=code_value();
  5772. if(code_seen('S')) current=code_value();
  5773. digitalPotWrite(channel, current);
  5774. #endif
  5775. }
  5776. break;
  5777. #ifdef TMC2130
  5778. case 910: // M910 TMC2130 init
  5779. {
  5780. tmc2130_init();
  5781. }
  5782. break;
  5783. case 911: // M911 Set TMC2130 holding currents
  5784. {
  5785. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5786. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5787. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5788. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5789. }
  5790. break;
  5791. case 912: // M912 Set TMC2130 running currents
  5792. {
  5793. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5794. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5795. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5796. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5797. }
  5798. break;
  5799. case 913: // M913 Print TMC2130 currents
  5800. {
  5801. tmc2130_print_currents();
  5802. }
  5803. break;
  5804. case 914: // M914 Set normal mode
  5805. {
  5806. tmc2130_mode = TMC2130_MODE_NORMAL;
  5807. update_mode_profile();
  5808. tmc2130_init();
  5809. }
  5810. break;
  5811. case 915: // M915 Set silent mode
  5812. {
  5813. tmc2130_mode = TMC2130_MODE_SILENT;
  5814. update_mode_profile();
  5815. tmc2130_init();
  5816. }
  5817. break;
  5818. case 916: // M916 Set sg_thrs
  5819. {
  5820. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5821. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5822. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5823. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5824. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5825. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5826. }
  5827. break;
  5828. case 917: // M917 Set TMC2130 pwm_ampl
  5829. {
  5830. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5831. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5832. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5833. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5834. }
  5835. break;
  5836. case 918: // M918 Set TMC2130 pwm_grad
  5837. {
  5838. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5839. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5840. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5841. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5842. }
  5843. break;
  5844. #endif //TMC2130
  5845. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5846. {
  5847. #ifdef TMC2130
  5848. if(code_seen('E'))
  5849. {
  5850. uint16_t res_new = code_value();
  5851. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5852. {
  5853. st_synchronize();
  5854. uint8_t axis = E_AXIS;
  5855. uint16_t res = tmc2130_get_res(axis);
  5856. tmc2130_set_res(axis, res_new);
  5857. if (res_new > res)
  5858. {
  5859. uint16_t fac = (res_new / res);
  5860. axis_steps_per_unit[axis] *= fac;
  5861. position[E_AXIS] *= fac;
  5862. }
  5863. else
  5864. {
  5865. uint16_t fac = (res / res_new);
  5866. axis_steps_per_unit[axis] /= fac;
  5867. position[E_AXIS] /= fac;
  5868. }
  5869. }
  5870. }
  5871. #else //TMC2130
  5872. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5873. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5874. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5875. if(code_seen('B')) microstep_mode(4,code_value());
  5876. microstep_readings();
  5877. #endif
  5878. #endif //TMC2130
  5879. }
  5880. break;
  5881. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5882. {
  5883. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5884. if(code_seen('S')) switch((int)code_value())
  5885. {
  5886. case 1:
  5887. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5888. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5889. break;
  5890. case 2:
  5891. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5892. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5893. break;
  5894. }
  5895. microstep_readings();
  5896. #endif
  5897. }
  5898. break;
  5899. case 701: //M701: load filament
  5900. {
  5901. if (mmu_enabled && code_seen('E'))
  5902. mmu_extruder = code_value();
  5903. gcode_M701();
  5904. }
  5905. break;
  5906. case 702:
  5907. {
  5908. if (mmu_enabled)
  5909. {
  5910. if (code_seen('U'))
  5911. extr_unload_used(); //unload all filaments which were used in current print
  5912. else if (code_seen('C'))
  5913. extr_unload(); //unload just current filament
  5914. else
  5915. extr_unload_all(); //unload all filaments
  5916. }
  5917. else
  5918. unload_filament();
  5919. }
  5920. break;
  5921. case 999: // M999: Restart after being stopped
  5922. Stopped = false;
  5923. lcd_reset_alert_level();
  5924. gcode_LastN = Stopped_gcode_LastN;
  5925. FlushSerialRequestResend();
  5926. break;
  5927. default:
  5928. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5929. }
  5930. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5931. mcode_in_progress = 0;
  5932. }
  5933. } // end if(code_seen('M')) (end of M codes)
  5934. else if(code_seen('T'))
  5935. {
  5936. int index;
  5937. st_synchronize();
  5938. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5939. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5940. SERIAL_ECHOLNPGM("Invalid T code.");
  5941. }
  5942. else {
  5943. if (*(strchr_pointer + index) == '?') {
  5944. tmp_extruder = choose_extruder_menu();
  5945. }
  5946. else {
  5947. tmp_extruder = code_value();
  5948. }
  5949. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5950. if (mmu_enabled)
  5951. {
  5952. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  5953. mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  5954. manage_response(true, true);
  5955. mmu_extruder = tmp_extruder; //filament change is finished
  5956. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5957. mmu_load_to_nozzle();
  5958. }
  5959. else
  5960. {
  5961. #ifdef SNMM
  5962. #ifdef LIN_ADVANCE
  5963. if (mmu_extruder != tmp_extruder)
  5964. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5965. #endif
  5966. mmu_extruder = tmp_extruder;
  5967. delay(100);
  5968. disable_e0();
  5969. disable_e1();
  5970. disable_e2();
  5971. pinMode(E_MUX0_PIN, OUTPUT);
  5972. pinMode(E_MUX1_PIN, OUTPUT);
  5973. delay(100);
  5974. SERIAL_ECHO_START;
  5975. SERIAL_ECHO("T:");
  5976. SERIAL_ECHOLN((int)tmp_extruder);
  5977. switch (tmp_extruder) {
  5978. case 1:
  5979. WRITE(E_MUX0_PIN, HIGH);
  5980. WRITE(E_MUX1_PIN, LOW);
  5981. break;
  5982. case 2:
  5983. WRITE(E_MUX0_PIN, LOW);
  5984. WRITE(E_MUX1_PIN, HIGH);
  5985. break;
  5986. case 3:
  5987. WRITE(E_MUX0_PIN, HIGH);
  5988. WRITE(E_MUX1_PIN, HIGH);
  5989. break;
  5990. default:
  5991. WRITE(E_MUX0_PIN, LOW);
  5992. WRITE(E_MUX1_PIN, LOW);
  5993. break;
  5994. }
  5995. delay(100);
  5996. #else //SNMM
  5997. if (tmp_extruder >= EXTRUDERS) {
  5998. SERIAL_ECHO_START;
  5999. SERIAL_ECHOPGM("T");
  6000. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6001. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6002. }
  6003. else {
  6004. #if EXTRUDERS > 1
  6005. boolean make_move = false;
  6006. #endif
  6007. if (code_seen('F')) {
  6008. #if EXTRUDERS > 1
  6009. make_move = true;
  6010. #endif
  6011. next_feedrate = code_value();
  6012. if (next_feedrate > 0.0) {
  6013. feedrate = next_feedrate;
  6014. }
  6015. }
  6016. #if EXTRUDERS > 1
  6017. if (tmp_extruder != active_extruder) {
  6018. // Save current position to return to after applying extruder offset
  6019. memcpy(destination, current_position, sizeof(destination));
  6020. // Offset extruder (only by XY)
  6021. int i;
  6022. for (i = 0; i < 2; i++) {
  6023. current_position[i] = current_position[i] -
  6024. extruder_offset[i][active_extruder] +
  6025. extruder_offset[i][tmp_extruder];
  6026. }
  6027. // Set the new active extruder and position
  6028. active_extruder = tmp_extruder;
  6029. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6030. // Move to the old position if 'F' was in the parameters
  6031. if (make_move && Stopped == false) {
  6032. prepare_move();
  6033. }
  6034. }
  6035. #endif
  6036. SERIAL_ECHO_START;
  6037. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6038. SERIAL_PROTOCOLLN((int)active_extruder);
  6039. }
  6040. #endif //SNMM
  6041. }
  6042. }
  6043. } // end if(code_seen('T')) (end of T codes)
  6044. else if (code_seen('D')) // D codes (debug)
  6045. {
  6046. switch((int)code_value())
  6047. {
  6048. #ifdef DEBUG_DCODES
  6049. case -1: // D-1 - Endless loop
  6050. dcode__1(); break;
  6051. case 0: // D0 - Reset
  6052. dcode_0(); break;
  6053. case 1: // D1 - Clear EEPROM
  6054. dcode_1(); break;
  6055. case 2: // D2 - Read/Write RAM
  6056. dcode_2(); break;
  6057. #endif //DEBUG_DCODES
  6058. #ifdef DEBUG_DCODE3
  6059. case 3: // D3 - Read/Write EEPROM
  6060. dcode_3(); break;
  6061. #endif //DEBUG_DCODE3
  6062. #ifdef DEBUG_DCODES
  6063. case 4: // D4 - Read/Write PIN
  6064. dcode_4(); break;
  6065. case 5: // D5 - Read/Write FLASH
  6066. // dcode_5(); break;
  6067. break;
  6068. case 6: // D6 - Read/Write external FLASH
  6069. dcode_6(); break;
  6070. case 7: // D7 - Read/Write Bootloader
  6071. dcode_7(); break;
  6072. case 8: // D8 - Read/Write PINDA
  6073. dcode_8(); break;
  6074. case 9: // D9 - Read/Write ADC
  6075. dcode_9(); break;
  6076. case 10: // D10 - XYZ calibration = OK
  6077. dcode_10(); break;
  6078. #ifdef TMC2130
  6079. case 2130: // D9125 - TMC2130
  6080. dcode_2130(); break;
  6081. #endif //TMC2130
  6082. #ifdef FILAMENT_SENSOR
  6083. case 9125: // D9125 - FILAMENT_SENSOR
  6084. dcode_9125(); break;
  6085. #endif //FILAMENT_SENSOR
  6086. #endif //DEBUG_DCODES
  6087. }
  6088. }
  6089. else
  6090. {
  6091. SERIAL_ECHO_START;
  6092. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6093. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6094. SERIAL_ECHOLNPGM("\"(2)");
  6095. }
  6096. KEEPALIVE_STATE(NOT_BUSY);
  6097. ClearToSend();
  6098. }
  6099. void FlushSerialRequestResend()
  6100. {
  6101. //char cmdbuffer[bufindr][100]="Resend:";
  6102. MYSERIAL.flush();
  6103. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6104. }
  6105. // Confirm the execution of a command, if sent from a serial line.
