temperature.cpp 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. //===========================================================================
  30. //=============================public variables============================
  31. //===========================================================================
  32. int target_temperature[EXTRUDERS] = { 0 };
  33. int target_temperature_bed = 0;
  34. int current_temperature_raw[EXTRUDERS] = { 0 };
  35. float current_temperature[EXTRUDERS] = { 0.0 };
  36. int current_temperature_bed_raw = 0;
  37. float current_temperature_bed = 0.0;
  38. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  39. int redundant_temperature_raw = 0;
  40. float redundant_temperature = 0.0;
  41. #endif
  42. #ifdef PIDTEMP
  43. float _Kp, _Ki, _Kd;
  44. int pid_cycle, pid_number_of_cycles;
  45. bool pid_tuning_finished = false;
  46. float Kp=DEFAULT_Kp;
  47. float Ki=(DEFAULT_Ki*PID_dT);
  48. float Kd=(DEFAULT_Kd/PID_dT);
  49. #ifdef PID_ADD_EXTRUSION_RATE
  50. float Kc=DEFAULT_Kc;
  51. #endif
  52. #endif //PIDTEMP
  53. #ifdef PIDTEMPBED
  54. float bedKp=DEFAULT_bedKp;
  55. float bedKi=(DEFAULT_bedKi*PID_dT);
  56. float bedKd=(DEFAULT_bedKd/PID_dT);
  57. #endif //PIDTEMPBED
  58. #ifdef FAN_SOFT_PWM
  59. unsigned char fanSpeedSoftPwm;
  60. #endif
  61. unsigned char soft_pwm_bed;
  62. #ifdef BABYSTEPPING
  63. volatile int babystepsTodo[3]={0,0,0};
  64. #endif
  65. #ifdef FILAMENT_SENSOR
  66. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  67. #endif
  68. //===========================================================================
  69. //=============================private variables============================
  70. //===========================================================================
  71. static volatile bool temp_meas_ready = false;
  72. #ifdef PIDTEMP
  73. //static cannot be external:
  74. static float temp_iState[EXTRUDERS] = { 0 };
  75. static float temp_dState[EXTRUDERS] = { 0 };
  76. static float pTerm[EXTRUDERS];
  77. static float iTerm[EXTRUDERS];
  78. static float dTerm[EXTRUDERS];
  79. //int output;
  80. static float pid_error[EXTRUDERS];
  81. static float temp_iState_min[EXTRUDERS];
  82. static float temp_iState_max[EXTRUDERS];
  83. // static float pid_input[EXTRUDERS];
  84. // static float pid_output[EXTRUDERS];
  85. static bool pid_reset[EXTRUDERS];
  86. #endif //PIDTEMP
  87. #ifdef PIDTEMPBED
  88. //static cannot be external:
  89. static float temp_iState_bed = { 0 };
  90. static float temp_dState_bed = { 0 };
  91. static float pTerm_bed;
  92. static float iTerm_bed;
  93. static float dTerm_bed;
  94. //int output;
  95. static float pid_error_bed;
  96. static float temp_iState_min_bed;
  97. static float temp_iState_max_bed;
  98. #else //PIDTEMPBED
  99. static unsigned long previous_millis_bed_heater;
  100. #endif //PIDTEMPBED
  101. static unsigned char soft_pwm[EXTRUDERS];
  102. #ifdef FAN_SOFT_PWM
  103. static unsigned char soft_pwm_fan;
  104. #endif
  105. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  106. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  107. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  108. static unsigned long extruder_autofan_last_check;
  109. #endif
  110. #if EXTRUDERS > 3
  111. # error Unsupported number of extruders
  112. #elif EXTRUDERS > 2
  113. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  114. #elif EXTRUDERS > 1
  115. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  116. #else
  117. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  118. #endif
  119. // Init min and max temp with extreme values to prevent false errors during startup
  120. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  121. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  122. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  123. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  124. #ifdef BED_MINTEMP
  125. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  126. #endif
  127. #ifdef BED_MAXTEMP
  128. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  129. #endif
  130. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  131. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  132. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  133. #else
  134. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  135. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  136. #endif
  137. static float analog2temp(int raw, uint8_t e);
  138. static float analog2tempBed(int raw);
  139. static void updateTemperaturesFromRawValues();
  140. enum TempRunawayStates
  141. {
  142. TempRunaway_INACTIVE = 0,
  143. TempRunaway_PREHEAT = 1,
  144. TempRunaway_ACTIVE = 2,
  145. };
  146. #ifdef WATCH_TEMP_PERIOD
  147. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  148. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  149. #endif //WATCH_TEMP_PERIOD
  150. #ifndef SOFT_PWM_SCALE
  151. #define SOFT_PWM_SCALE 0
  152. #endif
  153. #ifdef FILAMENT_SENSOR
  154. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  155. #endif
  156. //===========================================================================
  157. //============================= functions ============================
  158. //===========================================================================
  159. void PID_autotune(float temp, int extruder, int ncycles)
  160. {
  161. pid_number_of_cycles = ncycles;
  162. pid_tuning_finished = false;
  163. float input = 0.0;
  164. pid_cycle=0;
  165. bool heating = true;
  166. unsigned long temp_millis = millis();
  167. unsigned long t1=temp_millis;
  168. unsigned long t2=temp_millis;
  169. long t_high = 0;
  170. long t_low = 0;
  171. long bias, d;
  172. float Ku, Tu;
  173. float max = 0, min = 10000;
  174. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  175. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  176. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  177. unsigned long extruder_autofan_last_check = millis();
  178. #endif
  179. if ((extruder >= EXTRUDERS)
  180. #if (TEMP_BED_PIN <= -1)
  181. ||(extruder < 0)
  182. #endif
  183. ){
  184. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  185. pid_tuning_finished = true;
  186. pid_cycle = 0;
  187. return;
  188. }
  189. SERIAL_ECHOLN("PID Autotune start");
  190. disable_heater(); // switch off all heaters.