  6106. // Execution of a command from a SD card will not be confirmed.
  6107. void ClearToSend()
  6108. {
  6109. previous_millis_cmd = millis();
  6110. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6111. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6112. }
  6113. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6114. void update_currents() {
  6115. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6116. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6117. float tmp_motor[3];
  6118. //SERIAL_ECHOLNPGM("Currents updated: ");
  6119. if (destination[Z_AXIS] < Z_SILENT) {
  6120. //SERIAL_ECHOLNPGM("LOW");
  6121. for (uint8_t i = 0; i < 3; i++) {
  6122. st_current_set(i, current_low[i]);
  6123. /*MYSERIAL.print(int(i));
  6124. SERIAL_ECHOPGM(": ");
  6125. MYSERIAL.println(current_low[i]);*/
  6126. }
  6127. }
  6128. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6129. //SERIAL_ECHOLNPGM("HIGH");
  6130. for (uint8_t i = 0; i < 3; i++) {
  6131. st_current_set(i, current_high[i]);
  6132. /*MYSERIAL.print(int(i));
  6133. SERIAL_ECHOPGM(": ");
  6134. MYSERIAL.println(current_high[i]);*/
  6135. }
  6136. }
  6137. else {
  6138. for (uint8_t i = 0; i < 3; i++) {
  6139. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6140. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6141. st_current_set(i, tmp_motor[i]);
  6142. /*MYSERIAL.print(int(i));
  6143. SERIAL_ECHOPGM(": ");
  6144. MYSERIAL.println(tmp_motor[i]);*/
  6145. }
  6146. }
  6147. }
  6148. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6149. void get_coordinates()
  6150. {
  6151. bool seen[4]={false,false,false,false};
  6152. for(int8_t i=0; i < NUM_AXIS; i++) {
  6153. if(code_seen(axis_codes[i]))
  6154. {
  6155. bool relative = axis_relative_modes[i] || relative_mode;
  6156. destination[i] = (float)code_value();
  6157. if (i == E_AXIS) {
  6158. float emult = extruder_multiplier[active_extruder];
  6159. if (emult != 1.) {
  6160. if (! relative) {
  6161. destination[i] -= current_position[i];
  6162. relative = true;
  6163. }
  6164. destination[i] *= emult;
  6165. }
  6166. }
  6167. if (relative)
  6168. destination[i] += current_position[i];
  6169. seen[i]=true;
  6170. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6171. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6172. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6173. }
  6174. else destination[i] = current_position[i]; //Are these else lines really needed?
  6175. }
  6176. if(code_seen('F')) {
  6177. next_feedrate = code_value();
  6178. #ifdef MAX_SILENT_FEEDRATE
  6179. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6180. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6181. #endif //MAX_SILENT_FEEDRATE
  6182. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6183. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6184. {
  6185. // float e_max_speed =
  6186. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6187. }
  6188. }
  6189. }
  6190. void get_arc_coordinates()
  6191. {
  6192. #ifdef SF_ARC_FIX
  6193. bool relative_mode_backup = relative_mode;
  6194. relative_mode = true;
  6195. #endif
  6196. get_coordinates();
  6197. #ifdef SF_ARC_FIX
  6198. relative_mode=relative_mode_backup;
  6199. #endif
  6200. if(code_seen('I')) {
  6201. offset[0] = code_value();
  6202. }
  6203. else {
  6204. offset[0] = 0.0;
  6205. }
  6206. if(code_seen('J')) {
  6207. offset[1] = code_value();
  6208. }
  6209. else {
  6210. offset[1] = 0.0;
  6211. }
  6212. }
  6213. void clamp_to_software_endstops(float target[3])
  6214. {
  6215. #ifdef DEBUG_DISABLE_SWLIMITS
  6216. return;
  6217. #endif //DEBUG_DISABLE_SWLIMITS
  6218. world2machine_clamp(target[0], target[1]);
  6219. // Clamp the Z coordinate.
  6220. if (min_software_endstops) {
  6221. float negative_z_offset = 0;
  6222. #ifdef ENABLE_AUTO_BED_LEVELING
  6223. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6224. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6225. #endif
  6226. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6227. }
  6228. if (max_software_endstops) {
  6229. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6230. }
  6231. }
  6232. #ifdef MESH_BED_LEVELING
  6233. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6234. float dx = x - current_position[X_AXIS];
  6235. float dy = y - current_position[Y_AXIS];
  6236. float dz = z - current_position[Z_AXIS];
  6237. int n_segments = 0;
  6238. if (mbl.active) {
  6239. float len = abs(dx) + abs(dy);
  6240. if (len > 0)
  6241. // Split to 3cm segments or shorter.
  6242. n_segments = int(ceil(len / 30.f));
  6243. }
  6244. if (n_segments > 1) {
  6245. float de = e - current_position[E_AXIS];
  6246. for (int i = 1; i < n_segments; ++ i) {
  6247. float t = float(i) / float(n_segments);
  6248. if (saved_printing || (mbl.active == false)) return;
  6249. plan_buffer_line(
  6250. current_position[X_AXIS] + t * dx,
  6251. current_position[Y_AXIS] + t * dy,
  6252. current_position[Z_AXIS] + t * dz,
  6253. current_position[E_AXIS] + t * de,
  6254. feed_rate, extruder);
  6255. }
  6256. }
  6257. // The rest of the path.
  6258. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6259. current_position[X_AXIS] = x;
  6260. current_position[Y_AXIS] = y;
  6261. current_position[Z_AXIS] = z;
  6262. current_position[E_AXIS] = e;
  6263. }
  6264. #endif // MESH_BED_LEVELING
  6265. void prepare_move()
  6266. {
  6267. clamp_to_software_endstops(destination);
  6268. previous_millis_cmd = millis();
  6269. // Do not use feedmultiply for E or Z only moves
  6270. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6271. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6272. }
  6273. else {
  6274. #ifdef MESH_BED_LEVELING
  6275. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6276. #else
  6277. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6278. #endif
  6279. }
  6280. for(int8_t i=0; i < NUM_AXIS; i++) {
  6281. current_position[i] = destination[i];
  6282. }
  6283. }
  6284. void prepare_arc_move(char isclockwise) {
  6285. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6286. // Trace the arc
  6287. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6288. // As far as the parser is concerned, the position is now == target. In reality the
  6289. // motion control system might still be processing the action and the real tool position
  6290. // in any intermediate location.
  6291. for(int8_t i=0; i < NUM_AXIS; i++) {
  6292. current_position[i] = destination[i];
  6293. }
  6294. previous_millis_cmd = millis();
  6295. }
  6296. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6297. #if defined(FAN_PIN)
  6298. #if CONTROLLERFAN_PIN == FAN_PIN
  6299. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6300. #endif
  6301. #endif
  6302. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6303. unsigned long lastMotorCheck = 0;
  6304. void controllerFan()
  6305. {
  6306. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6307. {
  6308. lastMotorCheck = millis();
  6309. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6310. #if EXTRUDERS > 2
  6311. || !READ(E2_ENABLE_PIN)
  6312. #endif
  6313. #if EXTRUDER > 1
  6314. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6315. || !READ(X2_ENABLE_PIN)
  6316. #endif
  6317. || !READ(E1_ENABLE_PIN)
  6318. #endif
  6319. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6320. {
  6321. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6322. }
  6323. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6324. {
  6325. digitalWrite(CONTROLLERFAN_PIN, 0);
  6326. analogWrite(CONTROLLERFAN_PIN, 0);
  6327. }
  6328. else
  6329. {
  6330. // allows digital or PWM fan output to be used (see M42 handling)
  6331. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6332. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6333. }
  6334. }
  6335. }
  6336. #endif
  6337. #ifdef TEMP_STAT_LEDS
  6338. static bool blue_led = false;
  6339. static bool red_led = false;
  6340. static uint32_t stat_update = 0;
  6341. void handle_status_leds(void) {
  6342. float max_temp = 0.0;
  6343. if(millis() > stat_update) {
  6344. stat_update += 500; // Update every 0.5s
  6345. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6346. max_temp = max(max_temp, degHotend(cur_extruder));
  6347. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6348. }
  6349. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6350. max_temp = max(max_temp, degTargetBed());
  6351. max_temp = max(max_temp, degBed());
  6352. #endif
  6353. if((max_temp > 55.0) && (red_led == false)) {
  6354. digitalWrite(STAT_LED_RED, 1);
  6355. digitalWrite(STAT_LED_BLUE, 0);
  6356. red_led = true;
  6357. blue_led = false;
  6358. }
  6359. if((max_temp < 54.0) && (blue_led == false)) {
  6360. digitalWrite(STAT_LED_RED, 0);
  6361. digitalWrite(STAT_LED_BLUE, 1);
  6362. red_led = false;
  6363. blue_led = true;
  6364. }
  6365. }
  6366. }
  6367. #endif
  6368. #ifdef SAFETYTIMER
  6369. /**
  6370. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6371. *
  6372. * Full screen blocking notification message is shown after heater turning off.
  6373. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6374. * damage print.
  6375. *
  6376. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6377. */
  6378. static void handleSafetyTimer()
  6379. {
  6380. #if (EXTRUDERS > 1)
  6381. #error Implemented only for one extruder.
  6382. #endif //(EXTRUDERS > 1)
  6383. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6384. {
  6385. safetyTimer.stop();
  6386. }
  6387. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6388. {
  6389. safetyTimer.start();
  6390. }
  6391. else if (safetyTimer.expired(safetytimer_inactive_time))
  6392. {
  6393. setTargetBed(0);
  6394. setAllTargetHotends(0);
  6395. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6396. }
  6397. }
  6398. #endif //SAFETYTIMER
  6399. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6400. {
  6401. #ifdef FILAMENT_SENSOR
  6402. if (mcode_in_progress != 600) //M600 not in progress
  6403. {
  6404. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6405. {
  6406. if (fsensor_check_autoload())
  6407. {
  6408. fsensor_autoload_check_stop();
  6409. if (degHotend0() > EXTRUDE_MINTEMP)
  6410. {
  6411. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  6412. tone(BEEPER, 1000);
  6413. delay_keep_alive(50);
  6414. noTone(BEEPER);
  6415. loading_flag = true;
  6416. enquecommand_front_P((PSTR("M701")));
  6417. }
  6418. else
  6419. {
  6420. lcd_update_enable(false);
  6421. lcd_clear();
  6422. lcd_set_cursor(0, 0);
  6423. lcd_puts_P(_T(MSG_ERROR));
  6424. lcd_set_cursor(0, 2);
  6425. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6426. delay(2000);
  6427. lcd_clear();
  6428. lcd_update_enable(true);
  6429. }
  6430. }
  6431. }
  6432. else
  6433. fsensor_autoload_check_stop();
  6434. }
  6435. #endif //FILAMENT_SENSOR
  6436. #ifdef SAFETYTIMER
  6437. handleSafetyTimer();
  6438. #endif //SAFETYTIMER
  6439. #if defined(KILL_PIN) && KILL_PIN > -1
  6440. static int killCount = 0; // make the inactivity button a bit less responsive
  6441. const int KILL_DELAY = 10000;
  6442. #endif
  6443. if(buflen < (BUFSIZE-1)){
  6444. get_command();
  6445. }
  6446. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6447. if(max_inactive_time)
  6448. kill(_n(""), 4);
  6449. if(stepper_inactive_time) {
  6450. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6451. {
  6452. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6453. disable_x();
  6454. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6455. disable_y();
  6456. disable_z();
  6457. disable_e0();
  6458. disable_e1();
  6459. disable_e2();
  6460. }
  6461. }
  6462. }
  6463. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6464. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6465. {
  6466. chdkActive = false;
  6467. WRITE(CHDK, LOW);
  6468. }
  6469. #endif
  6470. #if defined(KILL_PIN) && KILL_PIN > -1
  6471. // Check if the kill button was pressed and wait just in case it was an accidental
  6472. // key kill key press
  6473. // -------------------------------------------------------------------------------
  6474. if( 0 == READ(KILL_PIN) )
  6475. {
  6476. killCount++;
  6477. }
  6478. else if (killCount > 0)
  6479. {
  6480. killCount--;
  6481. }
  6482. // Exceeded threshold and we can confirm that it was not accidental
  6483. // KILL the machine
  6484. // ----------------------------------------------------------------
  6485. if ( killCount >= KILL_DELAY)
  6486. {
  6487. kill("", 5);
  6488. }
  6489. #endif
  6490. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6491. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6492. #endif
  6493. #ifdef EXTRUDER_RUNOUT_PREVENT
  6494. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6495. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6496. {
  6497. bool oldstatus=READ(E0_ENABLE_PIN);
  6498. enable_e0();
  6499. float oldepos=current_position[E_AXIS];
  6500. float oldedes=destination[E_AXIS];
  6501. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6502. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6503. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6504. current_position[E_AXIS]=oldepos;
  6505. destination[E_AXIS]=oldedes;
  6506. plan_set_e_position(oldepos);
  6507. previous_millis_cmd=millis();
  6508. st_synchronize();
  6509. WRITE(E0_ENABLE_PIN,oldstatus);
  6510. }
  6511. #endif
  6512. #ifdef TEMP_STAT_LEDS
  6513. handle_status_leds();
  6514. #endif
  6515. check_axes_activity();
  6516. }
  6517. void kill(const char *full_screen_message, unsigned char id)
  6518. {
  6519. printf_P(_N("KILL: %d\n"), id);
  6520. //return;
  6521. cli(); // Stop interrupts
  6522. disable_heater();
  6523. disable_x();
  6524. // SERIAL_ECHOLNPGM("kill - disable Y");
  6525. disable_y();
  6526. disable_z();
  6527. disable_e0();
  6528. disable_e1();
  6529. disable_e2();
  6530. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6531. pinMode(PS_ON_PIN,INPUT);
  6532. #endif
  6533. SERIAL_ERROR_START;
  6534. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6535. if (full_screen_message != NULL) {
  6536. SERIAL_ERRORLNRPGM(full_screen_message);
  6537. lcd_display_message_fullscreen_P(full_screen_message);
  6538. } else {
  6539. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6540. }
  6541. // FMC small patch to update the LCD before ending
  6542. sei(); // enable interrupts
  6543. for ( int i=5; i--; lcd_update(0))
  6544. {
  6545. delay(200);
  6546. }
  6547. cli(); // disable interrupts
  6548. suicide();
  6549. while(1)
  6550. {
  6551. #ifdef WATCHDOG
  6552. wdt_reset();
  6553. #endif //WATCHDOG
  6554. /* Intentionally left empty */
  6555. } // Wait for reset
  6556. }
  6557. void Stop()
  6558. {
  6559. disable_heater();