  191. if (extruder<0)
  192. {
  193. soft_pwm_bed = (MAX_BED_POWER)/2;
  194. bias = d = (MAX_BED_POWER)/2;
  195. }
  196. else
  197. {
  198. soft_pwm[extruder] = (PID_MAX)/2;
  199. bias = d = (PID_MAX)/2;
  200. }
  201. for(;;) {
  202. if(temp_meas_ready == true) { // temp sample ready
  203. updateTemperaturesFromRawValues();
  204. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  205. max=max(max,input);
  206. min=min(min,input);
  207. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  208. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  209. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  210. if(millis() - extruder_autofan_last_check > 2500) {
  211. checkExtruderAutoFans();
  212. extruder_autofan_last_check = millis();
  213. }
  214. #endif
  215. if(heating == true && input > temp) {
  216. if(millis() - t2 > 5000) {
  217. heating=false;
  218. if (extruder<0)
  219. soft_pwm_bed = (bias - d) >> 1;
  220. else
  221. soft_pwm[extruder] = (bias - d) >> 1;
  222. t1=millis();
  223. t_high=t1 - t2;
  224. max=temp;
  225. }
  226. }
  227. if(heating == false && input < temp) {
  228. if(millis() - t1 > 5000) {
  229. heating=true;
  230. t2=millis();
  231. t_low=t2 - t1;
  232. if(pid_cycle > 0) {
  233. bias += (d*(t_high - t_low))/(t_low + t_high);
  234. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  235. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  236. else d = bias;
  237. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  238. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  239. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  240. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  241. if(pid_cycle > 2) {
  242. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  243. Tu = ((float)(t_low + t_high)/1000.0);
  244. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  245. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  246. _Kp = 0.6*Ku;
  247. _Ki = 2*_Kp/Tu;
  248. _Kd = _Kp*Tu/8;
  249. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  250. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  251. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  252. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  253. /*
  254. _Kp = 0.33*Ku;
  255. _Ki = _Kp/Tu;
  256. _Kd = _Kp*Tu/3;
  257. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  258. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  259. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  260. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  261. _Kp = 0.2*Ku;
  262. _Ki = 2*_Kp/Tu;
  263. _Kd = _Kp*Tu/3;
  264. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  265. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  266. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  267. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  268. */
  269. }
  270. }
  271. if (extruder<0)
  272. soft_pwm_bed = (bias + d) >> 1;
  273. else
  274. soft_pwm[extruder] = (bias + d) >> 1;
  275. pid_cycle++;
  276. min=temp;
  277. }
  278. }
  279. }
  280. if(input > (temp + 20)) {
  281. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  282. pid_tuning_finished = true;
  283. pid_cycle = 0;
  284. return;
  285. }
  286. if(millis() - temp_millis > 2000) {
  287. int p;
  288. if (extruder<0){
  289. p=soft_pwm_bed;
  290. SERIAL_PROTOCOLPGM("ok B:");
  291. }else{
  292. p=soft_pwm[extruder];
  293. SERIAL_PROTOCOLPGM("ok T:");
  294. }
  295. SERIAL_PROTOCOL(input);
  296. SERIAL_PROTOCOLPGM(" @:");
  297. SERIAL_PROTOCOLLN(p);
  298. temp_millis = millis();
  299. }
  300. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  301. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  302. pid_tuning_finished = true;
  303. pid_cycle = 0;
  304. return;
  305. }
  306. if(pid_cycle > ncycles) {
  307. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  308. pid_tuning_finished = true;
  309. pid_cycle = 0;
  310. return;
  311. }
  312. lcd_update();
  313. }
  314. }
  315. void updatePID()
  316. {
  317. #ifdef PIDTEMP
  318. for(int e = 0; e < EXTRUDERS; e++) {
  319. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  320. }
  321. #endif
  322. #ifdef PIDTEMPBED
  323. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  324. #endif
  325. }
  326. int getHeaterPower(int heater) {
  327. if (heater<0)
  328. return soft_pwm_bed;
  329. return soft_pwm[heater];
  330. }
  331. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  332. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  333. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  334. #if defined(FAN_PIN) && FAN_PIN > -1
  335. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  336. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  337. #endif
  338. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  339. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  340. #endif
  341. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  342. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  343. #endif
  344. #endif
  345. void setExtruderAutoFanState(int pin, bool state)
  346. {
  347. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  348. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  349. pinMode(pin, OUTPUT);
  350. digitalWrite(pin, newFanSpeed);
  351. analogWrite(pin, newFanSpeed);
  352. }
  353. void countFanSpeed()
  354. {
  355. SERIAL_ECHOPGM("UVLO:");
  356. MYSERIAL.println(UVLO);
  357. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  358. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  359. fan_edge_counter[0] = 0;
  360. fan_edge_counter[1] = 0;
  361. }
  362. void checkFanSpeed()
  363. {
  364. static unsigned char fan_speed_errors[2] = { 0,0 };
  365. if (fan_speed[0] == 0 && current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE) fan_speed_errors[0]++;
  366. else fan_speed_errors[0] = 0;
  367. if (fan_speed[1] == 0 && fanSpeed > MIN_PRINT_FAN_SPEED) fan_speed_errors[1]++;
  368. else fan_speed_errors[1] = 0;
  369. if (fan_speed_errors[0] > 5) fanSpeedError(0);
  370. if (fan_speed_errors[1] > 5) fanSpeedError(1);
  371. }
  372. void fanSpeedError(unsigned char _fan) {
  373. if (card.sdprinting) {
  374. card.pauseSDPrint();
  375. }
  376. setTargetHotend0(0);
  377. /*lcd_update();
  378. WRITE(BEEPER, HIGH);
  379. delayMicroseconds(500);
  380. WRITE(BEEPER, LOW);
  381. delayMicroseconds(100);*/
  382. SERIAL_ERROR_START;
  383. switch (_fan) {
  384. case 0:
  385. SERIAL_ERRORLNPGM("ERROR: Extruder fan speed is lower then expected");
  386. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  387. break;
  388. case 1:
  389. SERIAL_ERRORLNPGM("ERROR: Print fan speed is lower then expected");
  390. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  391. break;
  392. }
  393. }
  394. void checkExtruderAutoFans()
  395. {
  396. uint8_t fanState = 0;
  397. // which fan pins need to be turned on?
  398. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  399. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  400. fanState |= 1;
  401. #endif
  402. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  403. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  404. {
  405. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  406. fanState |= 1;
  407. else
  408. fanState |= 2;
  409. }
  410. #endif
  411. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  412. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  413. {
  414. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  415. fanState |= 1;
  416. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  417. fanState |= 2;
  418. else
  419. fanState |= 4;
  420. }
  421. #endif
  422. // update extruder auto fan states
  423. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  424. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  425. #endif
  426. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  427. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  428. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  429. #endif
  430. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  431. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  432. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  433. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  434. #endif
  435. }
  436. #endif // any extruder auto fan pins set
  437. void manage_heater()
  438. {
  439. float pid_input;
  440. float pid_output;
  441. if(temp_meas_ready != true) //better readability
  442. return;
  443. updateTemperaturesFromRawValues();
  444. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  445. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  446. #endif
  447. for(int e = 0; e < EXTRUDERS; e++)
  448. {
  449. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  450. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  451. #endif
  452. #ifdef PIDTEMP
  453. pid_input = current_temperature[e];
  454. #ifndef PID_OPENLOOP
  455. pid_error[e] = target_temperature[e] - pid_input;
  456. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  457. pid_output = BANG_MAX;
  458. pid_reset[e] = true;
  459. }
  460. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  461. pid_output = 0;
  462. pid_reset[e] = true;
  463. }
  464. else {
  465. if(pid_reset[e] == true) {
  466. temp_iState[e] = 0.0;
  467. pid_reset[e] = false;
  468. }
  469. pTerm[e] = Kp * pid_error[e];
  470. temp_iState[e] += pid_error[e];