  6560. if(Stopped == false) {
  6561. Stopped = true;
  6562. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6563. SERIAL_ERROR_START;
  6564. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6565. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6566. }
  6567. }
  6568. bool IsStopped() { return Stopped; };
  6569. #ifdef FAST_PWM_FAN
  6570. void setPwmFrequency(uint8_t pin, int val)
  6571. {
  6572. val &= 0x07;
  6573. switch(digitalPinToTimer(pin))
  6574. {
  6575. #if defined(TCCR0A)
  6576. case TIMER0A:
  6577. case TIMER0B:
  6578. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6579. // TCCR0B |= val;
  6580. break;
  6581. #endif
  6582. #if defined(TCCR1A)
  6583. case TIMER1A:
  6584. case TIMER1B:
  6585. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6586. // TCCR1B |= val;
  6587. break;
  6588. #endif
  6589. #if defined(TCCR2)
  6590. case TIMER2:
  6591. case TIMER2:
  6592. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6593. TCCR2 |= val;
  6594. break;
  6595. #endif
  6596. #if defined(TCCR2A)
  6597. case TIMER2A:
  6598. case TIMER2B:
  6599. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6600. TCCR2B |= val;
  6601. break;
  6602. #endif
  6603. #if defined(TCCR3A)
  6604. case TIMER3A:
  6605. case TIMER3B:
  6606. case TIMER3C:
  6607. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6608. TCCR3B |= val;
  6609. break;
  6610. #endif
  6611. #if defined(TCCR4A)
  6612. case TIMER4A:
  6613. case TIMER4B:
  6614. case TIMER4C:
  6615. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6616. TCCR4B |= val;
  6617. break;
  6618. #endif
  6619. #if defined(TCCR5A)
  6620. case TIMER5A:
  6621. case TIMER5B:
  6622. case TIMER5C:
  6623. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6624. TCCR5B |= val;
  6625. break;
  6626. #endif
  6627. }
  6628. }
  6629. #endif //FAST_PWM_FAN
  6630. bool setTargetedHotend(int code){
  6631. tmp_extruder = active_extruder;
  6632. if(code_seen('T')) {
  6633. tmp_extruder = code_value();
  6634. if(tmp_extruder >= EXTRUDERS) {
  6635. SERIAL_ECHO_START;
  6636. switch(code){
  6637. case 104:
  6638. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6639. break;
  6640. case 105:
  6641. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6642. break;
  6643. case 109:
  6644. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6645. break;
  6646. case 218:
  6647. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6648. break;
  6649. case 221:
  6650. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6651. break;
  6652. }
  6653. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6654. return true;
  6655. }
  6656. }
  6657. return false;
  6658. }
  6659. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6660. {
  6661. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6662. {
  6663. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6664. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6665. }
  6666. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6667. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6668. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6669. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6670. total_filament_used = 0;
  6671. }
  6672. float calculate_extruder_multiplier(float diameter) {
  6673. float out = 1.f;
  6674. if (volumetric_enabled && diameter > 0.f) {
  6675. float area = M_PI * diameter * diameter * 0.25;
  6676. out = 1.f / area;
  6677. }
  6678. if (extrudemultiply != 100)
  6679. out *= float(extrudemultiply) * 0.01f;
  6680. return out;
  6681. }
  6682. void calculate_extruder_multipliers() {
  6683. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6684. #if EXTRUDERS > 1
  6685. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6686. #if EXTRUDERS > 2
  6687. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6688. #endif
  6689. #endif
  6690. }
  6691. void delay_keep_alive(unsigned int ms)
  6692. {
  6693. for (;;) {
  6694. manage_heater();
  6695. // Manage inactivity, but don't disable steppers on timeout.
  6696. manage_inactivity(true);
  6697. lcd_update(0);
  6698. if (ms == 0)
  6699. break;
  6700. else if (ms >= 50) {
  6701. delay(50);
  6702. ms -= 50;
  6703. } else {
  6704. delay(ms);
  6705. ms = 0;
  6706. }
  6707. }
  6708. }
  6709. void wait_for_heater(long codenum) {
  6710. #ifdef TEMP_RESIDENCY_TIME
  6711. long residencyStart;
  6712. residencyStart = -1;
  6713. /* continue to loop until we have reached the target temp
  6714. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6715. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6716. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6717. #else
  6718. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6719. #endif //TEMP_RESIDENCY_TIME
  6720. if ((millis() - codenum) > 1000UL)
  6721. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6722. if (!farm_mode) {
  6723. SERIAL_PROTOCOLPGM("T:");
  6724. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6725. SERIAL_PROTOCOLPGM(" E:");
  6726. SERIAL_PROTOCOL((int)tmp_extruder);
  6727. #ifdef TEMP_RESIDENCY_TIME
  6728. SERIAL_PROTOCOLPGM(" W:");
  6729. if (residencyStart > -1)
  6730. {
  6731. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6732. SERIAL_PROTOCOLLN(codenum);
  6733. }
  6734. else
  6735. {
  6736. SERIAL_PROTOCOLLN("?");
  6737. }
  6738. }
  6739. #else
  6740. SERIAL_PROTOCOLLN("");
  6741. #endif
  6742. codenum = millis();
  6743. }
  6744. manage_heater();
  6745. manage_inactivity();
  6746. lcd_update(0);
  6747. #ifdef TEMP_RESIDENCY_TIME
  6748. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6749. or when current temp falls outside the hysteresis after target temp was reached */
  6750. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6751. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6752. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6753. {
  6754. residencyStart = millis();
  6755. }
  6756. #endif //TEMP_RESIDENCY_TIME
  6757. }
  6758. }
  6759. void check_babystep()
  6760. {
  6761. int babystep_z;
  6762. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6763. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6764. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6765. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6766. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6767. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6768. lcd_update_enable(true);
  6769. }
  6770. }
  6771. #ifdef DIS
  6772. void d_setup()
  6773. {
  6774. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6775. pinMode(D_DATA, INPUT_PULLUP);
  6776. pinMode(D_REQUIRE, OUTPUT);
  6777. digitalWrite(D_REQUIRE, HIGH);
  6778. }
  6779. float d_ReadData()
  6780. {
  6781. int digit[13];
  6782. String mergeOutput;
  6783. float output;
  6784. digitalWrite(D_REQUIRE, HIGH);
  6785. for (int i = 0; i<13; i++)
  6786. {
  6787. for (int j = 0; j < 4; j++)
  6788. {
  6789. while (digitalRead(D_DATACLOCK) == LOW) {}
  6790. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6791. bitWrite(digit[i], j, digitalRead(D_DATA));
  6792. }
  6793. }
  6794. digitalWrite(D_REQUIRE, LOW);
  6795. mergeOutput = "";
  6796. output = 0;
  6797. for (int r = 5; r <= 10; r++) //Merge digits
  6798. {
  6799. mergeOutput += digit[r];
  6800. }
  6801. output = mergeOutput.toFloat();
  6802. if (digit[4] == 8) //Handle sign
  6803. {
  6804. output *= -1;
  6805. }
  6806. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6807. {
  6808. output /= 10;
  6809. }
  6810. return output;
  6811. }
  6812. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6813. int t1 = 0;
  6814. int t_delay = 0;
  6815. int digit[13];
  6816. int m;
  6817. char str[3];
  6818. //String mergeOutput;
  6819. char mergeOutput[15];
  6820. float output;
  6821. int mesh_point = 0; //index number of calibration point
  6822. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6823. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6824. float mesh_home_z_search = 4;
  6825. float row[x_points_num];
  6826. int ix = 0;
  6827. int iy = 0;
  6828. const char* filename_wldsd = "wldsd.txt";
  6829. char data_wldsd[70];
  6830. char numb_wldsd[10];
  6831. d_setup();
  6832. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6833. // We don't know where we are! HOME!
  6834. // Push the commands to the front of the message queue in the reverse order!
  6835. // There shall be always enough space reserved for these commands.
  6836. repeatcommand_front(); // repeat G80 with all its parameters
  6837. enquecommand_front_P((PSTR("G28 W0")));
  6838. enquecommand_front_P((PSTR("G1 Z5")));
  6839. return;
  6840. }
  6841. unsigned int custom_message_type_old = custom_message_type;
  6842. unsigned int custom_message_state_old = custom_message_state;
  6843. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6844. custom_message_state = (x_points_num * y_points_num) + 10;
  6845. lcd_update(1);
  6846. mbl.reset();
  6847. babystep_undo();
  6848. card.openFile(filename_wldsd, false);
  6849. current_position[Z_AXIS] = mesh_home_z_search;
  6850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6851. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6852. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6853. setup_for_endstop_move(false);
  6854. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6855. SERIAL_PROTOCOL(x_points_num);
  6856. SERIAL_PROTOCOLPGM(",");
  6857. SERIAL_PROTOCOL(y_points_num);
  6858. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6859. SERIAL_PROTOCOL(mesh_home_z_search);
  6860. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6861. SERIAL_PROTOCOL(x_dimension);
  6862. SERIAL_PROTOCOLPGM(",");
  6863. SERIAL_PROTOCOL(y_dimension);
  6864. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6865. while (mesh_point != x_points_num * y_points_num) {
  6866. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6867. iy = mesh_point / x_points_num;
  6868. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6869. float z0 = 0.f;
  6870. current_position[Z_AXIS] = mesh_home_z_search;
  6871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6872. st_synchronize();
  6873. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6874. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6876. st_synchronize();
  6877. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6878. break;
  6879. card.closefile();
  6880. }
  6881. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6882. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6883. //strcat(data_wldsd, numb_wldsd);
  6884. //MYSERIAL.println(data_wldsd);
  6885. //delay(1000);
  6886. //delay(3000);
  6887. //t1 = millis();
  6888. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6889. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6890. memset(digit, 0, sizeof(digit));
  6891. //cli();
  6892. digitalWrite(D_REQUIRE, LOW);
  6893. for (int i = 0; i<13; i++)
  6894. {
  6895. //t1 = millis();
  6896. for (int j = 0; j < 4; j++)
  6897. {
  6898. while (digitalRead(D_DATACLOCK) == LOW) {}
  6899. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6900. bitWrite(digit[i], j, digitalRead(D_DATA));
  6901. }
  6902. //t_delay = (millis() - t1);
  6903. //SERIAL_PROTOCOLPGM(" ");
  6904. //SERIAL_PROTOCOL_F(t_delay, 5);
  6905. //SERIAL_PROTOCOLPGM(" ");
  6906. }
  6907. //sei();
  6908. digitalWrite(D_REQUIRE, HIGH);
  6909. mergeOutput[0] = '\0';
  6910. output = 0;
  6911. for (int r = 5; r <= 10; r++) //Merge digits
  6912. {
  6913. sprintf(str, "%d", digit[r]);
  6914. strcat(mergeOutput, str);
  6915. }
  6916. output = atof(mergeOutput);
  6917. if (digit[4] == 8) //Handle sign
  6918. {
  6919. output *= -1;
  6920. }
  6921. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6922. {
  6923. output *= 0.1;
  6924. }
  6925. //output = d_ReadData();
  6926. //row[ix] = current_position[Z_AXIS];
  6927. memset(data_wldsd, 0, sizeof(data_wldsd));
  6928. for (int i = 0; i <3; i++) {
  6929. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6930. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6931. strcat(data_wldsd, numb_wldsd);
  6932. strcat(data_wldsd, ";");
  6933. }
  6934. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6935. dtostrf(output, 8, 5, numb_wldsd);
  6936. strcat(data_wldsd, numb_wldsd);
  6937. //strcat(data_wldsd, ";");
  6938. card.write_command(data_wldsd);
  6939. //row[ix] = d_ReadData();
  6940. row[ix] = output; // current_position[Z_AXIS];
  6941. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6942. for (int i = 0; i < x_points_num; i++) {
  6943. SERIAL_PROTOCOLPGM(" ");
  6944. SERIAL_PROTOCOL_F(row[i], 5);
  6945. }
  6946. SERIAL_PROTOCOLPGM("\n");
  6947. }
  6948. custom_message_state--;
  6949. mesh_point++;
  6950. lcd_update(1);
  6951. }
  6952. card.closefile();
  6953. }
  6954. #endif
  6955. void temp_compensation_start() {
  6956. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  6957. custom_message_state = PINDA_HEAT_T + 1;
  6958. lcd_update(2);
  6959. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6960. current_position[E_AXIS] -= default_retraction;
  6961. }
  6962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6963. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6964. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6965. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6967. st_synchronize();
  6968. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6969. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6970. delay_keep_alive(1000);
  6971. custom_message_state = PINDA_HEAT_T - i;
  6972. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6973. else lcd_update(1);
  6974. }
  6975. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  6976. custom_message_state = 0;
  6977. }
  6978. void temp_compensation_apply() {
  6979. int i_add;
  6980. int z_shift = 0;
  6981. float z_shift_mm;
  6982. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6983. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6984. i_add = (target_temperature_bed - 60) / 10;
  6985. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6986. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6987. }else {
  6988. //interpolation
  6989. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6990. }
  6991. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  6992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6993. st_synchronize();
  6994. plan_set_z_position(current_position[Z_AXIS]);
  6995. }
  6996. else {
  6997. //we have no temp compensation data
  6998. }
  6999. }
  7000. float temp_comp_interpolation(float inp_temperature) {
  7001. //cubic spline interpolation
  7002. int n, i, j;
  7003. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7004. int shift[10];
  7005. int temp_C[10];
  7006. n = 6; //number of measured points
  7007. shift[0] = 0;
  7008. for (i = 0; i < n; i++) {
  7009. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7010. temp_C[i] = 50 + i * 10; //temperature in C
  7011. #ifdef PINDA_THERMISTOR
  7012. temp_C[i] = 35 + i * 5; //temperature in C
  7013. #else
  7014. temp_C[i] = 50 + i * 10; //temperature in C
  7015. #endif
  7016. x[i] = (float)temp_C[i];
  7017. f[i] = (float)shift[i];
  7018. }
  7019. if (inp_temperature < x[0]) return 0;
  7020. for (i = n - 1; i>0; i--) {
  7021. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7022. h[i - 1] = x[i] - x[i - 1];
  7023. }
  7024. //*********** formation of h, s , f matrix **************
  7025. for (i = 1; i<n - 1; i++) {
  7026. m[i][i] = 2 * (h[i - 1] + h[i]);
  7027. if (i != 1) {
  7028. m[i][i - 1] = h[i - 1];
  7029. m[i - 1][i] = h[i - 1];
  7030. }
  7031. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7032. }
  7033. //*********** forward elimination **************
  7034. for (i = 1; i<n - 2; i++) {
  7035. temp = (m[i + 1][i] / m[i][i]);
  7036. for (j = 1; j <= n - 1; j++)
  7037. m[i + 1][j] -= temp*m[i][j];
  7038. }
  7039. //*********** backward substitution *********
  7040. for (i = n - 2; i>0; i--) {
  7041. sum = 0;
  7042. for (j = i; j <= n - 2; j++)
  7043. sum += m[i][j] * s[j];
  7044. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7045. }
  7046. for (i = 0; i<n - 1; i++)
  7047. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7048. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7049. b = s[i] / 2;
  7050. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7051. d = f[i];
  7052. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7053. }
  7054. return sum;
  7055. }
  7056. #ifdef PINDA_THERMISTOR
  7057. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7058. {
  7059. if (!temp_cal_active) return 0;
  7060. if (!calibration_status_pinda()) return 0;
  7061. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7062. }
  7063. #endif //PINDA_THERMISTOR
  7064. void long_pause() //long pause print
  7065. {
  7066. st_synchronize();
  7067. //save currently set parameters to global variables
  7068. saved_feedmultiply = feedmultiply;
  7069. HotendTempBckp = degTargetHotend(active_extruder);
  7070. fanSpeedBckp = fanSpeed;
  7071. start_pause_print = millis();
  7072. //save position
  7073. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7074. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7075. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7076. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7077. //retract
  7078. current_position[E_AXIS] -= default_retraction;
  7079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7080. //lift z
  7081. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7082. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7083. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7084. //set nozzle target temperature to 0
  7085. setAllTargetHotends(0);
  7086. //Move XY to side
  7087. current_position[X_AXIS] = X_PAUSE_POS;
  7088. current_position[Y_AXIS] = Y_PAUSE_POS;
  7089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7090. // Turn off the print fan
  7091. fanSpeed = 0;
  7092. st_synchronize();
  7093. }
  7094. void serialecho_temperatures() {
  7095. float tt = degHotend(active_extruder);
  7096. SERIAL_PROTOCOLPGM("T:");
  7097. SERIAL_PROTOCOL(tt);
  7098. SERIAL_PROTOCOLPGM(" E:");
  7099. SERIAL_PROTOCOL((int)active_extruder);
  7100. SERIAL_PROTOCOLPGM(" B:");
  7101. SERIAL_PROTOCOL_F(degBed(), 1);
  7102. SERIAL_PROTOCOLLN("");
  7103. }
  7104. extern uint32_t sdpos_atomic;
  7105. #ifdef UVLO_SUPPORT
  7106. void uvlo_()
  7107. {
  7108. unsigned long time_start = millis();
  7109. bool sd_print = card.sdprinting;
  7110. // Conserve power as soon as possible.