  471. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  472. iTerm[e] = Ki * temp_iState[e];
  473. //K1 defined in Configuration.h in the PID settings
  474. #define K2 (1.0-K1)
  475. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  476. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  477. if (pid_output > PID_MAX) {
  478. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  479. pid_output=PID_MAX;
  480. } else if (pid_output < 0){
  481. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  482. pid_output=0;
  483. }
  484. }
  485. temp_dState[e] = pid_input;
  486. #else
  487. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  488. #endif //PID_OPENLOOP
  489. #ifdef PID_DEBUG
  490. SERIAL_ECHO_START;
  491. SERIAL_ECHO(" PID_DEBUG ");
  492. SERIAL_ECHO(e);
  493. SERIAL_ECHO(": Input ");
  494. SERIAL_ECHO(pid_input);
  495. SERIAL_ECHO(" Output ");
  496. SERIAL_ECHO(pid_output);
  497. SERIAL_ECHO(" pTerm ");
  498. SERIAL_ECHO(pTerm[e]);
  499. SERIAL_ECHO(" iTerm ");
  500. SERIAL_ECHO(iTerm[e]);
  501. SERIAL_ECHO(" dTerm ");
  502. SERIAL_ECHOLN(dTerm[e]);
  503. #endif //PID_DEBUG
  504. #else /* PID off */
  505. pid_output = 0;
  506. if(current_temperature[e] < target_temperature[e]) {
  507. pid_output = PID_MAX;
  508. }
  509. #endif
  510. // Check if temperature is within the correct range
  511. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  512. {
  513. soft_pwm[e] = (int)pid_output >> 1;
  514. }
  515. else {
  516. soft_pwm[e] = 0;
  517. }
  518. #ifdef WATCH_TEMP_PERIOD
  519. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  520. {
  521. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  522. {
  523. setTargetHotend(0, e);
  524. LCD_MESSAGEPGM("Heating failed");
  525. SERIAL_ECHO_START;
  526. SERIAL_ECHOLN("Heating failed");
  527. }else{
  528. watchmillis[e] = 0;
  529. }
  530. }
  531. #endif
  532. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  533. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  534. disable_heater();
  535. if(IsStopped() == false) {
  536. SERIAL_ERROR_START;
  537. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  538. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  539. }
  540. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  541. Stop();
  542. #endif
  543. }
  544. #endif
  545. } // End extruder for loop
  546. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  547. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  548. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  549. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  550. {
  551. countFanSpeed();
  552. checkFanSpeed();
  553. checkExtruderAutoFans();
  554. extruder_autofan_last_check = millis();
  555. }
  556. #endif
  557. #ifndef PIDTEMPBED
  558. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  559. return;
  560. previous_millis_bed_heater = millis();
  561. #endif
  562. #if TEMP_SENSOR_BED != 0
  563. #ifdef PIDTEMPBED
  564. pid_input = current_temperature_bed;
  565. #ifndef PID_OPENLOOP
  566. pid_error_bed = target_temperature_bed - pid_input;
  567. pTerm_bed = bedKp * pid_error_bed;
  568. temp_iState_bed += pid_error_bed;
  569. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  570. iTerm_bed = bedKi * temp_iState_bed;
  571. //K1 defined in Configuration.h in the PID settings
  572. #define K2 (1.0-K1)
  573. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  574. temp_dState_bed = pid_input;
  575. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  576. if (pid_output > MAX_BED_POWER) {
  577. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  578. pid_output=MAX_BED_POWER;
  579. } else if (pid_output < 0){
  580. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  581. pid_output=0;
  582. }
  583. #else
  584. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  585. #endif //PID_OPENLOOP
  586. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  587. {
  588. soft_pwm_bed = (int)pid_output >> 1;
  589. }
  590. else {
  591. soft_pwm_bed = 0;
  592. }
  593. #elif !defined(BED_LIMIT_SWITCHING)
  594. // Check if temperature is within the correct range
  595. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  596. {
  597. if(current_temperature_bed >= target_temperature_bed)
  598. {
  599. soft_pwm_bed = 0;
  600. }
  601. else
  602. {
  603. soft_pwm_bed = MAX_BED_POWER>>1;
  604. }
  605. }
  606. else
  607. {
  608. soft_pwm_bed = 0;
  609. WRITE(HEATER_BED_PIN,LOW);
  610. }
  611. #else //#ifdef BED_LIMIT_SWITCHING
  612. // Check if temperature is within the correct band
  613. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  614. {
  615. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  616. {
  617. soft_pwm_bed = 0;
  618. }
  619. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  620. {
  621. soft_pwm_bed = MAX_BED_POWER>>1;
  622. }
  623. }
  624. else
  625. {
  626. soft_pwm_bed = 0;
  627. WRITE(HEATER_BED_PIN,LOW);
  628. }
  629. #endif
  630. #endif
  631. //code for controlling the extruder rate based on the width sensor
  632. #ifdef FILAMENT_SENSOR
  633. if(filament_sensor)
  634. {
  635. meas_shift_index=delay_index1-meas_delay_cm;
  636. if(meas_shift_index<0)
  637. meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
  638. //get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
  639. //then square it to get an area
  640. if(meas_shift_index<0)
  641. meas_shift_index=0;
  642. else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
  643. meas_shift_index=MAX_MEASUREMENT_DELAY;
  644. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
  645. if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
  646. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
  647. }
  648. #endif
  649. }
  650. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  651. // Derived from RepRap FiveD extruder::getTemperature()
  652. // For hot end temperature measurement.
  653. static float analog2temp(int raw, uint8_t e) {
  654. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  655. if(e > EXTRUDERS)
  656. #else
  657. if(e >= EXTRUDERS)
  658. #endif
  659. {
  660. SERIAL_ERROR_START;
  661. SERIAL_ERROR((int)e);
  662. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  663. kill();
  664. return 0.0;
  665. }
  666. #ifdef HEATER_0_USES_MAX6675
  667. if (e == 0)
  668. {
  669. return 0.25 * raw;
  670. }
  671. #endif
  672. if(heater_ttbl_map[e] != NULL)
  673. {
  674. float celsius = 0;
  675. uint8_t i;
  676. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  677. for (i=1; i<heater_ttbllen_map[e]; i++)
  678. {
  679. if (PGM_RD_W((*tt)[i][0]) > raw)
  680. {
  681. celsius = PGM_RD_W((*tt)[i-1][1]) +
  682. (raw - PGM_RD_W((*tt)[i-1][0])) *
  683. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  684. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  685. break;
  686. }
  687. }
  688. // Overflow: Set to last value in the table
  689. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  690. return celsius;
  691. }
  692. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  693. }
  694. // Derived from RepRap FiveD extruder::getTemperature()
  695. // For bed temperature measurement.
  696. static float analog2tempBed(int raw) {
  697. #ifdef BED_USES_THERMISTOR
  698. float celsius = 0;
  699. byte i;
  700. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  701. {
  702. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  703. {
  704. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  705. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  706. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  707. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  708. break;
  709. }
  710. }
  711. // Overflow: Set to last value in the table
  712. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  713. // temperature offset adjustment
  714. #ifdef BED_OFFSET
  715. float _offset = BED_OFFSET;
  716. float _offset_center = BED_OFFSET_CENTER;
  717. float _offset_start = BED_OFFSET_START;
  718. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  719. float _second_koef = (_offset / 2) / (100 - _offset_center);
  720. if (celsius >= _offset_start && celsius <= _offset_center)
  721. {
  722. celsius = celsius + (_first_koef * (celsius - _offset_start));
  723. }
  724. else if (celsius > _offset_center && celsius <= 100)
  725. {
  726. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  727. }
  728. else if (celsius > 100)
  729. {
  730. celsius = celsius + _offset;
  731. }
  732. #endif
  733. return celsius;
  734. #elif defined BED_USES_AD595
  735. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  736. #else
  737. return 0;
  738. #endif
  739. }
  740. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  741. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  742. static void updateTemperaturesFromRawValues()
  743. {
  744. for(uint8_t e=0;e<EXTRUDERS;e++)
  745. {
  746. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  747. }
  748. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  749. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  750. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  751. #endif
  752. #if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
  753. filament_width_meas = analog2widthFil();
  754. #endif
  755. //Reset the watchdog after we know we have a temperature measurement.