  7111. disable_x();
  7112. disable_y();
  7113. #ifdef TMC2130
  7114. tmc2130_set_current_h(Z_AXIS, 20);
  7115. tmc2130_set_current_r(Z_AXIS, 20);
  7116. tmc2130_set_current_h(E_AXIS, 20);
  7117. tmc2130_set_current_r(E_AXIS, 20);
  7118. #endif //TMC2130
  7119. // Indicate that the interrupt has been triggered.
  7120. // SERIAL_ECHOLNPGM("UVLO");
  7121. // Read out the current Z motor microstep counter. This will be later used
  7122. // for reaching the zero full step before powering off.
  7123. uint16_t z_microsteps = 0;
  7124. #ifdef TMC2130
  7125. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7126. #endif //TMC2130
  7127. // Calculate the file position, from which to resume this print.
  7128. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7129. {
  7130. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7131. sd_position -= sdlen_planner;
  7132. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7133. sd_position -= sdlen_cmdqueue;
  7134. if (sd_position < 0) sd_position = 0;
  7135. }
  7136. // Backup the feedrate in mm/min.
  7137. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7138. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7139. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7140. // are in action.
  7141. planner_abort_hard();
  7142. // Store the current extruder position.
  7143. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7144. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7145. // Clean the input command queue.
  7146. cmdqueue_reset();
  7147. card.sdprinting = false;
  7148. // card.closefile();
  7149. // Enable stepper driver interrupt to move Z axis.
  7150. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7151. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7152. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7153. sei();
  7154. plan_buffer_line(
  7155. current_position[X_AXIS],
  7156. current_position[Y_AXIS],
  7157. current_position[Z_AXIS],
  7158. current_position[E_AXIS] - default_retraction,
  7159. 95, active_extruder);
  7160. st_synchronize();
  7161. disable_e0();
  7162. plan_buffer_line(
  7163. current_position[X_AXIS],
  7164. current_position[Y_AXIS],
  7165. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7166. current_position[E_AXIS] - default_retraction,
  7167. 40, active_extruder);
  7168. st_synchronize();
  7169. disable_e0();
  7170. plan_buffer_line(
  7171. current_position[X_AXIS],
  7172. current_position[Y_AXIS],
  7173. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7174. current_position[E_AXIS] - default_retraction,
  7175. 40, active_extruder);
  7176. st_synchronize();
  7177. disable_e0();
  7178. disable_z();
  7179. // Move Z up to the next 0th full step.
  7180. // Write the file position.
  7181. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7182. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7183. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7184. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7185. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7186. // Scale the z value to 1u resolution.
  7187. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7188. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7189. }
  7190. // Read out the current Z motor microstep counter. This will be later used
  7191. // for reaching the zero full step before powering off.
  7192. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7193. // Store the current position.
  7194. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7195. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7196. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7197. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7198. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7199. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7200. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7201. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7202. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7203. #if EXTRUDERS > 1
  7204. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7205. #if EXTRUDERS > 2
  7206. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7207. #endif
  7208. #endif
  7209. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7210. // Finaly store the "power outage" flag.
  7211. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7212. st_synchronize();
  7213. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7214. disable_z();
  7215. // Increment power failure counter
  7216. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7217. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7218. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7219. #if 0
  7220. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7221. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7223. st_synchronize();
  7224. #endif
  7225. wdt_enable(WDTO_500MS);
  7226. WRITE(BEEPER,HIGH);
  7227. while(1)
  7228. ;
  7229. }
  7230. void uvlo_tiny()
  7231. {
  7232. uint16_t z_microsteps=0;
  7233. // Conserve power as soon as possible.
  7234. disable_x();
  7235. disable_y();
  7236. disable_e0();
  7237. #ifdef TMC2130
  7238. tmc2130_set_current_h(Z_AXIS, 20);
  7239. tmc2130_set_current_r(Z_AXIS, 20);
  7240. #endif //TMC2130
  7241. // Read out the current Z motor microstep counter
  7242. #ifdef TMC2130
  7243. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7244. #endif //TMC2130
  7245. planner_abort_hard();
  7246. sei();
  7247. plan_buffer_line(
  7248. current_position[X_AXIS],
  7249. current_position[Y_AXIS],
  7250. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7251. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7252. current_position[E_AXIS],
  7253. 40, active_extruder);
  7254. st_synchronize();
  7255. disable_z();
  7256. // Finaly store the "power outage" flag.
  7257. //if(sd_print)
  7258. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7259. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7260. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7261. // Increment power failure counter
  7262. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7263. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7264. wdt_enable(WDTO_500MS);
  7265. WRITE(BEEPER,HIGH);
  7266. while(1)
  7267. ;
  7268. }
  7269. #endif //UVLO_SUPPORT
  7270. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7271. void setup_fan_interrupt() {
  7272. //INT7
  7273. DDRE &= ~(1 << 7); //input pin
  7274. PORTE &= ~(1 << 7); //no internal pull-up
  7275. //start with sensing rising edge
  7276. EICRB &= ~(1 << 6);
  7277. EICRB |= (1 << 7);
  7278. //enable INT7 interrupt
  7279. EIMSK |= (1 << 7);
  7280. }
  7281. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7282. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7283. ISR(INT7_vect) {
  7284. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7285. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7286. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7287. t_fan_rising_edge = millis_nc();
  7288. }
  7289. else { //interrupt was triggered by falling edge
  7290. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7291. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7292. }
  7293. }
  7294. EICRB ^= (1 << 6); //change edge
  7295. }
  7296. #endif
  7297. #ifdef UVLO_SUPPORT
  7298. void setup_uvlo_interrupt() {
  7299. DDRE &= ~(1 << 4); //input pin
  7300. PORTE &= ~(1 << 4); //no internal pull-up
  7301. //sensing falling edge
  7302. EICRB |= (1 << 0);
  7303. EICRB &= ~(1 << 1);
  7304. //enable INT4 interrupt
  7305. EIMSK |= (1 << 4);
  7306. }
  7307. ISR(INT4_vect) {
  7308. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7309. SERIAL_ECHOLNPGM("INT4");
  7310. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7311. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7312. }
  7313. void recover_print(uint8_t automatic) {
  7314. char cmd[30];
  7315. lcd_update_enable(true);
  7316. lcd_update(2);
  7317. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7318. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7319. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7320. // Lift the print head, so one may remove the excess priming material.
  7321. if(!bTiny&&(current_position[Z_AXIS]<25))
  7322. enquecommand_P(PSTR("G1 Z25 F800"));
  7323. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7324. enquecommand_P(PSTR("G28 X Y"));
  7325. // Set the target bed and nozzle temperatures and wait.
  7326. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7327. enquecommand(cmd);
  7328. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7329. enquecommand(cmd);
  7330. enquecommand_P(PSTR("M83")); //E axis relative mode
  7331. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7332. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7333. if(automatic == 0){
  7334. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7335. }
  7336. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7337. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7338. // Restart the print.
  7339. restore_print_from_eeprom();
  7340. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7341. }
  7342. void recover_machine_state_after_power_panic(bool bTiny)
  7343. {
  7344. char cmd[30];
  7345. // 1) Recover the logical cordinates at the time of the power panic.
  7346. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7347. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7348. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7349. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7350. // The current position after power panic is moved to the next closest 0th full step.