  756. watchdog_reset();
  757. CRITICAL_SECTION_START;
  758. temp_meas_ready = false;
  759. CRITICAL_SECTION_END;
  760. }
  761. // For converting raw Filament Width to milimeters
  762. #ifdef FILAMENT_SENSOR
  763. float analog2widthFil() {
  764. return current_raw_filwidth/16383.0*5.0;
  765. //return current_raw_filwidth;
  766. }
  767. // For converting raw Filament Width to a ratio
  768. int widthFil_to_size_ratio() {
  769. float temp;
  770. temp=filament_width_meas;
  771. if(filament_width_meas<MEASURED_LOWER_LIMIT)
  772. temp=filament_width_nominal; //assume sensor cut out
  773. else if (filament_width_meas>MEASURED_UPPER_LIMIT)
  774. temp= MEASURED_UPPER_LIMIT;
  775. return(filament_width_nominal/temp*100);
  776. }
  777. #endif
  778. void tp_init()
  779. {
  780. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  781. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  782. MCUCR=(1<<JTD);
  783. MCUCR=(1<<JTD);
  784. #endif
  785. // Finish init of mult extruder arrays
  786. for(int e = 0; e < EXTRUDERS; e++) {
  787. // populate with the first value
  788. maxttemp[e] = maxttemp[0];
  789. #ifdef PIDTEMP
  790. temp_iState_min[e] = 0.0;
  791. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  792. #endif //PIDTEMP
  793. #ifdef PIDTEMPBED
  794. temp_iState_min_bed = 0.0;
  795. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  796. #endif //PIDTEMPBED
  797. }
  798. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  799. SET_OUTPUT(HEATER_0_PIN);
  800. #endif
  801. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  802. SET_OUTPUT(HEATER_1_PIN);
  803. #endif
  804. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  805. SET_OUTPUT(HEATER_2_PIN);
  806. #endif
  807. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  808. SET_OUTPUT(HEATER_BED_PIN);
  809. #endif
  810. #if defined(FAN_PIN) && (FAN_PIN > -1)
  811. SET_OUTPUT(FAN_PIN);
  812. #ifdef FAST_PWM_FAN
  813. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  814. #endif
  815. #ifdef FAN_SOFT_PWM
  816. soft_pwm_fan = fanSpeedSoftPwm / 2;
  817. #endif
  818. #endif
  819. #ifdef HEATER_0_USES_MAX6675
  820. #ifndef SDSUPPORT
  821. SET_OUTPUT(SCK_PIN);
  822. WRITE(SCK_PIN,0);
  823. SET_OUTPUT(MOSI_PIN);
  824. WRITE(MOSI_PIN,1);
  825. SET_INPUT(MISO_PIN);
  826. WRITE(MISO_PIN,1);
  827. #endif
  828. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  829. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  830. pinMode(SS_PIN, OUTPUT);
  831. digitalWrite(SS_PIN,0);
  832. pinMode(MAX6675_SS, OUTPUT);
  833. digitalWrite(MAX6675_SS,1);
  834. #endif
  835. // Set analog inputs
  836. ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
  837. DIDR0 = 0;
  838. #ifdef DIDR2
  839. DIDR2 = 0;
  840. #endif
  841. #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
  842. #if TEMP_0_PIN < 8
  843. DIDR0 |= 1 << TEMP_0_PIN;
  844. #else
  845. DIDR2 |= 1<<(TEMP_0_PIN - 8);
  846. #endif
  847. #endif
  848. #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
  849. #if TEMP_1_PIN < 8
  850. DIDR0 |= 1<<TEMP_1_PIN;
  851. #else
  852. DIDR2 |= 1<<(TEMP_1_PIN - 8);
  853. #endif
  854. #endif
  855. #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
  856. #if TEMP_2_PIN < 8
  857. DIDR0 |= 1 << TEMP_2_PIN;
  858. #else
  859. DIDR2 |= 1<<(TEMP_2_PIN - 8);
  860. #endif
  861. #endif
  862. #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
  863. #if TEMP_BED_PIN < 8
  864. DIDR0 |= 1<<TEMP_BED_PIN;
  865. #else
  866. DIDR2 |= 1<<(TEMP_BED_PIN - 8);
  867. #endif
  868. #endif
  869. //Added for Filament Sensor
  870. #ifdef FILAMENT_SENSOR
  871. #if defined(FILWIDTH_PIN) && (FILWIDTH_PIN > -1)
  872. #if FILWIDTH_PIN < 8
  873. DIDR0 |= 1<<FILWIDTH_PIN;
  874. #else
  875. DIDR2 |= 1<<(FILWIDTH_PIN - 8);
  876. #endif
  877. #endif
  878. #endif
  879. // Use timer0 for temperature measurement
  880. // Interleave temperature interrupt with millies interrupt
  881. OCR0B = 128;
  882. TIMSK0 |= (1<<OCIE0B);
  883. // Wait for temperature measurement to settle
  884. delay(250);
  885. #ifdef HEATER_0_MINTEMP
  886. minttemp[0] = HEATER_0_MINTEMP;
  887. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  888. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  889. minttemp_raw[0] += OVERSAMPLENR;
  890. #else
  891. minttemp_raw[0] -= OVERSAMPLENR;
  892. #endif
  893. }
  894. #endif //MINTEMP
  895. #ifdef HEATER_0_MAXTEMP
  896. maxttemp[0] = HEATER_0_MAXTEMP;
  897. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  898. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  899. maxttemp_raw[0] -= OVERSAMPLENR;
  900. #else
  901. maxttemp_raw[0] += OVERSAMPLENR;
  902. #endif
  903. }
  904. #endif //MAXTEMP
  905. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  906. minttemp[1] = HEATER_1_MINTEMP;
  907. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  908. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  909. minttemp_raw[1] += OVERSAMPLENR;
  910. #else
  911. minttemp_raw[1] -= OVERSAMPLENR;
  912. #endif
  913. }
  914. #endif // MINTEMP 1
  915. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  916. maxttemp[1] = HEATER_1_MAXTEMP;
  917. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  918. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  919. maxttemp_raw[1] -= OVERSAMPLENR;
  920. #else
  921. maxttemp_raw[1] += OVERSAMPLENR;
  922. #endif
  923. }
  924. #endif //MAXTEMP 1
  925. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  926. minttemp[2] = HEATER_2_MINTEMP;
  927. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  928. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  929. minttemp_raw[2] += OVERSAMPLENR;
  930. #else
  931. minttemp_raw[2] -= OVERSAMPLENR;
  932. #endif
  933. }
  934. #endif //MINTEMP 2
  935. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  936. maxttemp[2] = HEATER_2_MAXTEMP;
  937. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  938. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  939. maxttemp_raw[2] -= OVERSAMPLENR;
  940. #else
  941. maxttemp_raw[2] += OVERSAMPLENR;
  942. #endif
  943. }
  944. #endif //MAXTEMP 2
  945. #ifdef BED_MINTEMP
  946. /* No bed MINTEMP error implemented?!? */
  947. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  948. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  949. bed_minttemp_raw += OVERSAMPLENR;
  950. #else
  951. bed_minttemp_raw -= OVERSAMPLENR;
  952. #endif
  953. }
  954. #endif //BED_MINTEMP
  955. #ifdef BED_MAXTEMP
  956. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  957. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  958. bed_maxttemp_raw -= OVERSAMPLENR;
  959. #else
  960. bed_maxttemp_raw += OVERSAMPLENR;
  961. #endif
  962. }
  963. #endif //BED_MAXTEMP
  964. }
  965. void setWatch()
  966. {
  967. #ifdef WATCH_TEMP_PERIOD
  968. for (int e = 0; e < EXTRUDERS; e++)
  969. {
  970. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  971. {
  972. watch_start_temp[e] = degHotend(e);
  973. watchmillis[e] = millis();
  974. }
  975. }
  976. #endif
  977. }
  978. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  979. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  980. {
  981. float __hysteresis = 0;
  982. int __timeout = 0;
  983. bool temp_runaway_check_active = false;
  984. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  985. static int __preheat_counter[2] = { 0,0};
  986. static int __preheat_errors[2] = { 0,0};
  987. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  988. if (_isbed)
  989. {
  990. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  991. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  992. }
  993. #endif
  994. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  995. if (!_isbed)
  996. {
  997. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  998. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  999. }
  1000. #endif
  1001. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1002. {
  1003. temp_runaway_timer[_heater_id] = millis();
  1004. if (_output == 0)
  1005. {
  1006. temp_runaway_check_active = false;
  1007. temp_runaway_error_counter[_heater_id] = 0;
  1008. }
  1009. if (temp_runaway_target[_heater_id] != _target_temperature)
  1010. {
  1011. if (_target_temperature > 0)
  1012. {
  1013. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1014. temp_runaway_target[_heater_id] = _target_temperature;
  1015. __preheat_start[_heater_id] = _current_temperature;
  1016. __preheat_counter[_heater_id] = 0;
  1017. }
  1018. else
  1019. {
  1020. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1021. temp_runaway_target[_heater_id] = _target_temperature;
  1022. }
  1023. }
  1024. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1025. {
  1026. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1027. {
  1028. __preheat_counter[_heater_id]++;
  1029. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1030. {
  1031. /*SERIAL_ECHOPGM("Heater:");
  1032. MYSERIAL.print(_heater_id);
  1033. SERIAL_ECHOPGM(" T:");
  1034. MYSERIAL.print(_current_temperature);
  1035. SERIAL_ECHOPGM(" Tstart:");
  1036. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1037. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1038. __preheat_errors[_heater_id]++;
  1039. /*SERIAL_ECHOPGM(" Preheat errors:");
  1040. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1041. }
  1042. else {
  1043. //SERIAL_ECHOLNPGM("");
  1044. __preheat_errors[_heater_id] = 0;
  1045. }
  1046. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1047. {
  1048. if (farm_mode) { prusa_statistics(0); }
  1049. temp_runaway_stop(true, _isbed);
  1050. if (farm_mode) { prusa_statistics(91); }
  1051. }
  1052. __preheat_start[_heater_id] = _current_temperature;
  1053. __preheat_counter[_heater_id] = 0;
  1054. }
  1055. }
  1056. }
  1057. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1058. {
  1059. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1060. temp_runaway_check_active = false;
  1061. }
  1062. if (!temp_runaway_check_active && _output > 0)
  1063. {
  1064. temp_runaway_check_active = true;
  1065. }
  1066. if (temp_runaway_check_active)
  1067. {
  1068. // we are in range
  1069. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1070. {
  1071. temp_runaway_check_active = false;
  1072. temp_runaway_error_counter[_heater_id] = 0;
  1073. }
  1074. else
  1075. {
  1076. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1077. {
  1078. temp_runaway_error_counter[_heater_id]++;
  1079. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1080. {
  1081. if (farm_mode) { prusa_statistics(0); }
  1082. temp_runaway_stop(false, _isbed);
  1083. if (farm_mode) { prusa_statistics(90); }
  1084. }
  1085. }
  1086. }
  1087. }
  1088. }
  1089. }
  1090. void temp_runaway_stop(bool isPreheat, bool isBed)
  1091. {
  1092. cancel_heatup = true;
  1093. quickStop();
  1094. if (card.sdprinting)
  1095. {
  1096. card.sdprinting = false;
  1097. card.closefile();
  1098. }
  1099. disable_heater();
  1100. disable_x();
  1101. disable_y();
  1102. disable_e0();
  1103. disable_e1();
  1104. disable_e2();
  1105. manage_heater();
  1106. lcd_update();
  1107. WRITE(BEEPER, HIGH);
  1108. delayMicroseconds(500);
  1109. WRITE(BEEPER, LOW);
  1110. delayMicroseconds(100);
  1111. if (isPreheat)
  1112. {
  1113. Stop();
  1114. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1115. SERIAL_ERROR_START;
  1116. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1117. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1118. SET_OUTPUT(FAN_PIN);
  1119. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1120. analogWrite(FAN_PIN, 255);
  1121. fanSpeed = 255;
  1122. delayMicroseconds(2000);
  1123. }
  1124. else
  1125. {
  1126. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1127. SERIAL_ERROR_START;
  1128. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1129. }
  1130. }
  1131. #endif
  1132. void disable_heater()
  1133. {
  1134. for(int i=0;i<EXTRUDERS;i++)
  1135. setTargetHotend(0,i);
  1136. setTargetBed(0);
  1137. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1138. target_temperature[0]=0;
  1139. soft_pwm[0]=0;
  1140. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1141. WRITE(HEATER_0_PIN,LOW);
  1142. #endif
  1143. #endif
  1144. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1145. target_temperature[1]=0;
  1146. soft_pwm[1]=0;
  1147. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1148. WRITE(HEATER_1_PIN,LOW);
  1149. #endif
  1150. #endif
  1151. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1152. target_temperature[2]=0;
  1153. soft_pwm[2]=0;
  1154. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1155. WRITE(HEATER_2_PIN,LOW);
  1156. #endif
  1157. #endif
  1158. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1159. target_temperature_bed=0;
  1160. soft_pwm_bed=0;
  1161. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1162. WRITE(HEATER_BED_PIN,LOW);
  1163. #endif
  1164. #endif
  1165. }
  1166. void max_temp_error(uint8_t e) {
  1167. disable_heater();
  1168. if(IsStopped() == false) {
  1169. SERIAL_ERROR_START;
  1170. SERIAL_ERRORLN((int)e);
  1171. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1172. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1173. }
  1174. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1175. Stop();
  1176. #endif
  1177. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1178. SET_OUTPUT(FAN_PIN);
  1179. SET_OUTPUT(BEEPER);
  1180. WRITE(FAN_PIN, 1);
  1181. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1182. WRITE(BEEPER, 1);
  1183. // fanSpeed will consumed by the check_axes_activity() routine.