  7351. if(bTiny)
  7352. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7353. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7354. else
  7355. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7356. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7357. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7358. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7359. sprintf_P(cmd, PSTR("G92 E"));
  7360. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7361. enquecommand(cmd);
  7362. }
  7363. memcpy(destination, current_position, sizeof(destination));
  7364. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7365. print_world_coordinates();
  7366. // 2) Initialize the logical to physical coordinate system transformation.
  7367. world2machine_initialize();
  7368. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7369. mbl.active = false;
  7370. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7371. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7372. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7373. // Scale the z value to 10u resolution.
  7374. int16_t v;
  7375. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7376. if (v != 0)
  7377. mbl.active = true;
  7378. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7379. }
  7380. if (mbl.active)
  7381. mbl.upsample_3x3();
  7382. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7383. // print_mesh_bed_leveling_table();
  7384. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7385. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7386. babystep_load();
  7387. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7388. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7389. // 6) Power up the motors, mark their positions as known.
  7390. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7391. axis_known_position[X_AXIS] = true; enable_x();
  7392. axis_known_position[Y_AXIS] = true; enable_y();
  7393. axis_known_position[Z_AXIS] = true; enable_z();
  7394. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7395. print_physical_coordinates();
  7396. // 7) Recover the target temperatures.
  7397. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7398. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7399. // 8) Recover extruder multipilers
  7400. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7401. #if EXTRUDERS > 1
  7402. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7403. #if EXTRUDERS > 2
  7404. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7405. #endif
  7406. #endif
  7407. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7408. }
  7409. void restore_print_from_eeprom() {
  7410. int feedrate_rec;
  7411. uint8_t fan_speed_rec;
  7412. char cmd[30];
  7413. char filename[13];
  7414. uint8_t depth = 0;
  7415. char dir_name[9];
  7416. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7417. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7418. SERIAL_ECHOPGM("Feedrate:");
  7419. MYSERIAL.println(feedrate_rec);
  7420. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7421. MYSERIAL.println(int(depth));
  7422. for (int i = 0; i < depth; i++) {
  7423. for (int j = 0; j < 8; j++) {
  7424. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7425. }
  7426. dir_name[8] = '\0';
  7427. MYSERIAL.println(dir_name);
  7428. strcpy(dir_names[i], dir_name);
  7429. card.chdir(dir_name);
  7430. }
  7431. for (int i = 0; i < 8; i++) {
  7432. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7433. }
  7434. filename[8] = '\0';
  7435. MYSERIAL.print(filename);
  7436. strcat_P(filename, PSTR(".gco"));
  7437. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7438. enquecommand(cmd);
  7439. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7440. SERIAL_ECHOPGM("Position read from eeprom:");
  7441. MYSERIAL.println(position);
  7442. // E axis relative mode.
  7443. enquecommand_P(PSTR("M83"));
  7444. // Move to the XY print position in logical coordinates, where the print has been killed.
  7445. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7446. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7447. strcat_P(cmd, PSTR(" F2000"));
  7448. enquecommand(cmd);
  7449. // Move the Z axis down to the print, in logical coordinates.
  7450. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7451. enquecommand(cmd);
  7452. // Unretract.
  7453. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7454. // Set the feedrate saved at the power panic.
  7455. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7456. enquecommand(cmd);
  7457. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7458. {
  7459. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7460. }
  7461. // Set the fan speed saved at the power panic.
  7462. strcpy_P(cmd, PSTR("M106 S"));
  7463. strcat(cmd, itostr3(int(fan_speed_rec)));
  7464. enquecommand(cmd);
  7465. // Set a position in the file.
  7466. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7467. enquecommand(cmd);
  7468. enquecommand_P(PSTR("G4 S0"));
  7469. enquecommand_P(PSTR("PRUSA uvlo"));
  7470. }
  7471. #endif //UVLO_SUPPORT
  7472. ////////////////////////////////////////////////////////////////////////////////
  7473. // save/restore printing
  7474. void stop_and_save_print_to_ram(float z_move, float e_move)
  7475. {
  7476. if (saved_printing) return;
  7477. #if 0
  7478. unsigned char nplanner_blocks;
  7479. #endif
  7480. unsigned char nlines;
  7481. uint16_t sdlen_planner;
  7482. uint16_t sdlen_cmdqueue;
  7483. cli();
  7484. if (card.sdprinting) {
  7485. #if 0
  7486. nplanner_blocks = number_of_blocks();
  7487. #endif
  7488. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7489. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7490. saved_sdpos -= sdlen_planner;
  7491. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7492. saved_sdpos -= sdlen_cmdqueue;
  7493. saved_printing_type = PRINTING_TYPE_SD;
  7494. }
  7495. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7496. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7497. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7498. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7499. saved_sdpos -= nlines;
  7500. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7501. saved_printing_type = PRINTING_TYPE_USB;
  7502. }
  7503. else {
  7504. //not sd printing nor usb printing
  7505. }
  7506. #if 0
  7507. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7508. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7509. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7510. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7511. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7512. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7513. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7514. {
  7515. card.setIndex(saved_sdpos);
  7516. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7517. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7518. MYSERIAL.print(char(card.get()));
  7519. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7520. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7521. MYSERIAL.print(char(card.get()));
  7522. SERIAL_ECHOLNPGM("End of command buffer");
  7523. }
  7524. {
  7525. // Print the content of the planner buffer, line by line:
  7526. card.setIndex(saved_sdpos);
  7527. int8_t iline = 0;
  7528. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7529. SERIAL_ECHOPGM("Planner line (from file): ");
  7530. MYSERIAL.print(int(iline), DEC);
  7531. SERIAL_ECHOPGM(", length: ");
  7532. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7533. SERIAL_ECHOPGM(", steps: (");
  7534. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7535. SERIAL_ECHOPGM(",");
  7536. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7537. SERIAL_ECHOPGM(",");
  7538. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7539. SERIAL_ECHOPGM(",");
  7540. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7541. SERIAL_ECHOPGM("), events: ");
  7542. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7543. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7544. MYSERIAL.print(char(card.get()));
  7545. }
  7546. }
  7547. {
  7548. // Print the content of the command buffer, line by line:
  7549. int8_t iline = 0;
  7550. union {
  7551. struct {
  7552. char lo;
  7553. char hi;
  7554. } lohi;
  7555. uint16_t value;
  7556. } sdlen_single;
  7557. int _bufindr = bufindr;
  7558. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7559. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7560. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7561. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7562. }
  7563. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7564. MYSERIAL.print(int(iline), DEC);
  7565. SERIAL_ECHOPGM(", type: ");
  7566. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7567. SERIAL_ECHOPGM(", len: ");
  7568. MYSERIAL.println(sdlen_single.value, DEC);
  7569. // Print the content of the buffer line.
  7570. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7571. SERIAL_ECHOPGM("Buffer line (from file): ");
  7572. MYSERIAL.println(int(iline), DEC);
  7573. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7574. MYSERIAL.print(char(card.get()));
  7575. if (-- _buflen == 0)
  7576. break;
  7577. // First skip the current command ID and iterate up to the end of the string.
  7578. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7579. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7580. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7581. // If the end of the buffer was empty,
  7582. if (_bufindr == sizeof(cmdbuffer)) {
  7583. // skip to the start and find the nonzero command.
  7584. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7585. }
  7586. }
  7587. }
  7588. #endif
  7589. #if 0
  7590. saved_feedrate2 = feedrate; //save feedrate
  7591. #else
  7592. // Try to deduce the feedrate from the first block of the planner.
  7593. // Speed is in mm/min.
  7594. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7595. #endif
  7596. planner_abort_hard(); //abort printing
  7597. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7598. saved_active_extruder = active_extruder; //save active_extruder
  7599. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7600. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7601. cmdqueue_reset(); //empty cmdqueue
  7602. card.sdprinting = false;
  7603. // card.closefile();
  7604. saved_printing = true;
  7605. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7606. st_reset_timer();
  7607. sei();
  7608. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7609. #if 1
  7610. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7611. char buf[48];
  7612. // First unretract (relative extrusion)
  7613. if(!saved_extruder_relative_mode){
  7614. strcpy_P(buf, PSTR("M83"));
  7615. enquecommand(buf, false);
  7616. }
  7617. //retract 45mm/s
  7618. strcpy_P(buf, PSTR("G1 E"));
  7619. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7620. strcat_P(buf, PSTR(" F"));
  7621. dtostrf(2700, 8, 3, buf + strlen(buf));
  7622. enquecommand(buf, false);
  7623. // Then lift Z axis
  7624. strcpy_P(buf, PSTR("G1 Z"));
  7625. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7626. strcat_P(buf, PSTR(" F"));
  7627. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7628. // At this point the command queue is empty.