  1184. fanSpeed=255;
  1185. if (farm_mode) { prusa_statistics(93); }
  1186. }
  1187. void min_temp_error(uint8_t e) {
  1188. disable_heater();
  1189. if(IsStopped() == false) {
  1190. SERIAL_ERROR_START;
  1191. SERIAL_ERRORLN((int)e);
  1192. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1193. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1194. }
  1195. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1196. Stop();
  1197. #endif
  1198. if (farm_mode) { prusa_statistics(92); }
  1199. }
  1200. void bed_max_temp_error(void) {
  1201. #if HEATER_BED_PIN > -1
  1202. WRITE(HEATER_BED_PIN, 0);
  1203. #endif
  1204. if(IsStopped() == false) {
  1205. SERIAL_ERROR_START;
  1206. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1207. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1208. }
  1209. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1210. Stop();
  1211. #endif
  1212. }
  1213. void bed_min_temp_error(void) {
  1214. /*#if HEATER_BED_PIN > -1
  1215. WRITE(HEATER_BED_PIN, 0);
  1216. #endif
  1217. if(IsStopped() == false) {
  1218. SERIAL_ERROR_START;
  1219. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1220. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1221. }
  1222. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1223. Stop();
  1224. #endif*/
  1225. }
  1226. #ifdef HEATER_0_USES_MAX6675
  1227. #define MAX6675_HEAT_INTERVAL 250
  1228. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1229. int max6675_temp = 2000;
  1230. int read_max6675()
  1231. {
  1232. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1233. return max6675_temp;
  1234. max6675_previous_millis = millis();
  1235. max6675_temp = 0;
  1236. #ifdef PRR
  1237. PRR &= ~(1<<PRSPI);
  1238. #elif defined PRR0
  1239. PRR0 &= ~(1<<PRSPI);
  1240. #endif
  1241. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1242. // enable TT_MAX6675
  1243. WRITE(MAX6675_SS, 0);
  1244. // ensure 100ns delay - a bit extra is fine
  1245. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1246. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1247. // read MSB
  1248. SPDR = 0;
  1249. for (;(SPSR & (1<<SPIF)) == 0;);
  1250. max6675_temp = SPDR;
  1251. max6675_temp <<= 8;
  1252. // read LSB
  1253. SPDR = 0;
  1254. for (;(SPSR & (1<<SPIF)) == 0;);
  1255. max6675_temp |= SPDR;
  1256. // disable TT_MAX6675
  1257. WRITE(MAX6675_SS, 1);
  1258. if (max6675_temp & 4)
  1259. {
  1260. // thermocouple open
  1261. max6675_temp = 2000;
  1262. }
  1263. else
  1264. {
  1265. max6675_temp = max6675_temp >> 3;
  1266. }
  1267. return max6675_temp;
  1268. }
  1269. #endif
  1270. // Timer 0 is shared with millies
  1271. ISR(TIMER0_COMPB_vect)
  1272. {
  1273. if (UVLO) uvlo();
  1274. //these variables are only accesible from the ISR, but static, so they don't lose their value
  1275. static unsigned char temp_count = 0;
  1276. static unsigned long raw_temp_0_value = 0;
  1277. static unsigned long raw_temp_1_value = 0;
  1278. static unsigned long raw_temp_2_value = 0;
  1279. static unsigned long raw_temp_bed_value = 0;
  1280. static unsigned char temp_state = 10;
  1281. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1282. static unsigned char soft_pwm_0;
  1283. #ifdef SLOW_PWM_HEATERS
  1284. static unsigned char slow_pwm_count = 0;
  1285. static unsigned char state_heater_0 = 0;
  1286. static unsigned char state_timer_heater_0 = 0;
  1287. #endif
  1288. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1289. static unsigned char soft_pwm_1;
  1290. #ifdef SLOW_PWM_HEATERS
  1291. static unsigned char state_heater_1 = 0;
  1292. static unsigned char state_timer_heater_1 = 0;
  1293. #endif
  1294. #endif
  1295. #if EXTRUDERS > 2
  1296. static unsigned char soft_pwm_2;
  1297. #ifdef SLOW_PWM_HEATERS
  1298. static unsigned char state_heater_2 = 0;
  1299. static unsigned char state_timer_heater_2 = 0;
  1300. #endif
  1301. #endif
  1302. #if HEATER_BED_PIN > -1
  1303. static unsigned char soft_pwm_b;
  1304. #ifdef SLOW_PWM_HEATERS
  1305. static unsigned char state_heater_b = 0;
  1306. static unsigned char state_timer_heater_b = 0;
  1307. #endif
  1308. #endif
  1309. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1310. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1311. #endif
  1312. #ifndef SLOW_PWM_HEATERS
  1313. /*
  1314. * standard PWM modulation
  1315. */
  1316. if(pwm_count == 0){
  1317. soft_pwm_0 = soft_pwm[0];
  1318. if(soft_pwm_0 > 0) {
  1319. WRITE(HEATER_0_PIN,1);
  1320. #ifdef HEATERS_PARALLEL
  1321. WRITE(HEATER_1_PIN,1);
  1322. #endif
  1323. } else WRITE(HEATER_0_PIN,0);
  1324. #if EXTRUDERS > 1
  1325. soft_pwm_1 = soft_pwm[1];
  1326. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1327. #endif
  1328. #if EXTRUDERS > 2
  1329. soft_pwm_2 = soft_pwm[2];
  1330. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1331. #endif
  1332. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1333. soft_pwm_b = soft_pwm_bed;
  1334. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1335. #endif
  1336. #ifdef FAN_SOFT_PWM
  1337. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1338. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1339. #endif
  1340. }
  1341. if(soft_pwm_0 < pwm_count) {
  1342. WRITE(HEATER_0_PIN,0);
  1343. #ifdef HEATERS_PARALLEL
  1344. WRITE(HEATER_1_PIN,0);
  1345. #endif
  1346. }
  1347. #if EXTRUDERS > 1
  1348. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1349. #endif
  1350. #if EXTRUDERS > 2
  1351. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1352. #endif
  1353. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1354. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1355. #endif
  1356. #ifdef FAN_SOFT_PWM
  1357. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1358. #endif
  1359. pwm_count += (1 << SOFT_PWM_SCALE);
  1360. pwm_count &= 0x7f;
  1361. #else //ifndef SLOW_PWM_HEATERS
  1362. /*
  1363. * SLOW PWM HEATERS
  1364. *
  1365. * for heaters drived by relay
  1366. */
  1367. #ifndef MIN_STATE_TIME
  1368. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1369. #endif
  1370. if (slow_pwm_count == 0) {
  1371. // EXTRUDER 0
  1372. soft_pwm_0 = soft_pwm[0];
  1373. if (soft_pwm_0 > 0) {
  1374. // turn ON heather only if the minimum time is up
  1375. if (state_timer_heater_0 == 0) {
  1376. // if change state set timer
  1377. if (state_heater_0 == 0) {
  1378. state_timer_heater_0 = MIN_STATE_TIME;
  1379. }
  1380. state_heater_0 = 1;
  1381. WRITE(HEATER_0_PIN, 1);
  1382. #ifdef HEATERS_PARALLEL
  1383. WRITE(HEATER_1_PIN, 1);
  1384. #endif
  1385. }
  1386. } else {
  1387. // turn OFF heather only if the minimum time is up
  1388. if (state_timer_heater_0 == 0) {
  1389. // if change state set timer
  1390. if (state_heater_0 == 1) {
  1391. state_timer_heater_0 = MIN_STATE_TIME;
  1392. }
  1393. state_heater_0 = 0;
  1394. WRITE(HEATER_0_PIN, 0);
  1395. #ifdef HEATERS_PARALLEL
  1396. WRITE(HEATER_1_PIN, 0);
  1397. #endif
  1398. }
  1399. }
  1400. #if EXTRUDERS > 1
  1401. // EXTRUDER 1
  1402. soft_pwm_1 = soft_pwm[1];
  1403. if (soft_pwm_1 > 0) {
  1404. // turn ON heather only if the minimum time is up
  1405. if (state_timer_heater_1 == 0) {
  1406. // if change state set timer
  1407. if (state_heater_1 == 0) {
  1408. state_timer_heater_1 = MIN_STATE_TIME;
  1409. }
  1410. state_heater_1 = 1;
  1411. WRITE(HEATER_1_PIN, 1);
  1412. }
  1413. } else {
  1414. // turn OFF heather only if the minimum time is up
  1415. if (state_timer_heater_1 == 0) {
  1416. // if change state set timer
  1417. if (state_heater_1 == 1) {
  1418. state_timer_heater_1 = MIN_STATE_TIME;
  1419. }
  1420. state_heater_1 = 0;
  1421. WRITE(HEATER_1_PIN, 0);
  1422. }
  1423. }
  1424. #endif
  1425. #if EXTRUDERS > 2
  1426. // EXTRUDER 2
  1427. soft_pwm_2 = soft_pwm[2];
  1428. if (soft_pwm_2 > 0) {
  1429. // turn ON heather only if the minimum time is up
  1430. if (state_timer_heater_2 == 0) {
  1431. // if change state set timer
  1432. if (state_heater_2 == 0) {
  1433. state_timer_heater_2 = MIN_STATE_TIME;
  1434. }
  1435. state_heater_2 = 1;
  1436. WRITE(HEATER_2_PIN, 1);
  1437. }
  1438. } else {
  1439. // turn OFF heather only if the minimum time is up
  1440. if (state_timer_heater_2 == 0) {
  1441. // if change state set timer
  1442. if (state_heater_2 == 1) {
  1443. state_timer_heater_2 = MIN_STATE_TIME;
  1444. }
  1445. state_heater_2 = 0;
  1446. WRITE(HEATER_2_PIN, 0);
  1447. }
  1448. }
  1449. #endif
  1450. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1451. // BED
  1452. soft_pwm_b = soft_pwm_bed;
  1453. if (soft_pwm_b > 0) {
  1454. // turn ON heather only if the minimum time is up
  1455. if (state_timer_heater_b == 0) {
  1456. // if change state set timer
  1457. if (state_heater_b == 0) {
  1458. state_timer_heater_b = MIN_STATE_TIME;
  1459. }
  1460. state_heater_b = 1;
  1461. WRITE(HEATER_BED_PIN, 1);
  1462. }
  1463. } else {
  1464. // turn OFF heather only if the minimum time is up
  1465. if (state_timer_heater_b == 0) {
  1466. // if change state set timer
  1467. if (state_heater_b == 1) {
  1468. state_timer_heater_b = MIN_STATE_TIME;
  1469. }
  1470. state_heater_b = 0;
  1471. WRITE(HEATER_BED_PIN, 0);
  1472. }
  1473. }
  1474. #endif
  1475. } // if (slow_pwm_count == 0)
  1476. // EXTRUDER 0
  1477. if (soft_pwm_0 < slow_pwm_count) {
  1478. // turn OFF heather only if the minimum time is up
  1479. if (state_timer_heater_0 == 0) {
  1480. // if change state set timer
  1481. if (state_heater_0 == 1) {
  1482. state_timer_heater_0 = MIN_STATE_TIME;
  1483. }
  1484. state_heater_0 = 0;
  1485. WRITE(HEATER_0_PIN, 0);
  1486. #ifdef HEATERS_PARALLEL
  1487. WRITE(HEATER_1_PIN, 0);
  1488. #endif
  1489. }
  1490. }
  1491. #if EXTRUDERS > 1
  1492. // EXTRUDER 1
  1493. if (soft_pwm_1 < slow_pwm_count) {
  1494. // turn OFF heather only if the minimum time is up
  1495. if (state_timer_heater_1 == 0) {
  1496. // if change state set timer
  1497. if (state_heater_1 == 1) {
  1498. state_timer_heater_1 = MIN_STATE_TIME;
  1499. }
  1500. state_heater_1 = 0;
  1501. WRITE(HEATER_1_PIN, 0);
  1502. }
  1503. }
  1504. #endif
  1505. #if EXTRUDERS > 2
  1506. // EXTRUDER 2
  1507. if (soft_pwm_2 < slow_pwm_count) {
  1508. // turn OFF heather only if the minimum time is up
  1509. if (state_timer_heater_2 == 0) {
  1510. // if change state set timer
  1511. if (state_heater_2 == 1) {
  1512. state_timer_heater_2 = MIN_STATE_TIME;
  1513. }
  1514. state_heater_2 = 0;
  1515. WRITE(HEATER_2_PIN, 0);
  1516. }
  1517. }
  1518. #endif
  1519. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1520. // BED
  1521. if (soft_pwm_b < slow_pwm_count) {
  1522. // turn OFF heather only if the minimum time is up
  1523. if (state_timer_heater_b == 0) {
  1524. // if change state set timer
  1525. if (state_heater_b == 1) {
  1526. state_timer_heater_b = MIN_STATE_TIME;
  1527. }
  1528. state_heater_b = 0;
  1529. WRITE(HEATER_BED_PIN, 0);
  1530. }
  1531. }
  1532. #endif
  1533. #ifdef FAN_SOFT_PWM
  1534. if (pwm_count == 0){
  1535. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1536. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1537. }
  1538. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1539. #endif
  1540. pwm_count += (1 << SOFT_PWM_SCALE);
  1541. pwm_count &= 0x7f;
  1542. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1543. if ((pwm_count % 64) == 0) {
  1544. slow_pwm_count++;
  1545. slow_pwm_count &= 0x7f;
  1546. // Extruder 0
  1547. if (state_timer_heater_0 > 0) {
  1548. state_timer_heater_0--;
  1549. }
  1550. #if EXTRUDERS > 1
  1551. // Extruder 1
  1552. if (state_timer_heater_1 > 0)
  1553. state_timer_heater_1--;
  1554. #endif
  1555. #if EXTRUDERS > 2
  1556. // Extruder 2
  1557. if (state_timer_heater_2 > 0)
  1558. state_timer_heater_2--;
  1559. #endif
  1560. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1561. // Bed
  1562. if (state_timer_heater_b > 0)
  1563. state_timer_heater_b--;
  1564. #endif
  1565. } //if ((pwm_count % 64) == 0) {
  1566. #endif //ifndef SLOW_PWM_HEATERS
  1567. switch(temp_state) {
  1568. case 0: // Prepare TEMP_0
  1569. #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
  1570. #if TEMP_0_PIN > 7
  1571. ADCSRB = 1<<MUX5;
  1572. #else
  1573. ADCSRB = 0;
  1574. #endif
  1575. ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
  1576. ADCSRA |= 1<<ADSC; // Start conversion
  1577. #endif
  1578. lcd_buttons_update();
  1579. temp_state = 1;
  1580. break;
  1581. case 1: // Measure TEMP_0
  1582. #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
  1583. raw_temp_0_value += ADC;
  1584. #endif
  1585. #ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking
  1586. raw_temp_0_value = read_max6675();
  1587. #endif
  1588. temp_state = 2;
  1589. break;
  1590. case 2: // Prepare TEMP_BED
  1591. #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
  1592. #if TEMP_BED_PIN > 7
  1593. ADCSRB = 1<<MUX5;
  1594. #else
  1595. ADCSRB = 0;
  1596. #endif
  1597. ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
  1598. ADCSRA |= 1<<ADSC; // Start conversion
  1599. #endif
  1600. lcd_buttons_update();
  1601. temp_state = 3;
  1602. break;
  1603. case 3: // Measure TEMP_BED