  7629. enquecommand(buf, false);
  7630. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7631. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7632. repeatcommand_front();
  7633. #else
  7634. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7635. st_synchronize(); //wait moving
  7636. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7637. memcpy(destination, current_position, sizeof(destination));
  7638. #endif
  7639. }
  7640. }
  7641. void restore_print_from_ram_and_continue(float e_move)
  7642. {
  7643. if (!saved_printing) return;
  7644. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7645. // current_position[axis] = st_get_position_mm(axis);
  7646. active_extruder = saved_active_extruder; //restore active_extruder
  7647. feedrate = saved_feedrate2; //restore feedrate
  7648. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7649. float e = saved_pos[E_AXIS] - e_move;
  7650. plan_set_e_position(e);
  7651. //first move print head in XY to the saved position:
  7652. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7653. st_synchronize();
  7654. //then move Z
  7655. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7656. st_synchronize();
  7657. //and finaly unretract (35mm/s)
  7658. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7659. st_synchronize();
  7660. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7661. memcpy(destination, current_position, sizeof(destination));
  7662. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7663. card.setIndex(saved_sdpos);
  7664. sdpos_atomic = saved_sdpos;
  7665. card.sdprinting = true;
  7666. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7667. }
  7668. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7669. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7670. serial_count = 0;
  7671. FlushSerialRequestResend();
  7672. }
  7673. else {
  7674. //not sd printing nor usb printing
  7675. }
  7676. lcd_setstatuspgm(_T(WELCOME_MSG));
  7677. saved_printing = false;
  7678. }
  7679. void print_world_coordinates()
  7680. {
  7681. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7682. }
  7683. void print_physical_coordinates()
  7684. {
  7685. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7686. }
  7687. void print_mesh_bed_leveling_table()
  7688. {
  7689. SERIAL_ECHOPGM("mesh bed leveling: ");
  7690. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7691. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7692. MYSERIAL.print(mbl.z_values[y][x], 3);
  7693. SERIAL_ECHOPGM(" ");
  7694. }
  7695. SERIAL_ECHOLNPGM("");
  7696. }
  7697. uint16_t print_time_remaining() {
  7698. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7699. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7700. else print_t = print_time_remaining_silent;
  7701. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7702. return print_t;
  7703. }
  7704. uint8_t calc_percent_done()
  7705. {
  7706. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7707. uint8_t percent_done = 0;
  7708. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7709. percent_done = print_percent_done_normal;
  7710. }
  7711. else if (print_percent_done_silent <= 100) {
  7712. percent_done = print_percent_done_silent;
  7713. }
  7714. else {
  7715. percent_done = card.percentDone();
  7716. }
  7717. return percent_done;
  7718. }
  7719. static void print_time_remaining_init()
  7720. {
  7721. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7722. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7723. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7724. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7725. }
  7726. void M600_check_state()
  7727. {
  7728. //Wait for user to check the state
  7729. lcd_change_fil_state = 0;
  7730. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  7731. lcd_change_fil_state = 0;
  7732. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7733. lcd_alright();
  7734. KEEPALIVE_STATE(IN_HANDLER);
  7735. switch(lcd_change_fil_state){
  7736. // Filament failed to load so load it again
  7737. case 2:
  7738. if (mmu_enabled)
  7739. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7740. else
  7741. M600_load_filament_movements();
  7742. break;
  7743. // Filament loaded properly but color is not clear
  7744. case 3:
  7745. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7747. lcd_loading_color();
  7748. break;
  7749. // Everything good
  7750. default:
  7751. lcd_change_success();
  7752. lcd_update_enable(true);
  7753. break;
  7754. }
  7755. }
  7756. }
  7757. void M600_wait_for_user() {
  7758. //Beep, manage nozzle heater and wait for user to start unload filament
  7759. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7760. int counterBeep = 0;
  7761. unsigned long waiting_start_time = millis();
  7762. uint8_t wait_for_user_state = 0;
  7763. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7764. bool bFirst=true;
  7765. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7766. manage_heater();
  7767. manage_inactivity(true);
  7768. #if BEEPER > 0
  7769. if (counterBeep == 500) {
  7770. counterBeep = 0;
  7771. }
  7772. SET_OUTPUT(BEEPER);
  7773. if (counterBeep == 0) {
  7774. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7775. {
  7776. bFirst=false;
  7777. WRITE(BEEPER, HIGH);
  7778. }
  7779. }
  7780. if (counterBeep == 20) {
  7781. WRITE(BEEPER, LOW);
  7782. }
  7783. counterBeep++;
  7784. #endif //BEEPER > 0
  7785. switch (wait_for_user_state) {
  7786. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7787. delay_keep_alive(4);
  7788. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7789. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7790. wait_for_user_state = 1;
  7791. setTargetHotend(0, 0);
  7792. setTargetHotend(0, 1);
  7793. setTargetHotend(0, 2);
  7794. st_synchronize();
  7795. disable_e0();
  7796. disable_e1();
  7797. disable_e2();
  7798. }
  7799. break;
  7800. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7801. delay_keep_alive(4);
  7802. if (lcd_clicked()) {
  7803. setTargetHotend(HotendTempBckp, active_extruder);
  7804. lcd_wait_for_heater();
  7805. wait_for_user_state = 2;
  7806. }
  7807. break;
  7808. case 2: //waiting for nozzle to reach target temperature
  7809. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7810. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7811. waiting_start_time = millis();
  7812. wait_for_user_state = 0;
  7813. }
  7814. else {
  7815. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7816. lcd_set_cursor(1, 4);
  7817. lcd_print(ftostr3(degHotend(active_extruder)));
  7818. }
  7819. break;
  7820. }
  7821. }
  7822. WRITE(BEEPER, LOW);
  7823. }
  7824. void M600_load_filament_movements()
  7825. {
  7826. #ifdef SNMM
  7827. display_loading();
  7828. do
  7829. {
  7830. current_position[E_AXIS] += 0.002;
  7831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7832. delay_keep_alive(2);
  7833. }
  7834. while (!lcd_clicked());
  7835. st_synchronize();
  7836. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7838. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7840. current_position[E_AXIS] += 40;
  7841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7842. current_position[E_AXIS] += 10;
  7843. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7844. #else
  7845. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7847. #endif
  7848. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7850. lcd_loading_filament();
  7851. }
  7852. void M600_load_filament() {
  7853. //load filament for single material and SNMM
  7854. lcd_wait_interact();
  7855. //load_filament_time = millis();
  7856. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7857. #ifdef FILAMENT_SENSOR
  7858. fsensor_autoload_check_start();
  7859. #endif //FILAMENT_SENSOR
  7860. while(!lcd_clicked())
  7861. {
  7862. manage_heater();
  7863. manage_inactivity(true);
  7864. #ifdef FILAMENT_SENSOR
  7865. if (fsensor_check_autoload())
  7866. {
  7867. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7868. tone(BEEPER, 1000);
  7869. delay_keep_alive(50);
  7870. noTone(BEEPER);
  7871. break;
  7872. }
  7873. #endif //FILAMENT_SENSOR
  7874. }
  7875. #ifdef FILAMENT_SENSOR
  7876. fsensor_autoload_check_stop();
  7877. #endif //FILAMENT_SENSOR
  7878. KEEPALIVE_STATE(IN_HANDLER);
  7879. #ifdef FILAMENT_SENSOR
  7880. fsensor_oq_meassure_start(70);
  7881. #endif //FILAMENT_SENSOR
  7882. M600_load_filament_movements();
  7883. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7884. tone(BEEPER, 500);
  7885. delay_keep_alive(50);
  7886. noTone(BEEPER);
  7887. #ifdef FILAMENT_SENSOR
  7888. fsensor_oq_meassure_stop();
  7889. if (!fsensor_oq_result())
  7890. {
  7891. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7892. lcd_update_enable(true);
  7893. lcd_update(2);
  7894. if (disable)
  7895. fsensor_disable();
  7896. }
  7897. #endif //FILAMENT_SENSOR
  7898. }
  7899. #define FIL_LOAD_LENGTH 60