  1604. #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
  1605. raw_temp_bed_value += ADC;
  1606. #endif
  1607. temp_state = 4;
  1608. break;
  1609. case 4: // Prepare TEMP_1
  1610. #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
  1611. #if TEMP_1_PIN > 7
  1612. ADCSRB = 1<<MUX5;
  1613. #else
  1614. ADCSRB = 0;
  1615. #endif
  1616. ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
  1617. ADCSRA |= 1<<ADSC; // Start conversion
  1618. #endif
  1619. lcd_buttons_update();
  1620. temp_state = 5;
  1621. break;
  1622. case 5: // Measure TEMP_1
  1623. #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
  1624. raw_temp_1_value += ADC;
  1625. #endif
  1626. temp_state = 6;
  1627. break;
  1628. case 6: // Prepare TEMP_2
  1629. #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
  1630. #if TEMP_2_PIN > 7
  1631. ADCSRB = 1<<MUX5;
  1632. #else
  1633. ADCSRB = 0;
  1634. #endif
  1635. ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
  1636. ADCSRA |= 1<<ADSC; // Start conversion
  1637. #endif
  1638. lcd_buttons_update();
  1639. temp_state = 7;
  1640. break;
  1641. case 7: // Measure TEMP_2
  1642. #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
  1643. raw_temp_2_value += ADC;
  1644. #endif
  1645. temp_state = 8;//change so that Filament Width is also measured
  1646. break;
  1647. case 8: //Prepare FILWIDTH
  1648. #if defined(FILWIDTH_PIN) && (FILWIDTH_PIN> -1)
  1649. #if FILWIDTH_PIN>7
  1650. ADCSRB = 1<<MUX5;
  1651. #else
  1652. ADCSRB = 0;
  1653. #endif
  1654. ADMUX = ((1 << REFS0) | (FILWIDTH_PIN & 0x07));
  1655. ADCSRA |= 1<<ADSC; // Start conversion
  1656. #endif
  1657. lcd_buttons_update();
  1658. temp_state = 9;
  1659. break;
  1660. case 9: //Measure FILWIDTH
  1661. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1662. //raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1663. if(ADC>102) //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1664. {
  1665. raw_filwidth_value= raw_filwidth_value-(raw_filwidth_value>>7); //multipliy raw_filwidth_value by 127/128
  1666. raw_filwidth_value= raw_filwidth_value + ((unsigned long)ADC<<7); //add new ADC reading
  1667. }
  1668. #endif
  1669. temp_state = 0;
  1670. temp_count++;
  1671. break;
  1672. case 10: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
  1673. temp_state = 0;
  1674. break;
  1675. // default:
  1676. // SERIAL_ERROR_START;
  1677. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1678. // break;
  1679. }
  1680. if(temp_count >= OVERSAMPLENR) // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1681. {
  1682. if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
  1683. {
  1684. current_temperature_raw[0] = raw_temp_0_value;
  1685. #if EXTRUDERS > 1
  1686. current_temperature_raw[1] = raw_temp_1_value;
  1687. #endif
  1688. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1689. redundant_temperature_raw = raw_temp_1_value;
  1690. #endif
  1691. #if EXTRUDERS > 2
  1692. current_temperature_raw[2] = raw_temp_2_value;
  1693. #endif
  1694. current_temperature_bed_raw = raw_temp_bed_value;
  1695. }
  1696. //Add similar code for Filament Sensor - can be read any time since IIR filtering is used
  1697. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1698. current_raw_filwidth = raw_filwidth_value>>10; //need to divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1699. #endif
  1700. temp_meas_ready = true;
  1701. temp_count = 0;
  1702. raw_temp_0_value = 0;
  1703. raw_temp_1_value = 0;
  1704. raw_temp_2_value = 0;
  1705. raw_temp_bed_value = 0;
  1706. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1707. if(current_temperature_raw[0] <= maxttemp_raw[0]) {
  1708. #else
  1709. if(current_temperature_raw[0] >= maxttemp_raw[0]) {
  1710. #endif
  1711. max_temp_error(0);
  1712. }
  1713. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1714. if(current_temperature_raw[0] >= minttemp_raw[0]) {
  1715. #else
  1716. if(current_temperature_raw[0] <= minttemp_raw[0]) {
  1717. #endif
  1718. min_temp_error(0);
  1719. }
  1720. #if EXTRUDERS > 1
  1721. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1722. if(current_temperature_raw[1] <= maxttemp_raw[1]) {
  1723. #else
  1724. if(current_temperature_raw[1] >= maxttemp_raw[1]) {
  1725. #endif
  1726. max_temp_error(1);
  1727. }
  1728. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1729. if(current_temperature_raw[1] >= minttemp_raw[1]) {
  1730. #else
  1731. if(current_temperature_raw[1] <= minttemp_raw[1]) {
  1732. #endif
  1733. min_temp_error(1);
  1734. }
  1735. #endif
  1736. #if EXTRUDERS > 2
  1737. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1738. if(current_temperature_raw[2] <= maxttemp_raw[2]) {
  1739. #else
  1740. if(current_temperature_raw[2] >= maxttemp_raw[2]) {
  1741. #endif
  1742. max_temp_error(2);
  1743. }
  1744. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1745. if(current_temperature_raw[2] >= minttemp_raw[2]) {
  1746. #else
  1747. if(current_temperature_raw[2] <= minttemp_raw[2]) {
  1748. #endif
  1749. min_temp_error(2);
  1750. }
  1751. #endif
  1752. /* No bed MINTEMP error? */
  1753. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1754. # if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1755. if(current_temperature_bed_raw <= bed_maxttemp_raw) {
  1756. #else
  1757. if(current_temperature_bed_raw >= bed_maxttemp_raw) {
  1758. #endif
  1759. target_temperature_bed = 0;
  1760. bed_max_temp_error();
  1761. }
  1762. }
  1763. # if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1764. if(current_temperature_bed_raw >= bed_minttemp_raw) {
  1765. #else
  1766. if(current_temperature_bed_raw <= bed_minttemp_raw) {
  1767. #endif
  1768. bed_min_temp_error();
  1769. }
  1770. #endif
  1771. #ifdef BABYSTEPPING
  1772. for(uint8_t axis=0;axis<3;axis++)
  1773. {
  1774. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1775. if(curTodo>0)
  1776. {
  1777. babystep(axis,/*fwd*/true);
  1778. babystepsTodo[axis]--; //less to do next time
  1779. }
  1780. else
  1781. if(curTodo<0)
  1782. {
  1783. babystep(axis,/*fwd*/false);
  1784. babystepsTodo[axis]++; //less to do next time
  1785. }
  1786. }
  1787. #endif //BABYSTEPPING
  1788. }
  1789. #ifdef PIDTEMP
  1790. // Apply the scale factors to the PID values
  1791. float scalePID_i(float i)
  1792. {
  1793. return i*PID_dT;
  1794. }
  1795. float unscalePID_i(float i)
  1796. {
  1797. return i/PID_dT;
  1798. }
  1799. float scalePID_d(float d)
  1800. {
  1801. return d/PID_dT;
  1802. }
  1803. float unscalePID_d(float d)
  1804. {
  1805. return d*PID_dT;
  1806. }
  1807. #endif //PIDTEMP